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Abstract 

We discuss an approach to the quantization of gravity, known as 
pregeometry, a notion going back to J .A. Wheeler and A.Sakharov. 
Over the past twenty years many different pregeometrical models 
have been proposed and we give a (very) short summary of the most 
important ones. The emphasis, however, is put on a model due to 
the author, which is based on random graphs. The predictions of 
that particular model is discussed, as are its relationship with other 
approaches to quantum gravity. 

Introduction 

Modern physics consists essentialy of two different theories, which are both 
very elegant and powerful. The one is quantum field theory, dealing with 
subnuclear length-scales, while the second is general relativity, which deals 
with stellar and galactical scales. Quantum field theory provides a succeaful 
description of three of the four fundamental forces, namely electromagne­
tism and the strong and weak interactions, it even allows a unification of 
these into one grand unified theory. General relativity is a classical theory 
of gravitational phenomena, and has sofar defied quantization: we have no 
consistent theory of quantum gravity. A lot of work is carried out trying 
to unite general relativity and quantum theory, this truely unified theory 
would then work for all length scales· (at least in principle). 
To get an idea of the complexities involved in quantizing gravity, it is 
worthwile to note the level of mathematical abstraction involved in the 

287 



288 Frank Antonsen 

formulation of the theory. General relativity is formulated in terms of 
differential geometry, so in order to specify the model we have to specify: 

1. Euclidean/Minkowskian geometry (flat space), i.e. the vectorspace 
Rn equipped with a metric of Euclidean or Lorentzian form. 

2. A differentiable structure, i.e. a family (Ua, <!>0t) of regions Ua and 
differentiable maps <P°' : U°' --+- Rn, giving us a means of defining 
.coordi_nates on the manifold M = UUa 

3. An affine structure, i.e. a connection or covariant derivative allo­
wing us to parallel transport' vectors on M (this is essential to the 
equivalenc·e principle). 

4. A symplectic structure, i.e. a Poisson bracket, a Hamiltonian or 
Lagrangean to define dynamics. 

5. Fiber bundles to specify the matter content of the theory. 

Clearly, general relativity is a very "high level theory". By this I mean 
to say that it requires a lot of structure (and hence axioms in a rigorous 
formulation). Using the same terminology, "low level theories" are, mat­
hematically speaking 

• Formal logic. 

• The theory of categories and sets. 

• General topology. 

• General algebra. 

These are to some extent complementary (one can be expressed in terms 
of one of the others). It is at this level pregeometry starts. 
The basic idea is to derive the differential geometric structure of general 
relativity from some underlying, more fundamental, theory, pregeometry. 
To avoid confusion, I give the definition of that word in the sense I'm using 
it. 

PREGEOMETRY: (Lit. "before geometry") A model in which 
general relativity is derived as a limiting case from a theory 
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where geometrical concepts (some if not all, at least) were ab­
sent to begin with. Eventually, one would like a theory based 
solely on mathematical logic. 
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This is a very broad definition and a number of different approaches have 
been proposed. These can be roughly classified according to the following 
scheme. 

• Logic approach: This is the approach originally invented by Whee­
ler [Whe]. The underlying structure is a formal logic, i.e. a language 
of propositions and ways of relating these (logical connectives such as 
A, V, =>, {::} and negation ..., ) . It has especially been developed further 
by D.Finkelstein [Finl]. One of its virtues is its close relationship 
with the quantum logic approach to quantum theory going back to 
Birkhoff and von Neumann. A special sub-class is the approach based 
on cellular automatons and similar abstract machines, this has been 
pursued by Feynman [Fey], 't Hooft [tHl] and Finkelstein [Fin2]. 
The problem with such models is, of course, their very high level of 
abstraction: it is often difficult to relate them to the physical reality. 

• Set theoretic approach: Here the fundamental structure is taken 
from set theory. Also here has Finkelstein [Fin3] made contributions 
(quantum sets). An approach I am particularly fond of myself is that 
of the causal sets going back to Penrose [Pen] and 't Hooft [tH2], 
but developed further by Bombelli et al. [Bom] Such causal sets 
completely determine not only the topological but also the conformal 
structure of space-time, as was proven by Hawking et al. [Haw]. 

• Algebraic approach: The most famous example is probably the 
Wigner 6j-symbol approach to JD-gravity, this is essentialy based 
on the theory of representations of SU(2). 

