UPPSALA
UNIVERSITET

Coordinate conversion for the Hough
transform

Edvin Eriksson
Supervisor: Richard Brenner, HEP, Uppsala University
Subject Reader: Rebeca Gonzalez Suarez, HEP, Uppsala University
Exam Coordinator: Matthias Weiszflog

June 2021

Abstract

This thesis attempts to develop a conversion algorithm between lo-
cal coordinates in constituent detector modules and global coordinates
encompassing the whole detector structure in a generic detector. The
thesis is a part of preparatory work for studying the Hough Transform
as a means of track reconstruction in the level-1 hardware trigger in the
upgraded trigger and data acquisition (TDAQ) system in the phase 2
upgrade of the ATLAS detector at CERN. The upgrades being made
are to withstand much more extreme conditions that come with the
high-Luminosity Large Hadron Collider (HL-LHC).

Two algorithms have been made and then implemented in Python
scripts to test their feasibility and to compare them against each-other.
The Rotation algorithm uses several rotations to correctly place the lo-
cal coordinates in the global system. The second, the Shear algorithm,
simplifies the process into two shears and one rotation, using the small
angle approximation. Both algorithms need to be extended to work
with more parts of the detector to be considered complete. Despite
having lower maximum precision the second algorithm is considered
the most promising attempt, since it is much less sensitive to the trun-
cation error that results from working in an integer environment, which
is a requirement for use in FPGAs.

Sammanfattning

I denna uppsats gors ett forsok att skapa en omvandlingsalgoritm
mellan lokala koordinater i konstituerande detektormoduler och glo-
bala koordinater i hela detektorstrukturen fér en generisk detektor.
Uppsatsen ar en del i forberedande arbete for att undersoka hur Hough-
transformen kan anvéindas for sparrekonstruktion i den hardvarubase-
rade level-1 triggern i det uppgraderade trigger- och datainsamlings-
systemet (TDAQ) i fas tva-uppgraderingen av ATLAS detektorn vid
CERN. Uppgraderingarna som gors ar for att kunna utstd de mycket
mer extrema férhéallanden som medférs av hogluminositetsuppgrade-
ringen av Large Hadron Collider (HL-LHC).

Tva algoritmer har skapats och implementerats i Pythonskript for
att testa genomforbarhet och for att jamfora med varandra. Rotations-
algoritmen anvéinder ett antal rotationer for att korrekt placera ut de
lokala koordinaterna i det globala systemet. Den andra, Skjuvalgorti-
men, forenklar processen till tva skjuvningar och en rotation med hjélp
av liten vinkel-approximationen. Bada algoritmerna behéver utokas for
att fungera for fler delar av detektorn for att anses kompletta. Trots
ldgre maximal precision bedéms den andra algoritmen vara det mest
lovande forsoket, eftersom den &r mycket mindre kénslig for trunke-
ringsfelet som kommer av att arbeta i en heltalsmiljo, som ar ett krav
for FPGA-implementationen.

Contents

(1 Introduction|

2 Background|

2.1 'The Hough Transtorm|

[2.3 Speed requirements|

2.4 Bit shifiting)

[4.1 The modulo4cycle,

[4.2 'Two algorithms|o

[4.2.1 Rotation algorithm|

[4.2.2 Shear algorithm|,

[4.3 Discrepancies|

E i . [Ouilook

6 Conclusions|

A_Codel

[A.1 rotation.py|.

12
12
13
14
15
16

20

21

1 Introduction

The current hardware of the Large Hadron Collider (LHC) at CERN is near
its limit both in terms of capacity and radiation damage [I]. The most impor-
tant product of the LHC is high-energy particle collisions, for measurements
at the various experiments connected to it. Therefore one of the most im-
portant measures of the LHC’s performance is the rate of collisions, both
instantaneously and over time, usually measured in collision rate per unit
area, luminosity, and the (over time) integrated luminosity [1]. While the
LHC is currently shut down (Long Shut-Down 2, LS2) for maintenance and
some smaller upgrades, when it starts again for Run 3 in 2022 it is planned
to run at the current hardware’s maximum luminosity until 2024 when it will
reach an accumulated integrated luminosity of 350 fb~! (for reference Run 1
data totalled 30 fb~! and run 2 190 fb~') [I] and parts of the collider and
detectors will have accrued so much radiation damage as to negatively effect
performance [3].

Instead of just repairs Long Shut-Down 3 (LS3) from 2025 to 2027 will
contain several technology updates and engineering upgrades that have been
in the works since 2010 [I]. These will allow the LHC to reach a luminosity
five times higher than currently feasible and over its decade of operation up
to 4000 fb~! integrated luminosity [I]. The upgraded machine is called the
High Luminosity LHC (HL-LHC).

One of the detectors at the LHC is the ATLAS detector, as mentioned
above parts of it are also starting to receive too much radiation damage. It
is also not engineered to handle the increased collision rate of the HL-LHC,
which is why it too will undergo several upgrades [2][3].

Part of the problem, which will be further exacerbated by the HL-LHC,
with recording data from HL-LHC events is the amount of data; the rate of
beam crossings is 40 MHz, each of which generates a pileup of on average
200 proton-proton interactions, and each proton-proton collision generates
several particles in turn [2]. There is simply too much data to process and all
be saved to storage. Luckily a lot of collision events contain physics processes
that are already well understood and those that require further exploration
have signatures that can be used as conditions (or triggers) in an Event Filter
to activate further processing and finally storage of the data in the so-called
Trigger and Data Acquisition system (TDAQ) only for interesting events. [3]
Filtering as early as possible in the detector is beneficial, since it reduces the
load on all components that come after.

The innermost part of the ATLAS detector is the Inner Tracker (ITk),
which records the position of charged particles moving through it at discrete
points [2]. As part of the Event Filter the paths of charged particles will be

reconstructed using I'Tk data, by a system called Hardware Tracking for the
Trigger (HTT) [3]. The HTT will be implemented using a combination of
custom Associative Memory Application-Specific Integrated Circuits (AM-
ASICs) and commercially available Field-Programmable Gate Arrays (FP-
GAs) [3]. An alternative method, which has been investigated by members
of the Uppsala University ATLAS group [12][13], is using the Hough Trans-
form [4] for track reconstruction. A system based on the Hough Transform
could be implemented using only FPGAs, which would potentially reduce
costs [12], however the Hough Transform requires associating the locations
of datapoints from different parts of the ITk.

This thesis is an attempt to create an algorithm that associates the local
coordinates of the datapoints with locations in the global view of the 1Tk for
use with the Hough Transform in an FPGA implementation.

