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Abstract

We discuss an approach to the quantization of gravity, known as
pregeomelry, a notion going back to J.A. Wheeler and A.Sakharov.
Over the past twenty years many different pregeometrical models
have been proposed and we give a (very) short summary of the most
important ones. The emphasis, however, is put on a model due to
the author, which is based on random graphs. The predictions of
that particular model is discussed, as are its relationship with other
approaches to quantum gravity.

Introduction

Modern physics consists essentialy of two different theories, which are both
very elegant and powerful. The one is quantum field theory, dealing with
subnuclear length-scales, while the second is general relativity, which deals
with stellar and galactical scales. Quantum field theory provides a succesful
description of three of the four fundamental forces, namely electromagne-
tism and the strong and weak interactions, it even allows a unification of
these into one grand unified theory. General relativity is a classical theory
of gravitational phenomena, and has sofar defied quantization: we have no
consistent theory of quantum gravity. A lot of work is carried out trying
to unite general relativity and quantum theory, this truely unified theory
would then work for all length scales (at least in principle).

To get an idea of the complexities involved in quantizing gravity, it is
worthwile to note the level of mathematical abstraction involved in the
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fc?rmulation of the theory. General relativity is formulated in terms of
differential geometry, so in order to specify the model we have to specify:

1. E:xclide.an/Min.kowskian geometry (flat space), i.e. the vectorspace
R™ equipped with a metric of Euclidean or Lorentzian form.

2. A differentiable structure, i.e. a family (U,, ¢o) of regions U, and

differentiable maps ¢, : U, — R", giving us a means of defining
.coordinates on the manifold M = UU,

3. An affine structure, i.e. a connection or covariant derivative allo-

wing us tq parallel transport vectors on M (this is essential to the
equivalence principle).

4. A symplectic structure, i.e. a Poisson bracket, a Hamiltonian or
Lagrangean to define dynamics.

5. Fiber bundles to specify the matter content of the theory.

Clearly, general relativity is a very “high level theory”. By this I mean
to say that it requires a lot of structure (and hence axioms in a rigorous
formulation). Using the same terminology, “low level theories” are, mat-
hematically speaking ’

e Formal logic.

The theory of categories and sets.

General topology.

General algebra.

These are to some extent complementary (one can be expressed in terms
of one of the others). It is at this level pregeometry starts.

The basic idea is to derive the differential geometric structure of general
relativity from some underlying, more fundamental, theory, pregeometry.

To avoid confusion, I give the definition of that word in the sense I'm using
it.

PREGEOMETRY: (Lit. “before geometry”) A model in which
general relativity is derived as a limiting case from a theory
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where geometrical concepts (some if not all, at least) were ab-
sent to begin with. Eventually, one would like a theory based
solely on mathematical logic.

This is a very broad definition and a number of different approaches have
been proposed. These can be roughly classified according to the following
scheme.

¢ Logic approach: This is the approach originally invented by Whee-
ler [Whe]. The underlying structure is a formal logic, i.e. a language
of propositions and ways of relating these (logical connectives such as
A,V, =, and negation —). It has especially been developed further
by D.Finkelstein [Finl]. One of its virtues is its close relationship
with the quantum logic approach to quantum theory going back to
Birkhoff and von Neumann. A special sub-class is the approach based
on cellular automatons and similar abstract machines, this has been
pursued by Feynman [Fey], 't Hooft [tH1] and Finkelstein [Fin2].
The problem with such models is, of course, their very high level of
abstraction: it is often difficult to relate them to the physical reality.

e Set theoretic approach: Here the fundamental structure is taken
from set theory. Also here has Finkelstein [Fin3] made contributions
(quantum sets). An approach I am particularly fond of myself is that
of the causal sets going back to Penrose [Pen] and 't Hooft [tH2],
but developed further by Bombelli et al. [Bom] Such causal sets
completely determine not only the topological but also the conformal
structure of space-time, as was proven by Hawking et al. [Haw].

o Algebraic approach: The most famous example is probably the
Wigner 6j-symbol approach to 3D-gravity, this is essentialy based
on the theory of representations of SU(2).

¢ Field theoretical approach: This is the approach going back to
Sakharov: gravity is considered as a result of all the other interac-
tions in much the same way the elastic properties of a solid follows
from the electromagnetic interactions of its constituents. This has
been pursued especially in Japan by Terazawa [Ter]|, Akama and
Oda {AOQ). In their approach we typically start out with a family
of n scalar fields ¢* on a n-dimensional topological space (R", say),
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and one then defines the viel-bein e, as d,

is induced. The main problem, as [ see

finite dimensional space: Where does it come from?

