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Abstract We review the recent progress made in using  the new experimental average

holographic QCD to study hadronic contributions to the

anomalous magnetic moment of the muon, in particular the a;xp. — 116592061(41) x 1 0! 1’ @)

hadronic light-by-light scattering contribution, where the
short-distance constraints associated with the axial anomaly
are notoriously difficult to satisfy in hadronic models. This
requires the summation of an infinite tower of axial vector
mesons, which is naturally present in holographic QCD mod-
els, and indeed takes care of the longitudinal short-distance
constraint due to Melnikov and Vainshtein. Numerically the
results of simple hard-wall holographic QCD models point to
larger contributions from axial vector mesons than assumed
previously, while the predicted contributions from pseudo-
Goldstone bosons agree nicely with data-driven approaches.

1 Introduction

There is a long-standing discrepancy between the best theo-
retical predictions of the anomalous magnetic moment of the
muon a, = (g—2),/2[1] and its experimental value, which
was first obtained with sufficiently high accuracy by the
E821/BNL measurement [2]. Currently the Standard Model
(SM) prediction is at

asMWVP) = 116591810(43) x 107! 1)

according to the 2020 White Paper (WP) of the Muon g — 2
Theory Initiative [3]. The new recent result (2021) by the
Muon g —2 Collaboration at Fermilab [4] confirmed the BNL
result within errors, slightly reducing the discrepancy from
3.70 to 3.30 when taken on its own, but raising it to 4.2
when these two independent measurements are combined in
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as shown in Fig. 1.

This gives tantalizing hints if not evidence for physics
beyond the Standard Model which will be further pursued
by upcoming improvements of the experimental result by
the Fermilab experiment, and in the medium-term future by
a completely new experimental approach at J-PARC [5]. On
the theoretical side, it will be crucial to continue the efforts to
understand and reduce the uncertainties in the SM prediction.
With QED [6-8] and electroweak effects [9, 10] being suffi-
ciently under control, the focus in this endeavor is entirely
on hadronic contributions [11-32], which require nonpertur-
bative input. The largest such contribution by far,

aV*WVP) = 6845(40) x 107" 3)

according to [3], is from hadronic vacuum polarization
(HVP), which is tightly constrained by experimental data.
However, the estimated error of just 0.6% has been chal-
lenged by a recent lattice calculation [33] that claims a
comparable accuracy but a 2% higher value, which would
reduce the discrepancy between theory and experiment to a
mere 1.50 (albeit by giving rise to tensions in other sectors
of the SM [34-36]). It is hoped that this question will be
resolved in the near future through further lattice calcula-
tions by other groups, while the data-driven approach of [3]
expects improvements through upcoming new experimental
results on low-energy hadronic cross sections.

Once this is settled, the second largest uncertainty, which
is due to the hadronic light-by-light scattering (HLBL) con-
tribution [30], currently estimated as [3]

aHLBLOVP) — 93(18) x 10711, X
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Fig. 1 Current status of the discrepancy between experiment and SM
prediction for the muon anomalous magnetic moment (figure taken from

(4D

will also be crucial for improving the theoretical prediction.
In this case, a data-driven approach is more limited, and
hadronic models are widely used to estimate the numerous
contributions from various channels.

The largest contribution to (4) comes from the exchanges
of the neutral pseudo-Goldstone bosons 7, 5, ', whose
coupling to photons is governed by the axial anomaly. As
pointed out by Melnikov and Vainshtein (MV) [11], the short-
distance behavior of the HLBL amplitude is constrained
by the non-renormalization theorems for the axial anomaly,
but conventional hadronic models fail to respect the so-
called longitudinal short-distance constraint (LSDC). Using
a simple ad-hoc model to correct for this failure, MV esti-
mated the corresponding effects as a positive contribution
AalV =235 x 107! which with current input data would
actually become 38 x 101, The WP result (4) instead uses
a much smaller estimate based on a Regge model for an infi-
nite tower of pseudoscalar bosons constructed such that the
LSDC is satisfied [28,29], which was however criticized by
MV in [37].

In this brief review, we shall describe the recent progress
that has been obtained through holographic QCD and how
it helped to clarify this particular controversy by providing
the first hadronic models where the LSDC constraint can
be naturally satisfied in a way that is consistent with the
chiral limit where excited pseudoscalars decouple from the
axial current and thus from the axial anomaly [38,39]. This
is brought about by summing the contributions from the infi-
nite tower of axial-vector mesons that necessarily appears
in holographic QCD, yielding a result that is larger than
the one adopted in the WP estimate, but clearly below the
one obtained in the MV model. Moreover, holographic QCD
points to a significantly larger transverse contribution from
axial vector mesons than assumed in the WP estimate, which
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has recently been seconded by re-evaluations of such contri-
butions in resonance chiral theory [40].

It should be made clear from the start that holographic
QCD is only a toy model of real QCD, but it is frequently
remarkably successful, also semi-quantitatively, with a min-
imal set of free parameters. It certainly cannot help to shed
light on the current ~ 2% discrepancy between data-driven
and lattice approaches to hadronic vacuum polarization.
Indeed, holographic QCD results for the leading light-quark
HVP contributions deviate from both data-driven and lattice
approaches at the 2 15% level [41-43]. However, as we
shall review, results for transition form factors (TFF) in the
axial sector [38,39,44-51], which are the crucial input in the
HLBL contributions to the muon g — 2, compare quite well
with data-driven results and so even comparatively simple
holographic QCD models appear to be useful for estimating
the ballparks of various HLBL contributions, in particular as
long as other approaches remain even more uncertain. Note
that in the WP [3] the adopted value for the contribution of
axial vector mesons carries a 100% uncertainty.

2 HLBL contribution to the muon g — 2 and short
distance constraints

The magnetic moment g of a particle can be measured by
scattering it off of an external electromagnetic field. The
probability that the particle will change its spin when interact-
ing with a static magnetic field at small momentum transfer
is proportional to g. Currently the most interesting particle to
look at is the muon. In the Standard Model it is an elementary
particle which makes the computations easier as opposed to
say a complicated hadronic bound state and compared to the
electron it is much heavier and therefore effects of internal
loops of heavier particles should be more pronounced. The
tau lepton would be even more interesting due to its much
higher mass, however it decays much too quickly to measure
its magnetic moment accurately. The astonishing precision
to which the muon g — 2 can be measured [4] and its suscep-
tibility to heavier physics makes it a most interesting testing
ground for the Standard Model. If the experimental and the
theoretical values disagree significantly, then this clearly sig-
nals new physics.

In any QFT coupled to a weak external electromagnetic
field one obtains for the scattering amplitude

M x —ie/d4x(p’,a’|J“(x)|p,a)Au(x), 5)

which means we have to look at diagrams with one incom-
ing and one outgoing muon line and in addition an ampu-
tated photon line with momentum ¢ = p — p’ — 0. Elec-
tromagnetic and weak processes are under good theoretical
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Fig. 2 HVP contribution to g — 2
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Fig. 3 HLBL contribution to g — 2

control since one can reliably compute contributions using
ordinary perturbation theory in powers of « and G meL [3].
This method fails when QCD is included due to it being a
strongly coupled theory at low energies. The largest hadronic
contribution to the magnetic moment comes from hadronic
vacuum polarization diagrams (see Fig. 2), which using dis-
persion theory can be related to the total cross section for
e~ e™ annihilation into hadrons.