• Field theoretical approach: This is the approach going back to 
Sakharov: gravity is considered as a result of all the other interac­
tions in much the same way the elastic properties of a solid follows 
from the electromagnetic inter~ctions of its constituents. This has 
been pursued especially in Japan by Terazawa [Ter], Akama and 
Oda [AO]. In their approach we typically start out with a family 
of n scalar fields <Pa on an-dimensional topological space (Rn, say), 
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and one then defines the viel- beiH e(J as a tr. 

becomes g = ,, a ,/,(l!l ,;,b µ µ</> ' and h nee them tri 
• • µ11 ·1ab J)'f' u v-p . One can pro th t 1 
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finite dim nsi nal space· Wh . ' d ~ee I ' is the introd11ctio11 of a 
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• Dis~rete Space-Time Approach: On . . . 
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eren ia ma1ufold ·tli t · 
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mising new theories The t ·t ·y ~I t~JS is. one of the most pro-
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We will now co 1t· b . 
I mue y settmg-up a pa t' 1 r icu ar model. 
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A Particular Model 

What is the most basic element of any geo1111etry? Obviously this h~ to 
be the notion of a. point.1 he particluar geometrical structure is then 
given be defining how these points are linked to eachoth.er. This is then 
what we will take as our basic ingredients: ]Joints a nd l inks. In th.is way 
the fundamental structure becomes a graph. This graph is then going to 
become space in some continuum limit. Time will be defined in terms of 
the dynamics below. 
In quantum theory, we introduce operators creating and annihilating the 
fundamental quantities, allowing us to express all possible processes and 
all physical quantities in terms of these. In this sense, quantum theory is 
much more elegant and simple than classical physics where no such struc­
ture exists (the closest analogue is the phase-space). Thus we introduce 
operators a,at,b,bf which annihilates/creates points/links. These basic 
operators (or perhaps rather operations, to avoid the suspicion that we 
are sneaking in quantum mechanics by the back-door!) are thell our key 
to dynamics. We define an evolution as a sequence, {G.,}, of graphs such 
that Gt+I is obtained from Gt by the application of one of the operators 
a,at,b,bt, e.g. Gt+l = btGi. Each such application will be called a time 
step, hence we identify the index t with time. The discreteness of the set­
up guarantees the uniqueness of this definition. 
So each time-step we choose one of the four fundamental operations (this 
is after all the definition of "time-step"). But how are we to make this 
choice? The minimal assumption is that this is made at random. We thus 
introduce four probabilities p1 , •• , p4, one for each of the four operations, 
and we impose the constraint p1 + v2 + p3 + p4 = 1 (at each t ime-step, 
something happens). The model is now almost completely specified. The 
only remaining thing is the "interaction" or "mixing" of the point and link 
operators: What happens if we attempt to delete a point, say, that doesn't 
exist, or create one, that is already there? What happens to the links going 
out from a point when we delete it? It seems to me, that the most natural 
choice is to forbid the deletion (creation) of a point/link that is not there 
(is already there), and when deleting a point, also to delete all its links. 

1 Actually, one can define point-less topologies in terms of categories. I will come back 
to this point later. 
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Intuitively it also seems natural to im . . 
to delete a point with few ( ) li pose the cond1t1011 tliat it is "easier" 

or no nks than to del t · 1 can summarize the model in th .r ll '. e e one wit l many. We 
e 10 owmg rules: 

• Set-Up: The fundamental structure is h 
cesses are deletion and c f f . grap ' the fundamental pro­

rea Jon o pomts and links. 

• Simplicity: We do not allow mult" · 
we do not allow a oint t . i~le ~m~s between two points, and 
be different). p o link to itself (I.e. the endpoints have to 

• Time and Evolutions: An evolution . 
following from the previous b th Is ~ s~quence of graphs, each 
fundamental operators Su h y \app.lica~10n of one of the four 

. c an app icatton IS known as a time-step. 

• Stochasticity: At each time-ste wh 
at random according to a . p fat operator to apply is chosen 

given set o probabilities. 

• Minimal Damage: When the choice falls . 
we always pick that which h th l upon delet10n of a point, 

. as e owest degree (i b f . gomg out from it) Wi d t .e. num er o links 
do not exist, nor t~ cre:teoo::s :~t~mpt ~o delete points or links that 
a point we automatically re aalla:e liready there. When deleting 

move Its nks aswell. 