2 Background

2.1 The Hough Transform

The Hough Transform is a highly efficient tool for finding parametrized fea-
tures in datasets, often lines or curves, first described by Hough in 1962 and
then generalised by Hart and Duda in 1972 [4]. The equation at the centre
of the Hough transform is

p=xcosb +ysind (1)

where 6 is the angle of the normal of a line in the xy-plane and p is its alge-
braic distance from the origin. The pf-parametrization is called the normal
parametrization by Hart and Duda [4]. The big advantage, relevant to par-
ticle paths, of the Hough transform is that points on a line in the xy-plane
appear as lines intersecting a single point in the parameter space. In a dis-
crete environment this allows the parameter space to act as a heat map for
potential lines in the xy-plane, which in turn ends up being an efficient way
of detecting co-linearity [4]. An illustrative example is made with the pink
lines at (p,#) = (60,90) in Figure

[
- 7
- - =% ks - g'_’)' l
| ﬁ e A S
e e e
dngle | Dist, fngle | Dist, frgle | Dist,
0 40 0 =71 0 =
30 £9.6 30 795 30 896
=31 sl.2 =31 0.0 60 206
90 70 30 &0 90 a0
120 0.4 120 —-19.3 150 -39.6

Figure 1: Demonstrating the principle of points along a line accumulating
at a point. In the pf-plane the pink lines through the points all accumulate
at the same point, telling us the lines are very similar, and therefore make
a candidate for a path through all these points. Image: Public Domain,
commons .wikimedia.org/wiki/File:Hough_transform_diagram.png

2.2 Inner Tracker structure

The proposed ITk for ATLAS consists of a barrel section with two mirrored
endcap sections at each end. The detecting material in the ITk is placed in
modules, spread out in the detector structure. There are two main types:
pixel modules which contain a grid of silicon pixels, and strip modules which
contain stacked strips of silicon. The modules are placed in layers, with the
more granular pixel modules closer to the collision point of the two proton
beams. There are a total of nine module layers in the barrel section, four outer
strip layers, and five inner pixel layers. Near the central axis the endcaps
consist of a complicated net of pixel modules, more adequately described in
ch. 3 of the Technical Design Report [2]. Further out radially the strip layer
endcaps have modules placed in petal shapes. Each module only records hits
in its own local coordinate system. To restore some of the accuracy of the
strip modules in the long direction of the strips strip modules are placed in
paired layers with a small angle between the layers such that the strips of
the different modules cross each-other.

For this thesis a similar, generic detector from a previous study by by
Gradin, Martensson and Brenner [12] was used instead of the actual ATLAS
layout. The generic detector has 5 pixel layers and 5 double strip layers for
a total of 15. A cross section of each detector is shown in Figure [2]

commons.wikimedia.org/wiki/File:Hough_transform_diagram.png

r(m)

1.5

1.0

05

0.0

r [mm]

1200

1000F

800f

600

4001

20(

O

EJHM =

\

n=2.0]

__n=3.0]

506 1000 1500 2000 2500 3000
z [mm]

°T

z(m)

Figure 2: Cross sections of the ATLAS ITk [2] and the generic detector [12].
The design is mirrored in negative z. Red lines represent pixel layers and
blue lines strip layers, the brighter blue line in the ATLAS ITk represents
the coil of a solenoid magnet. Images, Left: CERN, License: CC-BY-4.0;
Right: Gradin et al., fair use.

2.3 Speed requirements

In the HL-LHC, the high rate of events generated, the pileup of 200 [I] events
per beam crossing puts stringent time requirements on the Event Filter. As
outlined by the relevant Technical Design Report delays of no more than 6-10
ps [3] may be required for the track reconstruction system.

2.4 Bit shifiting

Bit shifting is a powerful tool in specific high-efficiency computing applica-
tions, being a method for direct manipulation of the computer’s native bits
it is generally faster than more high-level methods which can be especially
gainful when using FPGAs or other hardware applications [11]. For example
8 divided by 2 in binary is

...01000

= ...00100
...00010

or simply a shift of the bit one step to the right. More operators exist like
AND, OR, COMPLEMENT and XOR [5]. Another use for bitwise operators is very
efficient modulo calculations for powers of 2. The AND operator returns 1 if
the corresponding bits in both a and b are 1, otherwise 0. So for a mod 2" set
b= 2" — 1. The effect is similar to x mod 10" in base 10, you keep only the
n last digits! For further reading on the subject this Real Python tutorial [6]
and this StackOverflow thread [7] are recommended.

https://creativecommons.org/licenses/by/4.0/

3 Materials and Method

To develop an algorithm for correlating local and global coordinates a script
implementing said algorithm was written in Python [8] and the ROOT data
analysis framework [9]. The data that the script was tested against was a
root-file containing a set of 100 000 simulated muon tracks that have gen-
erated hits in the generic detector simulated by Gradin et al. [12] using
GEANT4 [10].

3.1 Evaluation

To test whether the algorithm is successful or not a set of requirements were
made. The algorithm must:

e correlate local and global coordinates

e be able to handle large amounts of data (the dataset used was ~300
MB total)

e be able to handle multiple strip layers

e be possible to implement in FPGA’s in a manner that saves on physical
resources (memory and FPGA chips) and computation time

Since Python is a high-level programming language with advanced logic
and functions that would be either overly slow, or unavailable [I1] in a Hard-
ware Description Language that is used with FPGA’s the last requirement
was made into a set of constraints that the code must follow to ensure that
the algorithm is not overly pythonic:

e Use few steps
e Enable bit manipulation by using factors 2" whenever possible
e Work in an integer environment since this is faster on an FPGA [I1]

e Use parameters, constants and lookup-tables rather than complex arith-
metics

3.2 Data

The input data from the simulation that was used to develop the code and
test the algorithm was the local x, y, and z coordinates, along with the unique
identifiers of the modules called “hash codes”, all pictured in Figure 3] To

calculate the error of the method the global X, Y, and Z coordinates, pictured
in Figure , were also used. Furthermore a limited region (highlighted in red
in the figures mentioned above) in layers 5 and 6 in the middle of the most
irradiated part of the detector was selected to develop the algorithm on since
the high number of hits and limited number of modules would make isolating
errors easier.

hit_local_x hit_local_y
l l
(e htemp ssoor htemp
r Entries 4409218 F Entries 4409218
100~ Mean 0.0086 1600~ Mean -0.05149
L) u StdDev 0.1259
L Std Dev 25.09 1400
80— C
r 1200 —
&0 __ 1000 :—
r 800
or 00
sl 400F-
[200f-
[PR BT L 0:| L | | | i L1
L T T 0 20 40 50 015 -D1 D05 0 005 01 015
hit_local_x hit_local_y
hit_local z hit_hash
]
. htemp jo htemp
70000 Entries 4409218 600} Enties 4409218
r Mean —0.03112 5 Mean 1.512e+04
60000 -
r Std Dev 11.63 500~ StdDev 1.26e+04
50000 [
s 400f~
40000 i
F 300~
30000
200001
10000~
D:' I|Illmlll|l 1 ool v U o b by o Ll
= T 0 10 20 5000 10000 15000 20000 25000 30000 35000

hit_local_z hit_hash

Figure 3: Histograms showing the total distribution of the local coordinates
and the hash codes. The red line shows the data selected for use in the
Python code and the black is the total.

10

hit_global_x:hit_global_y hit_global_x:hit_global_z

1000 1000 —
500— 500
o o
—500— —500—
—1000— —1000—
Lol v v Lo v b vy by g 1 Lol b bl Lo b Lo
—1000 —500 1] 500 1000 —1500 1000 -500 1] 500 1000 1500
hit_global_y hit_global_z
hit_global_z:hit_global_y I s g gl 1 eSS e S581 RS L]
F 480
1500~ E 3]
n amp
r 2
1000 — = 1
r 380
500 3703
0 :_ 360
-500F
—1000[-
—1500
ol oo Lo b Lo 1 N 13
—1000 —500 [i] 500 1000 {
hit_global_y fil%giobal™

Figure 4: Scatter plot of the global coordinates included in the simulated
data, with the selection made in the Python code highlighted in red. Bottom
right is a close-up of the selection with the borders between the modules
visible and layer 5 given a slightly darker hue.

