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Abstract: This paper aims at explaining that a key to understanding quantum mechanics (QM) is a
perfect geometrical understanding of the spinor algebra that is used in its formulation. Spinors occur
naturally in the representation theory of certain symmetry groups. The spinors that are relevant
for QM are those of the homogeneous Lorentz group SO(3,1) in Minkowski space-time R4 and its
subgroup SO(3) of the rotations of three-dimensional Euclidean space R3. In the three-dimensional
rotation group, the spinors occur within its representation SU(2). We will provide the reader with a
perfect intuitive insight about what is going on behind the scenes of the spinor algebra. We will then
use the understanding that is acquired to derive the free-space Dirac equation from scratch, proving
that it is a description of a statistical ensemble of spinning electrons in uniform motion, completely
in the spirit of Ballentine’s statistical interpretation of QM. This is a mathematically rigorous proof.
Developing this further, we allow for the presence of an electromagnetic field. We can consider the
result as a reconstruction of QM based on the geometrical understanding of the spinor algebra. By
discussing a number of problems in the interpretation of the conventional approach, we illustrate
how this new approach leads to a better understanding of QM.

Keywords: quantum mechanics; group theory; spinors

1. Introduction
1.1. Three Famous Quotes

Richard Feynman [1] (recipient of the Nobel prize of physics in 1965), is notorious for
his statement:

“I think that I can safely say that nobody understands quantum mechanics”.

On the other hand Michael Atiyah (winner of the Fields medal in 1966) is not less
notorious for having stated:

“No one fully understands spinors. Their algebra is formally understood but their general
significance is mysterious. In some sense they describe the “square root” of geometry and,
just as understanding the square root of −1 took centuries, the same might be true of
spinors” [2].

“ . . . the geometrical significance of spinors is still very mysterious. Unlike differential
forms, which are related to areas and volumes, spinors have no such simple explanation.
They appear out of some slick algebra, but the geometrical meaning is obscure . . . ” [3].

There is an obvious analogy here. Both scientists express their dismay with something
they consider not to be properly understood. At least a part of Feynman’s problems
might be directly due to the fact that Atiyah’s problems are integrally copied into QM as a
consequence of the use the latter makes of spinors. Therefore, understanding spinors is a
prerequisite for understanding QM. After reading the quotes, it seems obvious that solving
the problems mentioned could really be a tall order. However, there is a tiny hole through
which we can make our way towards a new vantage point, offering a different angle of
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approach that allows for solving the problem of the meaning of spinors in SU(2). Pointing
this out and developing the ideas further is the purpose of the present paper. Spinors are
part of the group representation theory of the homogeneous Lorentz group in Minkowski
space-time R4 and of the rotation groups in the Euclidean vector spaces Rn. The whole of
QM is written in the language of such spinors, i.e., a language of symmetry.

1.2. Nobody Understands Spinors

Many people have difficulties in apprehending the concept of spinors. In search for
enlightenment, the reader will discover that it is very hard to find a clear definition of
what a spinor is in the literature. Cartan, e.g., states in his monograph [4]: “A spinor is a
kind of isotropic vector”. Using a terminology “a kind of” can hardly be considered to be
a valid part of a clear definition. Additionally, a literature search reveals that this is an
ever recurring theme. In all of the various presentations I was able to consult, one just
develops the algebra and states at the end of it that certain quantities that are introduced in
the process are spinors. This is completely at variance with the usual practice, where the
definition of a concept precedes the theorem about that concept. This way of introducing
spinors leaves us without any clue as to what is going on behind the scenes, e.g., in the
form of a conceptual mental image of what a spinor is supposed to be. What we are hitting
here are actually manifestations of the state of affairs described by Michael Atiyah in the
two quotes that are reproduced in Section 1.1.

What is going on here? In algebraic geometry, geometry and algebra go hand-in-hand.
We have a geometry, an algebra and a dictionary in the form of a one-to-one correspondence
that translates the algebra into the geometry and vice versa. As may transpire from what
Atiyah says, the problem with the spinor concept is, thus, that, in the approaches that are
presented in textbooks, the algebra and the geometry have not been developed in parallel.
It is all “algebra first”. We have only developed the algebra and neglected the geometry
and the dictionary. The approach has even been so asymmetrical that we are no longer able
to guess the geometry from the algebra.

Here, it is perhaps worth formulating a provocative question. Spinors occur in the rep-
resentation SU(2) of the three-dimensional rotation group in R3. As it uses spinors, which
seem particularly difficult to understand, SU(2) appears to be a mystery representation of
the three-dimensional rotation group. Now, here is the question: how on Earth can it be
that there is something mysterious about the three-dimensional rotation group? Is it not
mere Euclidean geometry? This seems to suggest that there might be something simple
that we have overlooked and that has escaped our attention.

Indeed, we will see that this is true. In the first part of this article we will restore
the balance between the algebra and the geometry by providing the reader also with the
geometry and the dictionary. This way, he will be able to clearly understand the concept of
spinors in SU(2). The reader will see that the strategy followed to solve the riddle what
the square root of a vector might mean is somewhat analogous to the one that solves the
puzzle of what the square root of −1 means, as will be discussed in detail in Section 2.6.
We will define the spinor concept in its own right and show afterwards that one can define
an isomorphism that allows for interpreting a spinor as “squaring to a vector”.

Thus, we will try to build the theory of spinors starting from geometry. This way
the underlying ideas will become clear in the form of “visual” geometrical clues. This
will suffice for what the reader will need to know about spinors in the rotation and the
Lorentz groups for applications in QM. When the reader will have understood the ideas
that are underlying the geometrical approach to spinors, he should, in principle, be able to
design or complete the proofs of this approach himself by applying these ideas. With our
apologies to the mathematicians amongst the readership, we will, therefore, not strive for a
formal perfection of our presentation. Our presentation may, in this respect, be considered
as clumsy or deficient from the viewpoint of mathematical rigour, but, as explained above,
mathematically rigorous presentations have their own inconvenience, viz. that they may
render it very difficult to perceive the underlying ideas. Our aim is not to give a perfect
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formal account of the mathematical theory (see, e.g., [5,6]). Such accounts were already
written more than hundred years ago (fine introductions for physicists are [7] and Chapter
41 of [8]. Some more general works about group theory are [9–14]).

The aim of the paper is to provide new geometrical insight in the theory, something
even mathematicians might value, and confer to the reader all of the insight needed.
Because the ultimate goal is to obtain a better understanding of QM, I just cannot afford
getting the reader lost by an austere formal presentation.

We want to render the ideas so clear and utterly obvious that the reader will become
fluent enough to derive all further developments himself without any substantial difficulty.
The self-learning that will intervene in carrying out this exercise will certainly help him to
become much better acquainted with the subject matter than reading and mechanically
checking the algebra of an exhaustive and formally perfect account of it in a book.

Remark 1. We can take advantage of the second quote of Aityah to point out that it will be shown
that there are two completely distinct algebras at stake in the Clifford algebra on which spinor
algebra is based: one for the group elements and one for vectors and multi-vectors. A same algebraic
expression in the two algebras can thereby represent two completely distinct geometrical objects,
e.g., a reflection with respect to a plane and a unit vector. These two algebras should therefore
not be confused. The algebra for vectors and multi-vectors comprises what is called the exterior
algebra. The differential forms mentioned by Atiyah are a language to deal with this exterior algebra.
Clifford algebra is another such language. The differential forms are anti-symmetric multi-vectors.
The spinors belong to the other algebra and represent group elements.

Remark 2. It has become fashionable to express QM in the language of geometrical algebra, based
on the work of Hestenes [15]. However, Hestenes adopts the Clifford algebra as God-given. It
conveniently descends from heaven and some of its results seem to follow by magic from thin air,
just by adopting some stunning rules, e.g., that we can sum objects of different dimensions. What
we need and will develop is an approach that digs deeper into the mathematical foundations and
also under-builds the Clifford algebra by constructing it from scratch, such that it can be seen
where it comes from. Despite the lesser elegance this may entail for the presentation, this additional
insight is absolutely necessary to fully understand QM. The complex number ı is not a generator for
rotations as Hestenes claims. He also eludes answering the question of what it means to sum objects
of different dimensions, despite the fact that this is a totally legitimate question (see Section 2.8).

The development of the spinor theory that will be given in this article is an improve-
ment of our presentation of spinors given in Chapter 3 of reference [16]. There is, of course,
some overlap with reference [16] but not everything is systematically reproduced here.
There is a substantial overlap with the HAL archive deposit [17] which also gives the full
details about the generalisation of the group theory of spinors to SO(n), which we are not
reproducing here based on considerations regarding length and context.

1.3. Nobody Understands Quantum Mechanics

Feynman’s statement reflects an unprecedented, very unpleasant situation in physics.
We find it enlightening to formulate the problem of the meaning of QM exactly in the same
terms as the problem of the meaning of spinors. As a matter of fact, QM provides us with
a complete set of algebraic rules to calculate and predict the outcome of the experiments
with staggering precision. However, the reverse side of the medal is that nobody knows
what this algebra means, i.e we do not know what the corresponding geometry and the
dictionary are. This situation of a complete divorce between algebra and geometry has
been summarized in a poignant way by Mermin by introducing the catchphrase that what
one ought to do is to just “shut up and calculate” [18]. This is a source of frustration (for
physicists) and distress (for students). Are we really condemned to spend a lifetime in
physics calculating as a headless chicken?
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Remark 3. The example often cited to illustrate the degree of precision quantum theory can reach
is the comparison (see e.g., [19], p. 162, [20,21]) between the experimentally measured value 0.001
159 652 180 73(2) and the theoretically calculated value 0.001 159 652 181 643(764) for (g− 2)/2,
where g is the anomalous g-factor of the electron.

In view of this nagging lack of understanding, some people have recently proposed
reconstructing QM from scratch [22]. The present paper proposes such a reconstruction
in a way that is perhaps totally different from what a physicist might expect, because it
starts the journey by digging into the mathematics of spinors, and then derives the Dirac
equation from scratch with the rigour of a mathematical proof. This can then serve as a
clear and mystery-free starting point for trying to make sense of the meaning of QM.

A first justification for this claim is the following argument. Establishing the geometri-
cal meaning of spinors in mathematics comes logically prior to any possible application
of spinors in QM. At the time that we start doing the physics, the geometrical meaning is
already established as a mathematical fact beyond any further discussion. Mathematics
can only be right or wrong and everybody can check whether the correspondence between
the geometry and algebra laid down in the dictionary proposed is correct or otherwise.
Therefore, using the geometrical meaning of spinors to interpret the formalism of QM,
which is written in the language of spinors, is immune to any questioning because it is pure
mathematics and situated outside the scope of a debate in physics. Furthermore, the geo-
metrical meaning that we will propose does not alter or affect the algebra. It is just added
as perfectly fitting new insight, such that the algebra used in our new approach to QM
remains the same as in the traditional approach to QM. Therefore, the new approach will
automatically reproduce the agreement of the theory with the experimental data that were
obtained in the traditional approach and it will, therefore, be an unassailable reconstruction
of QM.

A second justification for the claim is the analysis that we were able to make of
a number of quantum paradoxes considered to elude any intuitive explanation, as we
will discuss in Section 4.5. The most convincing case is, in my opinion, the solution of
the paradox of the Stern–Gerlach experiment [23]. Its analysis does not only validate the
reconstruction by showing that it permits really to come to grasps with the counter-intuitive
results of this experiment. The more rigorous and general new approach also lays bare a
number of limitations and intellectual cracks in the standard approach. Within the new
framework, all of these disturbing little wrinkles can be spotted and ironed out.

We hope that, together with [23], this paper can provide a decent introduction to
this new approach to QM based on the understanding of spinors. The two papers could
constitute a solid starting basis for further study of my other results and of the foundations
of QM in general.

1.4. Remarks about Style and Notation

The style of the present paper may look very informal, but there is a strong com-
mitment behind this choice of presentation. In fact, due to a concern of absolute rigour,
the presentations by mathematicians are, in general, so formal that it is for laymen com-
pletely impossible to make sense of them. The chilling effect of this formal abstraction has
been described by Dieudonné [24]. Such austere presentations might be all right for mathe-
maticians, but other people than mathematicians may need to use their theories. We hope
that a pleasant, less highbrow, presentation can be a good trade-off between rigour and
intuition that will be accessible to as broad a community as possible. The impenetrability
of the original publications may tempt people who need to use the mathematics into trying
to develop parallel ad hoc interpretations and, it is at this point, that over-interpretations
and errors can creep in with dire consequences. This has happened many times in standard
QM and we will have to point out a few of such mishaps in the present paper.

Let us now spell out a number of notations and conventions that we will use. We
will note, by F(A, B), the set of all mappings from the set A to the set B. We will note, by
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L(V, W), the set of all linear mappings from the vector space V to the vector space W. Thus,
they correspond to k×m matrices if dim V = k and dim W = m. One often notes L(Rn,Rn)
as Mn(R) in the literature, while one notes L(Cn,Cn) as Mn(C). The notation SU(2) refers
to the special unitary group of dimension 2. It is the group of complex 2× 2 matrices M,
which satisfy the conditions det M = 1 (special) and M† = M−1 (unitary). We will see that
it is a representation of the rotation group in R3.

The n-dimensional rotation group inRn, the matrix group SO(n) that represents it inRn

and the corresponding matrix group we construct in this paper and [17] are strictly spoken
three different mathematical objects that are linked by group isomorphisms. However, these
isomorphisms justify the abus de language to treat these mathematical objects as identical.
For convenience, we will note the n-dimensional rotation group in Rn by its most intuitive
representation SO(n). This way we will speak about the spinors of SO(n), although, in
reality, they are not concepts that occur in the n× n matrix representation SO(n), but in
the representation that acts on a subset W ⊂ C2ν

, constructed in this paper and [17]. Here,
ν = b n

2 c, where b·c is the integer part. We will use this notation ν throughout the paper.
The quantity ν naturally enters into the discussions, as will become clear when we go along
with developing the presentation. The notation SL(2,C) stands for the special linear group
of 2× 2 complex matrices M with det M = 1. We will encounter it as a representation of
the homogeneous Lorentz group in Section 3.

As will be explained, the rotation groups SO(n) can be obtained as a subgroup of
a larger group that is generated by reflections. We will call the group elements that are
obtained by an even number of reflections rotations, and call the group elements obtained
from an odd number of reflections reversals. Reflections are special reversals. General
reversals are products of a reflection and a rotation.

2. Spinors in the Rotation Groups SO(n)
2.1. Methodology

To develop the theory of spinors for the rotation groups SO(n), we will start from a
simple specific case and then see how we can generalize it. We will this way discover and
take the ideas and the difficulties one by one, while, in a general abstract approach, many
of the underlying ideas may become hidden. The representation SU(2) for the rotations
in R3 is the simplest case in point. We understand the formalism for SO(3) very well. We
rotate vectors, written as 3× 1 column matrices by multiplying them to the left by 3× 3
rotation matrices. It is natural to expect that the same philosophy will apply in SU(2) and
to attempt to make sense of SU(2) by analogy with what happens in SO(3). However, as we
will see, such heuristics are a deadlock. It is the blind spot of our unawareness about this
deadlock that impedes us figuring out what spinors are about. The spinors, which are the
2× 1 matrices on which the 2× 2 SU(2) rotation matrices are operating do not correspond
to images of vectors of R3 or C3.

2.2. Preliminary Caveat: Spinors Do Not Build a Vector Space
2.2.1. Summing Spinors Is a Priori Not Defined

As we will see, spinors in SU(2) do not build a vector space but a curved manifold.
This is almost never clearly spelled out. A consequence of this is that physicists believe that
the linearity of the Dirac equation (and the Schrödinger equation) implies the superposition
principle in QM, which is wrong because the spinors are not building a vector space. In this
respect, Cartan stated that physicists are using spinors like vectors. This confusion plays a
major rôle in one of the meanest paradoxes of QM, viz. the double-slit experiment [25].

It is important to point out that, within the context of pure group theory, it is even a
transgression to make linear combinations of rotation matrices in SO(3). A linear combina-
tion of rotation matrices will, in general, no longer be a rotation matrix. Within L(C3,C3)
or L(R3,R3), we can nevertheless try to find a meaning for such linear combinations,
because the matrices are operating on elements of a vector space R3 or C3, yielding again
elements of the same vector space R3 or C3. The matrix group SO(3) is embedded within
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the matrix group L(R3,R3). The linear combinations of the matrices in L(R3,R3) can then
be interpreted by falling back on the meaning of linear combinations of vectors in the image
space. However, in SU(2), this will not be possible, as the spinors are not building a vector
space (see Remark 4 in Section 2.3 below).

The caveat that we are introducing here is actually much more general. In group
representation theory, one introduces purely formal expressions ∑j cjD(gj), which build the
so-called group ring [26]. This happens, e.g., when we construct so-called all-commuting
operators, which are also called Casimir operators [27]. Here, D(gj) are the representation
matrices of the group elements gj ∈ G of the group (G, ◦) with operation ◦ and cj are
elements of a number field K, which can, e.g., be R or C. This is purely formal, as, in the
definition of a representation D, we define the operation D(gj)D(gk) = D(gj ◦ gk), but we
do not define the operation ∑j cjD(gj) as corresponding to D(∑j cjgj), for the very simple
reason that ∑j cjgj is in general not defined. Only the operation ◦ has been defined. Thus,
a good text book should insist on the fact that introducing ∑j cjD(gj) is purely formal (see
e.g., [27], p. 7) in the sense that it is pure algebra without geometrical counterpart. To
illustrate this, we could ask the question what the meaning of the sum of two permutations
p and q:(

1 2 · · · j · · · n
p1 p2 · · · pj · · · pn

)
+

(
1 2 · · · j · · · n
q1 q2 · · · qj · · · qn

)
, (1)

in the permutation group Sn is supposed to be. To illustrate this further, imagine the group
(G, ◦) of moves of a Rubik’s cube. It is obvious in this example that gj ◦ gk is defined, while
gj + gk is not. Giving geometrical meaning to gj + gk requires introducing new definitions.
This will be done in Section 2.5. As we will see, it can be done by introducing sets. E.g., we
can define gj + gk as the set {gj, gk}. This way, we can give a meaning to expressions of the
type ∑j cjgj, with cj ∈ N. Giving meaning to ∑j cjgj, with cj ∈ C will require further efforts.
We will dwell further on this issue of making linear combinations of spinors in Section 2.5.

2.2.2. Ideals

A concept that is very instrumental in reminding us of the no-go zone of linear
combinations of spinors is the concept of an ideal. The spinors φ of SO(n) build a set
I , such that, for all rotation matrices R (which work on them by left multiplication),
Rφ also belongs to the set: ∀φ ∈ I , ∀R ∈ G : Rφ ∈ I . One summarizes this by
stating that I is a left ideal. Here, G can stand for SU(2) or SO(n). The crucial point
is that this does not imply that the set of spinors would be a vector space, such that:
¬(∀φ1 ∈ I , ∀φ2 ∈ I , ∀c1 ∈ C, ∀c2 ∈ C : c1φ1 + c2φ2 ∈ I ). For the group SO(3) we can
easily point out two trivial ideals, which are topologically disconnected, viz. the proper
rotations and the reversals (which include the reflections), because it is impossible to
change a left-handed frame into a right-handed frame by a proper rotation.

2.3. Construction of SU(2): the Geometrical Meaning of Spinors

The idea behind the meaning of a 2× 1 spinor of SU(2) is that we will no longer rotate
vectors, but that we will “rotate” rotations. To explain what we mean by this, we start from
the following diagram for a group G:

◦ g1 g2 g3 · · · gj · · ·
g1 g1 ◦ g1 g1 ◦ g2 g1 ◦ g3 · · · g1 ◦ gj · · ·
g2 g2 ◦ g1 g2 ◦ g2 g2 ◦ g3 · · · g2 ◦ gj · · ·
...

