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Abstract

ATLAS is a multi-purpose detector which has recently started to take data
at the LHC at CERN. This thesis describes the tests and calibrations of the
central calorimeters of ATLAS and outlines a search for heavy top quark pair
resonances.

The calorimeter tests were performed before the ATLAS detector was as-
sembled at the LHC, in such a way that particle beams of known energy were
targeted at the calorimeter modules. In one of the studies presented here, mod-
ules of the hadronic barrel calorimeter, TileCal, were exposed to beams of
pions of energies between 3 and 9 GeV. It is shown that muons from pion de-
cays in the beam can be separated from the pions, and that the simulation of
the detector correctly describes the muon behaviour.

In the second calorimeter study, a scheme for local hadronic calibration is
developed and applied to single pion test beam data in a wide range of ener-
gies, measured by the combination of the electromagnetic barrel calorimeter
and the TileCal hadronic calorimeter. The calibration method is shown to pro-
vide a calorimeter linearity within 3%, and also to give a reasonable agreement
between simulations and data.

The physics analysis of this thesis is the proposed search for heavy top
quark resonances, and it is shown that a narrow uncoloured tt̄ resonance, a Z′,
could be excluded (or discovered) at 95% CL for cross sections of 4.0±1.6 pb
(in the case of M = 1.0 TeV/c2) or 2.0± 0.3 pb (M = 2.0 TeV/c2), including
systematical uncertainties in the model, assuming

√
s = 10 TeV and an inte-

grated luminosity of 200 pb−1. It is also shown that an important systematical
uncertainty is the jet energy scale, which further underlines the importance of
hadronic calibration.



Ej för de starka i världen
men de svaga

– Hjalmar Gullberg
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About this thesis
The thesis is organised as follows.

A general introduction to concepts, theory and experiment is given in Part
I. The aim is that this part should be understandable to someone who does not
have very much prior knowledge about particle physics.

In Chapter 2, an overview of the theoretical background to the LHC project
is given, as well as a brief discussion of the importance of hadronic calibra-
tion for the discovery of new physics. In Chapter 3, the ATLAS detector is
described.

Part II is devoted to calorimetry, the measurements of energy depositions.
In Chapter 4, some basic concepts of calorimetry are explained, and the dif-
ferent properties of the interactions of high-energy hadrons, electrons and
muons with calorimeter materials are discussed, providing the motivation for
hadronic calibration. Chapter 5 describes the technique to test calorimeter
modules with particle beams. In Chapter 6 a study of the behaviour of very
low-energetic muons in the ATLAS hadronic calorimeters is presented, and in
Chapter 7, a method to calibrate the ATLAS calorimeters to the hadronic scale
is described.

An outline of how to search for top resonances (heavy hypothetical particles
that decay into a top quark and a top anti-quark) is given in Part III. In Chap-
ter 8 an overview of the theoretical motivation for top resonances is given,
and in Chapter 9, the analysis strategy is described. The discovery potential is
discussed in Chapter 10, where the expected production cross section limit is
deduced.

Part IV finally summarises the key ideas and results of this thesis.
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Part I:
Introduction





1. Physics at high energies

Måtte det verk, du i människors vimmel
skapar från morgon- till aftonglöd
stå som en lyra mot tidens himmel,
sedan du själv och din gud är död!
– Hjalmar Gullberg: “Vid Kap Sunion”, Kärlek i tjugonde
seklet, 1933.

Experimental particle physics addresses questions that are alluringly simple
to ask, but deeply complex to answer: what is everything made of? how does
it hold together? where did it all begin? Fundamental curiosity is a powerful
driving force of mankind. The urge to see what is beyond the current horizon
has launched expeditions to cross oceans or empty space, always exploring
new aspects of knowledge, and often finding a multitude of new intriguing
questions to answer the original one. The questions of elementary particle
physics are often answered with the aid of energy. In the collisions of particles
at high energies, the sub-structure of matter can be studied, new particles are
created from the collision energy and the interactions between the particles
are probed with better and better precision.

At the particle physics laboratory CERN, outside Geneva in Switzerland,
the Large Hadron Collider (LHC) has been built[1, 2]. In the LHC, protons
are accelerated and collided at high energies. In November 2009, the first col-
lisions occurred in the LHC, which can accelerate hadrons to energies higher
than what is achieved at comparable laboratories. At the collision points of the
LHC, detectors have been built in order to observe the high-energy collisions
in a controlled environment. One of these detectors is ATLAS[3], a general-
purpose detector designed to fully explore the physics possibilities offered by
the LHC.

The physics program of ATLAS comprises the precision measurements
which test what is currently the best description of matter and forces, the
Standard Model. Furthermore, open-minded searches for physics beyond the
current theories will also be made. One example of a topic to be investigated
is the study of the heaviest known elementary particle, the top quark[4, 5]. A
possible extension to the Standard Model could for example contain a new
heavy particle that decays into top quark pairs, a top pair resonance.

When working in a high-energy environment, the ability to measure energy
is one of the fundamental requirements of a detector. Calorimeters are detec-
tors used to measure the energy of particles through their total absorption in
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the calorimeter material. They are very important detectors to use in high en-
ergy experiments, because as opposed to, for example, spectrometers, their
performance improves with higher energy and they can be used to measure
the energy of neutral particles such as neutrons. Furthermore, the signal read-
out of a calorimeter is fast, which makes triggering on calorimeter signals
possible[6, 7].

In this thesis, studies of the calorimeter system of the ATLAS detector are
described. Before ATLAS was installed at the LHC, its sub-detectors were
tested, both separately and together with other sub-detectors. Some of the
tests involved exposing the detector parts to high energy particle beams, so
called test beams[8]. In Part II of this thesis, the study of the behaviour of
very low-energy muons from a test beam targeted at the hadronic calorime-
ter is described. The second half of Part II has been devoted to the hadronic
calibration of the central parts of the ATLAS detector, the so-called “barrel”
part. The hadronic calibration scheme was developed and tested within the
frame of the combined ATLAS barrel test beam, performed in 2004. In this
thesis, an introduction to calorimetry is given, as well as a motivation to why
there is need for a special scheme for hadronic calibration in addition to the
electromagnetic calibration.

With a correctly calibrated detector, and the LHC providing high-energy
collisions, the search for new physics can begin. In Part III, an analysis de-
signed to search for top pair resonances is presented and tested on computer
simulations of LHC collision data, resulting in an investigation of the discov-
ery (or exclusion) potential for such resonances.



2. Theoretical and experimental
overview

Everything makes sense a bit at a time. But when you try to
think of it all at once, it comes out wrong.
– Terry Pratchett: “Only You Can Save Mankind”, 1992.

In this chapter, an introduction to the theoretical background and an
overview of the experimental set-up of the analysis presented in the thesis
are given. Starting with a description of the Standard Model of elementary
particle physics, the known problems of the Standard Model are outlined, and
the motivation for physics experiments at multi-TeV energies is explained.
The ATLAS detector at the LHC, as described later in this and the next
chapter, might provide the framework for the discovery of new physics at
previously unexplored energies. However, in order to carry out the ATLAS

physics program, the various sub-detectors must be well-understood and
properly calibrated. The research topic for Part II of this thesis is the tests
and calibrations of the calorimeters of ATLAS. The importance of correctly
calibrated calorimeters, especially with respect to hadronic showers, is
therefore underlined.

2.1 The Standard Model of elementary particle
physics
Currently, the model that most correctly describes matter and forces is the
Standard Model of elementary particle physics. According to this model, all
known matter is built from quarks and leptons. The most well-known lepton
is the electron. Quarks are the building blocks of for example protons and
neutrons. The quarks have been given the names up, down, charm, strange,
top and bottom, and the charged leptons are called electron, muon (µ) and tau
lepton (τ). Each charged lepton has an uncharged companion, a neutrino (ν).
The neutrinos are very light compared to the charged leptons, but experiments
have shown that they have different masses[9], so they cannot all be massless.

Every quark and lepton has an anti-particle, which is named by adding anti-
to the particle name (e.g. anti-muon, anti-quark). The anti-electron is also
called positron. In Table 2.1 the quarks and leptons are listed. The quarks
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1st 2nd 3rd Electric

generation generation generation chargea

up, u charm, c top, t

Quarks (≈ 0.003) (≈ 1.2) (173.1±1.3)
+2

3

(mass, GeV/c2)b down, d strange, s bottom, b

(≈ 0.007) (≈ 0.1) (≈ 4.5)
−1

3

e neutrino, νe µ neutrino, νµ τ neutrino, ντ

Leptons (< 2 ·10−9) (< 2 ·10−4) (< 0.02)
0

(mass, GeV/c2)b electron, e− muon, µ− tau, τ−

(5.11 ·10−4) (0.106) (1.78)
−1

aThe electric charge is given in fractions of the proton charge.
b1 GeV/c2 is approximately the mass of a proton.

Table 2.1: Quarks and leptons, the elementary fermions, according to the Standard
Model of elementary particle physics. Every quark and lepton has an anti-particle,
denoted by a bar above its symbol (e.g. νe, u) or by a plus sign for the charged leptons
(e.g. e+). The masses of the quarks, except the top quark, are estimated, since no free
quarks have been observed. The top mass is obtained from observation of top quark
decays[10]. The neutrino masses are not known (except that they cannot all be 0), but
the experimental upper limits are given[9].

and the leptons are spin1 1/2 particles, and the common name for half-integer
spin particles is fermions.

The quarks carry “colour charge” – red, green or blue2. The anti-quarks
have “anti-colours”. A colour-charged particle cannot exist in an unbound
state, due to colour confinement, so the quarks form “white” (i.e. colour-
less) states, colour singlets, by combining into baryons (three quarks, one
of each colour) or mesons (one quark and one anti-quark). All particles that
are built from quarks are called hadrons. As of today, no free quarks have
been observed[11]. The most recently discovered quark, the top quark, is the
heaviest known elementary particle and some of its properties are outlined in
Section 2.2.

In the Standard Model, the forces are also described as particles, force car-
riers, and we distinguish four fundamental forces of nature: gravity, electro-
magnetism, the strong force and the weak force. Of these four, the first two are

1Spin, measured in units of h̄, is a quantum number, a fundamental particle property that con-
ceptually is similar to an object’s rotation around its own axis. However, as far as we know,
leptons and quarks are elementary, lack substructure and have no spatial extension, so “rotation
around the axis” lack meaning.
2The name “colour” is only a crude way of trying to describe this property of the quarks with
a word known to us in everyday life. The quarks do not have real colours, that is, they do not
emit photons of certain wavelengths, which is what a colour is in the macroscopic world.
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Particle Electric Mass Particles sensitive
Force

name chargea (GeV/c2)b to the force

Weak W+ +1 80.4

W− −1 80.4 all quarks and leptons

Z0 0 91.2

Electro- γ electrically charged

magnetic photon
0 0

leptons and quarks

Strong g

gluon
0 0 quarks

aThe electric charge is given in fractions of the proton charge.
b1 GeV/c2 is approximately the mass of a proton.

Table 2.2: The experimentally verified force carriers, according to the Standard Model
of particle physics, and the quarks and leptons that experience the force in question[9].

familiar to us in our everyday life, while the effects of the two latter have very
limited range, which makes them less important in the understanding of phe-
nomena in our macroscopic world. They are, however, very important on the
sub-atomic level. A summary of the force carriers can be found in Table 2.2.
The force carriers are spin 1 particles, and the common name for particles that
carry integer spin is bosons.

The most obvious force in our everyday life, gravity, is not described in the
Standard Model. This is not a huge problem for the description of the ele-
mentary particles, since gravity is almost totally negligible on the sub-atomic
level. However, it is a problem for the Standard Model, which is evidently not
the final theory of all fundamental physics. The theoretically predicted gravity
force carrier, the graviton, has not been detected experimentally[9].

Another familiar force is electromagnetism. This is the force that binds elec-
trons to atom nuclei and makes it possible for molecules and crystals to form.
Many macroscopic properties of matter can be described in terms of elec-
tromagnetic interactions. The electromagnetic force carrier is the photon, a
massless particle that we experience as, for example, light or radio waves.

The weak and the strong forces have very short ranges. The strong force is
the one that binds the quarks in protons and other hadrons, and the residuals
of the strong force also keeps the protons and the neutrons together in the
atomic nucleus. The strong force carriers are called gluons, and the “charge”
of the strong force is the colour charges of the quarks. The strong force is
very strong within a hadron, but its effects are small outside the hadron and
negligible outside the nucleus. Only the quarks, not the leptons, experience
the strong force.
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The force carriers of the weak force, the W+, W− and Z0 particles, are very
massive, making the weak interactions short-ranged. The most well-known
example of weak interactions is the radioactive process known as β -decay, in
which a neutron decays to a proton, an electron and an anti-electron neutrino,
or a proton decays to a neutron, a positron and an electron neutrino. The neu-
trinos, being electrically uncharged and colourless, interacts weakly only, thus
becoming hard to detect.

In the 1960’s, Glashow, Salam and Weinberg managed to describe the weak
and electromagnetic interactions at high energies with one single theory, the
“unified electroweak theory”[7]. The theory was experimentally verified when
physicists at the Gargamelle bubble chamber experiment at CERN detected
neutral current reactions (reactions involving the Z0 boson) in 1973[12, 13].
In 1983 the Z0 and W± bosons themselves were discovered in the UA1 and
UA2 experiments at CERN[14, 15, 16].

2.2 The top quark
The top quark is the heaviest known elementary particle, and one of the most
recently discovered. The first direct observation of the top quark was made at
the CDF and D0 experiments at the Tevatron accelerator at Fermilab in the
U.S. in the early 1990s[4, 5].

Top quarks can be produced either through the strong interaction (as top
and anti-top pairs, tt̄) or through the electroweak interaction (so called single
top production)[17, 18]. Feynman diagrams of leading order tt̄ production are
drawn in Figure 2.1 and of single top production in Figure 2.2.

Decay of the top quark
The estimated lifetime of a top quark is 5 · 10−23 s, which is too short for a
hadron to form. The top quark thus decays essentially as a free quark. The
decay is almost exclusively to a W boson and a b quark. The properties of the
final state recorded in the detector is determined by the decay of the W . To
the first order, the W boson decays with equal probability either to a charged
lepton-neutrino pair (for example W−→ e−ν̄e) or into a quark anti-quark pair
(for example W−→ ūd) of a particular colour. Due to the three colour charges
of the quarks, a W decay into a particular quark family is three times as prob-
able as a decay into a particular leptonic family. The decay of a real W into
quarks of the third generation is heavily suppressed for kinematical reasons,
since the top mass is larger than the W mass. At higher order, the exact sym-
metry of the W decay vanishes, but approximately 33% of the W bosons decay
into leptons and 67% decays hadronically.

If the lepton is a τ , it decays either into an electron and neutrinos, a muon
and neutrinos or hadronically (mainly through processes involving pions). See
Table 2.3 for branching fractions.
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Figure 2.1: Leading order tt̄ production. Diagrams (a), (c) and (d) are gluon fusion
processes, while (b) represent quark annihilation.
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Figure 2.2: Representative examples of leading order single top production.
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τ−→ Branching fraction

e−+ ν̄e +ντ 17.85 ± 0.05%

µ−+ ν̄µ +ντ 17.36 ± 0.05%

hadrons 64.79 ± 0.07%

Table 2.3: Decays of the τ− lepton[9]. τ+ are charge conjugates of these processes.
The hadronic decays mostly involve pions.

The final states of the W decays, as reconstructed in the detector, thus con-
tain either an electron, a muon or hadrons. The branching ratios of these final
states are listed in Table 2.4. By finally combining the different possible final
states of the two W bosons of the tt̄ decay, we arrive at the branching fractions
given in Table 2.5.

W → Branching fraction

e+νe 12.76 ± 0.13%

µ +νµ 12.52 ± 0.15%

hadrons 74.89 ± 0.30%

Table 2.4: Decays of the W bosons. Only final states, after subsequent τ decays are
listed.

tt̄ → Branching fraction Total

eνe + eνe +bb̄ 1.63 ± 0.03%
6.39±0.10%µνµ + µνµ +bb̄ 1.57 ± 0.04%

eνe + µνµ +bb̄ 3.20 ± 0.05%

eνe + jets 19.11 ± 0.22%
37.87±0.34%

µνµ + jets 18.76 ± 0.24%

jets 56.08 ± 0.45% 56.08±0.45%

Table 2.5: Branching fractions for the different final states of tt̄ decays. τ decays into
leptons or hadrons are included. eνe is shorthand for either of the states e− + ν̄e and
e+ +νe and similarly for µνµ .
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2.3 Problems of the Standard Model, and the need for
the LHC
The Standard Model of particle physics has been tremendously successful
in its description of the elementary particles and the forces governing them.
However, the Standard Model is still not completely experimentally verified,
and it cannot be the final theory of particle physics. One of the most evident
reasons for this is the concept of mass: the mass of elementary particles, and
the mass of galaxies.

In the most fundamental formulation of the Standard Model, all the par-
ticles are massless[19]. Particle masses cannot simply be added to the the-
ory without disrupting it3. The only consistent way to describe the particle
masses is by the spontaneous symmetry breaking of the electroweak theory,
in which the Higgs field emerges. Particles gain mass through the interaction
with the Higgs field, and the field itself can be manifested through the Higgs
boson. Although predicted by the Standard Model, no Higgs boson has yet
been observed[9].

The second aspect of mass is that observations of the rotation curves of
galaxies indicate that they are much more massive than they should be, had
all their mass come from ordinary observable matter such as stars and black
holes. According to the observations, the excess matter in the galaxies is
spread out like a halo that extends far beyond the visible rim of the galaxy.
Furthermore, the mass discrepancy is not a minor correction; of the mass in
the galaxies, only about one tenth consists of stars and interstellar gas4[20].
For some time, there was a debate whether the mass observation discrepancies
were due to some new, unknown particle(s) (“dark matter”), or simply a mod-
ification in the Newtonian theory of gravity at very large distances. However,
in 2006 observations were made of colliding galaxy clusters, which clearly
show that the mass discrepancy cannot be explained by a modification of the
laws of gravity[21].

The excess mass in the galaxies could consist of massive, weakly interact-
ing, stable particles, so called “dark matter” particles. But the Standard Model
does not provide any such particles5. There exist several theories, none of
them experimentally verified, that propose dark matter candidates. One of the
theories is the supersymmetry model (SUSY), in which each Standard Model
particle is assigned a supersymmetric partner. In several SUSY scenarios, the
quantum number R-parity emerges, which is +1 for ordinary particles and
−1 for supersymmetric particles. If the R-parity is conserved, the lightest su-
persymmetric particles must be stable. In certain supersymmetric models, the

3“Disrupt” meaning destroying the gauge-invariance and the renormalisability of the theory.
4The dark matter and the visible ordinary matter combined do only contribute to about 30% of
the energy in the universe[20]. The rest is a totally unknown substance called “dark energy”.
5The neutrinos are weakly interacting, but not very massive, and there is not enough of them to
explain the entire observed mass discrepancy[22].
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lightest SUSY particle is the supersymmetric partner of the neutral weak force
carriers and the Higgs boson, the neutralino. This makes it a strong candidate
for dark matter, since it would be heavy, electrically uncharged and only in-
teract through the weak force (and gravity)[23].

As previously mentioned, the gravitational force is not described in the
Standard Model, and a unification of all the forces is desirable for a final grand
unified theory of all fundamental physics. An obstacle on the way is the so
called hierarchy problem: why is gravity so much weaker than the weak force?
Or differently formulated: why is the expected Higgs mass (∼ 102 GeV/c2)
so much smaller than the Planck mass (∼ 1019 GeV/c2). In order to find the
Higgs at the mass we expect, based on previous observations of the other par-
ticles of the Standard Model, the theory must be extremely fine-tuned, which
challenges its robustness and universality. The existence of supersymmetrical
partners to the Standard Model particles could solve the hierarchy problem
through pairwise cancellation of the higher order corrections.

Another suggested solution to the hierarchy problem is the existence of ex-
tra dimensions. If all the Standard Model fields and particles are confined to
our familiar 4-dimensional spacetime, but gravity is free to propagate in an
extra dimension, the gravitational force would seem “diluted” and thus weak
to us. If the extra dimensions are warped, that is curled up and curved within
themselves, and the standard model particles can excite into the extra dimen-
sion, the excitations would seem massive while viewed from the normal 4-
dimensional spacetime[24, 25]. In the presence of a warped extra dimension,
the mass hierarchy can get a purely geometrical explanation. Extra dimen-
sions could have a most direct consequence for experimental particle physics,
as the effects of the additional dimensions could potentially be observed at
the LHC, maybe as the excitation of Standard Model particles. This is further
elaborated in Chapter 8.1.

The observation of the colliding galaxy clusters revealed the existence of
something that behaves like a particle which cannot be described by the Stan-
dard Model. Astronomical observations are important for the understanding
of dark matter, but not enough. In order to understand the properties of these
yet unknown particles, we must either devise a way to study them as they pass
us, or we must create them here, in a controlled environment, so that we can
measure their properties. This is why we need high-energy physics; by col-
liding high energy particles within a detector, measurements of the collision
products, which may contain new, heavy particles, can be made.

At the particle physics laboratory CERN, in Switzerland, the Large Hadron
Collider, LHC, is currently being started. An aerial view of the accelerator
area is given in Figure 2.3. The LHC experiments recorded the first proton-
proton collisions on November 23, 2009[27], when two proton beams, each
of energy 450 GeV were brought in collision, giving a centre-of-mass energy
of 900 GeV. As of the time of writing, November 2009, the LHC sched-
ule is to provide colliding beams of 1.2 TeV each before Christmas 2009,
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Figure 2.3: Aerial view of the LHC accelerator at CERN. The accelerator tunnel is
marked in the photography. The tunnel is 100 m below ground level, and not visible
from the ground. (Photography from [26]).

and from there gradually increase the energy, first to 3.5 TeV per beam, and
then onwards to higher energies. The LHC was originally designed for a 14
TeV centre-of-mass energy (7 TeV per beam). The design luminosity is 1034

cm−2 s−1, with collisions occuring every 25 ns [1]. The LHC is designed be
the largest accelerator in the world, providing physicists with the opportunity
to study physics at the TeV scale.

In order to measure the high-energy collision products, several detectors are
being built at the LHC. One of them, ATLAS (A Toroidal LHC ApparatuS) is
a general-purpose detector, designed to fully take advantage of the discovery
potential of new physics at the high energies of the LHC[28]. The design of
the ATLAS detector is described in Chapter 3. The work presented in Part II of
this thesis has been performed on the calorimeters of the ATLAS detectors. A
large part of the work is devoted to the hadronic calibration of the calorime-
ters, that is, the means to retrieve the correct energy of hadronic objects. In the
next section, the importance of correctly calibrated calorimeters when search-
ing for new physics is explained. The work presented in Part III, a suggested
search for heavy particles decaying into top quarks, has been done using sim-
ulations of 10 TeV centre-of-mass energy collisions in ATLAS.

2.4 Hadronic calibration, heavy quarks and the
discovery potential of new physics
As described in the previous section, the Standard Model is neither completely
experimentally verified, nor the final theory of particle physics. High energy
physics experiments, such as ATLAS, might provide us with information on
new physics at higher energies.
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The search for the Higgs boson is one of the most important motivations of
the construction of the LHC. Previous experiments have excluded a Standard
Model Higgs boson with a mass less than 114.4 GeV/c2[29]. Theoretical and
experimental constraints[30, 31] suggest that the Higgs boson should be light.
If its mass is less than about 200 GeV/c2, one of the Higgs decays that might
be possible to detect is H → γγ . The electromagnetic calorimeter of ATLAS is
designed to be able to detect this decay[32].

If the mass of the Higgs boson is high, one of the detectable processes might
be its decay into two W bosons, which in turn could decay into two leptons
and two jets6, H →WW → `ν jet jet, which requires a good reconstruction
of the W → jet jet process[32]. In order to correctly measure the jets, the en-
ergy scale for hadrons must be well-known, and the energy resolution must be
good. The means of achieving hadronic calibration are described in Chapter 7.

The heaviest known elementary particle, the top quark, was discovered at
Fermilab in 1995, but many of its properties have still not been precisely mea-
sured. Examples of these are the coupling between the top and the bottom
quarks. Precision measurements of the decay products of the singly produced
top could potentially reveal the existence of a fourth generation of quarks7.

The large mass of the top quark brings it to the energy scale of the elec-
troweak symmetry breaking, where the Higgs boson emerges. The top is also
expected to have a large coupling to the Higgs boson, due to its mass, and the
top quark and Higgs boson masses are linked[30, 31].

At the LHC, top quarks will be produced at a much higher rate than in
previous colliders. The sheer abundance of top quarks at the LHC facilitates
the search for signatures within the top quark spectrum. In particular, extended
searches for top resonances, i.e. heavy particles that decay (primarily) into top
anti-top pairs, are made possible. Part III of this thesis outlines how such a
search could be made.

For the dark matter candidate searches, some important features can be out-
lined: there are theoretical indications, as previously stated, that the dark mat-
ter particles should be heavy, stable and weakly interacting. The latter state-
ment implies that it will not react with the detector, thus remaining undetected.
However, since momentum and energy are conserved in physical reactions, the
“invisible” particles can be indirectly detected by looking for missing trans-
verse energy, Emiss

T . This also requires a very good knowledge of the calorime-
ter signals.

The ATLAS detector recorded the first proton-proton collisions from the
LHC on November 23, 2009, which marks the transition from the commis-
sioning and calibration phase of the detector installation, to the data taking era.

6A jet is a collimated spray of hadrons, which is the result of the hadronisation of a high energy
quark or gluon from the proton-proton collisions. See Chapters 4.1.3 and 7.8.
7This can be done by precision measurements of the element Vtb of the CKM matrix[9]. If
this 3-by-3 matrix, which relates the basis of the weak eigenstates of the quarks with the mass
eigenstates, is not unitary, the existence of a fourth generation of quarks is indicated[17, 18].
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But the collisions would have no meaning to ATLAS without the many years of
work performed by the almost 3000 ATLAS physicists to install and calibrate
the detector. As we have just seen, a good understanding of the calorimeters is
necessary for several important expected physics discoveries. The work pre-
sented in Part II of this thesis is a small part of the great effort that has been
spent on testing and calibrating the calorimeter system of ATLAS. In Part III,
one possible scenario for the discovery of new physics at the LHC is outlined.





3. The ATLAS detector at the LHC

The detectors in the end are the key informants of this study;
physicist and nature meet in the detector, where knowledge and
passion are one.
– Sharon Traweek: “Beamtimes and Lifetimes: The World of
High Energy Physicists”, 1988.

As described in the previous chapter, there are good reasons to believe that
new fundamental physics might be discovered in the high-energy proton-
proton collisions at the LHC. The general-purpose detector ATLAS is designed
to take full advantage of the discovery potential for the new physics [28].
ATLAS has a cylindrical shape, centered around the LHC beam pipe, with an
outer radius of approximately 11 metres, a length of 46 metres and a total
weight of 7000 tonnes. The main sub-systems are, in order from smaller to

Figure 3.1: Overall layout of the ATLAS detector (Figure from [26].) The sub-detectors
are, from smaller to larger radii: the inner detector, the electromagnetic calorimeter,
the hadronic calorimeters and the muon system. The overall diameter is 22 metres and
the total weight is approximately 7000 tonnes.
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larger radii, the inner detector, the electromagnetic calorimeters, the hadronic
calorimeters and the muon system[33], as indicated in Figure 3.1.

In this chapter, a brief overview of the ATLAS detector is given. Since the
analysis work presented in Part II has been done on calorimeter data only,
the detector description is emphasised on the calorimeter system. Much more
detailed descriptions of all sub-detectors can be found in the ATLAS detector
paper[3] and in the ATLAS performance book[34].

In the coordinate system of ATLAS, the z-axis is defined to lie along the
beam pipe, the x-axis points towards the center of the LHC ring and the y-
direction is upwards. These directions form a right-handed coordinate system.
In polar coordinates, the angle θ is the polar angle to the beam pipe, and
φ is the angle in the x-y-plane. The polar angle can be used to compute the
pseudorapidity η , where

η =− ln
(

tan
(θ

2
))

. (3.1)

For high-energy particles, the pseudorapidity is a good approximation of the
rapidity yr,

yr =
1
2

ln
(E + pL

E− pL

)
(3.2)

where E is the energy of the particle and pL the momentum component along
the beam. The pseudorapidity is a convenient approximation, because it
can be measured even if the exact mass and momentum of the particle is
unknown[35], and particle production constant per unit rapidity. η , φ , r are
the most important coordinates of the detector. |η |= 0 is perpendicular to the
beam and |η | → ∞ is along the beam-pipe.

3.1 Inner detector
Closest to the collision point, the inner detector is placed. It has a cylindrical
shape of radius 1.15 m and length 5.5 m, and it is immersed in a solenoidal
magnetic field of 2 T. The innermost part of the inner detector is the high-
granularity semiconductor pixel detector, that measures the vertex of the par-
ticles created in the collisions. Outside the pixel detector, the semiconductor
tracker (SCT) is placed, were impact parameters and vertex positions can be
measured. The outermost part of the inner detector is the transition radiation
tracker (TRT), that uses straw detectors to measure particle tracks and identify
electrons. An overview of the inner detector is given in Figure 3.2.

The most central parts of the beam pipe, which houses the protons during
the collisions, is installed together with the inner detector. It is made out of
0.8 mm thick beryllium and has an inner diameter of 58 mm. Beryllium, with
its low atomic number, is used in order to minimise interactions between the
collision products and the beam pipe. Outside the inner detector, the beam
pipe is made out of the cheaper and more robust material stainless steel[3].
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Figure 3.2: Overall layout of the inner detector of ATLAS, with the approximate length and
diameter indicated. (Figure from [36].)

3.2 Calorimeter system
The calorimeter system of ATLAS consists of several non-compensating sam-
pling calorimeters1. The length of the calorimeter system is 12.20 m, and its
outer radius is 4.25 m. In Figure 3.3, an overview of the calorimeter system is
given, with the sub-calorimeters indicated.

3.2.1 The calorimeters
In the central part of the detector, at low |η |, the innermost calorimeter is
the electromagnetic liquid argon calorimeter (LAr). It is subdivided into the
barrel part (called LAr barrel or EMB for “electromagnetic barrel”) at |η | <
1.475 and the end-cap (EMEC) at 1.375 < |η | < 3.2, where all parts uses
liquid argon as active material and lead as absorber. The principal layout of
a LAr barrel module is shown in Figure 3.4. The electrodes are folded in an
accordion shape, as shown in the figure, which is to ensure full φ coverage
and enable a fast extraction of the signal. The first sampling layer in the
LAr barrel consists of the strips, which are very fine-grained in η , with a

1These concepts are explained in Chapter 4



24 Chapter 3: The ATLAS detector at the LHC

Figure 3.3: Overall layout of the calorimeter system of ATLAS (Figure from [36].) The
outer radius of the calorimeter system is 4.25 m and its length is 12.20 m.

granularity of ∆η×∆φ ×∆r = 0.0031×0.098×4.3X0. One radiation length2

X0 in the alternating liquid argon and lead layers in the LAr barrel module
is approximately 21 mm. The second sampling layer, the middle one, has the
granularity ∆η×∆φ ×∆r = 0.025×0.0245×16X0, and the granularity of the
third, back, sampling layer is ∆η ×∆φ ×∆r = 0.05×0.0245×2X0.

To keep the liquid argon cold, the LAr barrel calorimeter is surrounded
by a cryostat, with an inner radius of 1385 mm, and an outer radius of 2132
mm. Inside the cryostat close to the inner wall, the LAr pre-sampler is placed.
Its purpose is to correct for energy losses before the calorimeters. In Chap-
ter 7.6.4, the usage of the pre-sampler information to this purpose is described
in detail.

At larger radii, between 2280 and 4230 mm, and outside the electromag-
netic LAr calorimeter, the hadronic calorimeter system is placed. At |η |< 1.7,
the calorimeter is made out of iron with plastic scintillator tiles as active ma-
terial, which is the origin of the abbreviations Tile or TileCal for this part
of the hadronic calorimeter system. The Tile barrel covers the |η | < 1.0 re-
gion, and the Tile extended barrel is placed at 0.8 < |η |< 1.7. A Tile barrel
module is divided into three longitudinal segments, or sampling layers, which
from smaller to larger radii are the A-cells, the BC-cells and the D-cells. The

2A radiation length is the average distance in the material that a photon or electron travels before
interacting. See also Section 4.1.2.
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Figure 3.4: Layout of a LAr barrel module. See text for cell sizes and layer descrip-
tions. (Figure from [37]).

∆η ×∆φ granularity of the A-cells and the BC-cells is 0.1× 0.1, and for the
D-cells the granularity is ∆η ×∆φ = 0.2×0.1.

At high η and some distance from the interaction point, the hadronic end-
cap (HEC) and the forward calorimeter (FCAL) are placed. Both calorimeters
have liquid argon as active material, and are placed inside the same cryostat as
the electromagnetic LAr end-cap calorimeter, EMEC. The relative placement
of the calorimeters within the cryostat is shown in Figure 3.6.

The hadronic end-cap is subdivided into two wheels with outer radii 2.03
m. Each wheel is constructed from 32 equal modules. The absorber material
of HEC is copper.

The forward calorimeter will be most exposed to radiation from the colli-
sions, and to absorb the radiation, a dense calorimeter is needed. The FCAL
consists of three parts, where the first (closest to the interaction point) has
copper as absorber, and the other two uses tungsten.
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Figure 3.5: Layout of a Tile barrel module, with the placement of the plastic scintillator
tiles indicated, as well as the signal read-out to the photo-multiplies tubes (PMT). The
source tubes are used for calibration with 137Cs, as described in Section 3.2.2. (Figure
from [3]).

3.2.2 Calibration to the electromagnetic scale
The calorimeters must be calibrated on several levels before the output can be
interpreted as physics signals. In this section, the calibration systems of the
barrel calorimeters (LAr barrel and Tile) are given. After all the calibration
steps described in this section, the calorimeters are calibrated to the electro-
magnetic scale. This does not mean that the energy response to hadrons is
correct, an effect which is described in Section 4.1.3. A method for hadronic
calibration of the barrel calorimeters is described in Chapter 7.

The calibration of the LAr barrel calorimeter is described in reference[38],
and it consists of two steps: conversion from ADC counts (analogue to digital
converter) to the injected current, and interpretation of the injected current in
terms of deposited energy. The first step is obtained with the injection of a
calibration pulse of known amplitude, similar to the ionisation pulses of the
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Figure 3.6: Layout of the electromagnetic end-cap (EMEC), the hadronic end-cap
(HEC) and the forward calorimeter (FCAL). The figure is a cross section of the top
half of the calorimeter system, along the beam line axis, and only the innermost parts
of the HEC and the EMEC are shown. The particles are incident from the bottom left
in the figure. (Figure from [3]).

particles, so that an ADC-to-µA factor can be determined. The conversion
factor between current and energy can be determined from first principles,
although a more precise value can be obtained from the comparison between
simulations of electrons and test beam data.

In the Tile calorimeter, the charge injection system (CIS) also injects a
known charge into the electronics through the discharges of capacitors. From
this system, the factor to convert ADC counts to deposited charge, can be de-
termined for each channel[39]. There are also additional systems for monitor-
ing the calorimeter performance over time. With the laser system, short laser
pulses are sent to the photo-multiplier tubes (PMTs), in order to monitor the
PMT stability over time. With the cesium source system, a γ source (137Cs)
is brought through every scintillator in the calorimeter with the aid of a hy-
draulic system. Since the mean free path of the emitted photons is of the same
order as the distance between the scintillator tiles, the response of each indi-
vidual scintillator tile can be studied. The results of the cesium runs are used
to ensure a uniform response from the Tile cells and monitor the calibration
over time.

The final conversion factor needed to bring the energy to the electromag-
netic scale, the conversion from charge to deposited energy, can be determined
by exposing the Tile modules to electron beams of known energy.
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Figure 3.7: Layout of the muon chambers. The diameter of the muon system is 22 m
and the length is 46 m. (Figure from [33]).

3.3 Muon system
The outer part of the ATLAS detector consists of the muon system, where the
momentum of muons escaping the calorimeters are measured. An overview
of the muon system layout is given in Figure 3.7. In the barrel region, at
|η |< 1.6, the muon tracks are bent in a magnetic field, which is as orthogonal
to the muon trajectories as possible, and the tracks are measured by chambers
arranged in three cylindrical layers. For the end-cap regions, the muon cham-
bers are installed vertically, as wheels in three layers. In the |η |< 2.0 range,
Monitored Drift Tubes (MDTs) measure the track coordinates. At higher pseu-
dorapidities, 2 < |η | < 2.7, were the radiation and background levels are
higher, Cathode Strip Chambers (CSCs) with higher granularity are used. For
triggering purposes (see next section), resistive plate chambers (RPCs) and
thin gap chambers (TGCs) are installed in the barrel and end-cap regions, re-
spectively. The MDTs and the CSCs provide precision measurements of the
η coordinate of the track, while the trigger chambers (the RPCs and TGCs)
measure both the η and the φ coordinate. With the combination of the infor-
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mation from the trigger chambers and the MDTs and CSCs, the φ coordinate
of the track in the MDT or CSC can be reconstructed.

3.4 Read-out, data acquisition and the triggers
When LHC is operating at design luminosity, 1034 cm−2 s−1, there will be
40 million collisions between proton bunches every second. Technical limi-
tations and cost aspects demand that only about 200 events per second are
permanently stored[3]. With a necessary rejection rate of 2 · 105, it is abso-
lutely crucial to have a sophisticated system that quickly selects the interest-
ing physics from all the background collisions. This task is performed by the
triggers. The trigger system consist of the first level trigger[40], the second
level trigger and the event filter. At each level, events are rejected or kept,
depending on the information in the event and the decisions on the previous
level.

The decisions of the first level trigger are based on reduced information
from the calorimeters and the muon system, where especially events with
large missing transversal energy, muons with high transversal momentum,
electrons, photons and jets are kept. After the rejection in the first level trigger,
the event rate is about 75 kHz.

From the first level trigger, information about the possible interesting
physics is passed on to the second level trigger, where the interesting regions
in the detector are analysed more carefully, when information from all
sub-detectors is considered. After the second level trigger rejections, the
event rate is about 3.5 kHz. In the final step, the event filtering, the events
kept are reduced to the required 200 per second.





