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Preface

Overview

In 2015, the LIGO-Virgo collaboration confirmed the first direct observation of gravitational
waves resulting from the merger of two black holes. However, the journey to detect these waves,
predicted by Albert Einstein nearly a century earlier, has been arduous. It required decades of
technological innovation, persistent scientific investigation, and global collaboration to finally
enable us to probe the densest and most energetic regions of the universe.

Over the past three observing runs, the second-generation detectors, Advanced LIGO and
Advanced Virgo, have confirmed over 90 gravitational wave signals, with many more expected
during the ongoing fourth observing run. As the sensitivity of these second-generation detec-
tors continues to improve and third-generation interferometers are added to the network, the
number of detections is expected to increase exponentially. Nevertheless, as the number of
transient gravitational wave detections grows, new computational challenges will emerge, and
novel frontiers will need exploration.

Nowadays, machine learning is a booming enterprise. In the past few years, they have gained
significant interest due to their success in various tasks and domains, such as their ability to
uncover intricate patterns and perform rapid, accurate inference. In this regard, the field of
gravitational waves is no exception. In the context of an exploding field of both gravitational
wave discoveries and machine learning applications, in this thesis we unleash the power of
machine learning to complement state-of-the-art gravitational wave searches and even enhance
their performance, fostering a synergistic relationship between the two disciplines.

Outline

This thesis is divided into three different parts. Part I lays the foundation of gravitational
wave astronomy, covering from theory to experiment and providing an overview of data anal-
ysis techniques. Part Il introduces the core principles of machine learning. Finally, Part III
demonstrates how current search algorithms can be enhanced by leveraging machine learning
methods.

Part I. Foundations of Gravitational Wave Astronomy

Chapter 1 offers a concise introduction to gravitational wave theory. Chapter 2 discusses the
various types of gravitational wave sources, provides an overview of the detectors and their noise
sources, and explains the fundamentals of data analysis. Chapter 3 reviews both modelled
and unmodelled searches, detailing how the significance of gravitational wave candidates is
measured.

Part II. Developing a Machine Learning-Based Detection Pipeline

Chapter 4 introduces machine learning methods and reviews their applications in the field of
gravitational wave research.
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Part III. Towards the Next Generation of Gravitational Wave Detection

Chapter 5 bridges the field of machine learning with gravitational wave searches, highlight-
ing the primary challenges: background mitigation and limited sensitivity on certain tran-
sient sources. Chapter 6 simulates transient noise bursts within the background distribution.
Chapter 7 investigates data-driven methods for identifying transient noise bursts. Chapter 8
enhances unmodelled gravitational wave search algorithms with a focus on supernovae explo-
sions. Chapter 9 enhances modelled gravitational wave search algorithms, with a focus on black
hole mergers.

External contributions

The work described in this thesis is the result of collaborative efforts. In Chapter 6, Kerwin
Buijsman provided the clean signals of transient burst noise, Vincent Boudart developed the
initial machine learning model, and Stefano Schmidt assisted in releasing the Python package
gengli. In Chapter 7, my master’s student, Robin van der Laag, optimized the pre-processing
to run in near real-time, while another master’s student, Paloma Laguarta, developed the
machine learning model. In Chapter 8, Pablo Cerda-Duran provided the phenomenological
waveforms, and Marco Drago constructed the datasets. In Chapter 9, Stefano Schmidt assisted
with part of the data pre-processing, while master’s students Ana Martins, Jonno Schoppink,
and Wouter van Straalen developed the machine learning model.
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Foundations of Gravitational Wave
Astronomy






Chapter 1

Brief Introduction to Gravitational
Wave Formalism

Four known forces govern physical interactions of the universe, namely, strong, weak, elec-
tromagnetic, and gravitational. Gravity, the weakest of all forces, is commonly experienced
daily among earthlings, and its study has puzzled scientists’ bright minds since ancient times.
However, our understanding of this force is still limited.

In 1687, Sir Isaac Newton published his book Philosophiae Naturalis Principia Mathematica,
where the laws of motion and universal gravitation are described [!]. Undoubtedly, Newton’s
Principia was a scientific revolution and established the field of classical mechanics. Nonethe-
less, Newton’s theory describes gravitational attraction, but there was a need to explain the
nature of gravity. In 1915, Albert Einstein introduced the theory of general relativity, redefin-
ing Newton’s law of universal gravitation and providing a unified description of gravity as a
geometric property of space and time [2].

In 1916, Albert Einstein found that the linearized weak-field equations of general relativity
had wave-like solutions, predicting the existence of gravitational waves (GW) whose amplitude
would be insignificantly small [3]. During the 20th century, there was extensive debate about
the physical reality of GW. It was not until 1974 that the GW emission from a binary pulsar
system was indirectly measured by its orbital changes, leading to a Nobel Prize in 1993 and
to the recognition that direct detection of such emission would open a window to probe the
physics of our violent universe [!]. A century after the fundamental predictions of Einstein,
the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo detected the first
GW emission and the first binary black hole merger, known as GW150914, leading to a Nobel
Prize in 2017 [, 0, 7].

In the following Sections, we introduce the theoretical GW formalism: how GW propagate
and interact with the test masses of the detectors [, 9, 10]. Before jumping to the GW
formalism, we specify the notation and convention employed in this chapter. We will use
natural units for which the velocity of light ¢ and Newton’s constant G are unity. We consider
a space-time with its coordinates of a global inertial reference frame

ot = (t, 2, 2*, 2®) for p € {0,1,2,3}, (1.1)

the Minkowski metric,

G = Nw , Where 7, = diag(—1,1,1,1), (1.2)

and its invariant line element,
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ds® = g, dxtdx”. (1.3)

Given the Christoffel symbols,
IS ;g”" (OvYou + Ougor — OoGuv), (1.4)

we define the Riemann tensor as,
R, =000, =9, +T,I), =IO, (1.5)

We can contract the Riemann tensor to obtain the Ricci tensor,

R;w = gpgRa,upu = Rpr (16)
and contracting one more time, we arrive at the Ricci scalar:
R=g¢"R,,. (1.7)

1.1 Linearized Einstein equations

The Einstein field equations are a set of ten coupled differential equations that describe how
the curvature of space-time influences the motion of matter, and how the presence of matter
at a point affects the average space-time curvature in its neighbourhood. Mathematically,

1
G =R, — §9uuR = 87T, (1.8)

On the left-hand side, we have defined G,,,, commonly known as the Einstein tensor, which
depends on the description of the geometry of space-time. On the right-hand side, T}, represents
the stress-energy tensor, encoding all energy, momentum and stresses associated with matter.

The geometric description of general relativity allows us to freely choose the coordinate
system since it is invariant under the group of all possible coordinate transformations,

ot — 2™ (z), (1.9)
where z/#(x) is an arbitrary diffeomorphism'. Under Eq. 1.9 the metric transforms as,

P oxP 0x°
g#l/(x) - g;w(x) = G wgpa(x)‘ (1.10)

We now consider the generation of gravitational waves in the context of linearized theory.
This means that we assume that the gravitational field generated by the source is sufficiently
weak, so the background space-time can be taken as flat. Therefore,

uv = N + hw/’ ’h;w| <1, (111)

expanding the equations of motion to linear order in h,,, a small perturbation, and its deriva-
tives with respect to coordinates. Since the numerical values of the components of a tensor
depend on the reference frame, we are interested in a reference frame where Eq. 1.11 holds.
Nonetheless, choosing a reference frame breaks the invariance of general relativity under coor-
dinate transformation, but a residual gauge symmetry remains,

LA continuously differentiable and invertible mapping between two differentiable manifolds.
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ot — o™ =t + ¢ (x),  where |0,&] = O(|hu). (1.12)

Using the transformation law of the metric Eq. 1.10 and keeping linear terms in h,, and
a,uénua

By (x) — h;“j(x/) = hu(x) — (0,6 + 0,€,). (1.13)
If 10,6, = O(|hu|) then |h,,| < 1 is preserved, so these slowly varying diffeomorphisms
are a symmetry of linearized theory. We can also perform finite global Lorentz transformations
o — N x¥, satisfying A A 710 = 1 (1.14)

Applying the previous equation under a Lorentz transformation,

I (€)= G (2') = A LA o (1)

/ (1.15)
= N + NSNS Do ().

Therefore,

9 (0") = Ny + 1, (27),  with B, (2") = A LA hpe(2) (1.16)

showing that h,, is a tensor under Lorentz transformations. While rotations never undermine
the condition |h,,| < 1, boosts must be limited to those fulfilling it. The Riemann tensor in
linear order in derivatives of h,, becomes

1
R,u,l/pcf = 5(81/8php,a + ayaahup - 8,u,8phucf - al/acrhp,p>a (117)

which is invariant under the residual gauge transformation in Eq. 1.12. Thus, the linearized
Einstein field equations can be written as

1
G/“/ = RMV — §nMVR
. (1.18)
=3 (960,17, + 050,17, = 3,0,h — Oy, + 0 (0,050 + Th) ) = 87T,

where U = 70,0, is the d’Alembert operator and h = n*Phag. To simplify Eq. 1.18 we
introduce the trace-reversed metric perturbation h,, = h,, — %nuyh, SO

Oy + 000 g — 00, hy — by = —167T,,. (1.19)

We now want to find a gauge, i.e. a choice of the coordinate system in which the Einstein
tensor takes a simplified form. This would be achieved if,

0"h,,, =0, (1.20)

known as harmonic gauge. To prove it we use Eq. 1.13 to impose Eq. 1.20:

Py — B:w = BMV — (04 + 0uE — MW 0,E") = auﬁw/ — (8“ﬁw)’ = 8MEW/ — Ug, (1.21)

Thus, if the initial configuration h,, is such that 8”BW = fu(z), where f,(z) is some
function, then to obtain (0*h,,)" = 0 we must choose,
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0, = ful@). (1.22)

As the d’Alembertian operator [ is invertible, it always admits solutions of the form

& = [ dyG( = y)fuly). (1.23)

utilizing Green’s function. In this gauge, the Einstein field equations become:

Ohy = 1677, (1.24)

While the original representation of Einstein field equations had ten independent compo-
nents, by introducing four constraints with the harmonic gauge, we reduce h,, to six inde-
pendent components. Further specifying the gaugereduces further h,, to two independent
components [J]. Simplifying for consistency Eq. 1.20 and Eq. 1.24, we find the conservation of
energy-momentum in the linearized theory,

T, = 0. (1.25)

1.2 The traverse-traceless gauge

To study the propagation of GW and their interaction with the test masses of a GW detector,
we are interested in Eq. 1.24 outside of the source, where

Ohy, =0, where T, = 0 (outside the source). (1.26)

As discussed in the previous Section, Eq. 1.20 does not fix the gauge completely, so we
can impose [J§, = 0 to satisfy the condition of Eq. 1.20 under coordinate transformation, as
defined in Eq. 1.12. A direct consequence of ¢, = 0 is that ¢, = 0, where

Dguu = ugy + aué-u - nuuap€p7 (127)

since the flat space d’Alembertian [J commutes with d,,. Hence, from Eq. 1.21 we can substract
the functions ,,, that satisfy [J¢,,, = 0, and depend on four independent arbitrary functions §,.
Therefore, we can choose £° such that h = 0, implying that ?LW = hy, and the three functions
&i(x) are chosen so that h%(x) = 0, so

8%00 + 8%01 =0= 8%00 = 0. (128)

A time-independent hgy corresponds to the static part of the gravitational interaction, i.e.
to the Newtonian potential of the source which generated the GW. Therefore, setting hg, = 0
leaves only the spatial components of h;;, so we can define the transverse-traceless (TT) gauge*:

RO =0 (spatial components), hi =0 (vanishing trace), 8'h;; =0 (Lorentz gauge).  (1.29)

In this gauge, Eq. 1.26 has plane wave solutions:

W (@) = ey(k)e™,  where B = (w,k) and w = [K], (1.30)

where e;;(k) is the polarization tensor. For a single plane wave and a given wave-vector k, we
see from Eq. 1.29 the non-zero components of hiTjT are in the plane transverse to n. We chose

2Quantities in this gauge are denoted by the superscript TT.
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n along the z axis, imposing that h;; is symmetric and traceless,

he he 0
hiTjT(t, 2)=|hy —hy 0| coslw(t—2z)], (1.31)
0 0 0

]
where h, and hy are the amplitudes of the “plus” and “cross” polarization of the wave, defined
with respect to a given choice of axes in the transverse plane. In terms of the interval ds?,

ds® = —c*dt* + dz*+{1 + h, cos [w(t — 2)]}dz?