¢ Discrete Space-Time Approach: One w
ach, is an approximation to t}ie smooth man
relativity, Qne can, however,
the smooth space-time then appears as a long wave-length limit. Iy
other words: it is the differentiab]e

manifold that is an approximati-
on, reality is discrete (Kronecker:

“God created the natural numbers;
the rest is the work of man.”). The first break~through was achieved
by Regge [Reg], and it has Jater been generalized {o simplical gravity

and matriz models (for d = 2), see [Dav]. Also T.D.Lee has worke
on this [Lee].

* Topological approach: To my mind this is one of the most pro-
mising new theorjes. The starting point is the concept of quantum
topology, first introduced by C.Isham [ZIsh). 1t is closely connected to
the logical approach but is closer to physical reality. Important pe-
ople in this field are, Alvarez, Verdaguer, Céspedes [ACV1], [Ant2],

A.Gribb and R.R. Zapatrin [GZ], besides Isham and his coworkers
Yu.Ku byshin, and P, Renteln.

* Random or chaotje approach: This is the random dynamics of

H.B.Nielsen [Nie]. The known laws of nature (aswell as the structure
of space-time) arrise as a limiting procedure in which all information
of the underlying structure is washed out. Hence, no matter which
structure we take ag being fundamenta] at the Planck scale, we will
recover the known laws i our low-energy, long wavelength limit (es-
to lowest order). Work in this field

have also been done by J Mioupoulos and by Nielsen’s collaborators
C.Froggat, S.E.Rugh. '

¢ Synthetic approach:
oned approaches.
self [Ant).

Here we combine

some of the above mentj-
This has been done by

Zapatrin [Zap] and my-

We will now continue by setting-up a particular model.

#*, and hence the metric
becomes g, = Mab0,$*9, #°. One can prove that the correct action

it, is the introduction of a

ay of viewing this appro-
ifold structure of general
also view it as an autonoums theory;

r
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A Particular Model

is the most basic element of any geometry? f)bv:ogsly thls':la:h :::
s o f a point.! The particluar geometrical struct}lr.e i ;
g DOtl;n'o h(:w these points are linked to eachot}}er. ’I}ushl.s t (;n
B d('allntml%e as our basic ingredients: points and ln.lks. Int is wtz
i t:l structure becomes a graph. This graph is thz?n tgo::;gs °
:)he:;td::;: in some continuum limit. 7%me will be defined in te
ec
;he dylrl;lr:lr;c stl:):;(r);v 'we introduce operators creating ani 1an;,l;}:c1::;2§ ;11112
indan it i express all possible s
fundam?ntal qua:;zlizse i;aﬁl‘;ng 1:;;:;. Ifl this sense, quantum theotry ;s
L (}uannt and simple than classical physics where no 81.1ch 8 dru i
vy n'lore etﬁiaclosest analogue is the phase-space). '.I‘hus we mt;rob :S(i:c
ez t,b,b" which annihilates/creates points/hnks.. .Thes; v
eatatost (o ’ex"haps rather operations, to avoid the suspicion tha ke
Operatom' (°f_ ; uantum mechanics by the back-door!) are then (l)lur uci
fo Sneakl'ng ”\;Vq define an evolution as a sequence, {G,}, of graphs stors
£ dY“am"fS- bt:.ined from Gy by the application of one of the o({)erat fors
thaff Gt;fl - Gyy1 = b1G,. Each such a,pplica.tion’wﬂl be ca,llef t :e e
.‘:t;; ,lbl;n(:(’ef(; idet:t-tify the index ¢ with time. The discreteness o
, ' i is definition. ~ .
‘SIP guaifa;?;f: itttlal: :213;1122::8032 t(l)lf]sthe four fundamental opiratli;):lfe(zll:;:
s afte , iti “time-step”). But how are we to
lSh 3:1:.3 ;Iilet }Ilzil(llijfli:;t;::uzfption is that this is made at raénd;n:)l. :rVaiit:;lzs
ice? ’
icnt(;oduce four probabilities. P1y s Py orr for:;:h:ofl t:l:t z:Ch t;pime‘step’
i we'im{)xose tIl:se) co’él]izr?:lzii:lli: npc?w afl::lost completely spe:ciﬁed.d 'lli’hi
somemmg' 'appfhin , is the “interaction” or “mixing” of the point a,(xlx n,t
< rema:’“mf t ha.gpens if we attempt to delete a point, say, t;h.:-),tk oesn
OP.eTatOTS- V‘i v ne i)hat is already there? What happens to the links gtomj
s b ?(‘: ,hen we delete it? It seems to me, that the n}ost na }1111'
O‘It.fm}n: pf?)lr];)i: the deletion (creation) of a point/link that is r}ot ltl (13{1:
Eilgo;(iiel:dyo there), and when deleting a point, also to delete all its links.