Part II:
ATLAS calorimetry





4. Basic concepts of calorimetry

calorie
from classical Latin calor (gen. caloris) “heat,” from Proto-
Indo-European *kle-os-, suffixed form of base *kele- “warm”
(cf. classical Latin calidus “warm,” calere “be hot;” Sanskrit
carad- “harvest,” literally “hot time;” Lithuanian silti “be-
come warm,” silus “August;” Old Norse hlær, Old English
hleow “warm”).
– Online Etymology Dictionary, 2001 (Douglas Harper)

In the previous chapters, the ATLAS detector has been described, and the
potential of finding new physics at the LHC has been outlined. As mentioned,
a good understanding of the calorimeters is necessary for the discovery of
many interesting new physics phenomena.

In this chapter, some basic concepts of calorimetry are presented, which are
necessary for the understanding of the challenges of hadronic calibration. In
Chapter 3, some techniques for calibrating calorimeters to the electromagnetic
scale were outlined. In this chapter, the need for additional calibration in order
to correctly describe the hadronic energy is explained, and in Chapter 7 a
method for hadronic calibration is described in detail.

In calorimeters, the energy of particles are measured through total absorp-
tion, when the incident particle reacts in the calorimeter material. Calorimeters
are especially important as energy measuring devices in high-energy particle
physics experiments, since the energy resolution, σ/E, (where E is the mean
energy and σ the width of the energy distribution) improves with increasing
energy, as opposed to the energy resolution in, for example, spectrometers[7].
Calorimeters can also measure the energy of certain neutral particles, such as
neutrons. As will be shown, the minimal size of the calorimeter necessary to
completely absorb the energy of a particle, scales approximately with the log-
arithm of the energy measured, which makes it possible to construct calorime-
ters of manageable size and material cost even for high-energy physics exper-
iments.

When evaluating the performance of a calorimeter, the response is often
discussed, which is defined as the ratio between the energy detected by the
calorimeter and the true energy of the incident particle. The response as a
function of the incident particle energy is called the linearity and a calorimeter
with an energy-independent response is linear.
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There are many ways to build a calorimeter, and the detecting material can
be any of a large selection of substances, such as scintillating plastic, inorganic
crystals, a liquid or a gas mixture. The detecting material is often called the
active material. The calorimeter can be homogeneous, when it is made out of
active material only, or a sampling calorimeter, when the active material is
placed in layers between dense absorber material, such as lead or iron.

In this chapter an introduction to calorimetry is given and different
calorimeters are described. The important physics processes when
high-energy particles enter the calorimeter material are outlined. In
Chapter 7, some examples of how to calibrate calorimeters to the hadronic
scale are given.

4.1 Energy measurements using calorimeters
As mentioned above, the calorimeter measures particle energies through the
total absorption of the particles and subsequent detection of the energy re-
leased in the detector medium. Different particles react in different ways in
the calorimeter material, which has important consequences for calorimetry.
In this section, the behaviour of muons in matter is discussed, as well as the
difference between electrons and hadrons when reacting in the detector mate-
rial. At the end of the section, a discussion on how to separate particles using
the calorimeter signal is given.

4.1.1 Ionisation losses
All charged particles ionise atoms when passing through a material. For most
high-energy particles, other energy-loss processes dominate over the ionisa-
tion, but for muons in most energy regions considered in high-energy experi-
ments, this is the most important reaction. The rate of energy loss is described
by the Bethe-Bloch formula [9],

− dE
dx

= C1 ·
z2

β 2 ·
(1

2
· ln

[ C2 ·β 4γ4

1+2γme/M +(me/M)2

]
−β

2−δ/2
)

(4.1)

where C1 and C2 are constants dependent on the medium only, z is the charge
of the incoming particle (in fractions of the proton charge), me/M is the mass
ratio between an electron and the incident particle, β is the kinematic vari-
able β = v/c and γ = (1− β 2)−

1
2 . δ is a density effect correction, which is

important only at very high energies. The values of the formula, for muon
momenta between 0.01 and 1000 GeV/c and various materials, can be found
in Figure 4.1.

The Bethe-Bloch formula has its minimum around muon momentum
pµ = 0.3 GeV/c and muons in this momentum region are called minimum
ionising particles (MIPs). Technically, only particles in the momentum region
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Figure 4.1: Ionisation energy loss per centimeter divided by the absorber density for
various absorbers, according to the Bethe-Bloch formula. (Figure from [9]).

around the minimum of the Bethe-Bloch formula are MIPs, but the mean rate
of energy loss rises only slowly with particle momentum after that, which
means that even muons of energies of several hundred GeV are approximately
minimum ionising particles.

The distribution from the muon energy losses have a slightly asymmetric
shape, which is described by a Gauss-Landau convolution function[41]. The
tail of the distribution comes from the occasional δ electrons (“knock-on elec-
trons”) that are emitted from the atoms in the material due to the passage of
a muon, leading to a greater energy loss than the ionisation process alone, as
shown in Figure 4.2.

The ionisation losses are small per unit length traversed, which means that
muons can penetrate thick layers of material.

4.1.2 Electromagnetic showers
When the particle energy exceeds about 100 MeV, the most important
mode of energy loss for electrons and positrons is radiation energy loss
(“bremsstrahlung”)[6]. The incoming particle interacts with the electric field
of the nucleus, emitting photons. The rate of energy loss is proportional to
the inverse of the particle mass squared,

− dE
dx

∝
1

m2 (4.2)
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Figure 4.2: Muon energy loss in a TileCal cell. Data from the 2003 stand-alone test
beam of the ATLAS hadronic calorimeter[42].

The proportionality constant is dependent on the absorbing material only. The
mass dependence of the energy loss explains why bremsstrahlung is not so im-
portant for muons: since the muon mass is about 200 times that of an electron,
the bremsstrahlung energy loss is suppressed by a factor of 40,000.

In a simple model of the bremsstrahlung process, the electron travels about
one radiation length in the absorbing material. Then it interacts and half its
energy is emitted as a bremsstrahlung photon. The photon travels about one
radiation length and is then absorbed via pair production, in which an electron
and a positron are produced. The secondary particles react in the same way,
as long as their energies are above the critical energy, EC, which is defined as
the energy at which the energy loss rates from ionisation and bremsstrahlung
are equal for electrons[9]. After each interaction length, the number of parti-
cles in the shower is approximately doubled, and the energy of each particle
is halved1. The interactions quickly give rise to an electromagnetic cascade,
a “shower”. The energy of the shower is finally deposited in the calorimeter
through ionisation (if the particles are electrons or positrons) or Compton scat-
tering and the photoelectric effect (photons). Figure 4.3 shows the principle of
an electromagnetic shower development.

1In reality, many of the radiated photons will be very low-energetic[6], but then many of them
will be emitted in the bremsstrahlung process instead, so the simple model described above still
gives us a good idea of the shower development initiated by electrons.
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Figure 4.3: Simple model of the development of an electromagnetic shower when an
electron enters an absorbing material. After t radiation lengths, the number of particles
will be approximately 2t , and the energy of each particle E0/2t where E0 is the energy
of the initial electron.

After t interaction lengths, the number of particles in the shower in this
simple model will be 2t , and the energy of each particle E0/2t where E0 is
the energy of the initial electron. When the particle energy is as low as EC,
ionisation losses begin to dominate and the process stops. The total number of
interaction lengths in which the shower is contained is thus[7]

tmax = ln(E0/EC)/ ln2 (4.3)

For solid and liquid elements, the critical energy can be computed approx-
imately from the formula EC = 610MeV/(Z +1.24)[9]. The radiation length
is of the order of centimetres for metals, 1.76 cm for iron and 0.56 cm for
lead[9]. Using Eqn. 4.3 and these numbers, we find that a 10 GeV electron
targeted at iron will produce an electromagnetic shower of about 15 cm depth.
Since the number of radiation lengths grows logarithmically with initial en-
ergy, a 1000 GeV electron produce only a 27 cm long shower in iron. This
example illustrates that the necessary size of the calorimeter scales approxi-
mately with the logarithm of the energy measured, which is a prerequisite for
constructing calorimeters of manageable size for physics experiments in the
TeV region.
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4.1.3 Hadronic showers and invisible energy
In hadronic interactions with matter, the strong force plays an important role,
when the incoming hadron interacts strongly with the nuclei of the calorime-
ter material. This makes hadronic showers more complicated than electro-
magnetic ones. The strong interactions might include nuclear excitations or
nuclear break-ups. Normally, the energy needed to release protons and neu-
trons from the atomic nuclei is not detected by the calorimeter. Consequently,
for most types of calorimeters, the energy response of a hadron will be smaller
than the energy response from an electron of the same nominal energy. This
effect, which for obvious reasons causes problems in the calibration, can be
circumvented by inserting layers of high-Z material, such as uranium (238U),
into the calorimeter, making it compensating[6]. Combined with, for example,
scintillator plastic as active material, a calorimeter with uranium layers can
have the same response to electrons as to hadrons. A part of the compensation
is an effect of fission processes in the uranium induced by the invisible parts
of the hadronic showers. However, a more important process is the reduction
of the response to the electromagnetic showers in the high-Z material, which
is caused by the absorption of soft photons from the electromagnetic shower
in the absorber material[43, 44]. The response to the hadronic showers can
instead be increased with the usage of active materials containing hydrogen
(such as organic gas mixtures or plastic) since the evaporation neutrons of
the hadronic shower lose energy in the active material through elastic scatter-
ing, a process much more efficient if the struck nucleus is light[44, 45]. The
undetected energy of hadronic showers is called invisible energy, as opposed
to the visible energy that can be detected. Some particles, mostly neutrinos,
leave the detector completely undetected, and the energy loss they represent
is called escaped energy.

The overall scale of the hadronic shower is determined by the nuclear in-
teraction length, λint , similarly to the radiation length of the electromagnetic
showers. The interaction length of protons is 16.8 cm in iron and 17.0 cm in
lead. This is roughly one order of magnitude larger than the corresponding ra-
diation lengths, which indicates that hadronic showers are more wide-spread
than electromagnetic ones[9].

The calorimeters of ATLAS are non-compensating, and in the following
discussion, non-compensating calorimeters are implied.

Energy dependence of the hadronic response
The fraction of the hadron energy that can be detected by a non-compensating
calorimeter depends on the initial energy of the hadron, where larger initial
energy means a higher response in the calorimeter. This effect can be under-
stood by considering the development of a hadronic shower in the calorimeter.
A charged hadron can ionise the calorimeter material, just like a muon would,
but at some point it will interact strongly with an atomic nucleus. In this in-



4.1 Energy measurements using calorimeters 39

 (GeV)beamE
0.5 1 2 3 4 5 6 10 20 30 100 200

F
ra

ct
io

na
l e

ne
rg

y 
(%

)

0

20

40

60

80

100

Figure 4.4: The response of the ATLAS barrel calorimeter, when exposed to pion
beams of various energies. The response is the fraction of the pion energy that is
detected by the calorimeter system. The values are the mean of Gaussians fitted to
simulated energy distributions, divided by the beam energy.

teraction, several new hadrons might be produced, that will propagate through
the calorimeter, ionising or interacting strongly with new nuclei, and for each
interaction new hadrons will be formed, until the energy of the secondary
hadrons is too low for new strong interactions. Many of the hadrons formed in
interactions like these will be pions, and approximately one third of the pions
will be neutral. Neutral pions rapidly decay into two photons, which deposit
their energy electromagnetically in the calorimeter. Once a π0 is formed, it no
longer gives rise to secondary hadrons, and all its energy is deposited electro-
magnetically. So for each strong hadron-nucleus interaction, a certain fraction
of the energy is deposited electromagnetically. If the incoming hadron has
large energy, there will be more strong interactions and thus a larger fraction
of the total energy will be deposited electromagnetically[6].

In Figure 4.4, the combined response of the ATLAS barrel calorimeter sys-
tem (a liquid argon/lead electromagnetic calorimeter followed by a hadronic
scintillator plastic/iron calorimeter), when exposed to pion beams of various
energies, is shown. The values come from a simulation of the combined AT-
LAS test beam of 2004 (see Chapter 7). In this figure, the increased hadronic
response when the initial particle energy rises is evident. For pion energies of
about 1 GeV, the average response is about 40%, while the average response
to 300 GeV pions is almost 80%.
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Due to the production of neutral pions in the hadronic showers, the visible
energy fraction fluctuates heavily from event to event, which results in a worse
energy resolution for hadrons compared to electrons.

The response to different hadrons
So far, the discussion has been about hadrons in general. However, different
hadrons shower in different ways. A hadronic shower induced by a proton
contains fewer neutral pions than a pion-induced shower of the same nom-
inal energy[6], due to conservation of the baryon number, which leads to a
lower electromagnetic energy fraction in the proton showers, and thus a lower
calorimeter response. The smaller number of neutral pions also lead to smaller
event-by-event fluctuations and a better energy resolution in a proton-induced
shower than in a pion one. It is possible that hadrons containing strange quarks
(such as kaons) show a similar behaviour due to strangeness conservation[6].

The properties of single hadrons (such as pions, protons. . . ) are important to
consider and lots can be learnt from test beams in which calorimeter modules
are exposed to hadron beams (see Section 5). However, in a high-energy col-
lider experiment, single hadrons will not be the most important hadronic ob-
ject. Instead, high-energy quarks and gluons produced in the collisions hadro-
nise, and in the process give rise to a high-energetic, collimated spray of par-
ticles, known as a jet[35]. Generally, the number of particles in a jet will be
larger than in a single hadron-induced shower. The properties of the jet will
depend on the constituent particles. Like the hadron-induced showers, the visi-
ble energy content of the jet will fluctuate with the production of neutral pions.
Many of the jet particles will be charged pions, so important things about the
calorimeter response to jets can still be learnt from the study of pions. See also
Chapter 7.

4.1.4 Particle separation in the calorimeters
Starting from the different behaviours of the particles discussed, several strate-
gies for discriminating between the particles using the calorimeter signals can
be formulated. As described in the previous sections, electromagnetic show-
ers are shorter and denser than hadronic ones as a consequence of the differ-
ent processes involved. An electron will deposit most of its energy in the first
layers of a calorimeter, while a hadronic shower can penetrate deeper. For this
reason, calorimeters are often divided into (at least) two parts: the electromag-
netic calorimeter, closest to the impact point, and the hadronic calorimeter.

Muons, on the other hand, normally deposit a small, but approximately con-
stant, amount of energy per unit length of material passed. Unless the muon
energy is very low, it will leave the calorimeter, and additional detectors, like
spectrometers, are necessary to measure the muon momentum.

In Figure 4.5, the total energy deposition measured in three Tile A-cells (75
centimetres iron with scintillator plastic) when exposed to an electron/ pion/
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Figure 4.5: Total energy deposition from a 9 GeV pion/electron/muon beam in three
Tile A-cells (75 centimetres iron/scintillator plastic). The three most abundant parti-
cles are clearly visible: muons at ∼ 1.3 GeV, pions at ∼ 5.5 GeV and electrons at ∼ 9
GeV. The distribution has been fitted with a sum of a Gauss-Landau convolution and
two Gaussians. The plot has been made using the data from the Tile test beam of 2003,
see Chapter 6.

muon beam at a nominal energy of 9 GeV is shown. The data was recorded
in the Tile stand-alone test beam, as described in Section 5.1. This exam-
ple clearly illustrates what we have learned about the behaviour of electrons,
pions and muons in matter. The peak at lowest energy, ∼ 1.3 GeV, contains
the muons, since they only lose a small amount of energy per unit length
passed. The peak is slightly asymmetric due to the δ electrons. The largest
peak, at ∼ 5.5 GeV, contains the pions. This peak is not at beam energy be-
cause the calorimeter has been calibrated to the electromagnetic scale, it is
non-compensating and, to a smaller degree, because the pion showers are not
fully contained within 75 centimetres of iron. At the beam energy, ∼ 9 GeV,
the electron peak can be found. After 75 centimeters in iron, most of the elec-
tron energy has been deposited, and all of the energy can be reconstructed by
the calorimeter.

4.1.5 Transverse energy
Calorimeters measure the energy deposited by the particles, and energy is a
scalar physical quantity. However, in a high-energy collider experiment most
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of the particle energy is kinetic energy and all particles are originally created
in the initial collision (or are decay products of these particles). In this con-
text it is convenient to think that the energy deposited has a direction, which
in practise is the direction of the calorimeter cell with respect to the collision
point. Just as momentum, this “vectorised” energy can be projected in dif-
ferent planes. Interesting physical processes in high-energy collisions often
give rise to energy deposits in the plane perpendicular to the beam line. This
projection of the energy is called the transverse energy ET and is computed as

ET = sin(θ) ·E (4.4)

where θ is the polar angle of the calorimeter cell, and E the deposited energy.
It should be noted that 0 < sin(θ)≤ 1 in the interval 0 < θ < π .

For many purposes, the transverse energy is more interesting than the en-
ergy itself. In particular, for a particle that leaves the detector volume without
interacting, such as a neutrino, the only way to retrieve the information about
the particle is to look at the transverse energy. Since energy and momentum
of the particle collision is conserved, the vectorial sum of the ET will not be
0 if a non-interacting particle was present in the reaction. This “hole” in the
transverse energy is called the missing transverse energy, Emiss

T .

4.2 Calorimeter performance
In the previous sections we have learned that the performance of a calorime-
ter varies with the detected particle and with the material used to build it.
As mentioned before, two variables closely related to the performance of a
calorimeter are (the linearity of) the response and the resolution. The linearity
of the hadronic energy response is governed by the level of non-compensation
of the calorimeter. The resolution can be expressed as a sum,

σ

E
=

C f luct√
E

⊕Cinstr

E
⊕Cconst (4.5)

where ⊕ indicates addition in quadrature. The three terms arise from different
processes in the calorimeter[35]. The first term, C f luct/

√
E, comes from statis-

tical fluctuations in the shower energy content, and, for sampling calorimeters,
from fluctuations in the fraction of energy measured. This is the most impor-
tant term, that dominates the resolution for most energies. Typical values of
C f luct/

√
E are about ten percent (for electromagnetic showers) and about 50%

for hadronic showers. The second term, Cinstr/E, comes from instrumental
noise effects. This term is very small for large energies, but limits the reso-
lution for low energies. The constant term, Cconst is determined by the per-
formance of the read-out devices, such as PM tubes, ADC’s, etc, as well as
uncertanties in the calibration.
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Generally, a homogeneous calorimeter achieve a better resolution for elec-
tromagnetic showers than a sampling calorimeter, because the sampling fluc-
tuations are eliminated. However, a homogeneous calorimeter can never be
compensating, and the response to hadronic showers is thus very non-linear.
A sampling calorimeter, on the other hand, can be compensating or near com-
pensating, thus giving a good hadronic linearity, at the cost of higher sampling
fluctuations and a worse resolution. The sampling fluctuations can be reduced
by increasing the sampling fraction (by increasing the amount of active ma-
terial and thus the fraction of the energy deposited in the active layers) or
by increasing the sampling frequency (by making the layers of absorber and
active material thinner, but keeping the overall ratio)[6].

When designing a calorimeter system, the aspects of resolution and lin-
earity must be considered and balanced. If the calorimeter system is divided
into an electromagnetic and a hadronic part, the electromagnetic calorimeter
is generally homogeneous or sampling with a high sampling fraction, to give
a good resolution, while the hadronic calorimeter is a compensating or near-
compensating calorimeter with a low sampling fraction. Such an approach
might lead to undesired side effects, however. The resolution of hadronic
showers that start in the highly non-compensating electromagnetic calorime-
ter will suffer from the fluctuations in the visible energy content. Even if the
hadronic calorimeter is compensating, and provides a good resolution, it can-
not recover from the losses in the electromagnetic calorimeter. For this rea-
son, hadronic calorimeters are generally built of fairly cheap and robust ma-
terial, because their performance is limited by the requirements on the per-
formance of the electromagnetic calorimeter, and not as much by their own
construction[6].





5. Test beams

Beam me up, Scotty.
– Captain James T. Kirk, in Star Trek: The Animated Series.

As described in the previous chapters, the ATLAS detector consists of several
sub-detectors, each with its own purpose and design. Before assembling a gi-
ant detector like ATLAS, it is important to ensure that all sub-detectors work
as intended. One way to test the calorimeters is to expose them to particle
beams of well-known energy and study the read-out, as well as compare it to
simulations. These particle beams are called test beams, an expression that of-
ten includes the entire beam testing process. The calorimeters of ATLAS have
been studied with the aid of test beams several times, starting with calorimeter
prototypes in the 1990’s, to the last test of a slice of the entire barrel section
of ATLAS in the autumn of 2004.

The barrel calorimeters have been tested in CERN’s H8 beam line, in the
North Area[8, 46]. The beams are created with the Super Proton Synchrotron
accelerator (SPS) that provides protons with a momentum of up to 400 GeV/c.
A diversity of particles with various energies are created after the proton beam
is collided with a primary target (beryllium) and a secondary target. The ma-
terial of the secondary target varies with the desired particle: for electrons the
target is a combination of lead and air, for pions the beam is collided with a
polyethylene and lead target[8]. Muon beams are created from pion beams,
since the pions decay in flight to muons, and any remaining pions can be fil-
tered with absorbers, such as concrete blocks that are thick enough to stop the
pions.

Before impact, the beam passes a selection magnet, so that only particles
with the desired momentum are chosen.

After the secondary target, the energies of the particles in the beam ranges
from about 10 to 300 GeV. Particles with even lower energy, 1-9 GeV, can be
produced after collision with a tertiary target.

No matter which targets are used, there will always be a contamination of
pions, electrons and muons in the beams. If the particles chosen are posi-
tive, an additional contamination of protons might occur. In the case of the
very low energy beams, 1-9 GeV, a contamination of high energy muons is
present. Other particles can be filtered, but the muons penetrate vast amounts
of material, and are not easily stopped (see Chapter 4). In order to clean the
beam as much as possible and provide all necessary particle information, the
beam line is also equipped with several wire chambers, scintillators, Čerenkov
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Figure 5.1: Schematic view of a Tile calorimeter barrel module. Some η directions are
indicated, as well as the direction of transversal beams through the A-cells. (Figure
from [47])

detectors etc., to measure and control the particles in the beam; all to ensure
that a well-known particle with a well-known energy hits the detector.

In this section, two test beam set-ups are described: the stand-alone Tile
test beam of 2003 and the combined ATLAS test beam of 2004. In this case,
“stand-alone” means that the Tile modules were tested by themselves, without
any other ATLAS sub-detectors present. In the “combined” test beam, a slice
of the barrel part of ATLAS was tested, with a piece of the inner detector, the
electromagnetic calorimeter, the hadronic calorimeter and the muon chambers
present1.

5.1 The Tile stand-alone test beam 2003
The Tile modules have been studied in stand-alone test beams several times,
last time in 2003. The test beam activities are summarised in reference [42].

In the stand-alone test beam of 2003, the Tile modules were placed on a
table that could be rotated with respect to the incident beam. This enabled
beam impact in different η directions, as indicated in Figure 5.1. During
normal data taking with the LHC collisions, the jets and particles will go in
some η direction. In the Tile stand-alone test beam, however, some runs were
taken with the beam targeted transversal to the Tile modules, providing a very
long calorimeter for the shower development. In addition, with this set-up, the
incident particles were perpendicular to the scintillator tiles in the calorimeter.

In Chapter 6, a study of very low energy muons (3-9 GeV) in beams targeted
transversally at the Tile A-cells is described.

1In other words, “combined” does not refer to the beam (which we wish to be pure) but the
combination of several sub-detectors.
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5.2 The 2004 combined ATLAS barrel test beam
In the autumn of 2004, a slice of the barrel section of the ATLAS detector
was tested in a combined sub-detector test beam, thus testing parts of the
inner detector, the pre-sampler, the LAr barrel, the Tile barrel and the muon
chambers together[8]. In Figure 5.2, a schematic view of the combined test
beam set-up is shown.

The combination of a slice of all sub-detectors in the barrel part of AT-
LAS enables the possibility of studies of combined calorimetry, that is, how
the electromagnetic and hadronic calorimeter work together. In Chapter 7, a
method for hadronic calibration of single pions in the calorimeter system is
described.
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Figure 5.2: Set-up of the 2004 combined test beam. (Figure from [8]).



6. Very low-energy muons in the
hadronic calorimeter

Before the installation in the ATLAS cavern at the LHC, the hadronic barrel
calorimeter of ATLAS, TileCal, was subject to tests with real particle beams
from the SPS accelerator at CERN. In this chapter, an analysis of the be-
haviour of very low-energy muons in TileCal is described. “Very low-energy”
in this context means energies between 3 and 9 GeV.

In the stand-alone test beam, the different TileCal modules were tested sep-
arately. For the best resolution possible, this analysis contains only data from
transversal (θ = 90◦) test beam with impact on TileRow 2, which means that
the beam goes through the smallest cells in the module, the A-cells. Three
different runs were used, with nominal particle energy 9, 5 and 3 GeV. See
Appendix A for ATLAS-specific details, such as run numbers.

The main focus of this analysis is to compute the range of the low-energy
muons in the calorimeter material. As described in Chapter 4.1.1, high-energy
muons are approximately minimum ionising particles, MIPs, that can penetrate
wast amounts of material without stopping. Muons with energies as low as
1 GeV are also MIPs; however, when the muon energy becomes even lower,
the energy loss per unit length passed rapidly increases, as shown in Figure 4.1
in Chapter 4, and the muon stops. Approximate calculations can be used to
estimate the expected muon range. The Tile module is 5.64 metres long [48].
The active material is polystyrene plastic (C6H5CH = CH2), but most of the
module is steel1. Assuming that all of the module is steel, the mean energy loss
for one muon passing the entire module should be about 7.9 GeV[9]. We can
conclude that we expect most of the 9 GeV muons to pass, while a muon with
lower energy should stop somewhere in the module. GEANT4 simulations[49]
(see Section 6.3) confirm these approximations.

Throughout this chapter, measured energies are given in the unit pC, which
is not a unit of energy but of charge. As mentioned in Chapter 3.2.2, the charge
deposited by the particles of the shower is proportional to the energy of the
shower. The charge stated is thus directly proportional to the energy on the
electromagnetic scale. A conversion factor from pC to GeV (which is approx-
imately 0.8) can be obtained from electron beams of known energy. However,

1In one so-called period, an 18 mm slice of calorimeter material from which all the cells are
built, there is 14 mm steel and 3.1 mm scintillator plastic. The remaining ∼ 1 mm consists of
glue and air[42].
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for this analysis, the comparison of different energy depositions is enough,
and an absolute energy scale is not needed.

6.1 Muon selection
As outlined in Chapter 5, the beams analysed contain mainly three different
kinds of particles: pions, electrons and muons. In this analysis, pions are the
most abundant for most energies.

Since a muon in the energy range between 3 and 9 GeV is approximately
a minimum ionising particle (MIP), it will deposit the same amount of energy
per unit length in every TileCal cell it passes, until it has no energy left. A
pion in the same energy range does not behave like this, and the typical pion
signature is a MIP signal in the first few cells, followed by an energetic shower.
An electron showers even earlier, and typically deposits most of its energy
in the first few cells. Since the Tile calorimeter is non-compensating, more
energy will be detected from an electron than from a hadron (i.e. a pion) of
the same energy.

In Figures 6.1(a)-6.1(c), histograms of the sum of the energy of the first
cells, for the three different beam energies are shown. The function fitted to
the histograms is a sum of a Gauss-Landau convolution[41] for the muons,
and two Gaussians for pions and electrons. As shown in the figures, the fit
is very good, and we can distinguish the three different kinds of particles we
expected to find in the beam: muons, pions and electrons. Especially for the
E = 3 GeV beam, it looks like there are many muons. However, there are not
as many muons as the figure might suggest, since the muon peak also hides
some late-showering pions. Also, the muon peak does not tell us anything
about the energy of the muons it contains. Since muons of energies as large as
several hundred GeV can also be considered as MIPs, they will lose the same
amount of energy per cell as a muon of much lower energy.

The analysis should be done on low-energy muons only, so we have to cut
all the other particles away. That is, electrons and pions should be removed
from data, as well as the noise in data and any high-energy muons that might
have slipped through the momentum selection. The variables used for selec-
tion are given in Table 6.1.

Name Meaning

Trig == 1 particle present in the beam-line

Beamextra removes a handful high-energy muons

Ximp, Yimp to get a straight beam

Energy distribution muon selection

Table 6.1: Muon selection cuts. See the text for details.
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(a) Energy sum, first three cells, Ebeam = 9 GeV.
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(b) Energy sum, first two cells, Ebeam = 5 GeV.
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(c) Energy sum, first cell, Ebeam = 3 GeV.

Figure 6.1: Sum of energy in the first few cells, for the different beam energies.
Sums of two Gaussians and a Gauss-Landau convolution are fitted to the different
histograms. The three different kinds of particles in the beam are clearly distinguish-
able, with muons in the leftmost peak, pions in the middle and electrons at the highest
energy.
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Figure 6.2: Fraction of energy in the cell with maximum energy, versus total energy
in all cells. Nominal beam energy 9 GeV. The frame is placed around the muon clus-
ter and indicates the limits of the cut applied. It should be noted that the z-scale is
logarithmic.

The trigger system of the test beam set-up is a simple coincidence of the sig-
nals in three scintillators in the beam-line[42]. If Trig==1, there is a particle
in the beam-line, and not an empty run. The Beamextra variable contains
data from a scintillator that should give a signal if the muon is high-energetic.
However, this does not work perfectly and an admixture of high-energy muons
can be observed in the last Tile cells of the 5 and 3 GeV runs, which should be
empty. These signals can be treated as background and subtracted. It should
be noted that such a removal can not be done in the 9 GeV beam, which thus
might contain high-energy muons.

The variables Ximp and Yimp give the impact coordinates where the beam
hits the TileCal cell, as deduced from wire chambers in the beam-line. A
proper choice of impact removes particles with inclined impact.

The “Energy distribution” cut is illustrated in Figures 6.2 – 6.4, which show
the energy distribution for the different energies.

On the x-axis we have the total energy deposited in all the A-cells for each
particle. On the y-axis we have, for each event, the fractional energy in the
cell with maximum energy detected. The muons, being MIPs, deposit about
the same amount of energy in several cells and can thus be seen as a clus-
ter near the bottom left corner of the plots. The pions deposit most of their
energy in a few cells, and form the long ridge in the upper left corner of the
plots. The electrons deposit most of their energy in a single cell, and the total



6.2 Pion decay in the beam 53

Total energy (pC)
0 5 10 15 20 25

m
ax

E
E

ne
rg

y 
fr

ac
tio

n,
 f

0

0.2

0.4

0.6

0.8

1

R
at

e 
(a

rb
. u

ni
ts

)

1

10

210

Figure 6.3: Fraction of energy in the cell with maximum energy, versus total energy
in all cells. Nominal beam energy 5 GeV. The frame is placed around the muon clus-
ter and indicates the limits of the cut applied. It should be noted that the z-scale is
logarithmic.

visible energy deposited is larger than for the pions, since TileCal is a non-
compensating calorimeter. The electrons form the peak in the top of the plots.

The cuts indicated in Figures 6.2 – 6.4 select the events that contain muons.
The number of muons in each cell is deduced by looking at energy deposits
above the noise level for each cell.

From Figures 6.2 – 6.4 it is evident that the separation between pions and
muons is very good for the 9 GeV beam. For the 3 GeV beam, the separation
is not as clear, and the data become very sensitive to the placement of the cut.
But separation is still possible, as will be shown.

6.2 Pion decay in the beam
As demonstrated in Figure 6.1, the beam contains pions and electrons, as well
as muons. For each energy, there is about 50,000 events and more than half
of them are pions. The number of muons selected with the cuts described
in Section 6.1 is only about 1000. Between the momentum selection mag-
nets and impact of the particles on TileCal module, the particles travel about
17 metres.2 Since the lifetime of a pion is 2.6 ·10−8 s, a few percent of the

2See Section 6.5 for a more thorough discussion on pion decay and the test beam layout.
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Figure 6.4: Fraction of energy in the cell with maximum energy, versus total energy
in all cells. Nominal beam energy 3 GeV. The frame is placed around the muon clus-
ter and indicates the limits of the cut applied. It should be noted that the z-scale is
logarithmic.

pions decay into muons during flight, which means that we have around 1000
muons that are decay products, and therefore not necessarily of the same en-
ergy as the pions. Since the number of muons observed is about 1000, we can
conclude that pion decay is not negligible.

Decay muons have lower energies than the original pions. The momentum
p

µ,CMS of a decay muon in the pion’s centre-of-mass system (CMS) is

p
µ,CMS · c =

m2
πc4−m2

µc4

2mπc2 (6.1)

where m denotes the particle rest masses and c is the speed of light.
We are interested in the muon energy in the laboratory system, where we

make our measurements. A Lorentz transformation of the energy to the labo-
ratory frame, E

µ,lab, gives us

E
µ,lab = γ

(√
m2

µ · c4 + p2
µ,CMS · c

2 + c · p
µ,CMS · cosθ

)
(6.2)

where the pion speed |v| is approximated as c, and we have used the scalar
product relation v · p

µ,CMS = v · p
µ,CMS · cosθ , where θ is the CMS angle

of the decay muon with respect to the beam direction.
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The expressions for maximum and minimum muon energy in the laboratory
frame are obtained by taking the extreme values of cosθ in Eq. 6.2, that is±1.
The numeric results from these equations can be found in Table 6.2.

Eπ (GeV) Eµ,max (GeV) Eµ,min (GeV)

3 3.0 1.7

5 5.0 2.9

9 9.0 5.2

Table 6.2: Minimum and maximum energies of decay muons, for different pion ener-
gies.

From the values of Table 6.2, it is clear that the pion decay muons have ener-
gies that vary between a value about 57% of the pion energy and all of the pion
energy. The energy spectrum is flat, since muon decay recoil is equally prob-
able in every direction in CMS, and the solid angle element dΩ = sinθ dθ dϕ

also can be written as dΩ = d(cosθ)dϕ .

6.3 Comparison with simulations
In the previous section it was demonstrated that the low-energy muons found
in the beam are of two different kinds: either muons from pion decays or
muons with nominal beam energy. In order to compare data with simulations,
we must reproduce both the nominal energy muons and the continuous energy
spectrum of the decay muons.

Nominal energy muons are easily reproduced, since those only require or-
dinary mono-energetic muon simulations. The decay muon energy spectrum
is continuous, so the most correct simulation would of course be a continuous
one. However, this is not as straight-forward as mono-energetic simulations.
Another approach is to take appropriate amounts of mono-energetic samples
of simulations with different energies in the correct range. This should not
lead to any significant errors, as long as the energies of the samples chosen
are sufficiently close.

As mentioned in Section 6.2, the decay muon energy spectrum is flat. How-
ever, the energy spectrum of the decay muons that are actually observed in
TileCal is not. This can be understood by thinking about what determines the
energy of the decay muon. If a decay muon in the pion rest system is emitted
perpendicular to the beam direction, thus getting approximately the medium
energy, it also deviates more from the beam than if it is emitted straight for-
wards or backwards which results in maximum or minimum energy. Since the
acceptance in TileCal is energy dependent, we must compensate for this when
comparing data with simulations.
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Figure 6.5: Energy spectra for muons accepted in TileCal, for various beam energies.
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One way of estimating the acceptance energy dependence is to make a sim-
ple simulation, in which pions are allowed to decay during flight.

To simulate the beam-divergence, the x- and y-impact coordinates of mother
particles were taken from the pions recorded in the respective runs. We distin-
guish two cases: for muons from pion decays before the the second of the two
beam-chambers used to define the impact points on the calorimeter, the im-
pact coordinates were computed using the small angle approximation by just
adding the ∆x and ∆y obtained from the angle of the muon track with respect
to the original pion direction. The acceptances for these muons were then ob-
tained by applying the same impact parameter cut as used for data. There is
thus no explicit requirement that the muon hits the trigger scintillator for this
type of decay-muons. This is motivated by the fact that in the data sample
there is a small admixture of events which, if relying on computed beam tra-
jectory, should have missed the trigger scintillator. The presence of this type
of events in data is not understood, but by applying the method above we try to
include this type of events also in the acceptance correction. For muons orig-
inating from pion decays after the second of the two beam-chambers used to
define the impact points on the calorimeter, the situation is different since the
impact coordinates will be recorded as those of the mother pion. For this class
of decays we therefore cut on the impact parameter of the mother particle, and
in addition we require that the decay-muon does hit the trigger scintillator.

Figure 6.5 shows the energy spectra for accepted decay muons from pions
of energies 9, 5 and 3 GeV. The overall acceptances are 38.0% for 9 GeV pion
decay muons, 24.9% for 5 GeV and 15.8% for 3 GeV decay muons.

In order to create the simulation of the decay muons from the 9 GeV-energy
pions, we have taken a sum of simulation samples with energies 5, 5.5, 6 etc
up to 9 GeV. The terms in the sum are weighted according to the histogram of
Figure 6.5(a). The 5 GeV beam decay muon simulation is a sum of samples
from 3 GeV to 5 GeV with 0.5 GeV intervals, and the different energies are
weighted according to the distribution in Figure 6.5(b). For the 3 GeV beam
simulation, the sum ranges from 1.75 GeV to 3 GeV, but the intervals are
0.25 GeV, and the acceptance distribution is given in Figure 6.5(c). The same
cuts are applied to the simulations as to data.

If our cuts are efficient, all the muons we observe in TileCal are either nom-
inal energy muons or pion decay muons. To determine the relative amount of
each type of muon, we can define the mixing hypothesis Nµ

hyp,i as

Nµ

hyp, i = a ·Nµ

nom, i +(1−a) ·Nµ

decay, i (6.3)

where a, the global fit parameter, is a real number between 0 and 1, i is an
index that runs over the cells, Nµ

nom, i is the number of nominal beam en-
ergy muons in cell i and Nµ

decay, i is the number of muons from pion decays.
The simulated number of muons have been normalised so that the number of
muons in the first cell is equal for each of the simulations as for data. The χ2
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Beam Mixing χ̃2 d.o. f .

energy parameter a

9 GeV 0.35±0.05 0.43 18

5 GeV 0.38±0.03 0.31 18

3 GeV 0.29±0.03∗ 0.44 9
∗ The value of a for the beam energy 3 GeV is very sensitive to the placement of the cut,

which adds another error of 0.07 to the statistical one, as described below.