Light-by-light scattering is much less important, however
in order to gain the needed precision its contribution has to be
analyzed carefully as well. It appears as the set of diagrams
as seen in Fig. 3. The hadronic part of the connected light-
by-light scattering subdiagram is to lowest order in e given
by a correlator of four electromagnetic currents

" (g1, g2, q3) := —i/d4xd4yd4ze_i(q‘”q”ﬂ“)

X QT (x)JP () J*(2) T (0)}|€),
(©6)

with JH(x) = eyro Qy "o, where g is a multiplet contain-
ing the bare quark fields and Q a flavor matrix encoding the
charges of the quarks in units of e.

Using Lorentz covariance and gauge invariance one can
decompose this tensor into 54 tensor structures [52]

Py — Z Tiaﬁﬂv ;. @)
i

It is possible to use fewer basis elements, however then for
some values of g1, g2, g3 one encounters kinematic singu-
larities or zeros. Inserting this decomposition into the 2-loop
integral of Fig. 3 to compute a;, and employing the method of
Gegenbauer polynomials first done in [53] the final compact

formula reads [52]

20[3 00 00 1
aM=3—2/ dQ1/ sz/ dt/1-120303
7= Jo 0 —1
12

x Y Ti(Q1, 02, DI(Q1, 02, 7)

i=1
[e%9) 00 1
=:/0 dQ1/0 szflderl,Qz,r), ®)

where T; are known kernel functions and IT; are linear combi-
nations of the IT; functions. The integration region is entirely
in the Euclidean regime where no single particle poles or cuts
show up. Before trying to compute this object at low ener-
gies using holographic QCD, we first turn to the asymptotic
constraints that one can derive from QCD, where the main
tool will be the operator product expansion (OPE), used in
Euclidean space.

2.1 Short distance constraints

Below we will sketch a derivation of the leading-order behav-
ior of IT for two different kinematic configurations when the
Euclidean momenta Q1 » 3 become very large [11]. In eval-
uating the HLBL contribution to the muon g — 2 we are
not directly interested in the asymptotic region. The weight
functions that appear in the two loop integral of Fig. 3 fall
off quickly beyond Q ~ 2GeV. It is however relevant how
fast this asymptotic behavior is reached.

In particular one can ask the question of how to satisfy
these constraints using an effective field theory involving
only hadronic degrees of freedom, since at low energies one
cannot use perturbative QCD but requires hadronic models,
unless the entire calculation is done nonperturbatively using
lattice QCD [31,32].

An important intermediate result to derive one of the short
distance constraints is the OPE of two electromagnetic cur-
rents

i / d*xe™ 9T {J,,(x) J,(0)}

=2ie ——J;(0)+0| = ). 9
;Lvaﬁq2+i€ 5( ) 6]2 ©

with Jsﬁ being o 0?5y # o, which holds for large spacelike
q. The flavor octet part of the RHS is a finite operator and
independent of a renormalization scale M which is usually
needed when defining composite operators. The flavor singlet
part is finite and independent of M up to one loop order but
in general it mixes with other operators due to the U(1)4
anomaly. The divergence of the singlet part mixes with the
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theta term but

ag(M)
8

A — L C 3 S (10

uvt po
is independent of M.

The main strategy to derive the LSDC of [11] is to pick
q1 — g2 very large and Euclidean and g1 + g2 = —¢3 much
smaller (but still larger than the QCD scale). This allows one
to insert the OPE (9) into the light-by-light scattering tensor
(6). Inthis way the V' V A correlator appears in this asymptotic
constraint. In real QCD with m, # 0 and N. = 3 one has to
go to large Q% and use asymptotic freedom to obtain

. . — 2
lim  lim 030°11(0, 0, 03) = —37 (11)

Q3~>OO

which was first derived in [11]. Here we have given the results
in terms of the functions appearing in the tensor decompo-
sition (7). In the limit of vanishing quark masses, the chiral
anomalies allow an exact evaluation of the longitudinal non-
flavor-singlet part of the V'V A, while its transverse part does
not contribute to the tensor structure above. In the large- N,
limit the U (1) 4 anomaly can be ignored for the singlet part.
Equation (11) then holds for all Q%, and not only asymptot-
ically.

Another short distance constraint follows from consider-
ing the symmetric limit Q1 ~ Q> ~ Q3. The one vertex
with zero incoming momentum prevents a straightforward
use of perturbation theory. Rather one models the vertex by
including a non-zero external electromagnetic potential A,
and then performs an OPE [54] on the remaining product
of 3 currents. Now condensates can be non-vanishing that
would have otherwise been zero by Lorentz invariance like
(¥ (x)a™ ¥ (x)). The leading behavior is however identical
to the perturbative quark loop giving [11,27]

. - 4
Jim 0*111(Q, 0, 0) = ~57 (12)

The largeness of the running coupling constant at energies
below the QCD scale does not permit the use of perturbation
theory in QCD. At low energies it would be desirable to
have a different QFT with fields which correspond to single
particle states and all the couplings being small at low energy.
Demanding for example that (2|¢(0)|p) = 1 for a scalar
particle of momentum p does not fix the field uniquely. There
are many different fields ¢ that obey this equation and they
all create in some sense this particle, but off-shell they can
differ drastically.

Therefore it can happen that two hadronic models, which
predict the same current correlators, split up the individual
contributions of fields differently. One can for example take
one hadronic model and perform a field redefinition to obtain

@ Springer
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Fig. 4 Single-particle intermediate states in the hadronic HLBL tensor

a model that is completely equivalent but has different inter-
actions in the Lagrangian. An example would be taking a
model with an axial vector field A, and a pion field 7 and
defining a new axial vector fieldas A}, = A, + £2@um)/m?
(the kinetic terms are the same in both formulations).

One-particle intermediate states which are approximately
stable show up as poles in the light-by-light scattering ampli-
tude for the right kinematic configurations. These are unam-
biguously defined since they are on-shell however only for
special kinematics.

The simplest way that hadronic degrees of freedom appear
in the light-by-light scattering tensor is through processes
where two photon lines connect to a propagator of a charge-
neutral hadron which then again splits into two photons (see
Fig. 4). As mentioned before to define an off-shell hadron
one needs a corresponding field in the Lagrangian, but as an
approximation one can consider an on-shell hadron decaying
into two in general virtual photons.

The largest contributions at low energy certainly come
from the light charge-neutral (pseudo) Goldstone bosons. For
any pseudoscalar particle one defines the transition form fac-
tor (TFF) F via

i / dxe D (QIT(TH(x) T O} P(p))

= " (1) (92) Fr (g}, 43) (13)

Axial vector particles can also couple to two virtual photons
and one can define form factors analogous to the above equa-
tion. Due to the different Lorentz structure there are in general
three such form factors. In addition there is the Landau—Yang
theorem [55,56] which forbids the decay of an axial vec-
tor particle into two on-shell photons. One can also derive
asymptotic expressions for these quantities. For simplicity
we only give the results for the pions, the other cases can be
found in [57]. The first constraint comes from inserting the
OPE (9), which gives

2
lim Q2Fp(—02 —0%) = 21T, (14)
Q—o00 3
The pion decay constant is defined via
(QUISH PP (p)) = i8°? fr p*. (15)
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In the chiral limit for the non-singlet 7° the exactness of
the anomaly allows to derive

N,
SfaFr0(0,0) = T (16)

Away from the chiral limit this is not expected to hold any-
more; in fact, holographic models predict a correction to the
LHS involving excited neutral pseudoscalar states as we shall
see later.