“c“m-n); one can deﬁ'ne ﬂﬂ “lt ‘e‘q" tc}w‘ag'e’ n tellns Of Ca‘tegorles‘ I WIH come ba'Ck
to thl pOlnt ]a-ter.
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to del int wi i
elete a point with few (or no) links, than to delete one with many. We

¢ Set-Up: The Sfundamen
tal structure is graph
. tl
cesses are deletion and creation of pointi aﬁd,ansfundamental "

* Simplicity: w i w
Plicity: We do not allo multiple dinks between two points, and
’

we do not allow a point to Jj ;
oli : .
be different). nk to itself (i.e. the endpoints have to

-step.

* Stochasticity: At each ti
; Ime-step what operator to apply |
at random according to a given set of probabilities e

& , ; .
graph can be ‘described by its so-called topological matriz A defined by

1
I

The rfaquirement, that no point link
zex:os In the diagonal. As an exampl
1, its topological matrix s

points ¢ and j linked
otherwise (1)

s direc’fly to itself implies that A has
e, consider the graph shown in figure

0100
P 010

00 (2)
0

We could introduce an or

_ ientati f i : . .
PP = iy ¥ on of the links by Introducing a sign in

-1,0 depending on whether there was a link

Models of Pregeometry 293

.y

o4
Figure 1: A simple example of a graph.

from ¢ to j, or from j to ¢, or no links between the two points. Similarly
we could let A;; take on any value, the absolute value |A;;| would then
give the length of the link. But for our purposes we do not need this extra
structure.

The set of all graphs will be denoted by I and is referred to as metaspace.?
The basic operators act ergodically on this space, i.e. any graph can be
obtained from any other by a suitable application of these operators a
sufficient number of times. Given two graphs, there is always an evolution
going from the one to the other, in fact there is an infinity of such sequences.

The Contents of the Model

Now we have a model, now we start to predict things. As our model is
purely topological (in the present formulation), we must look for an inter-
pretation of various important topological concepts, and we must see what
the model predicts in these cases. The most important such quantities (in
any case, the ones I’'m going to discuss) are (1) metric, (2) Euler-Poincaré

characteristic and (3) dimensionality.
Note that k’th power of the topological matrix has the property:

(AF);; = #{paths of length k between points 4, j} (3)
This leads to a definition of a metric '
D;; = min{k | (A"),-J- # 0} (4)

i.e. the distance between points 7,7 is equal to the length of the shortest
path between these (the length of path is equal to the number of links

2T have chosen this name for two reasons: firstly, to emphasize the connection with
Wheeler’s superspace, and, secondly, because I feel we’re beginning to trespass the do-
main of metaphysics with this kind of models. )
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of which i+ i . :

eac\lylvhclsll: it 1ts (;na,de). It is easily checked that this is indeed a metric op

g pOillll:c : Zompf)nenlt of the graph. In the limit where the number

! § tend to infinity and the length of the links to zero ie in’
, i.e.

the contiuum limit, thi iti i
» WIS quanitity will tend to a metric functi
each connected component of the resulting space, in fact e i
, :

lim Dy; = d(z,y) = V20(z,y) (5)

where Q(z, y) is Synge’s world Junction

I(ic;:l’v:z‘ke:: [Alv], [1.1(7 V2]. One should also note that the same authors also
pregeometrical model based on the matrix D above, [AC V1],[Ant2]

in particular:

%\:or.e caII} _be found in the abovementioned articles.
o I::!ng) nl:;]fr gsrta,wtg' and Regg.e ca.lculus one builds-up space-time from
Pl e 2. ru;: ures, the simplices. This js actually a very general
oy i meang(; (x;a.‘lifal toPology, homology etc., see [GH],[M as]). By
e g s ﬂ-l meusxon'a.l substructure which cannot be separated
it g-ceue same dimensionality. Thus a O-cell is a point, a
St £ rest,rict . a po']ygon, a :?-cell a polytope and so on. We're
e ur attention to d-simplices, A d-cell is a d-simplex if it
01 a+1 points and each point is linked to all the others (it th
(V):uu_lnk : 1t thus has
9 -(—22 nks).
2-simplices and tetrahedra are 3-simplices. Let by denote the number of

d-simplices in a pj
given grapl : s
% ti5 be graph, we define the Euler-Poincaré characterz'stz'c,