Table 6.3: Values of the mixing parameter a, as obtained from the fit of simulations to
data. See the text for details.

of the hypothesis is defined as

χ
2 =

Ncells

∑
i=0

(Nµ

i −Nµ

hyp, i

δNµ

i

)
(6.4)

where Nµ

i is the observed number of muons in cell i, and δNµ

i is the uncer-

tainty of this number. For the 9 GeV beam, δNµ

i =
√

Nµ

i , and for the 5 and
3 GeV beams, an additional uncertainty in the removal of the high-energy
muons is added.

By letting a be a free parameter of the fit, the optimal mixing between the
different muon samples is obtained by minimising the χ2 of the fit. The best
values of a determined in this way can be found in Table 6.3, as well as the χ2

values for these fits.
The results of the comparisons of data with simulations can be seen in Fig-

ures 6.6 – 6.8, which show the muon flux as a function of penetrated depth into
the calorimeter material. Data are marked with grey dots, and the simulated
flux is represented by histograms. The mono-energetic muon simulations and
the decay muon simulations are marked as dashed histograms above and be-
low data. The bin widths of the histograms reflect the size of the individual
Tile cells. For each muon flux plot, the reduced χ2 of the fit of simulations to
data is shown. The reduced χ2 is defined as χ̃2 = χ2/d.o. f ., where d.o. f . is
the number of degrees of freedom of the fit.

Data are in good agreement with simulations, except for a small system-
atic effect when the muons begin to stop in the module. We see that for all
three energies the data points are slightly lower than the optimal simulation in
this particular region. Most likely this effect comes from pion contamination.
Even though the cuts described in Section 6.1 separates the muons from the
pions quite efficiently, extremely late-showering pions can pass the cuts. Such
pions would of course stop quicker than muons in the calorimeter material,
and could explain why it looks like the muons stop quicker than expected.

The value of a for the 3 GeV data is very sensitive to the placement of
the upper cut limit in the energy distribution plot (Figure 6.4 in Section 6.1).
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The cut is placed in the minimum between the particle clusters, where the
maximum number of muons is included while the pion contamination is low,
see Figure 6.9.

By moving this cut within sensible limits (that is, moving it up until we have
almost all the muons but many pions as well, at approximately f max

E = 0.33,
or moving it down until we have almost no pions but also lose some muons,
at f max

E = 0.27) we can estimate the cut uncertainty. As shown in Figure 6.10,
a varies linearly with the cut placement. When the cut in Figure 6.4 is placed
high, we include almost all muons but also many pions. a then drops, because
we expect a quicker fall-off among the particles if we have pions. When the
cut is placed low, we exclude most pions but also lose some muons, mainly
the low-energetic ones, since those are more likely to lose all of their energy
in just a few cells, thus ending up in the upper parts of the muon cluster.

The uncertainty of a due to the cut placement can be determined from Fig-
ure 6.10. Since the cut is varied within reasonable limits in the figure, the cut
uncertainty in a is estimated as the spread in a values in Figure 6.10. The final
value of the mixing parameter a for 3 GeV data is
a = 0.29±0.03(stat)±0.07(cut uncertainty)

The cut dependency check also shows that for large pion contamination,
data tend to lie lower than the optimal simulation when the muons begin to fall
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Figure 6.6: Muon flux as a function of calorimeter depth. Data and GEANT4 Monte
Carlo simulations (MC) for nominal beam energy 9 GeV are shown. A value of χ̃2 =
0.43, 18d.o. f . is obtained for the fit.
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Figure 6.7: Muon flux as a function of calorimeter depth. Data and GEANT4 Monte
Carlo simulations (MC) for nominal beam energy 5 GeV are shown. A value of χ̃2 =
0.31, 18d.o. f . is obtained for the fit.
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Figure 6.8: Muon flux as a function of calorimeter depth. Data and GEANT4 Monte
Carlo simulations (MC) for nominal beam energy 3 GeV are shown. A value of χ̃2 =
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Figure 6.9: Projection on the y-axis of a strip of the energy distribution plot in Fig-
ure 6.4 (beam energy 3 GeV). The strip projected has the same width in total energy
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E = 0.60. The left peak contains the muons, the right
peak the pions. The pions and the muons are not completely separated, but we can see
that the best placement of the cut is at f max

E = 0.30.

off. This observation further strengthens the hypothesis that the systematical
effect observed for all the energies comes from pion contamination.
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Figure 6.10: Cut dependency of the mixing parameter a from the 3 GeV data. By mov-
ing the upper limit of the cut in Figure 6.4 within sensible limits, the cut uncertainty
can be determined.
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Figure 6.11: Data from a pure muon beam with energy 5 GeV. Only the last ten cells
were equipped during data taking. A comparison with a 5 GeV mono-energetic muon
Monte Carlo simulation (MC) is shown. The value of χ̃2 is 0.81 for the fit of simula-
tion to data, with 9 degrees of freedom.

6.4 Comparison with a pure muon beam
In order to check the hypothesis of pion decay muons, we can take a look at a
pure low-energy muon beam. During the test beam period of 1999, one such
run was recorded, with 5 GeV muons. Data from that run and a comparison
with 5 GeV mono-energetic simulated muons can be found in Figure 6.11. The
ATLAS-specific details of the run can be found in Appendix A.

The normalisation of simulation to data was the free parameter of the fit
in Figure 6.11, and the χ̃2 value obtained is 0.81, for 9 degrees of freedom
of the fit. The agreement between data and simulation is thus very good, and
most importantly, we can clearly see that there are no pion decay muons, since
those would lie lower than the mono-energetic simulation.

6.5 Cross-check of pion decay
In addition to the fit of data to simulations, there is another way to determine
the expected number of decay muons. From the number of pions observed in
TileCal, Ñπ , it is possible to estimate the number of pions in the beam imme-
diately after momentum selection, Nπ

0 . This number can be used to calculate
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the expected number of pion decays during the flight to TileCal, and thus the
expected number of decay muons in the detector, Ñµ

decay.
Immediately after the momentum selection, we have pions and muons in the

beam (and electrons, but we can ignore them in this case), all with the nominal
beam energy. Let us denote these numbers Nπ

0 and Nµ

0 . In TileCal, we observe
certain numbers of pions and muons, Ñπ and Ñµ . The observed muons are
both nominal energy muons (the muons present after momentum selection)
and decay muons from pion decays, Ñµ = Ñµ

nom + Ñµ

decay. But the particles ob-
served in TileCal are not all the particles there are, since e.g. the cuts used and
inclined flight-paths reduce the number of particles actually observed. The ef-
ficiency of the muon cuts, f µ

cut , as described in Section 6.1 can be estimated
from comparisons with simulations, and the acceptance efficiency of pions in
TileCal ( f π

acc) can be determined by comparing the total number of events in
the beams with the number of events that pass the technical cuts. Since most
of the particles in the beam are pions, this ratio should be a good approxima-
tion of the pion efficiency. The acceptance efficiency of decay muons ( f µ

acc)
has been discussed in Section 6.3.

If Nπ
0 pions leave the momentum selection magnet, the number of pions that

have not decayed after a time t is

Nπ = e−t/γτ ·Nπ
0 (6.5)

and the number of pions that have decayed into muons is

Nµ

decay = (1− e−t/γτ) ·Nπ
0 (6.6)

so the total number of decay muons after a time t, expressed in terms of the
pions remaining, is

Nµ

decay =
1− e−t/γτ

e−t/γτ
·Nπ (6.7)

where τ is the pion life-time. The time-of-flight t is determined from the dis-
tance between momentum selection and the calorimeter. This distance, be-
tween the middle of the selection magnet and the front end of TileCal in posi-
tion θ = 90◦ is 16.55 m [50].

But the observed pions and muons in TileCal are not all the particles there
are, because of cut inefficiency and path deviations as discussed above. We
have the relations

Ñµ

decay = f µ

cut · f µ
acc ·N

µ

decay

Ñπ = f π
acc ·Nπ (6.8)

where ∼ denotes observed numbers.
The number of decay muons is related to all the muons in TileCal. Using

the notation of Section 6.3, we have

Nµ

decay = (1−a) ·Nµ (6.9)
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Ebeam Ñµ Ñπ f µ
acc f µ

cut f π
acc Mixing

(GeV) (%) (%) (%) parameter a

9 1107±33 35700±600 38.0 98.5 92.0 0.56±0.12

5 1087±34 26700±600 24.9 98.8 92.1 0.61±0.18

3 1122±34 13800±400 15.8 97.6 88.4 0.77±0.16

Table 6.4: Values of the mixing parameter a determined by pion calculation. The errors
stated are the statistical ones. The values Ñπ are estimations from the size of the pion
peaks in Figure 6.1 with corrections for unreacted pions, and the values Ñµ are the
first cell values of Figures 6.6–6.8.

so we finally obtain the expression

Ñµ

decay =
(

1−a
)
· Ñµ = f µ

acc · f µ

cut ·
1− e−t/γτ

e−t/γτ
· Ñπ

f π
acc

(6.10)

from which a cross-check value of the mixing parameter a can be calculated.
In Eq. 6.10 we assume that the amount of pions interpreted as muons (due
to cut inefficiency) is negligible and that the trigger efficiency is the same for
pions and muons. The a values obtained from Eq. 6.10, the number of muons
and pions observed, and the acceptance and cut correction factors can be found
in Table 6.4.

The a values obtained this way are about a factor two larger than those
from the data-to-simulation fit. There are however considerable systematical
errors in these calculated numbers. First of all, the distance from momentum
selection to TileCal is measured from the middle of the selection magnet. In
reality one can expect that the acceptance for some of the muons produced in
decays between this point and the field-free region is low, which means that
we underestimate a in this calculation. On the other hand: since the distance
between the last and second to last dipole is considerable even a relatively
small acceptance for muons from π-decays in this region would lead to an
overestimation of a. Without a detailed simulation of the beamline transfer
function it is difficult to evaluate the direction and magnitude of these effects.

This cross-check is not completely independent from the data-to-simulation
fit, since the muon acceptance factor was used in both calculations.

6.6 Conclusions
In the analysis described in this chapter, it has been demonstrated that it is
possible to separate muons from pions in TileCal for energies as low as 3 GeV,
for beams transversal to the module.
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In the low-energy pion beams studied, the muons found are of two different
kinds: nominal energy muons and muons that come from pion decays. The lat-
ter particles have energies from a continuous spectrum between 57 and 100%
of the beam energy.

Allowing for mixture between these two kinds of muons, the GEANT4 sim-
ulations describe 9, 5 and 3 GeV data within the experimental limits of this
analysis. The parameter a, the ratio of nominal energy muons to all muons in
TileCal, which gives the best agreement between experimental and simulated
data can be compared to expectations based on the number of observed pions
in TileCal. Although these values do not agree completely, they are still of the
same order of magnitude. The value a estimated from pion decay may also
have large systematical errors.



7. Hadronic calibration of a
non-compensating calorimeter

The only man I know who behaves sensibly is my tailor; he
takes my measurements anew each time he sees me. The rest
go on with their old measurements and expect me to fit them.
– George Bernard Shaw, “Man and Superman”, 1903.

All calorimeters of ATLAS are sampling non-compensating calorimeters. In
this chapter, a scheme for hadronic calibration of them is described, but first
some general remarks on hadronic calibration are given, and a few calibration
methods are described.

Calibration of a non-compensating calorimeter is necessary to compensate
for the invisible energy loss in the hadronic showers, and enable a linear re-
sponse to the hadrons. When a non-compensating calorimeter is calibrated
on the electromagnetic scale, the electromagnetic showers are correctly cali-
brated, while the invisible energy is still unaccounted for. Calibration to the
electromagnetic scale, although very important, is not discussed in this sec-
tion1.

After a correct hadronic calibration, the invisible energy lost in the hadronic
showers is retrieved and the calorimeter response to the hadrons is linear.
However, the linear response in itself is not a sufficient goal. Because of the
event-by-event fluctuations in the π0 contents of a hadronic shower, the visible
energy will also fluctuate. Ultimately, this will cause a worsening in the reso-
lution for hadronic showers, compared to electromagnetic ones. Figures 7.1-
7.2 illustrate the fluctuation problems. In the figures, four different simulated
100 GeV pion events from the combined ATLAS test beam of 2004 are shown,
and the different kinds of energy deposited in the sampling layers (in the direc-
tion of the beam called “LAr0”, “LAr1”, “LAr2”, “LAr3”, “TileA”, “TileBC”
and “TileD”). In the figure, “electromagnetic energy” refers to energy de-
posited from electrons and photons, while “non-EM energy” is the visible
energy deposited by hadrons and muons. “Invisible energy” is the invisible
energy lost in the hadronic showers, and “escaped energy” represents the en-
ergy lost by particles that leave the detector volume undetected (mostly neu-
trinos). The “reconstructed” energy is the energy read out, with overlaid noise,

1The general principle for electromagnetic calibration is to study the calorimeter signal when
exposing it to electron beams of well-known energy. See Section 3.2.2 for examples of electro-
magnetic scale calibration of the ATLAS barrel calorimeters.
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Figure 7.1: Shower development of two different pion events in a calorimeter system.
In the top plot, the pion deposits most energy in the first layers, in the bottom plot, the
depositions are more evenly distributed. Further explanation is given in the text.

which most of the time coincides with the visible energy (i.e. the sum of the
electromagnetic and non-EM energy). It should be noted that although all four
pions have the same nominal energy, 100 GeV, their shower developments are
quite different. Some pions deposit all their energy in either the electromag-
netic or the hadronic calorimeter (the first four or last three sampling layers,
respectively) while others deposit their energy quite evenly over the layers.
The invisible energy content also varies from event to event. These examples
clearly show that hadronic calibration also should compensate for the event-
by-event fluctuations.

To summarise our requirements, we can state that hadronic calibration
should
– compensate for the invisible energy loss and make the calorimeter response
to hadrons linear
– compensate for the event-by-event fluctuations in the hadronic shower
(i.e. improve the hadronic energy resolution)
– not disturb the calibration of the electromagnetic showers.

The examples of hadronic calibration discussed in the next section try to
different degrees to handle the mentioned challenges. They do not by any
means constitute a complete list of hadronic calibration techniques, but serve
to show some principles.
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Figure 7.2: Shower development of two different pion events in a calorimeter system.
In the top plot, the pion deposits most energy in the hadronic calorimeter, in the bottom
plot, the depositions are more evenly distributed. Further explanation is given in the
text.

7.1 Simple calibration schemes
First, we will consider two very simple calibration methods that both exploit
the difference in shower development for electrons and hadrons.

Electrons start to shower earlier in the calorimeter, and their showers are
shorter than hadronic ones. If a piece of absorber material is inserted before
the calorimeter, more of the electromagnetic shower is absorbed, which, if
the absorber thickness is chosen appropriately, leads to an equal hadronic and
electromagnetic response. The advantage of this method is that it is very easy,
since it can be designed and built in to the calorimeter. However, there are also
several severe disadvantages with such an approach[6]. The most important
objection is that the starting point of the shower is energy dependent, so the
absorber thickness would need to change with energy for the calibration to be
correct for all incoming particle energies. The method would also increase the
non-linearity of the hadronic response, since high-energy hadronic showers
penetrate deeper in the calorimeter and have a larger visible energy fraction at
the same time.

A second, slightly more sophisticated method, assigns one calibration con-
stant, CEM to the first part of the calorimeter, the electromagnetic calorimeter,
and another to the hadronic calorimeter, Chad . If the calorimeters have been
calibrated on the electromagnetic level, CEM ≈ 1. All energy recorded in the
electromagnetic calorimeter is weighted with the first constant, and all en-
ergy in the hadronic calorimeter is weighted with the second one. The weight-
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ing reflects that most of the electron energy is deposited in the electromag-
netic calorimeter, and need not be weighted, while the energy deposited in the
hadronic calorimeter must be weighted in order to compensate for the invisi-
ble energy loss. If the constants CEM and Chad are determined as functions of
the electromagnetic scale energy in the calorimeters, it is possible to correctly
reconstruct the average energy of both electrons and hadrons.

The problem with this method is that the hadronic energy is only
reconstructed on average. If several neutral pions are formed in the hadronic
calorimeter, their energy is overestimated. If the hadron showers early in the
electromagnetic calorimeter, its energy is underestimated. Such a calibration
approach obviously fails to handle the fluctuating nature of the hadronic
showers, and cannot achieve the desired improvement in resolution.

7.2 Event-by-event calibration: Introduction to local
hadronic calibration
The simple calibration methods described above both failed to compensate for
the event-by-event fluctuations of the visible energy content in the hadronic
shower. In order to achieve both hadronic compensation and follow the fluc-
tuations in the showers, the corrections must be determined on an event ba-
sis. This can be done by considering the energy density of the calorimeter
cells[51]. This technique was first developed in the H1 experiment[52] at
DESY.

The neutral pions in the hadronic showers will cause small electromagnetic
showers with a high energy density within the hadronic shower. The energy
density, in combination with a global energy estimation of the total energy of
the shower, can determine the factor needed to compensate for the invisible
energy content of that specific calorimeter cell. The compensation factors are
derived from simulations of the calorimeter response to single pions, and are
stored as two-dimensional lookup tables[53, 54]. Because such an approach
considers only calorimeter signals and calibrates parts of the calorimeter at
the time, calibration schemes like these are called local calibration.

Local calibration meets our requirements of a hadronic calibration scheme:
it compensates for invisible hadronic energy, it preserves the electromagnetic
scale calibration of electromagnetic objects, it takes the event-by-event fluc-
tuations into account, and it considers the energy dependence of the visible
energy content of a hadronic shower. A detailed study of the computation of
the weighting factors and the application of the local hadronic calibration on
combined test beam pions and simulated jets in the full ATLAS environment
is described in this chapter.

The study was performed in the environment of the combined ATLAS barrel
test beam of 2004, using simulations and data of pions at various energies. The
simulations have been done with the GEANT4[49] simulation engine within
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ATHENA[55, 56], an object-oriented framework for data analysis developed
by the ATLAS collaboration. An additional, introductory, study of simulated
jets in ATLAS is also presented in Section 7.8, as well as a comparison with
the current default jet calibration method. The main part of the study was
performed in a test beam environment because of the opportunity to study the
performance of the method on real data, instead of doing a simulation analysis
only.

It should be noted that calibration of a calorimeter only serves to reconstruct
the energy deposited inside the calorimeter. Before retrieving the true energy
of a particle in a real detector, several additional corrections must be applied,
such as corrections for energy lost in material outside the calorimeters, so
called dead material. A method for jet corrections, which corrects for the in-
visible energy loss and other effects at the same time is currently the default
calibration method of jets in the ATLAS experiment[57]. Since this method
first determines what kind of object to calibrate (a jet, an electron. . . ) and then
corrects for detector and physics effects in one step, this method is called the
global calibration scheme, and it is described in detail in Section 7.8.2. The
possible advantages and disadvantages of compensating for different effects
at the same time are discussed at the end of this chapter.

7.3 Hadronic Calibration of Single Pion Data
As mentioned in the previous section, the current default method for cali-
brating hadronic jets in ATLAS is a global method, the so-called global H1
scheme, where the reconstructed energy of a jet is optimised with respect to
the full energy deposited, as obtained from simulation[53, 57]. This method
compensates for detector and physics effects in one step, making the scheme
dependent on the jet algorithm and the physics sample used.

In contrast, the local hadronic calibration schemes aim to apply weights
not to large objects like jets, but instead calibrate topological clusters2 in the
calorimeter before constructing physics objects like jets. The advantage of
such an approach is that the corrections can be modular, i.e. the correction for
hadronic invisible energy loss is made independently of correction for energy
losses in dead regions of the detector, or leakage. The local corrections are also
totally independent of jet algorithms, but corrections for biases introduced by
the physics reconstruction algorithms must be applied separately. The local
calibration is, as all methods used for calibrating non-compensating calorime-
ters, based on simulations only, and a good understanding of the precision with
which the Monte Carlo simulations can describe real data is needed. Thus it
is crucial to test the local hadronic calibration schemes on real data whenever
possible.

2Topological clusters are formed from energy depositions in the calorimeter cells, based on their
energy content and closeness to neighbours. See section 7.5 and references [58, 59].
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This chapter describes a method for local hadronic calibration of single
pions in the ATLAS calorimeter system using a non-iterative software com-
pensation technique, by weighting the energy on cell level. This method has
been successfully applied to the liquid argon calorimeters of the H1 detector
at HERA[51, 60].

To obtain the weights, we have simulated the response to single pions in a
test beam environment. The development of the weights is described in Sec-
tion 7.5, where we also demonstrate the performance of the weights on an
independent simulated sample.

In Section 7.6 we present the results of applying these weights on real data
from the combined test beam runs at the H8 beam line in 2004. The oppor-
tunity to try the method on real data from single pions of known energy in
a controlled environment is the main reason for doing the simulation study
in the test beam environment, rather than in a simulation of the full ATLAS

set-up.
To check the stability of the method, we have deliberately altered and dis-

torted the weights in various ways and the results of these studies can be found
in Section 7.7. In that section, we also compare our results with other meth-
ods for hadronic calibration, in particular the current default version of local
calibration, where the global energy scale is the energy of a single cluster[54].

The samples used for the derivation of the weights have been simulated
using the simulation toolkit GEANT4[49] within the ATHENA framework[61],
version 11.0.42. See Section 7.4 for details.

7.4 Simulation and data samples
For the study described in Sections 7.5-7.7, simulations and results from the
combined test-beam of 2004 have been analysed. Only runs with beams tar-
geted at the region of the calorimeter that will correspond to η = 0.45 in the
final detector have been considered. This part is in the barrel region, and thus
only read-out from the LAr and Tile barrel calorimeters will be used.

The simulated samples used to make the hadronic compensation factors
consist of 10,000 events from 53 different energies in the range 0.5-316.23
GeV. The energies are chosen to be logarithmically equidistant. In addition to
these events, 10,000 extra events of the same energies, independent of the first
sample, were also produced for systematic studies. 20,000 events of the beam
energies 1.5, 3, 15, 150 and 300 GeV were also produced.

The simulations, digitizing and reconstructions were done using ATHENA

version 11.0.42, which employs the GEANT4 simulation engine3.
From the real data of the combined test beam of 2004, seven runs have

been used in this chapter, two high-energetic negative pion runs at 180 and

3The full version number for the GEANT4 release used by default in ATHENA version 11.0.4 is
geant4.7.1.p01.clhep1.9.2.1, see [56].
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250 GeV respectively, three positive pion runs at 20, 50 and 100 GeV, one
positron run at 180 GeV, and one low-energetic negative run at 9 GeV with
a mixture of electrons and pions. From each of the runs, 10,000 events have
been reconstructed using ATHENA version 11.0.414. See Section 7.6 for a full
description of the runs used and the cuts implemented to clean the data.

The 100 GeV π+ real data run, run 2102355, is the run on which the simu-
lations are based, i.e. all beam line scintillators, beam chambers etc. in simu-
lation are placed as for run 2102355.

7.5 Development of the weights
As described in the previous section, the calorimeters of ATLAS are non-
compensating, i.e. some of the energy deposited by hadronic showers is unde-
tectable by the calorimeters.

In this analysis, we start from topological clusters[62, 58], (often referred
to as “topo clusters”) which are formed by selecting calorimeter cells with an
energy signal larger than 4σ over the noise level. The cluster is then expanded
in three dimensions by including all neighbouring cells with an energy signal
larger than 2σ over noise. When no more neighbouring cells that fulfill the
selection criterion can be found, all cells on the cluster perimeter, regardless
of energy, are added to the cluster. Finally, if the topo cluster contains more
than one cell with energy deposition larger than all its immediate neighbours,
the cluster is split to separate the local energy maxima within the cluster, so
that each final cluster only contains one energy maximum. The splitting only
occurs if the local energy maxima is larger than 500 MeV.

The topo clusters have been calibrated on the electromagnetic scale[32,
48], so that the energy from electrons and photons is given correctly, while
the hadronic energy is too low. We achieve compensation for the invisible
hadronic energy loss by applying a weight to the electromagnetic scale cell
energy. The weights have been determined from simulated samples, as the
mean of the ratio Etruth

cell /E0
cell ,

wcell = 〈Etruth
cell /E0

cell〉, (7.1)

where Etruth
cell is the energy truly deposited in the cell, as given from the simu-

lation, and E0
cell is the reconstructed energy on the electromagnetic scale.

In this section, we discuss the choice of weight parametrisation, take a
closer look at the parameters chosen, give a brief overview of noise esti-
mations and finally determine the weight tables given in Section 7.5.5. In
Section 7.5.6, the performance of the weights when applied to independent
simulated samples is shown.

4The only difference between version 11.0.41 and 42 lies in the simulation stage, since .42
contains a GEANT bug fix. This means that reconstructions with 11.0.41 and .42 are equivalent.
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7.5.1 Weight parametrisation
As mentioned in Chapter 4, the fraction of the hadron energy that can be
detected by the calorimeters depends on the initial energy of the hadron, where
larger initial hadron energy means that a larger percentage of the total energy
can be detected by the calorimeter.

In order to compensate for the invisible hadronic energy loss we face two
problems: we must find a way to select the hadrons, since we do not want to
disturb the energy deposited by electrons and photons, and we must find a way
to estimate the total energy of the incoming hadron.

From Chapter 4 we know that the shower from a photon or an electron is
more dense than the shower from a hadron. Thus the energy density in a cell
within an electromagnetic shower is, on average, larger than the energy den-
sity in a cell within a hadronic shower. This relation can be used to separate
hadrons from electrons or photons. The total energy of the incoming hadron
can be estimated as the reconstructed electromagnetic energy in the topo clus-
ters that fall within a cone around the most-energetic cluster of the event, see
Section 7.5.3.

In order to separate hadrons from photons/electrons and also keep track of
the initial hadron energy, the weights have been parametrised with the cell
energy density and the cone energy.

7.5.2 Energy density
The cell energy density, ρE = E0

cell/Vcell , where E0
cell is the energy recorded

in the cell which is calibrated on the electromagnetic scale and Vcell the cell
volume, can be used to distinguish electromagnetic showers from hadronic
ones, as described in the previous section. In Figures 7.3(a) and 7.3(b), the
cell energy densities for the various layers of the calorimeters, as given by a
pion beam of initial energy 10 GeV, are shown. All cells that fall within a topo
cluster have been included. For comparison, the cell energy densities from a
100 GeV beam are shown in Figures 7.4(a)-7.4(b).

From Figures 7.3 and 7.4 we can see some general trends in the cell en-
ergy density distributions. In the 10 GeV beam case, the highest densities are
found in layer 1 of the electromagnetic calorimeter (the strips). These cells
are closest to the impact point. Then the maximal energy densities found are
smaller the farther away from the impact point we get. For the 100 GeV beam,
this pattern is changed. The maximal energy densities are recorded in layer
2 of the electromagnetic calorimeter, although they are only slightly larger
than the energy densities found in layer 1. This reflects the development of
the shower in the calorimeter, where the shower penetrates deeper in the
calorimeter the more energetic the initial particle is. We also see that the max-
imal cell energy density in the electromagnetic calorimeter is approximately
0.02 MeV/mm3 for the 10 GeV beam, and about 0.08 MeV/mm3 in the 100
GeV case. For Tile, these values are 4.5 ·10−4 MeV/mm3 (10 GeV events) and
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Figure 7.3: Cell energy density distribution in the various sampling layers, for a 10
GeV pion beam.
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Figure 7.4: Cell energy density distribution in the various sampling layers, for a 100
GeV pion beam.
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4.5 ·10−3 MeV/mm3 (100 GeV events). The difference in energy density val-
ues recorded in the various calorimeters is mainly an effect of the difference
in cell volumes, since the cells of the Tile calorimeter are about two orders of
magnitude larger than the cells of the LAr calorimeter, see Chapter 3.

A comparison between the energy density from 10 and 100 GeV beams is
given in Figures 7.5-7.6. These histograms are not normalised, but reflect the
differences at the various beam energies. In the 100 GeV beam, the maximum
energy density deposited in any cell is significantly larger than in the 10 GeV
beam, and the number of cells involved in the hadronic shower is larger.
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Figure 7.5: Cell energy density distribution in the various LAr sampling layers. Com-
parison between the energy densities in a 10 GeV and a 100 GeV pion beam.

7.5.3 Cone energy
The energy of all clusters that fall within a cone is the second parameter of the
weights. The cone energy is determined in the following way:
• Find the topo cluster with the highest energy in the calorimeter.
• Draw a cone axis through the most energetic cluster and the primary vertex.
• Make a cone with an opening angle (i.e. angle between axis and cone sur-

face) of 11 degrees around the axis. Include all topo clusters whose energy
center-of-mass falls within the cone and sum their energies.

If some of the clusters of the event fall outside the most energetic cone, these
steps are repeated to make secondary cones, including only clusters that be-
long to no other cone.
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Figure 7.6: Cell energy density distribution in the various Tile sampling layers. Com-
parison between the energy densities in a 10 GeV and a 100 GeV pion beam.

When computing the weights, only the primary, most energetic, cone is con-
sidered. Since the most energetic cone generally contains all or almost all of
the single pion energy of the event, this is a fair estimation of the beam energy.
If secondary cones are present, they occur in the outskirts of the shower. The
physical processes there are different from the ones in the core, and the fluc-
tuations there are larger, generally giving a lower hadronic energy content. If
included, weights derived from low-energy secondary cones from high-energy
events could distort the weight tables for the low-energy regions.

Distributions of cone energies for a 10 GeV beam and a 100 GeV beam are
shown in Figures 7.7-7.8.

The energy of the primary cone divided by the beam energy is given as a
function of the beam energy in Figure 7.9, as well as a comparison with the
fraction of the beam energy that is reconstructed on the electromagnetic scale.
The majority of the electromagnetic scale energy of each event fall within the
primary cone, as demonstrated.

7.5.4 Noise considerations
Both when computing and applying the weights, noise considerations play
an important role. Quite naturally, it does not make sense to apply hadronic
weights to a cell dominated by noise. There are also good reasons to take care
not to use noisy cells for derivation of the compensation factors. The Monte
Carlo samples used to determine the weights have simulated noise included in
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Figure 7.7: Cone energy distribution in a 10 GeV beam. The energy distributions of
the first three cones are displayed.

the reconstructed (data-like) energy. This is necessary to get a clustering of the
cells as similar to the one in data as possible. However, when the weights are
computed as the mean of the ratio between the energy truly deposited and the
energy reconstructed on the electromagnetic level, wcell = 〈Etruth

cell /E0
cell〉, in-

clusion of noisy cells will give a lowering of the weights, which comes from
the cells with a signal just above the noise cut threshold. Let us consider a
cell with a small electromagnetic energy deposition slightly above the noise
cut. The ideal weight of this cell would be wcell = 1, but due to the Gaussian
smearing of the signal, E0

cell can be both slightly larger and slightly smaller
than Etruth

cell . However, since the signal is just above the noise threshold, the oc-
casions when Etruth

cell > E0
cell will be removed, leaving a bias towards high E0

cell
values. This gives a general lowering of the ratio Etruth

cell /E0
cell . This happens

even when the noise cuts are symmetric, since the cut is applied to the sum of
noise and signal.

In this section, two ways of removing noisy cells will be considered: a cut
on the energy density, and a restriction on the range of the energy ratios filled
in the weight tables.

Whenever the energy signal is negative, we know for sure that it is domi-
nated by noise. By looking at the negative part of an energy density distribu-
tion, we can get an estimation of the noise level. In Figures 7.10 and 7.11 the
energy density distributions for a 10 GeV pion beam in the various LAr and
Tile layers are given, together with the Gaussian fits to the negative part of the
distributions. When looking at each sampling layer separately, the Gaussian
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Figure 7.8: Cone energy distribution in a 100 GeV beam. The energy distributions of
the first three cones are displayed.

 (GeV)beamE
0.5 1 2 3 4 5 6 10 20 30 100 200

F
ra

ct
io

na
l e

ne
rg

y 
(%

)

20

40

60

80

100

All EM scale energy per event

Energy within the primary cone

Figure 7.9: Fractional energy of the primary (most energetic) cone, Econe/Ebeam, as a
function of beam energy. The fraction of all energy per event, as reconstructed on the
electromagnetic scale, E0/Ebeam, is shown for comparison.



7.5 Development of the weights 81

)3Energy density (MeV/mm
-0.0015 -0.001 -0.0005 0 0.0005 0.001 0.0015

R
at

e 
(a

rb
itr

ar
y 

un
its

)

1

10

210

310

410

510

All LAr cells

)3Energy density (MeV/mm
-0.0015 -0.001 -0.0005 0 0.0005 0.001 0.0015

R
at

e 
(a

rb
itr

ar
y 

un
its

)

1

10

210

310

410 LAr1 cells

)3Energy density (MeV/mm
-0.0015 -0.001 -0.0005 0 0.0005 0.001 0.0015

R
at

e 
(a

rb
itr

ar
y 

un
its

)

1

10

210

310

410 LAr2 cells

)3Energy density (MeV/mm
-0.0015 -0.001 -0.0005 0 0.0005 0.001 0.0015

R
at

e 
(a

rb
itr

ar
y 

un
its

)
1

10

210

310

410 LAr3 cells

Figure 7.10: Cell energy density in LAr cells, expanded around 0 and fitted with Gaus-
sians. The beam energy is 10 GeV. The Gaussians have been fitted to the negative part
of the histogram and plotted for the full range. The top left plot show the energy den-
sity in all LAr cells, and the other plots show the cell energy density for the various
sampling layers. It should be noted that the pre-sampler (LAr0) has cell volume 0 in
the simulation, so no energy densities can be computed.

correctly reproduces the shape of the distribution, but when considering the
energy density distribution of all cells in all LAr layers or all Tile layers, the
distributions are clearly not Gaussian. This indicates that the noise can be esti-
mated from the energy density, if we consider each sampling layer separately.
The noise estimations found this way are in agreement with other methods for
handling the noise, see Section 7.6.3.

In Figures 7.12-7.13, the estimated energy density noise level for the vari-
ous sampling layers of LAr and Tile are given for a selection of beam energies.
The noise levels are independent of beam energy to the first order, as demon-
strated in the figures.

For the remainder of the chapter, unless something else is explicitly stated,
only cells that fulfil |ρE | > ρE,noise have been weighted. The energy density
noise estimates are given in Table 7.1.

Another way to reduce noise when making the weight is to implement a
restriction on the energy ratios filled in the weight tables. As described earlier,
the noise cuts in the topo cluster formation will give a weight that is too low.
When correcting for invisible hadronic energy, there is in theory never need
for a weight lower than 1. However, just cutting out all energy ratios below
1 would give a bias towards higher weights, due to the Gaussian smearing
of the reconstructed E0

cell values. For the computation of the weights in the
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Figure 7.11: Cell energy density in Tile cells, expanded around 0 and fitted with Gaus-
sians. The beam energy is 10 GeV. The Gaussians have been fitted to the negative part
of the histogram and plotted for the full range. The top left plot shows the energy den-
sity in all Tile cells, and the other plots show the cell energy density for the various
sampling layers.
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Figure 7.13: Estimate of the cell noise level in the various Tile layers, for a selection of
beam energies. The estimated noise level has been computed from 3 ·σ of a Gaussian
fit to the negative part of the energy density distribution.

Sampling layer ρE,noise (MeV/mm3)

LAr1 (3.9495 ± 0.0034) ·10−4

LAr2 (1.4244 ± 0.0015) ·10−4

LAr3 (1.6490 ± 0.0021) ·10−4

Tile A-cells (4.1623 ± 0.0013) ·10−6

Tile BC-cells (1.0483 ± 0.0023) ·10−6

Tile D-cells (5.7918 ± 0.0017) ·10−6

Table 7.1: Energy density noise estimates. The values and the uncertainties are given
by the Gaussian fits to the energy density distributions.
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Figure 7.14: Weights for the LAr cells as a function of energy density, with and with-
out the energy ratio restriction cut, 0.6 < Etruth

cell /E0
cell < 3. The weights have been

averaged over all cone energies. The top left plot shows the mean weights in all LAr
cells, and the others show the weights in the various sampling layers. The approximate
energy density noise level in LAr is 2 ·10−4 MeV/mm3 (see Table 7.1 for more precise
values).

test beam environment in this chapter, we have applied the restriction 0.6 <
Etruth

cell /E0
cell < 3 on the energy ratios filled in the weight tables. The lower limit

is intended to remove the low-weight bias from noise, as described above. The
upper limit removes weights from cells with a very low reconstructed signal
compared to the true energy deposition. The effects of the weight restriction
in the LAr and Tile calorimeters are shown in Figures 7.14 and 7.15.

In both the calorimeters, the energy ratio restriction cut clearly has the
greatest impact about and below the energy density noise cut, which is ap-
proximately 2 · 10−4 MeV/mm3 for LAr cells and 10−6 MeV/mm3 for Tile
cells, (see Table 7.1), while the cut has very little effect on weights for cells
with high energy density. After the weight restriction cut, the weights in LAr
show the expected behaviour: at low energy densities, the weights are high,
but they shrink as the energy density increases, stabilising at 1 for high densi-
ties. In Tile, the weights without the restriction cut are very high at low energy
densities, and after the restriction, the weights show an overall decreasing be-
haviour as the energy density increases, from wcell ≈ 1.5 at the very lowest
energy densities, to wcell ≈ 1.2 at the highest energy densities.

Figures 7.17-7.18 in Section 7.5.6, show the effects of the combination of
the energy density and weight restriction cuts on the linearity and resolution of
weighted energy. A restriction on the energy ratios filled in the weight tables
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Figure 7.15: Weights for the Tile cells as a function of energy density, with and without
the energy ratio restriction cut, 0.6 < Etruth

cell /E0
cell < 3. The weights have been averaged

over all cone energies. The top left plot show the mean weights in all Tile cells, and
the other show the weights in the various sampling layers. The approximate energy
density noise level in Tile is 10−6 MeV/mm3 (see Table 7.1 for more precise values).

is necessary to eliminate noise effects, that are not removed by the noise cut
on the energy density, such as the general lowering of the weight values when
the signal is close to the noise cut. As demonstrated in Figure 7.17, especially
the linearity is sensitive to the noise bias in the weights, and the noise cut on
energy density alone is not enough to reduce the noise-induced lowering of
the weights. However, there are problems in implementing a restriction on the
energy ratios themselves, since a cut on the ratio is a cut on simulation level,
which is irreproducible on reconstruction level, where we do not have access
to the true value of the deposited energy.

