
Coordinate conversion for the Hough
transform

Edvin Eriksson
Supervisor: Richard Brenner, HEP, Uppsala University

Subject Reader: Rebeca Gonzalez Suarez, HEP, Uppsala University
Exam Coordinator: Matthias Weiszflog

June 2021

1

Abstract

This thesis attempts to develop a conversion algorithm between lo-
cal coordinates in constituent detector modules and global coordinates
encompassing the whole detector structure in a generic detector. The
thesis is a part of preparatory work for studying the Hough Transform
as a means of track reconstruction in the level-1 hardware trigger in the
upgraded trigger and data acquisition (TDAQ) system in the phase 2
upgrade of the ATLAS detector at CERN. The upgrades being made
are to withstand much more extreme conditions that come with the
high-Luminosity Large Hadron Collider (HL-LHC).

Two algorithms have been made and then implemented in Python
scripts to test their feasibility and to compare them against each-other.
The Rotation algorithm uses several rotations to correctly place the lo-
cal coordinates in the global system. The second, the Shear algorithm,
simplifies the process into two shears and one rotation, using the small
angle approximation. Both algorithms need to be extended to work
with more parts of the detector to be considered complete. Despite
having lower maximum precision the second algorithm is considered
the most promising attempt, since it is much less sensitive to the trun-
cation error that results from working in an integer environment, which
is a requirement for use in FPGAs.

2

Sammanfattning

I denna uppsats görs ett försök att skapa en omvandlingsalgoritm
mellan lokala koordinater i konstituerande detektormoduler och glo-
bala koordinater i hela detektorstrukturen för en generisk detektor.
Uppsatsen är en del i förberedande arbete för att undersöka hur Hough-
transformen kan användas för spårrekonstruktion i den hårdvarubase-
rade level-1 triggern i det uppgraderade trigger- och datainsamlings-
systemet (TDAQ) i fas två-uppgraderingen av ATLAS detektorn vid
CERN. Uppgraderingarna som görs är för att kunna utstå de mycket
mer extrema förhållanden som medförs av högluminositetsuppgrade-
ringen av Large Hadron Collider (HL-LHC).

Två algoritmer har skapats och implementerats i Pythonskript för
att testa genomförbarhet och för att jämföra med varandra. Rotations-
algoritmen använder ett antal rotationer för att korrekt placera ut de
lokala koordinaterna i det globala systemet. Den andra, Skjuvalgorti-
men, förenklar processen till två skjuvningar och en rotation med hjälp
av liten vinkel-approximationen. Båda algoritmerna behöver utökas för
att fungera för fler delar av detektorn för att anses kompletta. Trots
lägre maximal precision bedöms den andra algoritmen vara det mest
lovande försöket, eftersom den är mycket mindre känslig för trunke-
ringsfelet som kommer av att arbeta i en heltalsmiljö, som är ett krav
för FPGA-implementationen.

3

Contents
1 Introduction 5

2 Background 6
2.1 The Hough Transform . 6
2.2 Inner Tracker structure . 7
2.3 Speed requirements . 8
2.4 Bit shifiting . 8

3 Materials and Method 9
3.1 Evaluation . 9
3.2 Data . 9

4 Results 12
4.1 The modulo 4 cycle . 12
4.2 Two algorithms . 13

4.2.1 Rotation algorithm . 14
4.2.2 Shear algorithm . 15

4.3 Discrepancies . 16

5 Discussion and Outlook 20

6 Conclusions 21

A Code 24
A.1 rotation.py . 24
A.2 shear.py . 32

4

1 Introduction
The current hardware of the Large Hadron Collider (LHC) at CERN is near
its limit both in terms of capacity and radiation damage [1]. The most impor-
tant product of the LHC is high-energy particle collisions, for measurements
at the various experiments connected to it. Therefore one of the most im-
portant measures of the LHC’s performance is the rate of collisions, both
instantaneously and over time, usually measured in collision rate per unit
area, luminosity, and the (over time) integrated luminosity [1]. While the
LHC is currently shut down (Long Shut-Down 2, LS2) for maintenance and
some smaller upgrades, when it starts again for Run 3 in 2022 it is planned
to run at the current hardware’s maximum luminosity until 2024 when it will
reach an accumulated integrated luminosity of 350 fb−1 (for reference Run 1
data totalled 30 fb−1 and run 2 190 fb−1) [1] and parts of the collider and
detectors will have accrued so much radiation damage as to negatively effect
performance [3].

Instead of just repairs Long Shut-Down 3 (LS3) from 2025 to 2027 will
contain several technology updates and engineering upgrades that have been
in the works since 2010 [1]. These will allow the LHC to reach a luminosity
five times higher than currently feasible and over its decade of operation up
to 4000 fb−1 integrated luminosity [1]. The upgraded machine is called the
High Luminosity LHC (HL-LHC).

One of the detectors at the LHC is the ATLAS detector, as mentioned
above parts of it are also starting to receive too much radiation damage. It
is also not engineered to handle the increased collision rate of the HL-LHC,
which is why it too will undergo several upgrades [2][3].

Part of the problem, which will be further exacerbated by the HL-LHC,
with recording data from HL-LHC events is the amount of data; the rate of
beam crossings is 40 MHz, each of which generates a pileup of on average
200 proton-proton interactions, and each proton-proton collision generates
several particles in turn [2]. There is simply too much data to process and all
be saved to storage. Luckily a lot of collision events contain physics processes
that are already well understood and those that require further exploration
have signatures that can be used as conditions (or triggers) in an Event Filter
to activate further processing and finally storage of the data in the so-called
Trigger and Data Acquisition system (TDAQ) only for interesting events. [3]
Filtering as early as possible in the detector is beneficial, since it reduces the
load on all components that come after.

The innermost part of the ATLAS detector is the Inner Tracker (ITk),
which records the position of charged particles moving through it at discrete
points [2]. As part of the Event Filter the paths of charged particles will be

5

reconstructed using ITk data, by a system called Hardware Tracking for the
Trigger (HTT) [3]. The HTT will be implemented using a combination of
custom Associative Memory Application-Specific Integrated Circuits (AM-
ASICs) and commercially available Field-Programmable Gate Arrays (FP-
GAs) [3]. An alternative method, which has been investigated by members
of the Uppsala University ATLAS group [12][13], is using the Hough Trans-
form [4] for track reconstruction. A system based on the Hough Transform
could be implemented using only FPGAs, which would potentially reduce
costs [12], however the Hough Transform requires associating the locations
of datapoints from different parts of the ITk.

This thesis is an attempt to create an algorithm that associates the local
coordinates of the datapoints with locations in the global view of the ITk for
use with the Hough Transform in an FPGA implementation.

