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[W88) Witten 1088: Y M, "
N =2 Twisted Supersymmetry — S(a,¥,d;...)

invariant under

= Qy
g; _ dl;qﬁ . form d® 1 13
q¢ ; 0“ ' ghost§ 0 1 2

Q? = 0 on gauge invariant combinations of a, @,y in fact: Q*= gauge trans-
formation of parameter ¢

Qtr(F(a)+ P +¢) = ~dtr(F(a) + ¥ + ¢’
where: F(a) = da + }(a,a]. Remark:

/;tr F A F = QA(gauge inv.(a,%,¢;...) + S(a, 9, 9;...)
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(BS88] Baulieu, Singer 1988

Q — s &
a = Yy-D,w

s¥ = Did+'y,w] w:gauge Faddeev Popov ghost
0 = [pw]

1 )
sw = —E[w,w] +¢

S(a,¥,0) = AtrF/‘.F-i—sA(an/:,cb;...)

0

defect: s has no cobomology ! (Observables 777)

(Ha9) J. Horne 1989
S{e, ¥, ¢;...) is not only gauge invariant but also does got depend on w

— Supersymmetric gauge invarisnce

(OSBA&9] S. Ouvry, R. Stora, P. van Baal (1989)
On fields a,¥, ¢, the action of infinitesimal gauge transformations is givea
by:

& = [‘7\7()‘)]4-

JMw=A  J() other =0

The cohomology of s restricted to 8, and J» invariant objects is non
empty and contains Witten's example.
This set up has been known since the 50s under the name of "basic coho-
mology” or "equivariant cohomology”.

[K08] J. Kalkman (1993)

has snalysed OSB in abstract terms and made a very nice algebraic
discovery possibly burried in the mathematical literature but certainly not
widely known.

There, s is interpreted as follows:

a€ A : space of connections on some G-bundle
P(Z, G)(with structure group G)

] = differential on.4

w,¢ ! generators of a Weil algebra forg,
the gauge group:
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dww = -%[w,w]+¢
bwe (@ w]

i(A);4(}), action of G on A inherited from the action of G on P one may
interpret .

4 = 5+5w+l(w)—i(¢)
v = ba

I J(X), L(A) is the action on the Well algebra:

JAw = X J(A)¢=0
'C(-A—)w = [Aw] 'C(’\)¢ P [’\1 ¢
N+ L) = [T

There is another interpretation, the so-called . Weil interpretation [K93]

1

s=d+8fw Y=2~0,-Dw

IN) =) +TR) LX) = A) + £(3)
o L(2) = [s,1(2)]
(compare BS 88-01).

This set up generalizes to any situation where A is replaced by a space
. .of fields defined on T and G by some group acting on A. Other example: 2d
gravity . D g

I, ;
A — M(Z) metricsonX
¢ — Difft

One question is: how to find equivariant cohomology classes.

One general method which involves equivariant cohomology again goes as
follows: find a family of H-bundles over L on which the action of ¢ lifts and
find & G invarisnt connection I', H-characteristic classes of the equivariant
curvature of I' define equivariant cohomology classes of the basis B of the H-
bundle family (e.g. £ X Ain the Yang-Mills case, £ x M(Z) or T x CM(Z)
in the 2d gravity case). (CM(Z) = conformal classes of metrics on z.)

Next, "theorem 8 of Cartan” allows to replace w, the generator of the
Weil algebra by a connection & for the action of G on the above manifold B,
thus yielding basic cohomology classes of B for the action of §.

124



It follows from general properties of characteristic classes that these co-
homology classes do not depend on the various connectjons used to define
them (eg I',@), hence can be obtained by integrating or averaging out over
families of those (e.g., in the gauge case I' = g in the Gri® case I' = an
extension to the linear frame bundle of the Levi-Civite connection). This,
we believe, is the reason why such cohomology classes can be expressed as
"functional integrals” (to be properly defined).

This interpretation allows compact representations of those cohomology
classes both in the Y M, case where it explains the role of F + 1 -+ ¢ (cf.
Baulieu, Singer 88-91) and in the Gry” case (cf. Becchi, Collina, Imbimbo
94) which remained rather mysterious for some time.

It also sheds some light on the N = 2 twisted supersymmetry approach.
Introducing the Faddeev Popov chazge Q%™ (not 1o be confused with the Q in
the beginning of the lecture), (and, the corresponding currents, if one wants),
one has the following graded commutation relations;

[T, = L)

[CA) (N = L([AA)

(L, TNVN. = T(AN)

[TA)TN), = 0
(@8], = =«

@ TN = T()
@, L(M)]. = 0

Ex.: N =2 superconformal set up: A € Vir
QN/J, J() =G- ,N/m L) =T

This return to the origin requires the introduction of the operation J(:)
associated to the introduction of the Faddeev Popov ghost w.

Conclugion

If you are an addict of BRST games, find the correct cohomology first !
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