The systematic effects from the choice of restriction limits on the perfor-
mance of the weights have not been studied. Lowering any of the weight
limits will lead to a lowering of the weights, and raising any of the limits
will lead to a similar raise in the weights. In that sense, the cut values are
chosen somewhat arbitrarily, and for the local calibration weight tables im-
plemented in ATHENA, the values are slightly different (see Section 7.8). The
currently used schemes for local hadronic calibration employ a restriction on
the weights themselves, but for future applications, it is necessary to investi-
gate other cuts for reducing noise-induced weight biases, based on variables
accessible at the reconstruction level, since weight restriction might lead to a
bias in the hadronic scale energy.
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7.5.5 The weights
The weights are computed from simulated single pions in the combined test
beam set-up, using 10,000 events from each of the 53 different logarithmi-
cally equidistant beam energies in the range 0.5− 316.23 GeV, as described
in Section 7.4. The variables mentioned above, the cell energy density and the
energy cone, are used to parametrise the weights. The weights are computed
as

wcell = 〈Etruth
cell /E0

cell〉 (7.2)

where Etruth
cell is the true energy of the cell as given in the simulation, and E0

cell
is the cell energy reconstructed on the electromagnetic scale, i.e. the data-like
uncalibrated energy. The weights are filled into two-dimensional tables, ac-
cording to cell energy density and the energy of the cone in which the cell
falls. One weight table for each sampling layer of the calorimeters is made,
giving 3 weight tables for the LAr calorimeter and 3 for the Tile calorimeter.
The LAr pre-sampler cells cannot be calibrated using the method described
here, because the passive material belonging to the pre-sampler cells (essen-
tially the inner detector and the dead material in front of the pre-sampler) is
heterogeneous and cannot be characterised by a single volume value. The pre-
sampler energy is by default calibrated for electrons, and must be re-calibrated
to the different properties of pions. This is done together with the dead mate-
rial corrections, see Section 7.6.4.

All beam energies are used to fill each weight table, making the weights as
unbiased by the initial beam energy as possible. When applying the weights,
the only information used to extract the corresponding weight for a cell in a
given sampling layer is the energy of the cone in which the cell falls and the
energy density of the cell.

Weights are computed from all cells in all topo clusters of the most energetic
cone of each event. When filling the weight tables, only ratios that fulfill 0.6 <
Etruth

cell /E0
cell < 3 are entered into the tables. The weight used is the mean value

of the weights filled into the bin in question5. When applying the weights,
all cells within any topo cluster that have energy density above the estimated
noise level, as given in Table 7.1, are weighted.

The numerical values of the weights can be found in Appendix B. In the
next section, the performance of the weights when applied to an independent
Monte Carlo sample is shown.

7.5.6 Linearity and resolution of weighted energy
In order to study the performance of the weights, they have been applied to
the energy of independently simulated pions at different energies in the range
0.5 - 300 GeV. In Figure 7.16, the energy distributions of the unweighted topo

5The technical solution we have used is to fill the weights from each cell into the ROOT his-
togram type TProfile2D, where the averaging over each bin is done automatically[63].
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Figure 7.16: Unweighted (E0), weighted (Eweighted) and Monte Carlo truth energy
(Etruth) distributions for a 100 GeV pion beam. All energies considered are the en-
ergies within topo clusters.

cluster energy on the electromagnetic scale is compared with the energy after
weighting and the simulation truth energy.

Two things should be noted in Figure 7.16: the Monte Carlo truth energy
does not peak (solely) at the beam energy, and the distribution is not Gaussian.
Both these observations can be explained with losses in “dead” material (see
also Section 7.6.4). Some of the pions start to shower in LAr, and lose part
of their energy in the cryostat between LAr and Tile. These events form the
broad peak at 90 GeV. Some pions do not shower until they reach Tile, where
they lose the majority of their energy. These events form the narrow peak at
the beam energy. The width of the 90 GeV peak of the Etruth distribution is an
effect of the energy losses in the cryostat.

Ideally, the weighting procedure will reproduce the Monte Carlo truth dis-
tribution, which means that we do not expect the distribution of the weighted
energy to be Gaussian.

When comparing results of weighting schemes, normally a Gaussian is fit-
ted to the energy distribution, and the quantities Emean/Ebeam as a function of
the energy (the linearity) and σ/Emean (the resolution) are computed. How-
ever, when the weighted energy distribution is not expected to be Gaussian,
these quantities do not make sense. Instead we are interested in the weighted
energy in relation to the Monte Carlo truth, rather than the beam energy. The
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ratio
E

Etruth
, (7.3)

where E is the weighted or unweighted energy and Etruth is the Monte Carlo
truth energy deposited within the topo clusters can be used to measure the
performance of the weighting. The distribution of this ratio is expected to be
Gaussian with a mean value close to 1, and parameters of a Gaussian fit6 can
be used to estimate the resolution as

r =
σ

mean
. (7.4)

The linearity is taken to be mean−1 of the E/Etruth distribution.
In Figure 7.17, the linearity of the energy on the electromagnetic scale is

shown, as well as the linearity of the weighted energy, with and without noise
restriction on the energy ratios filled into the weight tables, as described in the
previous section.
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Figure 7.17: Linearity of weighted and unweighted energy, from Monte Carlo sim-
ulations. Comparison between the unweighted energy on the electromagnetic scale,
(grey triangles), energy which has been weighted with weight tables with energy den-
sity noise cuts (filled circles), weight tables with energy density noise cuts and ratio
restriction (squares) and without noise reduction (open circles). All errors are statisti-
cal errors from the Gaussian fits.

As shown in Figure 7.17, the weighting improves the linearity for all en-
ergies above 2 GeV. If the weight tables that are filled with the restriction

6In order to make the fit as stable and independent of non-Gaussian tails as possible, the fit is
first made to the full distribution, and then redone in the region mean± 2σ . Unless something
else is explicitly stated, this is how all Gaussian fits throughout this chapter are made.
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Figure 7.18: Resolution of weighted and unweighted energy from Monte Carlo as a
function of beam energy. Comparison between the unweighted energy on the electro-
magnetic scale, (grey triangles), energy which has been weighted with weight tables
with energy density noise cuts (filled circles), weight tables with energy density noise
cuts and ratio restriction (squares) and without noise reduction (open circles). All er-
rors are statistical errors from the Gaussian fits.

0.6 < Etruth
cell /E0

cell < 3 are used in combination with the energy density cut,
which gives the best performance, the linearity is within 3% of the expected
value for all energies above 2.5 GeV.

The unexpected rise in linearity at beam energies lower than 10 GeV is
an effect of the noise in the calorimeters, which is discussed further in Sec-
tion 7.7.5. The drop in linearity for the weighted energy at the highest beam
energies is discussed in Section 7.7.4.

In Figure 7.18, the resolution, as defined in Equation 7.4, of the weighted
and unweighted energy is shown as a function of beam energy, and in Fig-
ure 7.19 the difference of resolutions, r0− rweight is given.

As shown in Figures 7.18 - 7.19, the weighting procedure improves the
resolution of the energy, compared to the unweighted electromagnetic scale
energy, for all beam energies above 3 GeV. The impact of the noise cuts is not
as visible in the resolution as in the linearity, but it seems like the combination
of energy density cuts and weight restriction gives a systematically slightly
better resolution, although the fluctuations are within the statistical errors for
most beam energies.

It should be noted that although the beam energies 1.5, 3, 15, 150 and 300
GeV were not used to fill the weight tables, the properties of the weighted
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energy from these beam energies are as expected from the behaviour of the
neighbouring beam energies.

7.6 Application to data from the combined testbeam of
2004
In the previous section, the performance of the weighting factors on an in-
dependent Monte Carlo sample was studied. However, the performance of the
weights on real data is of greater interest. For studies of the weighting scheme,
seven runs of real data from the combined test beam of 2004 have been used.
In this section, the conditions of the data runs are described, as well as the cuts
needed to get a pure pion sample. A comparison between data and simulation
of certain variables is shown, and finally the weights are applied to the real
data.

7.6.1 Runs used
Of the seven real data runs used, two are high-energetic negative pion runs,
2101257 and 2101335 (beam energies 180 and 250 GeV), three are positive
pion runs, 2102347, 2102355 and 2102396 (beam energies 50, 100 and 20
GeV), one is a positron run at 180 GeV, run 2102182, and one is a low-
energetic negative run at 9 GeV, run 2102095. This latter run is nominally
an “electron” run, but for very low energies, the particles in the beam are al-
ways a mixture of pions, muons and electrons. The 180 GeV e+ run is only
used for comparing the cuts and is not included in the linearity or resolution
plots shown in Section 7.6.5.

In all beams, regardless of label, a contamination of muons, electrons and
pions is present. See Table 7.2 for a list of the runs used[64].

run type E (GeV) Etrue (GeV) η

2101257 π− 180 180.92±0.52 0.450
2101335 π− 250 251.22±0.51 0.440
2102095 e− 9 9.009±0.090 0.45
2102182 e+ 180 179.68±0.52 0.45
2102347 π+ 50 − 0.45
2102355 π+ 100 100.45±0.56 0.45
2102396 π+ 20 − 0.45

Table 7.2: A list of the data runs used in the analysis[64]. Etrue refers to the real energy
of the particles in the beam, determined from the currents of the selection magnets.
From each of the runs, 10,000 events have been reconstructed.
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The run energies given in the logbook are not the exact energies of the
particles on impact, only an approximation. A more accurate value can be
obtained using information from the currents of the selection magnets. For
some reconstructions, the true beam energy, as computed from the selection
magnets, is given in the reconstructed data files 7 .

From each of the seven runs, 10,000 events have been reconstructed using
ATHENA11.0.41.

7.6.2 Cuts on data
The particle types listed in Table 7.2 only give an indication of which particle
was most abundant in the beam, since the conditions of beam production al-
ways give a contamination of pions, electrons and muons. The contamination
rate varies greatly from run to run, from a few percent to more than half the
events. For the positive pion beams, we also have a contamination of protons,
which consist about half the particles in the beam[65]. The weights were de-
veloped from and tested on pion beams, so we want the real data runs to be
purely pions as far as possible. To achieve this, we have implemented certain
cuts on data, which are summarised in Table 7.3. In that table, the number of
events surviving the various cuts is also given. The cuts follow the standard
procedure for cleaning data, with the exception of the electron cut and the
“energy OK” cut. The protons, however, cannot be removed with any cut. The
effect of the proton contamination will be discussed later in this section.

The number of events out of the original 10,000 surviving the cuts varies
greatly, from more than 8000 events for the 50 GeV π+ run to only about 2400
for the 180 GeV π− run.

For a few of the events, the energy is abnormally high in Tile, giving a total
reconstructed energy of about 400 GeV. This is most likely caused by a mis-
reconstruction in Tile. Since these energies are clearly wrong, the events are
removed with the |E0|< Ebeam +100 GeV cut. After this cut, a very small tail
between 250 and 350 GeV remains in the 250 GeV run. The origin of these
few high-energy events is unknown. However, since the tail only contains one
event in a thousand, the effect is negligible.

The sADC_S1 cut is a cut on a beam-line scintillator, placed upstream of
the ATLAS detector parts in the test beam set-up[8]. The Ncluster > 0 cut re-
quires that at least one topo cluster was formed per event used. This cut is a
built-in feature of how we define our signal: only energy depositions within
topo clusters are considered as signal. Muons are removed from the runs with
a cut on the sADC_muTag scintillator, which is placed downstream of the
muon chambers, behind the beam dump[8]. The Clock cut was only applied
to the high-energetic π− runs, 180 and 250 GeV, due to timing problems in

7For example, the official reconstruction with version 12.0.5 contains a variable “Energy”,
which is the true beam energy.
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Ebeam Trigger Energy sADC_S1 Ncluster No µ No e Clock All
(GeV) = 1 OK > 0 cuts

250 9620 9798 8885 9962 9907 9850 7307 6119

180 9177 9610 8847 9816 4420 9357 7330 2418

100 9304 9709 9028 9898 8430 9649 10000 7187

50 9263 9684 9050 9869 9409 9619 10000 8048

20 9718 10000 9502 9856 9632 6158 10000 5406

9 9628 9944 9238 9732 9998 5837 10000 5271

180, e 9595 9903 9143 9918 6103 7985 10000 3810

Cut Code Meaning of cut

Trigger Trigger= 1 only physics events chosen

“Energy OK” |E0
event |< Ebeam +100 GeV Remove abnormally high energies

sADC_S1 150 < sADC_S1 < 1400 Beam line scintillator cut

Ncluster Ncluster > 0 At least one cluster formed in the event
(noise reduction)

No µ sADC_muTag< 450 removes muons by cutting on
muon scintillator signal

No e ETile > 0.01 ·Ebeam removes electrons by requiring
a signal in Tile

Clock Clock > 18 ns Compensate for timing problem
(180 and 250 π− runs only)

Table 7.3: Cuts on data, and the number of events surviving the various cuts. The top
table shows the number of events surviving the various cuts. For all runs, 10000 events
were reconstructed. The rightmost column gives the number of events passing all the
cuts. It should be noted that some cuts are overlapping, and that the Clock cut was
only applied to the high-energetic π− runs, 180 and 250 GeV. The bottom table gives
a summary of the cuts used and their meanings, which are elaborated in the text.

these runs[64]. The cut Trigger=1 picks out the “physics” events, which
means that events with at least one particle in the beam line were chosen.

The most significant cut for the low-energetic runs and the electron run is
the electron removal cut. In Figure 7.20(a), the effect of the muon cut when
applied to the 100 GeV positive pion beam is clearly visible, since the muon
peak at ≈ 2 GeV almost completely vanishes after that cut. The effects of the
electron cut on a positron beam at 180 GeV are shown in Figure 7.20(b), where
the positron peak at beam energy is much affected by the cut.

The standard procedure for removing electrons is to look at information
from the inner detector. However, for some of the runs used, the inner detector
read-out was unstable, making cuts on inner detector variables impossible.
Since it is important to treat all runs as equally as possible, the properties of
electron showers have been used instead. By requiring that at least 1% of the
beam energy is reconstructed in the Tile calorimeter, particles that are fully
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Figure 7.20: Effect of the cuts on the 100 GeV positive pion beam (top) and on a 180
GeV positron beam (bottom). “General cuts” summarises the “energy OK” cut, the
Ncluster > 0 cut, the Trigger cut and the sADC_S1 cut. The effect of the muon and
electron cuts is shown. The significance of the muon cut is visible in both runs, since
the muon peak at ≈ 2 GeV almost completely vanishes after that cut. The electron cut
can be seen as a small decrease of the distribution at the highest energies in the pion
run. The positron peak at beam energy is much affected by the electron cut.
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contained in LAr are discarded. This action removes the vast majority of the
electrons.

However, the electron cut will affect the pions as well, especially at low
energies, when not all pions necessarily reach the Tile calorimeter. In Fig-
ures 7.21-7.22, linearity and resolution of the simulated pions, with and with-
out the electron cut have been plotted. As shown in these figures, the linear-
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Figure 7.21: Effect of the electron cut on the linearity. Conclusions in text.

ity and the resolution are little affected by the electron cut for beam energies
above ≈ 20 GeV. At very low beam energies, some odd effects can be ob-
served: the linearity is much larger than expected, with a peak at 2 GeV. The
resolution is improved in an unexpected way for beam energies below ≈ 5
GeV, most likely as a result of the increased linearity. This low-energy effect
could be caused by the electron cut selecting events with unusually high en-
ergy in Tile, in an energy region where most pions are fully contained in LAr.
However, the effects of the electron cut are only interesting for beam energies
where we have data runs, which is 9 GeV and higher. The small effects from
the electron cut will be considered as systematic uncertainties. Details of the
computation of the systematic effects are given in Appendix C.

Whenever data and simulated distributions are compared, the electron cut
have been applied to the simulated sample, as well as the Ncluster > 0 cut. The
other cuts cannot be applied to the simulated samples, since the necessary
scintillators and clocks were not simulated.
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Figure 7.22: Effect of the electron cut on the resolution. Conclusions in text.

7.6.3 Comparison between data and Monte Carlo simulations
Simulated samples are used to compute the weights that we use for the
hadronic weighting of the energy. Thus it is of great importance that the
simulation correctly reproduces the data, since the results otherwise will
contain errors inherited from the simulations.

In this section we take a closer look at the parameters of the weights, namely
the cell energy density distributions (Figures 7.23 - 7.26) and the cone energy
distributions (Figures 7.28 and 7.27). In addition, the shower development
description is studied in Figures 7.29 and 7.30.

In the distributions of the LAr cell energy densities, Figure 7.23, the data
distributions have larger negative tails than the corresponding simulated dis-
tributions. This is an effect of non-Gaussian tails in the data distributions. If
the negative part of the data distributions are fitted with Gaussians, as in Sec-
tion 7.5.4, the values agree within 10% with those obtained from the simulated
distributions, see Table 7.4.

The package CaloNoiseTool, available in ATHENA, can be used to ex-
tract the estimated noise for each cell. The expected energy density of the
noise, as obtained from this package, is also given in Table 7.4. These values
are of the same order as the estimations obtained using the energy density.

All positive data beams used contain a large proton contamination of as
much as 50%[65]. Proton showers contain fewer neutral pions than a pion
shower of the same nominal energy[6], due to conservation of the baryon
number, which leads to a lower electromagnetic fraction in proton-induced
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Figure 7.23: Cell energy density distribution in the various LAr sampling layers, for
a 250 GeV beam. Comparison between data (negative pions) and a simulated pion
sample (MC). The histograms have been normalised to 1.
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Figure 7.24: Cell energy density distribution in the various LAr sampling layers, for
a 100 GeV beam. Comparison between data (positive pions) and a simulated pion
sample (MC). The histograms have been normalised to 1.
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Figure 7.25: Cell energy density distribution in the various Tile sampling layers, for
a 250 GeV beam. Comparison between data (negative pions) and a simulated pion
sample (MC). The histograms have been normalised to 1.
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Figure 7.26: Cell energy density distribution in the various Tile sampling layers, for
a 100 GeV beam. Comparison between data (positive pions) and a simulated pion
sample (MC). The histograms have been normalised to 1.
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Data Simulation
Sampling layer CaloNoiseTool ρE,noise ρE,noise

(MeV/mm3) (MeV/mm3) (MeV/mm3)

LAr1 (4.57 ± 0.07) ·10−4 (4.034 ± 0.002) ·10−4 (3.950 ± 0.003) ·10−4

LAr2 (1.59 ± 0.05) ·10−4 (1.493 ± 0.001) ·10−4 (1.424 ± 0.002) ·10−4

LAr3 (2.0 ± 0.2) ·10−4 (1.633 ± 0.001) ·10−4 (1.649 ± 0.002) ·10−4

Tile A-cells (4.0 ± 0.1) ·10−6 (4.611 ± 0.007) ·10−6 (4.162 ± 0.001) ·10−6

Tile BC-cells (9.8 ± 1.3) ·10−7 (1.143 ± 0.001) ·10−6 (1.048 ± 0.002) ·10−6

Tile D-cells (5.6 ± 0.4) ·10−7 (6.173 ± 0.008) ·10−7 (5.792 ± 0.002) ·10−6

Table 7.4: Energy density noise estimates for data and simulated samples. The values
and the uncertainties of ρE,noise are given by the Gaussian fits to the energy density dis-
tributions (compare with Table 7.1). The CaloNoiseTool values are the estimated
noise energy density, obtained from the package CaloNoiseTool.

showers than in pion showers and thus a lower reconstructed energy. The res-
olution of the energy in the pure proton beams is better, because the event-by-
event fluctuations in the production of neutral pions is lower. Proton showers
tend to be broader than pion-induced ones, while the latter generally reach
deeper into the calorimeter[66], because of the higher total cross section of a
proton-nucleus reaction than such a reaction involving a pion[9].

The effect of the proton contamination on the energy level is seen in the dis-
tribution of the cone energy of the positive 100 GeV beam (Figure 7.28), where
the energy distribution from real data seems shifted towards lower values com-
pared to the simulated energy distribution. In the energy density distributions
for the positive beam (Figures 7.24 and 7.26), the proton contamination can
be seen as a generally lower level of energy density in data than in the sim-
ulation. These effects are not seen in the energy density distributions of the
negative 250 GeV beam (Figures 7.23 and 7.25), nor in the distribution of the
250 GeV π− cone energy distribution in Figure 7.27.

The effects of proton contamination on the linearity are straight-forward:
the lower response to the proton energy will lead to a general worsening of
the linearity, at least for the electromagnetic scale energy. Since the weights
have been developed for pions, and the physics of proton shower development
is different than the development of a pion shower, the worsening in linear-
ity might persist after weighting too, due to differences in the visible energy
content and the longitudinal spread of the shower. The expected effects of
the proton contamination on the resolution are difficult to predict, since the
resolution of pure proton energy is better than the pion energy resolution. The
energy distribution from the combination of pions and protons is two Gaussian
distributions on top of each other, with slightly different mean values. Under
such circumstances it is reasonable to expect a worsening in the resolution.
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Figure 7.27: Cone energy distribution for a 250 GeV beam. Comparison between data
(negative pions) and Monte Carlo simulation (MC).
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Figure 7.28: Cone energy distribution for a 100 GeV beam. Comparison between data
(positive pions) and Monte Carlo simulation (MC). The proton contamination in real
data can be seen as a shift towards lower values, compared to the distribution on the
simulated energy.
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Unfortunately, we have not been able to make a comparison of the resolutions
of π− and π+/p data beams of the same energy.

When comparing the energy density and the cone energy distributions, the
agreement between data and simulations seems adequate. However, the sim-
ulation does not correctly describe the shower development in data, but un-
derestimates the energy deposition in Tile and overestimates the deposition
in LAr. In Figures 7.29 and 7.30, the energy distribution in LAr and Tile, for
simulations and data, is given for the beam energies 100 and 250 GeV. The
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Figure 7.29: The energy distributions in the LAr and Tile calorimeters for 250 GeV
beams. Comparison between Monte Carlo simulation (MC) and test beam data of a
negative pion beam.

shower development mis-description in the simulation will affect the weights
and the energy after weighting to a high degree, which is demonstrated in
Section 7.6.5.

7.6.4 Correction for losses in dead material
In ATLAS, some regions are referred to as “dead”, since energy lost in these
regions is not recorded in any calorimeter system. In this sense, the inner
detector is also “dead” from a calorimetry point of view. Another more sig-
nificant dead region is the cryostat between the LAr and the Tile calorimeters.
The energy lost in these dead regions must be accounted for in some way, in
order to reconstruct the true energy of a particle. The methods for dead mate-
rial corrections used in this chapter are, with a few exceptions, based on the
schemes described in reference [67].
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Figure 7.30: The energy distributions in the LAr and Tile calorimeters for 100 GeV
beams. Comparison between Monte Carlo simulation (MC) and test beam data of a
positive pion beam.

For the barrel region, there are four major dead regions to consider: the up-
stream region of material before the LAr pre-sampler, the material between the
pre-sampler and the first LAr barrel sampling layer, the region between LAr
and Tile, and any energy lost due to leakage beyond Tile, to either side of the
calorimeters or in any other internal dead regions. The correction is made us-
ing information on the energy deposited in the calorimeter layers close to the
dead region, or in some cases all of the deposited energy in the calorimeters.
The correction constants are determined using the Monte Carlo truth informa-
tion from the simulated pions. A schematic view of the dead regions is given
in Figure 7.31. The sample used to derive the weight is also used to compute
the dead material correction constants.

The dead region correction constants are computed by plotting the true en-
ergy lost in the dead region of interest as a function of the uncalibrated energy
in relevant parts of the calorimeter. A straight line though the origin is then
fitted to the distribution. The slope of the fitted line, multiplied with the uncal-
ibrated energy returns the energy in the dead region, if the correlation between
the energy lost in the dead region and the energy deposited in the calorimeter
layers in question was sufficiently strong. In Figure 7.32, examples of fits to
energy lost in dead regions for simuated 100 GeV pions are given.

The upstream correction also calibrates the pre-sampler energy, which can-
not be calibrated using the hadronic weighting scheme described in this chap-
ter, as described in Section 7.5.5. The correction is given by the slope of a line
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Figure 7.31: Schematic view of the dead regions in the test beam barrel set-up. The
dead regions are drawn in dark grey, the active regions in a brighter shade. The up-
stream region consists of the cryostat before the pre-sampler. The dead material be-
tween the pre-sampler and the first layer of the LAr barrel is indicated as a bar. The
largest energy losses occur in the part of the cryostat that is placed between the LAr
barrel and the first Tile layer. The fourth category of dead material losses is leakages
beyond Tile and laterally (not indicated in the figure).

fitted to the sum of the energy lost in the cryostat before the LAr pre-sampler
(Etruth

upstream) and the true energy deposited in the pre-sampler, as given from the
simulation (Etruth

presamp), as a function of the data-like uncalibrated reconstructed
energy in the pre-sampler (E0

presamp). The constant obtained, Cupstream, is used
to estimate the energy lost before the pre-sampler (Eest.

upstream), and to calibrate
the pre-sampler energy (Eest.

presamp), as

Eest.
upstream +Eest.

presamp = Cupstream ·E0
presamp (7.5)

The correction constant for the region between the pre-sampler and the first
layer of the LAr barrel is given by the linear fit to the true energy deposited
in the cryostat before the LAr barrel (Etruth

presamp/LAr) as a function of the geo-
metric mean of the data-like energy in the pre-sampler (E0

presamp) and the first
sampling layer of the LAr barrel, LAr1 (E0

LAr1). The estimated energy lost in
the cryostat before LAr barrel, Eest.

presamp/LAr, is given as

Eest.
presamp/LAr = Cpresamp/LAr ·

√
E0

presamp ·E0
LAr1 (7.6)

where Cpresamp/LAr is the slope of the fitted line.
The largest energy depositions in dead regions occur in the cryostat between

LAr and Tile. The correction constant for this region, CLAr/Tile, is obtained in
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Figure 7.32: Example of energy depositions in dead region as a function of deposited
energy in calorimeter layers. The labels and the choice of fits are described in the text.

the same fashion as for the region between the pre-sampler and the LAr barrel,
and the energy used is the energy deposited in the last LAr sampling layer,
LAr3 (E0

LAr3) and the first Tile sampling layer, TileA (E0
TileA). The estimated

energy lost in the cryostat between LAr and Tile, Eest.
LAr/Tile, is thus given as

Eest.
LAr/Tile = CLAr/Tile ·

√
E0

LAr3 ·E0
TileA (7.7)

For leakage beyond Tile, no correlation between energy deposited in any
calorimeter layer can be seen. However, on average the leakage is dependent
on the beam energy. As a first approximation, the estimated leakage, Eest.

leak,
can be computed as a constant, Cleak, multiplied with the total reconstructed
unweighted energy of all calorimeter layers (E0

tot),

Eest.
leak = Cleak ·E0

tot (7.8)

The corrections for dead material are made on event basis and, except in
the case of the pre-sampler energy, independent of the hadronic calibration.
The total energy of an event after weighting and correction for losses in dead
material, is computed as

EDMcorr = Eweighted +(Eest.
upstream +Eest.

presamp)+ (7.9)

+Eest.
presamp/LAr +Eest.

LAr/TileEest.
leak−E0

presamp
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Figure 7.33: Dead material correction constants as a function of beam energy. The
top left plot shows the correction constants for the upstream energy losses, before the
LAr pre-sampler. The top right plot show the correction constants for the region be-
tween the pre-sampler and the LAr barrel. The bottom left plot show the dead material
correction constants for the region between LAr and Tile, and the bottom right plot
show the correction constants for leakage. The horizontal lines indicate the constant
value when computed for all beam energies above and including 10 GeV. The values
are given in Table 7.5. Conclusions on the behaviour of the correction constants as a
function of beam energy are given in the text.

The reconstructed unweighted pre-sampler energy is subtracted, in order not
to count the pre-sampler energy twice.

Dead material constants for the various regions as a function of beam en-
ergy are given in Figure 7.33. As shown in this figure, the correction constants
for dead material are not constant with respect to the beam energies. All cor-
rections behave strangely for beam energies below ≈ 10 GeV, reflecting the
fact that correction for dead material energy losses is hard at low energies.
The peak in the distribution of correction constants for the leakage beyond
Tile (bottom right plot in Figure 7.33) seems unexpected at first, but when
considering that this constant must be multiplied with the total uncalibrated
energy of the event to retrieve the leakage, the peak translates into an approx-
imately constant leakage of about 100 MeV for beam energies between 4 and
30 GeV. For high beam energies, the leakage correction factors are roughly
linear, as are the upstream corrections. The corrections obtained when using
all beam energies above and including 10 GeV are indicated with horizontal
lines in the plots.
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For the corrections of losses in the regions before and after LAr barrel,
the values do not flatten at energies above 10 GeV, but rather show a de-
creasing linear behaviour. This is most likely a manifestation of the increas-
ing energy fraction of the true pion energy recorded by the calorimeters. The
dead material compensation energy is in some sense calibrated on the hadronic

scale, while the energies
√

E0
presamp ·E0

LAr1 and
√

E0
LAr3 ·E0

TileA are not. When
multiplying the correction constants with the unweighted energy, the correc-
tion constants must decrease to follow the increase in visible energy in the
calorimeters.

Constant value (dimensionless)

Cupstream 1.5023 ± 0.0022

Cpresamp/LAr 0.38399 ± 0.00049

CLAr/Tile 1.7014 ± 0.0011

Cleak (8.729 ± 0.085) ·10−3

Table 7.5: Values of the dead material correction constants, for the four different re-
gions considered.

The dead material losses correction constants not being constant over the
beam energies will affect the value of the corrected energy. Ideally, a correc-
tion based on the beam energy would be used. In test beam data, the beam
energy is well-known. However, this is not the case for pions or jets in ATLAS

during real data taking, which is the reason for using one correction constant
per dead region, rather than making the recourse to beam energy dependent
corrections. In Figure 7.34, the linearity of the weighted energy with dead ma-
terial correction is shown, both with and without the beam energy dependence
in the correction constants. In Figure 7.35, the difference of the linearities in
dead material corrected energy is shown, and in Figure 7.36, the difference in
resolution is given.

As demonstrated in Figure 7.35, the beam energy independent dead material
corrections will give a systematically too low reconstructed weighted energy
for most of the beam energies considered. The worst underestimations of the
energy will occur for beam energies around 10 GeV, where the shift is as much
as 4%. The resolution, on the other hand, is not affected in a significant way
when the dead material corrections constants are beam energy independent,
as shown in Figure 7.36.

For the remainder of this chapter, whenever an energy is said to have been
corrected for dead material losses, the correction of Equation 7.10 has been
applied, using one correction constant for each dead region, same constant for
all beam energies. Unless something else is stated, the constants have been
obtained from all beam energies above and including 10 GeV, as described in
this section. The values of the corrections are given in Table 7.5. The devia-
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bution, as a function of the beam energy. The unweighted energy on the electromag-
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material corrected energy using one constant per region, same for all beam energies.
The squares mark weighted and dead material corrected energy using beam energy
dependent DM correction constants. The error bars at the black circles are computed
from the errors of the Gaussian fit and the distance to the beam energy corrected points
(systematic uncertainties). The error bars on the other markers are from Gaussian fits
only.

tions from the values obtained using the beam energy dependent corrections
are treated as systematic uncertainties. The values are given in Appendix C.

The dead material correction constants computed here are valid only for
pseudorapidities close to η = 0.45, since the dead regions are different at other
η , and only in the test beam set-up, because the cryostat in the full ATLAS

set-up is slightly different. Moreover, these constants are only valid for pions,
since the shower development of electrons in the calorimeters is different from
the shower development of pions. For instance, the energy leakage of electrons
is smaller and electrons seldom reach the Tile calorimeter.

7.6.5 Linearity and resolution of pions from real data and
simulations
In Section 7.5.6, the weighted energy was compared to the Monte Carlo truth
energy obtained from the simulation. For the test beam data, the only “truth”
we have is the beam energy. Moreover, after correction for energy losses in
dead material, we expect the energy distribution to be Gaussian. Hence we
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Figure 7.35: Difference of linearities, linearity from one correction constant per region
minus linearity using beam energy dependent corrections. The uncertainties indicated
are the errors from the Gaussian fit of the linearity from the dead material correction
with one constant per dead region.
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Figure 7.37: Linearity, Emean/Ebeam, of weighted and unweighted energy (Monte
Carlo simulation, MC, and data) as a function of beam energy. Comparison between
the unweighted energy on the electromagnetic scale (triangles), and weighted and dead
material corrected energy (circles). Data points are marked with filled symbols, simu-
lation with open symbols. It should be noted that data runs of beam energy 250, 180
and 9 GeV are negative runs, while beam energies 100, 50 and 20 GeV are positive
runs with proton contamination.

can make a sensible Gaussian fit to the distribution, use the ratio Emean/Ebeam
for the linearity, and compute the resolution as σ/Emean. In Figure 7.37 a
comparison of the data and Monte Carlo linearity of weighted and unweighted
energy is shown.

The most striking feature of the linearity in Figure 7.37, is that even af-
ter weighting it is a bit short of unity for most of the beam energies, espe-
cially the lower ones. This is partly an effect of energy falling outside the
topo clusters[54], but in the test beam case, lateral leakage in the φ direction
can also occur, which does not happen in the full ATLAS set-up. Corrections
for the out-of-cluster energy should be done to retrieve the full energy of an
event. This is not done for singe pions within this chapter, but only for jets in
the full ATLAS environment, as described in Section 7.8. Since the treatment
of the energy lost due to clustering differs between the test beam and the full
ATLAS set-ups, and we only strive to make a study of the hadronic weighting
scheme when applied to test beam data, which can be done after weighting and
subsequent corrections for losses in dead material, the corrections for energy
depositions outside the clusters are omitted.

The overestimation of data energy in the highest energy points can be ex-
plained by the shower development mis-description in the simulation, which
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Figure 7.38: Resolution of weighted energy (simulation and data) as a function of
beam energy. Comparison between the unweighted energy on the electromagnetic
scale (triangles), and weighted and dead material corrected energy (circles). Data
points are marked with filled symbols, Monte Carlo simulation with open symbols.
It should be noted that data runs of beam energy 250, 180 and 9 GeV are negative
runs, while beam energies 100, 50 and 20 GeV are positive runs with proton contami-
nation.

was shown in Section 7.6.3. The imbalance between the energy depositions in
LAr and Tile will lead to an imbalance in the weights. Since the simulation
underestimates the energy depositions in Tile, the Tile weights will be higher
than they should be. In the same way, the LAr weights will be lower. Since
the LAr weights are closer to unity than the Tile ones, the raising effect of the
Tile weights can be expected to dominate. When the weights are applied to
data, the overestimation observed for the negative pion beams is the result.

When the above mentioned effects are accounted for, the data and simula-
tion linearities in Figure 7.37 are in acceptable agreement.

In Figure 7.38, the resolution of the weighted and unweighted energy is
given as a function of the beam energy, and in Figure 7.39, the difference of
the resolution is shown.

For the resolution, there are quite large differences between data and simu-
lation. For all beam energies, the resolution of data energy is worse than the
resolution of the simulated energy signal, which most likely reflects the gen-
erally more difficult conditions in real data taking, such as noise unaccounted
for and scattering in the beam line. Since the general worsening in resolu-
tion in data compared to the simulation is present in the electromagnetic scale
energy, this is not an effect of the weighting scheme. For comparison, it is in-
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Figure 7.39: Difference of resolutions, r0− rweighted+dead material corrected as a function
of beam energy. A positive value in this plot means that the weighting and dead mate-
rial correction procedure improves the resolution. Comparison between Monte Carlo
simulation (open circles) and data (filled circles). It should be noted that data runs of
beam energy 250, 180 and 9 GeV are negative runs, while beam energies 100, 50 and
20 GeV are positive runs with proton contamination.

teresting to compute the difference between the resolution of the unweighted
energy and the resolution after weighting, which is shown in Figure 7.39.
Even though the resolution of data energy is much worse than for the simu-
lated energy signal, the weighting and dead material correction improve the
resolution for energies above 20 GeV. For the simulated energy signal, the
resolution improvement is achieved for beam energies above 8 GeV.

In Figure 7.40 the resolution is plotted as a function of 1/
√

Ebeam,
and the simulated energy resolution has been fitted with the function
r = a/

√
Ebeam⊕b. The values of the parameters are given in Table 7.6.

Unweighted energy Weighted + DM corr energy
a(% · GeV1/2) b(%) χ2/NDF a(% · GeV1/2) b(%) χ2/NDF

78.4±1.4 9.80±0.16 15.00/17 76.2±1.1 3.12±0.32 15.59/17

Table 7.6: Parameters of fit to the resolution of the simulated energy signal, r =
a/
√

Ebeam⊕b, as drawn in Figure 7.40.

No fit is made to the data energy resolution, because of the possible distur-
bances of the resolution as a result of the proton contamination in the positive
runs.
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Figure 7.40: Resolutions of weighted and unweighted energy (Monte Carlo simulation
and data) as a function of 1/

√
Ebeam, with fits to the function r = a/

√
Ebeam⊕b. The

values of the parameters are given in Table 7.6. It should be noted that data runs of
beam energy 250, 180 and 9 GeV are negative runs, while beam energies 100, 50 and
20 GeV are positive runs, with proton contamination.

7.7 Stability checks and comparisons with other
methods
In the previous sections of this chapter, the weighting scheme has been de-
scribed and the performance of the weighting when applied to simulations and
real data from the combined test beam has been demonstrated. In this section,
we show the performance of the weighting scheme under slightly different
conditions, such as various changes in the global energy scale.

7.7.1 Energy of a single cluster as the global energy
The default local calibration method for jets currently in use in the ATHENA

framework does not use the energy of a cone of topo clusters as the global
energy scale, but rather the energy of a single topo cluster (the “cluster”
method)[54]. For the understanding of the method and the underlying mech-
anisms of local hadronic calibration, it is important to investigate both these
schemes, to see if they perform differently.