2 Background

2.1 The Hough Transform

The Hough Transform is a highly efficient tool for finding parametrized fea-
tures in datasets, often lines or curves, first described by Hough in 1962 and
then generalised by Hart and Duda in 1972 [4]. The equation at the centre
of the Hough transform is

ρ = x cos θ + y sin θ (1)

where θ is the angle of the normal of a line in the xy-plane and ρ is its alge-
braic distance from the origin. The ρθ-parametrization is called the normal
parametrization by Hart and Duda [4]. The big advantage, relevant to par-
ticle paths, of the Hough transform is that points on a line in the xy-plane
appear as lines intersecting a single point in the parameter space. In a dis-
crete environment this allows the parameter space to act as a heat map for
potential lines in the xy-plane, which in turn ends up being an efficient way
of detecting co-linearity [4]. An illustrative example is made with the pink
lines at (ρ, θ) = (60, 90) in Figure 1

6

Figure 1: Demonstrating the principle of points along a line accumulating
at a point. In the ρθ-plane the pink lines through the points all accumulate
at the same point, telling us the lines are very similar, and therefore make
a candidate for a path through all these points. Image: Public Domain,
commons.wikimedia.org/wiki/File:Hough_transform_diagram.png

2.2 Inner Tracker structure

The proposed ITk for ATLAS consists of a barrel section with two mirrored
endcap sections at each end. The detecting material in the ITk is placed in
modules, spread out in the detector structure. There are two main types:
pixel modules which contain a grid of silicon pixels, and strip modules which
contain stacked strips of silicon. The modules are placed in layers, with the
more granular pixel modules closer to the collision point of the two proton
beams. There are a total of nine module layers in the barrel section, four outer
strip layers, and five inner pixel layers. Near the central axis the endcaps
consist of a complicated net of pixel modules, more adequately described in
ch. 3 of the Technical Design Report [2]. Further out radially the strip layer
endcaps have modules placed in petal shapes. Each module only records hits
in its own local coordinate system. To restore some of the accuracy of the
strip modules in the long direction of the strips strip modules are placed in
paired layers with a small angle between the layers such that the strips of
the different modules cross each-other.

For this thesis a similar, generic detector from a previous study by by
Gradin, Mårtensson and Brenner [12] was used instead of the actual ATLAS
layout. The generic detector has 5 pixel layers and 5 double strip layers for
a total of 15. A cross section of each detector is shown in Figure 2.

7

commons.wikimedia.org/wiki/File:Hough_transform_diagram.png

Figure 2: Cross sections of the ATLAS ITk [2] and the generic detector [12].
The design is mirrored in negative z. Red lines represent pixel layers and
blue lines strip layers, the brighter blue line in the ATLAS ITk represents
the coil of a solenoid magnet. Images, Left: CERN, License: CC-BY-4.0;
Right: Gradin et al., fair use.

2.3 Speed requirements

In the HL-LHC, the high rate of events generated, the pileup of 200 [1] events
per beam crossing puts stringent time requirements on the Event Filter. As
outlined by the relevant Technical Design Report delays of no more than 6-10
µs [3] may be required for the track reconstruction system.

2.4 Bit shifiting

Bit shifting is a powerful tool in specific high-efficiency computing applica-
tions, being a method for direct manipulation of the computer’s native bits
it is generally faster than more high-level methods which can be especially
gainful when using FPGAs or other hardware applications [11]. For example
8 divided by 2 in binary is

...01000

...00010
= ...00100

or simply a shift of the bit one step to the right. More operators exist like
AND, OR, COMPLEMENT and XOR [5]. Another use for bitwise operators is very
efficient modulo calculations for powers of 2. The AND operator returns 1 if
the corresponding bits in both a and b are 1, otherwise 0. So for a mod 2n set
b = 2n − 1. The effect is similar to x mod 10n in base 10, you keep only the
n last digits! For further reading on the subject this Real Python tutorial [6]
and this StackOverflow thread [7] are recommended.

8

https://creativecommons.org/licenses/by/4.0/

3 Materials and Method
To develop an algorithm for correlating local and global coordinates a script
implementing said algorithm was written in Python [8] and the ROOT data
analysis framework [9]. The data that the script was tested against was a
root-file containing a set of 100 000 simulated muon tracks that have gen-
erated hits in the generic detector simulated by Gradin et al. [12] using
Geant4 [10].

3.1 Evaluation

To test whether the algorithm is successful or not a set of requirements were
made. The algorithm must:

• correlate local and global coordinates

• be able to handle large amounts of data (the dataset used was ∼300
MB total)

• be able to handle multiple strip layers

• be possible to implement in FPGA’s in a manner that saves on physical
resources (memory and FPGA chips) and computation time

Since Python is a high-level programming language with advanced logic
and functions that would be either overly slow, or unavailable [11] in a Hard-
ware Description Language that is used with FPGA’s the last requirement
was made into a set of constraints that the code must follow to ensure that
the algorithm is not overly pythonic:

• Use few steps

• Enable bit manipulation by using factors 2n whenever possible

• Work in an integer environment since this is faster on an FPGA [11]

• Use parameters, constants and lookup-tables rather than complex arith-
metics

3.2 Data

The input data from the simulation that was used to develop the code and
test the algorithm was the local x, y, and z coordinates, along with the unique
identifiers of the modules called “hash codes”, all pictured in Figure 3. To

9

calculate the error of the method the global X, Y, and Z coordinates, pictured
in Figure 4, were also used. Furthermore a limited region (highlighted in red
in the figures mentioned above) in layers 5 and 6 in the middle of the most
irradiated part of the detector was selected to develop the algorithm on since
the high number of hits and limited number of modules would make isolating
errors easier.

Figure 3: Histograms showing the total distribution of the local coordinates
and the hash codes. The red line shows the data selected for use in the
Python code and the black is the total.

10

Figure 4: Scatter plot of the global coordinates included in the simulated
data, with the selection made in the Python code highlighted in red. Bottom
right is a close-up of the selection with the borders between the modules
visible and layer 5 given a slightly darker hue.

11

4 Results
The selection consists of modules with hash codes 5520-5541. Module 5520
is placed at Z=0 and was therefore selected alone to figure out the placement
of the local coordinates in the global XY-plane. Through carefully studying
the scatter plots in Figure 4 one can see that there are 28 rows of modules
in the 5-6-double layer placed at a radius of 400±5 mm, giving an global
angle of φ = π/7 rad around the Z-axis for the selection. One can also
see a small rotation of the module rows from the tangent around the circle
and an even smaller rotation in the plane of the modules from the “crossing
angle” mentioned in 2.2. Studying the discrepancy when performing the
translations allowed the first angle to be determined to be a −π/2 turn plus
a π/18 rotation along the local z-axis for θ = −4π/9 rad and the second to
γ = 20 mrad around the local y-axis.