(U= By cos[wft — 2)]Jdy? + Phcos[wlt — ey )

1.3 Interaction with test masses

Having described in the previous Section GW and their propagation, we discuss their interaction
with an idealized set of test masses from the GW detector. As GW have a special simple form
in the T'T gauge, it is relevant to understand which reference frame corresponds to this gauge.

A time-like curve is defined by the condition that ds? < 0. From this condition, we can de-
fine the proper time 7, carried by the clock along the trajectory as c*dr? = —ds? = —g,,, dxtdz”.
Thus, we can parametrize the trajectory z# = z#(7). Given a fixed boundary condition
a#(74) = 2’y and z#(75) = 2'5, the classical trajectory of a point-like test mass m is obtained
by extremizing the action

S = —m/ * dr, (1.33)
B
yielding the geodesic equation,
d%at dx” dx?
re — =0. 1.34
dr? o) dr dr (1.34)

Considering two nearby geodesics parametrized by x#(7) and z#(7) 4+ £ (7). If |§#] < than
the average variation of the gravitational field, then taking the difference between the two
nearby geodesics and expanding to first order in &, yields the geodesic deviation

der dx d&P dz” d&P
21 — +£790,I" — =0, 1.35
dr? 200, (@) dr dr e () dr dr (1.35)
simplified as
D*¢r dz* dx°
— _pH P 1.
D72 B dr dr’ (1.36)

by introducing the covariant derivative of a vector field V#(z) along the curve z#(7),

= — +IHVV—. 1.
Dt dt 1,V dr (1.37)

Eq. 1.36, governed by the Riemann tensor, represents the tidal gravitational force exper-
imented by two nearby time-like geodesics. Writing this equation in the reference frame of
interest will show the test masses’ behaviour for the corresponding observer.

We ask what it means physically to be in the T'T gauge. Given a test mass at rest at 7 =0
its geodesic equation is,

- dxz¥ dx”  (dx0\? dz’
= — |I" —_ = — |I? e h - 1.
o [ ”p(x) dr dTL_O [ 00 < d7'> ] ) Waere dr 0 (1.38)

7

PRI

dr?
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Evaluating the Christoffel symbol, Eq. 1.4, in the TT gauge

; 1
Too @ = 5(230%1' — Oihgo) = 0, (1.39)

due to the TT gauge conditions. This shows that the coordinates of the T'T stretch themselves,
such that the position of free test masses at rest does not change after the arrival of the wave.
Since the coordinate distance of test masses at rest remains constant, also their coordinate
separation must remain constant for any arbitrary finite separation. Considering two test
masses initially at rest at 7 = 0, their geodesic deviation is

d2£i
dr?

= - [Qng(:c)Cle:] K (1.40)

=0
since the TT gauge both I'f, and I'j, with p non-spatial, vanish. Hence, at 7 = 0 we have
d¢t/dr =0, so d*¢'/dr* = 0, and the geodesic separation £ remains constant.

The TT gauge coordinate system was chosen such that the position of test masses is un-
changed as a GW passes by. Still, physical effects can instead be measured with proper distances
or proper times. For illustration, we consider two events at (¢,z1,0,0) and at (¢, x9,0,0). In
the T'T gauge the coordinate distance xy — x1 = L remains constant despite the propagation
of a GW along the z axis, but from Eq. 1.32 the proper distance s is

1
s = (z3 — 1) [1 4 hy cos (wt)]* ~ L |1 + §h+ cos (wt)| , (1.41)

preserving only linear terms in h,. Hence, the changes in the proper distance are periodical
due GW. Generally, if the spatial separation between two events is given by L and the spatial
separation between two test masses is given by L;, then the proper distance is s> = L2+h;; L; L;.

In a laboratory, we do not expect to have free-falling particles, but rather a test mass which
is free to move. Such test mass will be displaced by GW with respect to its original position.
The simplest experiment to analyze is a free fall laboratory, where if we focus on a sufficiently
small region of space, we can choose coordinates (¢,x) so that the metric is flat. Expanding at
second order in z° yields the metric of the proper detector frame,

ds®* ~ —c2dt? + §;;dz'drj + O (xW) (1.42)
- () j LB 9 .

where Lp is the typical variation scale of the metric. Now, from Eq. 1.35, the geodesic deviation
of two test masses moving non-relativistically in the proper detector frame is

g o ()
dr2 +&70:T (dT) =0, (1.43)

using the fact that I} is negligible compared to the terms in the free-falling frame, and dz'/dr
being neglected with respect to dz°/dr. Due to the metric, non-zero contributions come from
spatial derivatives that act in z'a7, so 70,1, = £&70;T}, are evaluated at the expansion point
P. Moreover, at point P, we have R, = 0;Tt, — dol'y; = 0;T and Eq. 1.43 becomes

dQé&i ; (dx® 2
72 + ;08 (dr) =0 (1.44)
We limit ourselves to linear order in h, so
d2 % ) )
dtg = —R';¢!, wheret~rT, (1.45)

where t is the time coordinate of the proper detector frame. Finally, we compute the
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Riemann tensor Riojofj, which is invariant in the linearized theory (see Eq. 1.12), so we can
compute it in the frame of our preference. We employ the TT frame, since in this frame GW
have the simple form. From the Riemann tensor, Eq. 1.17, we find

z. 1 d2hTT
Thus, the equation of the geodesic deviation in the proper detector frame is
d*¢t 1d?hIT .
& e Y (1.47)

dt? 2 dt?
which resembles the Newtonian tidal force, allowing a more intuitive description of the detector.
One must note that to derive the equation for the geodesic deviation, we have expanded the
Christoffel symbols to first order in &, under the condition that £ < than the average variation
of the gravitational field (see Eq. 1.35). For a GW, this length-scale is the reduced wavelength
A = A\/27. Hence, if a detector has a characteristic linear size L, we can discuss its interaction
with GW using the geodesic deviation, Eq. 1.47, if and only if L < AX.

While this condition holds for bar detectors and ground-based interferometers, it does not
for space-based detectors, so a full general relativity treatment is needed to study the influence
of GW on test masses.

Coming back to our laboratory, to study the effect of a GW on test masses, we consider
a ring of test masses located in the (z,y) plane, whose origin lies in the centre of the ring.
Initially, the ring is at rest in the proper detector frame. We also consider a GW propagating
along the z-axis, such that from Eq. 1.47, the displacement will be confined to the (z,y) plane.
As + and x polarization from Eq. 1.31 are independent, we can consider them separately, so
taking for instance + polarization,

hIT = h sinwt (é _01>, (1.48)

at z = 0, where a,b = 1, 2 are the indices in the transverse plane. The location of a test mass is
€a(t) = (o + 0x(t),yo + dy(t)), where (z¢,yo) are the unperturbed positions of the test masses
and 6x(t), 0y(t) are the displacements due to the GW. Thus,

d?(0z)/dt*  hy (1 0 [xo+dx) ,
(d2(5y)/dt2 +__7 0 —1) \yo+dy)” coswt

h
S w? cos wt,
2 \—%

(1.49)

Q

where we assume that dz, 0y is O(h, ), so they can be neglected with respect to the constant
parts xg,yo. Solving Eq. 1.49 for 4+ polarization, and following a similar computation for x

polarization yields,
h h
o) _ N (o sin wt, A sinwt (1.50)
0y). 2 \~% dy) 2 \®

In Fig. 1-1 we show the resulting deformation of a ring of test masses in the (x,y) plane.
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wt=0 wt=r

FIGURE 1-1: A schematic illustration of the deformation of a ring of test masses for different
phase values due to the + and X polarization of a passing GW.

1.4 Energy and momentum

In Einstein’s linearized theory, the space-time is flat and GW are small fluctuations around it,
where, in a suitable gauge, h,, satisfies the wave equation. Nonetheless, this approach does not
describe the energy and momentum associated with GW, since, according to general relativity,
any form of energy contributes to the curvature of space-time. Instead, we would like to define
GW perturbation over some curved, dynamical, background metric g, (x), so

G (%) = g () + hy(x),  where |hy,| < 1. (1.51)

While in the linearized theory, the background metric was chosen to be the constant flat-
space metric 7, in this dynamical metric g, (z) we need to separate the background metric
G () from the fluctuations h,,. In the most general setting, there is no unambiguous way to
perform this separation. This situation is similar to the waves in the sea: there is no unam-
biguous way to state which part of the movement of the surface of the water belongs to a given
wave, and which part belongs to a “background” originated by the incoherent superposition of
perturbations of varied origin.

To understand how the perturbation of h,, propagates and how it affects the background
of space-time, we begin by expanding Einstein equations around the background metric g,

G () = G (@) + H)(2) + B (2) + ... (1.52)
where h(})(x) and h()(x) are first and second order perturbations describing GW. We cast the
Einstein equations in the form

1
R, =8rG(T,, — §gWT), (1.53)

where T}, is the energy-momentum tensor of matter and 7' its trace. Expanding the Ricci
tensor,

Ry =Ry, +RY)+RY+ ..., (1.54)

where }_‘ZW is constructed with g,,, containing only low frequency modes. RE}V) is linear in h,,,
so it contains only high-frequency modes. R/(fy) is quadratic in h,, and therefore contains bot
high and low frequencies. Therefore, the Einstein equations can be split into equations for low
and high frequencies, yielding respectively

10
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— Low 1
R;u/ = - |:R;(/,2V):| + SWG(T;LV — §g/u/T)LOW (155)
High 1 ;
R() = — [RE?,}] + 87G(T), — §gw,T)th, (1.56)

Defining ?u as the covariant derivative with respect to the background metric g,,,

1 e - _ .
R = 5 (VViha + VOV, hya = VOVahy = V,V,0), (1.57)

where h = g*h, is the trace of h,, with respect to the background metric g,,. At quadratic
order we find,

1. _450le — — — _
R;(LZV) = 59/309 ’ ivuhpavvhob’ + (Vohua) (Volyus — Vihyo)
o (FuF o + V5 ¥ — T5uh — V5¥ uhe) (1.58)

1 _ _ _ _
+ (ivahpg — Vohoo)(Vohus + Vhog — Vh,)

Setting 7}, = 0, we see that in Eq. 1.55 R, is governed by [RL%)]LOW. From Eq. 1.58,
we observe that R(?) is a sum of terms of order (Ohag)? and (hapdhss)?, such that, in the low
modes these two terms give contributions of the same order of magnitude. Thus, in order of
magnitude R;w ~ (Ohyp)?, which implies that the derivatives of the perturbation h,, affect the
curvature of the background metric g,,.