In this section, the performance of the cluster method when applied to sim-
ulations and data is compared to the results from our standard approach (the
“cone” method), as presented in Section 7.6.5.
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Figure 7.41: Linearity of weighted and dead material corrected energy (Monte Carlo
and data) as a function of beam energy. Comparison between our standard approach
(the cone method) and the cluster method, as described in the text. The uncertainties
given are the statistical uncertainties from the Gaussian fits.

The weighting factors for the cluster method is derived in the same way as
the cone method weights (see Section 7.5), with the same weight restrictions.
The only difference is that when the cone method only uses the most energetic
cone of each event for the weight computation, the cluster method uses all topo
clusters of each event to fill the weight tables. The cluster method weights
are parametrised with the cell energy density and the topo cluster energy, and
one weight table for each sampling layer is made. When applying the weights,
only cells with an absolute energy density larger than the estimated noise level
are weighted, as described in Section 7.5.4.

In Figure 7.41, the linearity of the energy after weighting and correction
for dead material losses is shown, for both methods. The linearity is com-
puted as the mean of a Gaussian fitted to the energy distribution divide by the
beam energy, Emean/Ebeam, and plotted as a function of the beam energy. In
Figure 7.42, the difference between the resolution of the unweighted energy
and the energy after weighting and dead material correction is shown. The
absolute values of the resolution of the energy after weighting with the cone
method is shown in Figure 7.38 in Section 7.6.5.

The performances of the cone and cluster methods are very similar, as
shown in Figures 7.41-7.42, both when applied to data and Monte Carlo sim-
ulations. A very small systematic shift towards slightly higher linearity for the
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Figure 7.42: Difference between the resolution of the unweighted energy on the elec-
tromagnetic scale, r0, and the weighted and dead material corrected energy rweight
as a function of beam energy. Comparison between our standard approach (the cone
method) and the cluster method, as described in the text. The uncertainties given are
the statistical uncertainties from the Gaussian fits.

cone method in the beam energy region between 5 and 20 GeV might be seen,
but this shift is within the statistical errors.

The similarity between the methods indicate that weighting procedures like
these are stable and not sensitive to minor changes in the global energy scale
or cluster size. In the rest of this section, the stability of the method is shown
in other ways.

7.7.2 Distortion of the cone energy
The test-beam environment is very “clean” compared to what we can expect
from data taking in ATLAS. In the high-energy proton-proton collisions, we
will face problems with pile-up noise, underlying event and low-energy debris
from the collisions in the detector. In the previous section, we showed that the
weighting scheme works well when the global energy scale is the energy of
a single cluster. However, for the cluster method, the weights were derived
specially, with the intention of using them in combination with the cluster
energy as the global energy. If the underlying event distorts the cone energy
by introducing additional energy preferentially in the inner calorimeter cells,
then the weighting of the outer cells might be affected.

In order to make a very simple check of the performance under slightly
more complicated conditions, we have deliberately distorted the cone when
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Figure 7.43: Linearity of weighted energy (simulation) using a deliberately distorted
cone.

choosing the weights. The weight tables used are the same as before, but when
picking the weights, we use the weights belonging to a cone of 10% higher
energy. This way, a first-order test assessing whether the underlying event
distortion to the cone would disturb the outer cells can be made.

In Figure 7.43, mean values of Gaussians fitted to the distribution (E −
Etruth)/Etruth for the weighted energy is shown, both when using the correct
cone energy, and in comparison to the distorted cone energy. As before, E is
the weighted or unweighted energy and Etruth is the truly deposited energy as
given from the Monte Carlo simulation. In Figure 7.44, the difference between
the resolution of the unweighted energy and the weighted energy is plotted as
a function of the beam energy. The resolution is estimated as σ/mean of a
Gaussian fitted to the distribution E/Etruth.

As shown in Figures 7.43-7.44, the cone method is stable against small
changes in the cone energy scale. The only point where the cone distortion
has a significant effect is for beam energy 300 GeV, where the linearity is
worsened after the cone distortion. This is most likely a weight table border
effect, see Section 7.7.4.

7.7.3 Variation of the cone size
In all previous applications of the cone-based weighting in this chapter, the
cone opening angle has been 11◦, which is the cone opening angle used when
this method was applied in the H1 experiment[51]. Changes of the cone open-
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Figure 7.44: Difference of resolutions of weighted and unweighted energy (Monte
Carlo) using a deliberately distorted cone.

ing angle might affect the performance of the weighting, and should be stud-
ied.

In order to study the properties of the weighted energy when the cone open-
ing angle is changed, a set of new weight tables were produced, using the en-
ergy from cones with the opening angles 2, 8, 14, 20 and 26◦ as the global
energy. These weight tables were applied to simulated energy signals, simi-
lar to the procedure described in Section 7.5. From a Gaussian fitted to the
weighted and dead material corrected energy distribution, the linearity can be
computed as Emean/Ebeam and the resolution as σ/Emean. In Figure 7.45, the
difference between the linearity obtained for the normal weighting procedure
(opening angle 11◦) and the linearity after applying weights from other cone
sizes are shown. In Figure 7.46, the differences in resolution is shown. These
plots should be compared with Figures 7.37-7.38 in Section 7.6.5, where the
absolute values of the linearity and the resolution is shown.

The changes in linearity when varying the cone size are very small, as
shown in Figure 7.45, but a clear pattern can be seen in the grouping of the
linearity. A smaller cone opening angle (2 or 8◦ ) leads to a lower Emean/Ebeam
ratio than in the 11◦ case, whereas a larger opening angle (14, 20 or 26◦) leads
to a larger Emean/Ebeam ratio. The shifts are within the statistical errors for
beam energies lower than about 100 GeV, and for the higher beam energies
the effect is less than 0.9%. The resolution is not affected by the cone size
changes in any systematic way, as shown in Figure 7.46.
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Figure 7.45: Difference between Emean/Ebeam of the weighted energy when using
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certainties indicated come from the statistical uncertainties of the Gaussian fits.
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Figure 7.47: Linearity of weighted simulated energy using a shortened weight table
(where the weights have been computed using beam energies up to 200 GeV only),
and the linearity of the energy which has been weighted with the default weight tables
(beam energies up to 316 GeV).

7.7.4 Discussion on the validity of the weights
In Section 7.5.6, an unexpected drop in the linearity at the highest beam en-
ergies investigated was observed. A similar but more pronounced effect was
also seen when the cone energy was deliberately distorted in Section 7.7.2.
The drop in linearity is an effect of some of the cone energies being close to
the border of the weight table, which can be demonstrated with a shortened
weight table, where only simulated samples of beam energies up to 200 GeV
have been used to compute the weights. In Figure 7.47, the mean value of
the distribution (E−Etruth)/Etruth is plotted as a function of the beam energy,
where E is either the energy after weighting with our usual weight tables, or
with the weight tables derived for beam energies up to 200 GeV only.

The effect on the linearity when using the shortened weight tables, as shown
in Figure 7.47, clearly demonstrates the border effect: when applying weights
to cells from an event with a beam energy close to the maximal beam en-
ergy used to compute the weights, the linearity drops, and this drop does not
only affect the largest beam energy used for making the weights, but beams at
lower energies too. In the example shown here, with weights computed from
beam energies up to 200 GeV, the unexpected drop in linearity begins at beam
energies around 150 GeV.

From this demonstration, a very important feature of the weighting can be
seen: when applying the weights, it is important to make sure that a variety of
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Figure 7.48: Properties of the electromagnetic scale energy in relation to the Monte
Carlo truth energy. The ratio (E−Etruth)/Etruth plotted as a function of beam energy,
where E is the electromagnetic scale energy within topo clusters, the electromagnetic
scale energy within all calorimeter cells, or the true visible energy deposited in the
cells, Evisible, as given from the simulation.

beam energies, both larger and smaller than the energy of the sample which is
to be weighted, were used in the computation of the weights.

7.7.5 Properties of the electromagnetic scale energy
In all comparisons between weighted or unweighted energy and the true
energy depositions as given from the simulation, an unexpected rise in the
(E−Etruth)/Etruth ratio has been observed for beam energies lower than
about 10 GeV. In Figure 7.48, properties of the electromagnetic scale energy
are investigated. By looking at the electromagnetic scale energy within
topo clusters, E0, clusters in relation to the electromagnetic scale energy in all
calorimeter cells, E0, all calo cells, and in relation to the visible energy truly
deposited in the calorimeter cells, Evisible, we can disentangle the effects of
noise in cells (which is not present in Evisible) and the topo clustering (which
is only used in E0, clusters). In Figure 7.48, it is clearly demonstrated that the
unexpected rise in the (E − Etruth)/Etruth ratio at low beam energies is an
effect of the overlaid noise in the cells, since this effects disappears when we
consider the visible energy only.

It should be noted that the unexpected rise in linearity is only visible when
comparing energy event-by-event with the Monte Carlo truth energy. If the
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electromagnetic scale energy is compared to the beam energy, as in Figure 7.9
in Section 7.5.3, the linearity behaves as expected.

7.8 Application to jets in ATLAS set-up
In the previous part of this chapter, the performance of the local hadronic
calibration when applied to single pions within the framework of the test beam
set-up, with a slice of the calorimeters, has been demonstrated. During data
taking with ATLAS, the calibration of jets is the primary aim of the hadronic
calibration. In this section the performance of the local hadronic calibration
when applied to jets in the full ATLAS set-up is demonstrated and compared
with the performance of the global jet calibration, which is the current default
calibration for jets in ATLAS.

The jet calibration presented in this section is a summary of the initial lo-
cal jet calibration studies that were made in 2007, with a comparison with
the global calibration. These results were originally published in paper III.
Since then, the method has been developed further. See e.g. [68] for a detailed
update.

7.8.1 Jet algorithms
The interactions between coloured particles can be described by Quantum
Chromodynamics (QCD), and in this picture, the proton collisions at the LHC
can lead to a hard scattering of the partons. The partonic final state of the
collision may consist of the outgoing hard partons and additional initial and
final state radiation of gluons (ISR and FSR). Due to colour confinement, the
partons can never be observed freely but fragment into hadrons, hadronise, a
process that can be modelled by phenomenological approaches[69]. The scat-
tered parton gives rise to a spray of collimated hadrons, a jet. The particles
within a jet carry the information about the original parton and the measure-
ments of jets are therefore important tools when understanding the underlying
physics processes at a hadron collider. The performance of the calibration, the
ability of the jet algorithm to find all the jet constituents (and nothing but jet
constituents) and the presence of initial and final state radiation put a limit on
the jet information accuracy[70, 71]. It should be pointed out that a jet is what
the jet algorithm defines it to be; sometimes it is desirable to try to reconstruct
the parton as well as possible, but as the parton is not a well-defined physical
entity (since it immediately hadronises), there can be reasons to define other
criteria for the jet algorithm.

General requirements for a good jet algorithm is that it should be reasonably
quick in terms of CPU time, and it should also be infrared-safe and collinear-
safe[70]. Infrared-safety means that the jet algorithm is insensitive to soft par-
ton emissions, i.e. if there are two partons from the hard scattering, that are
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combined into two jets by an algorithm, the same algorithm should still find
two jets, even if one of the partons radiate a soft gluon. A collinear-safe algo-
rithm finds the same jet, even if the original parton is split into two collinear
fragments. It is also insensitive to the ET ordering of the particles, such that if
the leading particle of the jet is split into two particles, the algorithm finds the
same jet.

Three different jet algorithms have been widely used by the ATLAS

collaboration: the cone algorithm[68], the k⊥ algorithm[72] and the anti-k⊥
algorithm[73], which are described below. For the work of this section, the
cone algorithm has been used.

The cone algorithm
As the name suggests, the cone algorithm essentially clusters the jet con-
stituents in a simple cone. As a starting seed, each calorimeter energy de-
position greater than 2 GeV is considered. The 4-vector energy-momentum
depositions within a cone of radius ∆R =

√
(ηi−ηseed)2− (φi−φseed)2 = 0.7

are summed, forming a proto-jet. If the jet direction fail to coincide with the
seed cell, a reiteration takes place with the seed cell replaced by the current
jet axis, until a stable system of jets is obtained. To remove overlap between
jets, the proto-jets are either merged or split in the last step, with the merging
occurring if two jets share more than 50% of the energy of the jet with the
lowest energy. Only jets with a minimum energy of 10 GeV are kept.

As the cone algorithm is seeded, it is not collinear-safe. Neither is it
infrared-safe, but the split-and-merge procedure partly remedies this[68]. It
is, on the other hand, very straight-forward, easy to understand, fast and can
be useful for initial studies and comparisons.

The k⊥ algorithm
There exist several sequential recombination jet algorithms, of which the k⊥
algorithm is one. The k⊥ algorithm starts with a set of jet constituents i, for
example topological clusters. For each component i, the quantity di = k2

T,i is
defined, where kT,i is the transverse momentum of the cluster i, with respect
to the beam axis. For each pair of clusters (i, j), we have

di j =
min(k2

T,i,k
2
T, j)∆R2

i j

D2 (7.10)

where ∆Ri j is the distance between the clusters and D is a distance parameter
characteristic for the algorithm. If the minimum of the set of all di and di j is a
di j, the clusters i and j are merged to a new cluster n. If instead the minimum is
a di the cluster i is a jet, and it is removed from the cluster list. This procedure
continues until all the clusters have been formed into jets.

It should be noted that the last jet to be formed with this scheme is the one
with the largest pT, and that the jets can have very irregular shapes. The k⊥
algorithm is both collinear- and infrared-safe[72].
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The anti-k⊥ algorithm
The k⊥ algorithm fulfils the theoretical requirements on a jet algorithm, while
the cone algorithm is simple but not as theoretically well-founded. The anti-k⊥
algorithm[73] combines the best features of these two algorithms.

The recombination scheme follows the same steps as the k⊥ algorithm, with
the replacement of Eq. 7.10 with

di j =
min

(
1

k2
T,i

, 1
k2

T, j

)
·∆R2

i j

D2 (7.11)

that is, the minimum is not taken of the transverse momenta of the clusters,
k2

T,i, but of the inverse, 1/k2
T,i. The recombination scheme creates jets in the

logical order, starting with the high-pT ones, which makes the algorithm faster.
It is both collinear- and infrared-safe and the jets formed are roughly conical
in shape.

7.8.2 Weight extraction and implementation of the cone method
in the full ATLAS set-up
The cone version of the local hadronic calibration method is implemented in
the ATHENA package[55]. Weights for the jet calibration in the full ATLAS

set-up has been extracted from fully simulated single pion events, with ener-
gies logarithmically equidistant between 1 and 1000 GeV. ATHENA version
12.0.31 was used for generation and simulation.

The weights were derived using the same approach as outlined in Sec-
tion 7.5, using the energy of a cone with an opening angle of 11 degrees as the
global energy scale and extracting weights from the leading cone only. The
weights were parametrised with the cell energy density and the cone energy
and separate weight look-up tables were made for the various sampling layers
of each calorimeter system and for different η values in intervals of 0.2.

The hadronic corrections for jets in ATLAS are applied in several steps.
First the energy is formed into topological clusters, which are classified as
hadronic or electromagnetic, based on their energy density and shower depth.
Then the weights are applied to the hadronic clusters only. Finally corrections
are made for energy falling outside the clusters (out-of-cluster corrections) and
for energy deposited in non-calorimeter material (dead material corrections).

After the application of all the local hadronic calibration factors, the par-
ticles in the jets are correctly calibrated. However, this does not necessarily
correspond to the “true” jet energy, due to inefficiencies in the jet algorithm,
such as missed clusters, or mis-classification of clusters. Additional jet correc-
tions are needed to fully recover the jet energy, as demonstrated below. The
out-of-jet corrections are energy-dependent, since high-energy jets deposit a
larger fraction of their energy in a cone of a fixed size about the jet axis com-
pared to jets of lower energies, an effect which is caused by the boost of the
initial parton[74].
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Jet samples
The calibration methods were applied to a dijet sample consisting of about 1
million events, that were simulated using the PYTHIA[75] event generator. All
quark flavours except top were considered, and the pT of the leading parton
was in the range 10−2280 GeV/c. The jets were reconstructed with the cone
algorithm, using ∆R = 0.7 as the size cut-off parameter. For the locally cal-
ibrated jets, the input to the jet algorithm was locally calibrated topological
clusters. The global calibration of the jets was performed on jets formed from
calorimeter towers that had been calibrated to the electromagnetic scale.

Global calibration
The local hadronic calibration that has been described in this chapter cor-
rects for one effect at the time, disentangling detector and physics effects. The
global calibration, on the other hand, aims to calibrate directly to the “true”
energy of the jet[68].

In the global scheme, first a global physics object is found (e.g. a jet) and
the weights are derived from a matching “truth” object, which is found by
requiring that the spatial separation ∆R =

√
∆φ 2 +∆η2 is less than 0.2. The

weights are parametrised with the cell energy density and the sampling layer,
and the numerical values are found by minimising the χ2 function

χ
2 = ∑

i∈jet

((
wi ·Ei

E truth
i

)
−1

)2

(7.12)

where the index i runs over all the cells in the jet, wi is the cell weight, Ei

is the cell energy on the electromagnetic scale and E truth is the energy of the
matching truth jet. The weights are given as wi = p1 + p2Esum + p3E2

sum where
Esum is the total energy of all the calorimeter cells in the jet and pn are the
coefficients in the minimisation. Only weights in the range 1 < w < 2 are
used, and the jets are required to fulfil E jet

T > 20 GeV[76, 77].

7.8.3 Estimation of performance: linearity and resolution of jet
samples
As in the case of the single pion calibration, the quantities to study in order to
compare the performance of the various calibration methods are the linearity
and the resolution. In this context, the linearity is measured as the response as
a function of the jet energy, and it reflects the requirement that the energy of
the reconstructed jet should be equal to the incident energy of the “true” jet,
as given by the simulation, for all jet energies. The response is given by the
mean µ of the distribution of the reconstructed (calibrated) jet energy divided
by the true jet energy, E jet

reco/E jet
truth. The mean is obtained from a Gaussian fit,

which is constrained to the core of the signal, the µ ± 2σ region of an initial
Gaussian fit, as described in Section 7.5.6. The resolution is computed as σ/µ

from the same restricted Gaussian fit.
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The energy dependence of the resolution can be expressed as

σ(E)
E

=

√
a2

E
+b2 =

a√
E
⊕b (7.13)

where the a2/E term stems from sampling and statistical fluctuations and the
b term originates from for example sampling fluctuations[6]. The latter lim-
its the performance at very high energies. At ATLAS, the ultimate goal is to
achieve a flat linearity with a deviation of at most 2% up to an energy of 4 TeV
and a resolution of σ(E)

E = 50%√
E
⊕3% for |η |< 3[32].

Linearity
In Figure 7.49, the behaviour of the response Erec/Etruth as a function of the
true jet energy is shown for different intervals of η corresponding to different
sub-detector regions, where 0.4 < η < 0.5 is the central barrel region, 2.45 <
η < 2.55 is the endcap region and 3.5 < η < 3.95 is the forward region.

The linearity is shown for jets on the electromagnetic scale, jets after global
calibration and locally calibrated jets, using the cone and the cluster methods.
Two versions of the cone method has been used. The first uses the angular
distance in θ when forming the cone (labelled “angle”) and the second uses
the distance ∆R in η-φ space. The first method, which is the one used for
the single pion calibration of this chapter, was used for the extraction of the
weights. The second is shown for comparison and only a small sub-set of all
the dijet samples were used for that type of calibration.

From Figure 7.49 it is evident that the global calibration method performs
best for all the sub-detectors. However, it should be noted that the local meth-
ods lack out-of-jet corrections, which cause the deviations from responses of
100%. These deviations are especially pronounced for jets of low energies,
which is expected since high-energy jets are more collimated[74].

In the forward region, where the jets are most energetic, it is expected that
the local methods perform better, but as shown in Figure 7.49(c), the linear-
ity of the locally calibrated jets is only about 90%. Upon closer examination
of the samples, it was shown that for this particular simulation there was a
problem with the energy scale in the forward calorimeter, which caused the
electromagnetic energy to be ∼12% too low. Hence the local calibration fails
to reach the full jet energy, as the electromagnetic scale, from which the cali-
bration starts, is wrong.

Resolution
The jet energy resolution as a function of 1/

√
Etrue is shown in Figure 7.50

for different intervals of pseudorapidity corresponding to the different sub-
detector regions. The jets have been calibrated to the electromagnetic scale, or
with the global method or one of the local methods (cone or cluster). The fitted
functions follow Eq. 7.13 and the parameter values of the fits are summarised
in Table 7.7.
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Figure 7.49: Response as a function of true jets energy in different η-regions of the
detector. Results are shown for jets calibrated on the electromagnetic scale, and for
global and local (cone and cluster) calibration methods for cone jets with ∆R = 0.7.
Figures by K. Lohwasser, originally published in Paper III.
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Figure 7.50: Jet resolution in different η-regions of the detector. Results are shown for
jets calibrated on the electromagnetic scale, and for global and local (cone and cluster)
calibration methods for cone jets with ∆R = 0.7. Figures by K. Lohwasser, originally
published in Paper III.
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Calibration approach a (% GeV1/2) b (%) χ2 / NDF

0.4 < η < 0.5

EM scale jets 92.4 ± 2.3 4.9 ± 0.1 48.2 / 22

Global Method 80.3 ± 1.7 2.2 ± 0.1 37.7 / 22

Local method (cluster) 92.8 ± 1.5 3.1 ± 0.1 69.3 / 23

Local method (cone, angle) 89.5 ± 1.9 2.2 ± 0.2 62.5 / 22

2.45 < η < 2.55

EM scale jets 132.7 ± 5.1 3.9 ± 0.3 19.3 / 15

Global Method 117.6 ± 4.1 2.1 ± 0.3 23.5 / 15

Local method (cluster) 134.9 ± 3.1 1.3 ± 0.3 25.8 / 15

Local method (cone) 129.6 ± 2.7 0.0 ± 0.4 38.8 / 15

3.5 < η < 3.95

EM scale jets 241.2 ± 11.5 4.1 ± 0.7 9.8 / 9

Global Method 213.4 ± 4.3 0.0 ± 1.7 14.1 / 9

Local method (cluster) 235.1 ± 8.2 3.7 ± 0.5 49.7 / 9

Local method (cone) 227.2 ± 4.6 0.0 ± 2.7 17.3 / 9

Table 7.7: Resolution as function of 1/
√

Etrue with fits of the form r = a/
√

Etrue ⊕
b for different regions of η . ∆R = 0.7 jets. The numbers have been computed by
K. Lohwasser and were originally published in paper III.

As expected, the jets that have been calibrated to the electromagnetic scale
only exhibit the worst resolution for all energies and η regions. The global cal-
ibration performs best at the higher energies, while the difference between the
different calibration methods shrinks at low energies. In the forward region,
the difference between the two local methods is largest, with a marginally bet-
ter performance by the cone version. However, the differences are within the
statistical uncertainty, and this similarity further underlines the stability of the
local calibration.

7.9 Summary and Discussion
In this chapter, the local hadronic calibration scheme has been applied to real
data from a combined test beam and the performance of the scheme on sim-
ulated jets in full ATLAS set-up has also been demonstrated. The studies pre-
sented here were originally published in paper III and were the first application
of local hadronic calibration to real data from test beams.

It has been shown that calibration by applying tabulated weighting factors
to individual calorimeter cell signals provide a stable method for calorimeter
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compensation, and that the two versions of the local calibration, the “cone”
and the “cluster” methods, give very similar results. The local method
achieves calorimeter compensation within 3% for beam energies above
∼ 2 GeV, as demonstrated in Section 7.5.6. In addition, the linearity after
weighting and corrections for energy losses in dead material is compatible
for combined test beam data and simulation, as shown in Figure 7.37, Section
7.6.5. Hadronic scale linearity in the calorimeter within 3% is slightly
larger than what is specified in the technical proposal[28], but as mentioned
previously, the method has room for improvement, especially in the noise
reduction.

Of the two noise reduction techniques described in Section 7.5.4, the weight
restriction 0.6 < wcell < 3 implemented when filling the weight tables might
lead to a bias in the hadronic scale energy, as the cut affects the weights on a
level not reproducible on data. The weight restriction cut was shown to be nec-
essary in order to eliminate noise effects, such as the lowering of the weights
when the signal is close to the noise threshold. Clearly, a plain noise cut alone
does not serve to fully reduce the problems that overlaid noise cause. Ideally,
we would like to find a set of variables on reconstruction level (i.e. values that
are accessible in data) that would provide us with a possibility to perform an
additional noise reducing cut. Such studies are important to perform to ensure
a bias-free hadronic weighting.

In this chapter, the main focus has been the hadronic compensation of the
calorimeters. However, to demonstrate the performance of the weighting on
the combined test beam pion data, a set of cuts and corrections have been
applied, as described in Sections 7.6.2 and 7.6.4, among them the electron re-
moval cut and the corrections for losses in dead material. These corrections
have room for improvement. Normally, the inner detector would be used to
discriminate between electrons and pions. For jets in ATLAS, the electromag-
netic clusters are excluded from weighting using cluster moments as described
in Section 7.8.2 and Ref. [54]. The exclusion of electromagnetic clusters when
applying the weights is necessary in order to let the hadronic calibration follow
the event-by-event fluctuations in the electromagnetic fraction of the shower
energy, and thus improve the resolution of the energy. The corrections of dead
material energy losses has been further studied since these results were ob-
tained (see for example Ref. [68] and [54]).

In Section 7.6.5, the differences between data and simulation seen in the
weight performance was explained by the inability of the simulation to cor-
rectly describe the shower development of the data. As all hadronic compensa-
tion schemes rely on simulations, the example given here clearly demonstrates
the need for a good understanding of the simulations in relation to data. A lot
of work is being done in this area, see, for example, References [65] and [78].

The application of the local hadron calibration to jet samples was studied
and compared with the global calibration method, which calibrates to the level
of particle truth jets. As the local method calibrates only to detector level,
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without applying final and genuine jet corrections, it fails to reach the high
level of linearity and resolution that the global calibration method is able to
achieve over a large kinematic region. However, the strength of the local cal-
ibration method is still evident. As it does not calibrate inclusively, but in a
modular approach, it is able to reveal problems with the electromagnetic scale
calibration in the forward calorimeter, where the global calibration proved to
be insensitive. For a better and fairer comparison between the global and the
local calibration approaches, jet corrections should be included. See for ex-
ample Ref. [68].

The modular approach of the local calibration might prove to be an impor-
tant aid when calibrating ATLAS with the first collision data, a period during
which any imperfections in the simulation will be exposed. Since detector and
physics effects are disentangled in the calibration procedure, the local cali-
bration method provides an easier way of finding possible problems in the
simulation description of the detector. The systematic uncertainties of the jet
energy scale are also easier to evaluate with a modular calibration.

It should be noted that after local hadronic calibration, the energy distribu-
tion within a jet is correctly described, as each particle in the jet regains its
proper energy. This is of particular importance when the jet sub-structure is
studied. In the following chapters, a proposed search for heavy particles that
decay into top quark pairs is described. When lots of energy is available in
the centre-of-mass system, the top decays are boosted and the decay products
from the top quark can be merged in the detector. In such a case, the probing
of the underlying structure of the jets is of great relevance.





Part III:
Heavy top quark resonances





8. Top quarks and new physics

In the history of physics, every time we’ve looked beyond the
scales and energies we were familiar with, we’ve found things
that we wouldn’t have thought were there. You look inside the
atom and eventually you discover quarks. Who would have
thought that? It’s hubris to think that the way we see things
is everything there is.
– Lisa Randall, interviewed in Discover magazine, July 2006.

The top quark is the heaviest known elementary particle, and its large mass has
prompted speculation on the nature of the third generation of quarks[79, 80].
By exploring the top quark properties, new physics at the electroweak symme-
try breaking scale could be discovered. Even in the absence of tt̄ resonances,
the tt̄ mass spectrum is well worth exploring.

In this chapter, a few theoretical models that give rise to tt̄ resonances are
briefly outlined, and the result from previous searches for tt̄ resonances is
given. In the following chapters, the experimental challenges for reconstruct-
ing high-energy top quarks is described, and an analysis for measuring the
cross section of Z′ resonances is outlined.

8.1 Theoretical motivation for tt̄ resonances
Several proposed extensions to the Standard Model exists, in which one or
more new heavy particles that decay into top quarks emerges. A review of
different scenarios of tt̄ resonances can be found in Ref. [79]. The proposed
top resonances can be subdivided into two categories: coloured resonances
(colour octets) and uncoloured resonances (colour singlets).

8.1.1 Un-coloured resonances (colour singlets)
An example of a colour singlet resonance is the Z′, a spin 1, Standard Model Z-
like heavy particle. The Feynman diagram of leading order Z′ production and
decay is shown in Figure 8.1. It should be noted that a Z′, being uncoloured,
does not couple to gluons at tree level.

One of the models in which a Z′ resonance occurs is the “little Higgs
model”[81], which is an extension to the Standard Model with several Higgs
fields that acquire mass through a symmetry breaking at the electroweak scale.
At the same time, the Higgs fields are associated with a global symmetry
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Figure 8.1: Leading order Z′ production. See also Standard Model tt̄ production (Fig-
ure 2.1 in Section 2.2).

which is broken at a higher energy scale ΛS. In this model there exists a set of
heavy gauge bosons with the same quantum numbers as the Standard Model
gauge bosons. In particular, the model contains a new heavy Z-like boson. The
extra gauge bosons postpone the problem of the fine-tuning of the Higgs mass
until the larger energy scale ΛS.

For a particular choice of benchmark parameters, the mass width ratio is
Γ/M = 3.4% and the production cross section at LHC (

√
s = 14 TeV) is 19 pb

for a M = 1 TeV/c2 resonance and 0.9 pb for 2 TeV/c2. The Z′ resonance is
expected to couple to all the Standard Model fermions, and in particular the
branching ratio to tt̄ pairs is 1/8 (12.5%)[82].

The little Higgs Z′ decays with equal probability to all the elementary
fermions, if the colour factors are taken into account. A model in which a
heavy neutral gauge boson exists, which couples primarily to top quarks, is
the topcolor model[83, 80]. The motivation for the topcolor model is to give
a natural explanation to the very large mass of the top quark. In the topcolor
model, the QCD gauge group SU(3)C is part of a larger symmetry structure,
and in the breaking of that symmetry, massive coloured bosons emerge. The
observed top quark mass is assured when topcolor is combined with for exam-
ple the Higgs mechanism, or additional strong dynamics (technicolour[80]).
However, in order to keep the b quark light in comparison to the top quark,
an additional neutral gauge boson is needed. This massive gauge boson, gen-
erally called Z′t , couples strongly to the third generation quarks, and weakly
to the other quarks, which enhances the branching ratio for decay of Z′t into tt̄
pairs.

Other examples on uncoloured resonances are spin-2 graviton-like bosons,
which could be created in for example Kaluza-Klein excitations of gravitons
(see also Section 8.1.2).

8.1.2 Coloured resonances (colour octets)
A general model for a colour octet “coloron” which couples to top quarks
through new strong dynamics is described in Ref. [79]. In this model, the
new coloron can easily be implemented in the quark production by making a
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substitution of the gluon propagator:

g2
3
s
→

g2
3
s

+
g2

3z1z2

(s−M2
B)+ iΓB

(8.1)

where g2
3 is the QCD coupling constant, z1 and z2 are scaling factors of the

coupling due to the coloron, s is the energy scale (
√

s = 10 TeV in the analysis
presented in the next chapters), MB is the mass of the coloron and ΓB is its
width. From Eq. 8.1, we can deduce that the coloron will interfere with the tt̄
spectrum, and the level of interference is governed by the factor z1z2. For an
experimentalist, this offers the interesting possibility of separating coloured
and uncoloured resonances by examining the shape of the mass spectrum.

Kaluza-Klein gluons in warped extra dimensions
A more specific coloured resonance could be the Kaluza-Klein excitation of
the gluon. Kaluza-Klein1 modes occur in many extra dimensions scenarios.
The general motivation for proposing extra dimensions is the hierarchy prob-
lem, that is the great discrepancy in scale between the strength of the elec-
troweak force and gravity. Differently formulated, this problem boils down to
the mass discrepancy between the Planck mass MP ∼ 1019 GeV/c2 and the ex-
pected Higgs mass MH ∼ 102 GeV/c2. In certain extra dimensions scenarios,
the apparent weakness of gravity is generally explained by the presence of
extra dimension(s) in which gravity can propagate, while the Standard Model
fields are contained in our normal four-dimensional spacetime.

In the Randall-Sundrum scenario[25] one single extra dimension is pro-
posed, which is warped (curled up with a finite radius). In an extension to the
theory, all the Standard Model fields are free to propagate in the extra dimen-
sion. The hierarchy problem is solved geometrically through an exponential
warp factor. The metric of the warped space can be written as[84, 85, 86]

ds2 = e−k|y|
ηµνdxµdxν −dy2 (8.2)

where y is the extra dimension and e−k|y| is the warp factor. The extra dimen-
sion has a periodic geometry, such that y = 0 = 2nπrc where rc is the radius
of the warped dimension. At either end of the warped dimension, there is a
brane. The one at y = 0 is called the “Planck” or “UV” brane, and the one at
y =±πrc is the “TeV” or “IR” brane. For appropriate values of krc, the ratio

e−k|y(UV )|

e−k|y(IR)| = ekπrc (8.3)

can take any value. In particular, we can choose krc ≈ 11, which gives us
MPlanck/MEW ≈ 1015, i.e. a solution to the hierarchy problem in the geometry.

1Named after two of the pioneers of the theory of extra dimensions, the German mathematician
Theodor Kaluza (1885–1954) and the Swedish theoretical physicist Oskar Klein (1894–1977).
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When a Standard Model particle is excited into the extra dimension, it ac-
quires an effective mass in the 4-dimensional space-time. The mass is propor-
tional to n/rc, where the integer n is the excitation number.

Of particular interest as a tt̄ resonance is the Kaluza-Klein excitation of the
gluon, gKK . In the Randall-Sundrum scenario, gKK is expected to have a large
branching ratio to tt̄ (92.5%[84]), and the expected production cross section
at
√

s = 14 TeV is 30 pb for a 1 TeV/c2 resonance, and 2 pb for a 2 TeV/c2

resonance[84].

8.2 Previous searches at the Tevatron
The CDF and D0 experiments at the Tevatron accelerator at Fermilab in the
U.S. have made searches for coloured and uncoloured tt̄ resonances. At the
Tevatron protons and anti-protons are collided at a centre-of-mass energy of√

s = 1.96 TeV. The general result from the Tevatron is that no deviations from
the Standard Model has been reported, and resonance masses up to approxi-
mately 800 GeV/c2 have been considered.

The D0 experiment has excluded a narrow uncoloured resonance MZ′ <
820 GeV/c2 at 95% CL for ΓZ′ = 1.2%MZ′[87].

The CDF experiment reports on searches for a leptophobic Z′ in a spe-
cific topcolor-assisted technicolor production model with a width of ΓZ′ =
0.012 ·MZ′ . For this model, masses below 725 GeV/c2 are excluded at the
95% confidence level[88]. Another analysis[89] reports that a topcolor lep-
tophobic Z′ with mass below 720 GeV/c2 is excluded, and they found that
σ < 0.64 pb at 95% C.L. for a narrow Z′-like resonance that decays into tt̄
with 700 < MZ′ < 900 GeV/c2.

The CDF experiment has also searched for a massive gluon and report
no deviations from the Standard Model in the tt̄ mass spectrum below
800 GeV/c2[90]. An updated, more recent search confirms this result[91].
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If it looks like a duck, and quacks like a duck, we have at least
to consider the possibility that we have a small aquatic bird of
the family Anatidae on our hands.
– Douglas Adams: “Dirk Gently’s Holistic Detective Agency”,
1987.

When searching for a tt̄ resonance, the reconstructed top pair mass spectrum
is the fundamental observable needed to infer the signal. In the absence of a
resonance, the invariant mass spectrum of the top and anti-top quarks created
in the proton-proton collisions will fall off exponentially, due to the kinematic
effects and dynamics of the system. If a particle that decays into top anti-top
quark pairs exist however, the tt̄ mass spectrum will be changed. If the particle
does not interfere with the top quarks, the result can be a peak in the mass
spectrum. In the case of interference, the spectrum will be modified in other
ways. Reconstructing the invariant mass spectrum is thus the key to finding a
resonance.

As outlined in Chapter 2.2, top quarks decay promptly to a b quark and a W
boson. The b quark is reconstructed as a jet. The W decays either to a charged
lepton and a neutrino or a quark anti-quark pair. The final state of the top pair
decay is thus either of the form tt̄ → `+`−νν̄bb̄ (di-leptonic), tt̄ → `νbb̄qq̄
(semi-leptonic) or tt̄ → bqq̄b̄qq̄ (all-hadronic).

The semi-leptonic decay channel has a reasonably large branching ratio
(about 38% of the tt̄ decays, counting only e and µ final states). This is a
smaller branching ratio than the all-hadronic decay channel (56%), but in a
hadron collider, all-hadronic top decays are much harder to distinguish from
the light jets background than a semi-leptonic decay, which is characterised
by its high-energetic charged lepton.

The resonances we are looking for are massive, with masses between 1
and 2 TeV1. When such large energies are present in the system, the decay
products are likely to be boosted, and in that case the decay products can be
merged. The standard procedure for reconstruction jets in ATLAS relies on
the reconstruction of each of the top decay products, i.e. the reconstruction
of four jets, one charged lepton and Emiss

T in the case of semi-leptonic top
decay[92]. This situation is referred to as the resolved case, when all the top

1In this and the following chapter, the scientific shorthand is used where the energy is given in
units of eV, in a unit base where c = 1. In this case, c can be omitted when giving the unit for
mass (formally eV/c2) and momentum (eV/c).
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decay products are well separated. This is in contrast to the more energetic
case, where the top decay products start to merge (the transition region). When
all the top decay products from each top quark are merged, we have the fully
merged mono-jet situation.

The following analysis assumes that the products of each top decay are
merged into one single jet (mono-jet), with three sub-jets (in the case of the
hadronic top decay) or one jet containing the b jet and the charged lepton, in
the case of leptonic top decay.