11

4 Results

The selection consists of modules with hash codes 5520-5541. Module 5520
is placed at Z=0 and was therefore selected alone to figure out the placement
of the local coordinates in the global XY-plane. Through carefully studying
the scatter plots in Figure [4] one can see that there are 28 rows of modules
in the 5-6-double layer placed at a radius of 400+£5 mm, giving an global
angle of ¢ = 7/7 rad around the Z-axis for the selection. One can also
see a small rotation of the module rows from the tangent around the circle
and an even smaller rotation in the plane of the modules from the “crossing
angle” mentioned in 2.2l Studying the discrepancy when performing the
translations allowed the first angle to be determined to be a —m/2 turn plus
a m/18 rotation along the local z-axis for § = —4x/9 rad and the second to
~v = 20 mrad around the local y-axis.

4.1 The modulo 4 cycle

Extending the selection to contain multiple modules exposed the four-step
cycle determining placement in layer 5 or 6, which way the ~-rotation is
applied, and the placement of the local origins along the global Z-axis.

1. layer 5, -y +7Z
2. layer 6, +v +Z
3. layer 5, -y -Z
4. layer 6, +v -Z
Further cycles places modules along the Z-axis according to
Z = +(25N + 13)

where N is the number of completed cycles. The row of modules contains
240 modules so N < 59. The cycle i presented visually in Figure 5]

12

x, z for hash:5520-5523 x, z for hash:5520-5523
= 400 = 400

390 390

380 380
370 370
360 360
350 350

340 340

330 330

oo b b b bv s L TN T N T S T T T Y
32—%0 -20 —10 1] 10 20 30 32—%0 —-20 —10 1] 10 20 30

z z

x, z for hash:5520-5523 x, z for hash:5520-5523

390 390

380 380
370 370
360 360

350 350

Lol b bvr o be v L PN T ST T I A A R
32—%0 -20 -10 0 10 20 30 32—%0 -20 —10 0 10 20 30

z z

Figure 5: Scatter plot of the global coordinates for hash codes 5520-5523,
layer 5 is darker and layer 6 is brighter for visibility. This demonstrates how
the modulo 4 (0-3) cycle affects the ~-rotation and placement of the local
origin along the global Z-axis, and how the layers are handled. 1’s and 3’s
are in layer 6, and 2’s and 3’s are in negative Z. The cycle would continue by
placing hash 5524 (a 0) to the right of hash 5520, etc.

4.2 Two algorithms

Two algorithms were created, one simply performs the rotations and displace-
ments found at the start of section [} and one that takes as many shortcuts
as possible. The conversion from floating point to integer environments was,
similarly to Hettiarachchi et al. [I1], done by a scale factor 2. Both al-

13

gorithms were tested for a few n’s and with floating-point, to to represent
n — oo.

4.2.1 Rotation algorithm

The following pseudo-code recounts in general the steps taken by the Rota-
tion algorithm. The actual Python code is listed in Appendix [A.T]

for every hit{
fetch hash
if 5520 <= hash <= 5541{
fetch and scale local xyz and set to temp vars xyz_t
if hash&3 is 1 or 3{
invert gamma in rot_Mat_TG
set R to 395+10}
elseq{
set R to 395}
create temp vars xyz_t2 = rot_Mat_TGxxyz_t
Add to x_t2: R
create global XYZ = rot_Mat_phi*xyz_t2
if hash&3 >= 2{
subtract from Z: 25%(hash-5520)>>2 + 13}
else{
add to Z: 25%(hash-5520)>>2 + 13}
output, scaled back down: X,Y,Z
g

Note that in case matrix multiplication is not available the rotations may be
done by normal multiplication of each of the temporary coordinate variables
with the matrix elements. The latter is the way it is done in the Python code,
to be on the safe side. The “&” represents the AND bit operator mentioned in
Section 2.4l

All variables are assumed to be scaled integers and operations to be nor-
malized for the scale. In the Python code this is done by connecting the
multiplication operator with a whole number division by the scale factor 2™.
In a more realistic implementation, this would be handled internally, see the
vector multiplication kernel in Hettiarachchi’s paper for an example [IT]. The
O~-matrix, and the +10 to the radius are the same for all strip layers, but
the radius of 395 is specific to the 5-6-layer and the 5520 base to the selected
row in the layer.

14

4.2.2 Shear algorithm

The shear algorithm uses the small angle approximation to replace the ~
rotation, since it is only 20 mrad, even second order terms are discarded.
This allows a single rotation around the global Z by the sum of # and ¢.

The following pseudo-code recounts in general the steps taken by the
Shear algorithm. The actual Python code is listed in Appendix

load constants: sinphi, cosphi, sinPT, cosPT, X_off, Y_off
for every hit{
fetch hash
if 5520 <= hash <= 5541{
fetch and scale local xyz and set to temp vars xyz_t
create temp var gamma = 0.02
if hash&3 is 1 or 3{

create temp var X_L6 = 10*cosphi
create temp var Y_L6 = 10*sinphi
invert gamma}

else{
create temp var X_L6 = 0

create temp var Y_L6 = 0}
create temp var z_off = 25%(hash-5520)>>2 + 13
if hash&3 >= 2{

invert z_off}
Create temp var x_t2 = x_t - gammaxz_t
create temp var z_t2 z_t + gamma*x_t
create X = cosPT*x_t2 - sinPT*xy_t + X_off + X_L6
create Y = sinPT*x_t2 + cosPT*xy_t + Y_off + Y_L6
create Z = z_t2 + z_off
output, scaled back down: X,Y,Z

igs

Here the #-plus-¢-rotation is explicitly handled by direct multiplication with
constants to save on processing. Note also that the radial displacement is
split into x and y factors which are added right after the rotation.

The previous notes on normalization and selection-specific values are also
relevant here.

15

4.3 Discrepancies

The discrepancy between the true globals from the data and the calculated
dittos for the two algorithms is plotted in Figure[6] It was tested for n = 8—13
and with floating point. The plots illustrate an erratic behaviour in the mean
of the errors due the truncation of the 8 trigonometric terms in the rotation
matrices in the rotation algorithm. Also shown is how the shear algorithm in
a more stable way moves to a minimum, while also achieving decent accuracy
already at n = 8.

To further illustrate the characteristics of the different algorithms detailed
plots of the errors are given in Figures [7], and [8] The former is the result of
running the Shear algorithm with n = 8 and the latter is from a run of the
Rotation algorithm with n = 11. The width of the distributions on the right
side depend mostly on the error in 7. For X and Y the pitch depends on both
6 and ¢, with a stronger dependence on 6, while the height displacements
also depend on both 6 and ¢, but with reversed strength relations.