The variation scale of g,, and h are Lp and X, respectively. In order of magnitude, g, ~
1/Lp and Ohy ~ hy,/X. From the relation between the background curvature RW with, on one
hand, the second derivative of the background metric, and on the other hand, the derivatives
of the perturbation,

R, ~ 8g LR Ohp)? = — ) h A 1.59
v ™ 9#!/““?237 v~ ,LW>:>L723N X = qufBa (1.59)
which is the curvature determined by GW. Considering a non-vanishing 7),,, the GW contribu-

tion to the background curvature is negligible compared to the contribution of matter sources.
Thus,

L () i Mow
L—QB ~ <;\> + (matter contribution) > 2 = N K TB’
which is the curvature determined by matter. Suppose we force the background metric to
be 7,,. In that case, we force strictly 1/Lp = 0, so any arbitrarily small but finite value of
h,. violates the condition in Eq. 1.60. Consequently, to compute higher-order corrections we
cannot insist on a flat background metric. From Eq. 1.59 and Eq. 1.60 we also found that
GW are only well defined for h,, < 1. If h,, ~ 1 the separation between GW and background
vanishes.
We introduce a scale [, such that X < | < Lp. We average over a spatial volume with
side I, denoted < .. >l. In this average, modes on the scale of order Lg remain constant, while

(1.60)

modes on a scale of order A average to zero. The basic idea of this procedure is to “integrate
out” the fluctuations that take place on a length-scale < [, to obtain an effective theory that
describes the physics at the length-scale [. We can rewrite Eq. 1.55 as

11
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Ryy = —(R%)) + 87 (T — ;ng>l, (1.61)

where condition X < L. We define an effective energy-momentum tensor of matter T,

1 I
<T,uy - 59’“’T>l =T — §guuT7 (162)

where T = gw,’f’“’ is the trace. By definition, 7" is a low-frequency quantity and smoothed
form of the matter energy-momentum tensor 7),,. We can visualize it as a “macroscopic”
version (with respect to the scale X), while 7),, is the “microscopic” quantity. We also define
the stress-energy tensor of GW as

1

1 — v
tw = —§<Rfy) - §gWR(2)>l, where R® = gt Rl(fl,), (1.63)
and its trace
1
—agwy o~ [ p®
t=g t,w—+87r<R ) (1.64)
Inserting Eq. 1.63 in Eq. 1.64 yields,
) .
—(R2)), =87t — St ) - (1.65)
So, we can rewrite Eq. 1.61 as
_ 1 - _
R, — §g,U,R =871(Ty + tw), (1.66)

known as the “coarse-grained” form of the Einstein equations, which determine the dynamics
of the low-frequency part of the metric g,, in terms of the matter energy-momentum tensor
TW, and the tensor ¢,,, which depends only on the gravitational field.

According to the definition of ¢,, in Eq. 1.63, it has both physical contributions and
coordinate-dependent contributions. It is relevant to distinguish both contributions, as the
first one will be associated with the energy-momentum tensor of GW, while the second one will
be associated with the coordinate system, and can vanish with an appropriate gauge choice.

The most straightforward way to get only the physical contribution is to use the harmonic
gauge condition from Eq. 1.20. We can rewrite Eq. 1.58 since we are now interested in
the energy and momentum carried by GW at large distances from the source, where we can
approximate the background space-time as flat, such that we can replace V* — Ou. We
can integrate the space-time derivative 0,, neglecting the boundary term. Using the gauge
conditions 0*h,,, = 0 and 7*”h,,, = 0, and from the equation of motion Uh,,, we see that most
terms collapse to zero, yielding

1
@\ — _Z ap
<RW >l = 4<6uhagé7yh >l. (1.67)
<R(2)>z = 0 upon integration by parts, so from Eq. 1.63 we have

L1
w39

which is invariant under Eq. 1.12 and only depends on the physical modes hiTjT. Finally, from

(Ouhas0sh®?) (1.68)

l?

Eq. 1.66 we observe that the left-hand side is covariantly conserved with respect to VH, s0
V*(Ru — 39w R) = 0, because of the so-called Bianchi identity [J]. Thus,

12
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VAT + tw), (1.69)

which reflects that there is in general exchange of energy and momentum between the matter
sources and GW. As before, far from the sources V# — 9" and outside the source T,W =0,
such that 0"t,, = 0, which is the conservation of the energy-momentum tensor. Under the
conditions of the TT gauge at a large distance r from the source, we find the energy given by

dE r? OhLT OhLT
R dQ Y *J 1.
dt 327r/ < ot ot >1’ (1.70)
and the momentum is given by
de OhLT OhIT
_ Q Z] k ij ‘ 1.71
dt 327r/d 0 ( ot >>l (1.71)

1.5 Generation of gravitational waves

From the linearized theory, the Einstein field equation in the harmonic gauge (Eq. 1.20) is,

Ohy = -167T,,, (1.72)

where T}, is the energy-momentum tensor of matter, which satisfies the flat-space conservation
law 0#T),, = 0. Since Eq. 1.72 is linear in h,,, it can be solved with Green’s function, such that
its solution is

B () = —167 / d'2' Gz — ') T, (). (1.73)

Using the appropriate boundary conditions we find that for a radiation problem, the appro-
priate solution is the retarded Green’s function,

1 0

Glx—2')=— §(x%, —2"),  where 20 =1t 2%, = tyos, et =t — |x — X|, (1.74)

Am|x — x/|

where t,.; is the retarded time. Hence, since x’ is restricted to the inside part of the source,
the solution is

(£, %) _4/d3 / ,’ T, (t — |x — x|, X). (1.75)

We can project this solution in the TT gauge introducing the symmetric and transverse
tensor Pj;(f) = 6;; — n;n;, where 01 is the direction of propagation of the GW. Thus, we define

R 1
Aija(B) = PPy — 2P i Pr (1.76)
which is a projector since Ajj pAkimn = Aijmn. Moreover, it is transverse on all indices
n'Aij = 0,..., and traceless with respect to (i,7) and (k,l) indices, Ay = Aijrx = 0.
Therefore, outside of the source

hz;T(t,X) == Aij,k:l(ﬁ)hfkl = 4Aij,kl<ﬁ) /ddxl

1 / /
hg;-T depends only on the integrals of the spatial components Tj;. We can eliminate Toy

and Tp since they are related to Tj; by the conservation of the energy-momentum tensor. We
denote d < r as the typical radius of the source, and we can expand

13



Chapter 1. Brief Introduction to Gravitational Wave Formalism 1.5. Generation of gravitational waves

r

x —x|=r—-x"-(n )+(9<d2> (1.78)

We are interested in h;fg-T at large distances from the source, where the detector is located,
such that r — oo at fixed t. At large distances,

hg;-T(t,X) ZJ kl /d3 ! dw dk)gTkle—iw(t—r)-i-(k—wﬁ)w’ (179)
where T}, is the Fourier transform of T}, and we neglect terms (1/r?). This equation is valid
both for relativistic and for non-relativistic sources, as long as the linearized theory applies and
r is sufficiently large.

The equations for the generation of radiation are greatly simplified if the typical velocities
inside the source are small compared to the speed of light. We define w, as the typical frequency
of motion inside the source, such that the typical velocities inside the source are v ~ w,d. The
frequency of the radiation will be w ~ wg. In terms of X = ¢/w

X~ Sd (1.80)

v

As before, A represents the reduced wavelength and d the characteristic size of the source.
In a non-relativistic system v < ¢, such that X > d. When X is much bigger than the size of
the system, we only need to know the coarse features of the system, so the emission of radiation
is governed by the lowest multipole. Hence, we perform a multipole expansion for gravitational
radiation, starting from hiTjT at spatial infinity in terms of Fourier transform, given by Eq. 1.79.

For a non-relativistic source Tkl(w, k) is peaked around a typical frequency w, with wy < c.
The energy-momentum tensor is non-vanishing only inside the source, so |2'| < d. Then, the
dominant contribution to hz;-T comes from frequencies w that satisfy wz’-n < wyd < 1. Hence,
we can expand the exponential in Eq. 1.79

: ‘oo : 1 o
emw(t=rtalh)) _ o—iw(t-r) o {1 iwx"n' + 2( iw) 22" n'n? + ... (1.81)

Now, we define the moments of the stress tensor T,

S (¢ / BT (L, x), (1.82)
(1) / BT (L, x)a" (1.83)
SR (L) = /d3xT” (t,x)z"x!, (1.84)

and similarly for all higher-order moments. In this notation, a comma separates the spatial
indices which originate from 7% from the indices due to the expansion. The energy-momentum
tensor of matter is symmetric, 7% = T7*. Then its moments are symmetric in the first type of
indices and the second type, e.g. ¥k = Gitk Gkl — gijlk Gijk £ Gik.j Inserting Eq. 1.81 in
Eq. 1.79 yields

4 d pim , 1 d pim
h,ll;T<t7X) TAZJ kl( ) Skl +nmd ‘Skl7 2nmnpdt25kl p+ s (185)

t—r

evaluated at the retarded time t —r. From Eq. 1.82 — 1.84, we can see that every higher term
has an additional factor 2™ ~ O(d), while each time derivative adds a factor O(w;). Thus,
in Eq. 1.85, every successive term has an additional factor O(wsd) which implies a O(v/c)

14
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correction with respect to the previous term.
The moments of the energy density M and the moments of the momentum density P are

M= / PaT(t, %), pi= / T (t, x)
M= / P (t, %), phi = / BTt x)a? (1.86)
M = /dngOO(t,x)xixj, pPhik — /d?’xTOi(t,x)xjxk

The time derivatives of these quantities and the moments 7% satisfy the energy-momentum
conservation d,T"” = 0, with non-linearities being neglected, as we are working within the
linearized theory. This means that we are also neglecting the back-action of the GW on the
source.

d .
%M =0 (mass conservation) %P’ =0 (total momentum conservation)
d . d
7M7, — PZ 7P’L,J — S%] 187
dt ’ dt (LE7)
wa — Pz,]k P],kz Pk,zg 7Pz,]k — Sz],k Szk,]
dt - * ’ dt *

While a physical system that radiates GW loses mass, in this approximation, the mass M
of the radiating body is conserved due to neglecting the back action of the source dynamics
because of the energy carried away by GW. With these equations we can express the multipole
expansion, Eq. 1.85, in terms of {M,M* M% ...} and {P* P" ...}, which have a more
immediate physical interpretation. Combining dM*/dt = P' and dP% /dt = S%, we can
rewrite the leading-order contribution to Eq. 1.85 as

