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Abstract: Cosmic rays were discovered by the Austrian physicist Victor Hess in 1912 in a series
of balloon experiments performed between 1911 and 1912. Cosmic rays are an integral part of
fundamental and applied research in the field of solar-terrestrial physics and space weather. Cosmic
ray data are applied in different fields from the discovery of high-energy particles coming to Earth
from space, and new fundamental symmetries in the laws of nature, to the knowledge of residual
matter and magnetic fields in interstellar space. The properties of interplanetary space are determined
from intensity variations, angular distribution, and other characteristics of galactic cosmic rays. The
measure of cosmic ray flux intensity variability is used as one of the significant space weather
factors. The negative impact of cosmic rays is also known. The negative impact can significantly
increase the level of radiation hazard and pose a threat to astronauts, crews, and passengers of
high-altitude aircraft on polar routes and to modern space equipment. Therefore, methods aimed
at timely detection and identification of anomalous manifestations in cosmic rays are of particular
practical relevance. The article proposes a method for analyzing cosmic ray variations and detecting
anomalous changes in the rate of galactic cosmic ray arrival to the Earth. The method is based on
a combination of the Autoencoder neural network with wavelet transform. The use of non-linear
activation functions and the ability to flexibly change the structure of the network provide the ability
of the Autoencoder to approximate complex dependencies in the recorded variations of cosmic rays.
The article describes the numerical operations of the method implementation. Verification of the
adequacy of the neural network model is based on the use of Box-Ljung Q-statistics. On the basis
of the wavelet transform constructions, data-adaptive operations for detecting complex singular
structures are constructed. The parameters of the applied threshold functions are estimated with
a given confidence probability based on the a-quantiles of Student’s distribution. Using data from
high-latitude neutron monitor stations, it is shown that the proposed method provides efficient
detection of anomalies in cosmic rays during increased solar activity and magnetic storms. Using
the example of a moderate magnetic storm on 10-11 May 2019, the necessity of applying different
methods and approaches to the study of cosmic ray variations is confirmed, and the importance of
taking them into account when making space weather forecast is shown.
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1. Introduction

Cosmic rays are a mysterious and interesting natural phenomenon. They were first
discovered in the second decade of the 20th century by virtue of the experiments of great
scientists such as Victor Hess, Werner Kolcherster, and others [1,2]. Currently, using mod-
ern equipment, scientists are actively investigating the intensity of the cosmic ray flux, the
composition of cosmic particles, and their energy spectrum and angular distribution [3-7].
Cosmic rays (CR) are of exceptional interest in solving urgent problems in the field of
astrophysics [8-12], nuclear physics, and many other applied areas (research of rocks,
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moisture content, mastering high altitudes by aviation, etc.) [13-15]. In the field of as-
trophysics, X-rays, y-radiation, and cosmic radio emission are most often generated by
electrons, protons, and CR nuclei. The properties of interplanetary space are determined
from intensity variations, angular distribution, and other characteristics of CR. The neg-
ative impact of anomalous galactic cosmic ray flows is also known. They significantly
increase the level of radiation hazard for astronauts, crews, and passengers of high-altitude
aircrafts on polar routes. Negative impacts can lead to loss of satellites and failure of space
equipment [16-19]. A special class of proton events are the so-called strong ground level
enhancement (GLE). Using GLE data, the maximum energy of cosmic ray protons is fixed.
Especially dangerous is the combination of the beginning of a magnetic storm with the
arrival of CR to the Earth from a powerful proton event on the Sun. Examples of such
events are 6-7 April and 15-16 July 2000 [20]. GLE 72 (10 September 2017) was particularly
strong and was measured for the first time on more than one planet (Mars and Earth),
and it is of particular interest during the solar minimum [21]. Then, during magnetic
storms, powerful solar cosmic ray fluxes penetrated into the Earth’s magnetosphere and
atmosphere up to middle latitudes. It is fluorescence light coming from the excitation of
the nitrogen and oxygen molecules of the Earth’s atmosphere (thermosphere/exosphere)
caused by the energetic particles trapped in the Van Allen’s belts (protons and electrons)
that during more turbulent periods can interact with these atmospheric layers at high
latitudes [21].