Finally the single virtual constraint derived in [58—60]
reads

Jim Q*Fp(—02,0) = 2f5. (17)

The contribution from the neutral pion (with the approx-
imation of an on-shell TFF) to the light-by-light scattering
tensor (with one photon being very soft) is

_ F(at.9)7 (a3, 0)

2
b4

I (18)

2
qz —m

Using the asymptotic behavior of the TFFs one immediately
sees that one cannot reproduce the asymptotic constraints
on the HLBL tensor. The same happens for any other single
particle intermediate state.

If one stays within the pole approximation, the only loop-
hole is that one may have to sum over an infinite number of
contributions. As we will see the large N, holographic mod-
els naturally provide an infinite number of fields. In particu-
lar, the infinite tower of axial vector fields will be responsible
for contributing non-zero results for the right-hand sides of
the LSDCs (11) and (12).

3 Holographic models

The first concrete realization of the holographic corre-
spondence relating a quantum gauge theory to a higher-
dimensional theory with gravity was found by Maldacena in
[61], which postulates the full equivalence of A/ = 4 super-
Yang-Mills theory in d = 4 and type IIB closed string theory
on a background that is asymptotically AdSs x S°. In the
limit of infinite "t Hooft coupling, this includes gauge/gravity
duality, i.e., a duality between a strongly coupled quantum
field theory and a classical theory of (super-)gravity.

The duality originates from two different descriptions of
branes, the closed string and the open string perspective [62].
In the former branes are solitonic objects sourcing the closed
string fields and curving the surrounding spacetime. In the
open string perspective branes are described as surfaces on
which open strings can end, the low-energy excitations are
then described by a U (N.) supersymmetric gauge theory.

Taking the string coupling constant g; < 1 one gets into
the regime of classical string theory, and in order to use the
classical supergravity approximation, the string length scale
Iy = +/o’ must be small compared to the average length scale
of the background curvature. The radius of curvature near the
horizon (which is isomorphic to AdSs X $) for a solution
with N, stacked D3 branes is given by R? /o’ = /4w gsN,,
and thus ggN. > 1.

Since [63] g%, y = 4mgs, the above limit implies that the
effective "t Hooft coupling constant > = N, g%  of the large
N, gauge theory is large.

One then takes a low energy limit in which the bulk exci-
tations decouple from the gauge theory. In the supergravity
description this same limit zooms in on the near horizon
region of the D3 branes, whose geometry is Ad S5 x > (one
also has a background flux that stabilizes the D3 branes).

So a weakly coupled semi-classical field theory with
gravity in 10 dimensions can be used to make statements
about a strongly coupled QFT in 4 dimensions. This four-
dimensional theory is quite different from QCD, since it has
conformal symmetry and the maximal amount of supersym-
metries but breaking these symmetries one can come close
to a dual description of large-N,. QCD.

In the ten-dimensional theory gravity is dynamical and the
appearance of a background seems irritating at first. What
geometry one has deep inside of the space should of course
be determined dynamically. Imagine preparing an initial state
using a Cauchy hypersurface or letting a bunch of photons
start at the timelike asymptotic boundary. Depending on how
they start off, they might form a black hole or miss each other
entirely. In perturbative string theory however one specifies
a fixed background which has to obey certain equations of
motion such that the worldsheet theory is a CFT and then
studies strings on that background. String theory should ide-
ally be background independent, i.e. one should be able
to change to a different background while simultaneously
putting all the gravitons into the initial state and still get the
same result. Recent computations in a slightly different con-
text [64] corroborate this. They show that in their example
the perturbative string theory partition function on any fixed
background already includes a sum over all semiclassical
geometries with the right boundary conditions.

The holographic correspondence also shows this in a beau-
tiful way. In a QFT one typically considers certain macro-
scopic states and local excitations thereof. The vacuum state
in the QFT corresponds to empty AdSs x S° and a decon-
fined thermal state to a Euclidean black hole [65]. For our
cases we always look at excitations of the vacuum.

Using the supergravity approximation one can then for
example compute the spectrum by looking at normalizable
fluctuations around the background and compare them to the
Yang-Mills theory. For massless excitations one needs to
specify appropriate (reflecting) boundary conditions at the

@ Springer
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conformal boundary. One more very useful property of these
dualities is how deformations of the four-dimensional theory
translate to deformations of the ten-dimensional theory. The
key formula first appeared in [66] and in terms of the gen-
erating functional for connected Greens functions Wsp[J]
reads

WaplJ] = Sgrav.[é(x, 2) = J(X)], (19)

where z is the holographic coordinate which goes to zero at
the conformal boundary, J (x) is a source coupled to an oper-
ator O (x) and ¢ (x, z) is said to be the field dual to O (x). ¢
has to satisfy the equations of motion subject to a boundary
condition near z = (. The precise statement is a bit more
involved, the way ¢ behaves near the conformal boundary
depends on its mass and whether it is a scalar field, a vector
field, etc. Thus for every operator in the gauge theory there
should be a corresponding field in the supergravity descrip-
tion.

The above formula allows one to compute general cor-
relation functions in the gauge theory by solving classical
equations of motion in a gravitational background subject to
boundary conditions.

By now there are a number of holographic models avail-
able whose dual theories aim to approximate QCD. Most are
ad-hoc bottom-up constructions, where one specifies a set of
fields and a background geometry by hand, but there is also
one top-down string-theory construction which stands out
and provides inspiration for the construction of bottom-up
models. This top-down model was constructed by Sakai and
Sugimoto in [67,68] by embedding probe D8 and D8 branes
into the Witten background found in [65]. We will briefly
summarize its construction and main properties before mov-
ing on to various bottom-up models.

3.1 The Witten—Sakai—Sugimoto model

One way to obtain a pure four-dimensional gauge theory from
a supersymmetric one is to compactify a five-dimensional
theory on a circle S' with a supersymmetry breaking spin
structure (the same one used in thermal partition functions).
Type-IIA string theory has stable branes with an odd space-
time dimension which can be put to use for setting up a holo-
graphic gauge/string duality.

In the Witten model of pure Yang—Mills theory [65], one
considers a state with N, coinciding D4-branes, where one
spatial direction x4 along the branes is compactified to acircle
with radius MIZI% On this circle supersymmetry breaking
boundary conditions are chosen, generating masses for the
fermion (gaugino) fields by the analog of odd Matsubara
frequencies and also for the scalar fields because they are no
longer protected by gauge symmetry, leaving only SU (N,)
gauge bosons at low energy in the open string perspective.

@ Springer

Sakai and Sugimoto in [67,68] included left and right handed
fermions in the fundamental representation by embedding
Ny D8-D8-brane pairs which extend in all directions except
x4. The D8-branes are separated asymptotically from the D8-
branes by a distance L (usually chosen to be maximal), which
guarantees that perturbatively strings stretching between the
D8 and the D8 branes get a mass. At low energies this system
thus contains chiral quarks localized at the intersections of
the D8 branes with the D4 branes and SU (N,) gauge bosons
living in an effectively four-dimensional spacetime. One can
then again take a limit such that the IIA closed strings in the
bulk decouple from the brane excitations.

In the closed string perspective branes source the gravita-
tional fields and thus the N, D4-branes generate a gravita-
tional background with a horizon, while the D8-branes are
treated in the probe approximation. One embeds the probe
branes by minimizing the DBI action and finds that the D8
and D8-branes have to join at the horizon for the simplest
case of embeddings, which breaks the initial flavor symmetry
U(Ny)rL x U(Ny)g spontaneously to its diagonal U (N )y,
providing a simple geometrical realization of nonabelian chi-
ral symmetry breaking. The low energy excitations of this
system are now the usual type IIA low energy closed string
states in the asymptotically flat region far away from the hori-
zon and excitations with arbitrarily high local energy close to
the horizon. The latter include strings on the D8 branes and
excitations of the IIA bulk fields near the horizon. High local
energy excitations near the horizon have very small energy
for an observer near asymptotic infinity due to the redshift
caused by the gravitational field. Comparing the two differ-
ent descriptions and taking a decoupling limit once again one
can postulate thereby a holographic duality between large N,
QCD with large ’t Hooft coupling X and at low energy and
the above mentioned near horizon excitations.