The objects needed to reconstruct the tt̄ pair are thus two energetic jets, of
which one contains a charged lepton, and missing transverse energy from the
neutrino. These three objects (the hadronic top jet, the leptonic top jet and the
Emiss

T ) combined give us the invariant mass of the system. In the absence of
a tt̄ resonance, the invariant mass spectrum is expected to be exponentially
declining with mass. If a resonance is present, a peak will be seen, provided
the production cross section is large enough.

For the analysis presented in this and the following chapter, an integrated
luminosity of 200 pb−1 and a collision centre-of-mass energy

√
s = 10 TeV

has been assumed, which roughly corresponds to the expectations of one year
of early data-taking with the LHC.
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9.1 Signals and backgrounds
The signal searched for is a heavy particle in the mass range 1− 2 TeV, that
decays into tt̄ pairs. With an optimal selection, Standard Model tt̄ and reso-
nances will dominate our signal.

The simulated samples used belong to a centrally produced collection2

that the ATLAS collaboration made in 2008, known as MC08, with√
s = 10 TeV[93, 94]. The cross sections used for the Standard Model

processes have been normalised to the accepted theoretical values of each
process. The numbers listed in the tables are the cross sections used for
each sample, which include cut efficiencies and NLO corrections. The
samples have either been “fully” simulated, where the full ATLAS detector
is simulated, or “fast” simulated using the ATLFASTII package[95], in
which the inner detector and the muon system are fully simulated, while
the calorimeter response is parametrised. At present, ATLFASTII does not
contain a simulation of the high-level trigger.

In the remainder of this section, the datasets used for signal and background
simulation are described. For each sample, a 6 digit sample number is given.
This is a unique sample identifier in the ATLAS production, stated here for the
sake of reproducibility within the ATLAS collaboration. Non-ATLAS readers
can ignore the sample number without loss of information about the analysis.

9.1.1 Signal: top and top resonances
The resonance signal used in this analysis is a Z′, a heavy Standard Model
Z-like colour singlet spin 1 particle, as outlined in Section 8.1. It is a narrow
resonance in terms of its mass, Γ/M = 3.4%[82]. The advantage of using an
uncoloured resonance in an analysis like this, is that it has no interference with
the tt̄, and the combination of the resonance and the tt̄ spectrum is simply the
addition of the samples. For a coloured resonance, such as a Kaluza-Klein
gluons, there is an interference with the tt̄ spectrum, and for the simulation of
each mass point, the entire tt̄ spectrum must be generated to correctly account
for this effect.

The Z′ signals that have been fully simulated using the PYTHIA

generator[96, 97, 75, 98], using the couplings described in Ref. [82],
are listed in Table 9.1(a). In full simulation, the masses 1 and 2 TeV are
available. In order to investigate the behaviour of the resonances in the
intermediate mass region, an additional set of Z′ resonances with masses of
1.0, 1.1,. . . 2.0 TeV was also simulated using ATLFASTII. These samples are
listed in Table 9.1(b).

The standard model tt̄ sample has been generated with MCATNLO[99, 100]
using HERWIG/JIMMY parton showering[101, 102, 103, 104]. Another sam-

2For the samples used, the dataset tags are e368 (event generation), s462 (GEANT simulation),
r635 (digitisation and reconstruction) and t53.
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Particle Sample Events Mass (GeV) σ (pb)

Z′→ tt̄ 105600 14898 1000 14.8

Z′→ tt̄ 105609 14976 2000 0.987

(a) Signal Z′samples, full simulation with PYTHIA. The pro-
duction cross section given is the one used for plots, but it has
no other consequence for the analysis.

M (TeV) 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Events 15k 30k 30k 30k 29.8k 30k 30k 30k 30k 30k 30k

(b) Signal Z′, PYTHIA/ATLFASTII simulation. The number of events is given in multiples
of a thousand (k).

Table 9.1: Signal Z′ samples, full simulation and fast simulation with ATLFASTII,
Z′ → tt̄ → all decay channels. The event generator is PYTHIA, using the couplings
described in Ref. [82].

Process Sample σ (pb) Generator Filter Events

tt̄ → `+X 105200 294.472 MCATNLO – 1930444

tt̄ → all decays Private 66.1272 PYTHIA ptop
T > 200 GeV 294499

Table 9.2: Simulated tt̄ samples, full simulation with MCATNLO (using HER-
WIG/JIMMY parton showering) and fast simulation with PYTHIA interfaced with ATL-
FASTII. The settings of the fast simulation are identical to the settings used for the
samples in Table 9.1(b).

ple, using PYTHIA/ATLFASTII with the same configuration as the Z′ samples
has also been produced. For this sample, a cut on the generated top quark of
pT > 200 GeV has been applied, to keep only events in the high-energy re-
gion, which are of greater interest to us. The information about the tt̄ samples
is summarised in Table 9.2.

The leading jet pT for the fully simulated Z′ samples are drawn in Figure 9.1
and a comparison between the full simulation and the ATLFASTII sample for
the mass M = 1 TeV is shown in Figure 9.2.

A comparison between the different tt̄ samples is given in Figure 9.3.
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(b) Transverse energy of the leading jet in the muon channel

Figure 9.1: Z′ sample comparison, for Z′1 (M = 1 TeV) and Z′2 (M = 2 TeV). The
transverse energy of the leading jet after a Emiss

T > 20 GeV cut is shown. In this plot,
the cross sections σ ·BR(→ tt̄) = 14.8 pb for the 1 TeV resonance and 0.987 pb for
the 2 TeV one have been assumed.
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(b) Transverse energy of the leading jet in the muon channel

Figure 9.2: Z′ sample comparison, for the ATLFASTII and the fully simulated Z′ (M =
1 TeV) samples. The transverse energy of the leading jet after a Emiss

T > 20 GeV cut is
shown. In this plot, the cross sections σ ·BR(→ tt̄) = 14.8 pb for the 1 TeV resonance
and 0.987 pb for the 2 TeV one have been assumed.
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Figure 9.3: tt̄ sample comparison, for the ATLFASTII and the fully simulated samples
(MCATNLO). The transverse energy of the leading jet after a Emiss

T > 20 GeV cut
is shown. The impact of the filter cut of ptop

T > 200 GeV in the ATLFASTII sample
has a clear impact in the reconstructed energy of the leading jet, even for energies
significantly larger than 200 GeV.
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9.1.2 Background samples
The signature we are looking for contains at least two massive jets, a charged
lepton and Emiss

T . Besides the tt̄ pair production process, this signal could also
be created by any signal producing a charged lepton and a neutrino, such as
W + jets. Other backgrounds that must be considered are multijet events (two
or more partons from the collision) which have a very large production cross
section at a hadron collider. Also single top and all-hadronic top decays must
be considered.

W + jets
For the W + jets process, two different generators have been used:
ALPGEN[105] and PYTHIA. Information about the samples are listed in
Tables 9.3 and 9.4.

ET of the leading jet in the ALPGEN and PYTHIA W samples are plotted
for comparison in Figure 9.4. The ALPGEN sample has a higher rate at high

Particle Sample σ (pb) Reconstructed events

W (→ e+ν)+0 partons 107680 12425.3 1142471

W (→ e+ν)+1 parton 107681 2577.13 248174

W (→ e+ν)+2 partons 107682 824.72 776283

W (→ e+ν)+3 partons 107683 248.026 199374

W (→ e+ν)+4 partons 107684 68.442 58872

W (→ e+ν)+5 partons 107685 20.252 17492

W (→ µ +ν)+0 partons 107690 12353.4 1328626

W (→ µ +ν)+1 parton 107691 2629.71 227220

W (→ µ +ν)+2 partons 107692 832.406 729598

W (→ µ +ν)+3 partons 107693 246.44 223087

W (→ µ +ν)+4 partons 107694 67.71 58928

W (→ µ +ν)+5 partons 107695 19.886 17475

W (→ τ +ν)+0 partons 107700 12417.5 1326080

W (→ τ +ν)+1 parton 107701 2570.42 246827

W (→ τ +ν)+2 partons 107702 820.816 764468

W (→ τ +ν)+3 partons 107703 247.294 223162

W (→ τ +ν)+4 partons 107704 67.466 58729

W (→ τ +ν)+5 partons 107705 20.74 17413

Table 9.3: W + jets Monte Carlo samples, full detector simulation. The generator used
is ALPGEN with HERWIG parton showering.
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Figure 9.4: W generator comparison; ET of the leading jet for PYTHIA and ALPGEN.
For these events, one charged lepton (e or µ) is reconstructed and Emiss

T > 20 GeV.
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Particle Sample σ (pb) Reconstructed events

W (→ e+ν) 106020 12630.7 4798140

W (→ µ +ν) 106021 12630.7 4760474

Table 9.4: W samples, full simulation. The generator used is PYTHIA.

energy, a trend that holds also for the invariant mass spectrum. The conser-
vative approach is thus to use only the ALPGEN sample, which is done in the
following analysis, unless something else is stated.

Multijets
At a hadron collider, a multijet event, when two or more high-energy partons
emerge from the collision, is the most likely process to occur that result in
high-pT signals in the detector. In order for a multijet event to be reconstructed
as a tt̄ event, a charged lepton must be reconstructed. Since both muons and
electrons can be produced in hadronic showers, this can happen. In addition,
the algorithms may by mistake reconstruct an electromagnetic cluster in a jet
as an electron, or jet punch-through fragments as a muon.

Particle Sample σ (pb) pT range (GeV/c) Events

2 partons 105010 866800000.0 17 < pT < 35 398312

2 partons 105011 56010000.0 35 < pT < 70 979316

2 partons 105012 3280000.0 70 < pT < 140 1357129

2 partons 105013 151600.0 140 < pT < 280 529429

2 partons 105014 5122.0 280 < pT < 560 1390403

2 partons 105015 111.9 560 < pT < 1120 359293

2 partons 105016 1.075 1120 < pT < 2240 398022

2 partons 105017 0.001112 pT > 2240 398719

Table 9.5: Dijets samples, full simulation with the generator PYTHIA.

For the multijets, the generators PYTHIA (see Table 9.5) and ALPGEN (Ta-
ble 9.6) have been used, as in the W case. In PYTHIA, only two partons are
generated in the hard scattering, while the ALPGEN samples contain up to 6
partons. A comparison between the PYTHIA dijets and the ALPGEN multi-
jets is given in Figure 9.5. In the electron channel, the agreement between
the different generators is excellent for all energies. In the muon channel, the
agreement is good for jet ET > 250 GeV. In the following analysis, the ALP-
GEN multijets sample has been used, unless otherwise stated.
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Particle Sample σ (pb) pT range (GeV/c) Events

2 partons 108352 30114200.0 35 < pT < 70 2732195

3 partons 108353 9835390.0 35 < pT < 70 977891

4 partons 108354 1494830.0 35 < pT < 70 98987

5 partons 108355 249185.0 35 < pT < 70 24845

2 partons 108357 1116550.0 70 < pT < 140 1097612

3 partons 108358 1486730.0 70 < pT < 140 1423116

4 partons 108359 552311.0 70 < pT < 140 551024

5 partons 108360 189793.0 70 < pT < 140 187775

2 partons 108362 31872.0 140 < pT < 280 317920

3 partons 108363 65508.9 140 < pT < 280 634156

4 partons 108364 49028.2 140 < pT < 280 489270

5 partons 108365 24249.3 140 < pT < 280 241596

6 partons 108366 11571.7 140 < pT < 280 115763

2 partons 108367 750.2 pT > 280 223992

3 partons 108368 1944.8 pT > 280 579039

4 partons 108369 2149.9 pT > 280 642301

5 partons 108370 1392.8 pT > 280 416906

6 partons 108371 972.6 pT > 280 278654

Table 9.6: Multijets samples in full simulation. The generator is ALPGEN.
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Figure 9.5: Multijet generator comparison; ET of leading jet as given by the PYTHIA
and ALPGEN generators. For these events, one lepton (e or µ) is reconstructed and
Emiss

T > 20 GeV.
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Particle Sample σ (pb) Events

Single top, t-channel 105502 43.176 29961

Single top, associated W production 105500 14.266 9999

tt̄ → jets 105204 247.846 967920

Table 9.7: Secondary background samples; single top and all-hadronic top.

Secondary backgrounds
Since the signal we are looking for contains tt̄ production, all backgrounds
with top quarks must be considered. Samples of single top[17, 18] and all-
hadronic top are listed in Table 9.7.

Due to the low production cross section (in the case of single top) and the
low fake-rate of charged leptons, these backgrounds are less important than
the tt̄ → `ν +X , W and the multijets backgrounds.

The s-channel single top production is negligible at the LHC compared to
the other single top channels. See also Chapter 2.2.

9.2 Object reconstruction
For semi-leptonic decays of tt̄ where the decay products are merged we want
to reconstruct the charged lepton from the W decay, the neutrino (which we
see only through the missing energy, Emiss

T ), one jet from the b quark of the
leptonic top decay and one jet containing the hadronic top decay. The object
definitions largely follow the standard prescriptions[34].

For electrons we require ET ≥ 20 GeV, |η | < 2.47 with the cryostat crack
excluded (1.37 < |η | < 1.52), and no isolation requirement in the initial pre-
selection3.

For muons, we require ET ≥ 20 GeV, |η | < 2.4 and no pre-selection isola-
tion requirement.

The missing transverse energy used is the Emiss Re f Final
T , which is described

in detail in Ref. [68]. For the deduction of the missing energy, the transverse
energy and momentum contributions of all reconstructed objects are consid-
ered, and the final Emiss

T is the balance of these objects.
For the jets, the algorithm anti-k⊥[73] is used, with radius parameter R =√
∆η2 +∆φ 2 = 1.0, and an ET cut of ET > 40 GeV is applied. As input for

the jet finder, locally calibrated topological clusters are used[68], with a cal-
ibration technique very similar to the method outlined in Chapter 7. In this
cluster collection the muons are included. By deliberately adding the muon
collection to the jet clusters, we are placing the muons and the electrons on
an equal footing, as the electrons already are (potentially) included in the jet

3In ATLAS jargon, this corresponds to“ElectronMediumNoIso” (egammaPID 1982451)
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clusters. No overlap removal between jets and charged leptons is performed in
the pre-selection stage. Double-counting is instead avoided by matching the
reconstructed charged leptons to the leading lepton inside a jet, using only the
lepton in the jet for the analysis. For the leptonic top decay, we expect a b jet
with a charged lepton in close proximity, which corresponds to the situation
with a jet and a lepton overlapping.

For the hadronic top decay, we expect to find a single jet containing all the
decay products from the top (a b quark and two light quarks from the W ).
In order to resolve the substructure of the jet, the FASTJET package[106] has
been used to split the jets.

9.2.1 Pre-selection
For electroweak processes (such as W → `ν , and leptonic top decay), the se-
lection is events with one truth lepton from a W decay (possibly via the decay
of a τ) and one reconstructed lepton of the same kind (e or µ).

For quantum chromodynamical (QCD) processes (multijets, all-hadronic
top decays), all events with at least one reconstructed lepton are considered.

We require at least one charged lepton reconstructed (electron or muon) that
is also attached to a jet, and require Ee

T > 20 GeV or pµ

T > 20 GeV. In addition,
Emiss

T > 20 GeV.
An ET cut on the leading jet of ET > 250 GeV is made. In Figures 9.6 and

9.7, the ET of the next-to-leading jet for Z′ 1 TeV, Standard Model top pairs
and W → `ν , after the pT > 250 GeV cut on the leading jet is shown, for
the electron and muons channels, respectively. At this stage, before selection
cuts, we are dominated by the multijets background, despite having required
one reconstructed charged lepton, especially in the muon channel. The leading
jet cut at 250 GeV affects the spectrum of the second jet in such a way that the
turnover point for the spectrum occurs at ET ≈ 200 GeV.
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Figure 9.6: Transverse energy (ET) of the leading and next-to-leading jets in the elec-
tron channel for Z′ 1 TeV, SM top pairs, W → `ν , multijets and single top. In the
bottom plot, an ET cut of 250 GeV has been applied to the leading jet.
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Figure 9.7: Transverse energy (ET) of the leading and next-to-leading jets in the muon
channel for Z′ 1 TeV, SM top pairs, W → `ν , multijets and single top. In the bottom
plot, an ET cut of 250 GeV has been applied to the leading jet.
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9.3 Selection
In the top decay, we assume merged top decay products, and the challenge
in the selection is to distinguish the jets from top decays from light jets. To
this end, we perform a top-tagging[107], by using a set of variables that offer
good discrimination against the background. The selection of top-tags is made
using straight-forward variable cuts or multivariate techniques (TMVA)[108].
The variables are inspired by Thaler and Wang[109], and described in detail
below.

9.3.1 Variables and pre-selection
The global requirement on the event is the pre-selection described in the
previous section, i.e. E leading

T > 250 GeV (leading jet in the event), at least
one charged lepton reconstructed (electron or muon) with Ee

T > 20 GeV or
pµ

T > 20 GeV and Emiss
T > 20 GeV.

For all the plots in this section, the signal used is the combination of all the
Z′ ATLFASTII samples (MZ′ = 1− 2 TeV) and the backgrounds used are the
ALPGEN W and multijets samples.

Variables for leptonic top-tagging
The variables for leptonic top-tagging explore different aspects of the lep-
ton/jet kinematics. A leptonic top jet candidate must have a reconstructed
charged lepton associated with it (i.e. an electron or a muon is included among
the jet clusters). We require that ET > 40 GeV for the jet, which is the normal
jet cut.

The variables for leptonic top-tagging, xlep, zlep, iso, ∆R and Qvis are de-
scribed in detail below. They are also shown in Figures 9.8, 9.9, 9.10 and 9.11,
and a summary of the definitions and pre-selection cuts is given in Table 9.8.

The variable Qvis (see Figures 9.10(b) and 9.11(b)) is the invariant mass of
the leptonic top jet candidate, which includes the lepton. Ideally, this should be
close to the top mass for top events (allowing for lower mass due to the missing
neutrino), while the multijet and W backgrounds should be lower. However,
even jets that originate from a massless object do appear massive due to the
hadronisation process, and the mass is roughly a function of the jet ET and
radius[110, 111]. The variable Qvis is nonetheless a powerful discriminant
against the W background.

The variable xlep (Figures 9.8(a) and 9.9(a)) is defined as

xlep =
plep(pjet− plep)

p2
jet

(9.1)

where plep it the four-vector of the lepton (electron or muon) and pjet is the
four-vector of the leptonic top jet candidate. If the jet indeed comes from a
leptonic top decay, it consists of a b quark jet and a lepton. In the mlep → 0
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Figure 9.8: Variables for leptonic top-tagging: xlep, zlep and iso in the e channel. Com-
parison between signal (Z′ ATLFASTII, MZ′ = 1−2 TeV) and background (ALPGEN
W and multijets samples). All histograms have been normalised to unity.



9.3 Selection 155

leptonx
0 0.2 0.4 0.6 0.8 1 1.2

R
at

e 
(a

rb
. u

ni
ts

)

0

0.05

0.1

0.15

0.2

0.25
 channelµ

Z’ AtlFast 1-2 TeV

νW -> l + 

Multijets (Alpgen)

(a) Distribution of the variable xlep.

leptonz
0 0.2 0.4 0.6 0.8 1

R
at

e 
(a

rb
. u

ni
ts

)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
 channelµ

Z’ AtlFast 1-2 TeV

νW -> l + 

Multijets (Alpgen)

(b) Distribution of the variable zlep.

Relative isolation
0 0.5 1 1.5 2

R
at

e 
(a

rb
. u

ni
ts

)

-410

-310

-210

-110

1
 channelµ

Z’ AtlFast 1-2 TeV

νW -> l + 

Multijets (Alpgen)

(c) Distribution of the muon isolation.

Figure 9.9: Variables for leptonic top-tagging: xlep, zlep and iso in the µ channel. Com-
parison between signal (Z′ ATLFASTII, MZ′ = 1−2 TeV) and background (ALPGEN
W and multijets samples). All histograms have been normalised to unity.
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Figure 9.10: Variables for leptonic top-tagging: ∆R and Qvis in the e channel. Com-
parison between signal (Z′ ATLFASTII, MZ′ = 1−2 TeV) and background (ALPGEN
W and multijets samples). All histograms have been normalised to unity.

limit (which is valid for both muons and electrons at these energies) it can be
shown that

xlep =
Q2

vis−m2
b

Q2
vis

, (9.2)

where mb is the mass of the b quark. xlep is typically large for electroweak
processes, such as the leptonic W decay, and small for QCD processes. As a
pre-selection cut, xlep < 1.2, which is a very loose cut, since for a perfectly
calibrated top decay, this variable should never exceed 1.
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Figure 9.11: Variables for leptonic top-tagging: ∆R and Qvis in the µ channel. Com-
parison between signal (Z′ ATLFASTII, MZ′ = 1−2 TeV) and background (ALPGEN
W and multijets samples). All histograms have been normalised to unity.

zlep is computed as the ratio between the energy of the lepton and the energy
of the leptonic top jet candidate,

zlep =
Elep

Ejet
. (9.3)

Since the lepton is included in the jet, this ratio should always be less than
1, which is included as a pre-selection quality cut. zlep can also be viewed as
an isolation measure. The more traditional way of measuring the lepton isola-
tion, iso, is to look at the energy deposited in a R = 0.2 cone around the lepton
(not including the lepton itself). This variable is also included among the top-
tagging variables, and it turns out that iso offers a better discrimination be-
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tween signal and the multijets background, while zlep is more efficient against
the W background (compare Figures 9.8(b) – 9.9(b) with Figures 9.8(c) –
9.9(c)). No pre-selection cuts are made on the isolation.

The separation ∆R between the lepton and the jet with the lepton’s four-
momentum subtracted is also of interest. Although the lepton is required to
be included in the jet, the actual separation angle still carry information on
the internal structure of the jet, see Figures 9.10(a) and 9.11(a). As a quality
pre-selection cut, ∆R < 1.

Symbol Definition Pre-sel. cut

xlep xlep = (plep(pjet− plep))/(p2
jet) xlep < 1.2

zlep zlep = Elep/Ejet zlep < 1.0

iso Relative isolation; energy in a 0.2 cone around –

the lepton in units of the lepton energy

∆R Lepton/jet separation angle, ∆R(plep, pjet− plep) ∆R < 1.0

Qvis mass of the leptonic top jet candidate –

Table 9.8: Variables for leptonic top-tagging. The subscript “lep” refers to the lep-
ton (either electron or muon) and “jet” means the leptonic top jet candidate, which
includes the lepton. See the text for more details.

Variables for hadronic top-tagging
The variables for hadronic top-tagging, Qjet, QW and zcut all relate to the prop-
erties of the mono-jet containing the hadronic top decay products. A summary
of the variables and the pre-selection cuts are given in Table 9.9 and the vari-
ables are drawn in Figure 9.12. The hadronic top jet candidates are required to
have ET > 100 GeV, in addition to the global requirement that ET > 250 GeV
for the leading jet. In all the distributions shown, we have required that the
event contains exactly one pre-selected leptonic top jet.

Qjet is the mass of the hadronic top jet candidate, as drawn in Figure 9.12(a).
Ideally this should be the top mass for a top event and less for a light quark-
induced jet, however as previously described, even jets from massless objects
appear massive.

Using the FASTJET package[106], the jet can be split into its constituents by
running the k⊥ algorithm[112] backwards. If the k⊥ splitting level is dcut when
splitting the jet into two subjets A and B, a boost-invariant cut-level variable
zcut can be defined as

zcut = dcut/(dcut +M(pA + pB)), (9.4)

where M(pA + pB) is the invariant mass of the two subjets A and B.
Assuming the splitting can continue and the algorithm finds three subjets,

the invariant mass of each pair of these sub-jets can be computed. The mini-
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Symbol Definition Pre-sel. cut

Qjet invariant mass of the hadronic top jet candidate –

zcut dcut/(dcut +M(pA + pB)) –

QW invariant mass of the subjet pair with lowest mass, QW > 0

out of three subjets

Table 9.9: Variables for hadronic top-tagging. dcut is the k⊥ splitting level into the
subjets A and B. For the computation QW, the hadronic top jet candidate must be
possible to split into three subjets. Additional pre-selection cuts are a requirement
that the hadronic top jet candidate is not also leptonically tagged and that the φ angle
between the hadronic top jet candidate and the leptonic jet candidate is larger than 2.
See the text for more details.

mum of these pair-wise masses is called QW, and for a proper hadronic top de-
cay, this should correspond to the W mass. However, as seen in Figure 9.12(b),
this is not always the case for the Z′ sample. The lower mass peak, which is
more pronounced for the low mass samples (MZ′ < 1.5 TeV), is most likely
an effect of either not the entire top decay being contained in the jet, or of an
initial or final state radiation gluon being associated with the jet.

The only pre-selection cut applied to these variables is a requirement that
the hadronic top jet candidate can be split into three subjets. This requirement
can be formulated as QW > 0. Additional pre-selection cuts are a requirement
that the hadronic top jet candidate is not also leptonically tagged and that the
φ angle between the hadronic top jet candidate and the leptonic jet candidate
is larger than 2.

It should be noted that the distributions of the backgrounds, W and multi-
jets, are very similar for the hadronic top-tagging variables. This is expected,
since we are looking at the hadronic side of the decay, in which these two
backgrounds should be the same.
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Figure 9.12: Variables for hadronic top-tagging: Qjet, QW and zcut. Comparison be-
tween signal (Z′ ATLFASTII, MZ′ = 1− 2 TeV) and background (ALPGEN W and
multijets samples). All histograms have been normalised to unity.
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Variable Multijets suppression W suppression

e channel µ channel e channel µ channel

xlep xlep > 0.4 xlep > 0.35 – –

zlep – zlep > 0.15 zlep < 0.8 zlep < 0.8

iso iso < 0.1 iso < 0.5 – –

∆R ∆R > 0.25 ∆R > 0.15 – –

Qvis – – Qvis > 50 Qvis > 53

Table 9.10: Variable cuts for the leptonic top-tagging. See the text for a description of
the variables.

9.3.2 Top-tagging using variable cuts
As seen in the previous section, the variables chosen for top-tagging purposes
all behave distinctly different for signal and background. The most straight-
forward top-tagging procedure is thus to make simple cuts on the variables.

When choosing an appropriate cut value, two aspects must be considered:
the signal efficiency after the cut must be reasonably high, and the background
suppression should be as good as possible.

In the following plots the efficiency is displayed, when placing an upper
or lower cut on the variable, together with the background suppression, com-
puted as S/

√
S +B where S is the integrated signal and B the integrated back-

ground. The signal used is the combination of all the Z′ ATLFASTII samples
(masses between 1 and 2 TeV) and the backgrounds have been combined into
the ones containing electroweak (EWK) processes (dominated by W+ jets,
but also including leptonic decays of single top) or the ones with quantum
chromodynamical (QCD) processes, which is dominated by multijets but also
contains the all-hadronic top decay. For the S/

√
S +B computation, the sam-

ple production cross sections and efficiencies have been considered. A sum-
mary of the variable cuts for the leptonic top-tagging is given in Table 9.10,
and for the hadronic top-tagging in Table 9.11.

The leptonic top-tag
For the variable xlep the efficiency and the background suppression S/

√
S +B

is shown in Figure 9.13. The placement of the cut on xlep is a compromise be-
tween having a reasonable signal efficiency and a good background rejection.
Too sharp a cut on xlep would only enhance the electroweak background. The
cuts chosen are 0.4 for the electron channel and 0.35 for the muon channel.

In the electron channel, no lower cut can be placed on the variable zlep,
since the QCD background and the signal are too much alike, as demonstrated
in Figure 9.14(a). In the muon channel, a QCD-reducing cut on zcut has been
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Figure 9.13: Efficiency and background suppression (signal compared to signal plus
background, S/

√
S +B) when placing a lower cut on the xlep variable. The cuts chosen

are 0.4 (e channel) and 0.35 (µ channel).

placed at 0.15, which is close to the S/
√

S +B peak for the combination of all
the backgrounds (Figure 9.14(d)).

An upper cut on zlepis placed at 0.8 for both the electron and the muon chan-
nel, where the signal efficiency is larger than 85%, as demonstrated in Fig-
ures 9.15(a) and 9.15(b), and the S/

√
S +B is at a maximum (Figures 9.15(d)

and 9.15(d)).
In Figures 9.16(a) and 9.16(c) we can see that placing the ∆R cut at ∆R >

0.25 keeps 90% of the signal, while being close to the S/
√

S +B peak. In
the muon channel, the cut is placed at ∆R > 0.15, which, although not at the
S/
√

S +B peak, still offers an excellent background suppression.
In the electron channel the signal efficiency in the isolation variable has a

sharp kink at iso ≈ 0.1 (Figure 9.17(a)). Placing the cut significantly higher
than 0.1 would only enhance the background. Although the S/

√
S +B in the

muon channel (Figure 9.17(d)) also peaks at iso≈ 0.1, the signal efficiency is



9.3 Selection 163

leptonz
0 0.2 0.4 0.6 0.8 1

E
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1 Z’ AtlFast 1-2 TeV

EWK background

QCD background

All background

(a) Efficiency for the placement of the
lower zlep cut, e channel.

leptonz
0 0.2 0.4 0.6 0.8 1

E
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1 Z’ AtlFast 1-2 TeV

EWK background

QCD background

All background

(b) Efficiency for the placement of the
lower zlep cut, µ channel.

leptonz
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

S
+

B
S

/

0

5

10

15

20

25

30
EWK background

QCD background

All background

(c) S/
√

S +B ratio for the placement of
the lower zlep cut, e channel.

leptonz
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

S
+

B
S

/

0

5

10

15

20

25

30
EWK background

QCD background

All background

(d) S/
√

S +B ratio for the placement of
the lower zlep cut, µ channel.

Figure 9.14: Efficiency and background suppression (signal compared to signal plus
background, S/

√
S +B) when placing a lower cut on the zlep variable. The cut value

zlep > 0.15 has been chosen for the µ channel. No upper cut on zlep in the electron
channel.

much lower than in the electron case, which is demonstrated in Figure 9.17(b).
Instead the cut is placed at iso = 0.5, where the signal efficiency is about 90%
and the background suppression still very good.

For the variable Qvis, the S/
√

S +B ratio for the electroweak background
peaks at Qvis = 50 GeV and Qvis = 53 GeV for the electron and muon channels
respectively, as seen in Figures 9.18(c) and 9.18(d). By placing the cuts at
these values, a signal efficiency of about 80% is achieved in both channels
(see Figures 9.18(a) and 9.18(b)).
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Figure 9.15: Efficiency and background suppression (signal compared to signal plus
background, S/

√
S +B) when placing an upper cut on the zlep variable. The cut zlep <

0.8 is chosen for both the electron and the muon channels.
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Figure 9.16: Efficiency and background suppression (signal compared to signal plus
background, S/

√
S +B) when placing a lower cut on the ∆R variable. The cuts chosen

are ∆R > 0.25 for the e channel and ∆R > 0.15 for the µ channel.
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Figure 9.17: Efficiency and background suppression (signal compared to signal plus
background, S/

√
S +B) when placing an upper cut on the iso variable. The cut chosen

is iso < 0.1 for the e channel and iso < 0.5 for the µ channel.
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Figure 9.18: Efficiency and background suppression (signal compared to signal plus
background, S/

√
S +B) when placing a lower cut on the Qvis variable. The cuts chosen

are Qvis > 50 GeV for the e channel and Qvis > 53 GeV for the µ channel.
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Variable cut

zcut zcut > 0.08

QW QW > 30

Qjet Qjet > 100

Table 9.11: Top-tagging cuts, hadronic top decay.

The hadronic top-tag
For the variable Qjet, the S/

√
S +B ratio peaks at Qjet ≈ 100 GeV, as shown

in Figure 9.19(b) and a cut at Qjet > 100 GeV also offers a reasonable signal
efficiency as demonstrated in Figure 9.19(a).

The peak of the S/
√

S +B ratio of the QW variable is broad with an unclear
peak at QW ≈ 30 GeV as seen in Figure 9.20(b). A cut at QW > 30 GeV offers
a reasonable balance between signal efficiency and background suppression.

For the zcut variable, the S/
√

S +B peak is also broad (Figure 9.21(b)). By
placing the cut at zcut > 0.08, we assure that the signal efficiency is larger than
85%.

In Section 9.3.6, a summary of the selection efficiencies for the leptonic
top-tagging is given.
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Figure 9.19: Efficiency and background suppression (signal compared to signal plus
background, S/

√
S +B) when placing a lower cut on the Qjet variable. The cut chosen

is Qjet > 100 GeV.
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Figure 9.20: Efficiency and background suppression (signal compared to signal plus
background, S/

√
S +B) when placing a lower cut on the QW variable. The cut chosen

is QW > 30 GeV.
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Figure 9.21: Efficiency and background suppression (signal compared to signal plus
background, S/

√
S +B) when placing a lower cut on the zcut variable. The cut chosen

is zcut > 0.08.
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9.3.3 Top-tagging using multivariate analysis
In the previous section, the top-tagging was performed with straight-forward
cuts on the input variables. A more sophisticated way of performing a se-
lection based on many variables is to use a multivariate technique. In this
section, top-tagging with the ROOT package TMVA (Tool for Multi-Variate
Analysis)[108] is outlined.

The TMVA package offers a wide selection of multivariate techniques, such
as different neural networks and boosted decision trees. We have chosen to use
the linear discriminant analysis technique often called Fisher[113].

The Fisher method exploits the differences in sample mean between the
signal and the background samples. The Fisher discriminant for event i, F(i),
is defined as[108]

F(i) = K0 +
nvar

∑
k=1

Ckxk(i) (9.5)

where the summation index k runs over all the nvar number of input variables
xk, K0 is an offset that centres the mean of all signal and background discrim-
inants F at 0 and Ck is the Fisher coefficient, which is given from

Ck =
√

NSNB

NS +NB

nvar

∑
`=1

W−1
k` (x̄S,`− x̄B,`). (9.6)

In Eq. 9.6, NS (NB) is the number of signal (background) events and x̄S,` (x̄B,`)
is the mean of the variable x` in the signal (background) sample. The matrix
elements Wk` are given from

Wk` = ∑
P=S,B

〈xP,k− x̄P,k〉〈xP,`− x̄P,`〉, (9.7)

where xS,k (xB,k) is the variable xk in the signal (background sample) and bars
over the variables indicate sample means as before.

The Fisher discriminants work best when the signal and background sam-
ples have distinctly different mean values, which is the case for our variables.
The discriminants are constructed such that background events get a low F
and signal events a high value. The average of all Fisher discriminants is 0, as
given from Eq. 9.5, and the optimal cut on the discriminant is often approxi-
mately F > 0.

The signal consists of all the Z′ ATLFASTII samples (masses 1.0−2.0 TeV).
The background is either the W ALPGEN samples or the ALPGEN multijets.
The Fisher network is trained on a part of the sample which is then discarded
in the following analysis. 1/10 of the Z′ ATLFASTII sample is used for train-
ing, 1/6 of the multijets sample and 1/3 of the W sample. The input samples
have been weighted according to their respective cross sections, to ensure a
correct treatment of the sub-samples.
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Leptonic top-tagging
As for the cut-based top-tagging, the input variables for the leptonic top-
tagging using Fisher discriminants are xlep, zlep, ∆R, Qvis and the lepton isola-
tion, for the e and µ channels.

Distributions of the Fisher discriminants, efficiencies for certain placement
of the cuts and the signal-to-background efficiency (S/

√
S +B ratio) are given

in Figure 9.22 (electron channel) and Figure 9.23 (muon channel).
The Fisher discriminants clearly distinguish signal from background in the

multijets case. For the W background however, there is a greater overlap, as
can be seen from Figures 9.22(b) and 9.23(b). Especially in the muon case,
there is a subset of events in the W background that form a small signal-like
peak. However, the average separation is good. The cuts on the Fisher dis-
criminants are placed in such a way that the signal efficiency is about 80% for
the network trained with the multijets background and 90% signal efficiency
with respect to the W background.

Hadronic top-tagging
The variables used for top-tagging are Qjet, QW and zcut, just as in the cut-
based top-tagging.

Values of the Fisher discriminants, efficiencies for certain placement of the
cuts and the signal-to-background efficiency (S/

√
S +B ratio) are shown in

Figure 9.24.
The Fisher discriminants are computed for the multijets background only.

Since this is the hadronic side of the tt̄ decay, we expect equal behaviour
from the W background variables, as demonstrated in Section 9.3.1. In Fig-
ure 9.24(a), the distributions of the Fisher discriminants for the multijets back-
ground and the signal are shown. The spikes in the multijets distribution are
an effect of the sample weighting. The low-momentum samples have a larger
weight than the high-momentum samples, and a few events cause the spikes
in the distribution.

The cuts on the Fisher discriminants are placed such that the average signal
efficiency is about 80%. The total efficiencies for the top-tagging is listed in
Table 9.14.

Background

Channel Multijets W

e channel 0.1 −0.22

µ channel 0.22 −0.27

hadronic side −0.055 –

Table 9.12: Fisher discriminant cut values.
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Figure 9.22: Fisher discriminants Fe for leptonic top-tagging in the electron channel.
The cuts chosen are F jets

e > 0.1 (for the multijets background) and FW
e > −0.22 (for

the W background).
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Figure 9.23: Fisher discriminants Fµ for leptonic top-tagging in the muon channel.
The cuts chosen are F jets

µ > 0.22 (for the multijets background) and FW
µ >−0.27 (for

the W background).
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Figure 9.24: The Fisher discriminant Fhad for hadronic top-tagging. The cut chosen is
Fhad >−0.055.
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9.3.4 Tag efficiency
In Figure 9.25, the efficiency for the leptonic top-tag using the multivariate
technique and the variable cuts are compared for the Z′ signal, the fully simu-
lated tt̄ sample and the W background. The two top-tagging methods perform
similarly for the backgrounds, but for the Z′ signal, the MVA method shows a
much more stable performance, as the efficiency is constant as a function of
mass. This points to a weakness in the simple cutting procedure: as the lep-
tonic top-tagging variables can be correlated with the invariant mass, simple
cuts can introduce a mass-dependent bias. When combined in a linear discrim-
inant, this effect is not as pronounced.

In Figure 9.26, the hadronic top-tag efficiency using the multivariate tech-
nique and the variable cuts are compared for the Z′ signal, the fully simulated
tt̄ sample and the W background.