16

Mean and St. Dev of shear and rotation methods for different scale factors

X coordinate

0.6

0.5

0.4 4

0.3 1

0.2 1

0.1 A

discrepancy

0.0 A

_0.1 4

—0.2 1

z coordinate

0.010 A

0.005 A

0.000 A

iscrepancy

d

—0.005 4

—0.010

discrepancy

Figure 6: Plots of the mean and standard deviation of the error distributions
for n = §8,9,10,11,12,13 and floating-point for the three coordinates. The
height of the line is determined by the mean and the width by the standard
deviation. Note that all three of the Rotation-lines go toward 0 in both

8 10

12

y coordinate

0.05 A
0.00 - ﬁ—
—0.05 A
—0.10 1
—0.15 A
—0.20 1 T T T
8 10 12
n
Legend
L] Shear algorithm

Rotation algorithm

metrics at floating-point precision, making the lines difficult to see.

initially chaotic behaviour of the mean paired with the rapid reduction of
the width of the distribution from the Rotation algorithm is contrasted with

the stable but limited convergence of the Shear algorithm.

17

i diff calced vs real diff calced vs real diff in x over x
o’ diff in x . 02 Entries 325666
160 Enm 2R6EE il £ Mean x 367.9
c niries ® sk Meany -0.01192
140 Mean 0.001462 E Std Dev x 13.31
F Std Dev 0.002519 0 1:_ StdDevy 0.03529
120 Aln
100 E 005
sof- o
&0l 005
a0 -0
20~ 015
:II_r"HrH_I_._rI_‘HHT‘a._.II b L L T T T
Sz s oA hos 0 GOons 01 015 62 J00 210 320 330 380 350 360 370 380 390 400
ar_x ®
diff calced vs real diff calced vs rea| diff in y over y
TE Entries 325666
0.1
F diff in y o F Mean x 163.4
F Entries 325666 ¥ onmsf Meany -0.01664
50000 — E Std Dev x 17.69
N Mean —0.002033 0.06— Std Dev y 0.01601
40000 :_ Std Dev 0.003504 0.04 E
E oozf
20000~ of
F —noef-
20000 — o
F ~004 -
10000~ “oeE
F -008f
E R B P v PR I oAb TN P Lvvalenailones Lo
i~ hos —ooé Oo04 002 0 002 004 006 G080 'h0 @0 140 150 180 170 180 180 200 21D 220
ar_y Y
diff calced vs real diff calced vs real diffin z over z
e diff in z w 005 E‘”“ies 32::’5;5
70000 - £ E lean x 71
2 Entries 325666 T b Mean y _0.001708
60000~ Mean 3.68e-05 sk Std Dev x 65.33
E Std Dev 0.001396 E Std Dev y 0.01185
50000~ E
40000
30000
20000
o ~0.03F
10000 E
F —0.04 -
Fooitniy P PP Y PO vl Y 1] TR PR 1 L 1 1
M5 e has has o 0 00T 00z a5 0md oms %50 —100 50 0 50 100 150
ar_z z

Figure 7: Detail of errors from running the Shear algorithm with n = 8. On
the left is a histogram to show the distribution and on the right is a scatter
plot where the error’s dependence on the own coordinate is examined. The
floating-point, or maximum precision, solution is shown in red. The stats on
the left are for the floating-point distribution.

18

i diff calced vs real diff in x
i Entries 325666 |
L Mean —6.426e-14 | ¢
250 Std Dev 3.847e-14
200 :—
150
1o
sof-
oL e o I . o
006 004 002 0 00z 004 006
ar_x
. diff calced vs real diffin y
10° Entries 325666 | .,
[Mean 4.07%-14 | &
300 Std Dev 2.238e-14
250
200
150
100
50—
0: P PRI PR | I PR
008 0.06 -0.04 -0.02 002 004 006 0.08
ar_y
i diff calced vs real diffin z
10° Entries 325666
w0 N
E Mean 1.847e15 3
- Std Dev 8.264e15
250
200
150
1ol
sof
L. e e SO NPT PR
B T T04 D 0050 002-0.001 0 0.001 0.002 6.003 G004 0.005

ar_z

diff calced vs real diff in x over x
Entries 325666
omsl Mean x 367.9
e Meany —0.02968
[Std Dev x 13.35
o - Std Devy 0.01043
anz-
oF
—nozf
oo |-
_poe-
Lol b b vl b bies
300 320 330 340 350 360 A70 380 390 400
x
diff calced vs real
L I ————
0os
o
ooaf-
oF
_poz E diff in y over y
E Entries 325666
—0.04 - Mean x 163.5
E Mean y 0.07794
—0.06 — Std Dev x 17.67
-00&:— Std Devy 0.001114
Th T Ll bl
120 130 140 150 160 170 180 190 200 210 220
¥
diff calced vs real diff in z over z
0.0051 Entries 325666
E Mean x 39.71
0.004F Meany —0.0002161
E i i Std Dev x 65.39
oo0sk- StdDevy 0.001504
0.002F
a0
of
_ano1f-
000z
_o.n03f-
_onoaf-
_qu:...m...l. 1 L1 Ll |
e —100 50 0 50 100 150

Figure 8: Detail of errors from running the Rotation algorithm with n = 11.
On the left is a histogram to show the distribution and on the right is a scatter
plot where the error’s dependence on the own coordinate is examined. The
floating-point, or maximum precision, solution is shown in red. The stats on

the left are for the floating-point distribution.

19

5 Discussion and Outlook

The goal of this thesis was to develop a coordinate conversion algorithm
for detectors that could be implemented in FPGAs to enable the use of the
Hough transform in particle path reconstruction.

The requirements and limitations outlined in section are at least par-
tially fulfilled by the Shear algorithm that was developed. The biggest limita-
tion pertains to the expansion of the selection into multiple rows and multiple
double strip layers, since that part is completely hard-coded in the current
implementation. The first step one would take in further developing the al-
gorithm would be to generalise this part. Though that would come with its
own challenges, among other things the number of rows is not the same in
every layer.

Both versions of the algorithm contain trigonometric functions which are
non-trivial to implement in an FPGA. A common way to implement such
functions is look-up tables, as shown by Hettiarachchi et al. [11], which should
be sufficient here too. However it might be prudent to limit the use as
demonstrated by the chaotic behaviour of the rotation algorithm in Figure [6]
which comes from the truncation of the 6 trigonometric variables.

If the Hough transform were to be set up to accept cylindrical coordi-
nates it might be worth to explore remaking the algorithm in a cylindrical
environment, since it would greatly simplify the rotations.

From this thesis it seems that the Shear algorithm has the most advan-
tages, since the small angle approximation simplifies the rotations, providing
stability even with small scale factors and only loses a small amount of pre-
cision. However if higher precision is needed and larger scale factors isn’t
an issue, the Rotation algorithm might be the only option. Since it contains
3 elementary rotations and a displacement using a fast algorithm for rota-
tions is a priority. In this case the CORDIC [14] algorithm might be worth
investigating in a future study.

Upgrading the ATLAS detector is a large undertaking. The potential
savings in resources and work hours from avoiding the custom AM-ASICs,
which have to be manufactured in-house and are also inflexible with regards
to the detector structure [12], motivates developing the Hough implementa-
tion further.

20

6 Conclusions

Given that the global coordinates used in the Hough transform should be
cartesian and limits to the size of the scale factor the Shear algorithm is
a promising attempt at a conversion algorithm, however it still requires an
extension to handle all layers around the whole detector. The Rotation al-
gorithm is possible to use, but only with large scale factors, since it is very
sensitive to the truncation error. It also has the same need for an extension
into more layers.