Under some assumptions one can perform a Kaluza—
Klein compactification of the D8-brane action yielding a
five-dimensional gravitational action with a certain back-
ground geometry which involves (among other fields) two
sets of flavor gauge fields whose normalizable modes are
interpreted as vector and axial vector meson states in the
dual theory, involving also pseudoscalar bosons as Gold-
stone modes. The geometry is not Ad S5 however it also has
a timelike conformal boundary like AdS. The holographic
coordinate ranges from z = 0 at the conformal boundary
to a finite value z¢ in the infrared, where the circle in x4
smoothly shrinks to zero. The flavor gauge fields necessarily
obey boundary conditions at z = zo which break the fla-
vor symmetry U(Nys)p x U(Ny)r — U(Ny)y. Recall that
when one has a gauge symmetry only the global part of it is
represented as operators on the Hilbert space and the much
larger set of local transformations are only a redundancy of
the description. The boundary conditions will of course also
break this global part. Besides the geometrical realization of
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chiral symmetry breaking, confinement is brought about by
having the holographic coordinate reduced to a finite inter-
val. In accordance with confinement, the number of states
below a given energy is independent of N,.

The D8-brane action also contains a Chern—Simons term
that correctly reproduces the behavior of the QCD partition
function when performing a gauge transformation on exter-
nal flavor gauge fields coupled to the U(Ny)p x U(Ny)g
flavor symmetry currents. The flavor anomalies are thus nat-
urally and correctly reproduced. The U (1) 4 anomaly which
isa N% effect is also correctly implemented [67,69,70] and
one can even compute the mass of the n” meson using the
Witten—Veneziano [71,72] formula. Baryons naturally show
up as instantonic five-dimensional solitons that are dual to
Skyrmions in this model [73].

A critical short-coming of the Witten—Sakai—Sugimoto
model is that one cannot take the limit Mxg — oo without
leaving the supergravity approximation. At energies much
larger than Mgy the Witten model eventually shows its inher-
ently five-dimensional nature; it can serve as an approximate
dual to large- N, QCD only in the low-energy limit. However,
by restricting oneself to zero modes with respect to the extra
dimension x4 one can use this model also up to the scale of
Mkx and to some extent even above it.

3.2 Bottom-up models

Even before the construction of the (Witten-)Sakai—Sugimoto
model (SS), the physics of chiral symmetry breaking and
hadrons was modeled by hand-made bottom-up holographic
models, but the lessons learned from string theory help to
understand them and also provide hints for further develop-
ments.

We will in the following describe the so-called hard wall
(HW) models [74-76]. In these models one uses the con-
formal AdSs background of the N' = 4 super-Yang—Mills
duality but breaks conformal symmetry by a sharp cut-off
in the bulk in order to account for confinement. In Poincaré
coordinates where z = 0 represents the conformal boundary
the hard wall is placed at z = zg. One also has two sets of
flavor gauge fields Ljs, Ry which are holographically dual
to the U(Ny)L x U(Ny)g currents in the four-dimensional
theory. In some variants also a bifundamental complex scalar
field X;; is introduced, whose dual operator is the quark con-
densate q;iq Lj and which permits to introduce finite quark
masses through non-normalizable modes. The action has the
usual kinetic terms of the gauge fields and the scalar is min-
imally coupled to them. One also adds a five-dimensional
Chern—Simons term to the action in order to reproduce the
flavor anomalies of the dual QFT, thereby implementing the
idea of anomaly inflow [77].

The first bottom-up models by Erlich et al. [74] and Da
Rold and Pomarol [75,78] (called HW1 in [38,48,50,51]
and in the following) implemented chiral symmetry breaking
by choosing a suitable background solution for the bifunda-
mental scalar X, while choosing symmetric infrared bound-
ary conditions for the flavor gauge fields. Chiral symmetry
breaking can however be implemented alternatively, as in the
Sakai—Sugimoto model, by specifying asymmetric boundary
conditions for the flavor gauge fields at zg. This is done in
the Hirn—Sanz (HW2) model [76] model, which refrains from
introducing a bifundamental scalar. The latter is also absent
in the Witten—Sakai—Sugimoto model, because there left and
right handed fermions are dimensionally separated (quark
masses need non-local sources at the boundary and stringy
realizations in the bulk [79,80]).

In [51,81] both of these different mechanisms have been
applied simultaneously, giving rise to what will be referred
to as HW3 model. Normalizable modes of the flavor gauge
fields correspond to vector and axial vector particles while
normalizable fluctuations of the X field give the scalars and
pseudoscalars. In models without the bifundamental scalar X
(the HW2 model and the WSS model), the towers of scalars
and pseudoscalars is absent, but one can find a massless mul-
tiplet of pseudoscalars contained in U (x) = &g (x)&r (x) with
§L(r) = Pexp(—i [y" dz L (R;)) being Wilson lines. It is
important that the IR boundary conditions break the symme-
try group down to U(N )y since these make it impossible
to gauge L, = R, = 0 everywhere.

The HW models have the attractive feature of involving
a minimal set of parameters which, as we shall see below,
permits to fit the most important parameters of low-energy
QCD such as fr and m, as well as certain leading-order
pQCD constraints. There have been a number of success-
ful attempts to improve the HW models with their simple
AdS background geometry. Linear confinement and a cor-
rect behavior of Regge trajectories in the high-mass region
can be achieved by introducing a nontrivial dilaton which
produces a soft rather than a hard cut-off in the so-called soft-
wall (SW) models [82-90], which has similarities with light-
front holographic QCD [91], and also in models where chi-
ral symmetry breaking is described by open-string tachyon
condensation [92-94]. Moreover, limitations of the ’t Hooft
limit Ny <« N, — oo can be overcome by considering
back-reactions of flavor fields and thereby covering instead
the Veneziano limit Ny ~ N. — oo [95].

4 Spectra and decay constants in simple HW models
In this section we consider some of the most basic observ-
ables one can compute in the holographic QCD models. For

definiteness we will focus on the hard wall models with
the additional scalar field X. The five-dimensional theory
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is weakly coupled so masses are given to a good approxi-
mation by a classical computation. On a curved spacetime a
Fock space is constructed by computing the solutions to the
linearized equations of motion and demanding that they are
normalizable with respect to a certain inner product (which
depends on the type of field one looks at). The linearized
equations of motion are derived from the Yang-Mills and
matter action

1
S=—— [ d*xdzy/=g u(IFL* + | Fr|?)
4g5
+/ﬁ%ﬂmﬁ§umDMZ—MQXF) (20)

The metric is taken to be that of Poincaré patch AdSs,

ds® = z_z(nwdx”dx” — dzz), (21
with conformal boundary at z = 0 and a hard-wall cut-off at
z = zo and a mostly-minus signature. The value of M3 = —3
is determined by the scaling dimension of the dual operator
of X, the bifundamental quark bilinear q;q 1. Reference [81]
has proposed to generalize this to the holographically allowed
range —4 < M)2( < 0 and make My a parameter that permits
more realistic fits of the hadronic spectrum. In the following
we will indicate this modification by attaching a prime to the
name of the various HW models.