4.1 The modulo 4 cycle

Extending the selection to contain multiple modules exposed the four-step
cycle determining placement in layer 5 or 6, which way the γ-rotation is
applied, and the placement of the local origins along the global Z-axis.

1. layer 5, -γ +Z

2. layer 6, +γ +Z

3. layer 5, -γ -Z

4. layer 6, +γ -Z

Further cycles places modules along the Z-axis according to

Z = ±(25N + 13)

where N is the number of completed cycles. The row of modules contains
240 modules so N ≤ 59. The cycle i presented visually in Figure 5.

12

Figure 5: Scatter plot of the global coordinates for hash codes 5520-5523,
layer 5 is darker and layer 6 is brighter for visibility. This demonstrates how
the modulo 4 (0-3) cycle affects the γ-rotation and placement of the local
origin along the global Z-axis, and how the layers are handled. 1’s and 3’s
are in layer 6, and 2’s and 3’s are in negative Z. The cycle would continue by
placing hash 5524 (a 0) to the right of hash 5520, etc.

4.2 Two algorithms

Two algorithms were created, one simply performs the rotations and displace-
ments found at the start of section 4, and one that takes as many shortcuts
as possible. The conversion from floating point to integer environments was,
similarly to Hettiarachchi et al. [11], done by a scale factor 2n. Both al-

13

gorithms were tested for a few n’s and with floating-point, to to represent
n→∞.

4.2.1 Rotation algorithm

The following pseudo-code recounts in general the steps taken by the Rota-
tion algorithm. The actual Python code is listed in Appendix A.1.

for every hit{
fetch hash
if 5520 <= hash <= 5541{

fetch and scale local xyz and set to temp vars xyz_t
if hash&3 is 1 or 3{

invert gamma in rot_Mat_TG
set R to 395+10}

else{
set R to 395}

create temp vars xyz_t2 = rot_Mat_TG*xyz_t
Add to x_t2: R
create global XYZ = rot_Mat_phi*xyz_t2
if hash&3 >= 2{

subtract from Z: 25*(hash-5520)>>2 + 13}
else{

add to Z: 25*(hash-5520)>>2 + 13}
output, scaled back down: X,Y,Z

}}

Note that in case matrix multiplication is not available the rotations may be
done by normal multiplication of each of the temporary coordinate variables
with the matrix elements. The latter is the way it is done in the Python code,
to be on the safe side. The “&” represents the AND bit operator mentioned in
Section 2.4.

All variables are assumed to be scaled integers and operations to be nor-
malized for the scale. In the Python code this is done by connecting the
multiplication operator with a whole number division by the scale factor 2n.
In a more realistic implementation, this would be handled internally, see the
vector multiplication kernel in Hettiarachchi’s paper for an example [11]. The
θγ-matrix, and the +10 to the radius are the same for all strip layers, but
the radius of 395 is specific to the 5-6-layer and the 5520 base to the selected
row in the layer.

14

4.2.2 Shear algorithm

The shear algorithm uses the small angle approximation to replace the γ
rotation, since it is only 20 mrad, even second order terms are discarded.
This allows a single rotation around the global Z by the sum of θ and φ.

The following pseudo-code recounts in general the steps taken by the
Shear algorithm. The actual Python code is listed in Appendix A.2.

load constants: sinphi, cosphi, sinPT, cosPT, X_off, Y_off
for every hit{

fetch hash
if 5520 <= hash <= 5541{

fetch and scale local xyz and set to temp vars xyz_t
create temp var gamma = 0.02
if hash&3 is 1 or 3{

create temp var X_L6 = 10*cosphi
create temp var Y_L6 = 10*sinphi
invert gamma}

else{
create temp var X_L6 = 0
create temp var Y_L6 = 0}

create temp var z_off = 25*(hash-5520)>>2 + 13
if hash&3 >= 2{

invert z_off}
create temp var x_t2 = x_t - gamma*z_t
create temp var z_t2 = z_t + gamma*x_t
create X = cosPT*x_t2 - sinPT*y_t + X_off + X_L6
create Y = sinPT*x_t2 + cosPT*y_t + Y_off + Y_L6
create Z = z_t2 + z_off
output, scaled back down: X,Y,Z

}}

Here the θ-plus-φ-rotation is explicitly handled by direct multiplication with
constants to save on processing. Note also that the radial displacement is
split into x and y factors which are added right after the rotation.

The previous notes on normalization and selection-specific values are also
relevant here.

15

4.3 Discrepancies

The discrepancy between the true globals from the data and the calculated
dittos for the two algorithms is plotted in Figure 6. It was tested for n = 8−13
and with floating point. The plots illustrate an erratic behaviour in the mean
of the errors due the truncation of the 8 trigonometric terms in the rotation
matrices in the rotation algorithm. Also shown is how the shear algorithm in
a more stable way moves to a minimum, while also achieving decent accuracy
already at n = 8.

To further illustrate the characteristics of the different algorithms detailed
plots of the errors are given in Figures 7, and 8. The former is the result of
running the Shear algorithm with n = 8 and the latter is from a run of the
Rotation algorithm with n = 11. The width of the distributions on the right
side depend mostly on the error in γ. For X and Y the pitch depends on both
θ and φ, with a stronger dependence on θ, while the height displacements
also depend on both θ and φ, but with reversed strength relations.

16

Figure 6: Plots of the mean and standard deviation of the error distributions
for n = 8, 9, 10, 11, 12, 13 and floating-point for the three coordinates. The
height of the line is determined by the mean and the width by the standard
deviation. Note that all three of the Rotation-lines go toward 0 in both
metrics at floating-point precision, making the lines difficult to see. The
initially chaotic behaviour of the mean paired with the rapid reduction of
the width of the distribution from the Rotation algorithm is contrasted with
the stable but limited convergence of the Shear algorithm.

17

Figure 7: Detail of errors from running the Shear algorithm with n = 8. On
the left is a histogram to show the distribution and on the right is a scatter
plot where the error’s dependence on the own coordinate is examined. The
floating-point, or maximum precision, solution is shown in red. The stats on
the left are for the floating-point distribution.

18

Figure 8: Detail of errors from running the Rotation algorithm with n = 11.
On the left is a histogram to show the distribution and on the right is a scatter
plot where the error’s dependence on the own coordinate is examined. The
floating-point, or maximum precision, solution is shown in red. The stats on
the left are for the floating-point distribution.

19

5 Discussion and Outlook
The goal of this thesis was to develop a coordinate conversion algorithm
for detectors that could be implemented in FPGAs to enable the use of the
Hough transform in particle path reconstruction.