2 . dMHF
{h?jT(ty X)} = ;Aij,kl(n)ﬁ(t —7) (1.88)

Introducing the reduced quadrupole moment as
ij i L 3 g Lo
QJEMJ—géijk:/d :Up(t,x)(xﬂ:§r 0, (1.89)

where My, is the trace of M%. Using the fact that A,k vanishes when contracted with 6%, so
NijiMy = Nij Q. Hence, Eq. 1.88 in terms of the reduced quadrupole yields

2 dQ 2dQLT
i (£3)] = “Agr(B) =25t =) = S (t =) (1.90)

When the direction of propagation n = z, we evaluate Eq. 1.90 and compare to Eq. 1.48

1,dMy,  dMo
_1 _ 1.91
+ 7'( dtz dt2 )7 ( 9 )
2 dM
hy = =(—2). (1.92)

dt?

r
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Chapter 2

Gravitational Waves: Sources,
Detectors and Analysis

As we have seen in the previous chapter, GW are ripples in space-time, and due to the fall-off
of their amplitude with distance, they exhibit minuscule amplitudes. After a century since the
formulation of GW formalism, and nearly four decades of technological advancements dedicated
to constructing GW detectors, scientists successfully measured this space-time deformation in
2015. Nowadays, GW detectors have discovered over 90 GW signals, probing down to the
densest and most energetic regions of cosmic objects, which were hidden from astronomers’
sight up until now [/, 12, 13]. Furthermore, novel astronomical detections are expected with
the upgrade of second-generation detectors, as well as the construction of third-generation
detectors, such as the Laser Interferometer Space Antenna (LISA), Einstein Telescope and
Cosmic Explorer [11, 15, 10].

In this chapter, we present an overview of GW sources detectable by current and/or future
ground-based detectors. We also introduce the current state-of-the-art of GW detectors and
their noise sources, as well as introducing basic data analysis techniques.

Short duration , Long duration

Modelled

7~
4 )
/& -

compact binary coalescence

=
mt)
")
=
S
(=
=
=

stochastic

FIGURE 2-1: The different types of GW sources can be differentiated by their duration
(short/long) and their associated astronomical models (modelled/unmodelled). Further details
of the sources are described in the main text. Credits: Shanika Galaudage.
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2.1 Gravitational-wave sources

In Fig. 2-1 we can observe an overview of GW sources classified according to their duration
(short/long), and if astrophysical models are associated with the source (modelled /unmodelled).
In the next subsections, we provide an overview of sources of interest for ground-based detectors.

2.1.1 Compact binary coalescence

The main type of short duration and modelled
GW sources are known as Compact Binary

Coalescence (CBC). These coalescing systems Ringdown
are composed of two compact bodies, either
binary black holes (BBH), binary neutron ®

stars (BNS) or one neutron star and one black
hole (NSBH). In this context, “compactness”
is the ratio between the mass and the radius i
of the object, which is related to the strength N A A ’
of the GW emission, and as a consequence, | [\ ie 410 o
it provides insights into the dynamics and as- l\ % a0 487
trophysical properties of the binary system. \ ’;‘} O '\ ’l l I
' |

As these two bodies orbit each other, they 'l"\__;"" "'U/ '\\ //‘ I", ," \ul ; ‘l | ]"“‘:l‘“‘“ﬁ”ﬂ““
emit GW radiation while losing orbital energy N : \| | ? o
and angular momentum, shrinking their orbit d kl
(inspiral phase). FEventually, an astronomi-
cal cataclysm occurs with their abrupt colli-
sion (merger phase). The remnant of this co-
alescence will quickly return to ground-state

(ringdown phase). As we show in Fig. 2-  pioyrp 2-2: Temporal evolution of a binary

2, the inspiral phase is modelled using post- system with component masses
Newtonian expansion (see Section 1.5). The my = mg = 20My. We colour in blue the
merger phase is modelled with numerical rela- inspiral, in orange the merger, and in green

tivity since in general relativity the two-body the ringdown.
problem is not analytically solvable. The ring-
down phase is modelled using perturbation
theory, where the resulting compact object from the coalescence, known as remnant returns
to ground-state “ringing” like a bell so that the resulting GW is a superposition of damped
sinusoids, known as quasi-normal modes.

Since this GW sources are the most understood, we can use modelled algorithms like
matched filtering techniques to detect them (see 3.2.1 for details). However, we can also use
weakly modelled or model-free algorithms, as in the case of intermediate-mass black holes [17].

2.1.2 Transient bursts sources

Short and unmodelled GW sources are known as bursts. Burst can be short, up to a few
seconds duration, or long, up to ~ 10% s duration. In this work, we will focus on short-
duration GW transients, which include but are not limited to, core-collapse supernovae ||| and
cosmic strings [19]. These sources are generally unmodelled, due to either unknown theoretical
background and/or complex dynamics of the system. Since burst searches are meant to detect
the unexpected, the unmodelled search algorithms employed use minimal (targeted search) or
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no assumptions (generic search) about the source GW signal [20, 21, 22]. As we have seen in
the previous Section, model-free algorithms can also be sensitive to CBC.

2.1.3 Continuous wave sources

Persistent (long duration) and modelled GW are known as continuous waves, which are quasi-
monochromatic signals with roughly constant frequency and amplitude compared to the obser-
vation time. Sources of continuous GW are single rapidly rotating non-axisymmetric massive
objects, such as neutron stars with either a deformation on the surface of the star or due to
some fundamental oscillation mode [2]. Continuous waves could also be produced by exotic
objects, such as the annihilation of ultra-light boson clouds around spinning black holes [21, 27].

2.1.4 Stochastic background

Persistent (long duration) and unmodelled GW is known as the Stochastic background of GW.
This background could be the result of the superposition of incoherent GW signals. It could
arise from cosmological sources, such as the inflationary epoch, first-order phase transitions
in the early universe or cosmic strings; or from astrophysical sources, such as supernovae or
the inspiral and merger of CBC over the history of the universe (see [2(] for a comprehensive
review). LIGO and Virgo have placed upper bounds on the energy density of the stochastic
background in the range [20,103] Hz, by calculating the cross-correlation between pairs of
detectors in the search of an excess in the distribution [27].

2.2 Detectors through history

In the 1960s, Joseph Weber began experiments to detect GW with his resonant mass detectors,

which measure the oscillations of a bar caused by a passing GW. Weber’s detector reached a

sensitivity of 1071 m, achieving an important milestone towards GW detection [2=]. In 1969

he claimed to have observed signals from GW, but his results remained unreproducible [21].
The concept of interferometric

detectors emerged in the early 1960s

and 1970s, with the fundamental de-

sign resembling that of a Michelson-

Morley interferometer, which was =1 end mirror

initially conceived in 1887 to prove

the existence of luminiferous ether:

a hypothetical medium for the prop- L v

agation of light waves. Their exper- laser I

X

iment measured the relative motion />
|:|

between Earth and such medium,
not only finding null results for the
existence of luminiferous ether but beamsplitter

also suggesting that the speed of

light is constant and independent of PD
the observer’s motion, playing a piv-

otal role in the development of spe-

cial relativity. Furthermore, since
the Michelson-Morley interferome- FIGURE 2-3: A schematic setup of a Michelson-Morley

ter was designed to measure the rel- interferometer retrieved from [70)].

ative length changes of two perpen-

end mirror
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dicular directions, it can serve as a GW detector by measuring the deformation of the test
masses (see Section 1.4) [21, 20].

The individual elements composing modern GW interferometric detectors, such as lasers
and mirrors, are individually well described by mostly classical physics and the complexity in
the detector’s behaviour arises from the combination of these elements into an optical cavity to
enhance the interaction of light waves. As the description of a GW interferometer is a complex
topic, the interested reader can refer to [0], but in this work, we provide a basic overview of the
detector. In Fig. 2-3 we present a schematic illustration of a Michelson-Morley interferometer,
composed of a laser, a beam splitter (a 50% reflecting mirror), two highly reflecting end mirrors
and a photodetector (PD). The three mirrors can be considered free-falling objects in the
horizontal direction, as they are suspended as pendulums, only allowed to swing freely in that
direction. As we can observe in Fig. 2-3, the reflecting mirrors are placed equidistant from the
beamsplitter, at a distance Lx and Ly for the z- and y-axis respectively, but in orthogonal
directions. The light beam input from the laser incides in the beam splitter, where it splits it
into two beams. These two beams travel through the detector’s arms until they reach the highly
reflecting end mirrors, being redirected to the beamsplitter, where they are recombined and
detected at the PD. When the beam recombines, it will interfere constructively or destructively
if the lengths of the two arms differ by an even or odd number of wavelengths.

nA, (constructive interference)

AL=Lx — Ly = 1
(n + 2) A, (destructive interference)

where n € [0,1,..., N]. As we saw in Section 1.3, in the proper detector frame the passage
of a GW along the z-axis causes a displacement of the test masses in the x — y plane from
their original position. This introduces a relative temporary change in the light path on the
r-axis with respect to the y-axis, that can be measured with interferometric GW detectors. As
photons travel through null geodesics, which implies that the interval ds? = 0 (see Eq. 1.32),
this relative change can be expressed as,

(2.1)

. dt ~[1_ hy cos [w(t — 2)] _

! \/1 + hy cos [w(t — z)] (1 2 ) A= bt 22
B dt N hy cos[w(t — z)] B

dy = N ~ (1 + = 5 ) dt = L,dt (2.3)

where we have considered only a +-polatized GW and performed a Taylor expansion around
h = 0. Therefore, we can compute the difference in path length between x and y arms,

AL
L
where L = dt is the unperturbed path length. From Eq. 2.4 we can observe that a passing GW
produces a fractional change in distance in the detector, generating an output called strain. On

the other hand, Eq. 2.1 indicates such strain will cause a phase shift detectable by the PD.
Current GW interferometric detectors are modified Michelson-Morley interferometers, that
form a global infrastructure for the discovery and study of GW. Nowadays, the network is
formed by two Advanced LIGO [7], one located in Hanford, Washington (USA) and another
one in Livingston, Louisiana (USA), Advanced Virgo [0], located in Cascina (Italy), GEO 600
[2], located in Hanover (Germany) and Kamioka Gravitational Wave Detector or KAGRA
[47], located in the Gifu-prefecture (Japan). In thesnext two decades, we expect to improve the
current advanced detectors at A¥ sensitivity, as well as the addition of LIGO Aundha (India)
[31, 25, 30]. Furthermore, we also expect the launch of LISA [I 1], as well as the construction

AL =L, — L, = hdt = Lh = h(t) = (2.4)
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FIGURE 2-4: (Left) LISA orbiting around the Sun. (Right) Finstein Telescope underground.
Artists impressions.

of third-generation detectors such as Einstein Telescope [ 7] and Cosmic Explorer [1(] (see Fig.
2-4 for a visualization). In Fig. 2-5 we show the location of the second-generation of GW
interferometers.