In comparing Figures 9.26(a) and 9.26(b), we can see that there is a clear
difference in the hadronic top-tagging for the Z′ sample and the tt̄ sample.
This effect is not (to first order) a generator problem, which is demonstrated
in Figure 9.27, where the hadronic top-tagging efficiencies of the two differ-
ent tt̄ samples are compared. It should be noted that the settings of ATLFASTII
is identical for the Z′ and tt̄ samples. It is more likely that the observed dis-
crepancy is kinematic and topological difference. tt̄ is produced both in the
s-channel and the t-channel, whereas Z′ only is produced through quark anni-
hilation (s-channel process). Since Z′ is an uncoloured resonance, the colour
flow is also different.

In Figure 9.28, the truth match efficiency of the hadronic top jet is shown.
A hadronic top jet is “truth-matched” if the true top quark from the simula-
tion is found within a ∆R < 0.5 radius from the hadronic top jet axis. As can
be seen from the figure, the truth-matching is heavily deteriorated for high
masses in the tt̄ sample, which explains the lower top-tagging efficiency: at
high masses, the hadronic top jet reconstructed from the tt̄ sample is just as
likely a light jet from ISR or FSR as a top jet. At higher masses, the t-channel
production becomes more dominant[114], and the top-tagging techniques we
have developed for the s-channel process of the Z′ decay fails.
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(a) Z′ 1-2 TeV (PYTHIA/ATLFASTII)
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Figure 9.25: Leptonic top-tag efficiency, for the Z′ signal sample, the fully simulated
tt̄ sample and the W ALPGEN background. Comparison between the multivariate top-
tagging technique (MVA) and the variable cut approach (cut). The combination of the
leptonic channels, e and µ , is shown.
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(a) Z′ 1-2 TeV (PYTHIA/ATLFASTII)
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Figure 9.26: Hadronic top-tag efficiency, for the Z′ signal sample, the fully simulated
tt̄ sample and the W ALPGEN background. Comparison between the multivariate top-
tagging technique (MVA) and the variable cut approach (cut).



180 Chapter 9: Analysis strategy

 [GeV]W constraint
invM

0 500 1000 1500 2000 2500 3000

E
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1 tt inclusive (AtlFastII)

tt leptonic (McAtNlo)

Figure 9.27: Hadronic top-tag efficiency using the multivariate technique. Comparison
between different tt̄ generators.
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Figure 9.28: Efficiency of the hadronic top quark truth-match for the Z′ and tt̄ ATL-
FASTII samples. An event is truth-matched if the true top quark from the simulation
is within a ∆R distance of 0.5 from the hadronic top jet. These events contain exactly
one leptonic top-tag and exactly one hadronic top-tag.
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9.3.5 Trigger efficiency for selected objects
In Figure 9.29 the trigger efficiency is shown as a function of the invariant
mass.
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(a) Trigger efficiency for the tt̄ sample, simulated with MCATNLO.
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(b) Trigger efficiency for the W sample, simulated with ALPGEN.

Figure 9.29: Trigger efficiency as a function of invariant mass after the final selection,
for the tt̄ and the W samples.

The trigger efficiency is studied after all pre-selection and selection cuts
have been applied, i.e. one lepton has been reconstructed, Emiss

T > 20 GeV,
ET > 250 GeV for the leading jet of the event and the event contains exactly
one lepton-tagged top jet, and exactly one hadron-tagged top jet. The effi-
ciency shown corresponds to events that have passed all these cuts also are
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required to pass the trigger cut, which means that either the ele20_loose
or the muo20 trigger has fired in the same region as the reconstructed lepton
of the same kind.

The trigger efficiency is roughly flat as a function of invariant mass, which
is desirable. The trigger was not simulated in the ATLFASTII samples, but
since the trigger efficiency is flat in the invariant mass, no special trigger ac-
ceptance is needed in the following analysis, and to first order we can assume
that the shape of the invariant mass spectrum is the same before and after the
trigger selection.

9.3.6 All efficiencies – overview
We can now summarise all the efficiencies from the pre-selection, the top-
tagging and the trigger in Tables 9.13 (for the cut-based top-tagging) and 9.14
(top-tagging with MVA).

ch. LAcc LRec Emiss
T E jet

T lqtag lwtag htag trig match total ev.

Z′ 1 TeV
e 81.5 73.6 94.1 77.7 76.9 71.4 71.4 100.0 100.0 17.2 489
µ 84.8 79.7 94.0 77.7 71.8 69.5 68.2 78.5 100.0 13.2 376

Z′ 2 TeV
e 87.5 70.0 97.1 93.7 68.8 85.2 80.9 99.5 100.0 26.3 730
µ 89.4 78.5 97.0 93.0 60.5 82.3 82.0 81.2 100.0 21.0 587

tt̄ leptonic decays, MCATNLO

e 74.0 72.9 89.6 11.4 69.1 58.6 41.0 99.8 99.9 0.91 6007
µ 79.0 79.5 90.4 11.1 68.7 55.3 39.6 78.9 99.8 0.75 5057

tt̄ ATLFASTII
e 76.4 75.1 91.7 45.6 70.3 62.2 49.0 – 99.9 5.15 2870
µ 81.6 79.6 92.2 45.2 71.4 58.2 47.3 – 100.0 5.31 2965

tt̄ all-hadronic decays, MCATNLO

e – 1.2 40.2 15.1 4.8 68.0 47.1 100.0 – 1 ·10−3 8
µ – 1.7 46.1 28.0 8.3 70.4 29.5 73.1 – 3 ·10−3 29

W ALPGEN

e 44.8 77.2 89.7 0.2 55.4 28.8 13.0 100.0 99.4 1 ·10−3 162
µ 47.0 89.3 91.8 0.2 58.8 24.8 13.7 85.6 100.0 1 ·10−3 155

Multijets, ALPGEN

e – 0.1 5.7 1.2 6.5 28.3 12.9 91.8 – 1 ·10−7 11
µ – 0.0 15.0 5.2 1.3 63.7 4.9 28.6 – 2 ·10−8 2

Table 9.13: Selection efficiency in percent for all cuts. Cut-based top-tagging selec-
tion. See the text for a description of the column titles.

In the tables, the efficiency for each cut is listed column-wise. The number
given is the efficiency when going from the previous cuts to the current one.
The only exception is the “total” column which shows the total efficiency.
The “ev” column shows the number of events that have survived all the cuts.
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ch. LAcc LRec Emiss
T E jet

T lqtag lwtag htag trig match total ev.

Z′ 1 TeV
e 81.5 73.6 94.1 77.7 61.2 80.3 76.5 100.0 99.6 16.4 468
µ 84.8 79.7 94.0 77.7 77.5 63.1 75.6 79.8 100.0 14.6 415

Z′ 2 TeV
e 87.5 70.0 97.1 93.7 71.2 93.8 88.7 97.1 99.8 32.0 888
µ 89.4 78.5 97.0 93.0 75.0 86.3 88.5 79.9 100.0 29.0 811

tt̄ leptonic decays, MCATNLO

e 74.4 72.9 89.6 11.2 52.3 71.5 50.4 99.2 100.1 1.02 1405
µ 79.0 79.4 90.5 11.0 75.8 49.2 48.7 78.9 99.9 0.90 1312

tt̄ ATLFASTII
e 76.4 75.1 91.7 45.6 52.9 75.0 58.8 – 99.7 5.59 3113
µ 81.6 79.6 92.2 45.2 76.9 53.5 58.3 – 100.0 6.49 3621

tt̄ all-hadronic decays, MCATNLO

e – 1.2 40.2 15.1 25.6 77.4 44.7 93.5 – 6 ·10−3 63
µ – 1.7 46.1 28.0 2.9 88.6 33.3 76.9 – 1 ·10−3 14

W ALPGEN

e 44.8 77.2 89.7 0.2 27.9 51.1 14.9 100.0 99.4 1 ·10−3 167
µ 47.0 89.3 91.8 0.2 82.1 19.0 15.7 82.8 100.0 1 ·10−3 183

Multijets, ALPGEN

e – 0.1 5.7 1.2 7.6 79.4 8.9 74.0 – 2 ·10−7 20
µ – 0.0 15.0 5.2 0.3 95.6 11.9 0.0 – 0 0

Table 9.14: Selection efficiency in percent for all cuts. Top-tagging with Fisher dis-
criminants. See the text for a description of the column titles.

The term “ch.” indicates the electron or the muon channel. We start with the
set of all events that contain a truth lepton from a W decay (possibly via the
decay of a τ), or, in the case of QCD processes, with all events. “LAcc” is
the lepton acceptance, that is the fraction of truth leptons that fall within the
fiducial region of the detector. This column is empty for QCD processes, that
lack truth leptons. “LRec” indicates the rate of events that passes the lepton
reconstruction criterion. “Emiss

T ” and “E jet
T ” are the cuts on the Emiss

T and the
ET of the leading jet, respectively. “lqtag” and “lwtag” indicate the amount
of events that survive the multijets and W -reducing leptonic top-tagging. The
term “htag” is the hadronic top-tag, while “trig” is the trigger requirement,
which is empty for the ATLFASTII samples. “match” indicate how many of
the reconstructed leptons that are also associated with a truth lepton. This
column is empty for QCD processes.

As seen from Tables 9.13 and 9.14, the two different methods for
top-tagging perform surprisingly similar when looking at the overall
efficiency for signal and background. However, there are hidden differences
in the performance between the two techniques, which was demonstrated in
Figure 9.25(a), where the efficiency in the leptonic top-tagging is shown to
be mass-dependent for the Z′ signal sample.
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Although the multivariate analysis top-tag performs slightly better in terms
of signal efficiency and background suppression, the cut-based version is
much more transparent and less likely to contain unknown biases. It is thus
preferable for applying to early collision data. In the next chapter, only the
cut-based top-tags will be used. It should be kept in mind, though, that the
multivariate top-tagging seems to perform better at high masses, and its
stability should be investigated further.

9.3.7 The invariant mass spectrum
The invariant mass spectrum, for all the backgrounds and the Z′ signal at
masses 1 and 2 TeV is drawn in Figure 9.30. The invariant mass is com-
puted from the leptonic top jet, the hadronic top jet and the Emiss

T . The neu-
trino z component is estimated using a W mass constraint, with the assump-
tions that the lepton and the neutrino originate from a W and that Emiss

T = Eν
T

[115, 116, 117, 118, 119].
In Figure 9.31 the backgrounds have been summed and consistently fitted

with an exponential function in the range 800 < Minv < 2500 GeV.
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Figure 9.30: Invariant mass in the single lepton channels, after selection.



186 Chapter 9: Analysis strategy

 / ndf 2χ   25.2 / 27
Prob   0.5635
Constant  0.1±   5.8 
Slope     0.000098± -0.003313 

 [GeV]W constraint
invM

0 500 1000 1500 2000 2500 3000

 / 
60

 G
eV

-1
E

ve
nt

s 
/2

00
 p

b

-210

-110

1

10

210
 / ndf 2χ   25.2 / 27

Prob   0.5635
Constant  0.1±   5.8 
Slope     0.000098± -0.003313 

e channel
tt (leptonic)

 (Alpgen)νW -> l + 
Single top (leptonic)
Multijets (Alpgen)
tt (all hadronic)

(a) Electron channel.

 / ndf 2χ  28.27 / 27
Prob   0.3971
Constant  0.114± 6.134 
Slope     0.000105± -0.003659 

 [GeV]W constraint
invM

0 500 1000 1500 2000 2500 3000

 / 
60

 G
eV

-1
E

ve
nt

s 
/2

00
 p

b

-210

-110

1

10

210
 / ndf 2χ  28.27 / 27

Prob   0.3971
Constant  0.114± 6.134 
Slope     0.000105± -0.003659 
 channelµ

tt (leptonic)
 (Alpgen)νW -> l + 

Single top (leptonic)
Multijets (Alpgen)
tt (all hadronic)

(b) Muon channel.

Figure 9.31: Invariant mass in the single lepton channels, after all selections, back-
ground only. Top-tagging using variable cuts. The backgrounds have been summed,
and fitted with an exponential.



10. Estimated cross section limits

In the previous chapter, the top-tagging technique was described and its per-
formance investigated. We saw that the background follows an exponential
shape after the top-tagging selection. Now we can start to investigate how to
find a signal in the invariant top mass spectrum, and how large cross sections
we need in order to find the signal in 200 pb−1 of data from

√
s = 10 TeV

collisions.
In this chapter, we test the signal and background hypothesis in pseudo-

experiments, and extract the measured cross section for different hypothesised
signal cross sections. From the different outcomes of the pseudo-experiments,
the experimental sensitivity and a lower limit on the cross sections that can be
seen for this particular set-up can be determined.

10.1 Cross section extraction
The cross section limits are extracted using pseudo-experiments, which are
performed in the following way: we create a “data mix” from the standard
model backgrounds (tt̄, multijets, W → `ν , single top) and a Z′ signal sample
at a particular mass 1≤M0 ≤ 2 TeV and a given cross section σtheory. Then we
draw events from a Poisson distribution, appropriate for the expected number
of events at 200 pb−1 of integrated luminosity.

The normalised data mix is fitted with a signal-plus-background hypothe-
sis. As background shape, we assume an exponential function, C` · e−λ`·Minv ,
which is consistent with the shape of our simulated background samples af-
ter the top-tagging selection, as shown in Figure 9.31. As signal, we use the
shape of the simulated Z′ sample, at the fixed mass point M0. At this point, the
mass must be fixed in order to fix the signal hypothesis. If the mass is left as a
free parameter of the fit, the model tested is undefined in the absence of a sig-
nal. We fit the electron and muon channels simultaneously with an extended1

binned maximum likelihood fit[9]. The likelihood function is transformed to a
χ2 distribution[9] for simplicity. We have five parameters of the fit: the signal
cross section σ , and the parameters of the exponential backgrounds; Ce, λe,
Cµ , λµ . It should be noted that we extract one single cross section from the
simultaneous fit of the electron and muon channels.

1The extended binned maximum likelihood fit is used, i.e. the total number of events is Poisson
distributed, since we want to measure a cross section, which is closely correlated to the total
number of events observed.



188 Chapter 10: Estimated cross section limits

For each pseudo-experiment, we get a measured cross section, σmeas. By
repeating the pseudo-experiments over and again, changing Poisson fluctua-
tions, start guesses for the fit and σtheory, we obtain a set of measured cross
sections, from which experimental sensitivity and a cross section upper limit
can be determined.

In the following sections we will explore two different ways of obtaining
cross section limits: a frequentistic, and a Bayesian.

10.1.1 The frequentist’s approach: Feldman-Cousins limits
A common problem when searching for a new, hitherto unknown, signal is the
a priori decision on whether to make a measurement, and set a double-sided
confidence limit on the parameter measured, or to set an upper limit. If this
decision is left until after the data has been analysed, the consequences could
be that the measured quantity ends up outside the allowed region, which ren-
ders the measurement useless (lack of coverage) or that an inherently worse
experiment in terms of instrument performance can set a better limit than a
more well-designed experiment, as pointed out in Ref. [120]. The way to han-
dle this ambiguity is also described in Ref. [120]: instead of “flip-flopping”
between single or double sided confidence levels, we extract the confidence
levels from data using a Neyman construction[121], an example of which is
given in Figure 10.1. We build the Neyman construction from the σmeas dis-
tributions of our pseudo-experiments. For a given σtheory, the distribution of
σmeas is Gaussian. For each σmeas distribution, we compute the Gaussian mean
m and Gaussian spread s. From the Feldman-Cousins prescription[120], a 95%
double-sided confidence level for a x > 0 Gaussian is achieved if

m = 1.6 · s. (10.1)

We want to find the lowest σtheory that gives us a distribution that fulfils
Eq. 10.1. In Figure 10.1, the point m− 1.6 · s in each σmeas distribution is in-
dicated with a grey line. Where this line crosses the σtheory-axis, we have the
lowest σtheory needed to just barely find a double sided 95% confidence level,
which is our cross section limit for the lowest signal cross section needed for
a 95% confidence level observation.

This procedure can be done for each mass point, yielding a cross section
limit as a function of mass, see Figure 10.3.

10.1.2 Bayesian method
The second method to extract cross section limits is the Bayesian
approach[122], where we start from the σmeas distribution from the
pseudo-experiments, when σtheory = 0, from now on denoted σ0

meas. An
example distribution is shown in Figure 10.2.
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M (GeV) χ2/nd f Prob Gaus. mean Gaus. sigma σBayes (pb) σFC (pb)

1000 41.65/26 0.03 0.07±0.08 1.55±0.07 3.07±0.05 2.52±0.03

1100 35.67/19 0.01 0.00±0.04 0.93±0.03 1.81±0.03 1.60±0.02

1200 26.06/17 0.07 0.02±0.03 0.67±0.03 1.32±0.04 1.24±0.02

1300 16.91/11 0.11 0.01±0.03 0.60±0.02 1.18±0.04 1.09±0.02

1400 8.89/9 0.45 0.03±0.02 0.52±0.02 1.04±0.03 0.96±0.02

1500 2.78/8 0.95 0.01±0.02 0.44±0.01 0.85±0.03 0.85±0.02

1600 6.36/7 0.50 −0.03±0.02 0.43±0.02 0.81±0.03 0.82±0.02

1700 4.01/7 0.78 −0.01±0.02 0.39±0.01 0.71±0.05 0.76±0.02

1800 16.48/11 0.12 0.01±0.01 0.32±0.01 0.60±0.04 0.65±0.02

1900 19.43/12 0.08 −0.01±0.01 0.29±0.01 0.55±0.04 0.65±0.02

2000 24.64/11 0.01 −0.01±0.01 0.25±0.01 0.46±0.03 0.61±0.02

Table 10.1: Cross section limit summary for each model mass. χ2/nd f , Prob (proba-
bility), Gaussian mean and Gaussian sigma refers to the Gaussian fit to the distribution
of σmeas in absence of signal, from which the Bayesian cross section limit is deived.
The final column contains the Feldman-Cousins cross section limits.

Bayes theorem[123, 124] states that the probability of σ , given n, is

P(σ |n) ·P(n) = P(n|σ) ·P(σ) (10.2)

where P(n|σ) is the probability of n, given σ , P(n) is the probability of n and
P(σ) is the probability of σ . In our case, we can interpret σ as the theoreti-
cal cross section σtheory and n as our data σmeas. The question of the average
expected upper limit σ ′ for a 95% credibility limit is then answered by inte-
grating Eq. 10.2,∫

∞

σ ′
P(σ |n)dσ =

∫
∞

σ ′

P(n|σ) ·P(σ)
P(n)

dσ ≤ 0.05 (10.3)

where P(n) now is a normalisation (essentially the integral of the σmeas distri-
bution). Since we don’t know the probability P(σ), we assume it is uniform
for positive σ and vanishing otherwise (reflecting our prior knowledge of the
cross section, i.e. only that it cannot be negative). P(n|σ) is simply the distri-
bution of Figure 10.2.

This integration can be performed for all the different signal masses, and
reflects the experimental sensitivity of the set-up, that is how large a signal we
could measure in the absence of a signal.

10.1.3 Cross section limits
In Figure 10.3 and Table 10.1, a summary of the 95% CL Bayesian and
Feldman-Cousins limits are given. In the table, the parameters of the Gaus-
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Figure 10.3: Cross section limits, 95% CL. Bayes and Feldman-Cousins limits. The
cut-based selection has been used. The error bars indicate the computational errors
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sian fits to the σ0
meas distributions are given, as well as the χ2/nd f of the fit,

and the fit probability.
In Figure 10.3, it is demonstrated that the Bayesian and the Feldman-

Cousins limits agree reasonably well, which indicates a robustness in the
pseudo-experiments and the limit extraction.

10.2 Systematic uncertainties
So far, we have only considered the samples and cuts as fixed and given. How-
ever, there may be unknown biases and uncertainties in the data, which should
be treated as systematic uncertainties[125]. In the following, we consider a jet
energy scale (JES) uncertainty of 10%, a jet energy resolution (JER) smear
of 25%/

√
E + 5% and a luminosity shift of 20%. The jet energy scale is the

correspondence between the jet energy of the simulation and the data, and the
shift reflects our uncertainty of the calibration and jet acceptance in early data.
The jet energy resolution has been discussed in Chapter 7. We perform an ar-
tificial worsening of the jet energy resolution by multiplying the jet energy of
each event with the sum of two random numbers drawn from Gaussian dis-
tributions, one with spread 0.25/

√
E and the other with spread 0.05. For the

jet energy scale and resolution shifts, we have shifted the model, but kept the
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Figure 10.4: Cross section limits, 95% CL. Feldman-Cousins limits after systematic
shifts. The cut-based selection has been used. Computational errors only.

signal-plus-background used in the data mix at a fixed level. In the luminosity
case, the data mix is rescaled, but not the signal templates.

We compute cross sections after each shift with the Neyman construction.
The signal and model must be different by the shift, otherwise we don’t see
the full effect of the systematics, hence the Bayesian integration wouldn’t give
us the correct answer here, since no signal is present in the data mix, as the
integration is done on the σmeas distribution when σtheory = 0.

For each systematic effect, we find the corresponding Gaussian smear that
has to be added to the σ0

meas distribution, such that the Bayesian limit com-
puted from the convolution is the same as the FC limits with the systematic
shift. The values of the added Gaussian spreads for each mass point and sys-
tematic shift is given in Tables 10.2 (model masses 1.0− 1.5 TeV) and 10.3
(1.6−2.0 TeV). In the tables, u means shift up, and d means shift down. The
number indicates the percentage of the shift. Hence JESu10 means a jet energy
scale shift up by 10%.

For each systematic uncertainty, we obtain the cross section limit for the
shift up and the shift down (except in the case of the jet energy resolution,
which can only become worse). For each systematical effect, we determine
which shift, up or down, gives the largest cross section limit worsening. Half
the extra Gaussian spread for the worst shift of each systematical effect is
added in quadrature for a combined average smearing due to the systematical
uncertainty. From the combined smear, we can compute a final cross section
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Mass (GeV) Syst. σnosyst (pb) σsyst (pb) added spread (pb)

1000 JERu25 3.076±0.005 2.630±0.030 0.000±0.000
1000 JESu10 3.076±0.005 4.153±0.071 1.448±0.006
1000 JESd10 3.076±0.005 6.081±0.109 2.711±0.002
1000 lumu20 3.076±0.005 2.311±0.025 0.000±0.000
1000 lumd20 3.076±0.005 2.783±0.032 0.000±0.000

Combined 4.028±0.005 1.355±0.009

1100 JERu25 1.826±0.005 1.693±0.027 0.000±0.000
1100 JESu10 1.826±0.005 2.749±0.035 1.047±0.004
1100 JESd10 1.826±0.005 3.215±0.046 1.351±0.002
1100 lumu20 1.826±0.005 1.465±0.020 0.000±0.000
1100 lumd20 1.826±0.005 1.824±0.028 0.000±0.000

Combined 2.256±0.005 0.675±0.009

1200 JERu25 1.323±0.005 1.315±0.012 0.000±0.000
1200 JESu10 1.323±0.005 2.139±0.028 0.861±0.003
1200 JESd10 1.323±0.005 2.329±0.026 0.979±0.003
1200 lumu20 1.323±0.005 1.173±0.018 0.000±0.000
1200 lumd20 1.323±0.005 1.461±0.025 0.322±0.009

Combined 1.743±0.005 0.586±0.015

1300 jeru25 1.182±0.005 1.165±0.016 0.000±0.000
1300 jesu10 1.182±0.005 1.917±0.032 0.769±0.006
1300 jesd10 1.182±0.005 1.924±0.024 0.778±0.003
1300 lumu20 1.182±0.005 1.052±0.019 0.000±0.000
1300 lumd20 1.182±0.005 1.316±0.024 0.297±0.004

Combined 1.519±0.005 0.490±0.010

1400 JERu25 1.045±0.005 1.058±0.019 0.128±0.006
1400 JESu10 1.045±0.005 1.764±0.028 0.734±0.003
1400 JESd10 1.045±0.005 1.989±0.036 0.871±0.003
1400 lumu20 1.045±0.005 0.894±0.018 0.000±0.000
1400 lumd20 1.045±0.005 1.115±0.024 0.219±0.007

Combined 1.421±0.005 0.504±0.012

1500 JERu25 0.859±0.005 0.927±0.018 0.183±0.005
1500 JESu10 0.859±0.005 1.581±0.034 0.678±0.002
1500 JESd10 0.859±0.005 1.754±0.030 0.783±0.003
1500 lumu20 0.859±0.005 0.774±0.017 0.000±0.000
1500 lumd20 0.859±0.005 0.982±0.017 0.251±0.003

Combined 1.299±0.005 0.499±0.009

Table 10.2: Summary of the effect of systematic shifts on the cross section limits
(Feldman-Cousins version). Model masses in the range 1.0−1.5 TeV are listed.
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Mass (GeV) Syst. σnosyst (pb) σsyst (pb) added spread (pb)

1600 JERu25 0.830±0.005 0.969±0.017 0.236±0.006
1600 JESu10 0.830±0.005 1.669±0.035 0.731±0.002
1600 JESd10 0.830±0.005 1.938±0.032 0.888±0.003
1600 LUMu20 0.830±0.005 0.770±0.017 0.000±0.000
1600 LUMd20 0.830±0.005 0.994±0.022 0.260±0.006

Combined 1.396±0.005 0.566±0.011

1700 JERu25 0.752±0.005 0.905±0.021 0.250±0.003
1700 JESu10 0.752±0.005 1.575±0.039 0.703±0.002
1700 JESd10 0.752±0.005 2.099±0.032 0.997±0.002
1700 LUMu20 0.752±0.005 0.705±0.015 0.000±0.000
1700 LUMd20 0.752±0.005 0.882±0.015 0.225±0.005

Combined 1.401±0.005 0.601±0.007

1800 JERu25 0.625±0.005 0.819±0.014 0.274±0.002
1800 JESu10 0.625±0.005 1.632±0.044 0.772±0.002
1800 JESd10 0.625±0.005 3.312±0.054 1.660±0.002
1800 LUMu20 0.625±0.005 0.625±0.018 0.000±0.000
1800 LUMd20 0.625±0.005 0.794±0.020 0.254±0.005

Combined 1.885±0.005 0.910±0.009

1900 JERu25 0.571±0.005 0.811±0.022 0.292±0.005
1900 JESu10 0.571±0.005 1.389±0.053 0.645±0.002
1900 JESd10 0.571±0.005 3.116±0.069 1.564±0.002
1900 LUMu20 0.571±0.005 0.587±0.016 0.061±0.014
1900 LUMd20 0.571±0.005 0.772±0.023 0.265±0.002

Combined 1.807±0.005 0.876±0.009

2000 JERu25 0.483±0.005 0.671±0.015 0.234±0.004
2000 JESu10 0.483±0.005 1.158±0.029 0.536±0.003
2000 JESd10 0.483±0.005 3.726±0.146 1.885±0.001
2000 LUMu20 0.483±0.005 0.523±0.016 0.091±0.006
2000 LUMd20 0.483±0.005 0.734±0.019 0.277±0.004

Combined 2.036±0.005 1.010±0.006

Table 10.3: Summary of the effect of systematic shifts on the cross section limits
(Feldman-Cousins version). Model masses in the range 1.6−2.0 TeV are listed.
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Figure 10.5: Cross section limits, 95% CL. Bayesian limits before and after adding
the systematic shifts. The cut-based selection has been used. The shaded region indi-
cate the one standard deviation interval as given by the uncertainty in the un-shifted
measurement. The theoretical cross section given corresponds to a narrow leptophobic
topcolour Z′, as given in Refs [83, 126].

limit with the Bayesian method, as shown in Figure 10.5. The numbers are
summarised in Table 10.4. Pseudo-experiments with the systematical uncer-
tainties fully included confirm these numbers. In this figure, a theoretical
cross section is also indicated, corresponding to a narrow leptophobic top-
colour Z′, as given in Refs [83, 126]. Although this model does not fully cor-
respond to the one used in the analysis presented here, they are both narrow,
uncoloured resonances, and a scheme to find one would also be sensitive to
the other. The cross section for the leptophobic topcolour Z′ is shown, since it
has a fairly large predicted cross section, compared to other tt̄ resonance mod-
els. In a sense, this is one of the most optimistic models. Figure 10.5 indicates
that we could be able to discover (or exclude) a leptophobic topcolour Z′ with
a mass lower than about 1.2 TeV, using 200 pb−1 of data at

√
s = 10 TeV.

From Figure 10.4 we can see that a jet energy scale uncertainty is the most
devastating uncertainty in the analysis, which emphasises the importance of
a good understanding of the hadronic calibration and the jet corrections. It is
also evident that the jet energy scale shift impact is greatest in the ends of the
mass range, where the fit is inherently more sensitive to fluctuations.

The impact of the jet energy scale shift at the high-mass end of the spectrum
is demonstrated in Figure 10.6, in which the mass spectrum of a M = 2.0 TeV
Z′ is drawn together with the spectrum of the same process, after the jet energy
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Model mass (GeV) σno syst (pb) σsyst (pb) 1 STD (pb)

1000 2.52±0.03 4.03±0.01 1.55

1100 1.60±0.02 2.26±0.01 0.93

1200 1.24±0.02 1.74±0.01 0.67

1300 1.09±0.02 1.52±0.01 0.60

1400 0.96±0.02 1.42±0.01 0.52

1500 0.85±0.02 1.30±0.01 0.44

1600 0.82±0.02 1.40±0.01 0.43

1700 0.76±0.02 1.40±0.01 0.39

1800 0.65±0.02 1.89±0.01 0.32

1900 0.65±0.02 1.81±0.01 0.29

2000 0.61±0.02 2.04±0.01 0.25

Table 10.4: Summary of the cross section limits with and without the systematical
uncertainties. “One standard deviation” indicates the spread of the distribution of σmeas
for σtheory = 0, that is the underlying uncertainty in the measurement.

scale has been shifted down by 10%. The Standard Model background is also
shown for comparison. In Figure 10.6, the signal cross section has been set to
2 pb. From the figure, it is clear that a jet energy scale shift also shifts the peak
of the signal distribution. When the peak is shifted towards lower masses, it
drowns in the background. The sharp deterioration of the cross section limits
as a consequence of the jet energy scale shift that can be observed at masses
higher than 1.8 TeV coincides with the point at which the number of expected
background events drops below 1.

It should be noted that the treatment of the systematic uncertainties of the
jet energy resolution and the jet energy scale presented here is somewhat sim-
plified. We have assumed a fixed set of data and shifted the model of the signal
fit. Such a procedure does not account for the shifts in the background spec-
trum that would be the result of a shift in the jet energy scale or the jet energy
resolution. As the background is exponential, and the first-order effect of a jet
energy scale shift is just a simple rescaling of the x-axis, the background shift
per bin could be substantial. For a full treatment of the systematic uncertain-
ties in JES and JER, the systematic shifts should be applied to the signal-plus-
background data mix, while keeping the model fixed.

When the background is smeared with systematic effects, the valid region
of the exponential fit can change. We have seen that the unshifted background
is compatible with an exponential in the interval 800 < Minv < 2500 GeV. If
the jet energy scale is shifted up by 10%, the turnover point in the invariant
mass spectrum will also shift towards higher masses, and the lower limit on
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Figure 10.6: The invariant mass spectrum in the electron channel for the Standard
Model background with a Z′ (M = 2.0 TeV) signal added. The fitted function is the
exponential fit to the background. The Z′ signal itself is also shown, as well as the
model Z′ used in the fit. In the model, the jet energy scale has been shifted down by
10%. The cross section of the signal is 2 pb.

the region where the background is exponential will change. Ultimately, the
sensitivity of the analysis to the 1 TeV mass peak may drastically worsen.

The two different ways of treating the systematic shifts of the jet energy
scale and the jet energy resolution represents two different ways of viewing
data. If we keep the data fixed, we take the data as given, “this is what we
measured”. On the other hand, by shifting the data mix, we account for the
fact that there might be miscalibrations and other uncertainties in the data.
Since shifts in the background also affect the cross section limit, although to a
lesser degree than shifts in the signal, the latter approach is probably the more
consistent.

A preliminary study indicates that the cross section limits with systematic
uncertainties obtained by shifting the data mix are of the same order of mag-
nitude as the limits found when viewing the data as fixed.

Considerations of other systematical uncertainties
The analysis is based on simulations, and is thus dependent on the simulations
actually describing data correctly. A common way of estimating the generator
uncertainty is to compare different generators. In Figure 10.7 we compare the
hadronic top-tagging efficiency as a function of invariant mass for the two tt̄
samples, the fully simulated MCATNLO sample and the PYTHIA/ATLFASTII
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Figure 10.7: Systematic shift in the hadronic top-tagging efficiency due to different tt̄
generators. The cut-based top-tagging selection has been used.

sample. A clear shift in the acceptance is visible, insofar that the PYTHIA

sample has a generally higher efficiency for all masses, an effect which gets
more pronounced at larger masses. An effect like this could affect the final
result.

Another uncertainty that could arise is the composition of different Stan-
dard Model backgrounds. As a toy model, we have assumed first that the W
background is 50% larger than predicted by the simulation, then that the tt̄
background is 30% lower, and a combination of these two shifts. A final in-
crease of the multijets background by 100% was also tried. None of these al-
terations of the composition of the background changes the fact that the total
background is exponential, and the impact on the cross section limit is on the
order of the computational uncertainty, and much smaller than the jet energy
scale shift.

The sensitivity to other systematical uncertainties in the theoretical com-
putations has partly been investigated through the comparison of HERWIG

and PYTHIA hadronisation, and the difference between leading and next-to-
leading order effects of the matrix element in the tt̄ generator have also been
studied, in the comparison between the MCATNLO and PYTHIA/ATLFASTII
samples.
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10.3 Conclusions
With the top-tagging mono-jet approach described in this and the previous
chapter, we have shown that a 95% CL exclusion limit on the production cross
section of a narrow uncoloured tt̄ resonance (Z′) could be set to 4.0± 1.6 pb
(M = 1.0 TeV), 1.3± 0.4 pb (M = 1.5 TeV) and 2.0± 0.3 pb (M = 2.0 TeV),
including systematical uncertainties in the model, assuming

√
s = 10 TeV col-

lisions and 200 pb−1 of integrated luminosity. The top-tagging procedure fa-
cilitates the search for top quark jets at high energies, even though the top
quark decay products are merged. By deliberately adding the muons to the jet
clusters, we can treat the muon and the electron decay channels on an equal
footing, which provides us with a powerful tool for searching in these two
channels simultaneously.

The cross section result shown here is an improvement with respect to the
previous official ATLAS results[92], which state a 5σ discovery limit of about
10 pb for a resonance mass of 1 TeV. In this computation, 1 fb−1 of integrated
luminosity (that is 5 times more than we have used in the analysis) and a
centre-of-mass

√
s = 14 TeV (which gives a substantially higher top produc-

tion cross section) was used.
The CMS experiment at the LHC has also presented expected exclusion

limits[126, 127] for a narrow uncoloured resonance for a resolved approach
and a mono-jet search technique. For the resolved approach they report an
expected cross section exclusion limit at 95% CL of 8.89+4.02

−2.23 pb for a 1 TeV
mass resonance and 8.26+4.70

−3.18 pb for M = 2 TeV, using
√

s = 10 TeV and an
integrated luminosity of 100 pb−1 and semi-leptonic top decays in the muon
channel only[126]. With the mono-jet approach and an assumed integrated
luminosity of 200 pb−1, the CMS experiment report an expected cross section
exclusion limit at 95% CL of 7.5+4.4

−2.7 pb at M = 1 TeV and a limit of 0.6+0.2
−0.1 pb

at M = 2 TeV[127]. This search too, is only conducted in the muon channel.
The CMS cross section limit for the 2 TeV resonance is clearly better than
our limit, but at 2 TeV we are totally dominated by the systematic uncertainty
in the jet energy scale. In the absence of this uncertainty, our expected limit
would be below 1 pb.





Part IV:
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11. Towards higher energies

Sometimes scientists change their minds. New developments
cause a rethink. If this bothers you, consider how much dam-
age is being done to the world by people for whom new devel-
opments do not cause a rethink.
– Terry Pratchett, Ian Stewart and Jack Cohen: “The Science
of Discworld”, preface to the revised edition, 2002.

Throughout this thesis, measurements of energy in different forms have been
the main theme, from the studies of muons in the low-energy range and the
calibration of calorimeter modules, to the suggested search for hypothetical
heavy particles. The various analyses all use calorimeter signals as important
ingredients, although the application of the information has been quite differ-
ent.

The usage of calorimeter signals to discriminate between different particles,
thus investigating the properties of very low-energy muons from pion decays,
was described in Chapter 5, and it was shown that muons can be separated
from the pions, even for such low energies.

The inherent difficulties in retrieving the total energy of a hadron due to the
fundamental physical processes of hadronic showers was also discussed. As
has been demonstrated in Chapters 4 and 7, the calibration of the calorimeter
energy signal to the hadronic scale is far from trivial. The invisible energy
losses of the hadronic showers, as well as their fluctuating nature, demand
advanced calibration schemes in order to correctly estimate the energy. The
local hadronic calibration, as described in Chapter 7, provides a method for
hadronic compensation that both considers the event-by-event fluctuations and
the energy dependent response of the hadronic showers.

The local hadronic calibration method has been applied to data from the
combined ATLAS barrel test beam of 2004, demonstrating that a good linearity
and improvements in the resolution can be achieved for real data. The method
still needs some additional corrections, although the results from simulations
and real data have been shown to be consistent for the levels of corrections
applied.

A proposed search for tt̄ resonances was outlined in Chapters 9 and 10.
In order to find a heavy particle that decays to top quark pairs, the tt̄ signal
must be enhanced by reducing the background and the mass spectrum must
be correctly reconstructed. At high energies, the standard tt̄ reconstruction
schemes fail, since the top quarks are boosted and the decay products merge.
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Thus new tools must be developed for the high-energy top quarks, and in
this thesis a method for selecting top mono-jets through top-tagging has been
described.

The discovery (or exclusion) prospects for a narrow uncoloured tt̄ reso-
nance, a Z′, seem good: a 95% CL exclusion on the production cross section
could be set to 4.0± 1.6 pb (M = 1.0 TeV), 1.3± 0.4 pb (M = 1.5 TeV) and
2.0±0.3 pb (M = 2.0 TeV), including systematical uncertainties in the model.