Anomalous phenomena and processes on the Sun are reflected in the recorded CR
intensity variations. Therefore, CR is one of the significant factors in space weather. Fast
changes in the outer part of the radiation belts during solar events indicate the presence of
high-speed mechanisms for replenishing the outer belt with electrons [18]. In the works
of various authors [22-28], anomalous changes in the CR flux preceding the onset of
magnetic storms are noted. The observed Forbush effects can be characterized by both an
unexpected anomalous increase and an anomalous decrease in galactic cosmic ray intensity.
The importance of taking into account CR in space weather is confirmed by the correlation
of galactic cosmic ray variability with Dst geomagnetic index obtained by the authors [24],
which has a maximum with a delay of several hours. In turn, the results of [29] suggest
that all CME properties have some correlation with CRI, but the definition of the most
significant parameter is still open.

The abovementioned information indicates the need to develop methods for the CR
analysis. Among these, methods aimed at diagnosing abnormal manifestations in CR are
of particular practical relevance [22-24,30,31]. One of the most successful methods in this
area is the “Ring of Station Method”, developed by a group of scientists [4]. This method is
based on the calculation of the hourly longitudinal distribution of the count rate of particles
recorded by a network of ground stations of neutron monitors (NM) [32]. Data from
neutron monitors are secondary cosmic rays recorded by ground-based detectors. They
reflect the intensity of cosmic radiation and are an important source of space weather. The
Ring of Station Method works best when using data from high-latitude neutron monitors,
but with the exception of near-polar stations [4]. However, the conditions for implementing
this method are not always fulfilled due to the uneven distribution of stations around the
globe and the significant impact of natural and technogenic noise on measurement results.
In addition, it is difficult to quantify the results of the method and, as a consequence, to
evaluate their accuracy and quality.

Traditional averaging methods [33] are aimed at studying regular variations in CR.
However, they are ineffective for detecting anomalous changes that occur during extreme
solar events and magnetic storms. A significant disadvantage of these methods is also the
risk of information distortion and, as a result, either the occurrence of a “false” alarm signal
or the loss of an anomaly.

To analyze the CR, machine learning methods are being actively developed [34-37].
For example, the author of [36] proposed the use of graph neural networks to study the CR
energy spectrum and composition. This approach reduces time and computational costs,
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and also provides more accurate results compared to the traditional method based on the
likelihood function. At present, the analysis of data by this method is limited due to the
specific configuration of the detector used, but the authors of [37] are actively conducting
the research and plan to expand the capabilities of the method up to the study of the
primary energies of cosmic rays.

To study natural data, the wavelet transform [38,39] and hybrid methods built on
them [24,25,30,40-43] are widely used. For example, the study by [41] proposed the use
of the wavelet transform to analyze CR variations and to predict magnetic storms. The
authors of [41], on the basis of the use of Morlet wavelets [41], managed to identify a 24-h
periodicity in CR variations during quiet time. At the times of strong magnetic storms,
this periodicity is violated, and there is another, well-defined 12-h fluctuation [41]. The
limitations of this method include the fact that its effectiveness has been confirmed only
for strong magnetic storms, and data from only one station were used in the studies. The
authors of [30] compared the wavelet transform with the Fourier method to research CR
variations. The results of [30] confirmed the efficiency of the wavelet transform for the
analysis of CR time evolution.

Flexible constructions of the wavelet transform and a wide set of bases [43] make
it possible to construct data-adaptive processing and analysis operations and to detect
complex singular structures. This allows one to develop complex hybrid approaches to the
analysis of complex data using the wavelet transform. For example, in the paper [24], the
F-filter was applied together with wavelet transform to detect low-amplitude periodici-
ties [44]. The F-filter makes it possible to evaluate the variability of the process within the
analyzed time interval and to detect more clearly the “hidden” patterns in the data. The
authors of this article propose a method for detecting anomalous changes in the CR arrival
rate to the Earth. It is close to the [24] approach and is based on a combination of wavelet
transform constructions with adaptive thresholds [26]. The results of [26] confirmed the
high efficiency of the combination of different methods for CR data analysis. Using the data
from neutron monitors at high-latitude stations, the work of [26] shows the effectiveness of
the method for detecting small anomalies in CR that precede magnetic storms of various
nature and strength. The results of [26] are important. They confirm the correlation of the
CR variability with Dst index, with a maximum having a time delay [24], making it possible
to predict the beginning of the magnetic storm development. The revealed anomalies in
CR [26] reached the highest intensity 2—6 h before the onset of magnetic storms. This work
continues this research.