...
...

...
...

gk gk ◦ g1 gk ◦ g2 gk ◦ g3 · · · gk ◦ gj · · ·
...

...
...

...
...

⇐= Tgk

(2)
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This diagram tries to illustrate a table for group multiplication. Admittedly, we will
not be able to write down such a table for an infinite group, but we will only use it to
render more vivid the ideas. Such a table tells us everything about the group we need to
know: one can check on such a table that the group axioms are satisfied, and one can do
all the necessary calculations. For the rotation group, we do not need to know how the
rotations work on vectors. We might need to know how they work on vectors to construct
the table, but once this task has been completed, we can forget about the vectors. The
infinite table in Equation (2) defines the whole group structure. When we look at one
line of the table—the one flagged by the arrow—we see that we can conceive a group
element gk in a hand-waving way as a “function” gk : G → G that works on the other
group elements gj according to: gk : gj → gk(gj) = gk◦gj. Thus, we can identify gk with
a function. More rigorously, we can say that we represent the group element gk by a
group automorphism Tgk ∈ F(G, G) : gj → Tgk (gj) = gk◦gj. A rotation operates in this
representation not on a vector, but on other rotations. We “turn rotations” instead of vectors.
This is a construction that always works: The automorphisms of a group G are themselves
a group that is isomorphic to G, such that they can be used to represent G.

It can be easily seen that this idea regarding the meaning of a spinor is true. As we
will show below in Equation (8), the general form of a rotation matrix R in SU(2) is:

R =

[
ξ0 −ξ∗1
ξ1 ξ∗0

]
, (3)

A 2× 1 spinor φ can then be seen to be just a stenographic notation for a 2× 2 SU(2)
rotation matrix R by taking its first column ĉ1(R):

R =

[
ξ0 −ξ∗1
ξ1 ξ∗0

]
→ φ = ĉ1(R) =

[
ξ0
ξ1

]
, (4)

This is based on the fact that the first column of R contains already the whole infor-
mation about R and that R1ĉ1(R) = ĉ1(R1R). Instead of R′ = R1R, we can write then
φ′ = R1φ without any loss of information. Additionally, we can alternatively use the
second column ĉ2(R) as a shorthand and as a (so-called) conjugated spinor. (In [23] it
is explained that ĉ2(R) corresponds to a reversal. But in this paper we will hardly pay
attention to the conjugated spinors. We will, almost all the time, focus our attention on
the first column as the representation of a rotation). We have this way discovered the
well-defined geometrical meaning of a spinor. As already stated, it is just a group element.
This is all that spinors in SU(2) are about. Spinors code group elements. Within SU(2),
2× 2 rotation matrices operate on 2× 1 spinor matrices. These spinor matrices represent
themselves the rotations that are “rotated”. Explaining that a spinor in SU(2) is a rotation is
in our opinion far more illuminating than describing it as the square root of an isotropic
vector according to the textbook doctrine. It is this insight that breaks the deadlock of our
incomprehension. We will explain the textbook relationship between spinors and square
roots of isotropic vectors in Section 2.7.

Stating that a spinor in SU(2) is a rotation is actually an abus de langage. A spinor is,
just like a 3× 3 SO(3) rotation matrix, an unambiguous representation of a rotation within
the group theory. But due to the isomorphism we can merge the concepts and call the
matrix or the spinor a rotation, in complete analogy with what we proposed in Section 1.4.
For didactical reasons, we can consider a spinor as conceptually equivalent to a system of
“generalized coordinates” for a rotation.

We should not be surprised by the removal of the vectors from the formalism in favour
of the group elements themselves, as described above. Group theory is all about this kind
of abstraction. We try to obtain general results from just a few abstract axioms for the group
elements, without bothering about their intuitive meaning in a more specific context of a
practical realization. Additionally, as far as representations are concerned, we do not have
to get back to a specific context. We always have a representation at hand in the form of
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group automorphisms. This is a well-known fact, but in its general abstract formulation
this fact looks indeed very abstract. Here, we can see what this abstract representation in
terms of automorphisms intuitively means in the context of the specific example of the
rotation group. The idea is then no longer abstract: We can identify the 2× 2 matrices R of
SU(2) with the group automorphisms Tgk , and the 2× 1 rotation matrices φj with the group
elements gj, such that gj → gk ◦ gj = Tgk (gj) is algebraically represented by: φj → Rφj.

Remark 4. From this, it must be already obvious that spinors in SU(2) do not build a vector space
as we stressed in Section 2.2. The three-dimensional rotation group is not a vector space, but a
curved manifold (because the group is non-abelian). We cannot try to find a meaning for a linear
combination ∑j cjRj of SU(2) matrices Rj, in analogy to what we can do with 3× 3 matrices in
SO(3), where we can fall back on the fact that 3× 1 matrices of the image space correspond to
elements of a vector space R3 or C3. The reason for this is that the spinors φj do not build a vector
space, such that we cannot define ∑k ckRk by falling back on some definition for ∑j cjφj in the image
space. Additionally, the very reason why we cannot define ∑j cjφj = ∑j cjĉ1(Rj) = ĉ1(∑j cjRj),
is that we cannot define ∑j cjRj. In trying to define linear combinations of SU(2) matrices or
spinors, we thus hit a vicious circle from which we cannot escape. Furthermore, the relation between
spinors and vectors of R3 is not linear as may have already transpired from Atiyah’s statement cited
above and as we will explain below (see Section 2.7). This frustrates all attempts to find a meaning
for a linear combination of spinors in SU(2) based on the meaning of the linear combination with
the same coefficients in SO(3). Therefore, trying to make sense of linear combinations of spinors is
an impasse.

Remark 5. We can extrapolate [17] the idea that the representation theory “rotates rotations rather
than vectors” to SO(n), such that we will then obtain a good geometrical intuition for the group
theory. If we could also extrapolate to SO(n) the idea that spinors are group elements, we would then
obtain a very good intuition for spinors that is generally valid. We could then, e.g., also understand
why spinors constitute an ideal I . The ideal would then just be the group and the group is closed
with respect to the composition of rotations.

Remark 6. Unfortunately, things are not that simple and we will not be able to realize this dream.
The idea that spinors are just rotations gives us a very nice intuition for them in SU(2). However, the
interpretation in SU(2) of a single column matrix as a shorthand for the whole information needed
to define a group element unambiguously is not correct in general. A first example of a case where
the column matrices cannot be identified with group elements is the representation SL(2,C) of the
homogeneous Lorentz group. In fact, defining an element of the homogeneous Lorentz group requires
specifying six independent real parameters. That information cannot possibly be present in a single
2× 1 column of the 2× 2 representation matrix. A second example is the representation that is
given by the Clifford algebra of SO(n). Characterizing an element of the rotation group SO(n) of Rn

requires specifying n(n− 1)/2 independent real parameters (see the discussion about the Vielbein
in Section 2.7.1). The complete information regarding these n(n− 1)/2 independent real parameters
cannot always be crammed into the complex 2ν × 1 column matrices used in the representations,
because there is a small set of values of n for which n(n− 1)/2 > 2ν+1. The information about a
group element contained in a column matrix is in these cases thus forcedly partial. These examples
show that the identification between group elements and the column matrices that we call spinors
anticipated here is not true in general. Thus, the general meaning of a spinor cannot be that it is
a group element. What the general meaning could be becomes then less clear such that one has to
consider like Cartan isotropic vectors, representing oriented planes, as discussed in [17].

However, due to the fact that we are forced to introduce a superposition of two states in order
to derive the Dirac equation (see Section 4.1), the 4× 1 column matrices used in the Dirac theory
will again contain all of the information regarding the group elements. For the applications in QM,
we can therefore maintain the idea that a spinor is a group element! Furthermore, what we stated
in the previous remark does not imply that we do not understand the algebra of the representation.
In fact, the 2ν × 2ν representation matrices of the group SO(n) do represent the group elements.
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For the application in QM, this means that we will really completely understand the formalism. In
the approach to the general case SO(n) the main idea will, thus, be to consider the formalism just as
a formalism of rotation matrices and the column matrices as auxiliary sub-quantities which encase
only a subset of the complete information about group elements.

Remark 7. We must point out that we do not know with certainty to which extend Atiyah wanted
to be general when he talked about “the square root of geometry”. We think that what Atiyah
had in mind was based on Equations (29) and (57), rather than making a general statement for
SO(n). We can see from Equations (29) and (57) that the terminology “square root” used by Atiyah
is only a loose metaphor, and in the generalization of the approach to groups of rotations in Rn,
with n > 3, the metaphor will become even more loose [17]. For SO(n), the ideas can be based on
the developments in Section 2.6, where we point out a quadratic relationship between vectors and
spinors, which is generally valid.

However, for the moment, we want to explore the idea of a single-column spinor
that contains the complete information about a rotation in SU(2), where the intuitively
attractive idea that a column spinor represents a group element is viable. It remains to
explain under which form the information regarding the rotation is wrapped up inside this
column matrix. This is done in several steps.

2.4. Generating the Group From Reflections

The first step is deciding that we will generate the whole group of rotations and
reversals from reflections, based on the idea that a rotation of SO(3) is the product of two
reflections, as explained in Figure 1. Therefore, we need to cast a reflection into the form of
a 2× 2-matrix. The coordinates of the unit vector a = (ax, ay, az), which is the normal to
the reflection plane that defines the reflection A, should be present as parameters within
the reflection matrix A but we do not know how. Therefore, we heuristically decompose
the matrix A that codes the reflection A defined by a linearly as axτx + ayτy + azτz, where
τx, τy, τz are unknown matrices, as summarized in the following diagram:

unit vector a = (ax, ay, az) ∈ R3 a defines a−−−−−−→
reflection A

2× 2 complex reflection matrix Aydefinition

yDirac’s heuristics

a = axex + ayey + azez
analogy of←−−−−−−−−

decompositions
A = axτx + ayτy + azτz︸ ︷︷ ︸

noted as a·τ·τ·τ

(5)

If we know the matrix τx, this will tell us where and with which coefficients ax pops up
in A. The same applies mutatis mutandis for τy and τz. The matrices τx, τy, τz, we use to code
this way reflection matrices within R3, can be found by expressing isomorphically through
AA = a21 = 1 what defines a reflection, viz. that the reflection operator A is idempotent.
We find out that this can be done, provided the three matrices simultaneously satisfy the
six conditions τµτν + τντµ = 2δµν1, i.e., provided we take, e.g., the Pauli matrices σx, σy, σz
for τx, τy, τz. Here, 1 is the 2× 2 unit matrix.
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Figure 1. A rotation R in R3 as the product of two reflections A and B defined by their reflection
planes πA and πB. The planes πA and πB in R3 intersect along a straight line ` that is defined by
` = { r ∈ R3 ‖ (∃λ ∈ R)(r = λn) }. The plane of the figure is taken perpendicular to the line ` and
intersects ` in the point O. We use the names πA and πB of the planes to label their intersections
with the plane of the figure. The position vector OP of the point P to be reflected is at an angle α with
respect to πA. We call A(P) = P1 and B(P1) = P2. The position vector OP1 is at angle β with respect
to πB. The angle between πA and πB is then α + β. As can be seen from their operations on the
Heliconius butterfly, reflections have negative parity, but the product of two reflections conserves the
parity. Therefore, the product of the two reflections is a rotation R = B ◦A, with axis ` and rotation
angle 2(α + β). Only the relative angle α + β between πA and πB appears in the final result, not its
decomposition into α and β. Hence, the final result will not be changed when we turn the two planes
together as a whole around ` keeping α + β fixed (After [16]).

Remark 8. Physicists among the readers will recognize that this construction is algebraically
completely analogous to the one that introduces the gamma matrices in the Dirac equation. However,
geometrically, it is entirely different. Dirac’s approach aims at taking the “square root of the
Klein-Gordon equation”. Thus, it searches a way to write vectors, e.g., the four-vector (E, cp) as a
linear expression that permits to interpret it as the square root of a quadratic form, e.g., E2 − c2p2,
as e.g., explained by Deheuvels [28]. Therefore, Dirac’s derivation is taking place within the context
of the algebra of vectors and multi-vectors. Our approach consists in finding the expression for
reflections. Our derivation takes thus place within the algebra of group elements. The two approaches
do not define the same geometrical objects and not the same algebras.

Remark 9. We may note that, to an extent, the fact that our heuristics work is a kind of a fluke,
because the fact that the reflection matrix is linear in ax, ay, az within SU(2) is special and not
general. It is typical of the spinor-based representations that we present in this paper. A counter-
example is the expression for a reflection matrix A in SO(3), which is quadratic in the parameters
ax, ay, and az:

A = 1− 2

 ax
ay
az

⊗ [ ax ay az
]
. (6)
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Writing A this way permits to verify immediately algebraically that it corresponds to v →
A(v) = v− 2(a · v) a. Writing 1 as (a2

x + a2
y + a2

z)1 in Equation (6) shows that the expression
is purely quadratic. This is due to the fact that vectors in SO(3) are rank-2 tensor products of
the spinors of SU(2), as we will discuss in this paper. We may also note that we have defined the
reflection matrices without defining a “vector space” on which they would be working. They are
defined en bloc, and it is this aspect that saddles us up with the problem of the meaning of the
column matrices, called spinors, which occur in the formalism. We are used to qualify such column
matrices as column vectors, but, as we pointed out, spinors are not vectors. Thus, it is no longer
natural to break down the square matrices into columns. The complete information resides in the
block of the square matrix. When we break up that block into columns, the information contained in
a column may be partial, and perhaps the question what a column then means might be ill-conceived
(see [17], pp. 22–23). This complies with the idea that is expressed in Remark 6 in Section 2.3.

We discuss, in Section 2.9 of [17], that the solution (τx, τy, τz) = (σx, σy, σz) is not
unique and that there are many other possible choices. However, we follow here the
tradition to adopt the choice of the Pauli matrices. The reflection matrix A is thus given by:

A→ A = axσx + ayσy + azσz =

[
az ax − ıay

ax + ıay −az

]
=̂ a·σ. (7)

The symbol =̂ serves here to warn that the notation [ a·σ ] is a purely conventional
shorthand for axσx + ayσy + azσz. It does not express a true scalar product involving
a, but just exploits the mimicry with the expression for a scalar product to introduce
the shorthand.

By expressing a rotation as the product of two reflections, one can then derive the
well-known Rodrigues formula:

R(n, ϕ) = BA =

[
bz bx − ıby

bx + ıby −bz

][
az ax − ıay

ax + ıay −az

]

= cos(ϕ/2)1− ı sin(ϕ/2) [ n·σ ], (8)

for a rotation by an angle ϕ around an axis that is defined by the unit vector n. To derive
this result, it suffices to consider two reflections A (with matrix [a·σ]) and B (with matrix
[b·σ]), whose planes contain n, and that have an angle ϕ/2 between them. Using the
algebraic identity [b·σ] [a·σ] = (b · a)1+ ı(b ∧ a)·σ then yields the desired result. There
is an infinite set of such pairs of planes, and which precise pair one chooses from this set
does not matter.

Starting from Equation (8), it is easy to check that each rotation matrix has the form
that is given by Equation (3) and, therefore, belongs to SU(2). Conversely, each element of
SU(2) is a rotation matrix. We can now also appreciate why SU(2) is a double covering of
SO(3). Consider the matrix product:

BA =

[
bz bx − ıby

bx + ıby −bz

][
az ax − ıay

ax + ıay −az

]
, (9)

in the derivation of the Rodrigues equation in Equation (8). Imagine that we keep A
fixed and increase the angle ϑ = ϕ/2 between the reflection planes πA and πB of A and
B from ϑ = 0 onwards. Of course, ϕ is the angle of the rotation R = BA. This means
that the reflection plane πB with normal vector b that defines B is rotating. In the matrix
product that occurs in Equation (9), the numbers in the matrix A would remain fixed,
while the numbers in the matrix B would be continuously changing, like the digits that
display hundredths of seconds on a wrist watch. When the starting value of the angle
ϑ = ϕ/2 between the reflection planes πB and πA is zero, the reflection planes are parallel,
πB ‖ πA, and the starting value of b is b = a. When ϑ = ϕ/2 reaches the value π,
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the rotating reflection plane πB will have come back to its original position parallel to the
fixed reflection plane πA, and the resulting rotation BA will correspond to a rotation over
an angle ϕ = 2ϑ = 2π.

As far as group elements are concerned, we have, thus, made a full turn both of
the reflection B and the rotation BA when πB will have made a turn of ϑ = π in R3.
This is because we only need to rotate a plane in R3 over ϑ = π to bring it back to its
original position. The consequence of this is that we can define any plane πU (or reflection
U) always equivalently by two normal unit vectors u and −u. These full turns of B and
R = BA within the group must be parameterized with a “group angle” ϕG = 2π if we want
to express the periodicity within the rotation group in terms of trigonometric functions.
However, for the normal vector b, which we have used to define B and that belongs to
R3, this is different. For ϑ = ϕ/2 = 0, its starting value is b = a. For ϑ = ϕ/2 = π, its
value has become b = −a, such that we obtain R = −1 in Equation (9). There is nothing
wrong with that because both the normal vectors b = a and b = −a define the same
plane πB ‖ πA. Thus, each group element g is represented by two matrices G and −G. As
the group elements B and R = BA have recovered their initial values, we have ϕG = 2π.
In general, we have ϕG = 2ϑ = ϕ. Only after a rotation over a “group angle” ϕG = 4π,
which corresponds to a rotation of πB over an angle ϑ = ϕ/2 = 2π will we obtain the
values BA = 1 and b = a.

Remark 10. It is often presented as a mystery of QM that one must turn the wave function over
ϕG = ϕ = 4π before we obtain the starting configuration (ϑ = ϕ/2 = 2π) again. There is even a
beautiful neutron experiment that has been performed to provide physical proof for the truth of this
fact to physicists [29]. We can see, from a proper understanding of the group theory, that this is
quite trivial and it is a mathematical rather than physical truth. Most textbooks mystify this subject
matter by invoking topological arguments. We explain this link with topology in [16], Subsection
3.11.2, and Figure 3.5, where we compare a full turn on the group with a full turn on a Moebius
ring. This link is thus conceptually very clear and simple. However, in the illustration of this
topological argument by Feynman [30], Dirac [31], or Misner et al. [8], the connection between the
topological argument and the physical model is hard to see. It is, e.g., very difficult to follow how
disentangling the threads in the work of Misner et al. would make the point.

Remark 11. Representing a rotation as the product of two reflections is convenient for calculating
the product of two rotations. Consider two rotations R1(n1, ϕ1) and R2(n2, ϕ2). Call π the plane
that is defined by n1 and n2. Call π1 the plane of the reflection that defines R1 as π ◦ π1 and π2 the
plane of the reflection that defines R2 as π2 ◦ π. It then follows that R2 ◦ R1 = π2 ◦ π ◦ π ◦ π1 =
π2 ◦ π1.

2.5. Fleshing out the Caveat: A Superposition Principle for Spinors?
2.5.1. An SU(2)-Specific Approach

In Section 2.2, we issued the warning that spinors can a priori not be summed. We can
now illustrate how the procedure of summing spinors is geometrically obscure. Consider a
rotation R1 over an angle ϕ around the axis that is defined by the unit vector n, and a rota-
tion R2 over an angle ϑ around the axis defined by the unit vector m. Using Equation (8),
we have then:

φ1 = ĉ1(R1) =

[
cos(ϕ/2)− ınz sin(ϕ/2)
−ınx sin(ϕ/2) + ny sin(ϕ/2)

]
,

φ2 = ĉ1(R2) =

[
cos(ϑ/2)− ımz sin(ϑ/2)

−ımx sin(ϑ/2) + my sin(ϑ/2)

]
.

