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Fig. 1. Mean-field potentials of quarks and antiquarks of
different flavors from NJL model as a function of net quark

density.
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Fig. 2. Central number densities of partons as a function of time in centrality 30%—40% Au + Au collisions at collision energies
VSNN = 200 GeV for the cases of including different isospin asymmetries: (a) § = 0.1; (b) § =0.2; (c) 6 =0.3.
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Fig. 3. Distribution of final hadron charge asymmetry (a) and isospin asymmetry § (b) as a function of charge asymmetry A, from

the extended AMPT model.
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Fig. 4. Elliptic flow (v2) of partons as a function of final
hadron charge asymmetry for 30%—40% central Au+Au col-
lisions at 200 GeV.
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Fig. 5. For 30%-40% central Au+Au collisions at 200 GeV:
(a) Pion w2 asa function of final hadron charge asym-
metry; (b) vy difference between nt flln~ as a function of

final hadron charge asymmetry.
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PREE DI A 1A 52 it B 555 i far AN TR BE I 2
KRR, AR HES A ELAE A5 R 67 e
XIFREG s W -3k LR BB SRy d(u) 5 e
Z 3 T GERKR T w(d) S 5o ¥ g # W,
d(u) % S e R L R b 32 ) T H u(d) & 5 HEF
1, B FEBCT FSFHRIE G va (d) Fl oz (@) /INIESE AN,
1M vz (u) Fl vz (d) ANFIR/DN . FESR T R, 3@ 2T
SRAGERIE MRS Mot i+, T d M
w (ARG B A B 52 5 R d ARG R0 3 B 2R o o fef 15
o FHRRI B 2 A FRATHE s B rh i R 8L T
FAL g AN XS B 5 R A7 AN X FR (R 2t DCIBE, MA T A
Sy B R E R - B H B T Aut-Au
R4 178 P PR RS DXl A6 T2 B 2 5 F e AN X
FERERME SRR, 7E HATRIWTS TAEH, H ARG
T AutAu JLOAERERSY 200 GeV i AL,
X T AR R i AHOCRRR ST, A T — 2 TAE
Ykzr It

WAL, AR [ ot S R ARG, B %9Zr +99Zr
F19°Ru +2° Ru flFAEMF 9 U A, XA BT A 142
EN R 5 B DR BE A SRR L 2027 D) R
f& JE F1F #E % (chiral magnetic effect, CME)
RIS 25290 g T[] O R ARl ot R e = A T
ANV BEAS KT RBE 15 S o, R4 s o [l g
TR BT ST SR AL T SIS SR, P RATAT LAt —2
REAF RN HEAXSFRE e B A B, W5 &=
AR AR o IE ORI B A
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Abstract

Relativistic heavy-ion collisions are an important experimental way of studying the new state of matter as
well as the phase diagram of the quantum chromodynamics (QCD) under extremely high temperatures and high
densities. In recent years, the beam-energy scan program has been carried out on the relativistic heavy-ion
collider at Brookhaven National Laboratory in USA, and the STAR collaboration at relativistic heavy ion
collision (RHIC) has measured the difference in the elliptic flow v between n~ and =t on an event-by-event
basis, and found a linear dependence on the charge asymmetry A, of the collision system, which is considered
as a possible signal of the chiral magnetic wave. Based on the extended multi-phase transport model (AMPT),
this paper uses a 3 flavor Nambu-Jona-Lasinio (NJL) model to study the quark isospin Mean-field potential,
which provides a new idea for explaining the experimental phenomenon of the linear relationship between the
pion elliptic flow splitting Awve = vo(n~)— v2(xt) and charge asymmetry A. Our results show that isovector
interaction can cause a splitting of the isospin asymmetric quark matter mean-field potential, manifesting as
d(#) quarks experiencing a mean-field potential greater than wu(d) quarks. Therefore, d(#) quarks experience
more repulsion than w(d) quarks in collision processes, resulting in a small increase in the elliptic flow of the
partial subflow w2(d) and we(u), while v2(u) and wv2(d) decrease slightly. In the hadronization process, the =
elliptic flow splitting occurs due to the split of d and u elliptic flows combined with the split of @ and d
elliptic flows. We also found a linear correlation between charge asymmetry and isospin asymmetry at mid-
rapidity region from our transport model, and thus explained the experimental phenomenon of the linear
relationship between the pion elliptic flow splitting Ave and charge asymmetry A, by using the isospin mean-
field potential of quark matter. Further, isospin properties of quark matter also provide a theoretical basis for

isobar collisions and the equation of state of compact star matter.
Keywords: relativistic heavy-ion collisions, isospin, elliptic flow, a multi-phase transport model
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