The method of [26] has shown good results for detecting multiscale anomalies in CR.
The high detecting ability of wavelets and their combination with adaptive thresholds
provide efficient detection of multiscale short-period anomalies of different intensity and
duration. The anomaly detection rate was over 86%, with a false alarm rate of 9% [26].
However, for the detection of narrow spectrum anomalies, as it was shown earlier in [45],
the Autoencoder neural network [46,47], followed by the construction of wavelet spectra,
is more efficient. The Autoencoder provides the identification of hidden non-linear depen-
dencies, has high adaptive ability, and is able to significantly reduce the noise level [46].
The use of nonlinear activation functions in the hidden layer of the network, as well as
the ability to increase the number of hidden layers, provides the ability of the Autoen-
coder to approximate data of complex nonlinear structure. In this paper, we propose a
method based on a combination of the Autoencoder network with a wavelet transform.
The numerical operations of the method implementation are constructed. Verification of the
adequacy of the neural network model is based on the use of Q-statistics of Box-Ljung [48].
To detect anomalies in the wavelet space, the use of threshold functions is proposed, the
parameters of which are estimated on the basis of the a-quantiles of Student’s distribution.
Using data from high-latitude neutron monitor stations as an example, it is shown that the
proposed combination of the Autoencoder with wavelet transform allows one to adapt to
the changing structure of CR variations and provides detection of anomalies of different
time-frequency structures.
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2. Materials and Methods
2.1. Approximation of Data on the Basis of the Autoencoder Neural Network
Let us have a discrete time series F[n] (neN, N are natural numbers):
F[n] = f[n] +e[n], O]

where F[n] are observed data; f[n] are true values hidden in noise; and e[n] is noise.

The values f[n] are considered as elements of a special set 6, not taking into account
the probability distribution on it [49]. Then, according to the Minimax Criteria [49], the task
of estimating f is to determine such a solution operator D, that minimizes the risk

0(8) = infocosupsesE{If ~ I},

where E is the expectation, ||-||? is the Euclidean norm or I2-norm, O is the operators set, f
is the estimate of f.

Let us consider the nonlinear mapping, performed by the Autoencoder neural network,
as a decision operator D, a nonlinear mapping, performed by the Autoencoder neural
network [46,47]. The typical architecture of the Autocorder network is shown in Figure 1.

Input layer Encoder layer Decoder
Output layer

Figure 1. Architecture of the Autoencoder neural network.

The presented architecture has three layers, namely, input, hidden (encoder), and
output (decoder) [46]. The dimension of the output of the neural network is equal to the
dimension of the input. The encoder maps the input vector F to the vector z:

z=h (V<1>P + b“)), 2)

where the superscript (1) is the layer number, /(1) € R?*1 is the nonlinear activation func-
tion, V(1) € R4*N is the weight matrix, F € RN*1 is the input vector, N is the dimension
of the input vector, b)) e RI*1 g the displacement vector, and R are real numbers.

The decoder maps the encoded representation of z back, the obtained estimate

f=n@ (vz45@), 3)

where the superscript (2) is the layer number, #(2) € RN*1 is the linear activation function,
V() ¢ RN*4 is the weight matrix, and b(®) € RN*1 is the displacement vector.
Thus, from (2) and (3) based on the network, we obtain the estimate

f= h(Z)(V@) (h<1)(v<1>1?+b(1>)) +b(2)). 4)
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The risk of estimating fis

1D, f) = E{IF - fI'}.

Assuming that the noise e[n] is uncorrelated (see (1)), following the work of [47], we
take d < N (d is the dimension of the hidden layer of the network, see Figure 1), and we
build the optimization procedure for the estimate f on cost function minimization

M ~
C= Y IIF% = PO = miny
k=1

where X = {V(l), V@), p1) p2) }, and M is the number of examples on which the neural

network is trained.

The dimension of the hidden layer (d < N) is smaller than the input data and it
provides the selection of significant dependencies when training the network. Noise is
suppressed due to data compression [47]. The dependencies, identified by the network,
define the data feature space. The overlap of this space, in the case of constructing an
adequate neural network model, allows one to restore the original data with acceptable
accuracy at the decoding stage.

Taking into account the assumption of uncorrelated noise, to check the adequacy of
the obtained model, Box-Ljung Q-statistics can be applied to its residual errors [48]. The
Box-Ljung statistic tests the hypothesis that all autocorrelations p; of the time series up
to order m inclusive are equal to zero, i.e., hypothesis Hy: p; = p2 = ... = pw Vversus
alternative hypothesis Hy: Y./ p? > 0.