21

References

1]

2l

3]

6]

17l

8]

[10]
[11]

[. Béjar Alonso et al. (Eds.) High-Luminosity Large Hadron Collider
(HL-LHC): Technical design report, CERN Yellow Reports: Mono-
graphs, CERN-2020-010. CERN, Geneva, 2020, https://doi.org/10.
23731/CYRM-2020-0010

The ATLAS Collaboration, Technical Design Report for the ATLAS in-
ner tracker strip detector, 2017. Fetched May 2021 https://cds.cern.
ch/record/2257755/files/ATLAS-TDR-025. pdf

The ATLAS Collaboration, Technical Design Report for the Phase-II
Upgrade of the ATLAS Trigger and Data Acquisition System, 2018.
Fetched May 2021 https://cds.cern.ch/record/2285584/files/
ATLAS-TDR-029.pdf

Richard O. Duda, Peter E. Hart, Use of the Hough Transformation to
Detect Lines and Curves in Pictures, Comm. ACM. vol 15 1972. Fetched
May 2021 http://www.ai.sri.com/pubs/files/tn036-duda71.pdf

Wiki contributors BitwiseOperators The Python Wiki, last edit
Jul 2013. Fetched May 2021 https://wiki.python.org/moin/
BitwiseOperators

Bartosz Zaczynski Python bitwise operators Real Python Tuto-
rials, Dec 2020. Fetched May 2021 https://realpython.com/
python-bitwise-operators/

Chrisapotek What is the rationale behind (x % 64) == (v &
63)? [duplicate] StackOverflow, last edited May 2017. Fetched
May 2021 https://stackoverflow.com/questions/13784790/
what-is-the-rationale-behind-x-64-x-63

Python Homepage https://www.python.org
ROOT Homepage https://root.cern/
GEANT4 homepage https://geant4.web.cern.ch/node/1

Don Lahiru Nirmal Hettiarachchi, Venkata Salini Priyamvada Davuluru
and Eric J. Balster. Integer vs. Floating-Point Processing on Modern
FPGA Technology, 10th Annual Computing and Communication Work-
shop and Conference (CCWC), 2020, pp. 0606-0612. doi: 10.1109/C-
CW(C47524.2020.9031118, https://ieeexplore.ieee.org/document/
9031118

22

https://doi.org/10.23731/CYRM-2020-0010
https://doi.org/10.23731/CYRM-2020-0010
https://cds.cern.ch/record/2257755/files/ATLAS-TDR-025.pdf
https://cds.cern.ch/record/2257755/files/ATLAS-TDR-025.pdf
https://cds.cern.ch/record/2285584/files/ATLAS-TDR-029.pdf
https://cds.cern.ch/record/2285584/files/ATLAS-TDR-029.pdf
http://www.ai.sri.com/pubs/files/tn036-duda71.pdf
https://wiki.python.org/moin/BitwiseOperators
https://wiki.python.org/moin/BitwiseOperators
https://realpython.com/python-bitwise-operators/
https://realpython.com/python-bitwise-operators/
https://stackoverflow.com/questions/13784790/what-is-the-rationale-behind-x-64-x-63
https://stackoverflow.com/questions/13784790/what-is-the-rationale-behind-x-64-x-63
https://www.python.org
https://root.cern/
https://geant4.web.cern.ch/node/1
https://ieeexplore.ieee.org/document/9031118
https://ieeexplore.ieee.org/document/9031118

[12]

[13]

[14]

Joakim Gradin, Mikael Martensson, and Richard Brenner. Compari-
son of two hardware-based hit filtering methods for trackers in high-
pileup environments, Journal of Instrumentation vol 13. IOP Publish-
ing 2018. DOI: 10.1088/1748-0221/13/04/P04019 https://arxiv.org/
abs/1709.01034

Mikael Martensson, Max Isacson, Hampus Hahne, Rebeca Gonzalez
Suarez and Richard Brenner. To catch a long-lived particle: hit selec-
tion towards a regional hardware track trigger implementation, Journal
of Instrumentation vol. 14. IOP Publishing 2019. DOI: 10.1088/1748-
0221/14/11/p11009 https://arxiv.org/abs/1907.09846

Xiao-Gang Jiang, Jian-Yang Zhou, Jiang-Hong Shi and Hui-Huang
Chen, FPGA implementation of image rotation using modified compen-
sated CORDIC, 2005 6th International Conference on ASIC, 2005, pp.
752-756, doi: 10.1109/ICASIC.2005.1611424. https://ieeexplore.
ieee.org/document/1611424

23

https://arxiv.org/abs/1709.01034
https://arxiv.org/abs/1709.01034
https://arxiv.org/abs/1907.09846
https://ieeexplore.ieee.org/document/1611424
https://ieeexplore.ieee.org/document/1611424

A Code

This Appendix contains listings of the Python scripts that were made for
this thesis. contains the script for the rotation algorithm. contains

the script for the shear algorithm.

A.1 rotation.py

import libraries
import sys
from typing import SupportsIndex

from ROOT import TCanvas, TPad, TFile, TPaveText, TBrowser

from ROOT import gBenchmark, gStyle, gRO0T, TH1iD, TH1I, TH3D,
TH2D

from time import time, sleep

from math import atan, pi, tan, sin, cos

create a canvas and histogram
cl
c2

Scaling parameter for integer solution

,1000,120,220,3050,-150,155)

s h_calcxy.SetStats (0)

h_calcxz.SetStats (0)

h_calcyz.SetStats (0)

h_diffxx TH2D ("diff in x over x","diff calced
err_x",1000,300,400,300,errhxl ,errhxu)

h_diffyy TH2D("diff in y over y","diff calced
err_y" ,1000,120,220,300, errhyl ,errhyu)

24

TCanvas (’cl1’,’The Ntuple canvas’,200,10,800,1000)
TCanvas (’c2’,’The Ntuple canvas’,1000,10,800,800)

n = 11

mlt = 2x%x*n

print ("scaling by: ",mlt)

256 512 1024 2048 4096 8192

errhxu = 0.07 # 0.8 -0.1 0.2 O -0.025 0.015

errhxl = -0.07 # 0.4 -0.3 0.1 -0.07 -0.045 0.011

errhyu 0.09 # 0 0 -0.1 0.085 -0.015 -0.015

errhyl = -0.09 # -0.3 -0.3 -0.16 0.07 -0.022 -0.022

errhz = 0.005 # 0.05 0.05 0.05 0.005 0.002 0.002

name , title, nbinsx ,x1 ,
xu,nby,yl, yu,nbz,zl,zu

h_calcxy = TH2D("x, y","Calculated global coordinates;y;x"
,1000,120,220,1000,300,400)

;s h_calcxz = TH2D("x, z","Calculated global coordinates;z;x"

,3050,-150,155,1000,300,400)

h_calcyz = TH2D("z, y","Calculated global coordinates;y;z"

vs real;x;

vs real;y;