A graph can be 'described b 't 
y I s so-called topological matrix A, defined by 

Aij = { 1 points i and j linked 
0 otherwise ( 1) 

The requirement, that no pofot link d" . . 
zeros in the diagonal As ls uectly to itself implies that A has 

. an examp e cons"d th 
1, its topological matrix is ' 1 er e graph shown in figure 

A=(° ~ r n (2) 

We could fotroduce an orientation of the li k . 
A: A;j would then be +1 -1 0 d d" n s by mtroducing a sign in 

' ' epen mg on whether there was a link 
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Figure 1: A simple example of a graph. 

from i to j, or from j to i, or no links between the two points. Similarly . 
we could let A13 take on any value, the absolute value IAijl would then 
give the length of the link. But for our purposes we do not need this extra 
structure. 
The set of all graphs will be denoted by r and is referred to as metaspace. 2 

The basic operators act ergodically on this space, i.e. any graph can be 
obtained from any other by a suitable application of these operators a 
sufficient number of times. Given two graphs, there is always an evolution 
going from the one to the other, in fact there is an infinity of such sequences. 

' 

The Contents of the Model 

Now we have a model, now we start to predict things. As our model is 
purely topological (in the present formulation), we must look for an inter­
pretation of various important topological concepts, and we must see what 
the model predicts in these cases. The most important such quantities (in 
any case, the ones I'm going to discuss) are (1) metric, (2) Euler-Poincare 
characteristic and (3) dimensionality. 
Note that k'th power of the topological matrix has the property: 

(Ak)i; =#{paths of length k between points i,j} (3) 

This leads to a definition of a metric 

Dij = min{k I (Ak)i; '# O} (4) 

i.e. the distance between points i,j is equal to the length of the shortest 
path between these (the length of path is equal to the number of links 

21 ha.ve chosen this na.me for two reasons: firstly, to emphasize the connection with 
Wheeler's superspace, a.nd, secondly, because I feel we're beginning to trespass the do-
main of meta.physics with tbis kind of models. · 
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of which it is made). It is easily checked that this is indeed a metric on 
each connected component of the graph. In the limit where the number, 
v, of points tend to infinity and the length of the links to zero, i.e. in 
the contiuum limit, this quanitity will tend to a metric function d(x,y) on 
each connected component of the resulting space, in fact 

1imDi3· == d(x,y) == \/'20(x,y) 
where 0( x, y) is Synge's world function 

(5) 

O(x,y) ==~(LY ds) 
2 

. where the integraJ is along a geodesic from x to y. A new formulation of 
gravity based oi1 t his function has .recently been proposed by Alvarez and 
coworkers [AlvJ, [AC V2]. One should also note that the same authors also 

. have a pregeometrical model based on tJ1e matrix D above, [ACVIJ, [Ant2J. 
Let me just for completeness mention some of the properties of 0: it can 
be proven that it contains a.11 the needed information about the manifold, 
in particular: 

(6) 

lim O(x, y ). µ11 == 9µ11 
Y-+:r: ' (7) 

More can be found in t he abovementioned articles. 

In simplicial gravity and Regge calculus one buHds-up space-time from 
some simpler structures, t he simplices. This is actually a very general 
construction (alge braical topology, homology etc. , see [GHJ, [Mas]). By 
a d-ce/I we mean a d-dimensional substructure wh.ich cannot be separated 
into other cells of the same dimensionali ty. T itus a 0-cell is a point , a 
1-celJ a link, a 2-cell a polygon, a 3-ce)] a polytope and so on. We 're 
going to restrict our attention to d-simplices. A d-cel1 is a d-sim plex jf it 
consists of d + 1 points and each point is linked to all the others (it thus 11as 

( ~ ) ~ •!•;'l links).
3 

Hence Q. and 1-cells ar~ simplices, triangles are 

2-simplices and tetrahedra are 3-simplices. Let ba denote the number of · 

d-simplices in a given grapl1, we define the Euler-Poincare characteristic, x, to be 

00 

x == .L<- 1)"bd 
d=O 

(8) 
3

In graph theory, a simplex is often known as a complete graph or clique. 
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. . . the s mbol v for the number of points, i.:. 
We have already lllt1 oduced. . y b .r d from the topological matnx 

· · uant1t1es can e J.OUn • h 
bo == ~- T he rema_:;u;gt~at Tr(Ak) is the num ber of k-gons (p olygons. wi t)· 
in a sun)plt~ wayk'( od·:e to invariance under p ermutatjons of the poillts ' k faces unes . . 
hence 

d' . al structures we would get Restricting ourselves to two- imens1on 

(9) 

(10) 

1 2 ) 1 Tr(A3) (11) X2D == v - 2Tr(A + 3! 