Q-statistics has an asymptotic distribution x2, and is calculated by the following
formula [35]:

m
Q= (T+2)TY (T—i)"'r?, ()
i=1
where T is the number of observations, and r; is the estimate of p; from sampled data.
If the null hypothesis Hy, is confirmed, then the resulting neural network model can
be taken as adequate. Then, the estimated f (see (4)) contains significant data features and
a low noise level with a high probability.

2.2. Detection of Anomalies in Data on the Basis of the Wavelet Transform

On the basis of the continuous wavelet transform, the mapping f € L2(R) (L2(R) is
the Lebesgue space [38,39]) into the wavelet space can be performed:

WF(s,u) = j: f(t)\}g‘f’* (t B u>dt, ©)

where ¥ is a wavelet; s is a scale; u is a time shift; s,u € R; and s # 0.
Since the amplitude of the coefficients ‘W f(s,u) ‘ characterizes the amplitude of the

local singularity of the function f on the scale s in the vicinity of the point t = u [38,39],
an increase in the amplitude indicates the occurrence of an anomaly in the vicinity of this
point. In this case, thresholds Ts can be applied to detect anomalies at the scale s:

@)

_ }_ Wf(s,u), if‘Wf(s,u)‘ > Ts,
a Wf(s,u)‘ <T..

Pr, {Wf(s, u) 0, if

Outside the locality containing local (anomalous) features, the values Wf(s,u) are
close to zero in u [43]. Taking into account that the anomalous feature is a rare event, there

is a high probability (« ~ 0,99) that the values ’Wf(s, u)’ by the argument u are in the
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interval (u — 30; p + 30), where p = 0 is the expectation of the value ‘Wf(s, u)|, o is the

standard deviation (three-sigma rule [50]), and the value ’Wf(s, u) ’ has an asymptotically

normal distribution. N
In the case of normality ‘W f(s,u) ‘, we can estimate the thresholds Ts with a given

confidence probability «, estimating the thresholds as
Ts = t_¢ 10,

where t,  are the a-quantiles of Student’s distribution [50], and & is the sample standard
deviation. For example, for a confidence level & = 0.95, we set T; = tg 5143905 = 1.9605.

Taking into account the non-stationarity of the process, following the work [26], we
estimate the thresholds in a sliding time window. In this case, we take

1 ~l
TH =ty a0, ®)

~ - = 2
where ¢! = \/Ll_l YL _ (Wf(s,u) —Wf(s,u)) .Lis the time window length.
For the identified anomalies, their intensity at time ¢t = u can be estimated as [26]

Eo= L Py (Wis,u)]. )

which will be positive in case of an anomalous increase in the function values (posi-
tive anomaly) and negative in the case of an anomalous decrease in the function values
(negative anomaly).

Relations (6)—(9) are defined in the space of continuous functions L?(R). It follows
from the equivalence of the continuous and discrete wavelet transform that for discrete

data f[n], performing execution of operation (6) is equivalent to representing them as a
series [38,39]:

Y ci¥ilnl, (10)
jk=—oo
where ¥ = 2%'?(2]' n—k), jkeN, Cix = 1, ¥y are the coefficients of the expansion of the
function f into a series in terms of orthogonal wavelets.
The expansion coefficients in series (10) are defined as cjy = Wf ( 575 ) [38,39]. Corre-
spondingly, taking into account (8), mapping (7) will take the form:

k Wf!’]’lfwf/’]*
i(ys)-{ TR«

To estimate the intensity of anomalies, in accordance with (9), we obtain

D)

3. Results

Due to the anisotropy properties, cosmic ray variations recorded at different stations
may have different characteristics [51,52]. Therefore, as it was noted in [51], in order to
detect anomalous changes in the CR, it is important to perform analysis on the basis of the
station network data. High-latitude stations, not circumpolar ones, are the most proper for
the analysis of CR dynamics [51,52]. Due to the narrowness of the longitudinal receiving
zone, they have the highest sensitivity to the longitudinal anisotropy of cosmic rays. This
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is expressed in the largest acceptance coefficients for the equatorial component of cosmic
ray vector anisotropy [51].

The data of high-latitude station network of neutron resource monitors [53] were
used in the work. Below are the results of data processing from Inuvik (INVK, Co-
ord: 68.36, —133.72), Oulu (OULU, Coord: 65.0544, 25.4681), and Thule (THUL, Coord:
76.5, —68.7) stations. The choice of these stations was determined by the presence of rep-
resentative statistics to ensure the training procedure for neural networks, as well as the
absence of gaps in the data during the analyzed periods.