Hence 0- and 1-cells are simplices, triangles are

X =D (~1)%, (8)

d=0

3
I ; :
n graph theory, a simplex is often known as a complete graph or cligue
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We have already introduced the symbol v for the number of points, i.e.
bo = ¥. The remaining quantities can be found from the topological matrix
in a simple way. Note that Tr(A*) is the number of k-gons (polygons with
k faces) times k! (due to invariance under permutations of the points),

hence

b= 5 TX(AY) )

(10)

1
b2 == 3—!‘TI'(A3)

Restricting ourselves to two-dimensional structures we would get

1 1
X2D =V — ETI’(Az) + -3—"1‘1‘(143) (11)
which is essentially the form of the action of the fashionable matrix models,
which can thus be considered as following from our model.*
Three points 1, j, k lie on a triangle if and only if B, = AijAiAjr = 1,
and the number of 3-simplices is then
1
bs = i Z Bij Biji Biti Bkt (12)

Tk

which we could suggestively write as b3 = LTr'(B*), thus higher dimen-

sional structures are described by “tensor-models”. In this way much of
the machinery developed for matrix models could be transferred to d > 2,

but would only be able to deal with the “static” case (no gravitons, no
dynamics). ,

For a manifold, the dimension is d if and only if g4y = bg42 = ... = 0 and
by # 0, it would then be tempting to define the dimensionality of a graph
simply as max{d | by # 0}. But this is actually quite inappropriate! It
could very well happen that, since the dimension is not constant all over
space in general, that we would have one 100-simplex, say, sitting at the
center with thousands of links, i.e. 1-simplices, going out from it. It would
be unnatural to say that space then had dimension 100, since for all but
a microscopic region the dimensionality would be one! What we need is a

*We would in general also have “kinetic terms” due to the possibility of changing the
number of points and links, such terms are absent in the much simpler matrix models.
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statistically weighted definition, the simplest possible one being, I think,

that the dimensionality is equal to d if and only if an arbitrary point has
probablity at least 50% for lying on the edge of a d-simplex and less than
50% for being an edge of a (d+1)-simplex, i.e. at least half the points sees
space as being d-dimensional.
We can now run some simulations on a computer. We choose three proba-
bilities py, po, ps (the last one py is then given by ps = 1 — (p1+ p2 +p3)),
and start with an empty graph. At each time step we then pick at random
one of the four fundamental operators with the given probabilities and
apply it to the graph. We then calculate the resulting topological matrix
and from that the numbers bq. I have done this for 18 different choices of
pi (i = 1,2,3), each time letting the computer go on for 200 time steps.
The average values of the dimension d and x was then calculated for each
choice and the result is shown in figures 2 and 3.

The important fact is that d = 3 is predicted. For a proper three di-

Owil s2" 3 425 dimension

Figure 2: The number of times the different values of dimension occured
in the simulations.

mensional manifold x would vanish identically, the fact that it doesn’t just
implies that we do not have a proper manifold, i.e. the dimension can
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1

21 "0 1 2 38 4 5 6 X

Figure 3: The frequency of the average values of the Euler-Poincaré cha-
racteristic x in the simulations. The averages have been rounded off to the
nearest integer value.

change as we move around on it, it can have non-smooth edges or jumps
and so on.

A Master-Equation

In the introduction I defined pregeometry as a model which gave general
relativity in a certain limit, and, furthermore, I claimed that the proposed
model did just that. Time has come now to comment more on this.

The fact that the possible choices of fundamental operations at a given
time step only depends on the structure of the graph at that “instant” and
not on its previous history implies that the stochastic process is Markovian.
It can be proven, see [Gar], that Markov processes of continous arguments

20 3akaa 636
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z,t satisfy a differential equation, the Chapmann-Kolmogorov equation, of
the form

0 0
r P(z,t|zg,t0) = - E {_(9:17,' (ai(z)P) + % E ___09:8;;:: (b.'j(a:)P)} +
1 7 v

+ /w(wly7t)P(y’t’z0, tO) - w(!/lfv,t)P(m, tl$0,t0)¢(:&3)

where P(a:, t|zo,20) is the probability that the system will evolve from state
To at time tp to state = at time t. The functions a;,b;; are essentially the
moments of the probability distribution