(10)
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Summing φ1 and φ2 as though they were vectors is algebraically perfectly feasible.
We obtain:

φ1 + φ2 =

[
cos(ϕ/2) + cos(ϑ/2)− ı(nz sin(ϕ/2) + mz sin(ϑ/2))

−ı((nx sin(ϕ/2) + mx sin(ϑ/2)) + (ny sin(ϕ/2) + my sin(ϑ/2))

]
. (11)

However, what does the result mean geometrically? The quantity φ = φ1 +φ2 cannot
represent a rotation because φ†φ 6= 1. It is therefore not a true spinor. It corresponds
obviously to ĉ1(R1 + R2), and as explained in Remark 4 in Section 2.3 we cannot interpret
R1 + R2 the way we can interpret a sum of rotation matrices in SO(3), because the spinors
do not build a vector space. To interpret R1 + R2, we would need an interpretation of sums
of spinors, and to interpret sums of spinors we would need an interpretation of sums of
rotation matrices. Therefore, when we try to transpose the ideas from SO(3) to SU(2), we
end up running in circles.

However, suppose now that we try to normalize the result in Equation (11) to 1, as
physicists do routinely. The result will then remain a linear combination of spinors, but
it is now a special one, whereby the coefficients used in the linear combination preserve
the normalization. One must then find a rationale to explain what the geometrical idea
behind such a procedure could be. Mind, in this respect, that we have no idea about the
geometrical meaning of φ1 + φ2 in the first place. How do we justify defining a procedure
on a quantity that is undefined? Thus, the procedure remains geometrically impenetrable,
and we have rendered the situation worse. We have now concealed the fact that there
are conceptual problems with making linear combinations of spinors, because the final
quantity obtained is now (almost always) algebraically identical to a true spinor. Let us
prove this. To normalize φ1 + φ2 according to the Hermitian norm, we calculate:

(φ1 + φ2)
†(φ1 + φ2) = 2 [ 1 + cos(ϕ/2) cos(ϑ/2) + (n ·m) sin(ϕ/2) sin(ϑ/2) ]. (12)

Here:

cos(Ω/2) = cos(ϕ/2) cos(ϑ/2) + (n ·m) sin(ϕ/2) sin(ϑ/2), (13)

allows for a geometrical interpretation: Ω is the rotation angle of the product rotation
R2 ◦ R1 as shown e.g., in Appendix C of the monograph of Jones [12]. We are already
running into trouble here, because it is certainly conceivable that 1 + cos(Ω/2) = 0.
The result φ1 + φ2 is then zero, such that it cannot be normalized to 1. This happens
e.g., when we define R2(m, ϑ) by: m = n and ϑ = ϕ + 2π. This is actually the only
way that this can happen, because φ1 = −φ2 implies R1 = −R2, such that m = n and
ϑ = ϕ + 2π. This example is the absolute proof for the fact that the sum of two spinors
is not a spinor. Let us now continue carrying out the algebra keeping this in mind and
check whether there could be other problems. Writing the sum R1 + R2 in the form of the
Rodrigues equation Equation (8) makes it clear that the vector:

v = n sin(ϕ/2) + m sin(ϑ/2), (14)

plays a prominent rôle in the algebra. Let us now assume that 1 + cos(Ω/2) 6= 0 and
calculate the result of normalizing the purely formal algebraic sum φ1 + φ2 to 1. This
yields:

φ1 + φ2  
1√

2(1 + cos(Ω/2))

[
cos(ϕ/2) + cos(ϑ/2)− ıvz

−ı(vx + ıvy)

]
. (15)

Let us now try to identify the right-hand side with a spinor ψ representing a rotation
R(u, α) over an angle α around an axis that is defined by the unit vector u:

ψ =

[
cos(α/2)− ı sin(α/2)uz
−ı sin(α/2)(ux + ıuy)

]
. (16)
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Very obviously, the rotation angle α must then be given by:

α = 2 arccos

[
cos(ϕ/2) + cos(ϑ/2)√

2(1 + cos(Ω/2))

]

= 2 arccos
[

cos(ϕ/2) + cos(ϑ/2)
2 cos(Ω/4)

]
. (17)

However, we must check whether this is a meaningful expression. The rotation angle
α will only be defined if | cos(ϕ/2) + cos(ϑ/2)| ≤

√
2(1 + cos(Ω/2)). To check this, we

square both sides and rewrite 2 as cos2(ϕ/2) + sin2(ϕ/2) + cos2(ϑ/2) + sin2(ϑ/2). We
obtain then the inequality:

cos2(ϕ/2) + cos2(ϑ/2) + 2 cos(ϕ/2) cos(ϑ/2)
≤ sin2(ϕ/2) + cos2(ϕ/2) + sin2(ϑ/2) + cos2(ϑ/2)
+2 cos(ϕ/2) cos(ϑ/2) + 2 (n ·m) sin(ϕ/2) sin(ϑ/2),

(18)

where we have used the definition of cos(Ω/2). Simplification leads to:

0 ≤ sin2(ϕ/2) + sin2(ϑ/2) + 2 (n ·m) sin(ϕ/2) sin(ϑ/2) = v2, (19)

such that the inequality is indeed satisfied. It must be noted now that |v| can be larger than
1 (but not larger than 2). Therefore, it is a priori not obvious that we can identify:

v√
2(1 + cos(Ω/2))

= sin(α/2) u, (20)

where u ‖ v is a unit vector. However, the calculations that occur in the simplification from
Equation (18) to Equation (19) show that v2 = 2(1 + cos(Ω/2))− | cos(ϕ/2) + cos(ϑ/2)|2,
such that we have indeed |v| ≤

√
2(1 + cos(Ω/2)). Thus, we can calculate the unit vector

u ‖ v from:

u =
n sin(ϕ/2) + m sin(ϑ/2)√

sin2(ϕ/2) + sin2(ϑ/2) + 2 (n ·m) sin(ϕ/2) sin(ϑ/2)
. (21)

While the normalized sum of two spinors can this way be interpreted in terms of a well-
defined rotation R(u, α), it is not obvious what this is kind of operation (R1, R2)→ R(u, α)
is then supposed to mean geometrically. The meaning of the unit vector u is at least
algebraically clear as the sum of two wedge products. However, the definition of the
rotation angle α looks impenetrable.

A superposition principle for spinors, i.e., summing and making linear combinations
of them with a wave picture in mind, as physicists routinely do, is thus an all but self-
evident procedure. Within the initial set of underlying ideas this procedure is a priori
geometrically meaningless, despite its misleading apparent algebraic simplicity. Interpret-
ing a sum of spinors, as presented in this paragraph, is actually a conceptual impasse,
because the sum can be zero. The use of the superposition principle in physics therefore
requires a supplementary geometrical justification. That this caveat is not futile at all can
be appreciated from the fact that it is the very introduction of the superposition principle
that transforms the spinor formalism, which is, in essence, purely geometrical and classical,
into a much less obvious Hilbert space formalism of QM. One of the mysterious creatures
that we introduce this way is Schrödinger’s cat. This need for a justification of the superpo-
sition principle is further directly related to the conceptual difficulties encountered under
the form of the so-called particle-wave duality in QM. Additionally, in interference, we
become directly confronted with the fact that the sum of two spinors can be zero when
1 + cos(Ω/2) = 0, as outlined above. This leads to severe conceptual difficulties.
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2.5.2. General Group-Theoretical Approach

We may note that the ad hoc attempt to interpret the meaning of an element of the
group ring presented in Section 2.5.1 is specific to SU(2). It does not solve the problem of
the meaning of an element of the group ring for the permutations in Equation (1) or for
moves of the Rubik’s cube. Additionally, even within SU(2) it fails, as it is meaningless. We
will refrain from interpreting the group theory in terms of a vector space C2 and proceed
as always on the basis of purely group-theoretical considerations. Formal sums of group
elements and group rings occur all the time in the group theory (see e.g., [27]). In this
context, one encounters e.g., formal identities:

g ◦ ( h1 + h2 · · · hn ) = ( h1 + h2 · · · hn ) ◦ g. (22)

Here g, h1, h2, · · · hn are all group elements. In fact, all this expresses is an identity for
sets:

g ◦ {h1, h2, · · · hn} = {h1, h2, · · · hn} ◦ g. (23)

From a purely group-theoretical viewpoint, we can thus interpret sums of group
elements in terms of sets. The interpretation is naturally provided by the group theory.
Here, the coefficients in the linear combinations are all equal to one. We can extend this
idea further and allow for integer values. We could, e.g., imagine that we have a collection
of 3000 Rubik’s cubes, whereby 2000 of the cubes have the configuration of group element
g1 and 1000 the configuration of group element g2. We could then note the collection as
2000g1 + 1000g2, or in terms of frequencies as (2/3)g1 + (1/3)g2. In QM, we will note this
collection as

√
2/3g1 +

√
1/3g2. It based on the fact that spinors ψ in SU(2) satisfy the

identity ψ†ψ = 1, such that, if we want to count objects, e.g., electrons, which all carry
just one spinor with them in order to describe their state, then we must do it by counting
ψ†ψ = 1. We must postpone the in-depth discussion of this to Section 4.5.1 when we will
have derived the Dirac equation.

2.6. A Parallel Formalism For Vectors

By construction, the representation SU(2) contains for the moment, (as we explained)
deliberately, only group elements. Of course, it would be convenient if we were also able
to calculate the action of the group elements on vectors. This is our next step. We can
figure out how to do this based on the fact that we have already used a unit vector a to
define a reflection A and its corresponding reflection matrix A. Inversely, the reflection
A also defines a up to a sign, such that there exists a one-to-one correspondence between
reflections A and the two-member sets of unit vectors {a,−a} (and the corresponding
two-member sets of reflection matrices {A,−A}). This one-to-one correspondence between
two-member sets of vectors and reflections will actually impose the formalism for vectors
upon us. We can consider that a reflection A and its parameter set {a,−a} are conceptually
the same thing.

When a reflection travels around the group, the two-member set of vectors {a,−a}
will travel together with it. Let us explain what we mean by the informal term “traveling”
here. In SO(3), a vector v ∈ R3 has a 3× 1 representation matrix V. It is transformed by a
group element g with 3× 3 representation matrix G into another vector v′ = g(v) ∈ R3:
we just calculate the 3× 1 representation matrix V′ of g(v) as V′ = GV. The vector v
travels this way under a group action to another vector v′. The point we want to make is
that in SU(2), things are not as simple. Under the action of a group element g with matrix
representation G, a reflection A will not travel to another reflection A′.

Let G be the group that is generated by the reflections. The subgroup of pure rotations
G+ ⊂ G is the subset that is obtained from an even number of reflections. The subset
G− ⊂ G obtained from an odd number of reflections is not a subgroup. It contains the
reflections and the reversals. Reflections are of course geometrical objects of a different
type than reversals and pure rotations. This also transpires from the fact that a reflection is
defined by a unit vector a ∈ S2, where S2 is the unit sphere in R3. Thus, it is defined by two
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independent real parameters while rotations and reversals are defined by three independent
real parameters. Group elements g1 ∈ G and g2 ∈ G are of the same geometrical type if
they are related by a similarity transformation: ∃g ∈ G : g2 = g ◦ g1 ◦ g−1. They have then
the same group character.

In general, a new group element gA obtained by operating with an arbitrary group
element g ∈ G on the reflection A will no longer be a reflection that can be associated
with a unit vector, like it was the case for A, because, in general, gA can be of a different
geometrical type than A. Group elements that transform a reflection A into an other
reflection, B, are the identity element AA = 1 and rotations R that can be written as
R = BA. For this to be possible, the rotation axis of R must belong to the reflection plane
πA of A. In other words, the reflections do not travel according to the general rule A→ gA.

In order to transform a reflection A always into another reflection, we must use a
similarity transformation: A→ gAg−1. Hence, if B and A are reflections, defined by the
unit vectors b and a, then there exists a group element g ∈ G, such that B = gAg−1 and
b = g(a). Hence, if A is a reflection operating on r ∈ R3, then the similar reflection B
that operates on g(r) ∈ R3 will be represented by g ◦ A ◦ g−1. The reflection plane πB and
normal b of this reflection B will have the same angles with respect to g(r) as πA and a with
respect to r. Thus, we can move this way the reflection A in r around to group elements
B in g(r), and, of course, the parameter set {a,−a} will travel with it from r to g(r) to a
parameter set {b,−b} = {g(a),−g(a)}. The ambiguity between {a,−a} and {b,−b} is
also carried along. For the representation matrices of reflections we have thus:

{[ b·σ ],−[ b·σ ]} ≡ B = GAG−1 ≡ G { [ a·σ ],−[ a·σ ] }G−1 if g ∈ G, (24)

whereby we allow for the ambiguity in the sign of b, because Equation (24) is not a
transformation law for vectors, but for reflections and their associated two-member sets
of vectors.

Of course, the idea would be that g(a) = b, ∀g ∈ G+ and g(a) = −b, ∀g ∈ G−, but the
combined presence of G and G−1 does not permit reproducing the change of sign in the
formalism, because it has been designed for group elements, not for vectors. This is very
clear for A(a) = −a, while in the formalism A [ a·σ ]A−1 = [ a·σ ], which is the correct
calculation for A = A ◦ A ◦ A−1. On the other hand, a vector b that is perpendicular to a is
characterized by [ b·σ ][ a·σ ] = −[ a·σ ][ b·σ ].

To see this, consider the rotation R that transforms ex into a and ey into b. For the
reflections σx and σy, we have σxσy = −σxσy. The similarity transformation based on R will
transform σx into the reflection A with matrix representation [ a·σ ] and σy into the reflection
B with matrix representation [ b·σ ]. Applying the similarity transformation to σxσy =
−σxσy proves then the identity. Therefore, [ a·σ ][ b·σ ][ a·σ ] = −[ a·σ ][ a·σ ][ b·σ ] =
−[ b·σ ], while the vector b ∈ πA belongs to the reflection plane and it should not change
sign under the reflection A.

Thus, we see that, in all cases, we get the sign of the reflected vector wrong. Thus, we
can lift the ambiguity and treat the vectors correctly by introducing the sign by brute force:

[ b·σ ] = +G [ a·σ ]G−1, if g ∈ G+,

[ b·σ ] = −G [ a·σ ]G−1, if g ∈ G−. (25)

In doing so, we quit the formalism for group elements and enter a new formalism for
vectors. The transition is enacted by conceiving and elaborating the idea that we can use
the matrix A = [ a·σ ] also as the representation of the unit vector a, since the matrix A
contains the components of the vector a and the reflection A defines a. To get rid of the
ambiguity about the signs of the vectors that exist within the definition of the reflection
matrices, it suffices to use [ a·σ ] as a representation for a unit vector a, and to introduce
the rule that [ a·σ ] is transformed according to:

[ a·σ ]→ [ R(a)·σ ] = −R [ a·σ ]R−1 under reflections R ∈ G−. (26)
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This will be further justified below. The transformation under other elements g ∈ G
is then obtained by using the decomposition of g into reflections. This way, we have
developed a parallel formalism for the matrices A, wherein A takes now a different
meaning, viz. that of a representation of a unit vector a and obeys a different kind of
transformation algebra, that is no longer linear, but quadratic in the transformation matrices.
This idea can be generalized to a vector v of arbitrary length v, which is then represented by
V = vxσx + vyσy + vzσz. In fact, the scalar v is a group invariant, because the rotation group
is defined as the group that leaves v invariant. We have then V2 = −(det V)1 = v21.

This idea that, within SU(2), a vector v ∈ R3 is represented by a matrix v·σ according
to the isomorphism:

v = vxex + vyey + vzez ←→ vxσx + vyσy + vzσz =

[
vz vx − ıvy

vx + ıvy −vz

]
=̂ v·σ, (27)

was introduced by Cartan [4]. It is a definition that makes it possible to do calculations
on vectors. In reading Cartan, one could get the impression that we have the leisure to
introduce this definition at will. In reality, it is not a matter of mere definition. While
introducing the idea as a definition would not lead to errors in the formalism, it would
nevertheless be a false presentation of the state of affairs, because it is no longer at our
discretion to define things at will. As we can see from the reasoning above, the definition
is entirely forced upon us by the one-to-one correspondence between sets of unit vectors
{a,−a}, and reflections A.

We cannot stress enough that, even if reflections A ∈ L(R3,R3) and unit vectors a ∈ R3

are both represented by the same 2× 2 matrix [ a·σ ], they are obviously completely different
quantities, belonging to completely different spaces L(R3,R3) and R3 and completely
different algebras.

Using (v1 + v2)
2 − v2

1 − v2
2 = 2 v1·v2, one can derive, from the rule V2 = v21, that

V1V2 + V2V1 = 2 (v1·v2)1, which can be seen as an alternative definition of the parallel
formalism for vectors. As anticipated above, we can use this result to check the correctness
of the rule of Equation (26) geometrically. It suffices in this respect to observe that the
reflection A, defined by the unit vector a, transforms v into A(v) = v− 2(v · a) a. Expressed
in the matrices this yields: V→ −AVA.

We see that the transformation law for vectors v is quadratic in A in contrast with
the transformation law for group elements g, which is linear: G→ AG. Vectors transform
thus quadratically as rank-2 tensor products of spinors, whereas spinors transform linearly. This
gives us a full understanding of the relationship between vectors and spinors. It is much
easier to understand this relationship in the terms that are used here, vectors are quadratic
expressions in terms of spinors, than in the equivalent terms used by Atiyah, spinors are
square roots of vectors.

Remark 12. This solution is analogous to the solution proposed by Gauss, Wessel, and Argand
to solve the problem of the meaning of ı =

√
−1. As described on p. 118 of reference [24], one

first defines C as R2, with two operations + and × defined by (x1, y1) + (x2, y2) = (x1 + x2, y1 +
y2) and (x1, y1) × (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1). One then shows that (R,+,×) is
isomorphic to (R,+,×), where R = { (x, y) ∈ C ‖ y = 0 } ⊂ C. This permits identifying
R ≡ R and justifies introducing the notations 1 ≡ (1, 0) ∈ R, ı ≡ (0, 1) and (x, y) ≡ x + ıy.
One can prove then that ı2 ≡ (0, 1)2 = (−1, 0) ≡ −1.

The fact that this solution for the riddle what the meaning of a spinor is has escaped
attention is due to the fact that spinors are in general introduced based on the construction
proposed in Equation (29) below. This construction emphasizes the fact that a spinor is a
kind of square root of a vector at the detriment of the notion developed here and that a
vector is a rank-2 expression in terms of spinors. However, these relations between spinors
and vectors are a property that only constitute a secondary notion, which is not really
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instrumental in clarifying the concept of a spinor. The essential and clarifying notion in
SU(2) is that a spinor corresponds to a rotation.

The reader will notice that the definition V = v·σ with V2 = v21 is analogous to
Dirac’s way of introducing the gamma matrices to write the energy-momentum four-vector
as Eγt + cp·γ and postulating (Eγt + cp·γ)2 = (E2 − c2 p2)1. In other words, it is the
metric that defines the whole formalism, because we are considering groups of metric-
conserving transformations (as the definition of a geometry in the philosophy of Felix
Klein’s Erlangen program).

For more information regarding the calculus on the rotation and reversal matrices, we
refer the reader to reference [16]. Let us just mention that as a reflection A works on a vector
v according to V → −AVA = −AVA−1, a rotation R = BA will work on it according to
V→ BAVAB = RVR−1 = RVR†. The identity R−1 = R† explains, in an alternative way,
why the representation that we end up with is SU(2).

In summary, there are two parallel formalisms in SU(2), one for the vectors and
one for the group elements. In both formalisms, a matrix V = v·σ can occur, but with
different meanings. In a formalism for group elements, v fulfils the rôle of the unit vector
a that defines the reflection A, such that we must have |v| = 1, and then the reflection
matrix V = A transforms according to: A → GA under a group element g with matrix
representation G. The new group element that is represented by GA will then, in general,
no longer be a reflection that can be associated with a unit vector like it was the case for A.
In a formalism of vectors, |v| can be different from 1 and the matrix V (that represents now
a vector) transforms according to: V→ GVG−1 = GVG†. Here GVG† can be associated
again with a vector.