Solving the equations of motion for the scalar field X, one
obtains X (z) = %(qu+2z3) for M2 = —3, where M, and
¥ are proportional to the quark mass matrix and to the chiral
condensate, respectively. A nonzero value of M, will intro-
duce explicit breaking of chiral symmetry, while X describes
its spontaneous breaking. Fluctuations of X involve scalar
and pseudoscalar fields; we parametrize the latter, denoted
by 7, through X (x, z) = /"I X (7)e 70,

For vector mesons (L, + R,)/2 = V,, the boundary
conditions in the infrared are chosen as F lzo = 0, which
does not interfere with gauging V, = 0 for all z. The V;
equation of motion then implies that the longitudinal part
of V|, vanishes identically. The eigenvalue equation for the

transverse part Y, ¥/,(z) V,E") (x) is
1 -
0; Zazlﬂn(Z) + ZM" Yn(z) =0, (22)

subject to boundary conditions ¥, (0) = v,(0) = 0. This is
solved by Bessel functions v, (z) o zJ1(My,z) with M,, =
Y0.n/z0 being multiples of the zeros of the Bessel function
Jo. The location of the hard wall zg determines the overall
mass scale and usually one fits it such that the mass of the
rho meson at approximately 775 MeV is reproduced by M.

To compute correlation functions on the QCD side one
prescribes boundary values for the fields in the gravity side.

@ Springer

For the correlator of vector currents J. 3“ one turns on bound-
ary values for V and solves the equations of motion. This
will lead to a non-normalizable solution which depends on
the boundary value. We write the four-dimensional Fourier
transform as

Vi (0,2) = T(Q, 2)(Vb) . (Q) (23)

where Vj, is the boundary value and .7 is the vector bulk-to-
boundary propagator, which in all HW models is given by a
simple expression involving Bessel functions only,

o(QZO)

J(Q,2) = QZ|:K1(QZ)+ T0(00)

(QZ):| . (24)

Using the recipe (19) one can then compute the VV correla-
tion function ITy and compare to the OPE result,

1
2@<aﬂQﬂ

= 247T2 In 02, (25)
which matches the asymptotics perfectly provided g% =
12772/ N... The bulk-to-boundary propagator also encodes
the respective decay constants since the vector mesons must
show up as intermediate states. For ¢ near the mass of a
vector meson polology gives

My(Q% = —

-0

/d“xe"qx<9|T{Jg(x)Jf(0)}|sz>
3 i
g2 —m?+is
x> (QUILO)g. Mg, A I 0)]R)
A

_ (M — quqv/'mz) (FV)28ab (26)
q* —m?+ie

where we used (2|J;(0)lg, m, b) = Fveﬂ(q,k)(S“b and
a polarization sum. In holographic QCD the vector cur-
rent correlator decomposes into a sum over pole contribu-
tions (as should be the case in any large N, model) and in
terms of the radial functions v, (z) the decay constants read
FE) = |¥'(e)/(gse)| withz = € — 0.

For axial vector mesons the relevant field is Ay =
(Ly — Ry)/2 and due to the expectation value of X one
has an additional contribution to the kinetic terms coming
from | DX|?. Depending on which boundary conditions one
chooses for the axial vector field in the infrared one has
two possible outcomes. If it is possible to completely gauge
A, = 0 the A, equation of motion allows one to express the
longitudinal part of A, in terms of the 7 (x, z) field contained
in X. This field then contains an infinite tower of pseudoscalar
mesons with a massless multiplet of Goldstone bosons in the
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Table 1 Masses and decay

constants in the axial sector in M0 M fa M Far/ma
MeV, compared with _ Experiment/pheno 135 1300(100) 2.20(46) 1230(40) 168(7)
experimental masses according

o PDG [96] and HW2 0 - - 1235 180
phenomenological values for HW2(UV-fit) 0 - - 1573 229
fx+ and Fiu/(’gal f;Offin [97,98f], HW!1 (chiral) 0 1899 0 1375 177
respectlve y. ur definition o *

F,, corresponds to FX:SmA and HWIm 135 1892 1.56 1367 175
Fi=3m.4/+/3 in [57,98,99), HW1m 135* 1591 1.59 1230 148
respectively.) Fitted values are HW3m 135* 1715 1.56 1431 195
marked by a star HW3m’ 135 1300* 1.92 1380 186

chiral limit. This is the case for the so called HW1 model.
If the boundary conditions on A, in the IR are not like in
the vector case, it is in general not possible to have A, = 0
everywhere and pion degrees of freedom hide in the Wil-
son line P exp(i OZO dzA;). The A, equation of motion will
again be responsible for relating the pseudoscalar degrees of
freedom. A more convenient gauge in this case is the unitary
gauge as discussed in [51,81].

In the first of the above cases spontaneous symmetry
breaking only happens through X obtaining a VEV, while in
the second case the boundary conditions additionally break
the symmetry spontaneously.

While the details of the dynamics are different, in both
cases one obtains a tower of pseudoscalar mesons and a tower
of transverse axial vector mesons by computing normalizable
solutions to the equations of motion. (In the simpler HW2
model, where no bifundamental scalar X is introduced, since
chiral symmetry breaking can be implemented by boundary
conditions alone, only the Goldstone boson appears.)

In Table 1, the results for the first excited pseudoscalar
and the ground-state axial vector mesons are shown and
compared with experimental and phenomenological values,
where HW 1m and HW3m correspond to models with isospin
symmetric light quark masses chosen such as to reproduce
the mass of the neutral pion 7% HW1m’ and HW3m’ use a
tunable value of M)Z( such as to fit the mass of the lightest
axial vector meson a; and the lightest excited pseudoscalar
(1300), respectively. In all models, f; is set to 92.4 MeV,
which in the HW2 model requires to fit gs such that the
asymptotic constraint (25) can no longer be satisfied fully,
but is attained only at the level of 61.6%. The model called
HW2(UV-fit) in Table 1 (termed “Set 2" in [39]) instead keeps
gs as fixed by (25), which with unchanged f;; requires a dif-
ferent value of zo, corresponding to an excessively high value
of m, of 987 MeV.

In the HW1/3 models, where m, can be fixed at 775.5
MeV, the rho meson decay constant has the value F, ,% 2 =329
MeV, which is only 5% below the phenomenological value
346.2(1.4) MeV of Ref. [100]. The HW?2 value is about 7%
above at 372 MeV, while the HW2(UV-fit) result is at 419
MeV.

It turns out that the mass of the lightest axial vector meson
is surprisingly well reproduced by the simple HW2 model,
while it comes out at somewhat too large, by 10-20% in the
HW1/HW3 models, and still higher in the HW3 models. In
the HW1m’ model, it is in fact possible to match the mass
of a1, which also reduces the mass of the first excited pseu-
doscalar, which is otherwise too high in the HW1 and HW3
models by 30-50%. While the HW1m’ cannot be tuned to fit
the mass of 7 (1300), this is possible in the HW3m’ model
(which was the motivation for this particular generalization
of the HW model in [81]), but the mass of a; comes out
somewhat too large.

In the SW model, which has more realistic Regge trajec-
tories for the infinite tower of excited states [82—-84,86,86],
it turns out that the mass of the lightest axial vector comes
out as 1674 MeV [38] and thus deviates more strongly from
experiment.

Also given in Table 1 are the corresponding decay con-
stants, which have moderate deviations from phenomeno-
logical values. For the decay constant of 77 (1300) the exper-
imental upper bound of 8.4 MeV [101] is easily respected
and the results appear to be in an interesting ballpark when
compared to Ref. [97]. The results for the decay constant of
the lightest axial vector meson are likewise broadly consis-
tent with phenomenological results as obtained in [98] using
light-cone sum rules.