The requirements and limitations outlined in section 3.1 are at least par-
tially fulfilled by the Shear algorithm that was developed. The biggest limita-
tion pertains to the expansion of the selection into multiple rows and multiple
double strip layers, since that part is completely hard-coded in the current
implementation. The first step one would take in further developing the al-
gorithm would be to generalise this part. Though that would come with its
own challenges, among other things the number of rows is not the same in
every layer.

Both versions of the algorithm contain trigonometric functions which are
non-trivial to implement in an FPGA. A common way to implement such
functions is look-up tables, as shown by Hettiarachchi et al. [11], which should
be sufficient here too. However it might be prudent to limit the use as
demonstrated by the chaotic behaviour of the rotation algorithm in Figure 6,
which comes from the truncation of the 6 trigonometric variables.

If the Hough transform were to be set up to accept cylindrical coordi-
nates it might be worth to explore remaking the algorithm in a cylindrical
environment, since it would greatly simplify the rotations.

From this thesis it seems that the Shear algorithm has the most advan-
tages, since the small angle approximation simplifies the rotations, providing
stability even with small scale factors and only loses a small amount of pre-
cision. However if higher precision is needed and larger scale factors isn’t
an issue, the Rotation algorithm might be the only option. Since it contains
3 elementary rotations and a displacement using a fast algorithm for rota-
tions is a priority. In this case the CORDIC [14] algorithm might be worth
investigating in a future study.

Upgrading the ATLAS detector is a large undertaking. The potential
savings in resources and work hours from avoiding the custom AM-ASICs,
which have to be manufactured in-house and are also inflexible with regards
to the detector structure [12], motivates developing the Hough implementa-
tion further.

20

6 Conclusions
Given that the global coordinates used in the Hough transform should be
cartesian and limits to the size of the scale factor the Shear algorithm is
a promising attempt at a conversion algorithm, however it still requires an
extension to handle all layers around the whole detector. The Rotation al-
gorithm is possible to use, but only with large scale factors, since it is very
sensitive to the truncation error. It also has the same need for an extension
into more layers.

21

References
[1] I. Béjar Alonso et al. (Eds.) High-Luminosity Large Hadron Collider

(HL-LHC): Technical design report, CERN Yellow Reports: Mono-
graphs, CERN-2020-010. CERN, Geneva, 2020, https://doi.org/10.
23731/CYRM-2020-0010

[2] The ATLAS Collaboration, Technical Design Report for the ATLAS in-
ner tracker strip detector, 2017. Fetched May 2021 https://cds.cern.
ch/record/2257755/files/ATLAS-TDR-025.pdf

[3] The ATLAS Collaboration, Technical Design Report for the Phase-II
Upgrade of the ATLAS Trigger and Data Acquisition System, 2018.
Fetched May 2021 https://cds.cern.ch/record/2285584/files/
ATLAS-TDR-029.pdf

[4] Richard O. Duda, Peter E. Hart, Use of the Hough Transformation to
Detect Lines and Curves in Pictures, Comm. ACM. vol 15 1972. Fetched
May 2021 http://www.ai.sri.com/pubs/files/tn036-duda71.pdf

[5] Wiki contributors BitwiseOperators The Python Wiki, last edit
Jul 2013. Fetched May 2021 https://wiki.python.org/moin/
BitwiseOperators

[6] Bartosz Zaczyński Python bitwise operators Real Python Tuto-
rials, Dec 2020. Fetched May 2021 https://realpython.com/
python-bitwise-operators/

[7] Chrisapotek What is the rationale behind (x % 64) == (x &
63)? [duplicate] StackOverflow, last edited May 2017. Fetched
May 2021 https://stackoverflow.com/questions/13784790/
what-is-the-rationale-behind-x-64-x-63

[8] Python Homepage https://www.python.org

[9] ROOT Homepage https://root.cern/

[10] Geant4 homepage https://geant4.web.cern.ch/node/1

[11] Don Lahiru Nirmal Hettiarachchi, Venkata Salini Priyamvada Davuluru
and Eric J. Balster. Integer vs. Floating-Point Processing on Modern
FPGA Technology, 10th Annual Computing and Communication Work-
shop and Conference (CCWC), 2020, pp. 0606-0612. doi: 10.1109/C-
CWC47524.2020.9031118, https://ieeexplore.ieee.org/document/
9031118

22

https://doi.org/10.23731/CYRM-2020-0010
https://doi.org/10.23731/CYRM-2020-0010
https://cds.cern.ch/record/2257755/files/ATLAS-TDR-025.pdf
https://cds.cern.ch/record/2257755/files/ATLAS-TDR-025.pdf
https://cds.cern.ch/record/2285584/files/ATLAS-TDR-029.pdf
https://cds.cern.ch/record/2285584/files/ATLAS-TDR-029.pdf
http://www.ai.sri.com/pubs/files/tn036-duda71.pdf
https://wiki.python.org/moin/BitwiseOperators
https://wiki.python.org/moin/BitwiseOperators
https://realpython.com/python-bitwise-operators/
https://realpython.com/python-bitwise-operators/
https://stackoverflow.com/questions/13784790/what-is-the-rationale-behind-x-64-x-63
https://stackoverflow.com/questions/13784790/what-is-the-rationale-behind-x-64-x-63
https://www.python.org
https://root.cern/
https://geant4.web.cern.ch/node/1
https://ieeexplore.ieee.org/document/9031118
https://ieeexplore.ieee.org/document/9031118

[12] Joakim Gradin, Mikael Mårtensson, and Richard Brenner. Compari-
son of two hardware-based hit filtering methods for trackers in high-
pileup environments, Journal of Instrumentation vol 13. IOP Publish-
ing 2018. DOI: 10.1088/1748-0221/13/04/P04019 https://arxiv.org/
abs/1709.01034

[13] Mikael Mårtensson, Max Isacson, Hampus Hahne, Rebeca Gonzalez
Suarez and Richard Brenner. To catch a long-lived particle: hit selec-
tion towards a regional hardware track trigger implementation, Journal
of Instrumentation vol. 14. IOP Publishing 2019. DOI: 10.1088/1748-
0221/14/11/p11009 https://arxiv.org/abs/1907.09846

[14] Xiao-Gang Jiang, Jian-Yang Zhou, Jiang-Hong Shi and Hui-Huang
Chen, FPGA implementation of image rotation using modified compen-
sated CORDIC, 2005 6th International Conference on ASIC, 2005, pp.
752-756, doi: 10.1109/ICASIC.2005.1611424. https://ieeexplore.
ieee.org/document/1611424

23

https://arxiv.org/abs/1709.01034
https://arxiv.org/abs/1709.01034
https://arxiv.org/abs/1907.09846
https://ieeexplore.ieee.org/document/1611424
https://ieeexplore.ieee.org/document/1611424

A Code
This Appendix contains listings of the Python scripts that were made for
this thesis. A.1 contains the script for the rotation algorithm. A.2 contains
the script for the shear algorithm.