We cannot emphasize enough that the vector formalism is a parallel formalism that
is different from the one for reflections, because the reflections that are defined by a and
−a are equivalent, while the vectors a and −a are not. Here, we have two concepts that
are algebraically identical but not geometrically and this is the source of a lot of confusion.
The folklore that one must rotate a wave function by 4π to obtain the same wave function
again is part of that confusion. The reflection operator [ a·σ ] is a thing that is entirely
different from the unit vector [ a·σ ], even if their expressions are algebraically identical. By
rotating a reflection plane over an angle π, we obtain the same reflection, while it takes
rotating over an angle 2π to obtain the same vector a.

Remark 13. Both in the representation matrices A = [ a·σ ] for reflections A and V = [ v·σ ]
for vectors v, the quantities σx, σy, σz are the three Pauli matrices. In the representation (ej ↔
σj = [ ej·σ ]) defined by Equation (27), the Pauli matrices σx, σy, σy are just the images, i.e., the
coding of the three basis vectors ex, ey, ez. As clearly indicated in the diagram of Equation (5), σ
is a shorthand for the triple (σx, σy, σz). The use of the symbol =̂ serves to draw the attention to
the fact that the notation [ v·σ ] is a purely conventional shorthand for vxσx + vyσy + vzσz, which
codes the vector v within the formalism. Thus, it is analogous to writing vxex + vyey + vzez
pedantically as: (vx, vy, vz) · (ex, ey, ez). The danger of using the convenient shorthand [ v·σ ] is
that it conjures up the image of a scalar product, while there is no scalar product whatsoever.

The fact that [ v·σ ] represents the vector v, and that the Pauli matrices σx, σy, σz just rep-
resent the basis vectors ex, ey, ez, was clearly stated by Cartan, but physicists nevertheless have
hineininterpretiert the vector − h̄q

2m0c [B·σ ] as a scalar product B·µ in the theory of the anomalous
g-factor for the electron. Here, µ would be the magnetic dipole of the electron and −B·µ its potential
energy with the magnetic field B. In reality, B·σ just expresses the magnetic-field pseudo-vector B.
The quantity h̄

2 σ can never represent the spin, because it is already defined in Euclidean geometry
before we apply this geometry to the physics where we want to consider spin. This reveals that
physicists do not only use spinors like vectors: They also use vectors like scalars. We have fully
discussed and tidied up this problem in [23], where we have proposed a better interpretation of the
Stern–Gerlach experiment.
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Remark 14. A similar confusion arises in the definition of the helicity of the neutrino [19], pp.105–
106, Equation (5.30), [32]. It is defined as h̄

2 [ u·σ ], and claimed to be “the projection” of the “spin”
h̄
2 σ on the unit vector u = p/|p|. This is again a confusion between the shorthand notation [ u·σ ]
for the representation of the vector u and a true scalar product. As just mentioned, in reality, [ u·σ ]
just represents the unit vector u. The factor h̄

2 has been added only due to the confusion and the
belief that h̄

2 σ would then be the spin operator, while the true spin operator is h̄
2 [ s·σ ]. There is

absolutely no reference to spin whatsoever in the operator [ u·σ ]. The definition leads to a confusing
discussion about the difference between helicity and chirality in textbooks. This example shows that
physicists cannot deny that they have considered [ u·σ ] and [B·σ ] as a true scalar products.

2.7. The Quadratic Relation between Vectors and Spinors
2.7.1. Isotropic Vectors

We will illustrate the quadratic relationship between spinors and vectors further in
what we can consider as the final step in the construction of the formalism. We can picture a
rotation R by a rotated triad of three basis vectors e′x = R(ex), e′y = R(ey), and e′z = R(ez).
This is a 1-1-correspondence. The triads visualize rotations and vice versa. This is a second
important idea, which can be carried over to the general case of SO(n): we can code group
elements by identifying them with a rotated basis of Rn, a so-called Vielbein. This is a
German word meaning “many legs”, and the idea is that each basis vector is a leg. The
first unit vector of the Vielbein of Rn corresponds to n− 1 independent real parameters due
to the normalization condition. The second unit vector corresponds to n− 2 independent
real parameters due to the normalization and the orthogonality conditions. The third unit
vector corresponds to n− 3 independent real parameters, etc. This shows that the Vielbein
or a rotation in Rn corresponds to n(n− 1)/2 independent real parameters, as we claimed
previously in Remark 6 in Section 2.3.

In SU(2), we can code the basis triad within an isotropic vector e′x + ıe′y = (x, y, z) ∈ C3.
This is also a 1-1-correspondence. From (x, y, z) ∈ C3, we can get e′x and e′y back by taking
real and imaginary parts, while e′z = e′x ∧ e′y. Thus, we can represent a rotation by an
isotropic vector, a vector, whose square is 0.

Remark 15. It is often stated in this respect that an isotropic vector has zero length and that it
is orthogonal to itself. This is however based on the wrong notion that the extrapolation to C3 of
the Euclidean norm, | · |E defined by: ∀(x, y, z) ∈ R3, |(x, y, z)|E =

√
x2 + y2 + z2, would still

be a correct norm function for (x, y, z) ∈ C3. The correct norm to be used for (x, y, z) ∈ C3 is the
Hermitian norm | · |H defined by: ∀(x, y, z) ∈ C3 : |(x, y, z)|H =

√
xx∗ + yy∗ + zz∗.

Remark 16. Presented this way, this idea may look like a stroke of genius. However, in reality, it is
just the consequence of embedding R2n within C2n. Thus, we can embed R4 within C4. Instead of
the basis of the mutually orthogonal unit vectors e1, e2, e3, e4 of R4 as a basis for C4, one can use a
coordinate transformation and use the alternative orthogonal basis ε1 = e1 + ıe2, ε∗1 = e1 − ıe2
and ε2 = e3 + ıe4, ε∗2 = e3 − ıe4 for C4 (see paragraph 4.6.1 of [17]). This basis can also be
normalized while using the Hermitian norm. The subspace spanned by ε1 and ε2 suffices to define
the complete Vielbein of R4 and it is isomorphic to C2. The space R3 is a subspace of R4, and, once
we have defined it, this way it becomes possible to also treat R3 in terms of C2. This is the reason
why we will end up with a formalism SU(2). Thus, the use of isotropic vectors is just a consequence
of introducing ε1 = e1 + ıe2, but the idea becomes somewhat concealed by the fact that we work
with R3 instead of R4, such that we do not have ε2 = e3 + ıe4 to tip us off.

The reference triad is coded by the isotropic vector (x0, y0, z0) = ex + ıey = (1, ı, 0),
with representation matrix:

M0 =

[
0 2
0 0

]
. (28)

Now consider the rotation matrix R from Equation (3). Under the rotation R, the isotropic
vector (x0, y0, z0) with matrix M0 will be transformed to the isotropic vector (x, y, z)
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with 2 × 2 representation matrix M = xσx + yσy + zσz. This rotated isotropic vector
(x, y, z) codes the rotated triad and, thus, also the rotation R. The representation matrix
M = RM0R−1 is given by:

M =

[
z x− ıy

x + ıy −z

]
= 2

[
−ξ0ξ1 ξ0ξ0
−ξ1ξ1 ξ0ξ1

]

=
√

2
[

ξ0
ξ1

]
⊗ [−ξ1, ξ0 ]

√
2 = 2 [ χ⊗ ψ̇

† ]. (29)

As for an isotropic vector we have x2 + y2 + z2 = 0, it follows that det(M) = 0. This
implies that the columns of the matrix M are proportional. Additionally, the lines of M
are proportional. This is the reason why we can write M as a tensor product as done in
Equation (29), introducing the column “spinor” χ and the conjugated row “spinor” ψ̇

†. We
are putting here the words spinor between quotes, because, for the moment, it is not yet
obvious that they correspond to the same concept as the one we introduced above. We
will address this issue very soon. The notation ψ̇

† just serves to distinguish row spinors
ψ̇

† from column spinors χ. Below we will explain the reason for this rather complicated
looking notation ψ̇

†. The square roots
√

2 are introduced for normalization purposes.
There is some possibility of confusion with the terminology here. From the purely algebraic
point of view of matrix algebra, we could call these spinor quantities column “vectors” and
row ’vectors”, but from the geometrical point of view, spinors are not vectors, because they
code rotations, and rotations do not build a vector space.

Remark 17. When we will try to generalize the formalism to SO(n), we will no longer be able to
factorize the matrix of an isotropic vector, as done here. For a matrix M of rank ρ > 2, we can
no longer conclude, from det M = 0, that there exist ρ× 1 matrices χ and 1× ρ matrices ψ̇

†,
such that M = χ⊗ ψ̇

†, because this would imply that all of the columns of M are proportional
and all rows of M are proportional, while it suffices that only two columns and two rows of M are
proportional.

For the moment, we can see how for the specific case of SU(2), the gimmick M =

χ⊗ ψ̇
† permits us to “halve” the formalism. In fact, the isotropic vector that codes the

rotation transforms under rotations quadratically according to M→ RMR−1 = RMR† =

R [ χ⊗ ψ̇
† ]R†, with multiplications on both sides. We could obtain the same result by

stipulating that we must transform χ → Rχ and ψ̇
† → ψ̇

†R†. Now, a spinor φ that
contains the same information as a rotation matrix transforms linearly according to φ→ Rφ,
with only left multiplications. On the other hand, an isotropic vector contains the same
information as a rotation matrix, because it codes the triad.

Let us now show that the “spinor” formalism for the isotropic vector is algebraically
identical to the spinor formalism for the rotations, such that χ is indeed algebraically a
spinor. The reference triad is coded by the isotropic vector (x0, y0, z0) = ex + ıey = (1, ı, 0),
leading to:

M0 =

[
0 2
0 0

]
=
√

2
[

1
0

]
⊗ [ 0, 1 ]

√
2 ⇒ χ0 =

[
1
0

]
, ψ̇0 =

[
0
1

]
. (30)

This reference triad corresponds to the identity matrix. The corresponding spinor
φ = ĉ1(1), is indeed equal to χ0, such that we have checked that the formalism based on
multiplying χ0 to the left according to χ0 → χ = Rχ0 is just identical to the formalism that
is based on multiplying φ according to φ→ Rφ, such that χ = φ, while ψ̇ corresponds to
the conjugated spinor.
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To summarize, it is not possible in SU(2) to build a linear representation that is based
on vectors because vectors are of rank two in terms of spinor quantities, but is possible to
build a linear representation based on spinors by “halving” the formalism. We could also
proceed by only right multiplications on ψ̇

† according to ψ̇
† → ψ̇

†R†, but that would be
completely equivalent. The conjugated spinor ψ̇ transforms like χ, by left multiplication
by R, and it gives rise to the second column of the matrix in Equation (3). It contains the
same information as χ. Using ψ̇ instead of ψ̇

† allows for us to then also limit ourselves
to calculations that contain only left multiplications. In other words, in the notation ψ̇

†,
the symbol † is supposed to flag that it is transformed by right multiplication by R†, while
the dot is used to distinguish quantities ψ̇ from quantities χ, showing that the quantities
ψ̇ have originally entered the formalism under the form of row spinors ψ̇

†. Whereas, the
formalism M→ RMR−1 was not linear in the parameters of the rotation matrix R, halving
the formalism to φ→ Rφ has rendered it linear.

Because a rotation only depends on three independent real parameters, we can normal-
ize these spinors to 1, such that ξ0ξ∗0 + ξ1ξ∗1 = 1. In fact, the normalization is a consequence
of the fact that the matrix in Equation (3) belongs to SU(2). The spinor contains thus exactly
three independent parameters that characterize a rotation (e.g., the three Euler angles, or a
rotation axis that is defined by a unit vector n and a rotation angle ϕ). From these spinors
and using the identity ξ0ξ∗0 + ξ1ξ∗1 = 1, we can calculate backwards to (x, y, z). The result
is:

x = ξ2
0 − ξ2

1, y = ı(ξ2
0 + ξ2

1), z = −2ξ0ξ1. (31)

From this, we can recover the basis vectors e′x(x1, y1, z1), e′y(x2, y2, z2):

x1 = 1
2 (ξ

2
0 − ξ2

1 + ξ∗20 − ξ∗21 ), y1 = ı
2 (ξ

2
0 + ξ2

1 − ξ∗20 − ξ∗21 ),
z1 = −(ξ0ξ1 + ξ∗0 ξ∗1),

x2 = ı
2 (−ξ2

0 + ξ2
1 + ξ∗20 − ξ∗21 ), y2 = 1

2 (ξ
2
0 + ξ2

1 + ξ∗20 + ξ∗21 ),
z2 = (ξ0ξ1 − ξ∗0 ξ∗1).

(32)

and, from this, finally e′z = (x3, y3, z3) = e′x ∧ e′y:

x3 = ξ0ξ∗1 + ξ∗0 ξ1, y3 = ı(ξ0ξ∗1 − ξ∗0 ξ1), z3 = ξ0ξ∗0 − ξ1ξ∗1 . (33)

We can also calculate ξ0 and ξ1 from x, y, and z, and this leads to the expressions that
are introduced by Cartan: [

ξ0
ξ1

]
=

 ±
√

x−ıy
2

±
√
−x−ıy

2

. (34)

This shows how the reference triad of basis vectors is expressed within a spinor.
Similar expressions can be derived to show e.g., how the three Euler angles are expressed
within a spinor. The Rodrigues formula shows how the rotation axis n and the rotation
angle ϕ are expressed within the spinor.

Remark 18. In many textbooks, spinors are introduced on the basis of this algebra for the isotropic
vector, putting the emphasis on halving the formalism. It is this approach that leads to the idea that
a spinor is the square root of a vector, based on the fact that the isotropic vector appears as a tensor
product of two spinors in Equation (29). This tensor product is not a pure square, because the spinors
χ (a rotation) and ψ̇ (a reversal) are not identical, such that calling the spinor the square root of the
vector is only a loose informal description. Here, the presence of the square roots in Equation (34)
can also inspire the idea that a spinor is the “square root” of a vector. Finally, the Rodrigues equation
Equation (8) can also be expressed as R(n, ϕ) = 1

2 e−ıϕ/2 (1+ [ n·σ ] ) + 1
2 e+ıϕ/2 (1− [ n·σ ] ).

Within this algebraic form, the presence of ϕ/2 in the exponentials also leads to the idea of a “square
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root”. But we can appreciate from our approach that in SU(2) the true meaning of a spinor is not
that it is “a kind of isotropic vector” as stated by Cartan, but just a rotation. In generalizing this
idea, we can change the definition of a spinor to make it just a group element rather than a column
matrix. The isotropic vector is merely a secondary tool to express this idea through quite ingenious

“slick algebra”. The basic idea that a spinor is a rotation is much simpler and developing it requires
much less ingenuity.

Remark 19. In reference [16], pp. 63–66, we also discuss the way SU(2) is introduced in textbooks
based on a stereographic projection. We show that this method is, in reality, conceptually flawed,
because it only considers the basis vector e′z, which cannot represent the complete information about
a rotation. A rotation of ez to e′z does not define a unique rotation, as one can afterwards still rotate
the basis triad freely around e′z over a rotation angle ϕ.

Remark 20. Many a physicist will be used to the concept of infinitesimal generators used to define
the Lie algebra. In this context, the infinitesimal generators pick up algebraic expressions that are
algebraically identical to those for the reflection matrices. We must point out that this algebraic
identity is a mere coincidence. The definitions of the Pauli matrices in terms of reflection matrices
and in terms of infinitesimal generators are conceptually completely different. Indeed, one should
already feel rather puzzled by the fact that due to the algebraic identity a reflection operator appears
to be related to an infinitesimal rotation. The solution of this riddle becomes obvious by considering
rotations or Lorentz transformations in R4. We then have four reflection operators, while there are
six infinitesimal generators, such that the two concepts are now clearly seen not to be equivalent.
The four reflection operators have four-dimensional vector symmetry and are true generators for
the rotation group. The infinitesimal generators have six-dimensional tensor symmetry. They are
a vector basis for the six-dimensional tangent space to the Lie group. This also explains why the
infinitesimal generators for SU(3) cannot be found by following the strategy that is outlined in
Section 2.4.

Remark 21. The set of all isotropic vectors of C3 is the isotropic cone C . Biedenharn and Louck [33]
evoke the relation between a spinor and an isotropic vector (x, y, z) ∈ C . There is only one element
(x, y, z) = (0, 0, 0) ∈ C that belongs to real space R3. Biedenharn and Louck conclude, from
this observation, that spinors certainly cannot be objects that rotate in physical space. This is
very obviously not true and the confusion is due to the notation (x, y, z), which suggests that the
isotropic vector could be a set of position coordinates, while it is obvious from the development
that the isotropic vector is meant to be a set of rotation coordinates.

2.7.2. Real Unit Vectors

Equation (29) is the reason why one says that a spinor is a square root of a vector. We
can see that this is only very approximately true, as the two spinors χ and ψ̇ are different.
There is a relation between spinors and vectors that illustrates, in a much more direct and
less artificial way, how vectors are “squares” of spinors. Consider a rotation R with matrix
R that turns the reference triad. The vector e′z = R(ez) of the rotated reference triad in
Equation (33) can be expressed as:

[ e′z·σ ] = 2 χ⊗ χ† − 1. (35)

In fact,

[ ez·σ ] + 1 =

[
2 0
0 0

]
=
√

2
[

1
0

]
⊗
[

1 0
]√

2. (36)

Under the rotation R, this transforms to:

[ e′z·σ ] + 1 = R ( [ ez·σ ] + 1 )R−1

=
√

2
[

ξ0
ξ1

]
⊗
[

ξ∗0 ξ∗1
]√

2. (37)
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where we have used R−1 = R† and R1R−1 = 1 to obtain the desired result. With respect
to this identity, introducing the isotropic vectors to argue that vectors are rank-2 quantities
in terms of spinors is, thus, rather a step away from a truly illuminating conceptual
understanding of the quadratic relationship. It makes everything more difficult and less
clear. We can illustrate this relation between a vector and its spinor in SU(2). We represent
the vector by its spherical coordinates (θ, φ) as follows:

[ a·σ ] =

[
cos θ sin θe−ıφ

sin θeıφ − cos θ

]
. (38)

Note that we use φ and ϕ as different symbols in this article. The same applies
for θ and ϑ. The rotation that is required to rotate ez to a along a great circle has axis
n = (cos(φ + π/2), sin(φ + π/2), 0) and angle θ. The angle of rotation is counterclockwise
when we look at it from the point (cos(φ + π/2), sin(φ + π/2), 0). The rotation is thus
expressed by:

R =

[
cos(θ/2) −ı sin(θ/2)e−ı(φ+π/2)

−ı sin(θ/2)eı(φ+π/2) cos(θ/2)

]
. (39)

One can then check that [ a·σ ] = R [ ez·σ ]R†, and that:

[ a·σ ] = 2 χ⊗ χ† − 1, with: χ =

[
cos(θ/2)

−ı sin(θ/2)eı(φ+π/2)

]
. (40)

Thus, the spinor χ that we can associate with a is the rotation required to turn ez to a.
We can also write [ a·σ ] as:

[ a·σ ] = χ⊗ χ† − ψ̇⊗ ψ̇
† (41)

This is based on:

[ ez·σ ] =

[
1
0

]
⊗
[

1 0
]
−
[

0
1

]
⊗
[

0 1
]
. (42)

The various column spinors we obtain are the columns of the rotation matrix. The line
spinors are their Hermitian conjugates. The conjugated spinors can be obtained by considering:

[ ez·σ ]− 1 =

[
0 0
0 −2

]
= −
√

2
[

0
1

]
⊗
[

0 1
]√

2. (43)

Under the rotation R this transforms to:

[ e′z·σ ]− 1 = R ( [ ez·σ ]− 1 )R−1

= −
√

2
[
−ξ∗0

ξ∗1

]
⊗
[
−ξ0 ξ1

]√
2, (44)

such that:
[ e′z·σ ] = 1− 2 ψ̇⊗ ψ̇

†. (45)

Thus, the conjugated spinor is the alternative spinor obtained by taking the second
column of the rotation matrix. We may note that representation matrices of all the basis vec-
tors are linked by a similarity transformation to [ ez·σ ], such that they all have eigenvalues
1 and −1.