33

34

o

5

36

39

40

46

47

5

49

h_diffzz = TH2D("diff in z over z","diff calced vs real;z;
err_z" ,3050,-150,155,300, -errhz ,errhz)

h_diffx = THID("I diff in x","diff calced vs real;err_x",100,
errhxl ,errhxu)

h_diffy = THID("I diff in y","diff calced vs real;err_y",100,
errhyl ,errhyu)

h_diffz = THID("I diff in z","diff calced vs real;err_z"
,100, -errhz ,errhz)

h_exactxy = TH2D("f: x, y","float globs from locs;y;x"
,1000,120,220,1000,300,400)

h_exactxz = TH2D("f: x, z","float globs from locs;z;x"
,3050,-150,155,1000,300,400)

h_exactyz = TH2D("f: y, z","float globs from locs;y;z"
,1000,120,220,3050,-150,155)

h_exactxy.SetStats (0)

h_exactxz.SetStats (0)

h_exactyz.SetStats (0)

h_exdiffxx = TH2D("f: diff in x over x","float from real;x;
err_x",1000,300,400,300,errhxl ,errhxu)

h_exdiffyy = TH2D("f: diff in y over y","float from real;y;
err_y" ,1000,120,220,300,errhyl ,errhyu)

h_exdiffzz = TH2D("f: diff in z over z","float globs from
real globs;z;err_z" ,3050,-150,155,300, -errhz,errhz)

h_exdiffx = THID("diff in x","diff calced vs real;err_x",100,
errhxl ,errhxu)

h_exdiffy = TH1D("diff in y","diff calced vs real;err_y",100,
errhyl ,errhyu)

h_exdiffz = THID("diff in z","diff calced vs real;err_z"
,100, -errhz ,errhz)

#open file

file = TFile("./muons_eta0.1-0.3_runO.root",’read’) # modify
as required to reach the file on your specific system

tree = file.Get("tracking")

#b = TBrowser () #useful for looking at available parameters
in the data

#hash code (Module ID) selection
hnl 5520
hnu 5541

#precalculated parameters

ang_zl = -pi*4/9# pi(-1/2+0.5/9) #rotation angle in local xy
plane
ang_yl = 0.02 # rotation angle in local xz plane

ang_z2 pi/7 #rotation angle in global xy plane

25

66

68
69

70

90

100
101
102
103
104
105
106
107
108
109

110

s # The above angle is dependen both on the specific row in a

layer and the number of rows in the layer
This will at least require mod 240, which is possible using

bit

shifts. It will also likely require

some manner of lookup table for hash:layers unless layers
are knownsince total number of hashes per layer is not
constant.

#exact solution values

sinzl =
coszl =
siny0 =
cosy0 =
sinz2 =
cosz2 =

#integer

isinzl =
icoszl =
isiny0 =
icosy0 =
isinz2 =
; icosz2 =

sin(ang_z1)
cos (ang_z1)
sin(ang_y1)
cos (ang_y1)
sin(ang_z2)
cos (ang_z2)

solution values

int (round (mlt*sin(ang_z1)))
int (round (mlt*cos (ang_z1)))
int (round (mlt*sin(ang_y1)))
int (round (mlt*cos (ang_y1)))
int (round (mlt*sin(ang_z2)))
int (round (mlt*cos (ang_z2)))

some measurement variables

lpcnt =

0

loop_start = time ()

2 print ("loop start")

#loop over ntuple
for entry in tree:

a

loop limiter for quick code testing

lpcnt += 1

if
#

lpcnt == 10000:
break

Filling using matching elements
for i,hsh in enumerate(tree.hit_hash):

if hnl <= hsh <= hnu:
#handling of the mod 4 hash code cycle

hsh -= hnl
big = hsh>>2
sml = hsh&3

Fetch local coords
xloc_t1 = int(round(mlt*tree.hit_local_x[i]))

26

111 yloc_t1l = int(round(mlt*tree.hit_local_y[il))

112 zloc_tl1 = int(round(mlt*tree.hit_local_z[i]))

113

114 #reset these params

115 isinyl = isinyO

116 icosyl = icosy0

117 #modify according to cycle

118 if sml in (1,3):

119 isinyl x= -1

120 r_off = mlt=*405

121 else:

122 r_off = mlt*395

123

124

125 # note that all multiplications must be shifted
down by n to keep the scaling

126 # this would be handled internally in the
multiplication kernel in openCL,

127 # but has to be done explicitly with whole number

division here.

128

129 # Local rotations are same for all modules

130 # Prepare combined local rotation (split for
readability)

131 rl = icosyl*xloc_t1//mlt

132 r2 = isinyl*zloc_t1//mlt

133

134 xloc = icoszl*(rl1-r2)//mlt - isinzl*yloc_t1//mlt

135 yloc = isinzlx*(rl-r2)//mlt + icoszl*yloc_t1//mlt

136 zloc = isinyl*xloc_t1//mlt + icosyl*zloc_t1//mlt

137

138 z_off = mlt*x(26xbig + 13)

139 if sml >= 2:

140 z_off x= -1 #easy bit shift

141

142 #following global offset and rotation will be
different for different modules

143 xloc += r_off

144

145 # The rotation here is dependent both on the

specific row of modules and the number of rows in the
specific layer

146 # The most efficient way to implement will
probably be some manner of lookup tables.

147 x = icosz2*xloc//mlt - isinz2xyloc//mlt

148 y = isinz2x*xloc//mlt + icosz2xyloc//mlt

z_off + zloc

149 V4

27

160
161
162
163
164
165
166
167
168
169

170

192
193
194
195

196

197

198

Scale back down for plots
x /= mlt
y /= mlt
z /= mlt

#compare with true values

delx = x - tree.hit_global_x[i]
dely = y - tree.hit_global_y[il]

delz

#fill histograms

h_calcxz.Fill(z,x)
h_calcxy.Fill(y,x)
h_calcyz.Fill(y,z)

h_diffx.Fill(delx)
h_diffy.Fill(dely)
h_diffz.Fill (delz)

h_diffxx.Fill(x,delx)
h_diffyy.Fill(y,dely)
h_diffzz.Fill(z,delz)

#Repeat for exact solution

Fetch local coords

xloc_t1
yloc_t1
zloc_t1

#reset these params

#ang_yl = 0.02
sinyl siny0
cosyl = cosy0
r_offex = 395

#modify according to cycle

if sml in (1,3):
#ang_yl x=-1
sinyl *x= -1
r_offex += 10

z - tree.hit_global_z[i]

tree.hit_local_xI[il
tree.hit_local_y[i]
tree.hit_local_z[il]

Local rotations are same for all modules

Do combined local rotation
coszl*(cosyl*xloc_t1

xloc
sinzl*yloc_t1
yloc
coszl*yloc_t1
zloc

sinzlx(cosyl*xloc_t1

28

- sinyl#*zloc_tl) -

- sinyl#*zloc_tl) +

sinyl*xloc_tl + cosyl*zloc_t1

199
200
201
202
203
204

z_off = 25
if sml >=
z_off

#following global offset and rotation

*big + 13
2:

*= -1 #easy bit shift

different for different modules

206

207

specific

208

237 loop_done =

233 print (f"loop time:

230 print (lpcnt)

240

xloc += r_

The rotation here is dependent both
specific row of modules and the number of rows

layer

The most efficient way to implement
probably be some manner of lookup tables.

cCosz2%*
sinz2*
z_off

X

y
z

print (x,

delx = x -
dely
delz

|
<
|

I
N
|

h_exactxy.
h_exactxz.
h_exactyz.

h_exdiffx.
h_exdiffy.
h_exdiffz.

h_exdiffxx

h_exdiffyy
h_exdiffzz

time ()