[ ]
GEO 600
Liclor -
Hanford \‘
[irgo

FIGURE 2-5: Location of the current network of second-generation interferometric detectors.

2.3 Antenna pattern of interferometers

Interferometric detectors are omnidirectional antennas and have a good sensitivity over a large
fraction of the sky. From Eq. 2.4, the output of the detector will be h(t), which will respond
to a passing GW as h;;(t,x). The general transfer function for GW detectors is
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h(t,x) = D" hy;(t,x), (2.5)

where D;; is the detector tensor that depends on its geometry. For a detector which is sensitive
only to GW with a reduced wavelength A much larger than its size, we can neglect the spatial
dependence of the GW signal h;;(t,x), such that

hy() = 3 eb@hat). (26)

A=+,X

The direction of propagation of the wave is n, and e . the polarization tensor defined as

= T e 27)
u;v; + viu; for A = x

where 1 and Vv are unit vectors orthogonal to n. Thus, Eq. 2.5 can be expressed as,

ht)= > Deli(d)ha(t)= > Fa(h where Fy(f) = DYef;(h). (2.8)
A:+7X A= + X

We have conveniently defined Fl4(1) as the detector pattern functions, which depend on the
direction of propagation of the wave n = (6, ¢). Hence, the output of the detector yields

h(t) = hae () F4 (0, ,9) + hy () Fi (6, <b ), where
F (0,0,9) = (1 + cos? 0) cos 2¢ cos 21 — cos 0 sin 2¢ sin 21, (2.9)

F.(0,0,v) = (1 + cos? 0) cos 2¢ sin 21 — cos 6 sin 2¢ cos 21/,

where 1) is the so-called polarization angle.

0.4 0.6
F

FIGURE 2-6: Variation of F = \/F? 4+ F2 for ¢ =0 as a function of the longitude ¢ and the
latitude 6 for LIGO Livingston (left) and Virgo (right).

In Fig. 2-6 we represent F' = /F? + F2 as a function of the longitude ¢ and the latitude
0 for LIGO Livingston in Florida (USA) and Virgo in Pisa (Italy). Large values of F' imply a
better sensitivity which is dependent on the orientation of the detectors. With respect to the
plane defined by the arms Lx and Ly, the most sensitive directions are orthonormal, and less
sensitive directions are bisectors, such that cos = cos2¢ = 0.
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2.4 Sources of noise

In the previous Section, we have seen the expression of the detector response, Eq. 2.5, in an
ideal setting where there are no external perturbances. Nonetheless, the real world is full of
imperfections causing undesired noise in the detector strain. Mathematically, the main strain
of the detector measures

s(t) = n(t) + h(t), (2.10)

where n(t) represents the combination of all noise sources. Many textbooks treat the n(t) as
Gaussian and stationary, which is a poor approximation to the interferometers’ data. The
understanding and unbiased modelling of the different sources of noise is fundamental to infer
the significance of GW signals and their astrophysical properties. Tasks to understand and
mitigate noise sources both from the instrument and the data analysis side, also known as
detector characterization tasks, are a significant portion of LIGO-Virgo-KAGRA collaboration’s
work [27, 25, 20, 10]. Following detector characterization guidelines, we can classify noise
sources by dividing them into three different categories:

- Fundamental noises: They cannot be reduced without a major instrument upgrade, such
as the installation of a new laser. An example of fundamental noise is thermal noise ,
associated with sources of energy dissipation, and quantum noise, related to the quantum
nature of photons due to the Heisenberg uncertainty principle and quantum fluctuations.

- Technical noises: they arise from electronics or dust in the mirrors, and they can be
reduced once identified and carefully studied.

- Environmental noises: include seismic-motion, acoustic and magnetic noises [/ ].

In the following subsections, we will provide details on the sensitivity of the detectors, while
a summary of the most dominant sources of noise is provided in Appendix A.1.
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FIGURE 2-7: (Left) PSDs of LIGO Livingston during the third observing run (O3) (blue),
LIGO A+ (orange), LIGO A* (green), Einstein Telescope (pink) and Cosmic Ezplorer (red).
(Right) Design sensitivity of Advanced LIGO (black), and noise sources from seismic noise
(brown), suspension thermal noise (blue), coating thermal noise (red), gravity gradient (green)
and quantum noise (purple), retrieved from [/”].

2.4.1 Power spectral density

If the noise is non-stationary, then the different components of the noise are uncorrelated, and
therefore the ensemble average of the Fourier components of the noise is of the form
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(R (FIRY) = 8(F — F)5Su(F), (2.11)

where * denotes the Fourier transform, * the complex conjugate and, as in the previous chapter,
<. : > represents the average. As we assume n(t) to be dimensionless, S, (f) has dimensions

Hz~1. We can also assume without loss of generality that <n(t)> = 0. In Eq. 2.11 the right

hand side diverges for f = f’, but in any experiment we measure n(f) in a finite time interval
T, so for f = f" Eq. 2.11 takes the form:

1 1 1
() = 5Su(NT = S5u(f) = (|al*)Af  for f=f/, and Af = - (2.12)

where Af is the resolution of the measurement in frequency. Note that the factor 1/2 is
conventionally inserted, such that S, (f) is obtained integrating over physical frequencies f > 0:

(i) = [~ drar (wenn(r)) = 5 [~ drsath) = [ drsa) (2.13)

The function S, (f) is known as the power spectral density (PSD). Moreover, the noise of

the detector can also be characterized by 1/S,(f), known as amplitude spectral density ASD
with dimensions Hz='/2. In Fig. 2-7 left panel we present the PSD of various detectors PSD.
While we show the average PSD of LIGO Livingston during the third observing run (03), we
also show the design sensitivity of LIGO A+ and LIGO A, which will be beyond the fifth
observing run. Furthermore, we present the PSD of Einstein Telescope (Europe-based) and
Cosmic Explorer (USA-based), which will collaborate to detect GW signals during the third-
generation era. In Fig. 2-7 right panel we present the design ASD of Advanced LIGO, as well
as its noise budget with different sources of noise, namely, seismic noise (brown); suspension
thermal noise (blue), which is dominant at f < 10Hz; coating thermal noise (red); gravity
gradient (green); and quantum noise (purple), dominant at f = 10Hz [!”]. The details of these
sources are elaborated in Appendix A.1, except for coating thermal noise, which interested
readers can refer to [17].

Characterizing the noise of the detector with the PSD is fundamental for GW data analysis,
as it provides key information about the frequency content of the data at hand. Nonetheless,
the PSD is not known a priori and it needs to be properly estimated. There are two commonly
used methods to compute these estimates: “off-source” and “on-source” estimate [!!]. The “off-
source” estimation assumes that the PSD does not vary over the duration being averaged and
that there are no non-Gaussian features in the data. The “on-source” estimation, in contrast,
uses the commonly adopted method of simultaneously fitting the signal and power spectral
density of the detector noise. While the second method is less affected by noise artifacts, it is
computationally more intensive.

The “off-source” estimation is usually preferred for GW searches. The simplest estimate is
Welch’s method (see Appendix A.3 for its mathematical formalism), which assumes Gaussian
and stationary data. To overcome its limitations, other authors have proposed more sophisti-
cated methods for the PSD estimation [ 17, 10, 17].

2.4.2 Noise lines

GW interferometers are complex experiments with many sub-systems that couple to the main
detector strain h(t), causing large narrow-band contributions to the PSD. As an example, we
can see in Fig. 2-7 in blue the PSD of LIGO Livingston during O3 presenting several narrow-
band peaks, known as noise lines. Most lines in the detector data are stationary, but some of
them have time-varying behaviour, degrading the detector sensitivity over a larger frequency.
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Such behaviour hampers continuous GW searches as these artifacts can lead to spurious outliers
which require laborious follow-up.
Some noise lines occur in a “comb” pattern, and the frequency peak of their nth “teeth” follows

wy = fo+ néf, (2.14)

where f, is the offset and df the spacing between the teeth. Combs are associated with linear
or non-linear couplings of non-sinusoidal sources, or with non-linear couplings of sinusoidal
sources. Lines and combs can have time-dependent behaviours as the configuration of the
detector changes: as interferometers undergo enhancements and upgrades, and issues related
to coupling with various sub-systems are resolved, but the addition of new hardware, while
inevitable, introduces further challenges related to data quality [19].

To further understand the noise of the detector, its status is continuously monitored through
a large set of data streams at various sampling rates, outputting ~ 10° time series from instru-
mental and environmental sensors. These auxiliary channels can be divided into safe (insensitive
to GW) and unsafe (sensitive to GW). Some subset of these channels may serve as “witnesses”
to narrow-band couplings in the detector, but they can also “witness” the production of non-
gaussian transient burst noise, as we will see in the next subsection.

An example of identified narrow-band couplings is the power lines caused at 50 Hz in Virgo
and 60 Hz in LIGO, as well as their respective harmonics, caused by the main power supplies.
Other examples are also mechanical resonances of mirror suspension, known as “violin modes”,
and simulated GW signals known as “hardware injections” [1%, 10].

The standard process for mitigating lines or combs is often iterative and experimental, but
their main steps are:

1. Identification of noise in the main detector strain.

2. Determination of the properties of the noise, such as duration, associated frequencies and
possible channel “witnesses”.

3. On-site investigations or interventions.

Work on site is constrained by time availability and the risk of creating novel sources of
noise. Hence, the mitigation of noise sources is usually prioritized by their strength, the number
of frequency bins contaminated, and the ease of addressing their cause. Lines which are not
well-understood are catalogued afterwards, helping GW searches on cleaning the data and
rejecting outliers. Mitigation efforts are challenging as they can take order of days or weeks
to determine if these methods have contributed significantly to data quality. Furthermore,
configuration changes in the detector that lead to line generation can also take time to appear
and be mitigated. We recommend that interested readers refer to [70] and references therein
for an in-depth description of the methodologies developed to address these issues.

2.4.3 Glitches

Noise couplings can also cause a transient non-astrophysical burst of non-Gaussian noise, which
are colloquially known as glitches [71, 52]. Glitches may be caused by the environment (e.g.,
earthquakes, wind, anthropogenic noise) or couplings with instruments (e.g., control systems,
electronic components [7]), though in many cases their causes remain unknown [7!]. They
come in a large variety of time-frequency morphologies, have a typical duration of between
sub-seconds and seconds, and have a high rate of occurrence (~ 1 per minute during the first
half of the third observing run, O3a [1]).
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Glitches are problematic due to their large abundance and capability of hampering GW data
analysis. They can reduce the amount of analyzable data increase the noise floor, produce false
positives in GW data, affect the estimation of the detector power spectral density and reduce
candidate significance in searches for short- and long-lived GW signals [75, 50, 57, 27, 53]
Glitches can also bias astrophysical parameter estimation, making it difficult to determine
which part of the signal corresponds to a glitch and which part to the actual GW event [0,

, 01]. Additionally, glitches can impact line-cleaning procedures in GW searches, which rely
on replacing disturbed frequency bins with artificially generated data, consistent with their
neighbors [02, 50, 58], If the surrounding data contains elevated noise floors, the efficacy of
mitigation methods will be reduced.