—_— 2 1
(@) = Jm /,z_y,x(””*“-‘/‘)P(-‘/’”At'”""”"-”Jfo“)

bij(2)

1l

. 1
Jim /, o (5 B(E = 1P+ Al tdy +0(e)

and
w(z|y,t) = AI%I—I}O P(z,t+ At|y,t)

The Fokker-Planck, Boltzmann and Liouville equations are all of this type.
If we assume that we can carry this equation over into our discrete set-up
(in any case, it is supposed to hold in the continuum limit), we get an

equation of the form (invoking the summation convention and summing
over repeated indices)

_ 6 é
0= (—6—A‘_;G"j;k1m + V(A) + W(A)) PI‘(AO — A) =H PI‘(AO — A)

(14)
where V(A), Gij1i(A) are some functions, W is an integral operator

W(A)YH(A) = / w(A|B)$(B)dB (15)

and where we have used that our system only depend indirectly on time
thus allowing us to replace the time derivative with a variation with respect
to the. topological matrix. This equation is similar to the Wheeler-DeWitt
equation in canonical quantum gravity, the basic difference being (1) the
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appearance of the probability Pr(4p — A) and not the wave-functional of
the universe, (2) the topological matrix is used instead of the metric, and
(3) the evolution described takes place in metaspace and not superspace.
We have seen, however, taht we can introduce a metric on each connected
components, whereby we could arrive at a Wheeler-DeWitt-like equation
on each coordinate patch. Suppose we can make a spectral decomposition
of the operator Pr(Ap — A), i.e. suppose we can find eigenstates Q(A)
and eigenvalues £ such that

Y Pr(4o — A)Q(A) = £Q(A) (16)
A

It is easily proven that Pr(A4g — A) is a bounded operator (it is in general
not symmetric: Pr(A — B) # Pr(B — A) - we have irreversibility) and
|€] £ 1. This eigenvalue equation will in general be a recusrion relation,
giving Q(A) as a polynomial in £. For instance if the Markov process was
random walks on the set of integers, the relation would read %Qn_l -+
%Qrﬂ-l = €@y, where we have written Q(n) = @y, the solution is just the
Tchebyscheff polynomials. One can actually find the polynomials under
some (rather drastic) simplifying assumptions, the details can be found in
my thesis [Ant]. The probability can now be written

[ QUAo)EQ(A)do(E)
T10(A0)do®) W

where o is a measure such that [ Q(A)*Q(B)do « §(A— B) (such a measu-
re always exist, see again Gardiner’s book [Gar]). It is impossible to resist
the temptation of viewing Q(A) as the analogue of the wavefunctional of
the universe, and one sees that it satisfies HQ(A) = 0. In this way, we have
a “derivation” (in the Random Dynamics sense) of the Wheeler-DeWitt
equation. Hence, our claim that this is a genuine model of pregeometry is
justified: it even gives quantum gravity. For the reader who might be inte-
rested in the stochastic formulation of quantum theory I refer to [PC], [AZ]
for further details.

It is natural to expand Q(A) on the eigenfunctions of the integral operator
W. Denote these by ¥5(A) and let A be the eigenvalues, we then have an
equation of the form

HUp = (-A+V(A)+ ATy (A) =0 (18)

Pr(Ao — A) =

20*
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ie. lI: ,A satisfies a Wheeler-DeWitt-like equation with a “cosmological con-
stant” A. In the long wavelength limit we would expect to see only fluc-

tuations around an equilibrium solut; .
on, wh
value for A. on, which would then have a fixed

Goodbye Points, Hello Logic

Let me just finish off with some (even more) speculative comments. The
first concerns the very formulation of the model. While it is perha ‘s th
most pedagogical way of presenting it, the concept of points is ra.thI;r su?
perﬁf)us. We could just aswell imagine an infinity of “latent” points which
are linked together by links. This is also more appealing from another f)
int of view: the links have a fermionic character - either they are thérep
they aren’t - .whereas points have more a “Boltzmann-statistical” chzau'acto1
anfi are hence somewhat “classical”. The most important virtue of suche;
pomtle.ss (in one of the meanings of that word!) description, is that it ta-
kes us into the concept of modern pointless topology, which z;lready Isham
'm::nt:ionefi should'be of importance to quantum gravity. For a delighfull
‘l\llli cr]:)ertslc[t‘x/c;rcll .to this fascinating area of modern mathematical research see
This leads us to our second point. Pointless topology is closely related to
no‘n'-sta,ndard logics, especially to what is known under the names of [

tuitionistic Logic, Constructivist Logic or Modal S4-Logic, see Goldbla;::
[Gol] or Bell [Bel]. This kind of logic contains all of classicz;l logic. Contr-
ary to q.uantum logics, it is distributive, but the connectives have .unusua.l
broperties, most importantly the failure of the Law of Excluded Middle
i(sthe law stating AA-A4 = 1). An interesting property of this kind of logics