2.8. Justifying the Introduction of a Clifford Algebra

The author has figured out the whole contents of the present paper from scratch,
because he found the textbook presentations impenetrable. The author has also not studied
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books on Clifford algebra [34] in depth, such that some works may well provide the
motivation we will try to give here, and that we were not able to spot in textbooks. Our
criticism is based on the observation that, very often, mathematical objects that algebraically
look identical are, in reality, entirely different geometrical objects. We have seen that we can
introduce representations [ v·σ ] for vectors v ∈ R3 into the formalism by extrapolating the
meaning of the algebra of the representations [ a·σ ] of reflection operators A ∈ L(R3,R3).
We have seen how confusing A ∈ L(R3,R3) and a ∈ R3 through the algebraic identity
of their representation matrices [ a·σ ] can trap us into a conceptual impasse of trying to
give geometrical meaning to mindless algebra. This is not the end of the story. Whereas,
it is meaningful in the group theory to consider the product R = BA of two reflections
B and A and the corresponding representation matrix R = [ b·σ ] [ a·σ ], it is a priori not
defined what the purely formal product of two vectors v1 and v1 defined by [ v2·σ ] [ v1·σ ]
is supposed to mean. Here, again, entirely different geometrical objects are represented
by identical algebraic expressions. We have learned definitions for v1·v2 and for v1 ∧ v2,
but not for [ v2·σ ] [ v1·σ ]. However, inspection of the algebra reveals that:

[ v2·σ ] [ v1·σ ] = (v1·v2)1+ ı [ (v2 ∧ v1)·σ ], (46)

an algebraic identity that we used in deriving Equation (8). Here, we recognize the familiar
quantities v1·v2 and v1 ∧ v2. Whereas, this kind of algebra is meaningful for reflection
matrices, it is a priori not meaningful for vectors. It can be given a meaning a posteriori in
terms of vectors, at the risk of introducing confusion by ignoring the fact that the vector
formalism is a parallel formalism, as we clearly outlined from the outset. Based on this
confusion, one can obtain then a formalism, whereby one sums quantities that are not of
the same type, by writing expressions of the type:

v2 ∨ v1 = v2·v1 + v2 ∧ v1, (47)

as a shorthand for Equation (46). What Clifford algebra does is defining mano militare
that such expressions are meaningful as an algebra on multi-vectors. In general, such a
definition is introduced out of the blue. By focusing on the purely algebraic part of the
formalism, it is possible to confuse the vectors [ a·σ ] and the reflection matrices [ a·σ ].
This has several inconveniences. First of all, it is puzzling for the reader to understand
where this idea comes from, because the algebra adds quantities of different symmetries
and dimensions. All at once, one teaches him that, from now on, one can add kiwis
and bananas, while one has told him before during his whole life that this is not feasible.
Moreover, this is done tacitly, as though this would not be a problem at all. Nothing is
done to ease away the bewilderment of a critical reader. One only laconically teaches him
how to get used to it without asking further questions. One just rolls out the algebra, such
that the reader can learn to imitate it mindlessly. As this is rather easy, the reader will
quickly become acquainted with it, such that the justified initial questions will be silenced.
However, it takes an algebraic shortcut to the full geometrical explanation by exploiting
algebraic coincidences.

The second problem is that after the introduction of the definition of the Clifford
algebra with its cuisine of adding kiwis and bananas, all the geometry of the rotations
seems to follow effortlessly from this definition in an extremely elegant way. This gives
the impression that everything is derived by magic from thin air, which really leaves one
left wondering. In fact, the only vital ingredient that is needed to obtain this powerful and
elegant formalism seems to be the impenetrable slight of hand of adding kiwis and bananas.

For sure, our presentation looks somewhat more cumbersome and less elegant than
the approach where one takes off from the definition of the Clifford algebra in grand style.
However, that elegant grand style is only a short-cut to the detailed explanation, and it is
obtained by sweeping some more tedious parts under the carpet. The strong point of our
approach is that it provides the detailed geometrical motivation for the complete Clifford
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algebra. An interesting feature that also exists in our approach is that we can consider all
kinds of products:

[ a1·σ ] [ a2·σ ] · · · [ am·σ ] = a1 ∨ a2 ∨ · · · ∨ am. (48)

The worked-out algebra contains expressions that correspond to hyper-parallelepipeds
and other quantities of various dimensions (that can be symmetrical or anti-symmetrical).
The symmetry is signalled by the presence or absence of a factor ı. These quantities
transform under a rotation R to:

R[ a1·σ ]R−1R [ a2·σ ]R−1 · · ·R [ am·σ ]R−1 = R [ a1·σ ] [ a2·σ ] · · · [ am·σ ]R−1. (49)

Thus, that we can rotate all of these quantities within a unique formalism is not an
asset of Clifford algebra that would not exist in our exploratory approach. We see that, by
formalizing the algebra for the sake of elegance, we can obtain a very abstract formulation
whereby we loose completely sight of the clear geometrical ideas. Mathematicians would
argue that this does not matter. However, the problem is that now confusion reigns.
Additionally when the cat is away, the mice will play. The abstraction eases extrapolating
the algebra in a meaningless way beyond the limits defined by its geometrical meaning,
e.g., by introducing linear combinations of spinors. From that point on the framework
may now contain some well-hidden logical nonsense, as taking linear combinations of
spinors is not a granted procedure. The structure that results from this transgression is the
very elegant Hilbert space formalism of QM. This is now highly abstract, and any obvious
link with the original geometrical meaning has been completely flushed. This favours an
attitude where calculating becomes much more important than thinking. As matter of fact,
in QM, the leitmotiv has become to “shut up and calculate”. Additionally, after hiding
away this way, the whole geometrical meaning of the formalism, a physicist may enter the
room and ask: I have a beautiful formalism that grinds out theoretical predictions which
agree with the experimental data to unprecedented precision, but I just cannot figure out
what it means.

2.9. Construction of a Basis of Reflection Matrices for Rn

We now want to indicate how one can generalize the methods that are described in
this Section to SO(n), with n > 3, briefly outlining how the reflection matrices of Rn are
defined by generalizing the approach that is explained in Section 2. The full details are
given in [17]. It has to be pointed out that defining a rotation in Rn will require, in general,
more than two reflections for n > 3 [35].

We start from the rotation group SO(3) of R3 and the 2× 2 Pauli matrices. They satisfy
σjσk + σkσj = 2δjk 1. We will be able to proceed in steps whereby, at each step, we can add
two basis vectors while we double the size of the representation matrices. In other words,
SO(4) and SO(5) will be represented by 4× 4 matrices, SO(6) and SO(7) by 8× 8 matrices,
and so on. In general, SO(n) will thus be represented be 2ν × 2ν matrices. The whole
procedure can be proved by Peano induction. The procedure echoes the procedure for
Pauli matrices at the block level. The reason for increasing the size of the representation
matrices from 2ν × 2ν to 2ν+1 × 2ν+1 is that there are no further representation matrices
available for introducing new basis vectors with the set of 2ν × 2ν matrices. If we note the
2ν × 2ν matrices that present the 2ν + 1 basis vectors ej of R2ν+1 as γj, and the 2ν+1 × 2ν+1

matrices that present the 2ν + 3 basis vectors ek of R2ν+3 as ζk the algorithm based on
Peano induction is given by:

ζ j =

[
γj

−γj

]
, ζ2ν+2 =

[
1

1

]
, ζ2ν+3 =

[
−ı1

ı1

]
. (50)
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Proving all of this by Peano induction is straightforward. This is all typical of what
we stated in Section 1.2, viz. that what we have explained should put the reader into a
position, wherein he can now effortlessly carry out this generalization himself.

3. Spinors in the Homogeneous Lorentz Group

As students, we learn the theory of special relativity by studying boosts along the
x-axis. Such collinear boosts form a group noted as SO(1,1), which is abelian. This approach
does not prepare us for the additional difficulties that occur in the homogeneous Lorentz
group SO(3,1), which is non-abelian and allows for boosts allowed in all directions of
R3. The difficulty stems from the fact that the composition of two non-collinear boosts is
no longer a simple boost, but the product of a boost and a rotation. Consequently, SO(3)
is a subgroup of the homogeneous Lorentz group. It is then obvious that the group is
non-abelian. A general element of the group depends on six independent real parameters,
three for the boosts and three for the rotations. This number of six also follows from the
rule n(n− 1)/2 that is derived from the number of independent real parameters needed to
specify the tetrad of the four basis vectors or the so-called Vierbein.

Because space-time is four-dimensional, we have ν = 2, and we need 4× 4 reflection
matrices. The conditions to expresses that these reflection matrices must be idempotent are
now different due to the fact that the metric is now given by c2t2 − x2 − y2 − z2, such that
we must now find matrices γµ that satisfy γµγν + γνγµ = 2gµν1. Here gµν are the elements
of the metric tensor and 1 is the 4× 4 unit matrix. Hence, gtt = 1, gxx = gyy = gzz = −1,
and all other elements are zero. We may note that the reflection matrix γx squares to
−1, while the reflection matrix γt squares to 1, but this is not a real problem, because the
representation is a double covering, whereby both 1 and −1 represent the identity element.
Rather than following the algorithm that is given in Section 2.9 to determine the gamma
matrices, here we will adopt the so-called Cartan–Weyl representation:

γx =

[
σx

−σx

]
, γy =

[
σy

−σy

]
, γz =

[
σz

−σz

]
,

γt =

[
1

1

]
, γ5 =

[
1

−1

]
.

(51)

Here 1 stands again for the 2× 2 matrix. Thus, we will use the same symbol for
different objects, but within a given context there will be no confusion. We have added γ5,
because it is also often used. We will use sans-serif characters to note 4× 4 matrices. A unit
four-vector (at, ax, ay, az), and a reflection A defined by the unit vector (at, ax, ay, az) are
thus represented by the matrix:

A =

[
at1+ a·σ

at1− a·σ

]

=


at + az ax − ıay
ax + ıay at − az

at − az −ax + ıay
−ax − ıay at + az

. (52)

The proper homogeneous Lorentz transformations are obtained from an even number
of reflections. The transformations obtained from an odd number of reflections will be
called reversals or improper Lorentz transformations. In the Cartan–Weyl representation,
proper Lorentz transformations are therefore block diagonal, while the reversals have a
block structure along the secondary diagonal. Therefore, a column vector of a represen-
tation matrix of a homogeneous Lorentz transformation will only contain two complex
entries, which is not sufficient for completely characterizing the six real independent pa-
rameters that are needed to define the transformation completely. Thus, we see that, if we



Symmetry 2021, 13, 659 27 of 45

consider a spinor as a column matrix, then it does not specify a group element. However,
as we shall show below, to be able to derive the Dirac equation, one must introduce a
superposition state of a proper Lorentz transformation and a reversal, and the consequence
of this will be that a column matrix again contains all of the information regarding a
group element.

The matrices V = vt1+ v·σ and V? = vt1− v·σ, where (vt, v) is a four-vector that is
no longer of unit length are used in the so-called SL(2,C) representations of the Lorentz
group (Note that the symbol ? used here is not the symbol for complex conjugation ∗). They
are obtained one from another by the parity transformation v| − v. They are related by
V?? = V, VV? = (det V)1 and det(V) = det(V?) = v2

t − v2. Thus, they are each others
inverses when det(V) = 1. The entries of V are the minors of those of V? and vice versa.
Furthermore, V† = V. The scalar product vtwt − v ·w of two four-vectors (vt, v) and
(wt, w) is given by 1

2 (V
?W + W?V). For a product of two reflection matrices, we have:

AB =

[
A

A?

][
B

B?

]
=

[
AB?

A?B

]
,

BA =

[
B

B?

][
A

A?

]
=

[
BA?

B?A

]
. (53)

Subsequently, we have ABBA = det(AB)1. Let us now choose det(AB) = 1, and call
L = AB?. We have then det(L) = 1 such that L ∈ SL(2,C). Concomitantly L−1 = BA?.
Furthermore: (A?B)† = B†A?† = BA? = L−1 such that (A?B) = L†−1 and finally,
(B?A) = L†, such that:

L = AB =

[
L

L†−1

]
, L−1 = BA =

[
L−1

L†

]
. (54)

Let us now introduce the notation for L ∈ SL(2,C):

L =

[
a b
c d

]
, det L = ad− bc = 1. (55)

We have then:

L =

[
a b
c d

]
, L† =

[
a∗ c∗

b∗ d∗

]
,

L−1 =

[
d −b
−c a

]
, L† =

[
d∗ −c∗

−b∗ a∗

]
.

(56)

This way, we can make all of the calculations for the Lorentz group by restricting the
use of the matrices L to SL(2,C).

Remark 22. As explained below, all rotations and all boosts can be represented by SL(2,C) ma-
trices and, thus, also all of their products. Thus, the representation SL(2,C) contains all of the
orthochronous Lorentz transformations. The 2× 2 matrices L, with det L = −1 are topologically
disconnected from the matrices of SL(2,C), which indicates that they constitute the antichronous
Lorentz transformations. A negative determinant can only be obtained by combining reflections
with unit vectors ±(at, a) and ±(0, b). The simplest example is the product of (1, 0) and (0, b).
The first reflection is the time reversal T, while the second reflection does not compensate for it, such
that the product is indeed antichronous. Boosts are obtained from two reflections with unit vectors of
the type ±(at, a), rotations are obtained from two reflections with unit vectors of the type ±(0, a).
A composition of two non-collinear boosts cannot be obtained from two reflections, in conformity
with the remark that we made regarding SO(n) at the beginning of Section 2.9.
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Remark 23. The SL(2,C) representations have one drawback, viz. that the identity element, et,
and the time reversal operation T are all represented by 1. This ambiguity can be a source of errors.
In the Cartan–Weyl representation, the ambiguity is lifted because γt 6= 1. The matrix γt then
represents T in the group algebra and et in the multi-vector algebra.

Remark 24. In SU(2), Equation (29) shows how we can represent an isotropic vector (which has
“zero length”) as a “square” of a spinor. We can do exactly the same in SL(2,C) for four vectors vj of
“zero length” with representation matrices Vj. In SU(2), the spinor contained all of the information
regarding the rotated reference frame and, thus, also all of the information about the rotation. It was
the first column of the rotation matrix. In SL(2,C), the images LVjL† of these four vectors of zero
length now represent the full information about the transformed reference frame and, thus, about the
Lorentz transformation L (in Equation (55)). The four vectors of zero length are [36]: v1 = et + ez,
v2 = ex + ıey, v3 = ex − ıey, and v4 = et − ez, with respective representation matrices:

V1 =

[
2 0
0 0

]
, V′1 =

[
2aa∗ 2ac∗

2ca∗ 2cc∗

]
=
√

2
[

a
c

]
⊗
[

a∗ c∗
]√

2

V2 =

[
0 2
0 0

]
, V′2 =

[
2ab∗ 2ad∗

2b∗ 2cd∗

]
=
√

2
[

a
c

]
⊗
[

b∗ d∗
]√

2

V3 =

[
0 0
2 0

]
, V′3 =

[
2ba∗ 2bc∗

2da∗ 2dc∗

]
=
√

2
[

b
d

]
⊗
[

a∗ c∗
]√

2

V4 =

[
0 0
0 2

]
, V′4 =

[
2bb∗ 2bd∗

2db∗ 2dd∗

]
=
√

2
[

b
d

]
⊗
[

b∗ d∗
]√

2

(57)

Note that the spinors that occur in V′1 or in V′4 are only determined by the values of V′1 or V′4
up to a phase factor, such that V′1 and V′4 do not yield the full information regarding the reference
tetrad, while the two spinors that occur in the theoretical expressions do contain the full information.
These two spinors correspond to the columns of L. These spinors can be considered to be square
roots of vectors in the sense given by Atiyah.

Because vectors must be transformed by similarity transformations V → LVL−1,
the vectors in the two SL(2,C) representations will transform according to V → LVL†

(which is well known, see e.g., [12], p. 174, Equation (9.39)) and V? → L†−1V?L−1.
Because the SL(2,C) matrices are subject to the condition that their determinant is equal
to 1, they can contain exactly the six independent real parameters needed to specify a
Lorentz transformation. We can use the transformation property V→ LVL† to calculate,
backwards, the SL(2,C) transformation matrix of a boost B(v) with velocity v = vu:

B(v) =

√
γ + 1

2
1−

√
γ− 1

2
[ u·σ ]. (58)

The rotation matrices are taken over from SU(2), which is embedded in SL(2,C). For a
boost B, we, thus, have B† = B, while, for a rotation R, we have R† = R−1. The calculations
are really lengthy and tedious, but with the aid of the formalism of SL(2,C) we can prove
that the composition of two non-collinear boosts B(v2)B(v1) is the product R(s, α)B(v) of
a rotation and a boost, as we stated at the beginning of this section:

B(v2)B(v1) =

[
cos(α/2)1− ı sin(α/2) [ s·σ ]

] [√
γ + 1

2
1−

√
γ− 1

2
[ u·σ ]

]
. (59)

Here, u1 = v1/v1, u2 = v2/v2, u = v/v. We note the unit vector perpendicular to the
plane that is defined by u1 and u2, and that defines the rotation axis as s. The rotation angle
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is α. The angle between u1 and u2 is called θ, such that: u1·u2 = cos θ and u1 ∧ u2 = sin θ s.
The rotation and the boost are then defined by:

γ = γ1γ2(1 +
v1·v2

c2 ) (60)

sin(α/2) = sin θ

√√√√ (γ1 − 1)(γ2 − 1)

2
[

1 + γ1γ2

(
1 + v1·v2

c2

) ] (61)

cos(α/2) =

√√√√ (γ2 + 1)(γ1 + 1)

2
[

1 + γ1γ2

(
1 + v1·v2

c2

) ] +√√√√ (γ2 − 1)(γ1 − 1)

2
[

1 + γ1γ2

(
1 + v1·v2

c2

) ] cos θ (62)

v =
v1 + v2

1 + v1·v2
c2

+
1
c2

γ1

γ1 + 1
v1 ∧ (v1 ∧ v2)

1 + v1·v2
c2

. (63)

There also exists an equation B(v2)B(v1) = B(w)R(s, ϕ) with a reverse order of
boost and rotation. The ordeal of going through similar tedious calculations, as for the
first identity, can now be avoided by taking the Hermitian conjugate of this first identity
B(v2)B(v1) = R(s, α)B(v) which is: B(v1)B(v2) = B(v)R−1(s, α) and then carrying out
the substitution (v1, v2)|(v2, v1). There is a whole monograph by Ungar dedicated to the
calculation of compositions of Lorentz transformations within the homogeneous Lorentz
group [37], i.e., the hyperbolic geometry of the Lorentz group. Ungar also introduces the
concept of gyro-vectors. The fact that non-collinear boosts lead to Lorentz transformations
that are no longer pure boosts leads to a Thomas precession when a spinning particle
follows an orbit [38,39].