Glitch identification and characterization is a crucial first step towards their mitigation, but
due to their overwhelming amount, their characterization by hand is unfeasible. [0, 20, 01]. A
promising option is then to construct machine learning (ML) algorithms for their identification.
Most of the current approaches to glitch characterization with ML utilize supervised classifica-
tion algorithms, where models learn to identify glitches through labelled data representations

of GW strain data h(t) [05, 00, 07, 65, 69, 70, 71]. In practice, glitches are visualized in time-
frequency representations, which involves a modification of the standard short-time Fourier
transform parameterized by a quality factor Q [72, 72, 71]. For a discussion on time-frequency

representations, the interested reader can refer to Section 3.3.2.

Nonetheless, this procedure of glicht identification presents several limitations. Firstly, gen-
erating labelled data is an expensive task, since MLL methods need a lot of examples for training,
and experts must vet the labelling procedure. Secondly, glitch classes are highly unbalanced,
biasing the models towards the most common classes. Moreover, supervised learning needs
fixed class definitions that are not exhaustive nor representative of all glitch morphologies, as
there could be many possible sub-classes to discover [(7]. Furthermore, as GW detectors are
improved, novel glitch morphologies could arise [/7].

Despite these challenges, these methods have been instrumental in GW detector character-
ization and data analysis. In the following, we describe the different classes defined by one of
the most well-known supervised ML algorithms, GravitySpy [0, (], whose morphologies can
be visualized in Fig. 2-8.

- 1080Lines: these glitches manifest as brief, recurrent spikes occurring ~ 0.1s at ~
1080 Hz, and additionally accompanied by noise < 64 Hz. These disturbances were no-
tably widespread in LIGO Hanford during the early stages of the second observing run
(02) but saw a reduction after that by improvements in the output mode cleaner [(+].

- 1400Ripples: they exhibit a short timespan (< 0.5s) with a wavy morphology at ~
1400 Hz.

- Air_Compressor: they appears as a broad, horizontal line at ~ 50 Hz. Investigations in
LIGO Hanford concluded that these glitches were linked to air compressor motors at the
end stations. They were mitigated by replacing the vibration isolators [(%].

- Blip: these glitches have a characteristic morphology of a symmetric “teardrop” shape in
time-frequency in the range [30,250] Hz with short-durations, ~ 0.04s. They appear in
both LIGO Livingston and LIGO Hanford, as well as Virgo and GEO 600 [>!]. Due to
their abundance and form, these glitches hinder both the unmodeled burst and modelled
CBC can searches, with particular emphasis on compact binaries with large total mass,
highly asymmetric component masses, and spins anti-aligned with the orbital angular
momentum [>5, 57]. Moreover, since there is no clear correlation to the auxiliary channels,
they cannot be removed from astrophysical searches yet.
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- Blip__Low_Frequency: they have a similar shape to Blips, but occur at lower frequencies,
with peak ~ 10 — 50 Hz. As they fall in the expected frequency band for high-mass CBC,
they hinder their detection. Note that this class was added during O3 [77].

- Chirp: they are GW signals from CBC artificially added in the detector data via created
by hardware injections, i.e. by physically displacing the detectors’ test masses. Note that
these signals do not accurately reflect our present understanding of CBC populations [+].

- Extremely Loud: their main characteristic is an exceptionally high signal-to-noise-ratio’
(SNR), saturating their time-frequency representation. Typically, loud glitches result
from significant disruptions in the detector, adversely affecting its sensitivity [19].

- Fast_Scattering: they appear as short-duration arches (~ 0.2 — 0.3s) in the frequency
range [20 — 60] Hz. These glitches are strongly correlated with ground motion in range
[0.1 — 0.3] Hz and [1 — 6] Hz, which in turn is associated with thunderstorms and human
activity near the detector. Note that this class was added during O3, and it is more
abundant in LIGO Livingston than LIGO Hanford, due to differences in ground motion
and detector sensitivity [/7].

- Heliz: these glitches are usually grouped in sets of 2 — 3 separated by ~ 0.1s in the
frequency band 16 — 512 Hz. Investigations point out that they might be related to the
auxiliary lasers used to calibrate the detectors [(+].

- Koi_Fish: Their naming comes from their imaginative frontal resemblance to koi fishes.
They are also similar to Blips but typically feature high-SNR, spanning the frequency
range of ~ 20 — 1000 Hz.

- Light Modulation: These glitches are in the frequency range 16 — 128 Hz, often displaying
broad-band spikes. They exhibit high-SNR and stem from fluctuations in the amplitude
of the control signal for the optical sidebands, which are responsible for adjusting the
length and alignment of optical cavities [(4].

- Low_ Frequency_ Burst: they are short-duration glitches (~ 0.25s) in the frequency range
[10 — 20] Hz with a distinctive blob shape. These occurrences were prevalent in LIGO
Livingston data during O1 and LIGO Hanford data in O3a.

- Low_Frequency_ Lines: these glitches have a flat-line-like morphology with durations
~ 1.5 — 2s and usually at frequencies < 20 Hz.

- Power__Line: They are narrow lines, typically lasting ~ 0.2 — 0.5 s near the frequency of
the power grid in the United States (or harmonics of this frequency). These glitches can
be attributed to various equipment dependent on this power supply.

- Repeating Blips: these glitches consist on multiple Blip glitches, often repeating every
~ 0.25 - 0.50 s.

- Scattered__Light: also known as Slow Scattering, these glitches have longer duration har-
monics (~ 2.0 — 4.0s), and in the time-frequency domain, they appear as arches often
stacked on top of each other. These glitches are quite problematic since their frequency
content lies in the band of interest of GW astrophysical events. In O3, they were found to
be coupled with the relative motion between the optical suspension system’s end test-mass
chain and the reaction-mass chain [77].

Tt must be noted that this definition of SNR is different to the one presented in Section 3.2.1, as it is defined
in the context of Omicron [73].
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- Scratchy: These glitches manifest as a sequence of distinct sharp peaks, primarily at
intermediate frequencies in range ~ 60 — 250 Hz. These peaks can occur at a rate of
~ 10 — 30s7!, and are associated with light scattering from the Swiss cheese baffles [(4].

- Tomte: these glitches are also short-duration (~ 0.25s) with characteristic triangular
morphology. Since there is no clear correlation to the auxiliary channels, they cannot be
removed from astrophysical searches.

- Wandering Line: They are long-duration glitches with a distinctive undulating mor-
phology. They can span a broad spectrum of frequencies, often displaying multiple lines
simultaneously at various frequencies, but typically they spam in frequencies > 256 Hz.

- Whistle: These glitches have a characteristic V, U or W shape at higher frequencies (=

128 Hz) with typical durations ~ 0.25s. They are caused when radio-frequency signals
beat with the voltage-controlled oscillators [17].

As we mentioned before, persistent glitches at specific frequencies critical to data analysis
constitute a problem for GW detection and parameter estimation. Hence, it is essential to
eliminate the harmful influence of these glitches on the searches for GW signals. Discerning
the background of glitches is indeed a challenging problem. One major difficulty is the lack
of glitch simulations, making it challenging to transition from perfect simulated noise to real
data. Additionally, the unknown real population of glitches complicates the evaluation and
understanding of the performance of ML classifiers. Moreover, while glitches are observed in
the strain data h(¢) they are produced in the different subsystems of the interferometers, so
understanding their formation is challenging by solely utilizing h(t) data.

To tackle some of these challenges, in Chapter 6, we simulate Blip glitches—one of the main
classes of glitches that hinder transient GW searches—using ML techniques. Additionally, we
propose several applications and provide a practical example to evaluate the performance of
Gravity Spy. In Chapter 6, we found that our ML algorithm could learn anomalous morpholo-
gies due to the lack of ground truth in the real Blip population. To address this fundamental
issue, in Chapter 7, we construct an unsupervised ML method to explore the auxiliary chan-
nel data—time series originating from the monitors of different subsystems—and learn the
underlying distribution of the data, uncovering unknown glitch morphologies and overlaps.
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2.5 Data conditioning

From the previous Sections, we have learned that the main strain of the detector h(t) is impacted
by fundamental noises, that can only be reduced with a major instrument upgrade, technical
noises, that arise from the different subsystems within the detector, and environmental noises.
As GW have minuscule amplitude and are buried in the detector noise, it is crucial to develop
robust data analysis techniques that enhance these signals. In this section, we provide details
about the most basic data conditioning methods that have led to GW discovery.

2.5.1 Sampling of continuous-time signals

The signal h(t) is continuous, but the data measured in the detector is a representation of this
sampled signal. Typically, we can obtain the discrete-time representation x4(t) = z[n] of a
continuous-time signal z. through periodic sampling as

z[n] = z.(nT), —oo<n <o (2.15)

where T is the sampling period, or time resolution, and f; = 1/7T is the sampling frequency.
It is important to note that the sampling operation is not invertible in general since many
continuous-time signals can produce the same output sequence of samples. This inherent am-
biguity is a fundamental issue in signal processing, but it is possible to restrict it by controlling
and narrowing down the range of input signals fed into the sampling system [70]. Now, we
derive the frequency domain relation between z.(t) and x4(t), so we consider that their relation
is modulated by a periodic impulse train s(t) = > 0> 0(t — nT’) such that

T5(t) = ze(t)s(t) = z.(t) Y. 0t —nT)= > w.(nT)é(t —nT) (2.16)
Then, its Fourier transform, denoted as ~ , will be
N 1 & . 2
s(f) = T > G w—kws), where w, = - (2.17)

k=—o0

Here, w is the angular frequency, wy is the sampling angular frequency, which are continuous
variables. Also, k is an integer number. From Eq. 2.17 we can observe that z4(t) consists
of periodically repeated copies of Z., which are shifted by integer multiples of w, and then
superimposed to produce the periodic Fourier transform. According to the Nyquist sampling
theorem, if x.(t) is band-limited, it is uniquely determined by

2
z[n] =x.(nT) withneZ ifws= % > Wy (2.18)

where wy is known as Nyquist frequency. In this way the replicas do not overlap w, > 2wy
[77]. Otherwise, the frequency would components overlap, resulting in aliasing.

We express the discrete frequency € = w/T in radians/sample and, therefore, dimensionless.
Hence, we can define the discrete Fourier transform of the sequence z[n|, often expressed in
signal processing as 7 (e™!), is

) 1 &
T(e"?) = T > Ze(w — kwy), (2.19)
k=—o00

where we have used Eq. 2.17 in the last term. Equivalently,
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He?) = ;ki a2 QTW/{;). (2.20)

2.5.2 Low-pass, high-pass and band-pass filters

A way to avoid aliasing is to restrict the frequencies of the signal such that f; > 2wy. For this,
we can use a low-pass filter which allows frequencies below a given cut-off frequency. Another
possibility is to employ a band-pass filter, which allows frequencies in a pre-defined range. In
practice, a band-pass filter can be constructed with a low-pass filter and a filter which allows
frequencies below a cut-off frequency, known as a high-pass filter. For illustration, in Fig. 2-9
we provide an example of these filters.

f f f

FIGURE 2-9: Schematic low-pass (left), high-pass (middle) and band-pass filters (right).