A.1 rotation.py

1 # import libraries
2 import sys
3 from typing import SupportsIndex
4 from ROOT import TCanvas , TPad , TFile , TPaveText , TBrowser
5 from ROOT import gBenchmark , gStyle , gROOT , TH1D , TH1I , TH3D ,

TH2D
6 from time import time , sleep
7 from math import atan , pi, tan , sin , cos
8

9 # create a canvas and histogram
10 c1 = TCanvas(’c1’,’The Ntuple canvas ’ ,200 ,10 ,800 ,1000)
11 c2 = TCanvas(’c2’,’The Ntuple canvas ’ ,1000 ,10 ,800 ,800)
12

13 # Scaling parameter for integer solution
14 n = 11
15 mlt = 2**n
16 print("scaling by: ",mlt)
17 # 256 512 1024 2048 4096 8192
18 errhxu = 0.07 # 0.8 -0.1 0.2 0 -0.025 0.015
19 errhxl = -0.07 # 0.4 -0.3 0.1 -0.07 -0.045 0.011
20 errhyu = 0.09 # 0 0 -0.1 0.085 -0.015 -0.015
21 errhyl = -0.09 # -0.3 -0.3 -0.16 0.07 -0.022 -0.022
22 errhz = 0.005 # 0.05 0.05 0.05 0.005 0.002 0.002
23

24 # name , title , nbinsx ,xl ,
xu,nby ,yl , yu,nbz ,zl,zu

25 h_calcxy = TH2D("x, y","Calculated global coordinates;y;x"
,1000 ,120 ,220 ,1000 ,300 ,400)

26 h_calcxz = TH2D("x, z","Calculated global coordinates;z;x"
,3050 , -150 ,155 ,1000 ,300 ,400)

27 h_calcyz = TH2D("z, y","Calculated global coordinates;y;z"
,1000 ,120 ,220 ,3050 , -150 ,155)

28 h_calcxy.SetStats (0)
29 h_calcxz.SetStats (0)
30 h_calcyz.SetStats (0)
31 h_diffxx = TH2D("diff in x over x","diff calced vs real;x;

err_x" ,1000,300 ,400,300 ,errhxl ,errhxu)
32 h_diffyy = TH2D("diff in y over y","diff calced vs real;y;

err_y" ,1000,120 ,220,300 ,errhyl ,errhyu)

24

33 h_diffzz = TH2D("diff in z over z","diff calced vs real;z;
err_z" ,3050,-150,155,300,-errhz ,errhz)

34 h_diffx = TH1D("I diff in x","diff calced vs real;err_x" ,100,
errhxl ,errhxu)

35 h_diffy = TH1D("I diff in y","diff calced vs real;err_y" ,100,
errhyl ,errhyu)

36 h_diffz = TH1D("I diff in z","diff calced vs real;err_z"
,100,-errhz ,errhz)

37

38 h_exactxy = TH2D("f: x, y","float globs from locs;y;x"
,1000 ,120 ,220 ,1000 ,300 ,400)

39 h_exactxz = TH2D("f: x, z","float globs from locs;z;x"
,3050 , -150 ,155 ,1000 ,300 ,400)

40 h_exactyz = TH2D("f: y, z","float globs from locs;y;z"
,1000 ,120 ,220 ,3050 , -150 ,155)

41 h_exactxy.SetStats (0)
42 h_exactxz.SetStats (0)
43 h_exactyz.SetStats (0)
44 h_exdiffxx = TH2D("f: diff in x over x","float from real;x;

err_x" ,1000,300 ,400,300 ,errhxl ,errhxu)
45 h_exdiffyy = TH2D("f: diff in y over y","float from real;y;

err_y" ,1000,120 ,220,300 ,errhyl ,errhyu)
46 h_exdiffzz = TH2D("f: diff in z over z","float globs from

real globs;z;err_z" ,3050,-150,155,300,-errhz ,errhz)
47 h_exdiffx = TH1D("diff in x","diff calced vs real;err_x" ,100,

errhxl ,errhxu)
48 h_exdiffy = TH1D("diff in y","diff calced vs real;err_y" ,100,

errhyl ,errhyu)
49 h_exdiffz = TH1D("diff in z","diff calced vs real;err_z"

,100,-errhz ,errhz)
50

51 #open file
52 file = TFile("./ muons_eta0 .1 -0.3 _run0.root",’read’) # modify

as required to reach the file on your specific system
53 tree = file.Get("tracking")
54

55 #b = TBrowser () #useful for looking at available parameters
in the data

56

57 #hash code (Module ID) selection
58 hnl = 5520
59 hnu = 5541
60

61 #precalculated parameters
62 ang_z1 = -pi*4/9# pi (-1/2+0.5/9) #rotation angle in local xy

plane
63 ang_y1 = 0.02 # rotation angle in local xz plane
64 ang_z2 = pi/7 #rotation angle in global xy plane

25

65 # The above angle is dependen both on the specific row in a
layer and the number of rows in the layer

66 # This will at least require mod 240, which is possible using
bit shifts. It will also likely require

67 # some manner of lookup table for hash:layers unless layers
are knownsince total number of hashes per layer is not

68 # constant.
69

70

71 #exact solution values
72 sinz1 = sin(ang_z1)
73 cosz1 = cos(ang_z1)
74 siny0 = sin(ang_y1)
75 cosy0 = cos(ang_y1)
76 sinz2 = sin(ang_z2)
77 cosz2 = cos(ang_z2)
78

79

80 #integer solution values
81 isinz1 = int(round(mlt*sin(ang_z1)))
82 icosz1 = int(round(mlt*cos(ang_z1)))
83 isiny0 = int(round(mlt*sin(ang_y1)))
84 icosy0 = int(round(mlt*cos(ang_y1)))
85 isinz2 = int(round(mlt*sin(ang_z2)))
86 icosz2 = int(round(mlt*cos(ang_z2)))
87

88

89 # some measurement variables
90 lpcnt = 0
91 loop_start = time()
92 print("loop start")
93 #loop over ntuple
94 for entry in tree:
95 # a loop limiter for quick code testing
96 lpcnt += 1
97 # if lpcnt == 10000:
98 # break
99

100 # Filling using matching elements
101 for i,hsh in enumerate(tree.hit_hash):
102 if hnl <= hsh <= hnu:
103 #handling of the mod 4 hash code cycle
104 hsh -= hnl
105 big = hsh >>2
106 sml = hsh&3
107

108

109 # Fetch local coords
110 xloc_t1 = int(round(mlt*tree.hit_local_x[i]))

26

111 yloc_t1 = int(round(mlt*tree.hit_local_y[i]))
112 zloc_t1 = int(round(mlt*tree.hit_local_z[i]))
113

114 #reset these params
115 isiny1 = isiny0
116 icosy1 = icosy0
117 #modify according to cycle
118 if sml in (1,3):
119 isiny1 *= -1
120 r_off = mlt *405
121 else:
122 r_off = mlt *395
123

124

125 # note that all multiplications must be shifted
down by n to keep the scaling

126 # this would be handled internally in the
multiplication kernel in openCL ,

127 # but has to be done explicitly with whole number
division here.