Using the same reasoning within the Dirac representation, as used in SU(2), it is easy
to see that the rotation that corresponds to the SU(2) matrices ±R(s, ϕ) is now represented
by the two 4× 4 matrices with the 2× 2 block structure:

R = ±
[

R(s, ϕ)
R(s, ϕ)

]
. (64)

This also follows from Equation (54) and R† = R−1. The ± sign stil occurs here,
because det(±R) = 1. The matrices that we use are still constituting a double-covering of
the proper Lorentz group.

4. Spinor-Based Approach to Quantum Mechanics
4.1. The Dirac Equation from Scratch

The following derivation of the free-space Dirac equation from scratch has been
discussed in the monograph [16], especially in pp. 153–168, with additions scattered over
various papers (the Appendix of [40], pp. 1–2 of [41]). For this reason, here we provide the
complete derivation in a presentation that, in our opinion, is also more clear.

We start from the assumption that an electron at rest spins with an angular frequency
ω0 around a fixed spin-axis that is defined by a unit vector s ∈ R3 (see Figure 2). We
have no theoretical justification for this assumption. We were just led by curiosity and
introduced it ex nihilo. We have no other justification for it than that we are able to derive
the Dirac equation from it (and some other assumptions, like h̄ω0/2 = m0c2, we will
introduce below) by a rigorous mathematical proof.
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Figure 2. In the Dirac equation, the spinning electron is described in its rest frame in exactly the
same way as a spinning top. The symmetry axis OP of the top corresponds to the axis of rotation,
as represented by the unit vector s ‖ OP. The spinning motion with angular frequency ω0 can be
characterized by an orthogonal basis of unit vectors (ex, ey, ez) attached to the top and turning with
it. This rotating basis completely defines the rotation, its SU(2) representation matrix R(s, ω0τ), and
its spinor χ(τ) used to describe the spinning motion. In the wave function, defined with the aim of
describing the dynamical state of an electron in all of its possible positions of R3, a virtual electron
is placed in each point of R3 of the rest frame. Putting this rest frame in motion at a constant boost
velocity v then yields the wave function Φ in the main text. The phase velocity of this wave is c2/v.
The free-space Dirac equation describes the wave function Ψ = (1+ S)Φ that is constructed from
Φ, as described in the main text. No specific shape for the electron is assumed in the calculations,
because it is unknown. In lack of any specific information, Occam’s razor tells us to take a spinning
sphere.

Remark 25. Lorentz objected that the electron cannot spin, because this assumption cannot explain
the magnetic moment of the electron. In fact, if all the charge of the electron were put on its equator
and made to travel at the speed of light by the spinning motion, then this would still not be sufficient
to produce the magnetic moment. Moreover, the present experimentally established upper bound for
the radius of the electron is much smaller than the value for the electron radius Lorentz adopted.
However, this argument by Lorentz does not hold sway, since, as we explained in [23], the magnetic
moment is not due to a current loop. The algebraic expressions − q

2m0
(B·L̂)1 for the normal and

− h̄q
2m0

[B·σ ] for the anomalous Zeeman effect have completely different symmetries in the Clifford
algebra, because the dot product in the normal Zeeman effect is a true scalar product, while the dot
product in the anomalous Zeeman effect is a shorthand, which expresses a vector. Here, L̂ represents
the three angular-momentum operators. The interaction responsible for the anomalous Zeeman
effect appears in the algebra as a direct coupling between a point charge and the magnetic field, not
as the interaction of a current loop with the magnetic field. For the electron, the value g = 2 is
almost exact, which further supports the thesis that its magnetic moment is not produced by current
loops. The exchange mechanism of Heisenberg and Majorana based on the Coulomb interaction and
the exclusion principle shows that the magnetic moment of the electron can be explained without
current loops.

Remark 26. The neutron has a g-factor of -3.826 085 45(90) despite the fact that it “has no charge”.
The reason for this is that it is made up of positive and negative quarks. The charges of these quarks
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cancel, but the magnetic moments that are induced by the current loops of the quarks add up, because
the opposite charges are circulating in opposite senses. This observation alone would already have
been sufficient to point out that, even within a paradigm of current loops, Lorentz’s objection was
not completely waterproof.

We can express the assumed spinning motion with the aid of the Rodrigues equation
Equation (8) by replacing ϕ = ω0τ. Here, τ is the proper time. The rest mass of the electron
will be noted as m0. This now describes the spinning motion of an object, e.g., a particle or
a top. This is analogous to the way we use r(t) in Newtonian mechanics to describe the
motion of an object along its orbit.

Remark 27. There is a tedious technicality that is involved with the definition of the spin axis and
the unit vector s parallel to it. SU(2) treats rotations, while we are dealing here with a spinning
motion. The axis of a spinning object is not exactly the same concept as the axis of a rotation.
This is discussed in ([16] pp. 129–148). The unit vector s that defines the spinning motion will
coincide, e.g., with the physical symmetry axis of a spinning top. We can, e.g., imagine that we
rotate ourselves with respect to the spinning top. The spin axis will then still be the symmetry
axis. Thus, the spin axis transforms as a vector, because all we can do as human beings by moving
corresponds to vector transformations. Thus, the spin vector s is a vector, and it will be transformed
according to [ s·σ ] → R[ s·σ ]R−1 in SU(2) or more generally [ s·σ ] → L[ s·σ ]L† in SL(2,C).
On the other hand, one speaks about the axis of a rotation R0, which implies that it is associated
with the group element and will, therefore, transform according to R0 → RR0. Therefore, the unit
vector n that we can draw parallel to the axis of a rotation does not transform as a vector. As human
beings, we cannot bring about a transformation R0 → RR0 by physical motion (see Section 2.6).

The time derivative of R(s, ω0τ) yields:

dR
dτ

= −ı(ω0/2)[ s·σ ]R, and:
dχ

dτ
= −ı(ω0/2)[ s·σ ] χ, (65)

where the 2× 1 spinor χ is the first column of R(s, ω0τ). In order to derive Equation (65)
from Equation (8), it has been assumed that ds

dτ = 0. The choice to consider that s can
also vary leads to much more complicated equations with extra terms. Hence, we have
introduced the underlying assumption that the orientation of the spin axis remains fixed.
Thus, we must remember in the further derivation of the Dirac equation below that it is only
valid for an electron with a fixed orientation of its spin axis. The case of a precessing spin
axis is a priori not covered by this derivation. Therefore, the Dirac equation cannot be used
to study precession, a limitation beyond guessing in Dirac’s derivation of the equation.

Equation (65) is defined for a single spinning top or electron at some unspecified
position r0 ∈ R3. Thus, the function R is a function of the variable τ, but not of the
variable r = (x, y, z) for the position. Hence, it cannot be differentiated with respect to
x, y, or z. Therefore, the spinor χ corresponding to R is not a spinor wave function χ ∈
F(R4,C2), but a function χ ∈ F(R,C2). It is here that we must adopt Ballentine’s statistical
interpretation [42,43] in order to introduce a wave function χ ∈ F(R4,C2). The wave
function will describe a statistical ensemble of imaginary non-interacting electrons who are
all in the identical state R(s, ω0τ) at time τ with the same phase angle. Because we want the
probability that an electron is in a certain position r to be the same for all r ∈ R3, we must
put one imaginary electron at each position r ∈ R3. This leads to the replacement of R ∈
F(R,SU(2)): τ → R(s, ω0τ) in Equation (65) by a function R ∈ F(R4,SU(2)): (r, τ)→ R(r, τ).
This has been discussed in full detail in Appendix B of [23]. The equation remains the
same, but the meaning of R has changed, because its spatial domain has been changed
from one point in R3 to the whole of R3. It now allows an electron to be anywhere with
equal probability.

The simultaneity of electron positions within the wave function does not imply simul-
taneity in the real world. It only reflects a simultaneity of description of the possible events
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(see also Section 4.3). The wave function is a mathematical tool that will be used to calculate
probabilities in experiments at any moment we want in time. The velocity of the imaginary
electrons is zero. Thus, the function R obeys the Heisenberg uncertainty relation, because
the velocity is exactly known, while the position is completely unknown. However, this
has nothing to do with physics, it is a merely mathematical construction. It is based on the
idea that it is rather convenient to describe the electron over whole Euclidean space R3 or
whole Minkowski space-time R4. The function R now describes a statistical ensemble of
spinning electrons in uniform motion (which is here rest). The modified Equation (65) can
now be lifted to the Cartan–Weyl representation using Equation (64). We can then write
the following differential equation ∀(r, τ) ∈ R4 :[ d

dτ1
d

dτ1

] [
R

R

]
= −ı

ω0

2

[
[ s·σ ]

[ s·σ ]

][
R

R

]

= −ı
ω0

2

[
[ s·σ ]

−[−s·σ ]

][
R

R

]
. (66)

This expresses that the spin vector s = a ∧ b ∈ R3 (defined in Equation (8)) is an
axial vector, which does not change sign under a parity transformation P, because P flips
the signs of a and b simultaneously. If we had used a block-diagonal expression for s,
the identity could never have turned out correctly, because the four-potential is a four-
vector and the global block structures must match. This lifts the differential equation in the
SU(2) representation to the Dirac representation. The electrons are, for the moment, at rest.
We will now use covariance to put them all into the same uniform motion with non-zero
velocity v < c. Under a general Lorentz transformation L, we have:

L

[ d
dτ1

d
dτ1

]
L−1 · L

[
R

R

]

= −ı
ω0

2
L

[
[ s·σ ]

−[−s·σ ]

]
L−1 · L

[
R

R

]
. (67)

The signs that go with [ s·σ ] follow from the fact that, for an electron at rest, we must
obtain twice Equation (65). This evidences that [ s·σ ] is an axial vector. We define:

L

[
R

R

]
=

[
φ

φ†−1

]
= Φ. (68)

Here, we have used the general structure Φ derived in Equation (54). The result of
carrying out the Lorentz transformations L in Equation (67) is:[

∂
∂t1− c[ ∇·σ ]

∂
∂t1+ c[ ∇·σ ]

]
Φ

= −ı
ω0

2

[
st1+ [ s′·σ ]

−[ st1− [ s′·σ ] ]

]
Φ. (69)

This corresponds to the fact that the true general form of the four-gradient is ( d
dct ,−∇)

and the true general form of the spin vector (st, s). We can, in the rest frame, replace ( d
dcτ , 0)

by the four-gradient because ( d
dcτ ,−∇) yields in the rest frame the same result on the wave

function as ( d
dcτ , 0). Note that the operations ( d

dct ,−∇) on Φ are defined, while they are
not defined for the function R in Equation (65). Equation (69) can also be written as:

[ γt
∂

∂t
− c∇·γ ]Φ = −ı

ω0

2
γ5 [ stγt + s·γ ]Φ, (70)
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where we have dropped the accent on s′, in order to write the covariant equation in its
standard form. We introduce the notation:

S =

[
st1+ [ s·σ ]

−[ st1− [ s·σ ] ]

]
⇒ S2 = 1, (71)

and define:
Ψ = (1+ S)Φ, (72)

such that:
SΨ = S(1+ S)Φ = (S+ 1)Φ = Ψ. (73)

The reason why we introduce this mixed state Ψ is that the operator S corresponding
to the spin axis in Equation (69) is a reflection, while Φ is a Lorentz transformation.
Thus, we have a reversal SΦ on the right-hand side. We can never simplify this to Φ to
obtain the Dirac equation, because a reversal can never become equal to a proper Lorentz
transformation (actually multiplied by a constant m0c2). In the Cartan–Weyl representation,
the algebra makes this very obvious, because the block structures of a proper Lorentz
transformation and a reversal do not even match. Therefore, we must replace the pure state
Φ by a mixed state Ψ. This mixed state corresponds conceptually to a set, as explained in
Section 2.5.2.

Remark 28. This can be further illustrated by the analogous problem in SU(2), which is that we
can never simplify [ s·σ ]R to R, because [ s·σ ]R is a reversal and R is a rotation. In general, we
will also not be able to simplify [ s·σ ]χ to χ. In the analogy [ s·σ ] is the counterpart of S and χ is
the counterpart of Φ. To obtain a simplifying identity [ s·σ ]ψ = ψ, leading to a Dirac-like equation,
we can consider the set A = {χ, [ s·σ ]χ}, which corresponds to the mixed state ψ = χ + [ s·σ ]χ.
For the set A , we have then [ s·σ ]A = A and for the corresponding mixed state [ s·σ ]ψ = ψ. In
the analogy, the mixed state ψ is the counterpart of the mixed state Ψ.

This fact that the wave function Ψ is now a mixed state once more stresses that the
wave function describes a statistical ensemble. The covariance of Equation (73) follows
from:

LSL−1 · L(1+ S)L−1 · LΦ = L(S+ 1)L−1 · LΦ ⇒ S′(1+ S′)Φ′ = (S′ + 1)Φ′. (74)

As we have assumed that s does not vary with time:[ d
dτ1

d
dτ1

][
[ s·σ ]

−[−[ s·σ ] ]

]
= 0. (75)

By covariance, we then have:

L

[ d
dτ1

d
dτ1

]
L−1 · L

[
[ s·σ ]

−[−[ s·σ ] ]

]
L−1 = L 0 L−1 = 0, (76)

such that:[
∂
∂t1− c[ ∇·σ ]

∂
∂t1+ c[ ∇·σ ]

]
S

=

[
∂
∂t1− c[ ∇·σ ]

∂
∂t1+ c[ ∇·σ ]

] [
st1+ [ s·σ ]

−[ st1− [ s·σ ] ]

]
= 0.

(77)

Hence:
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[
∂
∂t1− c[ ∇·σ ]

∂
∂t1+ c[ ∇·σ ]

]
(1+ S)Φ

= (1+ S)

[
∂
∂t1− c[ ∇·σ ]

∂
∂t1+ c[ ∇·σ ]

]
Φ. (78)

Using Equation (69), this leads to:[
∂
∂t1− c[ ∇·σ ]

∂
∂t1+ c[ ∇·σ ]

]
(1+ S)Φ

= −ı
ω0

2
(1+ S)SΦ = −ı

ω0

2
S (1+ S)Φ. (79)

With the aid of Equation (73), this implies:[
∂
∂t1− c[ ∇·σ ]

∂
∂t1+ c[ ∇·σ ]

]
Ψ = −ı

ω0

2
SΨ = −ı

ω0

2
Ψ. (80)

In summary: [
∂
∂t1− c[ ∇·σ ]

∂
∂t1+ c[ ∇·σ ]

]
Ψ = −ı

ω0

2
Ψ. (81)

which, after substituting h̄ω0/2 = m0c2, yields the celebrated Dirac equation:[
− h̄

ı
∂
∂t1+ ch̄

ı [ ∇·σ ]

− h̄
ı

∂
∂t1−

ch̄
ı [ ∇·σ ]

]
Ψ = m0c2 Ψ. (82)

We have already discussed this substitution in [23]. It implies that the whole rest
energy of the electron corresponds to the kinetic energy of its spinning motion. We
introduce this assumption for the sole reason that it permits recovering the Dirac equation.
It is an equation that marries QM (E = hν) with special relativity (E = m0c2) in a very
simple identity. Thus, this is really a completely rigorous derivation of the Dirac equation
from scratch. Because of the definition of Φ in Equation (68), Ψ is here defined as:

Ψ = (1+ S)Φ =

[
φ (1st + [ s·σ ] )φ†−1

−(1st − [ s·σ ] )φ φ†−1

]
. (83)

The 4× 2 matrix corresponding to the first block column of Ψ corresponds to Equa-
tion (5.52) on p. 163 of [16]. In order to highlight the transformation properties of this 4× 2
matrix under Lorentz transformations, it can be further elaborated to yield Equation (5.58)
on p.166 of [16]. The columns of Ψ are called bi-spinors, because they combine two columns
from SL(2,C) matrices.

4.2. Consequences

From the Dirac equation, we can derive the Schrödinger and the Pauli equation, such
that the new approach offers a broad platform for dealing with QM. The Dirac equation
here has been derived with the rigour of a mathematical proof, while the traditional
equations were obtained by educated guessing from the de Broglie ansatz, which has also
been conjectured. The advantage of our approach resides in the fact that we now know
exactly on what kind of assumptions the derivation of the Dirac equation has been based.
This is not the case in the traditional approach and, as the wave mechanics are able to
describe many stunning experimental results that seem to defy any attempt of common-
sense explanation, one can become convinced that the Dirac equation must be based on
some very magical unknown quantum axioms. The problem is that this opens the door
to an infinite set of fazing assumptions. There have been many attempts at interpreting
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QM, e.g., the many-worlds interpretation [44], Cramer’s transactional interpretation [45],
and Bohm’s approach [46,47], just to mention some of them (see also [48–50]). And indeed,
many of the interpretations carry some exotic perfume of quantum magic floating around
them, with assumptions that run contrary to daily-life experience, like the existence of many
parallel worlds or signalling backwards in time. This is something we wanted to avoid at
any price in our approach, because such assumptions cannot be proved or contradicted
by direct telltale experiments. The result is that we are left wondering what we should
think about them and it remains anybody’s guess as to which of these assumptions could
be physically the more acceptable.

Therefore, it is quite sobering to learn that the derivation of the Dirac equation pre-
sented here is entirely classical. This raises the question where the quantum magic then
comes from. This, of course, requires a very detailed discussion (see below). It could be
that the secret is somewhere hidden in the way that we use this equation. For this reason,
it is important to be sure that we absolutely understand all of the mathematics, which is
why it is convenient that we have built up everything from scratch. It should permit to
know whether there are problems in the way that we use the equation by a very thorough
investigation on a case-by-case basis. Therefore, we have tried to analyze a number of
quantum paradoxes in order to figure out if their explanation might require some magic
after all (see [23] and below in Section 4.5.2). In any case, the entirely classical derivation
prompts for caution. We might be over-interpreting some things and we should try to
avoid introducing axioms that are too remote from the possibility of experimental testing.

Dirac’s historical derivation has been carried out within the algebra of the vectors and
multi-vectors (i.e., the exterior algebra), such that its real meaning remained hidden, as
we have pointed out. We have derived it here within the algebra of the group elements,
which permits us to see that the Dirac equation describes a statistical ensemble of spinning
electrons in uniform motion. In the traditional derivation based on the multi-vector algebra,
we cannot even imagine that it is missing this crucial point, and that the real stage for
the scene is the algebra of group elements. Consequently, the possibility that the electron
could spin is firmly denied by the standard dogma. Lorentz’s objection might have been
one of the reasons for this. Another reason could be Biedenharn and Louck’s argument
that we mentioned in Remark 21 in Section 2.7.1. Thus, our approach is at variance with
the standard dogma, but it cannot be attacked on the basis of this fact, because it is an
alternative approach to QM that leads to the same algebraic results as the traditional
approach and, therefore, is in a completely equivalent agreement with experimental results.
The surplus values of our approach are the mathematical rigour and its conceptual clarity.

The operator identies Ê = − h̄
ı

∂
∂t and p̂ = h̄

ı∇ play a crucial rôle in the traditional
derivations of the Schrödinger and Dirac equations. They have been obtained by guessing,
as mentioned above. The identities Ê = − h̄

ı
∂
∂t and p̂ = h̄

ı∇ do not play any rôle at all in
our derivation of the Dirac equation. They are just a corollary of the proof. The lack of
rigour and clarity in the procedure to define quantum operators, even within the context
of the scalar Schrödinger equation, has been pointed out by Messiah [51], who evoked
that the correct forms are obtained in a process of trial and error. The extrapolation of the
definition of these identities from the context of a scalar wave function for the Schrödinger
equation to the context of spinor wave functions in the Pauli and Dirac equations is also far
from self-evident, as, e.g., a spinor χ of SU(2) can contain two different angular frequencies
±ω0. When we apply the operator Ê = − h̄

ı
∂
∂t to such a spinor χ, we do no longer obtain

the neat result Eχ, but E[ s·σ ] χ. In order to overcome this problem, we have been forced
to introduce mixed states ψ. This has been further discussed in Remark 28 in Section 4.1
and in [23]. In the treatment of precession in a magnetic field, this problem becomes worse
because the angular frequencies can now take two different absolute values, as discussed
in the treatment of the Stern–Gerlach experiment in [23].