Pion form factors have been studied in [84] for HW and
SW models with the conclusion that the former tend to work
better.

5 Holographic transition form factors and short
distance constraints

In HLBL, the most important contributions come from
exchanges of single neutral mesons from the axial sector,
which involve their transition form factors, i.e., their cou-
pling to two (real or virtual) photons.

To compute the transition form factor of an individual
C = +1 meson one first looks at (¢(x))y, where ¢, is
the corresponding 4d field that can be found in one of the
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towers being multiplied by its holographic wavefunction
¢ (z) and the subscript V), indicates that V,, (x, z) now solves
the equations of motion subject to the boundary condition
V(x,0) = Vp(x). In Fourier space this is solved using the
bulk to boundary propagator by

Vi(Q.2) =Y U@V + J(Q. Vb u(Q), (27

and the axial vector and pion fields only having the normal-
izable terms.

The TTFs of pseudoscalars and axial vectors come exclu-
sively from the Chern—Simons action, which in form notation
reads

_ oL R
Scs = S¢s — Scss

N, i 1
B __ ¢ 2 3

Inthe HW1 case, where the axial vector field A 3s obeys the
same IR boundary conditions as Vj;, one needs to subtract an
extra term localized at zg [44,51]. For the TFFs of the pions
for example one finds

Ncgs

f]‘[n(Qla QZ) = _127_[2

20
/0 dz7(01.2)T (02, 2)d:¢
(29)

up to the possible IR subtraction term. In Fig. 5 the holo-
graphic wave functions of the ground-state and excited pions
are plotted for different choices of IR boundary conditions
in terms of v, (z) = 9;¢,/z. In the HW models with a scalar
field X it is possible to satisfy both constraints (14) and (17)
for all pseudoscalar mesons and the analogous constraints
for the TFFs of the axial vector mesons.

In fact, the bottom-up holographic models reproduce
exactly [45,50] the asymptotic dependence on the asymmetry
parameter w = (Q% — Q%)/(Q% + Q%) derived by Brodsky
and Lepage in pQCD [57-60,102],

Fr, (Q1, Q2)

2 2

No 2 1 1— 1

%&_;% (_2__1;)1nﬂ> (30)
1272 07+ 05 \w 2w I—w

at large Ql.2 — oo (the correct prefactor is obtained in the
HW1 and HW3 models, where the SDCs can be implemented
fully).

The analogous TFF in the top-down Sakai—Sugimoto
model fails to satisfy these constraints, but that is to be
expected since the gravitational theory is actually supposed
to be dual to a five-dimensional field theory, which becomes
four-dimensional large-N. QCD only at low energies below
the Kaluza—Klein scale Mkx.

@ Springer

Fig. 5 The first four pion mode functions y,(z) in the HW1m model
and in the HW3m version, with z in units of inverse GeV; the y, have
units of GeV, with y, (0) = —gs fz, The difference between these two
models is the different IR boundary conditions. (Figure taken from

[51])

In the chiral and large N, limit one can derive an exact
expression for the divergence of the VV A correlator. The
Goldstone bosons of the broken U(Nf)4 have an overlap
with the axial current proportional to its decay constant.
Polology then allows to derive (16), thereby fixing the nor-
malization of the TFF. Weak interactions couple to the axial
current and f;; appears in this way in weak processes and can
be extracted from experiment. Away from the chiral limit, but
still in the isospin-symmetric limit the holographic models
give the following interesting generalization [51] of (16)

00 N,
> fr Fa(0,0) = Tt 31)

n=1

For n > 1 all f7, are proportional to positive powers of
the quark mass and vanish in the chiral limit, but the higher
F(0, 0) are still non-zero in the chiral limit.

Axial vector mesons are more complicated, because their
scattering amplitude with two virtual photons involves two
asymmetric structure functions [99,103,104]. In the holo-
graphic QCD models considered here, this scattering ampli-
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tude is solely due to the Chern—Simons action (28), which
gives [38,39]

. N,
M paysys = zﬁtr(@zt“) e’é)sfz)aipéﬂvpa
x [4) 014403, 03) — 47, 0340(03, 0D ], ()

where

2 92 _zﬁfzo |:i ] A
An(Q1, Q7)) = 0 Odz dzj(Ql’Z) T (Q2, )V, (2).
(33)

Because J(Q,z) = 1 when Q% = 0, the Landau-Yang

theorem [55,56], which states that an axial vector meson

cannot decay into two real photons, is automatically satisfied.
The asymptotic behavior of (33) reads [38]

2FA
A4(0}. 03 — ng4,, F[“’“ — 2w)
Lw+na—wi l_w} (34)
+2 w W nl—i—w ’

which agrees with the pQCD behavior that was derived only
recently in Ref. [57].

As remarked at the end of Sect. 3, single pseudoscalar or
axial vector resonances cannot contribute to the leading short
distance constraints on the HLBL tensor. In the holographic
models infinite towers of resonances appear naturally and
it turns out that it is the tower of axial vector mesons that
is responsible for contributing to the two constraints (11)
and (12). The formula for the tower of axial vector meson
contributions to [T in the asymmetric region is

Mi(Q, 0, 03)

8

X rzo d
_ _Fgfo dz [EJ(Q,Z)} J(Q, DV (2)

1

20 d

X — 7' | —J ,Z/:| 4Z). (35
(M;,szfo [dz, (0.2 [ W), 39)
Resumming all the n-dependent terms and using the axial
vector bulk-to-bulk propagator one can show for all HW mod-
els [38,39,51] that in the same limit as in equation (11) one
gets

g2 2

(27)2 372’

lim lim Q}Q°M(Q, Q, Q3) = —

Q3—00 Q—00

(36)

which upon inserting the value for gs obtained from the
asymptotics of the vector current correlator reproduces pre-
cisely the result obtained in QCD. In Fig. 6 the build-up of
the correct asymptotic behavior is shown for the HW?2 model
with g5 = 2 for Q = 50 GeV.

-(31/2) % Q32 MN4(Q,Q,Qs)
1.0

0.8r
0.6
0.4}

0.2r

4%45

Fig. 6 Axial-vector contribution to Q% 0?%11,(0, Q, 03) as afunction
of O3 at O = 50 GeV in the HW?2 model normalized to the asymptotic
value (36) (with prefactor g% / (27)? set to one). The black line corre-
sponds to the infinite sum over the tower of axial vector mesons, and the
other lines give the contributions of the 1st to 5th lightest axial vector
mesons. (Figure taken from [38])

Q3[GeV]

As mentioned before, for large N. models in the chiral
limit a stronger result holds, namely one can drop the left-
most limit and (36) remains valid for all Q3. In the HW2
model without the fundamental scalar field X one can indeed
show analytically that this is indeed the case.

For the symmetric limit (12) a similar computation also
shows that axial vector mesons contribute to the limit, how-
ever this time they only reach 81% of the full value [39,51].
Thus in these holographic models it is the tower of axial vec-
tors that is responsible for satisfying the short distance con-
straints on the HLBL tensor at least qualitatively; the noto-
rious MV-LSDC is satisfied exactly in the HW1 and HW3
models.