241 # Plot histogram

24

3)

offex

xloc - sinz2x*yloc
xloc + cosz2x*yloc
+ zloc

y,2z)

tree.hit_global_x[il]
tree.hit_global_y[il]
tree.hit_global_z[i]

Fill(y,x)
Fill(z,x)
Fill(y,z)

Fill (delx)
Fill (dely)
Fill (delz)

.Fill(x,delx)
.Fill(y,dely)
.Fill(z,delz)

{loop_done-loop_startl}")

2 # Divide canvas for two plots on same canvas
243 ¢l .Divide (2,

29

will be

on the
in the

will

cl.cd (1)
h_exdiffx.SetLineColor (2)

 h_exdiffx.Draw ()
; h_diffx.Draw("SAME")

cl.cd(2)
h_diffxx.SetMarkerColor (1)
h_diffxx.Draw ()
h_exdiffxx.SetMarkerColor (2)
h_exdiffxx.Draw("SAME")

cl.cd(3)
h_exdiffy.SetLineColor (2)

; h_exdiffy.Draw()

h_diffy.Draw("SAME")

cl.cd(4)
h_diffyy.SetMarkerColor (1)
h_diffyy.Draw()
h_exdiffyy.SetMarkerColor (2)
h_exdiffyy.Draw("SAME")

7 ¢cl.cd(b)
; h_exdiffz.SetLineColor (2)

h_exdiffz.Draw ()
h_diffz.Draw ("SAME")

cl.cd(6)
h_diffxx.SetMarkerColor (1)
h_diffzz.Draw ()
h_exdiffzz.SetMarkerColor (2)

276 h_exdiffzz.Draw ("SAME")

cl.Update ()

this statement is to allow to inspects plots before code

finishes

c2.Divide (2,2)

c2.cd (1)
#h_exactxy.Draw ()

i h_calcxy.Draw ()

c2.cd(2)
#h_exactxz.Draw ()
h_calcxz.Draw ()

30

292
293
294

295

297
298
299
300
301
302
303

304

305
306
307
308
309
310
311
312
313
314
315
316
317
318

319

c2.cd (3)
#h_exactyz.Draw ()
h_calcyz.Draw ()

5 ¢c2.cd(4)

#h_diffzz.Draw("")

c2.Update ()

the following is code to show how hashes are mapped in the
z-direction,

turns out they’re mapped from O outward, alternating
between negatives and positives

cl.cd(2)

opts = f"hit_hash>={hnl}&&hit_hash<={hnul}"

hist=tree.Draw("hit_hash",opts)

for i in range (hnl,hnu,2):

opts2 = f"hit_hash>={i-1}&&hit_hash<={i}"

cl.cd(1)

hist=tree.Draw("hit_global_x:hit_global_z",opts2)
cl.Update ()

sleep (0.5)

code_done = time ()

print (f"time to execute: {code_done-loop_start}")
r=input (’Please press enter to continue.’)

31

A.2 shear.py

1 # import libraries

2 import sys

3 from typing import SupportsIndex

4 from ROOT import TCanvas, TPad, TFile, TPaveText, TBrowser

5 from ROOT import gBenchmark, gStyle, gR0O0T, THiD, TH1I, TH3D,
TH2D

6 from time import time, sleep

7 from math import atan, pi, tan, sin, cos

9 # create a canvas and histogram
10 ¢l = TCanvas(’cl’,’The Ntuple canvas’,200,10,800,1000)
11 ¢2 = TCanvas(’c2’,’The Ntuple canvas’,1000,10,800,800)

13 # Scaling parameter for integer solution

4 n = 8

15 mlt = 2%*n

16 print("scaling by: " ,mlt)

17

18 # 256 512 1024 2048 4096 8192
19 errhxu = 0.2 # 0.2 0.04 0.03 0.02 0.01 0.01
20 errhxl = -0.2 # -0.2 -0.04 -0.03 -0.02 0.01 -0.01
21 errhyu = 0.1 # 0.1 0.04 0.03 0.02 0.015 0.01
22 errhyl = -0.1 # -0.1 -0.06 -0.03 -0.02 -0.015 -0.01
23 errhz = 0.05 # 0.05 0.05 0.03 0.004 0.004 0.004

25 # name , title, nbinsx ,x1 ,
xu,nby,yl, yu,nbz,zl,zu

26 h_calcxy = TH2D("x, y","Calculated global coordinates;y;x"
,1000,120,220,1000,300,400)

27 h_calcxz = TH2D("x, z","Calculated global coordinates;z;x"
,3050,-150,155,1000,300,400)

28 h_calcyz = TH2D("z, y","Calculated global coordinates;y;z"
,1000,120,220,3050,-150,155)

20 h_calcxy.SetStats (0)

30 h_calcxz.SetStats (0)

31 h_calcyz.SetStats (0)

32 h_diffxx = TH2D("diff in x over x","diff calced vs real;x;
err_x",1000,300,400,300,errhxl,errhxu)

33 h_diffyy = TH2D("diff in y over y","diff calced vs real;y;

err_y" ,1000,120,220,300, errhyl ,errhyu)
h_diffzz = TH2D("diff in z over z","diff calced vs real;z;
err_z" ,3050,-150,155,300, -errhz,errhz)

35 h_diffx = TH1D("I diff in x","diff calced vs real;err_x",100,
errhxl ,errhxu)

36 h_diffy = THI1D("I diff in y","diff calced vs real;err_y",100,
errhyl ,errhyu)

37 h_diffz = THID("I diff in z","diff calced vs real;err_z"

32

38

39

40

46

66

67

69

,100, -errhz,errhz)

h_exactxy = TH2D("f: x, y","float globs from locs;y;x"
,1000,120,220,1000,300,400)

h_exactxz = TH2D("f: x, z","float globs from locs;z;x"
,3050,-150,155,1000,300,400)

h_exactyz = TH2D("f: y, z","float globs from locs;y;z"
,1000,120,220,3050,-150,155)

h_exactxy.SetStats (0)

h_exactxz.SetStats (0)

h_exactyz.SetStats (0)

h_exdiffxx = TH2D("f: diff in x over x","float from real;x;
err_x",1000,300,400,300,errhxl ,errhxu)

h_exdiffyy = TH2D("f: diff in y over y","float from real;y;
err_y" ,1000,120,220,300, errhyl ,errhyu)

h_exdiffzz = TH2D("f: diff in z over z","float globs from
real globs;z;err_z" ,3050,-150,155,300, -errhz,errhz)

h_exdiffx = THID("diff in x","diff calced vs real;err_x",100,
errhxl ,errhxu)

h_exdiffy = TH1D("diff in y","diff calced vs real;err_y",100,
errhyl ,errhyu)

50 h_exdiffz = THID("diff in z","diff calced vs real;err_z"

,100, -errhz ,errhz)
#open file
file = TFile("./muons_eta0.1-0.3_run0O.root",’read’) # modify
as required to reach the file on your specific system
tree = file.Get("tracking")

#b = TBrowser () #useful for looking at available parameters
in the data

#hash code (Module ID) selection
hnl = 5520
hnu = 5541

51 #precalculated parameters

#radial displacement : 395 (+10 for layer 6)