In our approach, negative frequencies are just related to inverting the sense of the
spinning motion, because we have not introduced anti-particles at any stage in the deriva-
tion. There are no anti-particles in the geometry that we have used. We have further
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discussed the interpretation of negative frequencies in the traditional approach on p. 7
of [23]. The negative frequencies correspond to positive energies E = h|ω0/2|.

As already mentioned, we are unwittingly responsible ourselves for the Heisenberg
uncertainty relation between position and momentum, because it is introduced by the
mathematical construction of the wave function.

Within the scope of the present derivation of the Dirac equation, it is not possible
to consider fermions with zero rest mass propagating at the speed of light c, due to the
fact that the derivation starts from considering a spinning particle in its rest frame, while
a particle propagating at the speed of light does not have a rest frame. Because Dirac
guessed his equation, he could not suspect this limitation of the domain of validity of his
equation. This led him to the assumption that neutrinos were fermions, which could be
described by the Dirac equation, whereby the rest mass is put to zero. This conception
of the neutrino as a fermion with zero rest mass and travelling at the speed of light c has
prevailed for a long time. It is finally the results about the neutrino oscillations from Super
Kamiokande [52] that have invalidated Dirac’s neutrino theory, while they are in agreement
with our derivation of the Dirac equation.

Our derivation of the Dirac equation has been made entirely within the framework of
special relativity, such that it does not contain any incompatibility between special relativity
and QM. However, we constructed the wave function, starting from a Lorentz frame at
rest in flat Minkowski space-time and then used covariance to introduce Lorentz frames
in uniform motion with respect to this original frame. This is how the wave function
corresponds to the description of a statistical ensemble of spinning electrons in uniform
motion. This is a global approach and it is not at all obvious how one can generalize this
procedure to curved space-time manifolds with local frames of different velocities.

It must be stressed that all of the electrons within the statistical ensemble described
by the wave function are moving at a well-defined uniform speed v < c. The phase of
the wave function (Et − p · r)/h̄ is a scalar invariant whose value in the rest frame is
m0c2τ/h̄. The two expressions are just related by a boost. The value m0c2τ/h̄ is obtained
from ω0τ/2 by applying the identity h̄ω0/2 = m0c2. The boost with velocity v transforms
τ into τ = γ(t− vx/c2) (if we take v parallel to the x-axis ). If we wanted to interpret this
expression for the proper time in terms of a wave moving in space, we could rewrite it as
−(γv/c2)(x− c2t/v) and conclude that the phase velocity of the wave is c2/v > c. Indeed,
this is actually correct (see Fig. 3). The phase velocity in a frame at rest is infinite and it just
corresponds to the velocity of the signal that would be needed to synchronize all the clocks
in the reference frame up to infinite distance. All of the clocks will then have the same
phase. In a frame moving with the velocity v, this infinite velocity becomes c2/v. In other
words, c2/v is nothing more than the slope of the time axis in a Minkowski space-time
diagram. The super-luminal phase velocities are just due to the introduction of a Lorentz
frame, wherein all of the clocks have been synchronized up to infinite distance. The clocks
that we use in the wave function are the spinning motions of the electrons, and we have
synchronized all of their phases by the construction of the wave function. Because the
electrons are all traveling at the speed v < c, there is no need for introducing wave
packets to build an electron with a speed that is given by the group velocity vg = dω

dk < c,
because all of the electrons are already traveling at the speed v < c. In other words, no
wave packets are needed, and the electron can remain a point particle.

The wave function is not a matter wave in the way it has been originally conjectured.
The introduction of the wave packets leads to other problems, because the speeds of
the waves that contribute to the wave packet are different, such that the wave packet
spreads out with time and the “particle aspect” of the wave packet is lost. This prompts
speculations regarding a collapse of the wave function as the result of a measurement. It
further prompts theoretical considerations regarding solitons. It is a whole concatenation
of problems resulting from the over-interpretation in terms of matter waves of a purely
mathematical wave function. Of course, we have been duped by the fact that, historically,
it went in reverse order. The matter waves were conjectured first, and it is only later that
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the wave functions became the spinors and probability amplitudes of QM. Finally, we must
note that the wave function we have constructed is completely coherent. We propose some
thoughts about this choice in Section 4.3.

Figure 3. Minkowski space-time diagram, showing the axes ct, x of a frame at rest and ct′, x′ of a
frame traveling at a boost velocity v with respect to it. The slopes of the various axes are shown. The
slope ∞ is the phase velocity of the Dirac wave in the rest frame. It is the velocity of the signal that
would be needed to synchronize all of the clocks up to infinite distance in the rest frame. In the frame
traveling at the boost velocity v, this phase velocity becomes c2/v > c. Despite this super-luminal
phase velocity for the wave, the electrons are traveling at the sub-luminal velocity v. Thus, there is no
need for introducing wave packets with a group velocity vg = v = dω

dk < c, as we have already v < c.

There is no collapse of the wave function. The wave function is not a matter wave,
a real physical entity that could physically collapse, but a purely mathematical tool and
the electron is not a wave packet. The purpose of the wave function is not to describe
single events, but probabilities of events for a large statistical ensemble. We can state this
with confidence in the new approach, because it has just been constructed that way. For
a dice, you could define a probability function f ∈ F(V ,R), where V = {1, 2, 3, 4, 5, 6}
and ∀x ∈ V : f (x) = 1

6 , or somewhat artificially a wave function ψ ∈ F(V ,R), such that
∀x ∈ V : ψ(x) = 1√

6
, f (x) = |ψ(x)|2. That function f and the wave function ψ do not

collapse when somebody throws a dice and obtains 5. The only thing that has collapsed is
that person’s prior lack of knowledge about the outcome for the dice.

4.3. Why We Can Use Coherent-Source Boundary Conditions for an Incoherent Source

What one does in solving a wave equation and imposing the boundary conditions is
assuming that the source is coherent. We could, e.g., consider plane waves impinging on
a set-up, and then everywhere on the plane of the source, we would attribute the same
phase to the particle by the boundary conditions. This is not self-evident, because the
source may be incoherent. This shows that, in this kind of problem, the phase itself is not
important, and that it is the phase difference built up starting from the source that counts.
That is then the reason why we can act as though the sources were coherent. It is this phase
relation imposed at the source that then applies to all particles. In fact, we can put all initial
phases equal to zero and keep in mind the error that this induces. Then we can correct
for this error again at the end. (If this were to be incorrect, because, e.g., an electron has
undergone a spin flip during its trajectory, then the coherence of the wave solution would
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have been lost anyway). Because what we finally measure is |ψ|2 = ψ†ψ or |ψ|2 = ψ∗ψ
for each particle, this will not change the experimental results. What counts in the end is
the amplitude rather than the phase of the wave, and that the interactions that occur after
leaving the source are not incoherent, such that they do not provoke decoherence [40].

Remark 29. This may sound absurd, because, when you have two particles with dynamics described
by ψ1 and ψ2 (e.g., within the context of a Schrödinger equation), then correcting their phases
by ψ1 → ψ1eıα1 and ψ2 → ψ2eıα2 , might destroy the interference in ψ1 + ψ2: |ψ1 + ψ2|2 6=
|ψ1eıα1 + ψ2eıα2 |2. However, the idea that you should add up two electron spinors ψ1 + ψ2 and
then square the result, is wrong and never applies.

Each particle must be counted in its own right, because, in the build-up of an interference
pattern, the particles appear as dots on a detector screen one-by-one [53,54]. Hence, we must
always determine the quantities of single particles according to |ψ1|2 + |ψ2|2, never according to
|ψ1 + ψ2|2. When there is an interference pattern, the weights of the functions ψ1 and ψ2 of two
individual particles obey and comply already with the number of particles implied by the intensity of
the interference term |ψL + ψR|2 that one would write down according to the textbook rule, where
R and L could, e.g., refer to the left and right slit in the double-slit experiment, see Equation (4)
of Ref. [25]. E.g., if there were destructive interference ψL(r) + ψR(r) = 0 there would be just no
particles j with spinor ψj present in r, such that the weight coefficients cL(r) and cR(r) in the set
described by cLψ′L + cRψ′R must satisfy cL(r) = cR(r) = 0, rather than cL(r) = −cR(r) 6= 0.
Here ψ′L and ψ′R are defined within the double-slit experiment and different from the single-slit wave
functions ψL and ψR. This requires a very detailed discussion (see [25] and Section 4.5.1).

If the particles are electrons and the wave functions are spinors of SU(2), the idea
remains the same, but the argument must be written differently, because the phases are
rather changed by some rotations ψ1 → R1ψ1 and ψ2 → R2ψ2. The rest of the argument
remains mutatis mutandis the same, because, for the SU(2) matrices Rj, we have R†

j Rj = 1.
We can even consider the case that the spins of the electrons that are emitted by the source
are not aligned, but this is more elaborate. In fact, we must then reconstruct the SU(2)
matrices D(g) from their corresponding spinors ψ(g), develop the proof on the SU(2)
matrices, and then switch back to the corresponding spinors in order to be able to derive
the final result. The reason for this is that we can write a similarity transformation for the
SU(2) matrices, but not for the spinors, because we cannot multiply a 2× 1 spinor to the
right with a 2× 2 SU(2) matrix. The procedure for performing a similarity transformation
on a spinor is visualized in the following equation and commuting diagram:

ψ(g) =
[

u
v

]
↔ D(g) =

[
u −v∗

v u∗

]

ψ(g) ψ(h)y x
D(g)

similarity transformation−−−−−−−−−−−−−−−→
D(g)→D(h)=R [D(g) ]R−1

D(h)

(84)

Within the context of the Dirac equation, the analogous correspondence between
the 4× 1 spinors and 2× 2 representation matrices of SL(2,C) is given by Equations (4.9)
and (5.58) in [16]. The relation between the 2× 2 representation matrices of SL(2,C) and
the 4 × 4 representation matrices in the Cartan representation of the Dirac formalism
is also given in [16]. A change of axis s(g) → s(h), as embodied by a corresponding
change of group elements g → h, is obtained by a similarity transformation D(g(0)) →
D(h(0)) = R [D(g(0)) ]R−1, based on a rotation R. This will then evolve with time to
D(h(t)) = R [D(g(t)) ]R−1 (as proved in [16], pp. 310–313), whose spinor ψ(h(t)) will
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now comply with the boundary conditions for a coherent source. The correction in the end
to recover the correct incoherent-source value D(g(t)) = R−1 [D(h(t)) ]R is then just the
reverse similarity transformation. Additionally, then, we will see that the spinors ψ(g(t))
and ψ(h(t)) will yield the same result [ψ(h(t)) ]†[ψ(h(t)) ] = [ψ(g(t)) ]†[ψ(g(t)) ] =
1. The main idea that makes this all work is that, in a coherent process, the spin axis
does not change due to the interaction with the measuring device, or else the process
would be incoherent. A change of s would be accompanied with a corresponding change
in the measuring device due to conservation laws. In the double-slit experiment, this
would, e.g., permit knowing through which slit the particle has gone. We may note that,
to our knowledge, the issue that, in general, the source will be incoherent, has never
been addressed in examples of solving Schrödinger, Pauli, or Dirac equations in textbook
examples. The source has always been tacitly implied to be coherent by the choice of the
boundary conditions. This has been then a kind of blind spot. The problem cannot be
solved without a proper understanding of spinors and of the relationship between the
particles and waves.

4.4. The Minimal Substitution

The minimal substitution was introduced in classical mechanics to calculate orbits.
It was validated by comparing the results of the calculations that were performed with it
in the Lagrange–Hamilton formalisms with those of traditional Newtonian mechanics. It
was then proved to also work for relativistic orbits. It is kind of startling that traditional
QM explains to you first that it is entirely different from classical mechanics, and that we
must stop thinking about orbits, and then introduces the minimal substitution without any
comment as though it would be self-evident.

We can propose the following justification for it. Just as the equation E2 − c2p2 =
(m0c2)2 and the four-vector (E, cp) = m0c2(γ, γv/c) can serve to define a global Lorentz
transformation for the wave function in the free-space Dirac equation, (E− qV)2 − c2(p−
qA)2 = (m0c2)2 and the four-vector (E− qV, c(p− qA)) can be used to define a field of
local Lorentz transformations for the wave function of the Dirac equation in the presence
of an electromagnetic potential. This substitution is also covariant.

4.5. Discussion
4.5.1. The Born Rule, Schrödinger’s Cat, the Particle-Wave Duality and the
Double-Slit Experiment

In solving the Schrödinger and Dirac equations, we impose boundary conditions. This
shows that the probabilities we use are conditional. The condition is the experimental set-up.
Indeed, the probabilities do depend on the experimental set-up, as Bohr has claimed. The
boundaries that we use are idealized, e.g., the walls of the slits are considered to be perfectly
planar, while, on a microscopic scale, they must present some roughness, and they are made
of molecules or atoms. Following Einstein, here we could imagine lots of hidden variables
that do not reside within the particles but are located within the set-up itself (see Section 4.5.2).
Therefore, the viewpoints of Einstein and Bohr are not entirely mutually exclusive.

It is now time to complete the work that we started in Section 2.5.2. We have, for the
moment, considered one electron in each point r ∈ R3. We could consider that there is a
larger number of electrons N ∈ N in each point. Following the ideas that are expressed
in Section 2.5.2, we would thus have to consider NR to start with, as each electron would
have its copy of the matrix R or spinor ψ attached to it. However, as the spinors of SU(2)
satisfy the condition ψ†ψ = 1 we must calculate the number of electrons by using the
quantity ψ†ψ = 1. This leads then to the rule that we must use

√
Nψ. We can extrapolate

this idea to the case that we use probability densities and then also normalize the wave
function. It may represent a lot of effort to write all this down in a mathematically tidy
way, but the rationale presented here gives us a justification for the Born rule.

The construction of mixed states as corresponding to sets gives us a simple interpreta-
tion for the wave function of Schrödingers cat. The wave function does not describe a cat
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that is half dead and half alive, but an ensemble of cats, whereby half of the cats are dead
and half of them alive. In this approach, the algebra cannot be taken literally. We must
refrain from insisting on carrying out the algebra to the very end, by treating spinors like
vectors, as in the example shown in Section 2.5.2, where we obtained φ1 + φ2 = 0. The
mixed state must be considered as a juxtaposition, rather than as a real algebraic sum. It
would be preferable to write {c1φ1, c2φ2, · · · , cpφp} rather than c1φ1 + c2φ2 + · · ·+ cpφp,
because carrying out the algebra by brute force anyway is incorrect mathematics and the
notation {c1φ1, c2φ2, · · · , cpφp} just sticks to the real meaning.

However, this solution of refraining from brute-force algebra raises a severe issue in
the case of interference, e.g., in the double-slit experiment, where ψL +ψR = 0 indeed leads
to a zero physical intensity, which suggests that the procedure should be taken seriously
anyway. Interpreting ψL + ψR = 0 in terms of sets is here certainly not meaningful.
It would imply that the union of two non-empty sets would be empty. Therefore, in
Section 4.3 we have proposed that the individual particles must already comply with the
intensity pattern.

In fact, based on the way that we constructed the wave function we can also propose
a solution for the conundrum of the particle-wave duality. What behaves as a wave is
the wave function, i.e., the statistical ensemble of the electrons that have been used in the
experiment. It is this wave as a whole that can flow as a dense fluid of non-interacting
electrons through both slits in a double-slit experiment. The fluid is virtual and it has been
created by the simultaneity of description we have used in defining the wave function
in Section 4.1. The single electrons behave as particles, and each of them goes through a
single slit. The idea that an electron can go through both slits simultaneously and interfere
with itself is, of course, related to the concept of wave packets. We have explained that the
superluminal phase velocities do not justify introducing wave packets. The electrons are
detected as points on a detector screen and are, therefore, always particles.

Still, there seems to be a contradiction that puts us on a tight rope, because we need
to explain the interference pattern. This apparent contradiction can be solved, as follows.
The boundary conditions that we impose on the wave equations are non-local, because the
macroscopic set-up of the experiment is non-local. The wave function itself is also non-local,
because, in its construction, we have synchronized clocks in a Lorentz frame up to infinite
distance. Thus, we are trying to solve a differential equation with non-local boundary
conditions that will lead to a non-local solution. We could first try to find all solutions by
making the calculations as though we took the sums in the superposition state seriously,
although we know that we should not for the reasons that are described above and that all
trace back to the undeniable fact that we cannot add spinors like vectors. In other words,
we cheat and ignore the taboo. This way, we could set up a pool of all possible solutions
for the differential equation ignoring the existence of any taboo. The correct solutions that
do respect the taboo will then also be present within this pool of all possible solutions.

Afterwards, one can check which solutions in the pool allow for an alternative interpre-
tation in terms of spinors or sets of spinors. This way, we can get away with the unethical
behaviour of cheating by basing ourselves on the accomplished fact that we have found a
solution that has stood the test. An example of this procedure for finding an alternative
interpretation is given in reference [25], where the calculation ψL + ψR = 0, which would
be valid for vectors, is not valid for spinors, as shown above in Section 2.5.1. One can
then argue that the algebra used to obtain the solution ψL + ψR = 0 is logically flawed for
spinors, but valid for finding the pool of solutions of the differential equation for vectors.
The vector solutions are found by using a Huygens’ principle for the solution of differential
equations of a certain type [55,56]. This Huygens’ principle is completely devoid of any
physical meaning. It is just a mathematical method that has been proved to work for certain
types of differential equations. This transpires already in Kirchhoff’s elaboration [57] of
the Huygens’ principle for electromagnetic waves, whereby one is forced to accept that
they can sometimes travel backwards in space again. Feynman’s description is even more
eloquent [58] with “photons going faster or slower than the conventional speed of light, electrons
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going backwards in time”. However, we should not be amazed that we need such unphysical
and non-local aspects as going backwards in space and in time, or traveling faster than
light, because we must find an overall solution that satisfies all of the non-local boundary
conditions. All that we must keep in mind is that it is not real. When one has solved
the problem at one boundary, one must still solve it at other boundaries and this really
might require accepting unphysical propagation for the waves in the Huygens’ principle.
However, the result of the correct mathematical procedure is with high precision ψL + ψR,
as, e.g., shown by Feynman’s all-histories elaboration of the Huygens’ principle.

We have worked out these ideas for the double-slit experiment [25], which contains
much more than the incomplete discussion that we can present here. Let us remind that
we have derived the Dirac equation by rigorous mathematics. It leads to a differential
equation that we can solve rigorously. That is a first mathematically rigorous track. This
track reproduces the experimental results. Next, we follow a second mathematical track.
We use probability calculus and come to the conclusion that the solution of the differential
equation does not comply with our intuition, which tells us that we should just measure
the sum of the probabilities observed in two single-slit experiments. It is very important
to realize, at this point, that the paradox here is no longer between the physics and the
mathematics, but between two different mathematical tracks. The solution of the paradox
must thus reside entirely within the mathematics such that no quantum magic can be
involved.

Solving the mathematical paradox takes more than we have developed up to now.
An essential rôle is played by the fact that it is impossible to know through which slit the
particle has gone [25]. This is because coherent interactions do not leave any information
behind on the crime scene of their passage through the set-up, such that we cannot possibly
know the exact trajectory the electron has taken, because no information has been created.
The answer to the question through which slit the particle has traveled is undecided, just
like the question of whether the fifth postulate of Euclidean geometry is true cannot be
answered on the basis of the first four postulates because they do not contain the required
information. It is as giving a list of commercial items loaded into a ship and then asking
what the age of the captain is.