These filters are relevant in GW data analysis as the output of the detector spans from 10 Hz
since the detector is not calibrated at lower frequencies, to ~ 10kHz. Limiting the frequency
range of our analysis does not only avoid aliasing (see discussion in the previous section), but
might simplify the data, which can lead to more accurate and reliable results. Depending on
the nature of the target source, we would be inclined to perform a narrow band search, as in
the cause of continuous waves with quasi-monochromatic signals (see Section 2.1.3), or even a
wide range search, as in the case of transient Burst searches (see Section 2.1.2).

2.5.3 Resampling

The main strain of the detector h(t) is a time series sampled at 16384 Hz for LIGO and 20 kHz
for Virgo, but these data are only calibrated > 10 Hz for the A+ detectors. Depending on the
frequency content of the targeted signal, we might want to reduce the sampling rate of the data
by defining a new time series x4 such that

zg[n] = x[nM| = xz.(nMT), (2.21)

where M is a reduction factor and 7" is the sampling period. z4[n] is identical to the time series
that would be obtained from the continuous signal z.(t) sampled with a period 7" = MT.
The sampling rate can be reduced by a factor M without aliasing if the new time series is
band-limited to w < wy, and then z4[n| would be an exact representation of x.(t) if 7/T" =
7/MT > wy. This operation is called downsampling.
Similarly to Eq. 2.20, the discrete-time Fourier transform of z4[n| = z[nM] = z.(nT") is
i 1 & . /w  27r 1 < w 2mr
Tae®) =7 2, e (7~ 7) = M7 2 e (377~ 377) (2.22)
Relating Eq. 2.20 and Eq. 2.22, we can express the summation index r from Eq. 2.22 as
r=m+ kM for k € (—oo0,00) and m € [0, M — 1]. Thus, we can rewrite Eq. 2.22 as
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: 1= & w 21k 2mm 1A=
Tale™) = 31 mzo [T ,E_OO %e (MT T MT MTN M m{% gl (2.23)
In this way we can interpret Z4(e™) as composed of M copies of the periodic Fourier trans-
form Z(e™), frequency scaled by M and shifted by integer multiples of 2. From this we can
understand that Z4(e™) is periodic with period 27 and that aliasing can be avoided by ensuring
that Z(e™) is band-limited. Therefore, it is important to apply a low-pass or anti-aliasing filter
before downsampling. Such procedure is known as decimation.
For completeness, but not utilized in this work, we could be interested in increasing the
sampling rate by a factor of L, such that the new sequence will be defined as

zeln| = z[n/L| = z.(nT/L), forn=0,£L,£2L,... (2.24)
This operation is known as upsampling, and it can be mathematically expressed as

o

ze[n) = > x[kld[n — kL], (2.25)
k=—0oc0
where its Fourier transform
T() = Y < S afk]on — kL])e"“" = Y afkJe etk = X(eL), (2.26)
n=-00 *k=—00 k=—o00

such that the Fourier transform of the upsampled output is a frequency-scaled version of the
Fourier transform of the input. To avoid artifacts, the resulting upsampled sequence needs to
be low-passed.

2.5.4 Whitening

As we have seen in Section 2.4 the noise from the detector is composed of couplings of different
sub-systems, as well as its surrounding environment. In GW data analysis it is key to estimate
the PSD of the data to understand the sources of noise. As we can see from the top panel
of Fig. 2-7, where we present the PSDs of current and future detectors, and 2-10, where we
present the raw coloured time-series data, the noise of the detector is dominated by low and
high frequencies. GW signals are buried within coloured detector noise, so a common practice
in GW data analysis is to make the data delta-correlated or Gaussian-like with uniform variance
by removing all the correlation of the noise. In practice, the resulting PSD has equal amplitude
fluctuations at all frequencies, allowing for easy comparisons. The process of transforming
coloured noise to Gaussian-like noise is known as whitening [7+], and mathematically

do(f) = d(f)/S,*(f) (2.27)

where d and d,,(f) are the Fourier transform of the coloured data and whitened data, respec-
tively. To obtain the time series of the whitened data we can simply apply the inverse Fourier
transform in de( f). It is important to note that during this process artifacts due to aliasing can
occur, so the whitened data should be cropped to avoid biasing in the subsequent analysis. In
the second and fourth panels of Fig. 2-10 we show the whitened time-series data and the PSD,
respectively. We can see by eye the presence of GW150914, but to highlight it we band-pass
between 30 — 250 Hz, as we can observe in the third panel, and its respective PSD in the fourth
panel of Fig. 2-10.
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2.6 Data quality and vetoes

To enhance the sensitivity of GW searches and re-
duce the number of false alarms, multiple types of
data quality products are used to indicate the state
of the detector during the data analysis. One such
product is data quality flags, which indicates the
suitability of collected data for analysis [0, 10].

Category 1: These flags denote that the detec-
tor noise has been severely impacted, ren-
dering it unsuitable for astrophysical analy-
sis. They could indicate significant changes
in the properties of the noise of the detector
or incorrect calibration, which might arise
from incorrect detector settings or on-site
maintenance work, among others. In O2 and
03 data flagged in this category represented
< 2.0% of the total data.

Category 2: These flags indicate periods of time
where the data is impacted by excess noise
and should be treated with caution, as in-
vestigations have demonstrated a firm corre-
lation between auxiliary channels and h(t).
Search algorithms are recommended not to
consider potential candidates during these
times, as they are more likely to have been
caused by instrumental or environmental
couplings. As Category 2 flags reduce the
amount of analyzable data, they can poten-
tially jeopardize the number of detectable
gravitational waves (GWs) if the amount
of time removed is not minimized. Conse-
quently, these vetoes are generally not uti-
lized in CBC searches unless it has been
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demonstrated that the flagged data significantly impairs the search. While CBC searches
rely on priors of the shape of the GW, unmodelled GW have minimal to no assump-
tions. Thus, burst searches must add further restrictions to data quality flags, increasing
the removed data. On average, over O2 and O3, CBC searches removed approximately
~ 0.20% of the data using Category 2 flags, while burst searches removed approximately

~ 0.52%.

Category 3: These flags indicate periods that correlate with auxiliary channels, though the
exact nature of these correlations is not yet fully understood. Most of these flags are gen-
erated with the Hveto algorithm [79] by correlating safe auxiliary channels, i.e. channels
insensitive to GW, with the main strain of the detector h(t). Such flags remove ~ 10%
of the data and are used only by some burst searches.

The data quality flags and their details are available via Gravitational-Wave Open Science

Center (GWOSC) [0, “1].
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Chapter 3

Transient Gravitational-Wave Searches

In the previous chapter, we described different sources of noise that affect GW searches, as well
as the different efforts in data conditioning and data quality studies carried out by LIGO-Virgo-
KAGRA collaboration. A key element in the search for faint GW signals is the development
of exquisitely sensitive and robust algorithms. In this chapter, we briefly derive the formalism
of GW searches (see Section 3.1), and describe the current state-of-the-art methods for short,
or transient, modelled (Section 3.2) and unmodelled GW searches (Section 3.3). Last but
not least, in Section 3.4 we describe how to construct a generic background to estimate the
significance of GW searches.

3.1 The search formalism

GW search algorithms test the presence of GW signal in, for instance, a single GW detector.
Thus, given the detector’s time series output s(¢), the following hypothesis testing is solved:

Null hypothesis (Hp): the time series s(t) does not contain a GW — s(t) = n(¢)
Alternative hypothesis (H,,): the time series s(t) contains a GW — s(t) = h(t) + n(t)

As before, n(t) represents the noise of the detector and h(t) the signal of a passing by
GW. A priori, we do not know if h(t) is present in the time series s(t), so the goal of the
search algorithms is to construct a statistic proportional to the probability that h(t) is in s(t),
P(h(t)|s(t)). For this aim, we can use Bayes’ theorem to compute the a posteriori probability
P(hl|s), known as posterior, given the output of the detector s, where we drop (¢) to simplify
the notation,

P(s|h)P(h)
P(s)
Here, P(s|h), known as likelihood, is the probability of obtaining the time series s if h exists

in it, P(h), called prior, is the probability of h occurring, and P(s), known as evidence, is the
probability of getting the time series s, given by

P(h|s) = (3.1)

P(s) = P(s0)P(0) + P(s|h) P(h), (3.2)

since h either does or does not exist within s. Here, P(s|0) is the probability of obtaining the
time series s if no signal is contained, i.e. a particular realization of the noise n, and P(0) is
the probability of getting no signal. P(0) and P(h) are known as priors, as they represent our
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a priori belief about the existance of the signal h, irrespective of ability of our experiment to
detect it. Substituting Eq. 3.2 in Eq. 3.1,

_ P(s|h)P(h)
PS) = 1012 (0) + P (sl P(R)
_ P(s|h) (3.3)
P(s|0)[P(0)/P(h) + P(s|h)/P(s]0)] '
_ A _ P(s|h) o .
= PO)/P() T A where A = P[0) (likelihood ratio).

Note that P(s|h) is a monotonically increasing function of A, such that a search algorithm
will aim to evaluate A instead of P(s|h). We further note that In(A) also increases monotonically
with P(s|h), being commonly evaluated instead of A, as it varies less rapidly around the region
of interest. Now, within this framework we can redefine our hypothesis testing by constructing
a decision rule for the presence or absence of h, setting P, as the decision threshold.

Null hypothesis (H): the time series s(t) does not contain a GW — P(h|s) < P,
Alternative hypothesis (H,,): the time series s(¢) contains a GW — P(h|s) > P,

The details regarding the computation of the likelihood ratio A and the decision threshold P,
are dependent on the target source of GW. As we have seen in Section 2.1, we can divide the GW
sources according to their duration (short/long), and if astrophysical models are associated with
the source (modelled/unmodelled), so search methodologies vary according to the particularity
of their targeted source. Once the particular statistics of the modelled or unmodelled algorithms
have been obtained and their likelihood ratio has been computed, the posterior assessment of
the performance of the algorithm and the significance of their results are common to both
analyses.

3.2 Modelled searches

CBC signals, presented in Section 2.1.1, are well-understood in the GW field. Their modelling
has been vastly studied employing Post-Newtonian approaches [#”] and the effective-one-body
formalism [%]. Thus, the essential idea of modelled searches is to use the optimal filter K (t)
that, given a time series s(t) = h(t) + n(t), is able “filter out” n(t) via cross-correlation with
s(t). As we have seen, such a task is challenging due to the complexity of n(t), but we can
simplify the problem by approximating n(t) to be locally Gaussian and stationary.