#exact solution values
phi = pi/7
phiThet = -pi*19/63#-0.9474933115904356

sinex = sin(phiThet)#-0.8119548525165163
cosex = cos(phiThet)#0.583720239048538
sinphi = sin(phi)

cosphi = cos(phi)

x_offex = 395*cosphi

y_offex = 396*sinphi

33

88
89
90
91

92

99
100
101
102
103
104
105
106
107
108
109

110

integer solution values:

sine = int(round(mlt*sinex))
cose = int(round(mlt*cosex))
icosphi = int (round(mlt*cosphi))
isinphi = int(round(mlt*sinphi))
x_off int (round (mlt*x_offex))
y_off int (round (mlt*y_offex))

some measurement variables
lpcnt = 0
loop_start = time ()
print ("loop start")
#loop over ntuple
for entry in tree:
a loop limiter for quick code testing
lpcnt += 1
if lpcnt == 10000:
break

Filling using matching elements
for i,hsh in enumerate(tree.hit_hash):
if hnl <= hsh <= hnu:
#handling of the mod 4 hash code cycle
hsh -= hnl
big hsh>>2
sml = hshé&3
R_off = 395

Do conversion steps for integer solution
x_t = int(round(mlt*tree.hit_local_x[i]))
yloc = int(round(mlt*tree.hit_local_y[i]))
z_t = int(round(mlt*tree.hit_local_z[i]))

z_off = mlt*x(25xbig + 13)
if sml >= 2:
z_off *= -1 #easy bit shift

gamma = int(round(mlt*0.02))
if sml in (1,3):

x_L6 = 10xicosphi

y_L6 = 10*isinphi

gamma *= -1
else:

34

124 x_L6 =0

125 y_L6é =0

126

127 xloc = x_t - gamma*z_t//mlt

128 zloc = z_t + gamma*x_t//mlt

129

130 x = cosexxloc//mlt - sinex*yloc//mlt + x_off +
x_L6

131 y = sinexxloc//mlt + cosexyloc//mlt + y_off +
y_L6

132 z = zloc + z_off

133

134

135 #Scale down for plots:

136 x /= mlt

137 y /= mlt

138 z /= mlt

139

140 delx = x - tree.hit_global_x[i]

141 dely = y - tree.hit_global_y[il

142 delz = z - tree.hit_global_z[il]

143

144

145 h_calcxz.Fill(z,x)

146 h_calcxy.Fill(y,x)

147 h_calcyz.Fill(y,z)

148

149 h_diffx.Fill (delx)

150 h_diffy.Fill(dely)

151 h diffz.Fill (delz)

152

153 h_diffxx.Fill(x,delx)

154 h_diffyy.Fill(y,dely)

155 h_diffzz.Fill(z,delz)

156

157

158

159

160 #Now repeat steps for exact solution

161

162 x_tl = tree.hit_local_x[il

163 y_tl = tree.hit_local_y[il]

164 z_tl = tree.hit_local_z[1i]

165 # [cosa 0 sinal] [x] x’ = cosa*x + sina*z

x? = (1-a"2)*x + a*xz "= x + axz

166 # [0 1 0l*[yl vy’ =y
SAA: y’> =y

167 # [-sina 0 cosa] [z] =z’ = -sina*x + cosa*z

z’> = -a*xx + (1-a"2)z "= -a*x + z

35

186

187

189
190
191
192
193
194
195
196
197
198

199

203
204
205
206
207
208

209

x_
y_

if sml in

else

xloc
yloc
zloc

off = 355.875

off = 171.

gamma = 0.

4

(1,3):
gamma = -0.02

02

= x_tl1 - gamma*z_t1

= y_t1

= z_tl + gammax*xx_t1

z_off = 26xbig + 13

if sml >= 2:
z_off *= -1 #easy bit shift

z_ang = 0.02*xxloc

X

y =
Z

cosex*xloc

sinex*yloc + x_offex

sinex*xloc + cosexx*yloc + y_offex

zloc + z_o

ff

if sml in (1,3):

#z += zZ_ang

delx
dely
delz

x += 10*cosphi
y += 10*sinphi
zZ_ang *= -1

X - tree.hit_global_x[i]

=y - tree.hit_global_y[il

z - tree.hit_global_z[i]

h_exactxy.
h_exactxz.
h_exactyz.

h_exdiffx
h_exdiffy.
h_exdiffz.

h_exdiffxx
h_exdiffyy
h_exdiffzz

Fill(x,y)
Fill(x,z)
Fill(y,z)

.Fill (delx)

Fill(dely)
Fill (delz)

.Fill(x,delx)
.Fill (y,dely)
.Fill(z,delz)

36

loop_done = time ()
print (f"loop time: {loop_done-loop_start}")
print (1pcnt)

Plot histogram
Divide canvas for two plots on same canvas

; c1.Divide (2,3)

g cl.cd(1)

h_exdiffx.SetLineColor (2)
h_exdiffx.Draw ()
h_diffx.Draw ("SAME")

cl.cd(2)
h_diffxx.SetMarkerColor (1)
h_diffxx.Draw()

; h_exdiffxx.SetMarkerColor (2)
37 h_exdiffxx.Draw ("SAME")

cl.cd(3)
h_exdiffy.SetLineColor (2)
h_exdiffy.Draw()
h_diffy.Draw("SAME")

cl.cd(4)
h_diffyy.SetMarkerColor (1)
h_diffyy.Draw()

7 h_exdiffyy.SetMarkerColor (2)
: h_exdiffyy.Draw("SAME")

cl.cd(5)
h_exdiffz.SetLineColor (2)
h_exdiffz.Draw ()
h_diffz.Draw("SAME")

cl.cd(6)
h_diffxx.SetMarkerColor (1)
h_diffzz.Draw()

; h_exdiffzz.SetMarkerColor (2)

h_exdiffzz.Draw("SAME")
cl.Update ()

this statement is to allow to inspects plots before code
finishes

37

265
266
267

268

270
271
272

273

277
278
279
280
281
282
283
284
285

286

287

292
293
294
295
296
297
298
299
300
301

302

c2.Divide (2,2)

c2.cd (1)
#h_exactxy.Draw ()
h_calcxy.Draw ()

c2.cd(2)
#h_exactxz.Draw ()
h_calcxz.Draw ()

c2.cd(3)
#h_exactyz.Draw ()
h_calcyz.Draw ()

c2.cd(4)
#h_diffzz.Draw("")

c2.Update ()

the following is code to show how hashes are mapped in the
z-direction,

turns out they’re mapped from O outward, alternating
between negatives and positives

cl.cd(2)

opts = f"hit_hash>={hnl}&&hit_hash<={hnul}"

hist=tree.Draw("hit_hash",opts)

for i in range (hnl,hnu,2):

opts2 = f"hit_hash>={i-1}&&hit_hash<={il}"

cl.cd(1)

hist=tree.Draw("hit_global_x:hit_global_z",opts2)
cl.Update ()

sleep (0.5)

code_done = time ()

print (f"time to execute: {code_done-loop_startl}")
r=input (’Please press enter to continue.’)

38

	Introduction
	Background
	The Hough Transform
	Inner Tracker structure
	Speed requirements
	Bit shifiting

	Materials and Method
	Evaluation
	Data

	Results
	The modulo 4 cycle
	Two algorithms
	Rotation algorithm
	Shear algorithm

	Discrepancies

	Discussion and Outlook
	Conclusions
	Code
	rotation.py
	shear.py