Summing the infinite tower of pseudoscalar mesons can
also lead to a different asymptotic behavior than given by
the individual contributions. In [51] it was shown that the
massive HW models with M)Z( = —3 give

M In(Q3)

22500 N
0’037, 0. 09 ~ 5=,

0, (37)

which means that the tower of pions does not contribute to
the leading short distance constraints. Also, (37) is propor-
tional to the quark mass indicating that the contributions of
the massive pions are even more suppressed in the chiral
limit. Note that in these models M, is a fixed parameter that
does not run with energy. In the HW models where M)z( is
changed from its standard value, also a (fractional) power-
law enhancement due to the resummation is possible, but
never enough to change the result that the LSDC is governed
exclusively by the infinite tower of axial vector mesons. In
fact, when M}z( < —3, as is the case for the HW1m’ and the
HW3m’ model that fit the mass of the lightest axial vector
meson and the first excited pseudoscalar, respectively (see
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F(Q%,0) [GeV™']
0.3 T T T
¢ F(0) (PDG 2018)
0.5 H+  CELLO )
’ H+ CLEO
~+  BESIII preliminary
o2 % §
3 ss
G
. HW1

015F Hw2 .
0.1

0.05

Q%[GeV?]

Fig. 7 Data for the 7° TFF from CELLO, CLEO, BESIII-preliminary
as compiled in Fig. 3 of Ref. [30] compared to the results of the various
holographic models. The result of the recent dispersion relation study
of Ref. [25] (not shown to avoid overcrowding) lies right in between
the SW (red) and HW1 (orange) result, with the lower end of the error
band given in Ref. [25] nearly coinciding with the SW result

Table 1), even the logarithmic enhancement in (37) due to
the resummation of massive pions disappears.

6 Comparison of holographic transition form factors
with experimental data

In the HLBL contribution to a,, the most important contri-
bution is due to the neutral pion, for which the singly-virtual
TFF is well studied experimentally while direct data for the
doubly-virtual case are still missing.

In Fig. 7 , the compilation of singly-virtual data of
Ref. [30] are compared with the holographic results of the
chiral holographic models of Sakai and Sugimoto (SS), HW1,
HW?2, and a simplified soft-wall (SW) model. The HW1 and
HW?2 models, which attain 100% and 62% of the leading-
order asymptotics, respectively, nicely bracket the experi-
mental results at all energies, while an optimal fit appears to
take place for the SW model which happens to produce 89%
of the SDC. The SS model, which at high energies decays
faster by an extra factor of \/@ [50], is below the experi-
mental data for 0% > 0.5 GeV?2.

In the doubly-virtual case, the bottom-up holographic
models, in particular HW1 and SW, compare well [50] with
results from the data-driven dispersive approach of Ref. [25]
as well as the recent lattice extrapolation of Ref. [26].
Because in the calculation of the HLBL contribution to a,,,
the TFFs are needed for both singly and doubly-virtual con-
figurations, and previous models for the pion TFF do not
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reproduce the asymptotic w-dependence, the holographic
results seem to offer an important improvement. (Recently,
[30] proposed a new interpolating ansatz for the pseudoscalar
TFFs which matches the asymptotic pQCD result. However,
for 0% < 2 GeV the holographic pion TFF agrees signifi-
cantly better with the mentioned data-driven and the lattice
results in the doubly virtual region [50].)

For axial vector mesons, experimental information on the
TFFs is rather limited. The predictions of holographic QCD
models, which seem to work surprisingly well for pions after
having fixed a minimal set of parameters, are therefore partic-
ularly interesting. The counterparts of the pseudoscalar 7°, 7,
and n’ are the neutral a;(1260) and the isoscalars f1(1285)
and f(1420). Because the Landau-Yang theorem forbids
decays into two real photons, one usually defines a so-called
equivalent two-photon decay width through [103,105]

Ly = Jim T(A~ vivrIM;/207), (38)
]~>

which is determined by the value A(0, 0) in (32). From the L3
experiment there are data for f1(1285) and fl’ (1420) [106,
107]. The former correspond to [51,99]

|A(0, on;ﬁ’izgs) = 16.6(1.5) GeV 2. (39)

According to Refs. [40,104] the corresponding value for the
lightest a; meson reads

|40, 0[5 71560, = 19.3(5.0) GeV 2. (40)
In the massive HW models one finds the range [51]
|A0, 0)[p—1 = (19.95---21.29) GeV 2, 41

which is compatible with the latter, but above the value
obtained for the f1(1285) meson; the HW2 model, which
has only 62% of the leading-order pQCD asymptotics, yields
a smaller value of 16.63 GeV~2. Evidently, the holographic
QCD models give at least a reasonable estimate of the ball-
park.

The experimental results for the singly-virtual TFF for
f1(1285) [106] have been found to be close to a dipole form,
which is shown in Fig. 8 as a grey band together with the
results for the HW1 and HW2 models and the SS model. The
former two almost coincide when divided by A (0, 0), and the
result of the SS model is significantly smaller, but all of them
are compatible with the experimental result. In the important
region Q% < 2 GeV?, the HW results are however in better
agreement.

In previous evaluations of the axial vector contribution to
ay, mostly a simple dipole ansatz has been chosen for all
virtualities, in particular in Ref. [15] used in the WP [3].
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Fig. 8 Single-virtual axial vector TFF from holographic models (SS:
blue, HW1: orange, HW2: red) compared with dipole fit of L3 data
for f1(1285) (grey band). The parameters of all models are fixed by
matching fr and m,. The results for HW1 and HW2 almost coincide,
with HW2 at most a line thickness above HW 1. When the mass scale
Zy !is not fixed by m,, but instead matched to the pQCD with N. = 3,
HW?2 (UV-fit) instead gives the significantly larger result denoted by
the red dotted line. (Figure taken from [38])

QPA(GR,QP)IA(0,0)
0.14r
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Fig. 9 Double-virtual axial vector TFF for Q% = Q% = 02 from
holographic models (SS: blue, HW1: orange, HW2: red). The black
dashed lines denote the extrapolation of L3 data with a dipole model

for each virtuality as used in the calculation of a;{' in Ref. [15]. (Figure
taken from [38])

Figure 9 shows the difference of the doubly-virtual TFF at
Q% = Q% obtained in the holographic models compared to
such a dipole ansatz with the parameters obtained from the
L3 experiment, which suggests that a dipole ansatz likely
underestimates the contributions of the individual contribu-
tions of axial vector mesons. However, as the discussion in
Sect. 5 has shown, the whole tower of axial vector mesons
needs to be considered to assess the numerical importance of
the LSDC in the HLBL contribution to a,.

7 Results for the HLBL contribution to a,

In order to obtain the HLBL contribution to the muon anoma-
lous magnetic moment, the various form factors have to be
used for the respective components of the HLBL scattering
amplitude analogous to (18) and inserted into the master for-
mula (8).

Fig. 10 The integrand p,(Q1, Q2, ) in (8) in units of GeV~2 for
Q1 = Q2 and t = 0 (implying O3 = V2Q) in case of the HW2
model. The black line is the result from the infinite sum over the tower
of axial vector mesons, the other lines give the contributions of the 1st
to 3rd lightest axial vector meson multiplets. (Figure taken from [38])

Table 2 Results in multiples of 10~!! for f; = 92.4MeV for the
Sakai—Sugimoto model and the various chiral bottom-up models [50].