=4 = =4 but --4 ?é A (19)

.Now., (?uantum logics comes about through the structure of state-space (it
is 01:1g1na,11y the lattice of closed subspaces of the Hilbert space) pIn

thesis [Ant], it is argued that, identifying graphs which differ o:ily bmi
number of isolated points, we get a state-space with Intuitionistic Logicy as
the corresponding lattice structure. It is also argued that aswell classical as
fluantum logics can be considered as subclasses of Intuitionistic Logic, this
is also the theme of a forthcomming paper. To go into details would re:luire

|

|
I

Models of Pregeometry 301

the introduction of too many technical terms. Suffice to say that it is based
on a translation of statements in terms of classical logical connectives into
intuitionistic ones A — A°,V +— V°... originally introduced by K.Godel
to prove that classical logic was contained within intuitionistic logic. See

[Kle] for details on this.

Conclusion

Let us stop before this texts gets too long and summarize. We started by
noting that general relativity required an incredible amount of structure,
and that a more fundamental theory could perhaps be found by restricting
oneself to something simpler (mathematically speaking). This approach is
known as pregeometry, and we discussed (briefly, admittedly) some con-
tributions to this field which have been made over the last few decades.
Not content with that, we set out to invent a model of our own. We took
the concepts of points and links to be the most fundamental (we later got
rid of the points, though) and thus considered the deletion and creation
of these. This gave us a model for pregeometry based on random graphs.
We saw that the topological information about this graph (representing
“space”) was encoded in a matrix A;;, and we saw that the Euler-Poincaré
characteristic could be expressed as a polynomial in this matrix, which
established a connection with the fashionable matrix models and with the
work in quantum topology of Alvarez, Verdaguer and Céspedes.

The model was put on a computer, and to our great surprise it turned
out that a dimensionality of space of about 3 was predicted. The resulting
space was not, however, a proper manifold (x # 0, whereas, for a proper
three dimensional manifold x would have to vanish).

Encouraged by this success, we turned our attention towards the master
equation governing the evolution of such graphs. Our stochastic process
was Markovian, and hence the Chapmann-Kolmogorov equation gave us a
master equation which looked like the Wheeler-DeWitt equation. In fact,
we was able to reexpress this equation in terms of the amplitude Q(A)
and not just the probability Pr(4g — A), thus making it impossible to
resist the temptation of viewing @(A) as a kind of wave-functional of the
universe. The resulting equation did, however, show some new phenome-
non, most remarkably perhaps the presence of a global term (the integral
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operator), which we could reinterpret as a cosmological constant term. We
should also remember, that the variables in the equation are not the metric
tensor g;; as in the proper Wheeler-DeWitt equation, but rather either the
topological matrix A;; or the resulting metric on the graph. The latter
becoming Synge’s world function in the continuum limit.

The review of the model ended (rather suddenly) with some comments on
the appropriate logical structure, which was argued to be non-Boolean,
and even non-quantum. But quantum logics could be interpreted as be-
ing a special case by using some methods invented by K.Godel who used
them to prove that Boolean logics was contained as a special case. This
method essentially consists in a reinterpretation of the logical connectives
(A,V,=,...). The resulting logic is known as Intuitionistic Logic and is
closely related to topology.

I ought to mention some shortcommings of the model too. The nummeri-
cal simulations were only based on a small number of points, a restriction
due to limited computer power. Hence the true continuum limit is not
exactly known, but rather I had to resolve to handwaving in discussing the
probable large scale structure. Also, the validity of the “derivation” of the
Wheeler-DeWitt like equation is questionable. The arguments should hold
in the continuum limit (by the correspondence principle), but they might
not hold without modifications on the microscopic level. However, I would
expect the possible modifications to be unimportant for the development
of the large scale structure.

Let me finish by thanking the organizers of this meeting for inviting me
here to Saint Petersburg, my supervisor Holger Bech Nielsen who found
the needed fundings and the people with whom I have had discussions on
this subject (Alvarez, Verdaguer, Kubyshin, Zapatrin, Gribb,...).
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