128

129 # Local rotations are same for all modules
130 # Prepare combined local rotation (split for

readability)
131 r1 = icosy1*xloc_t1 //mlt
132 r2 = isiny1*zloc_t1 //mlt
133

134 xloc = icosz1 *(r1 -r2)//mlt - isinz1*yloc_t1 //mlt
135 yloc = isinz1 *(r1 -r2)//mlt + icosz1*yloc_t1 //mlt
136 zloc = isiny1*xloc_t1 //mlt + icosy1*zloc_t1 //mlt
137

138 z_off = mlt *(25* big + 13)
139 if sml >= 2:
140 z_off *= -1 #easy bit shift
141

142 #following global offset and rotation will be
different for different modules

143 xloc += r_off
144

145 # The rotation here is dependent both on the
specific row of modules and the number of rows in the
specific layer

146 # The most efficient way to implement will
probably be some manner of lookup tables.

147 x = icosz2*xloc//mlt - isinz2*yloc//mlt
148 y = isinz2*xloc//mlt + icosz2*yloc//mlt
149 z = z_off + zloc
150

151

27

152 # Scale back down for plots
153 x /= mlt
154 y /= mlt
155 z /= mlt
156

157 #compare with true values
158 delx = x - tree.hit_global_x[i]
159 dely = y - tree.hit_global_y[i]
160 delz = z - tree.hit_global_z[i]
161

162 #fill histograms
163 h_calcxz.Fill(z,x)
164 h_calcxy.Fill(y,x)
165 h_calcyz.Fill(y,z)
166

167 h_diffx.Fill(delx)
168 h_diffy.Fill(dely)
169 h_diffz.Fill(delz)
170

171 h_diffxx.Fill(x,delx)
172 h_diffyy.Fill(y,dely)
173 h_diffzz.Fill(z,delz)
174

175

176

177 #Repeat for exact solution
178 # Fetch local coords
179 xloc_t1 = tree.hit_local_x[i]
180 yloc_t1 = tree.hit_local_y[i]
181 zloc_t1 = tree.hit_local_z[i]
182

183 #reset these params
184 #ang_y1 = 0.02
185 siny1 = siny0
186 cosy1 = cosy0
187 r_offex = 395
188 #modify according to cycle
189 if sml in (1,3):
190 #ang_y1 *=-1
191 siny1 *= -1
192 r_offex += 10
193

194 # Local rotations are same for all modules
195 # Do combined local rotation
196 xloc = cosz1*(cosy1*xloc_t1 - siny1*zloc_t1) -

sinz1*yloc_t1
197 yloc = sinz1*(cosy1*xloc_t1 - siny1*zloc_t1) +

cosz1*yloc_t1
198 zloc = siny1*xloc_t1 + cosy1*zloc_t1

28

199

200 z_off = 25* big + 13
201 if sml >= 2:
202 z_off *= -1 #easy bit shift
203

204 #following global offset and rotation will be
different for different modules

205 xloc += r_offex
206

207 # The rotation here is dependent both on the
specific row of modules and the number of rows in the
specific layer

208 # The most efficient way to implement will
probably be some manner of lookup tables.

209 x = cosz2*xloc - sinz2*yloc
210 y = sinz2*xloc + cosz2*yloc
211 z = z_off + zloc
212

213 # print(x,y,z)
214

215 delx = x - tree.hit_global_x[i]
216 dely = y - tree.hit_global_y[i]
217 delz = z - tree.hit_global_z[i]
218

219

220 h_exactxy.Fill(y,x)
221 h_exactxz.Fill(z,x)
222 h_exactyz.Fill(y,z)
223

224 h_exdiffx.Fill(delx)
225 h_exdiffy.Fill(dely)
226 h_exdiffz.Fill(delz)
227

228 h_exdiffxx.Fill(x,delx)
229 h_exdiffyy.Fill(y,dely)
230 h_exdiffzz.Fill(z,delz)
231

232

233

234

235

236

237 loop_done = time()
238 print(f"loop time: {loop_done -loop_start}")
239 print(lpcnt)
240

241 # Plot histogram
242 # Divide canvas for two plots on same canvas
243 c1.Divide (2,3)

29

244

245 c1.cd(1)
246 h_exdiffx.SetLineColor (2)
247 h_exdiffx.Draw()
248 h_diffx.Draw("SAME")
249

250 c1.cd(2)
251 h_diffxx.SetMarkerColor (1)
252 h_diffxx.Draw()
253 h_exdiffxx.SetMarkerColor (2)
254 h_exdiffxx.Draw("SAME")
255

256 c1.cd(3)
257 h_exdiffy.SetLineColor (2)
258 h_exdiffy.Draw()
259 h_diffy.Draw("SAME")
260

261 c1.cd(4)
262 h_diffyy.SetMarkerColor (1)
263 h_diffyy.Draw()
264 h_exdiffyy.SetMarkerColor (2)
265 h_exdiffyy.Draw("SAME")
266

267 c1.cd(5)
268 h_exdiffz.SetLineColor (2)
269 h_exdiffz.Draw()
270 h_diffz.Draw("SAME")
271

272 c1.cd(6)
273 h_diffxx.SetMarkerColor (1)
274 h_diffzz.Draw()
275 h_exdiffzz.SetMarkerColor (2)
276 h_exdiffzz.Draw("SAME")
277

278 c1.Update ()
279 # this statement is to allow to inspects plots before code

finishes
280

281

282 c2.Divide (2,2)
283

284 c2.cd(1)
285 #h_exactxy.Draw()
286 h_calcxy.Draw()
287

288 c2.cd(2)
289 #h_exactxz.Draw()
290 h_calcxz.Draw()
291

30

292 c2.cd(3)
293 #h_exactyz.Draw()
294 h_calcyz.Draw()
295

296 c2.cd(4)
297 #h_diffzz.Draw ("")
298

299 c2.Update ()
300

301

302

303 # the following is code to show how hashes are mapped in the
z-direction ,

304 # turns out they’re mapped from 0 outward , alternating
between negatives and positives

305

306 # c1.cd(2)
307 # opts = f"hit_hash >={hnl }&& hit_hash <={hnu}"
308 # hist=tree.Draw(" hit_hash",opts)
309

310 # for i in range(hnl ,hnu ,2):
311 # opts2 = f"hit_hash >={i-1}&& hit_hash <={i}"
312 # c1.cd(1)
313 # hist=tree.Draw(" hit_global_x:hit_global_z",opts2)
314 # c1.Update ()
315 # sleep (0.5)
316

317 code_done = time()
318 print(f"time to execute: {code_done -loop_start}")
319 r=input(’Please press enter to continue.’)