The data of each station are taken as a separate dataset. Accordingly, neural networks
(NN) were trained separately for each station. The architecture of NN for each station was
the same. The NN parameters for each station were determined separately at the training
stage. Taking into account the CR anisotropy properties, data analysis was performed
separately for different levels of solar activity. The NN were implemented in the MATLAB
application package [54], and the Deep Learning Toolbox framework was used. NN was
trained on the basis of the error back propagation method, taking into account the use of
the sparsity regularizer [54]. When constructing NN training sets, data were selected on
the basis of the analysis of space weather factors. We used data that were recorded during
the periods of absence of Forbush effects in the CR, disturbances in the magnetosphere,
and low flare activity. The length of the training sample for each NN was at least 100 days.
No training datasets were used in the analysis.

Following the results of the work [45], the NN input vector dimension was 1440 samples
that corresponded to a day (minute data). The NN hidden layer dimension was determined
empirically. The smallest errors on the training and test sets were obtained for the dimension
of the layer d = §.

The Q-criterion was used to check the adequacy of the constructed NNs. Estimates by
the Q-criterion (see (5)) showed that Qsar < Qrir = 31.4 under the alternative hypothesis
for the significance level = 0.05. In particular, for station Oulu, Qs = 23.12; for station
Inuvik, Qstar = 22.89; for station Thule, Qsqr = 27.03. Therefore, the hypothesis about the
joint equality to zero of all autocorrelations of the time series up to the order m inclusive is
not rejected and the adequacy of the constructed NN is confirmed.

To test the normality of ’ Wf(s, u) ’ for the argument u, Pearson’s criterion was used [50].

As an example, Figure 2 shows the histograms of wavelet coefficients ‘Wf(SOO, u)‘ and

W (1000, u)|. Operations (9)-(11) were performed using Coiflet 2 wavelets [39,43]. In
operation (10), thresholds Ts = 1966, were used for I = 1440.

frequency frequency
5000 1 ] Z | 4000 2
Wf(500, W (1000,
wisoow| oo J(1000,u)
3000 2500
2000
2000 1500
1000 1000
500
0 . 0
-15 <10 -5 0 5 10 15 =20 <15-10 -5 0 5 10 15 20
intervals intervals

(a) (b)

Figure 2. Histograms of wavelet coefficients: (a) ‘Wf(SOO, u)|; (b) ‘Wf(lOOO, u) ‘
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Figure 3 shows the results of the method during weak magnetic storms at high
latitudes. The neutron monitor data of the Oulu station (Coord: 65.0544, 25.4681) were
analyzed. In the upper part of the Figure 3, to analyze the near-Earth space state, the
data of the solar wind speed (SWS) (Figure 3a), the values of the Bz-component of the
interplanetary magnetic field (IMF) (Figure 3b), and the data of geomagnetic activity Dst
index (Figure 3c) are presented. Figure 3d shows data from neutron monitors at Oulu
station. For comparison, the results of the algorithm [53] (the algorithm is based on a
combination of wavelet transform with adaptive thresholds; Figure 3e,f), the [26] method
(Figure 3j-1), and the proposed method (Figure 3g—i) are shown.

magnetic storm  magnetic storm magnetic storm
km/s 13:00 UTC  03:00 UTC 10:00 UTC

500 | | | | |
(@) 400 Fws /JJMMWW
300\

T12 B, (GSM) ' i T

50 pgt . .

(o) S S M\\/\‘

(d)

(e)

(6

09 Oct 2021 11 Oct 2021 13 Oct 2021 15 Oct 2021 17 Oct 2021 19 Oct 2021
T T I

(8)
(h) P
(i)
13 Oct 2021 150¢t2021  170cf2021 190ct 2021
T
G)
Py
(k) 7! 1800
1010°
OULU ' '
i A N ‘
(1] E 0 A
-5 \/ N~ V4
-10 1 1 I
090ct2021  110ct 2021 13 0ct 2021 15 Oct 2021 170ct 2021 190ct 2021
ate

Figure 3. NM data processing results (10-18 October 2021): (a) solar wind speed (SWS); (b) Bz-
component of the interplanetary magnetic field (IMF); (c¢) Dst index; (d) NM data (counts per
minute (cpm), Oulu station); (eh k) result of operation (11) (PT];); (fi1) result of operation (12)
(Ex); (g8) NM data (blue), result of the Autoencoder NN (orange); (j) NM data (blue), result of the
method [26] (orange).