which is essentially the form of the acti~n of the fashiona~l~ ,!11atrix models, 

which can thus be considered as followmg from ~ur mo~ . .. A . A . == 1, 
. t . J. k lie on a triangle if and only if Bijk = A,; ak ik Three pom s i, , 

and the number of 3-simplices is then 

b3 == ~ L BijkBijlBiklBjkl 
4· "kl t,j, ' 

(12) 

. . b _ 1 Tr'(B4), thus higher dimen-
which we could suggestively wnte ~s 3 - 4f dels" In this way much of 

described by tensor-mo · 
sional structures are . d 1 ld be transferred to d > 2, h. d veloped for matnx mo e s cou 
the mac mery e d al "th the "static" case (no gravitons, no but would only be able to e w1 , 

dynamics). . 1 'f b _ b == .. == 0 and 
"f, ld the dimension is d If and on YI d+l - d+2 · h 

For a mam o ' f to define the dimensionality of a grap 
ba # 0, it would then be ~emp Bm; this is actually quite inappropriate! It 
simply as max{d I ba 'I }. .u th d"mension is not constant all over 
could very well happen that, sm~eave :n: 100-simplex, say, sitting at the 
space in general, that we .woul? 1 . !ices going out from it. It would 
center with thousands of links, I.eh -s;: dim~nsion 100 since for all but 
be unnatural .to say that space ~ e~t a ld be one' What we need is a 
a microscopic region the dimens10n y wou . . 

----------:--:----;-~., . . t rms" due to the possibility of changing the 
•we would in general also have kinetic eh t . the much simpler matrix models. 

number of points and links, such terms are a sen m 
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statistically weighted definition, the simplest possible one being, I think, 
that the dimensionality is equal to d if and only if an arbitrary point has 
probablity at least 503 for lying on the edge of a d-simplex and less than 
503 for being an edge of a. ( d + 1 )-simplex, i.e. at least half the points sees 
space as being d-dimensional. 
We can now run some simulations on a computer. \Ve choose three proba­
bilities Pi.P2,p3 (the last one p4 is then given by p4 = 1 - (p1 + p2 + p3 )), 

and start with an empty graph. At each time step we then pick at random 
one of the four fundamental operators with the given probabilities and 
apply it to the graph. We then calculate the resulting topological matrix 
and from that the numbers bd. I have done this for 18 different choices of 
Pi ( i = 1, 2, 3), each time letting the computer go on for 200 time steps. 
The average values of the dimension d a.nd x was then calculated for each 
choice and the result is shown in figures 2 and 3. 

The important fact is that d = 3 is predicted. For a proper three di-

5 

3 

1 

0 1 2 3 4 5 climensio11 

Figure 2: The number of times the different values of dimension occured 
in the simulations. 

mensional manifold X would vanish identically, the fact that it doesn't just 
implies that we do not have a proper manifold, i.e. the dimension can 
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1 

-2 -1 0 1 2 3 4 5 6 x 

Figure 3: The frequency of the average values of the Euler-Poincare cha­
racteristic x in the simulations. The averages have been roun(led off to the 

• nearest integer value. 

change as we move around on it, it can have non-smooth edges or jumps 
and so on. 

A Master-Equation 

In the introduction I defined pregeometry as a model which gave general 
relativity in a certain limit, and, furthermore, I claimed that the proposed 
model did just that. Time has come now to comment more on this. 
The fact that the possible choices of fundamental operations at a given 
time step only depends on the structure of the graph at that "instant" and 
not on its previous history implies that the stochastic process is Markovian. 
It can be proven, see [Gar], that Markov processes of continous· arguments 
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x, t satisfy a differential equation, the Chapmann-Kolmogorov equation, of 
the form 

= - ~{a~. (ai(x)P) + -2
1 L 8 ~; . (bij(x)P)} + 

1 t • X 1 x 3 J 

+ f w(xjy, t)P(y, tlxo, to) - w(yjx, t)P(x, tjx0 , t0)~j3) 
where P(x, tlxo, to) is the probability that the system will evolve from state 
Xo at time to to state x at time t. The functions ai, bij are essentially the 
moments of the probability distribution 

ai(x) = ft~o1t [ (xi-yi)P(y,t+~tjx,t)dy+O(t:) 
Jlx-yl>e: 

bij(x) - ~~~o~t { (xi-Yi)(xj-Yj)P(y,t+~tjx,t)dy+O(c) 
· Jlx-yl>e: 

and 

w(xjy, t) = lim P(x, t + ~tjy, t) 
~t--+O 

The Fokker-Planck, Boltzmann and Liou ville equations are all of this type. 
I~ we assume t.ha.t we can carry this equation over into our discrete set-up 
(m. a~y case, It IS sup~osed to hold in the continuum limit), we get an 
equat10n of the form ( mvoking the summation convention and summing 
over repeated indices) 