31

A.2 shear.py

1 # import libraries
2 import sys
3 from typing import SupportsIndex
4 from ROOT import TCanvas , TPad , TFile , TPaveText , TBrowser
5 from ROOT import gBenchmark , gStyle , gROOT , TH1D , TH1I , TH3D ,

TH2D
6 from time import time , sleep
7 from math import atan , pi, tan , sin , cos
8

9 # create a canvas and histogram
10 c1 = TCanvas(’c1’,’The Ntuple canvas ’ ,200 ,10 ,800 ,1000)
11 c2 = TCanvas(’c2’,’The Ntuple canvas ’ ,1000 ,10 ,800 ,800)
12

13 # Scaling parameter for integer solution
14 n = 8
15 mlt = 2**n
16 print("scaling by: ",mlt)
17

18 # 256 512 1024 2048 4096 8192
19 errhxu = 0.2 # 0.2 0.04 0.03 0.02 0.01 0.01
20 errhxl = -0.2 # -0.2 -0.04 -0.03 -0.02 0.01 -0.01
21 errhyu = 0.1 # 0.1 0.04 0.03 0.02 0.015 0.01
22 errhyl = -0.1 # -0.1 -0.06 -0.03 -0.02 -0.015 -0.01
23 errhz = 0.05 # 0.05 0.05 0.03 0.004 0.004 0.004
24

25 # name , title , nbinsx ,xl ,
xu,nby ,yl , yu,nbz ,zl,zu

26 h_calcxy = TH2D("x, y","Calculated global coordinates;y;x"
,1000 ,120 ,220 ,1000 ,300 ,400)

27 h_calcxz = TH2D("x, z","Calculated global coordinates;z;x"
,3050 , -150 ,155 ,1000 ,300 ,400)

28 h_calcyz = TH2D("z, y","Calculated global coordinates;y;z"
,1000 ,120 ,220 ,3050 , -150 ,155)

29 h_calcxy.SetStats (0)
30 h_calcxz.SetStats (0)
31 h_calcyz.SetStats (0)
32 h_diffxx = TH2D("diff in x over x","diff calced vs real;x;

err_x" ,1000,300 ,400,300 ,errhxl ,errhxu)
33 h_diffyy = TH2D("diff in y over y","diff calced vs real;y;

err_y" ,1000,120 ,220,300 ,errhyl ,errhyu)
34 h_diffzz = TH2D("diff in z over z","diff calced vs real;z;

err_z" ,3050,-150,155,300,-errhz ,errhz)
35 h_diffx = TH1D("I diff in x","diff calced vs real;err_x" ,100,

errhxl ,errhxu)
36 h_diffy = TH1D("I diff in y","diff calced vs real;err_y" ,100,

errhyl ,errhyu)
37 h_diffz = TH1D("I diff in z","diff calced vs real;err_z"

32

,100,-errhz ,errhz)
38

39 h_exactxy = TH2D("f: x, y","float globs from locs;y;x"
,1000 ,120 ,220 ,1000 ,300 ,400)

40 h_exactxz = TH2D("f: x, z","float globs from locs;z;x"
,3050 , -150 ,155 ,1000 ,300 ,400)

41 h_exactyz = TH2D("f: y, z","float globs from locs;y;z"
,1000 ,120 ,220 ,3050 , -150 ,155)

42 h_exactxy.SetStats (0)
43 h_exactxz.SetStats (0)
44 h_exactyz.SetStats (0)
45 h_exdiffxx = TH2D("f: diff in x over x","float from real;x;

err_x" ,1000,300 ,400,300 ,errhxl ,errhxu)
46 h_exdiffyy = TH2D("f: diff in y over y","float from real;y;

err_y" ,1000,120 ,220,300 ,errhyl ,errhyu)
47 h_exdiffzz = TH2D("f: diff in z over z","float globs from

real globs;z;err_z" ,3050,-150,155,300,-errhz ,errhz)
48 h_exdiffx = TH1D("diff in x","diff calced vs real;err_x" ,100,

errhxl ,errhxu)
49 h_exdiffy = TH1D("diff in y","diff calced vs real;err_y" ,100,

errhyl ,errhyu)
50 h_exdiffz = TH1D("diff in z","diff calced vs real;err_z"

,100,-errhz ,errhz)
51 #open file
52 file = TFile("./ muons_eta0 .1 -0.3 _run0.root",’read’) # modify

as required to reach the file on your specific system
53 tree = file.Get("tracking")
54

55 #b = TBrowser () #useful for looking at available parameters
in the data

56

57 #hash code (Module ID) selection
58 hnl = 5520
59 hnu = 5541
60

61 #precalculated parameters
62

63 #radial displacement : 395 (+10 for layer 6)
64

65 #exact solution values
66 phi = pi/7
67 phiThet = -pi *19/63# -0.9474933115904356
68

69 sinex = sin(phiThet)# -0.8119548525165163
70 cosex = cos(phiThet)#0.583720239048538
71 sinphi = sin(phi)
72 cosphi = cos(phi)
73 x_offex = 395* cosphi
74 y_offex = 395* sinphi

33

75

76 # integer solution values:
77 sine = int(round(mlt*sinex))
78 cose = int(round(mlt*cosex))
79 icosphi = int(round(mlt*cosphi))
80 isinphi = int(round(mlt*sinphi))
81 x_off = int(round(mlt*x_offex))
82 y_off = int(round(mlt*y_offex))
83

84

85

86

87 # some measurement variables
88 lpcnt = 0
89 loop_start = time()
90 print("loop start")
91 #loop over ntuple
92 for entry in tree:
93 # a loop limiter for quick code testing
94 lpcnt += 1
95 # if lpcnt == 10000:
96 # break
97

98 # Filling using matching elements
99 for i,hsh in enumerate(tree.hit_hash):

100 if hnl <= hsh <= hnu:
101 #handling of the mod 4 hash code cycle
102 hsh -= hnl
103 big = hsh >>2
104 sml = hsh&3
105 R_off = 395
106