Symmetry 2022, 14, 744

9of 15

According to space weather data [54], on October 8 and 9 the near-Earth space state
was calm, SWS ~ 260 km/s, IMF fluctuations from Bz = +2 nT to Bz = +1 nT. When using
a sliding time window, results are given with the smallest error. At the beginning of the day
on October 10, an inhomogeneous accelerated flux from a coronal hole and a coronal mass
ejection arrived (CME on October 9, the proton density was about 15 particles/cm3 [54]).
IMF fluctuations intensified up to Bz = +10 nT (Figure 3b), and SWS increased up to
390 km/s (Figure 3a). At high latitudes, a gradual onset of a weak magnetic storm [54] was
recorded at 13:00 UTC. It is marked by a vertical line in Figure 3. The processing results
(Figure 3e,f,h,i k1) show that there were anomalous changes of small amplitude in the
CR variations at the analyzed station at that time. At first, the CR intensity anomalously
decreased and then increased. The highest intensity of CR was observed during a sharp
long southward turn of the IMF Bz component (Figure 3b). Comparison of the results
of different methods shows the same behavior of CR during this period. However, the
proposed method (Figure 3g—i) allows one to capture more accurately the moments of
abnormal change occurrences in CR, compared to the algorithm [53] (Figure 3e,f) and
the [26] method (Figure 3j-1). The results of the method (Figure 3h,i) show the beginning
of the decrease in CR in the second half of the day on October 9. An anomalous increase
in CR intensity arose several hours before the magnetic storm onset. The results of the
algorithm [53] (Figure 3e,f) and the [26] method (Figure 3k,1) show a decrease in the CR
intensity from the beginning of the day on October 10 and an anomalous increase at the
moment of the storm beginning. Analysis of the identified anomaly spectrum (Figure 3h)
indicates the reliability of the results of the proposed method. The dominance of low
frequencies in the anomaly spectrum at the time of its occurrence did not allow for the
detection of the beginning of a decrease in the CR intensity without NN. The resulting error
of the algorithm [53] and the method [26] is explained by the time-frequency properties of
the wavelet, which provide higher detection ability for detecting short-term high-frequency
anomalies [38].

At the beginning of the day on October 12, an inhomogeneous accelerated flux from a
coronal hole and two coronal mass ejections (CME of October 9) arrived. The flux proton
concentration was 39 particles/cm? [54]. The IMF fluctuations increased up to Bz = 12 nT
(Figure 3b). At 03:00 UTC, a weak magnetic storm [55] occurred (the moment of the
beginning of the storm is marked by a vertical line in Figure 3). The processing results
(Figure 3e,f,h,i k1) show a decrease in CR (Forbush decrease), which reached its maxi-
mum intensity at the moment of a sharp increase in the amplitude of IMF Bz component
fluctuations (Figure 3b), during the initial phase of the storm. Note that the proposed
method (Figure 3j-1) determines the times of Forbush decrease beginning and the end more
accurately. This is explained by the dominance of low frequencies in the feature spectrum
(Figure 3h). The method made it possible to detect the anomaly several hours before the
onset of a magnetic storm.

At 22:00 UTC on October 15, a heterogeneous accelerated flux from a coronal mass ejec-
tion (CME of October 9) arrived. The flux proton concentration was 11-18 particles /cm? [54].
At the beginning of the day on October 16, IMF fluctuations intensified up to Bz = £12 nT
(Figure 3b). According to the algorithm [53] and the [26] method, a short-term anomalous
increase in CR occurred during that period (Figure 3e,f,k,1). It reached its greatest intensity
at the times of increases in Bz-component fluctuation amplitude (Figure 3b) and in SWS
oscillations (Figure 3a). According to [55], at that time, the Kp index took on a value equal
to three (Kp = 3) at middle latitudes. Kp-index is a global planetary index that characterizes
geomagnetic activity and classifies geomagnetic storms [56]. The proposed method did not
allow for detection of that anomaly (Figure 3h,i) due to its short-term multiscale structure
and the smoothing effect of the NN. The analysis of the identified anomaly spectrum
(Figure 4e) showed the presence of a wide frequency range with a predominance in the
high-frequency region. This example shows the limitations of the neural network model
and points out the need to apply different methods to study the CR dynamics. The accuracy
of the method can also be improved by increasing the number of analyzed CR stations.
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Figure 4. NM data processing results (6-12 May 2019): (a) solar wind speed (SWS); (b) Bz-component
of the interplanetary magnetic field (IMF); (c) Dst index; (d) NM data (counts per minute (cpm),
Inuvik station) (blue), result of the method [26] (orange); (e) NM data (Thule station) (blue), result
of the method [26] (orange); (f,g,1,m) result of operation (11) (PT]!); (h,i,n,0) result of operation (12)
(Ex); () NM data (Inuvik station) (blue), result of the Autoencoder NN (orange); (k) NM data (Thule
station) (blue), result of the Autoencoder NN (orange).