The information that would allow for answering the question “which way” does not
exist. That is what defines the conditional probabilities and the boundary conditions that
are imposed by the double-slit set-up. We should not mix up conditional probabilities
from different set-ups, because they can define incompatible conditional probabilities.
Undecided events and their conditional probabilities cannot be treated in terms of the
conditional probabilities from other set-ups, which contain and create entirely different
information to the extent that the question of “which way” can now be decided. Such
other set-ups just define different conditional probabilities, because each set-up has its
own conditional probabilities. The conditional probability that we do not know through
which slit the electron has gone cannot be constructed from the conditional probabilities,
where we know that the electron has gone through a given slit. Certainly, the electron has
gone through one of the two slits, but the information is not available. Respecting this
caveat is exactly what the mathematics do when you solve the differential equation with
the boundary conditions of the double-slit experiment. When we use intuitive probability
calculus, we are trampling this caveat, by only considering the locality of the interactions.
Perhaps because our macroscopic intuition is entirely based on incoherent processes where
the answers to questions are always decided.

The explanation offered must be considered to be cogent to the extent that there is no
other way to avoid completely illogical conclusions, e.g., that, at the quantum level, other
rules of probability calculus would prevail. This is wrong because we have already pointed
out that the solution of the paradox does not reside within the physics. We must also reject
it because we should not accept the defeatist philosophy that we cannot think rationally.
We should not loose our head and resort to quantum magic in moments of adversity, but
stay cool and remain convinced that another, purely logical explanation must exist.
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The Schrödinger equation has been used with full generality for all kinds of different
particles, like He atoms, electrons, and C60 molecules. The tacit assumption that all of these
different types of particles obey the same equation has been adopted as self-evident. In
reality, it would have to be proved for each type of particle and that it works with such
generality must be considered to be a fluke. Nature could have just been different.

4.5.2. Conclusions

Where do we stand now? What we have learned is that the Dirac equation can be
derived without introducing extraordinary assumptions, such as many worlds or signalling
back in time. One might now reason, as follows. We have a spinor formalism that we
understand. With this spinor formalism, a huge corpus of calculations has been constituted
that correctly reproduce the experimental results. Hence, all that remains to be done is to
use the geometrical interpretation to know what the calculations mean.

However, this could be too optimistic. The problem is that, during all these years it has
not been known what the formalism means. Not knowing what the formalism means can
be full of boobytraps. It can lead to over-interpretations or transgressions of the domain of
validity of the calculations. There may remain problems in the way that we have used the
Dirac equation. The reader can consult [23] to check that there are a lot of occasions where
things can just go wrong. This lays bare the intellectual limits of the punch line “shut up
and calculate”, with its force-feeding of black-box algebra. It presents a state of affairs that
is not satisfactory as acceptable. Therefore, we can only try to apply the spinor formalism
with the new understanding in order to check whether we can figure out an explanation for
a given experiment. This boils down to case-by-case investigations. (Some introductions to
QM that describe such cases are [59–64]. Some reprint collections are [65–67]). For each
experiment, this can remain very difficult in its own right.

We have undertaken a survey to check whether the solution of some quantum para-
doxes may not require quantum magic after all. We have already mentioned this to a
certain extent in Subsection 1.3 on pp.7–9 of [23]. We have treated a number of problems
and come to the conclusion that they do not require quantum magic. We have been able to
derive the Dirac equation, starting from some very clear and simple assumptions. We have
solved the paradox of the particle-wave duality (see Section 4.5.1 and [25,41]). We have
solved the problem of the paradox of Schrödinger’s cat (see Section 4.5.1, Subsection 2.3.2
of [17,40]). We have offered an explanation for the double-slit experiment in [25,41] (which
can be further enriched by Section 4.3 or the Appendix of [40] to deal with incoherent
sources). We have explained why the phase velocity of the wave function is c2/v. We
have explained the Stern–Gerlach experiment in [23]. The work of Hansen and Ravn-
dal [68] already explains tunnelling, such that it no longer has to be addressed anymore.
The problem of entanglement and hidden variables [69–71] has been settled by many
authors, starting with Kupczynski back in 1987 [72], who have pointed out an error in the
derivation of the Bell inequalities. The error is that a common probability distribution has
been assumed for the four individual experiments (corresponding to four combinations of
polarizer settings), while the experimental probabilities are defined on the more restricted
probability distributions of the individual experiments. This leads to a normalization
problem. This error is closely related to the one that we encountered in the discussion
of the double-slit experiment, viz. that we should not combine conditional probabilities
defined by different experimental set-ups. In both cases QM teaches us is that, in following,
our common-sense intuition about probability calculus we expose ourselves to committing
subtle, subliminal logical errors, which can be really hard to spot, such that it looks almost
as though we cannot think straight.

4.5.3. Epilogue

We are now reaching the end of a very long journey. I started with three quotes and I
think I could end with a fourth one by Murray Gell-Mann [73] recipient of the 1969 Nobel
prize in physics:
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“Niels Bohr brainwashed a whole generation of theorists into thinking that the job
[interpreting quantum theory] was done 50 years ago”.

Bohr has brainwashed more than one generation. For students in the past, QM may
have looked frustrating and even ugly. The main message from this paper is that we should
never again accept something like the Copenhagen interpretation, with all its internal
contradictions. We must break away from it, in the words of Dieudonné [24]: “Pour
l’honneur de l’esprit humain” (For the sake of the honour of the human spirit). I hope
that for future students QM may from now on look more like an enthralling poem of very
beautiful mathematics.

Funding: This research received no external funding

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author thanks P. Rowlands and Symmetry for the invitation to submit
this paper.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Feynman, R.P. The Character of Physical Law; Messenger Lectures; Modern Library: New York, NY, USA, 1965.
2. Farmelo, G. The Strangest Man. In The Hidden Life of Paul Dirac: Quantum Genius; Faber and Faber: London, UK, 2009; p. 430.
3. Pais, A.; Jacob, M.; Olive, D.I.; Atiyah, M. Paul Dirac—The Man and His Work; Cambridge University Press: Cambridge, UK, 1998;

pp. 113–114.
4. Cartan, E. The Theory of Spinors; Dover: New York, NY, USA, 1981.
5. Penrose, R.; Rindler, W. Spinors and Space-Time, Volume I, Two-spinor Calculus and Relativistic Fields; Cambridge University Press:

Cambridge, UK, 1984.
6. Naimark, M.A. Linear Representations of the Lorentz Group; Pergamon Press: Oxford, UK, 1964.
7. Hladik, J.; Cole, J.M. Spinors in Physics; Springer: New York, NY, USA, 2012.
8. Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Freeman: San Francisco, CA, USA 1970.
9. Chaichian, M.; Hagedorn, R. Symmetries in Quantum Mechanics, from Angular Momentum to Supersymmetry; IOP: Bristol, UK, 1998.
10. Cornwell, J.F. Group Theory in Physics; Academic Press: London, UK, 1984.
11. Inui, T.; Tanabe, Y.; Onodera, Y. Group Theory and Its Applications in Physics; Springer: Berlin/Heidelberg, Germany, 1990.
12. Jones, H.F. Groups, Representations and Physics; Adam Hilger: Bristol, UK, 1990.
13. Sternberg, S. Group Theory and Physics; Cambridge University Press: Cambridge, UK, 1994.
14. Harter, W.G. Principles of Symmetry, Dynamics and Spectroscopy; Wiley: New York, NY, USA, 1993.
15. Hestenes, D. Zitterbewegung in Radiative Processes. In The Electron, New Theory and Experiment; Hestenes, D., Weingartshofer, A.,

Eds.; Fundamental Theories of Physics; Springer: Berlin/Heidelberg, Germany, 1991; pp. 21–36.
16. Coddens, G. From Spinors to Quantum Mechanics; Imperial College Press: London, UK, 2015.
17. Coddens, G. Spinors for Everyone. Available online: https://hal.archives-ouvertes.fr/cea-01572342v1 (accessed on 11 April 2021).
18. Mermin, N.D. What’s Wrong with this Pillow. Physics Today, April 1989, p. 9.
19. Halzen, F.; Martin, A.D. Quarks and Leptons, An Introductory Course in Modern Particle Physics; John Wiley and Son: Hoboken, NJ,

USA, 1984.
20. Hanneke, D.; Hoogerheide, S.F.; Gabrielse, G. Cavity Control of a Single-Electron Quantum Cyclotron: Measuring the Electron

Magnetic Moment. Phys. Rev. 2011, 83, 052122. [CrossRef]
21. Aoyama, T.; Hayakawa, M.; Kinoshita, T.; Nio, M. Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of

the Fine Structure Constant. Phys. Rev. Lett. 2012, 109, 111807. [CrossRef] [PubMed]
22. Ball, P. Quantum Theory Rebuilt from Simple Physical Principles, Quanta Magazine. 2017. Available online: https://www.

quantamagazine.org/quantum-theory-rebuilt-from-simple-physical-principles-20170830/ (accessed on 11 April 2021).
23. Coddens, G. The Exact Theory of the Stern-Gerlach Experiment and Why it Does Not Imply that a Fermion Can Only Have Its

Spin Up or Down. Symmetry 2021, 13, 134. [CrossRef]
24. Dieudonné, J. Pour L’honneur de L’esprit Humain-Les Mathématiques Aujourd’hui; Hachette: Paris, France, 1987.
25. Coddens, G. A Solution of the Paradox of the Double-Slit Experiment. Available online: https://hal.archives-ouvertes.fr/cea-01

459890v3 (accessed on 11 April 2021).
26. Van der Waerden, B.L. Group Theory and Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1974.

https://hal.archives-ouvertes.fr/cea-01572342v1
http://doi.org/10.1103/PhysRevA.83.052122
http://dx.doi.org/10.1103/PhysRevLett.109.111807
http://www.ncbi.nlm.nih.gov/pubmed/23005618
https://www.quantamagazine.org/quantum-theory-rebuilt-from-simple-physical-principles-20170830/
https://www.quantamagazine.org/quantum-theory-rebuilt-from-simple-physical-principles-20170830/
http://dx.doi.org/10.3390/sym13010134
https://hal.archives-ouvertes.fr/cea-01459890v3
https://hal.archives-ouvertes.fr/cea-01459890v3


Symmetry 2021, 13, 659 44 of 45

27. Sagan, B.E. The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions. In Springer Graduate
Texts in Mathematics, 2nd ed.; Springer: New York, NY, USA, 2001; Volume 203.

28. Deheuvels, R. Tenseurs et Spineurs; Presses Universitaires de France: Paris, France, 1993; p. 232.
29. Rauch, H.; Zeilinger, A.; Badurek, G.; Wilfing, A.; Bauspiess, W.; Bonse, U. Verification of coherent spinor rotation of fermions.

Phys. Lett. 1975, 54, 425–427. [CrossRef]
30. Feynman, R.P.; Weinberg, S. Elementary Particles and the Laws of Physics; Cambridge University Press: New York, NY, USA, 1987.
31. Staley, M. Understanding quaternions and the Dirac belt trick. Eur. J. Phys. 2010, 31, 467. [CrossRef]
32. Marmier, P.; Sheldon, E. The Physics of Nuclei and Particles; Academic Press: New York, NY, USA, 1969; Volume I, p. 341.
33. Biedenharn, K.C.; Louck, J.D. Angular Momentum in Quantum Mechanics, Theory and Application; Encyclopedia of Mathematics and

Its Applications; Addison-Wesley: Reading, MA, USA, 1981; Volume 8.
34. Lounesto, P. Clifford Algebras and Spinors; Camlbridge University Press: Cambridge, UK, 2009.
35. Gallier, J. Geometric Methods and Applications for Computer Science and Engineering, 2nd ed.; Texts in Applied Mathematics; Springer:

Berlin/Heidelberg, Germany, 2011; Volume 38, Chapter 8.
36. Newman, E.; Penrose, R. An Approach to Gravitational Radiation by a Method of Spin Coefficients. J. Math. Phys. 1962, 3, 566.

[CrossRef]
37. Ungar, A.A. Beyond the Einstein Addition Law and Its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces;

Fundamental Theories of Physics; Kluwer: New York, NY, USA, 2002; Volume 117.
38. Rhodes, J.A.; Semon, M.D. Relativistic velocity space, Wigner rotation and Thomas precession. Am. J. Phys. 2004, 72, 945.

[CrossRef]
39. Coddens, G. On Magnetic Monopoles, the Anomalous g-Factor of the Electron and the Spin-Orbit Coupling in the Dirac Theory.

Available online: https://hal-cea.archives-ouvertes.fr/cea-01269569 (accessed on 11 April 2021).
40. Coddens, G. A Linearly Polarized Electromagnetic Wave as a Swarm of Photons Half of Which Have Spin -1 and Half of Which

Have Spin +1. Available online: https://hal.archives-ouvertes.fr/hal-02636464v3 (accessed on 11 April 2021).
41. Coddens, G. A proposal to get some common-sense intuition for the paradox of the double-slit experiment. Available online:

https://hal.archives-ouvertes.fr/cea-01383609v5 (accessed on 11 April 2021).
42. Ballentine, L.E. Quantum Mechanics, A Modern Development, 2nd ed.; World Scientific: Singapore, 1998.
43. Ballentine, L.E. The Statistical Interpretation of Quantum Mechanics. Rev. Mod. Phys. 1970, 42, 358. [CrossRef]
44. Everett, H. “Relative State” Formulation of Quantum Mechanics. Rev. Mod. Phys. 1957, 29, 454–462. [CrossRef]
45. Cramer, J. The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 2009, 58, 795–798.
46. Bohm, D. A Suggested Interpretation of Quantum Theory in Terms of “Hidden” Variables I. Phys. Rev. 1952, 85, 166–179.

[CrossRef]
47. Bohm, D.; Hiley, B.J. The Undivided Universe: An Ontological Interpretation of Quantum Theory; Routledge: London, UK, 1993.
48. Griffiths, R.B. Consistent histories and the interpretation of quantum mechanics. J.Stat. Phys. 1984, 36, 219–272. [CrossRef]
49. Nelson, E. Derivation of the Schrödinger Equation from Newtonian Mechanics. Phys. Rev. 1966, 150, 1079–1085. [CrossRef]
50. von Neumann, J. Mathematische Begründung der Quantenmechanik (Mathematical Foundation of Quantum Mechanics).

In Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse; Göttinger Akademie der
Wissenschaften: Göttingen, Germany, 1927; pp. 1–57.

51. Messiah, A. Quantum Mechanics; North Holland: Amsterdam, The Netherland, 1965; Volume I.
52. Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; et al.

(Super-Kamiokande Collaboration), Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 1998, 81, 1562–1567.
[CrossRef]

53. Tonomura, A.; Endo, J.; Matsuda, T.; Kawasaki, T. Demonstration of single-electron buildup of an interference pattern. Am. J.
Phys. 1989, 57, 117. [CrossRef]

54. Silverman, M.P. More than One Mystery, Explorations in Quantum Interference; Springer: Berlin/Heidelberg, Germany, 1995; p. 3.
55. Duistermaat, J.J. Huygens’ Principle 1690–1990: Theory and Applications; Blok, H., Ferwerds, H., Kuiken, H.K., Eds.; Elsevier:

Amsterdam, The Netherlands, 1992; p. 273.
56. Hadamard, J. Le problème de Cauchy et Les Equations aux Dérivés Partielles Linéaires Hyperboliques; Jacques Gabay: Dover, UK; New

York, NY, USA, 1952.
57. Longhurst, R.S. Geometrical and Physical Optics, 2nd ed.; Longman Group: London, UK, 1967.
58. Feynman, R.P. QED: The Strange Theory of Light and Matter; Princeton University Press: Princeton, NJ, USA, 1985.
59. Bohm, D. Quantum Theory; Dover Publications: Exeter, UK; New York, NY, USA, 1989.
60. Greiner, W. Relativistic Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1990.
61. Laundau, L.D.; Lifchitz, E.M. Quantum Mechanics; Pergamon Press: Oxford, UK, 1959.
62. Schwinger, J. Quantum Mechanics: Symbolism of Atomic Measurements; Springer: Berlin/Heidelberg, Germany, 2001.
63. Dirac, P.A.M. The Principles of Quantum Mechanics; Oxford University Press: Oxford, UK, 1930.
64. Heisenberg, W. The Physical Principles of the Quantum Theory; Dover Publications: Exeter, UK; New York, NY, USA, 1949.
65. van der Waerden, B.L. Sources of Quantum Mechanics; Dover Publications: Exeter, UK; New York, NY, USA, 1968.
66. Leite Lopes, J.; Escoubès, B. Sources et Evolution de la Physique Quantique, Textes Fondateurs; Masson: Paris, France, 1995.
67. Wheeler, J.A.; Zurek, W.H. Quantum Theory and Measurement; Princeton University Press: Princeton, NJ, USA, 1983.

http://dx.doi.org/10.1016/0375-9601(75)90798-7
http://dx.doi.org/10.1088/0143-0807/31/3/004
http://dx.doi.org/10.1063/1.1724257
http://dx.doi.org/10.1119/1.1652040
https://hal-cea.archives-ouvertes.fr/cea-01269569
https://hal.archives-ouvertes.fr/hal-02636464v3
https://hal.archives-ouvertes.fr/cea-01383609v5
http://dx.doi.org/10.1103/RevModPhys.42.358
http://dx.doi.org/10.1103/RevModPhys.29.454
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1007/BF01015734
http://dx.doi.org/10.1103/PhysRev.150.1079
http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://dx.doi.org/10.1119/1.16104


Symmetry 2021, 13, 659 45 of 45

68. Hansen, A.; Ravndal, F. Klein’s Paradox and Its Resolution. Phys. Scr. 1981, 23, 1036. [CrossRef]
69. Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Complete? Phys. Rev. 1935, 47, 777.

[CrossRef]
70. Bell, J.S. On the Einstein Podolsky Rosen Paradox. Physics 1965, 1, 195–200. [CrossRef]
71. Aspect, A.; Dalibard, J.; Roger, G. Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers. Phys. Rev. Lett. 1982,

49, 1804. [CrossRef]
72. Kupczynski, M. Closing the Door on Quantum Nonlocality. Entropy 2018, 20, 877. [CrossRef] [PubMed]
73. Gell-Mann, M. Is nature simple? In The Nature of the Physical Universe, 1976 Nobel Conference; Huff, D., Prewett, O., Eds.; Wiley

Interscience: New York, NY, USA, 1979; p. 29.

http://dx.doi.org/10.1088/0031-8949/23/6/002
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysicsPhysiqueFizika.1.195
http://dx.doi.org/10.1103/PhysRevLett.49.1804
http://dx.doi.org/10.3390/e20110877
http://www.ncbi.nlm.nih.gov/pubmed/33266601

	Introduction
	Three Famous Quotes
	Nobody Understands Spinors
	Nobody Understands Quantum Mechanics
	 Remarks about Style and Notation

	Spinors in the Rotation Groups SO(n)
	Methodology
	Preliminary Caveat: Spinors Do Not Build a Vector Space
	Summing Spinors Is a Priori Not Defined
	Ideals

	Construction of SU(2): the Geometrical Meaning of Spinors
	Generating the Group From Reflections
	Fleshing out the Caveat: A Superposition Principle for Spinors?
	An SU(2)-Specific Approach
	General Group-Theoretical Approach

	A Parallel Formalism For Vectors
	The Quadratic Relation between Vectors and Spinors
	Isotropic Vectors
	Real Unit Vectors

	Justifying the Introduction of a Clifford Algebra
	Construction of a Basis of Reflection Matrices for  Rn

	Spinors in the Homogeneous Lorentz Group
	Spinor-Based Approach to Quantum Mechanics
	The Dirac Equation from Scratch
	Consequences
	Why We Can Use Coherent-Source Boundary Conditions for an Incoherent Source
	The Minimal Substitution
	Discussion
	The Born Rule, Schrödinger's Cat, the Particle-Wave Duality and the Double-Slit Experiment
	Conclusions
	Epilogue


	References