0 = (- 6~ij Gij;kl 6~kl + V(A) + W(A)) Pr( Ao-+ A):: 1i Pr( Ao-+ A) 

(14) 
where V(A), Gij;k1(A) are some functions, Wis an integral operator 

W(A).,P(A) = j w(AIB).,P(B)dB (15) 

and where we have used that our system only depend indirectly on time 
thus allowing us to replace the time derivative with a variation with respect 
to the topological matrix. This equ;;i.tion is similar to the Wheeler-DeWitt 
equation in canonical quantum gravity, the basic difference being ( 1) the 
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appearance of the probability Pr( Ao -+ A) and not the wave-functional of 
the universe, (2) the topological matrix is used instead of the metric, and 
(3) the evolution described takes place in metaspace and not superspace. 
We have seen, however, taht we can introduce a metric on each connected 
components, whereby we could arrive at a Wheeler-DeWitt-like equation 
on each coordinate patch. Suppose we can make a spectral decomposition 
of the operator Pr(Ao -+ A), i.e. suppose we can find eigenstates Q(A) 
and eigenvalues ~ such that 

L Pr( Ao-+ A)Q(A) = ~Q(A) (16) 
A 

It is easily proven that Pr(Ao-+ A) is a bounded operator (it is in general 
not symmetric: Pr(A -+ B) f= Pr(B -+ A) - we have irreversibility) and 
l~I ~ 1. This eigenvalue equation will in general be a recusrion relation, 
giving Q(A) as a polynomial in ~. For instance if the Markov process was 
random walks on the set of integers, the relation would read ~Qn-1 + 
~Qn+i = ~Qn, where we have written Q(n) = Qn, the solution is just the 
Tchebysche:ff polynomials. One can actually find the polynomials under 
some (rather drastic) simplifying assumptions, the details can be found in 
my thesis [Ant]. The probability can now be written 

p (A -+ A) = f Q(Ao)*~Q(A)d<7(~) 
r 

0 J IQ(Ao)l 2dtT(0 
(17) 

where <7 is a measure such that J Q(A)*Q(B)d<7 ex 6(A-B) (such a measu­
re always exist, see again Gardiner's book [Gar]). It is impossible to resist 
the temptation of viewing Q(A) as the analogue of the wavefunctional of 
the universe, and one sees that it satisfies 1iQ(A) = 0. In this way, we have 
a "derivation" (in the Random Dynamics sense) of the Wheeler-DeWitt 
equation. Hence, our claim that this is a genuine model of pregeometry is 
justified: it even gives quantum gravity. For the reader who might be inte­
rested in the stochastic formulation of quantum theory I refer to [PC], [AZ] 
for further details. 
It is natural to expand Q(A) on the eigenfunctions of the integral operator 
W. Denote these by '\lf A (A) and let A be the eigenvalues, we then have an 
equation of the form 

1{'\[f A = (-~ + V(A) + A)'\lf A(A) = 0 (18) 

20* 
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i.e. \JI A satisfies a Wheeler-DeWitt-like equation with a "cosmological con­
stant" A. In the long wavelength limit we would expect to see only fluc­
tuations around an equilibrium soluti<;?n, which would then have a fixed 
value for A. 

Goodbye Points, Hello Logic 

Let me just finish off with some (even more) speculative comments. The 
first concerns the very formulation of the model. While it is perhaps the 
most pedagogical way of presenting it, the concept of points is rather su­
perflous. We could just aswell imagine an infinity of "latent" points which 
are linked together by links. This is also more appealing from another po­
int of view: the links have a fermionic character - either they are there or 
they aren't - whereas points have more a "Boltzmann-statistical" character 
and are hence somewhat "classical". The most important virtue of such a 
pointless (in one of the meanings of that word!) description, is that it ta­
kes us into the concept of modern pointless topology, which already Isham 
mentioned should be of importance to quantum gravity. For a delighfull 
introduction to this fascinating area of modern mathematical research see 
,Vickers [Vic]. 