Figure 4 shows the results of the proposed method (Figure 4j—0) and the [26] method
(Figure 4d—i) during a moderate magnetic storm on 11 May 2019. In the upper part of
Figure 4, to analyze the near-Earth space state, the data of the solar wind speed (SWS)
(Figure 4a), the values of the Bz-component of the interplanetary magnetic field (IMF)
(Figure 4b), and the data of geomagnetic activity Dst index (Figure 4c) are presented. Data
from high-latitude neutron monitors Inuvik (Coord: 68.36, —133.72) and Thule (Coord:
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76.5, —68.7) were analyzed. At the beginning of the analyzed period, the SWS varied
about 320 km/s (Figure 4a), the southern IMF component fluctuated from Bz = £3 nT to
Bz = +£1 nT (Figure 4b). According to space weather data [54] on May 9, an inhomogeneous
accelerated flux from a coronal hole arrived. SWS increased to 400 km/s, and fluctuations
of the IMF Bz component increased to Bz = +5 nT. At 06:00 UTC on May 9, the Forbush
effect [57] was recorded. It is shown in Figure 4 by a red vertical line. According to the
processed data (Figure 4f-i,1-0), the Forbush decrease lasted for about a day and occurred
at the Inuvik station much earlier than at the Thule station. The longitudinal spacing of
these stations indicates the possible delay of ~4 h. The difference in anomaly detection
time according to the processed data was about 12 h. This was probably due to the small
amplitude of the anomaly, as a result of which the threshold excess within the specified
95% confidence interval occurred at the Thule station much later. The possible error can
also be associated with a high level of noise. The result confirms the need to use data
from different stations for CR analysis. It is also possible to note a slight increase in the
CR intensity during the second half of the day on May 7 (Figure 4g,i,m,0) during a long
southward turn of the IMF Bz component (Figure 4b).

During the first half of the day on October 17, due to the arrival of an inhomogeneous
accelerated flux from a coronal hole and a coronal mass ejection (CME of October 12 [54]),
a gradual onset of a magnetic storm was recorded at high latitudes. It is marked by a
vertical line in the figures. The beginning of the storm coincides with the time of a sharp
southward turn of the IMF Bz-component (Figure 3b) and with the time of a Forbush
small-amplitude decrease. The proposed method detected the Forbush decrease the most
clearly (Figure 3h,i).

The observed Forbush decreases in CR are obviously caused by fast solar wind currents
inside a magnetic cloud (ICME), which shield the CR with a strong internal magnetic field
and lead to the Forbush effect [24]. Note that the identified anomalous changes in CR had
a small amplitude and it is very difficult to identify them on the basis of the analysis of the
initial variations (Figure 3d). This indicates high sensitivity of the methods. We should also
note that the proposed method and the [26] method can significantly reduce the noise effect
on the recorded CR data (related to precipitation, instrument error, etc.). This reduces the
type 1 error (false alarm). Analysis of the results of different methods indicates the need for
an integrated approach to the study of CR variations in order to improve the efficiency of
their analysis and anomaly detection.

Anomalous changes in CR are consistent with the results of the investigations in [24,26,30],
confirming the effectiveness of using the CR intensity data in space weather.

At the end of the day on 10 May, an accelerated flux from a coronal mass ejection
(CME of 6 May) arrived. At 13:00 UTC, a gradual onset of a magnetic storm was recorded
at Novosibirsk station [54]. The results of the proposed method (Figure 4m-o0) show
anomalous changes in the CR intensity that occurred at the analyzed stations 8-12 h before
the beginning of the storm. The method of [26] did not allow us to detect this anomaly.
According to [57], the Forbush effect was recorded during the initial phase of the storm at
17:54 UTC on 10 May. It is important to note that on the eve of the event, no anomalous
changes in IMF parameters and SWS data were observed. This fact indicates the importance
of taking CR into account when making space weather forecast.

During the strongest geomagnetic disturbances, against the background of a sharp
and prolonged southward turn of Bz (Figure 4b), a long Forbush decrease was observed
at the stations. It was more clearly detected by the method of [26] at the Inuvik station
(Figure 4fh).