For estimating also the contributions a;} and aﬁ/ F (0, 0) was rescaled by
the central experimental values quoted in [30]. For " a second value is
given which includes a presumably more realistic extrapolation obtained
by additionally upscaling the mass scale within F' (Q%, Q%) by +10%
in line with the higher A parameter in the fits carried out in [30]. HW2
and HW2yy _g; with the lower values for n” correspond almost exactly
to the parameter choices “Set 1 and “Set 2” of Cappiello et al. [39]

0

i

ay aﬂ aZ Sum
SS 48.3 11.7 7.819.5 69.4
SW 59.2 15.9 11.2|134 67.8]88.5
HW1 65.2 18.2 13.2|15.6 96.6199.0
HW2 56.6 14.8 10.3]12.4 81.7|183.7
HW2yv.fie 75.4 21.9 16.1/19.0 113.4|116.3
WP [3] 63.6 (2.7) 16.3 (1.4) 14.5 (1.9) 94.3 (5.3)

For the ground-state pseudoscalar bosons, such a calcula-
tion has been carried out first in [47] for the massive HW1
model, but using only the first few terms of a mode expan-
sion of the bulk-to-boundary operator, and for a set of chiral
holographic QCD models (SS, HW1, HW2, and SW) in [48]
by replacing their complicated form factors with simplified
versions. A complete evaluation of the models considered in
[48] was only recently carried out in [50], yielding the results
given in Table 2.

While for pseudoscalar bosons, only I1;..3 contribute,
axial vector meson contributions involve all IT; functions
in (8). This was evaluated in Ref. [38] using the chiral HW 1
and HW2 models with the results given in Table 3. As shown
in Fig. 10, the integrand of the axial vector contributions is
strongly dominated by the lightest axial vector meson, but the
higher excitations cannot be neglected. As seen from Table
3, they increase the axial vector contribution by 29% in the
HW1 model and by 25% in the HW2 model. In Ref. [39]
the analogous calculation was carried out for two sets of
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Table 3 The contribution of the infinite tower of axial vector mesons

to ¥ in multiples of 10~!! obtained in Ref. [38]. The entries j < n

give the contribution of the first n axial vector multiplets

j=1 j<2 j<3 j<4 j<5 ay
HWI1 314 362 379 391 396 406
HW2 230 262 274 279 282 287

HW2yv. 23.7 26.9 28.1 28.6 28.9 29.4

Table4 Combined results for the HW1 and HW2 models, with the axial
vector contribution split into longitudinal and transverse contributions

HW1 HW2
0 ’

PTARRAKE 99.0 83.7

atv[L +T] 40.6 [23.2+17.4] 28.7 [16.6+12.0]

all Ay 140 12

parameters in the HW2 model, where “Set 1 corresponds
essentially to the choice made in [38], namely to fit the
infrared parameters f; and m,, which leads to an incom-
plete fit (62%) of the UV asymptotics; “Set 2” instead corre-
sponds to what has been called HW2(UV-fit) above, where
one has full UV asymptotics but an excessively heavy rho
meson with m, = 987 MeV. The latter has the effect that the
pseudoscalar contribution is overestimated, while the axial
vector meson contribution remains almost unchanged.

In [38,39,50], the chiral HW models were used for the
TFF but in the propagator of the pion the physical mass was
inserted by hand. In Ref. [51] the HW1/HW3 models were
studied with finite quark masses in the isovector channels,
and also the effects of the infinite tower of excited pions was
evaluated. The results are shown graphically in Fig. 11. The
massive HW models have the advantage that f;; and m, can
be kept at physical values while 100% of the UV asymptotics
in the TFFs and in the MV-LSDC are attained.

However, as argued in [51], it may be more realistic to
demand only ~ 90% of the correct leading-order UV asymp-
totics, because at moderately large energies next-to-leading
order corrections of the UV behavior of the corresponding
magnitude are present [108,109]. The maximum of pristine
HW1/HW3 results could therefore be viewed as upper limits,
and estimates for lower limits were proposed by tuning g%
such that 85% of the SDCs are obtained. This leads to

a7’ = (60.5---66.6) x 1071, (42)

! The fact that the higher axial vector meson modes do not become more

important for HW2(UV-fit) has to do with the relatively large masses

of excited axial vector mesons in this case (mf;l*W I = 2154 MeV and
1

m!W? = 2261 MeV but m'~ "V = 2880 MeV [38]). Note that
1 1

the mass of the first excited a; meson according to PDG [96] is only
1655(16) MeV.

@ Springer

which nicely brackets the WP result [3] of 63.6(2.7) x 1011,
A flavor symmetric extension of the results for the contribu-
tions from the infinite towers of axial vector mesons and
pseudoscalars leads to the estimate [51]

al =4a7 = (32---72)x 107",
af, =(20.8---250) x 107",
af = (36.6---43.3) x 107",
af™ = (39.8-.-50.5) x 1071, (43)

The latter results (with or without® the excited pseu-
doscalar contributions) could be compared to the WP [3]
values attributed to the axial sector and contributions related
to the SDC, a)P®i4 = 6(6) x 107 and a)PSPC =
15(10) x 10~!'", which with linearly added errors gives
21(16) x 107!, which is significantly smaller. While the
estimates for the SDC contribution is more or less compat-
ible [110,111], the main difference comes from the (trans-
verse) contribution of axial vector mesons (Table 4). The
holographic QCD results thus strongly suggest that their con-
tributions have been underestimated so far. In fact, a recent
re-evaluation of predictions from resonance chiral models
also suggests a larger contribution from axial vector mesons
[40].

Recently, also the contribution of scalar mesons has been
worked out [112] in a variant of the HW model where the
scalar X has additional interaction terms | X |2 F2 which can
be fitted to match phenomenological input on the decay
widths of f(500), f0(990), and the a((980), albeit by using
a different set of parameters for each of them. Here the holo-
graphic result for the sum of their contribution to a, is

ai?™ = -9(2) x 107", (44)

in perfect agreement with a recent evaluation within the dis-
persive approach [113].

8 Conclusion and outlook

The simplest (HW) models of QCD where the bulk geometry
is AdS and thus does not account for a running coupling con-
stant and where conformal symmetry is broken by a sharp cut-
off have nevertheless proven to offer valuable insight in how
the long-standing difficulty of hadronic models to account
for the MV-LSDC can be resolved while being compatible

2 While the decay constants of the excited pseudoscalars in the
HWI1/HW3 models are found to have values compatible with experi-
ment, as discussed above, the coupling of the first excited pseudoscalar
to photons appears to be significantly above the upper bound obtained
in [29] for 7 (1300).
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Fig. 11 Barchart of the individual contributions to ], ! in the various
HW models, with excited modes given by increasingly darker colors,
blue for the 70, red for the ap’s

with the chiral limit. Moreover, with a minimal set of param-
eters to fix, quantitative predictions frequently turn out to
reproduce experimental and phenomenological results with
errors to be expected from a large- N approximation to QCD,
although no top-down construction for a full holographic dual
to (large-N) QCD is available. In cases where high precision
is required, as in the case of the HVP contribution to the
muon anomalous magnetic moment, the simple holographic
models considered cannot help to resolve the uncertainties
of the SM prediction resulting from the recent discrepancy
of data-driven and lattice results. However, in the case of the
HLBL contribution, where the theoretical error is currently at
the level of 20%, and where in particular the important con-
tribution of axial vector mesons has an uncertainty of 100%,
holographic QCD can certainly provide valuable clues, com-
plementary to ongoing efforts with data-driven approaches
(e.g., [99]) and all-inclusive lattice evaluations [31,32].

It is certainly of interest to extend further the existing
holographic calculations of various HLBL contributions to
ay. On the one hand, additional hadronic channels can be
explored, in particular scalar and tensor mesons as well as
glueballs, where experimental data are sparse or lacking. On
the other hand, the holographic QCD models reviewed here
can be replaced by refined models which take into account
the mass of strange quarks and the Witten-Veneziano mass
from the U(1)4 anomaly. Moreover, the simple AdS back-
ground could be replaced by one that represents better the
behavior of hadronic observables at higher energies, which
is indeed achieved in the various models of improved holo-
graphic mentioned above.
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