This leads us to our second point. Pointless topology is closely related to 
non-standard logics, especially to what is known under the names of In­
tuitionistic Logic, Constructivist Logic or Modal S4-Logic, see Goldblatt 
[GolJ or Bell [Bel]. This kind of logic contains all of classical logic. Contr­
ary to quantum logics, it is distributive, but the connectives have unusual 
properties, most importantly the failure of the Law of Excluded Middle 
(the law stating A A -iA = 1 ). An interesting property of this kind of logics 
is 

(19) 
Now, quantum logics comes about through the structure of state-space (it 
is originally the lattice of closed subspaces of the Hilbert space). In my 
thesis [Ant], it is argued that, identifying graphs which differ only by a 
number of isolated points, we get a state-space with Intuitionistic Logic as 
the corresponding lattice structure. It is also argued that aswell classical as 
quantum logics can be considered as subclasses of lntuitionistic Logic, this 
is also the theme of a forthcomming paper. To go into details would require 
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the introduction of too many technical terms. Suffice to say that it is based 
a translation of statements in terms of classical logical connectives into 

~:iuitionistic ones /\ 1-+ /\
0

, V 1-+ V0 
.... originally introduced by K.Godel 

~o prove that classical logic was contained within intuitionistic logic. See 
[Kie) for details on this. 

Conclusion 

Let us stop before this texts gets too long and summarize. We started by 
noting that general relativity required an incredible amount of structure, 
nd that a more fundamental theory could perhaps be found by restricting 

a h. 
oneself to something simpler (mathematically speaking). This approac is 
known as pregeometry, and we discussed (briefly, admittedly) some con­
tributions to this field which have been made over the last few decades. 
Not content with that, we set out to invent a model of our own. We took 
the concepts of points and links to be the most fundamental (we later ?ot 
rid of the points; though) and thus considered the deletion and creation 
of these. This gave us a model for pregeometry based on random grap.hs. 
We saw that the topological information about this graph (representmg 
"space") was encoded in a matrix Ai;, and we sa~ t~at t~e Euler~Poinc~re 
characteristic could be expressed as a polynomial m this ~atnx, which 
established a connection with the fashionable matrix models and with the 
work .in quantum topology of Alvarez, Verdaguer and Cespedes. 
The model was put on a computer, and to our great surprise it turned 
out that a dimensionality of space of about 3 was predicted. The resulting 
space was not, however, a proper manifold (x =J 0, whereas, for a proper 
three dimensional manifold x would have to vanish). 
Encouraged by this success, we turned our attention towards t~e master 
equation governing the evolution of such graphs. Our stoch~st1c process 
was Markovian, and hence the Chapmann-Kolmogorov equat10n gave us a 
master equation which looked like the Wheeler-DeWitt equation. In fact, 
we was able to reexpress this equation in terms of the amplitude Q(A) 
and not just the probability Pr(Ao -""+- A), thus making it impossible to 
resist the temptation of viewing Q(A) as a kind of wave-functional of the 
universe. The resulting equation did, however, show some new phenome­
non, most remarkably perhaps the presence of a global term (the integral 
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operator), which we could reinterpret as a cosmological constant term. We 
should also remember, that the variables in the equation are not the metric 
tensor 9ij as in the proper Wheeler-DeWitt equation, but rather either the 
topological matrix Aij or the resulting metric on the graph. The latter 
becoming Synge's world function in the continuum limit. 
The review of the model ended (rather suddenly) with some comments on 
the appropriate logical structure, which was argued to be non-Boolean, 
and even non-quantum. But quantum logics could be interpreted as be­
ing a special case by using some methods invented by K.Godel who used 
them to prove that Boolean logics was contained as a special case. This 
method essentially consists in a reinterpretation of the logical connectives 
(/\, V, =>, ... ). The resulting logic is known as Intuitionistic Logic and is 
closely related to topology. 
I ought to mention some shortcommings of the model too. The nummeri­
cal simulations were only based on a small number of points, a restriction 
due to limited computer power. Hence the true continuum limit is not 
exactly known, but rather I had to resolve to hand waving in discussing the 
probable large scale structure. Also, the validity of the "derivation" of the 
Wheeler-DeWitt like equation is questionable. The arguments should hold 
in the continuum limit (by the correspondence principle), but they might 
not hold without modifications on the microscopic level. However, I would 
expect the possible modifications to be unimportant for the development 
of the large scale structure. 
Let me finish by thanking the organizers of this meeting for inviting me 
here to Saint Petersburg, my supervisor Holger Bech Nielsen who found 
the needed fundings and the people with whom I have had disc~ssions on 
this subject (Alvarez, Verdaguer, Kubyshin, Zapatrin, Gribb, ... ). 
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