We should note that despite the differences in the neutron monitor data from different
stations, the results of processing show the presence of a clearly expressed general character
in CR dynamics. Comparison of the results of different methods also shows their strong
correlation. This confirms the large-scale nature of the identified anomalous changes in CR
flux and confirms the effectiveness of the methods.
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The results obtained are consistent with the results of [24,26,30,58]. The estimate of
the correlation between a simple measure of CR variability (the first difference series was
used) and Dst index during a strong storm performed by the authors [24] showed a delay
in Dst index by several hours. Experiments have confirmed this. The identified anomalous
changes in CR occurred before the magnetic storm onsets, and a delay of several hours was
observed at different stations.

The use of a sliding time window and threshold functions (relationship (7)), similarly
to [30], made it possible to fix periods of anomalous changes in CR. The detecting ability
and good time-frequency resolution of the wavelets ensured the detection of low-amplitude
anomalies. The measure of variability of variations Ej introduced in the work (relationship
(12)) made it possible to obtain a quantitative estimate of the identified anomaly intensities.
The determination of significant dependencies and noise suppression, based on the Autoen-
coder neural network, made it possible to detect features of a narrower spectrum, compared
to [26]. That made it possible to detect anomalies of different time-frequency structures.

Thus, the results confirmed high sensitivity and efficiency of the method. The results
showed the importance of taking into account the measure of CR variability along with the
IMF and solar wind parameters in space weather.

4. Conclusions

The performed analysis confirmed complex galactic cosmic ray dynamics during
extreme solar events and magnetic storms. The study of processes in the near-Earth space
and the identification of complex dependencies and relationships require an integrated
approach and development of methods for analyzing geophysical monitoring data using a
wide network of observations.

In the article, using the data from high-latitude neutron monitor stations, the effec-
tiveness of the proposed method in the problem of analyzing cosmic ray variations and
detecting anomalous changes in CR arrival rate to the Earth is shown. The method allows
us to detect the periods of Forbush effects and provides an estimate of the measure of
CR flux variability. The high detecting efficiency and good time-frequency resolution of
wavelets, together with adaptive thresholds, make it possible to detect small-amplitude
anomalies. Despite the differences in the neutron monitor data from different stations,
the results, similar to the study [26], had strong correlation and showed the presence of
clearly expressed general character in CR dynamics. The experiments confirmed the scale
nature of the features identified in the CR during magnetic storms. The occurrences of
Forbush decreases were observed during the strongest geomagnetic disturbances against
the background of sharp and prolonged southward turns of the IMF Bz component. The
anomalies preceding magnetic storms had a complex nonstationary spectrum.

The results of the study are consistent with those of other authors [22-24,30,57]. The
importance of taking into account CR dynamics when making space weather forecast has
been experimentally confirmed. The analysis of the data during the moderate magnetic
storm on 10-11 May 2019 showed the possibility of occurrence of anomalous manifestations
in CR flux dynamics preceding the storm onset and observed against the background of
the absence of anomalies in IMF parameters and SWS data. The experiments confirmed
the correlation between the CR flux variability and the Dst index with a delay of several
hours that was noted in [24]. The identified anomalous changes in CR occurred at the
analyzed stations before magnetic storm onset. The moments of detection of Forbush
effects at different stations had a delay of several hours.

Comparison of the results of the proposed method with the method of [26] and the
algorithm of [53] showed its high effectiveness for detecting low-amplitude anomalies in
the CR, with a complex spectrum with low frequencies predominating. Using a neural
network Autoencoder together with the wavelet transform allows one to more accurately
capture the moments of anomalous changes in CR. The observed errors of the algorithm
of [53] and the method of [26] are explained by the time-frequency properties of a wavelet
providing higher detection capability to detect short-term high frequency anomalies [38].
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In the case of a short-term anomaly of a multiscale structure, the method of [26]
showed good results in detecting it. To increase the detection efficiency of such anomalies
by the neural network model, it is necessary to increase the number of analyzed CR
registration stations, including mid-latitudinal stations. The processes in the near-Earth
space are complex, and there is also no complete a priori knowledge about their properties
and interaction. To improve the accuracy of CR anomaly detection and the forecasting
methods, it is necessary to combine different methods and approaches with the possibility
of building further general decision rules based on them. The authors plan to continue the
research in this direction, as well as to implement the method in software to obtain a fully
functional approach.
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