107 # Do conversion steps for integer solution
108 x_t = int(round(mlt*tree.hit_local_x[i]))
109 yloc = int(round(mlt*tree.hit_local_y[i]))
110 z_t = int(round(mlt*tree.hit_local_z[i]))
111

112

113

114 z_off = mlt *(25* big + 13)
115 if sml >= 2:
116 z_off *= -1 #easy bit shift
117

118 gamma = int(round(mlt *0.02))
119 if sml in (1,3):
120 x_L6 = 10* icosphi
121 y_L6 = 10* isinphi
122 gamma *= -1
123 else:

34

124 x_L6 = 0
125 y_L6 = 0
126

127 xloc = x_t - gamma*z_t//mlt
128 zloc = z_t + gamma*x_t//mlt
129

130 x = cose*xloc//mlt - sine*yloc//mlt + x_off +
x_L6

131 y = sine*xloc//mlt + cose*yloc//mlt + y_off +
y_L6

132 z = zloc + z_off
133

134

135 #Scale down for plots:
136 x /= mlt
137 y /= mlt
138 z /= mlt
139

140 delx = x - tree.hit_global_x[i]
141 dely = y - tree.hit_global_y[i]
142 delz = z - tree.hit_global_z[i]
143

144

145 h_calcxz.Fill(z,x)
146 h_calcxy.Fill(y,x)
147 h_calcyz.Fill(y,z)
148

149 h_diffx.Fill(delx)
150 h_diffy.Fill(dely)
151 h_diffz.Fill(delz)
152

153 h_diffxx.Fill(x,delx)
154 h_diffyy.Fill(y,dely)
155 h_diffzz.Fill(z,delz)
156

157

158

159

160 #Now repeat steps for exact solution
161

162 x_t1 = tree.hit_local_x[i]
163 y_t1 = tree.hit_local_y[i]
164 z_t1 = tree.hit_local_z[i]
165 # [cosa 0 sina] [x] x’ = cosa*x + sina*z

x’ = (1-a^2)*x + a*z ~= x + a*z
166 # [0 1 0]*[y] y’ = y

SAA: y’ = y
167 # [-sina 0 cosa] [z] z’ = -sina*x + cosa*z

z’ = -a*x + (1-a^2)z ~= -a*x + z

35

168 # x_off = 355.875
169 # y_off = 171.4
170 if sml in (1,3):
171 gamma = -0.02
172 else:
173 gamma = 0.02
174

175 xloc = x_t1 - gamma*z_t1
176 yloc = y_t1
177 zloc = z_t1 + gamma*x_t1
178

179

180 z_off = 25* big + 13
181

182 if sml >= 2:
183 z_off *= -1 #easy bit shift
184

185 z_ang = 0.02* xloc
186

187 x = cosex*xloc - sinex*yloc + x_offex
188 y = sinex*xloc + cosex*yloc + y_offex
189 z = zloc + z_off
190

191 if sml in (1,3):
192 x += 10* cosphi
193 y += 10* sinphi
194 z_ang *= -1
195 #z += z_ang
196

197 delx = x - tree.hit_global_x[i]
198 dely = y - tree.hit_global_y[i]
199 delz = z - tree.hit_global_z[i]
200

201

202 h_exactxy.Fill(x,y)
203 h_exactxz.Fill(x,z)
204 h_exactyz.Fill(y,z)
205

206 h_exdiffx.Fill(delx)
207 h_exdiffy.Fill(dely)
208 h_exdiffz.Fill(delz)
209

210 h_exdiffxx.Fill(x,delx)
211 h_exdiffyy.Fill(y,dely)
212 h_exdiffzz.Fill(z,delz)
213

214

215

216

36

217

218

219

220 loop_done = time()
221 print(f"loop time: {loop_done -loop_start}")
222 print(lpcnt)
223

224 # Plot histogram
225 # Divide canvas for two plots on same canvas
226 c1.Divide (2,3)
227

228 c1.cd(1)
229 h_exdiffx.SetLineColor (2)
230 h_exdiffx.Draw()
231 h_diffx.Draw("SAME")
232

233 c1.cd(2)
234 h_diffxx.SetMarkerColor (1)
235 h_diffxx.Draw()
236 h_exdiffxx.SetMarkerColor (2)
237 h_exdiffxx.Draw("SAME")
238

239 c1.cd(3)
240 h_exdiffy.SetLineColor (2)
241 h_exdiffy.Draw()
242 h_diffy.Draw("SAME")
243

244 c1.cd(4)
245 h_diffyy.SetMarkerColor (1)
246 h_diffyy.Draw()
247 h_exdiffyy.SetMarkerColor (2)
248 h_exdiffyy.Draw("SAME")
249

250 c1.cd(5)
251 h_exdiffz.SetLineColor (2)
252 h_exdiffz.Draw()
253 h_diffz.Draw("SAME")
254

255 c1.cd(6)
256 h_diffxx.SetMarkerColor (1)
257 h_diffzz.Draw()
258 h_exdiffzz.SetMarkerColor (2)
259 h_exdiffzz.Draw("SAME")
260

261 c1.Update ()
262 # this statement is to allow to inspects plots before code

finishes
263

264

37

265 c2.Divide (2,2)
266

267 c2.cd(1)
268 #h_exactxy.Draw()
269 h_calcxy.Draw()
270

271 c2.cd(2)
272 #h_exactxz.Draw()
273 h_calcxz.Draw()
274

275 c2.cd(3)
276 #h_exactyz.Draw()
277 h_calcyz.Draw()
278

279 c2.cd(4)
280 #h_diffzz.Draw ("")
281

282 c2.Update ()
283

284

285

286 # the following is code to show how hashes are mapped in the
z-direction ,

287 # turns out they’re mapped from 0 outward , alternating
between negatives and positives

288

289 # c1.cd(2)
290 # opts = f"hit_hash >={hnl }&& hit_hash <={hnu}"
291 # hist=tree.Draw(" hit_hash",opts)
292

293 # for i in range(hnl ,hnu ,2):
294 # opts2 = f"hit_hash >={i-1}&& hit_hash <={i}"
295 # c1.cd(1)
296 # hist=tree.Draw(" hit_global_x:hit_global_z",opts2)
297 # c1.Update ()
298 # sleep (0.5)
299

300 code_done = time()
301 print(f"time to execute: {code_done -loop_start}")
302 r=input(’Please press enter to continue.’)

38

	Introduction
	Background
	The Hough Transform
	Inner Tracker structure
	Speed requirements
	Bit shifiting

	Materials and Method
	Evaluation
	Data

	Results
	The modulo 4 cycle
	Two algorithms
	Rotation algorithm
	Shear algorithm

	Discrepancies

	Discussion and Outlook
	Conclusions
	Code
	rotation.py
	shear.py