Among the systematical uncertainties studied, the results of the study indi-
cate that the jet energy scale has the greatest impact on the final result, which
further underlines that a correct jet energy scale and a good hadronic energy
resolution will be crucial for the discovery of new physics at the LHC.

The first plans of the LHC were made more than twenty years ago, and
now, in November 2009, we have just seen the first proton-proton collisions.
It has been a long journey to get here and many physicists have devoted the
major part of their careers to planning, installing, commissioning, calibrating
and preparing for real data.

Now it begins.



12. Sammanfattning på svenska

Hur länge måste vi iaktta universum innan vi förstår hur det
fungerar? Räcker det med några hundra år, eller krävs det
tusen, tiotusen, miljoner, miljarder? Behövs det instrument som
inte kan skapas med vår teknologi?
– Peter Nilsson, Stjärnvägar, 1991

Experimentell elementarpartikelfysik handlar i mångt och mycket om att
försöka besvara skenbart enkla frågor, som ändå kan ha djupt komplexa
svar: Vad består allting av egentligen? Hur hålls det ihop? Var började det
någonstans? Den rena, grundläggande nyfikenheten är en mäktig drivkraft för
mänskligheten. Viljan att se vad som finns bortom den nuvarande horisonten
har skickat iväg expeditioner över haven eller genom tomma rymden,
ständigt sökande efter ny kunskap. Inte sällan är svaret på den ursprungliga
frågan en hel uppsättning av nya frågor. Elementarpartikelfysikens frågor
besvaras ofta med hjälp av energi. I högenergetiska partikelkollisioner kan
materiens innersta studeras, nya partiklar kan skapas ur kollisionsenergin
och växelverkan mellan partiklarna kan undersökas med bättre och bättre
precision.

Vid partikelfysiklaboratoriet CERN utanför Genève i Schweiz har
partikelacceleratorn LHC (Large Hadron Collider, den stora hadronkol-
lideraren) byggts. I LHC accelereras protoner till hastigheter nära ljusets,
för att sedan kollideras. I november 2009 skedde de första kollisionerna i
LHC, som är världens mest högenergetiska partikelaccelerator. Vid LHC:s
kollisionspunkter har detektorer byggts för att studera de partiklar som bildas
i kollisionerna. En av dessa detektorer är ATLAS, en 7000 ton tung maskin,
stor som ett femvåningshus och speciellt designad för att ta till vara på alla
de möjligheter som högenergikollisionerna vid LHC erbjuder.

ATLAS fysikprogram innefattar precisionsmätningar av standardmodellen,
som är den teori som för närvarande bäst beskriver materiens inre och par-
tiklars växelverkningar, men ATLAS kommer även att användas för att förut-
sättningslöst leta efter ny fysik bortom standardmodellen. Ett exempel på en
precisionsmätning är att studera den tyngsta kända elementarpartikeln, topp-
kvarken. Denna kvark är nästan lika tung som en hel guldatom och sönder-
faller så snabbt att den inte hinner bilda bundna tillstånd med andra kvarkar.
Toppkvarken observerades för första gången under tidigt 1990-tal vid par-
tikelacceleratorn Tevatronen i Chicago i USA, och att göra riktigt noggranna
mätningar av dess egenskaper är viktigt för att testa standardmodellen. Ett ex-
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empel på sökande efter ny fysik bortom standardmodellen är att undersöka om
det existerar partiklar som sönderfaller till toppkvarkar, så kallade toppreso-
nanser. I denna avhandling beskrivs hur en sådan sökning skulle kunna gå till,
och ATLAS-detektorns känslighet för sådana partiklar undersöks med hjälp av
datorsimuleringar. Studien visar att en viss sorts toppresonanser, som saknar
färgladdning och har en smal masstopp, skulle kunna upptäckas eller uteslu-
tas vid LHC med 95% konfidensnivå, om de har tvärsnitten1 4.0±1.6 pb (för
en resonans med massan 1.0 TeV/c2), 1.3± 0.4 pb (M = 1.5 TeV/c2) eller
2.0± 0.3 pb (M = 2.0 TeV/c2). Detta förutsätter att kollisionerna sker vid
masscentrumenergin

√
s = 10 TeV, och att vi har en integrerad luminositet2

på 200 pb−1, vilket är realistiska data för ett års tidig datatagning med AT-
LAS.

Toppresonansstudien visar att en av de viktigaste begränsningarna i sökan-
det efter dessa partiklar är kunskapen om den detekterade energin hos sön-
derfallsprodukterna. Detta ansluter till avhandlingens andra studie, tester och
kalibrering av ATLAS-detektorns kalorimetersystem. Kalorimetrar utgör en
viktig detektorkategori, som mäter energin hos partiklar genom deras total-
absorption i kalorimetermaterialet. I avhandlingen beskrivs en metod för att
kalibrera den energi som deponeras av hadroner i ATLAS centrala kalorime-
trar. Kalibreringen kallas “lokal kalibrering” eftersom korrektionerna tilläm-
pas lokalt på energikluster, baserat på kalorimetercellernas energitäthet. Kali-
breringsmetoden uppvisar en linearitet inom 3% i kalorimetern, och även en
rimlig överensstämmelse mellan simuleringar och data.

Avhandlingens röda tråd är energin: Kalibrering av energidepositioner
och sökandet efter nya partiklar med hjälp av högenergikollisioner. Världens
största partikelkolliderare, LHC, har precis startats, efter mer än tjugo år av
planerande, byggande, installerande och kalibrerande, och med LHC kommer
vi att kunna studera energier som aldrig tidigare frambringats i kontrollerade
miljöer på jorden.

Det är nu det börjar på riktigt.

1I det här sammanhanget är tvärsnitt ett mått på sannolikheten att bilda en viss partikel i proton-
proton-kollisionen.
2Den integrerade luminositeten är ett mått på den samlade mängden data. Om vi vet att det
finns en partikel med produktionstvärsnittet 1 pb så kommer vi att i genomsnitt ha 200 sådana
partiklar i den datamängd som motsvaras av den integrerade luminositeten 200 pb−1.
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A. Samples used in the very
low-energy muon analysis

For the study presented in Chapter 6, analysis of very low-energy muons in
the Tile stand-alone test beam of 2003, the data samples listed in Table A.1.

Run number Nominal energy Test beam period

(GeV) (year)

r0360177 9 2003

r0360144 5 2003

r0360171 3 2003

r0045360 5 1999

Table A.1: Details of the data samples used for the very low-energy muon analysis





B. Numerical values of the hadronic
calibration weight tables

B.1 Weight tables for the first LAr sampling layer

2.521 0.787 0.663 0.707 1.771

1.903 1.556 0.856 2.087 1.146 1.272

1.259 1.862 2.815 2.419 1.471 1.607 1.520 1.593

2.139 0.626 0.989 1.152 1.883 1.275 1.568 2.134 1.510 1.750 1.354 1.535 1.623

1.498 0.753 0.822 1.196 0.760 0.931 1.586 1.062 1.226 1.326 1.274 1.097 1.150 1.190

1.221 1.765 0.797 1.430 1.283 0.611 1.073 0.961 0.897 0.965 1.083 1.035 0.994

0.893 0.794 1.084 0.858 1.900 0.796 0.696 0.797 0.903 1.357 1.182 1.280 0.859 0.991 1.059 1.054

0.635 1.338 0.731 1.054 0.766 0.943 0.854 1.122 1.351
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Figure B.1: Weight table for LAr first sampling layer (the strips), low Econe values.
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1.771 1.503 1.272 1.383 1.521 1.396 1.479 1.402 1.468 1.424 1.463 1.467 1.459 1.418 1.462 1.438 1.452

1.272 1.554 1.449 1.673 1.530 1.477 1.581 1.475 1.584 1.506 1.491 1.514 1.486 1.471 1.468 1.496 1.468

1.593 1.556 1.641 1.574 1.645 1.590 1.548 1.511 1.561 1.545 1.497 1.503 1.505 1.506 1.489 1.497 1.500

1.623 1.519 1.430 1.457 1.457 1.418 1.500 1.425 1.427 1.421 1.417 1.409 1.407 1.411 1.412 1.395 1.406

1.190 1.227 1.254 1.249 1.226 1.263 1.250 1.231 1.238 1.246 1.228 1.237 1.226 1.236 1.227 1.222 1.225

0.994 1.027 1.048 1.051 1.037 1.033 1.026 1.041 1.060 1.058 1.057 1.047 1.051 1.053 1.053 1.056 1.053

1.054 1.022 0.985 0.940 0.963 0.959 0.965 0.970 0.971 0.967 0.977 0.974 0.978 0.982 0.983 0.988 0.989

1.351 1.151 1.246 1.246 1.135 1.100 1.123 1.062 1.046 1.026 1.016 1.022 1.014 0.998 1.002 0.993 0.985

1.624 1.100 1.252 1.315 1.426 1.332 1.340 1.478 1.383 1.301 1.234 1.188 1.143 1.128 1.079 1.058 1.038

1.178 1.536 1.208 1.378 1.328 1.349 1.480 1.394 1.339 1.269 1.198 1.110 1.105 1.088

0.726 1.337 1.232 0.895 0.662 0.994 1.082 1.027 1.024
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Figure B.2: Weight table for LAr first sampling layer (the strips), medium Econe values.

1.452 1.464 1.462 1.491 1.494 1.481 1.497 1.489 1.498 1.494 1.497 1.490 1.512 1.513 1.504 1.494 1.519

1.468 1.478 1.475 1.456 1.475 1.474 1.480 1.465 1.474 1.496 1.484 1.480 1.483 1.490 1.466 1.483 1.458

1.500 1.476 1.472 1.466 1.464 1.466 1.471 1.461 1.463 1.457 1.464 1.477 1.464 1.475 1.461 1.452 1.459

1.406 1.390 1.396 1.396 1.395 1.402 1.395 1.401 1.396 1.400 1.400 1.402 1.398 1.409 1.401 1.404 1.423

1.225 1.231 1.237 1.233 1.240 1.242 1.249 1.247 1.251 1.253 1.261 1.259 1.264 1.277 1.275 1.286 1.291

1.053 1.066 1.065 1.067 1.070 1.078 1.082 1.088 1.092 1.094 1.100 1.106 1.115 1.121 1.130 1.137 1.180

0.989 0.989 0.988 0.986 0.986 0.997 0.996 0.999 1.004 1.008 1.017 1.016 1.027 1.031 1.041 1.053 1.084

0.985 0.981 0.981 0.971 0.965 0.973 0.968 0.971 0.965 0.972 0.977 0.979 0.984 0.986 0.995 1.004 1.018

1.038 1.023 1.028 1.018 1.007 1.003 0.999 0.998 0.990 0.989 0.985 0.984 0.985 0.986 0.992 0.991 0.973

1.088 1.076 1.075 1.062 1.047 1.049 1.048 1.041 1.039 1.032 1.023 1.025 1.011 1.009 1.011 1.000 0.963

1.024 1.022 1.038 1.037 1.030 1.037 1.042 1.043 1.043 1.033 1.039 1.040 1.031 1.028 1.025 1.011 0.938

1.016 1.060 0.990 1.016 1.019 1.010 1.018 1.022 1.029 1.027 1.041 1.034 1.032 1.036 1.020 0.936

1.003 1.004 0.990 1.008 1.008 1.013 1.020 1.022 1.025 1.019 0.970
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Figure B.3: Weight table for LAr first sampling layer (the strips), high Econe values.
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B.2 Weight tables for the second LAr sampling layer

2.452 1.072 1.526 1.964 1.376

1.014 1.359 1.564 1.364 1.610 1.472 1.239 1.316 1.488 1.478

0.630 1.049 2.675 1.614 1.817 1.539 1.030 1.112 1.809 1.419 1.040 1.360

0.768 2.064 1.576 0.791 0.816 1.011 0.926 0.755 1.421 1.033 1.122 1.110 1.015

0.901 1.965 0.696 1.032 0.765 1.364 1.379 1.292 0.790 1.000 1.104 0.953 1.006

0.733 1.814 2.706 1.233 0.982 0.982 0.866 1.003 1.009 1.027

0.653 1.320 2.339
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Figure B.4: Weight table for LAr second sampling layer (middle), low Econe values.
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1.376 1.504 1.528 1.513 1.477 1.509 1.494 1.528 1.488 1.484 1.490 1.494 1.507 1.502 1.519 1.509 1.526

1.478 1.475 1.406 1.427 1.465 1.449 1.475 1.461 1.462 1.466 1.438 1.469 1.459 1.443 1.455 1.460 1.458

1.360 1.277 1.278 1.297 1.296 1.294 1.289 1.280 1.326 1.299 1.295 1.305 1.303 1.319 1.318 1.323 1.330

1.015 1.108 1.082 1.087 1.085 1.109 1.129 1.125 1.139 1.122 1.139 1.145 1.152 1.153 1.159 1.176 1.169

1.006 1.034 0.935 1.011 0.986 0.991 1.000 1.012 1.028 1.043 1.049 1.059 1.059 1.065 1.075 1.082 1.086

1.027 0.947 0.996 0.957 0.992 1.001 1.031 1.045 1.050 1.037 1.023 1.028 1.036 1.041 1.047 1.048 1.048

2.339 1.591 1.456 1.202 1.335 1.383 1.347 1.400 1.377 1.384 1.320 1.256 1.192 1.176 1.142 1.127 1.124

1.535 1.280 1.270 1.334 1.355 1.383 1.353 1.320 1.296 1.293 1.261 1.214

1.278 1.105 1.015 1.159 1.203 1.206 1.249 1.240 1.233

0.977 1.087 1.131 1.137
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Figure B.5: Weight table for LAr second sampling layer (middle), medium Econe val-
ues.

1.526 1.534 1.532 1.536 1.553 1.557 1.563 1.563 1.574 1.568 1.588 1.598 1.600 1.590 1.593 1.618 1.715

1.458 1.458 1.459 1.471 1.485 1.480 1.487 1.485 1.504 1.510 1.515 1.524 1.527 1.528 1.535 1.541 1.534

1.330 1.330 1.341 1.349 1.353 1.359 1.373 1.369 1.379 1.384 1.387 1.396 1.396 1.405 1.410 1.420 1.428

1.169 1.178 1.188 1.199 1.207 1.205 1.215 1.226 1.232 1.238 1.240 1.245 1.256 1.263 1.269 1.272 1.252

1.086 1.087 1.099 1.108 1.114 1.120 1.125 1.136 1.143 1.149 1.156 1.162 1.168 1.171 1.176 1.189 1.187

1.048 1.051 1.061 1.070 1.077 1.078 1.084 1.092 1.096 1.101 1.106 1.115 1.125 1.128 1.133 1.146 1.182

1.124 1.114 1.111 1.107 1.108 1.111 1.116 1.111 1.117 1.124 1.127 1.133 1.138 1.137 1.141 1.157 1.215

1.214 1.188 1.159 1.144 1.132 1.135 1.131 1.128 1.132 1.137 1.138 1.140 1.149 1.153 1.154 1.171 1.229

1.233 1.211 1.190 1.166 1.139 1.153 1.134 1.124 1.122 1.120 1.122 1.125 1.131 1.139 1.147 1.163 1.211

1.137 1.125 1.139 1.132 1.122 1.131 1.127 1.116 1.121 1.114 1.108 1.104 1.106 1.112 1.116 1.126 1.171

1.006 1.034 1.044 1.066 1.087 1.087 1.087 1.095 1.100 1.095 1.096 1.092 1.090 1.087 1.089 1.089

1.030 1.017 1.034 1.047 1.056 1.062 1.066 1.071 1.071 1.075 1.063 1.058

0.969 1.009 1.017 1.028 1.033 1.039 1.045 1.040 1.018
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Figure B.6: Weight table for LAr second sampling layer (middle), high Econe values.
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B.3 Weight tables for the third LAr sampling layer

1.403 1.297 2.056

2.100 1.054 0.653 2.059 1.021 1.563

0.899 1.128 1.264 0.886 1.660 1.151 1.267 0.701 0.971
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Figure B.7: Weight table for LAr third sampling layer (back), low Econe values.
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2.056 1.594 1.678 1.948 1.963 1.626 1.730 1.749 1.692 1.755 1.647 1.616 1.576 1.533 1.550 1.545 1.525

1.563 1.947 1.736 1.585 1.606 1.624 1.651 1.633 1.631 1.634 1.592 1.569 1.554 1.551 1.510 1.489 1.510

0.971 1.142 1.174 1.170 1.145 1.217 1.160 1.187 1.186 1.207 1.199 1.246 1.219 1.272 1.250 1.245 1.264

0.932 0.977 0.908 0.858 0.846 0.883 0.890 0.938 0.966 0.956 0.936 0.959 1.037 1.048 1.057 1.057 1.071

0.930 1.125 1.224 0.884 0.995 1.106 1.067 1.066 1.054 1.082 1.085 1.074 1.068 1.070 1.051 1.065 1.059

1.183 1.342 1.609 1.040 1.234 1.077 1.186 1.093 1.049 1.001 1.067 1.030 1.039 1.092 1.052 1.077 1.063

1.141 1.460 1.261 1.474 1.282 1.459 1.220 1.118 1.136 1.115 1.133 1.104 1.111 1.097 1.097

1.016 1.634 1.285 1.630 1.562 1.473 1.313 1.333 1.166 1.179 1.137 1.127 1.141

1.111 0.652 1.363 1.374 1.116 1.183 1.048 1.118 1.052

0.901 0.984 0.997
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Figure B.8: Weight table for LAr third sampling layer (back), medium Econe values.

1.525 1.479 1.468 1.469 1.485 1.476 1.469 1.476 1.468 1.479 1.478 1.470 1.472 1.483 1.467 1.485 1.501

1.510 1.493 1.489 1.483 1.453 1.459 1.450 1.433 1.434 1.433 1.436 1.431 1.443 1.433 1.442 1.455 1.406

1.264 1.271 1.266 1.276 1.277 1.286 1.285 1.307 1.301 1.310 1.304 1.314 1.319 1.327 1.339 1.321 1.273

1.071 1.052 1.073 1.086 1.085 1.092 1.111 1.114 1.129 1.140 1.144 1.157 1.167 1.169 1.186 1.171 1.128

1.059 1.055 1.054 1.056 1.062 1.050 1.067 1.063 1.069 1.075 1.085 1.084 1.096 1.093 1.104 1.090 1.045

1.063 1.067 1.049 1.056 1.030 1.041 1.036 1.033 1.041 1.041 1.045 1.056 1.063 1.067 1.065 1.055 0.992

1.097 1.087 1.099 1.072 1.063 1.062 1.061 1.041 1.043 1.038 1.032 1.040 1.050 1.053 1.068 1.058 0.933

1.141 1.145 1.132 1.145 1.125 1.154 1.120 1.129 1.125 1.109 1.102 1.085 1.077 1.069 1.078 1.056 0.924

1.052 1.076 1.080 1.089 1.071 1.100 1.090 1.099 1.124 1.109 1.104 1.104 1.097 1.092 1.061 1.021 0.844

0.997 1.004 1.013 1.059 1.045 1.067 1.048 1.053 1.072 1.074 1.068 1.077 1.074 1.079 1.072 1.023 0.831

0.933 1.047 1.069 1.022 1.037 1.032 1.037 1.046 1.051 1.045 1.048 1.057 1.056 1.044 0.957

0.894 0.988 1.012 1.015 1.018 1.028 1.035 1.033 1.039 1.041

0.973 1.008 1.011 1.011 1.013
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Figure B.9: Weight table for LAr third sampling layer (back), high Econe values.
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B.4 Weight tables for the first Tile sampling layer, the
A-cells

2.388

0.736

0.683 1.628 2.113 1.592 1.149

1.028 0.762 1.667 1.412

2.855 1.851 1.765 2.857 1.170 1.199 1.133

0.908 0.663 1.199 1.345 1.297 1.677 1.730 1.714 1.333

1.374 1.509 1.518 1.077
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Figure B.10: Weight table for Tile first sampling layer (the A-cells), low Econe values.
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2.606 1.957 2.480 1.268 1.477 1.251 1.453 1.608 1.509 1.428 1.441 1.489 1.492 1.535 1.461 1.565

2.078 0.980 1.411 1.559 1.175 1.602 1.477 1.466 1.566 1.475 1.459 1.492 1.488 1.492 1.536 1.481

1.149 1.394 1.591 1.642 1.450 1.456 1.489 1.504 1.565 1.548 1.482 1.491 1.498 1.547 1.473 1.462 1.462

1.412 1.558 1.709 1.390 1.342 1.533 1.485 1.508 1.509 1.462 1.482 1.444 1.462 1.501 1.475 1.469 1.482

1.133 1.709 1.438 1.446 1.454 1.401 1.429 1.383 1.367 1.380 1.328 1.411 1.446 1.426 1.483 1.468 1.470

1.333 1.332 1.401 1.359 1.316 1.277 1.249 1.211 1.227 1.259 1.245 1.334 1.442 1.450 1.454 1.478 1.469

1.077 1.243 1.233 1.269 1.197 1.173 1.181 1.192 1.152 1.101 1.032 1.080 1.245 1.302 1.315 1.345 1.339

1.388 1.557 1.468 1.621 1.569 1.576 1.521 1.465 1.460 1.488 1.444 1.445 1.412

1.237 1.439 1.464 1.409 1.416 1.424 1.437 1.421

1.174 1.297 1.323 1.331

 (MeV)coneE

300 400 1000 2000 3000 10000

)3
 (

M
eV

/m
m

ce
ll

 / 
V

ce
ll

E

-710

-610

-510

-410

-310

-210

Figure B.11: Weight table for Tile first sampling layer (the A-cells), medium Econe
values.

1.565 1.552 1.551 1.588 1.615 1.535 1.590 1.584 1.550 1.594 1.497 1.644 1.632 1.562 1.612 1.573 1.810

1.481 1.504 1.571 1.551 1.518 1.530 1.555 1.523 1.556 1.540 1.541 1.553 1.540 1.585 1.532 1.528 1.505

1.462 1.464 1.484 1.496 1.512 1.506 1.493 1.546 1.505 1.524 1.551 1.533 1.523 1.534 1.529 1.508 1.556

1.482 1.509 1.506 1.520 1.496 1.500 1.516 1.546 1.520 1.525 1.531 1.552 1.538 1.552 1.562 1.552 1.558

1.470 1.499 1.500 1.515 1.499 1.534 1.540 1.552 1.573 1.581 1.587 1.575 1.594 1.585 1.600 1.594 1.595

1.469 1.511 1.493 1.515 1.504 1.538 1.542 1.556 1.573 1.595 1.604 1.619 1.627 1.625 1.629 1.617 1.555

1.339 1.345 1.378 1.372 1.389 1.414 1.412 1.428 1.456 1.481 1.493 1.510 1.530 1.551 1.560 1.531 1.439

1.412 1.412 1.399 1.419 1.402 1.415 1.402 1.399 1.419 1.412 1.420 1.430 1.450 1.458 1.474 1.442 1.342

1.421 1.442 1.413 1.419 1.408 1.402 1.406 1.392 1.384 1.370 1.369 1.369 1.370 1.378 1.376 1.346 1.292

1.331 1.341 1.351 1.358 1.356 1.396 1.400 1.389 1.396 1.412 1.402 1.403 1.395 1.362 1.349 1.342 1.386

1.219 1.252 1.248 1.274 1.283 1.291 1.315 1.337 1.347 1.361 1.371 1.376 1.385 1.376 1.206

1.147 1.185 1.204 1.228 1.235 1.253 1.273 1.283 1.298 1.274 1.076

1.100 1.147 1.172 1.190 1.190 1.165 1.032
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Figure B.12: Weight table for Tile first sampling layer (the A-cells), high Econe values.
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B.5 Weight tables for the second Tile sampling layer,
the BC-cells
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Figure B.13: Weight table for Tile second sampling layer (the BC-cells), low Econe
values.
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0.946 1.480 1.053 1.468 1.328 1.306 1.420 1.396 1.432 1.550 1.489 1.500 1.494 1.491 1.489

2.484 1.800 1.496 1.620 1.418 1.516 1.377 1.386 1.445 1.490 1.505 1.501 1.452 1.412 1.471 1.504 1.474

1.596 1.265 1.611 1.768 1.736 1.555 1.545 1.481 1.450 1.454 1.452 1.432 1.452 1.441 1.475 1.469

1.685 2.042 1.420 1.675 1.687 1.615 1.627 1.514 1.574 1.630 1.604 1.482 1.431 1.439 1.460 1.479 1.476

1.059 1.312 1.346 1.212 1.226 1.197 1.238 1.244 1.310 1.337 1.412 1.390 1.417 1.396 1.414 1.424

1.003 1.310 1.067 1.026 1.026 1.033 1.007 0.980 1.051 1.343 1.363 1.341 1.317 1.314

0.761 0.775 0.983 0.907 0.948 1.208 1.371 1.374 1.369 1.351

1.484 0.629 1.255 1.346 1.371 1.364 1.355

1.282
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Figure B.14: Weight table for Tile second sampling layer (the BC-cells), medium Econe
values.

1.489 1.523 1.451 1.515 1.546 1.525 1.543 1.526 1.553 1.562 1.562 1.549 1.553 1.526 1.537 1.537 1.394

1.474 1.482 1.488 1.482 1.529 1.507 1.536 1.541 1.547 1.536 1.535 1.551 1.544 1.573 1.549 1.534 1.563

1.469 1.486 1.481 1.499 1.503 1.528 1.528 1.531 1.552 1.574 1.564 1.581 1.587 1.602 1.596 1.607 1.551

1.476 1.500 1.496 1.490 1.511 1.520 1.549 1.549 1.574 1.573 1.589 1.599 1.610 1.644 1.627 1.637 1.631

1.424 1.395 1.416 1.422 1.427 1.427 1.446 1.459 1.482 1.493 1.517 1.542 1.547 1.558 1.583 1.583 1.510

1.314 1.305 1.316 1.303 1.308 1.333 1.322 1.307 1.328 1.355 1.382 1.404 1.432 1.454 1.483 1.488 1.475

1.351 1.344 1.339 1.337 1.311 1.296 1.262 1.241 1.231 1.217 1.203 1.220 1.252 1.271 1.320 1.343 1.220

1.355 1.326 1.360 1.349 1.346 1.361 1.344 1.305 1.315 1.268 1.217 1.168 1.124 1.077 1.056 1.026 0.907

1.282 1.310 1.294 1.277 1.285 1.313 1.312 1.315 1.315 1.331 1.330 1.334 1.325 1.288 1.207 1.090 1.082

1.213 1.244 1.248 1.236 1.242 1.265 1.275 1.286 1.295 1.302 1.302 1.291 1.194

1.179 1.206 1.213 1.211 1.219 1.239 1.247 1.234 1.152

1.122 1.177 1.179 1.169 1.074
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Figure B.15: Weight table for Tile second sampling layer (the BC-cells), high Econe
values.
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B.6 Weight tables for the third Tile sampling layer, the
D-cells
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Figure B.16: Weight table for Tile third sampling layer (the D-cells), low Econe values.
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0.895 0.855 1.324 1.624 0.693 1.117 1.562 1.447 1.636 1.169 1.340 1.593 1.535

0.974 1.067 1.518 1.700 1.587 1.456 1.463 1.514 1.490 1.612

1.423 1.869 1.630 2.155 2.029 1.749 1.754 1.525 1.338 1.448 1.563 1.579

1.518 1.845 1.429 1.761 1.572 1.452 1.303 1.231 1.360 1.520 1.402 1.386 1.602

1.258 0.908 1.058 1.019 1.083 1.050 1.016 1.007 1.040 1.202 1.272 1.159 1.330

2.953 0.646 0.857 0.839 0.860 0.989 1.079 1.296 1.437 1.432

0.792 1.345 1.401 1.268 1.224 1.484 1.510 1.401

1.249 1.571 1.417
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Figure B.17: Weight table for Tile third sampling layer (the D-cells), medium Econe
values.

1.535 1.637 1.607 1.425 1.468 1.462 1.495 1.437 1.428 1.445 1.494 1.466 1.543 1.546 1.543 1.504 1.604

1.612 1.472 1.457 1.468 1.474 1.514 1.510 1.529 1.529 1.537 1.526 1.503 1.564 1.532 1.543 1.541 1.648

1.579 1.497 1.577 1.497 1.561 1.469 1.547 1.461 1.553 1.537 1.543 1.549 1.584 1.571 1.554 1.568 1.712

1.602 1.541 1.508 1.476 1.502 1.456 1.480 1.487 1.469 1.521 1.498 1.515 1.543 1.559 1.581 1.588 1.552

1.330 1.279 1.285 1.302 1.233 1.342 1.360 1.316 1.347 1.352 1.376 1.373 1.378 1.399 1.423 1.469 1.407

1.432 1.399 1.344 1.492 1.443 1.404 1.416 1.411 1.404 1.445 1.410 1.405 1.402 1.425 1.405 1.364 1.334

1.401 1.352 1.531 1.399 1.406 1.386 1.391 1.403 1.405 1.391 1.403 1.407 1.429 1.404 1.452 1.396 1.387

1.417 1.417 1.365 1.359 1.320 1.353 1.348 1.329 1.297 1.352 1.355 1.369 1.395 1.393 1.391 1.354 1.427

1.462 1.298 1.355 1.338 1.357 1.249 1.335 1.355 1.328 1.317 1.347 1.331 1.359 1.344 1.264

1.365 1.415 1.327 1.305 1.291 1.303 1.301 1.279 1.297 1.262 1.166

1.345 1.258 1.239 1.244 1.245 1.197 1.156

1.209 1.067 1.048

 (MeV)coneE

9000 20000 100000 200000

)3
 (

M
eV

/m
m

ce
ll

 / 
V

ce
ll

E

-710

-610

-510

-410

-310

-210

Figure B.18: Weight table for Tile third sampling layer (the D-cells), high Econe values.



C. Systematic effects of hadronic
calibration corrections: the dead
material corrections and the electron
cut

As described in Section 7.6.2, the electron removal cut will give a bias to the
energy scale, which becomes significant at low energies. In Section 7.6.4, the
corrections for losses in dead material were discussed, and a small bias from
the correction factors not being constant with beam energy was demonstrated.
In Tables C.1-C.2, the effect of the electron cut and the dead material, when
applied to a pure sample of simulated pions is demonstrated. In Tables C.3-
C.4, the systematic effect of the electron cut on the unweighted energy signal
is given.

The statistical errors are given from the Gaussian fit to the energy distri-
bution of the weighted and dead material corrected energy. The systematical
uncertainties have been estimated using two independent samples of the sim-
ulated energy: one containing the events with odd event number (sample A),
and one containing the even event numbers (sample B). The uncertainty is
estimated as the difference

∆syst = rA, corrected − rB, uncorrected (C.1)

where r is either the resolution or the ratio Emean/Ebeam, indices A and B refer
to quantities computed from the odd or even event number samples respec-
tively, corrected refers to the quantity after the electron cut and dead material
correction using one correction constant per region and uncorrected means
that no electron cut was applied or the dead material corrections using beam
energy dependent factors were used.

The systematic uncertainties dominate over the statistical errors for most
energies. The total error exceeds 10% of the measured value at energies
around 9 GeV (for the resolution) and 4 GeV (for the Emean/Ebeam ratio).
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Ebeam Resolution Stat. err. Syst. error Syst. error Total err.

(GeV) (%) (%) DM corr. (%) e cut (%) (%)

300.00 5.07 0.09 0.30 0.07 0.32

250.00 5.95 0.10 0.05 0.38 0.40

200.00 6.13 0.10 0.33 0.50 0.60

180.00 6.46 0.10 0.14 0.06 0.18

150.00 7.03 0.11 0.34 0.11 0.37

100.00 8.52 0.14 0.13 0.13 0.23

90.00 8.75 0.14 0.35 0.41 0.56

80.00 9.41 0.16 0.04 0.25 0.30

70.00 9.74 0.16 0.18 0.05 0.24

60.00 10.26 0.17 0.12 0.04 0.21

50.00 11.28 0.17 0.16 0.06 0.25

40.00 12.92 0.22 0.16 0.57 0.63

30.00 14.28 0.24 0.60 0.84 1.06

25.00 15.58 0.27 0.19 0.78 0.84

20.00 17.18 0.31 0.00 0.79 0.85

15.00 19.54 0.37 0.36 0.15 0.54

10.00 26.42 0.53 0.63 0.07 0.83

9.00 29.35 0.67 0.31 2.87 2.96

7.00 41.53 1.37 4.64 2.29 5.35

6.00 36.06 0.80 0.55 2.77 2.93

5.00 34.43 0.84 0.25 0.53 1.02

4.00 30.56 0.81 0.01 9.92 9.95

3.00 32.92 1.01 0.45 12.17 12.22

2.00 34.74 1.11 0.65 28.10 28.13

1.50 38.41 1.63 1.84 30.79 30.89

1.00 45.87 2.69 0.37 44.08 44.16

0.75 59.38 5.14 2.33 61.21 61.47

0.50 96.58 19.98 36.22 317.72 320.40

Table C.1: Systematic uncertainties in the resolution of the simulated energy signal,
after weighting and dead material correction, as a consequence of the electron removal
cut and the corrections for losses in dead material.
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Ebeam Emean/Ebeam Stat. err. Syst. error Syst. error Total err.

(GeV) (%) (%) DM corr. (%) e cut (%) (%)

300.00 98.28 0.09 0.39 0.14 0.42

250.00 98.61 0.10 0.31 0.06 0.33

200.00 98.39 0.10 0.13 0.08 0.19

180.00 98.33 0.10 0.01 0.10 0.14

150.00 97.90 0.11 0.51 0.03 0.53

100.00 96.89 0.14 0.94 0.42 1.04

90.00 96.48 0.14 0.85 0.14 0.87

80.00 95.93 0.15 1.05 0.37 1.12

70.00 95.29 0.16 0.94 0.01 0.95

60.00 94.58 0.16 1.33 0.60 1.47

50.00 94.44 0.18 1.73 0.09 1.74

40.00 93.48 0.21 1.46 0.84 1.70

30.00 91.57 0.23 1.60 0.45 1.68

25.00 91.25 0.25 2.33 0.21 2.35

20.00 90.00 0.28 2.83 0.25 2.85

15.00 86.78 0.32 1.99 1.63 2.59

10.00 83.25 0.44 3.22 2.85 4.32

9.00 83.90 0.51 3.70 3.80 5.33

7.00 79.11 0.91 1.19 3.49 3.80

6.00 80.26 0.68 2.77 4.15 5.03

5.00 75.72 0.65 0.76 5.35 5.44

4.00 77.62 0.60 2.62 4.95 5.63

3.00 81.43 0.75 2.19 12.76 12.97

2.00 88.94 0.99 7.85 25.97 27.14

1.50 90.58 1.34 7.24 27.55 28.51

1.00 85.64 1.94 13.05 37.68 39.93

0.75 70.05 2.80 6.84 34.38 35.17

0.50 55.67 6.70 4.37 36.35 37.22

Table C.2: Systematic uncertainties in the Emean/Ebeam ratio of the simulated energy
signal, after weighting and dead material correction, as a consequence of the electron
removal cut and the corrections for losses in dead material.
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Ebeam Resolution Stat. error Syst. err. Total error

(GeV) (%) (%) e cut (%) (%)

300.00 10.52 0.17 0.14 0.22

250.00 10.79 0.18 0.46 0.50

200.00 11.10 0.19 0.13 0.23

180.00 11.14 0.20 0.61 0.64

150.00 12.08 0.22 0.21 0.30

100.00 12.81 0.23 0.08 0.24

90.00 12.85 0.22 0.19 0.29

80.00 13.90 0.25 0.41 0.48

70.00 14.44 0.27 0.08 0.28

60.00 14.43 0.27 0.64 0.70

50.00 14.98 0.27 0.06 0.27

40.00 16.01 0.28 0.48 0.55

30.00 16.85 0.28 0.75 0.80

25.00 18.25 0.35 0.64 0.73

20.00 19.83 0.38 0.08 0.39

15.00 21.97 0.41 0.53 0.67

10.00 29.16 0.71 1.20 1.39

9.00 33.00 0.74 2.73 2.82

7.00 32.44 0.68 2.65 2.73

6.00 31.97 0.67 1.67 1.80

5.00 30.61 0.74 2.46 2.57

4.00 30.79 0.76 8.36 8.39

3.00 36.94 1.12 9.46 9.52

2.00 40.76 1.29 24.87 24.90

1.50 41.42 1.46 33.91 33.95

1.00 54.20 2.77 31.05 31.18

0.75 65.72 4.64 53.63 53.83

0.50 101.79 22.94 517.76 518.27

Table C.3: Systematic uncertainties in the resolution ratio of the simulated energy
signal, before weighting and dead material correction, as a consequence of the electron
removal cut.
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Ebeam Emean/Ebeam Stat. error Syst. error Total error

(GeV) (%) (%) e cut (%) (%)

300.00 76.48 0.14 0.01 0.14

250.00 75.85 0.14 0.06 0.15

200.00 75.28 0.14 0.11 0.18

180.00 75.17 0.14 0.13 0.19

150.00 74.67 0.15 0.33 0.37

100.00 73.35 0.16 0.33 0.37

90.00 73.29 0.16 0.40 0.43

80.00 72.48 0.17 0.13 0.22

70.00 72.15 0.18 0.08 0.20

60.00 71.73 0.18 0.68 0.70

50.00 70.81 0.19 0.36 0.40

40.00 70.00 0.20 0.19 0.27

30.00 68.81 0.21 0.36 0.42

25.00 68.19 0.23 0.45 0.50

20.00 66.09 0.24 0.88 0.91

15.00 63.15 0.26 0.76 0.81

10.00 58.49 0.37 1.65 1.69

9.00 57.43 0.41 1.93 1.97

7.00 58.20 0.43 2.02 2.06

6.00 57.19 0.41 1.63 1.68

5.00 55.96 0.41 0.56 0.69

4.00 58.55 0.44 1.74 1.79

3.00 61.39 0.64 7.34 7.36

2.00 65.93 0.83 14.63 14.65

1.50 65.25 0.92 17.69 17.72

1.00 56.98 1.35 16.06 16.12

0.75 49.09 2.02 16.52 16.64

0.50 38.51 5.45 33.04 33.49

Table C.4: Systematic uncertainties in the Emean/Ebeam ratio of the simulated energy
signal, before weighting and dead material correction, as a consequence of the electron
removal cut.
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