3.2.1 Matched-filtering

We assume a GW signal h(t) buried in stationary and Gaussian noise n(t) with zero mean,
such that s(t) = h(t) + n(t). Given the optimal filter K (t),

s= [ KWstdt= [~ RS, where s(f) = [ s ar (3.4)

where § is the filtered value of s(t), * represents the complex conjugate, and * the Fourier
transform. Then, the detection statistic that is maximised by the optimal filter K (t) will be
the SNR, defined as p = S/N. S is the expected value of § when h(t) # 0, while N is the

squared root of the noise variance when h(t) = 0, so that
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S = /°° K (8){s(t) )dt :/

—00 —0o0

e+ [ (s () t= [ RDR, (35)

given the assumption of <n(t)> =0, and

N2:[<§2(t)>—<§(t)>2]h:0 o= [ RGYR@Y (R

-3 (F)[df.

where we have combined Eq. 2.11 and 3.4, and S,(f) represents the PSD in the frequency
domain. The ratio between the expressions above yields the mathematical expression of the
SNR for an optimal filter K (),

I ¥ S0
s niERa]

To identify the optimal filter K (¢) normalized by the PSD we first define the scalar product
between two real functions A(t) and B(t), by

(A|B) = Re /_O:O Wdf — 4Re / 7f)df (3.8)

where the last term holds since A(t) and B(t) are real functions, and A(—f) = A*(f). Following
the definition of the scalar product, we can define the Wiener scalar product as,

(3.7)

(K|h) = Re / K= (f)h(f

) h(f
o 125,00 = 4R/ /7 /7 s

where we take the real part Re since K (¢) and h(t) are real functions. This scalar product is
positive definite since K (—f) = K*(f) and S,(—f) = Sn(f) (see Section 2.4.1 for details). The
third term can be interpreted as “whitening” both the optimal filter K (t) and target signal
h(t), as they are weighted by the inverse ASD [*!]. The Wiener scalar product is normalized
such that <(n\n)> = 1, which possesses the property <(a]n)(n\b)> = (a|b)[*"]. Hence, we can
define the overlap between the optimal filter K (¢) and itself as

(3.9)

(K|K) = (KIn)(n]K)) = [ Z ;Sn(f)|f((f)|2df- (3.10)
Thus, rewriting Eq. 3.7 yields,
po S K (Kb (3.11)

N (g (r ) (KLY

The maximum SNR p would be a “vector” of unit norm # = K/(K|K)'2, such that its
scalar product with the “vector” h is maximum. This is obtained choosing 7 parallel to h, so

S

(3.12)
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where Bm( f) is the Fourier transform of the modelled GW signal, also known as template h,,.
Since the filter function is chosen to “match” the signal we are looking for, this technique is
known as matched filtering. Therefore, we define the optimal SNR as the normalized Wiener
scalar product between the template h,, and itself, and the SNR between an unknown time
series s(t) and the template h,, respectively as

(hn|Pom) 1/2 (hnls) 7
opt = 77—z = ()%, = 175 = (hm]9), 1
where hy, = A, /+/(hn|hm) is the normalized template. Nonetheless, the parameter space of
GW signals from CBC is vast, so to find these signals, we will need a bank of modelled GW.

3.2.2 Modelled compact binary coalesence waveforms

We consider a CBC system composed of two compact spherical objects. The morphology of the
resulting GW signal of their coalescence is defined, at least, a set of 15 A parameters. These
parameters are the component masses m; and msy; the component dimensionless spin vectors
x1 and xo (6 components); the luminosity distance Dy of the source; the sky location of the
signal with respect to the frame of the detector (6, ¢); the coalescence time t. of the signal;
the inclination of the binary with respect to the line-of-sight to the system ¢; the polarization
angle 1; and an orbital phase at coalescence ¢.. These parameters can be divided into extrinsic
parameters A.;;, which depend on the orientation of the binary with respect to an outside
observer, and intrinsic parameters \;,;, which are the physical characteristics of the binary
that are independent of the observer’s location.

The intrinsic parameters can be used to compose other magnitudes, such as the total mass
M = my + ms, or the chirp mass M and effective spin y.g defined as,

(m1m2)3/5 it = miX1 + MaX2

= 3.14
(m1 —|—m2)1/5’ mi + me ( )

As discussed in the previous section, the production of templates is fundamental for mod-
elled GW searches. There are various approaches for producing these templates, known as
waveform approzimants. These approximants can be analytical, numerical, or a combination
of both. Different approximants can describe different physical phenomena and are restricted
to a specific region of the parameter space. Below, we provide a brief description of each type
of approximant. For an in-depth overview, interested readers should refer to [+7].

- Post-Newtonian: In Section 1.1, we discussed the generation of GW without significant
curvature contribution in the near-field. In realistic scenarios, binary systems do affect
space-time curvature; Post-Newtonian theory assumes slow, distant orbits for weak self-
gravitation, valid only for the inspiral regime [“0, 87, 25, 20,00, O1].

- Numerical Relativity: During the merger phase, the binary system experiences intense
and highly non-linear gravitational forces, requiring the full Einstein equations to ac-
curately describe the dynamics. Advanced numerical techniques known as Numerical
Relativity are used to solve these equations [)]. Due to their complexity and com-
putational cost, other approaches that combine Post-Newtonian theory and Numerical
Relativity have been developed to produce the whole frequency regime of CBC GW:
inspiral, merger, and ringdown (IMR).

- Effective One body (EOB): This approach improves on Post-Newtonian theory by using
a resummed, non-polynomial representation of the system’s velocity v, allowing for nu-
merical solutions that extend beyond the inspiral phase into the plunge phase. For the
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ringdown phase, perturbation theory is employed to create a seamless IMR waveform.
Although EOB is more accurate than Post-Newtonian theory, it still experiences dephas-
ing during the merger phase, which can be corrected by calibrating EOB with Numerical
Relativity simulations, resulting in “EOBNR” [02, 03, 04 05, 90, 97].

- Phenom: Phenomenological or Phenom models, offer an alternative to EOB models by
addressing their complexity and high computational cost, using analytical models con-
structed directly in the Fourier domain with closed-form expressions based on the binary
system parameters. The latest iteration are the “PhenomX” models [+5, 95, 90, , ],
used to generate the waveforms in Fig. 3-1.

To find a CBC GW we would need to maximize the SNR p over the A\ parameters. However,
this can be simplified for aligned spin searches. As discussed in Section 2.3, the observed signal
h(t) at the detector is the sum of the two GW polarizations, h, and h,, each multiplied by
the detector’s response function to the respective polarization F, and Fy (see Eq. 2.9). In the
case of aligned spin searches, only the dominant (I, |m|) = (2,2) modes of the waveform are
considered, which allows the following simplification [1 02, 1,

) = O A 10 cosf2(0(t — 150) + )]
coss F (3.15)
h+<t) = DL A(t - tc; <) Sln{2<®<t - tc§ C) + ¢c)]7

where A(t; ) and ®(¢; () are functions of time and ¢ = (mq, ma, X1, x2), With x; and xo de-
noting the constant projections of the spins in the direction of the orbital angular momentum.
Combining Eq. 3.15 and Eq. 2.9 yields

At —tg .
ht) = (DO cos 2(Q(t — t;¢) + o), with
eff
Dy sivo 2. Py (14 cos®1)/2 —iFy cost (3.16)
Do = 14cos?. )2 , e = 2 1/2
P () + Foosts [Fp(kees22 4 F2 cos? ]

where D.g is the effective distance and ¢q is the phase of the observed waveform at coa-
lescence. Therefore, in the aligned-spin case, as ¢., Dy, 0, ¢,1,t are only present at D.g and
¢, so this dependence amounts only to an overall phase and overall amplitude. Applying the

stationary phase approximation [/ (1], the Fourier transform of h(t) is
- e¥ido 2ig0 e?0 —2im ft
h=——A(t —t; () cos2(R(t — te; Q)] = —5—ho(f3te, Q) = 5—ho(f; Qe (3.17)
Deff Deff Deff
as the coalescent time t. parametrizes time translations of hq []. Therefore, in the aligned spin

case, it is possible to quickly maximize the SNR p over all parameters except for the intrin-
sic parameters ( = (my, mso, X1, X2), provided subdominant modes can be neglected and that
the stationary phase approximation holds. When the component spins are misaligned with the
orbital angular momentum, or the waveform has higher-order modes, then the extrinsic parame-
ters lead to a non-trivial amplitude and phase modulation [105, 100]. For illustration, in Fig. 3-1
we show the waveform of a highly asymmetric system in mass (m; = 40Mg, my = 10Mg) with
a circular orbit (top panel) and a highly asymmetric system in mass (m; = 40Mg, mgy = 10Mg)
with precessing orbit and higher order modes (bottom panel).
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3.2.3 Template bank

The vast parameter space of GW signals B is
continuous, but to facilitate searches with a
reasonable computational cost, a dense grid of
templates is selected with sufficient coverage,
i.e. placed templates must have a minimal loss
of SNR due to mismatch [+!]. Under the as-
sumption of a circular system which only de-
pends on ¢ = (my,me, X1, X2), Wwe can define
the match M between two templates as the
maximized overlap O(Aq, A, t) with respect to
the time shift ¢, so

M()\l, )\2) =1- mtax O()\l, )\2,t>
= 1 —maxRe(h(f, A, ) A(f, X)) (3.18)
where iAz(f, A1, t) = h(f, Ap)e2m It

The match M is used to define the distance
between two points in B

d(A, Ao) =1 = M(Ag, A\a). (3.19)

An optimal template bank is composed of a
minimal number of templates at a minimal SNR
loss. The efficient generation of a template bank
is still an active field of research and two main
methods are widely being explored, namely the
stochastic method [107, 105], which consists of
including templates in the bank based on a
rejection technique, and the metric template
placement, that relies on approximating the dis-
tance between two templates with a bi-linear
form known as metric [105, [09].

In Fig. 3-2 we show the template bank
where each point represents a template, as a
function of the progenitor masses employed by
the GstLAL-based inspiral pipeline (henceforth
referred to as GstLAL). The BNS region (green)
covers templates with progenitor masses m; 5 €
[1,3] My and dimensionless spins |xi1.2.| <
0.05. The NSBH region (red) covers templates
with progenitor masses m; € [3,150] Mg, my €
[1,3] Mg and dimensionless spin |x1.| < 0.999 ,
|x2:] < 0.05. The BBH region covers templates
with progenitor masses m o € [3,400] Mg and
dimensionless spin |x1,.2.| < 0.999. We can also
observe that the density of the templates in the
bank decreases as the total mass of the bina-
ries (my = my 4+ my) increases. Typically CBC
with smaller masses are longer in the sensitivity
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FIGURE 3-1: Waveform of a highly
asymmetric system (my = 40Mg, mg = 10My,)
using IMRPhenomXPHM [101]. (Top panel)

Circular system with aligned spins and no
higher order modes. (Bottom panel)
Precessing system
(x1 =[-0.2,0.4,0.1], xo = [-0.5,0.2,—-0.4])
with higher-order modes (¢ =2,m =1,).
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FIGURE 3-2: Template bank as a function of
the component masses employed by GstLAL
pipeline during O2 and O3, retrieved from

[100]. Every point represents a template,
either from BNS (green), NSBH (red), BNS
(blue). Points in magenta and black were
added to improve the background estimation
for the scarcely populated region of the bank.
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band of Advanced LIGO and Virgo, so these signals have more cycles than higher mass systems
and their SNR loss between smaller similar templates will be larger. Thus, more templates need
to cover the lower mass region.

Several current modelled state-of-the-art algorithms are matched filtering-based and need to
design template banks that sufficiently cover the parameter space of CBC signals. Some exam-
ples are GstLAL [1 10, 100, 111, 112], PyCBC [15, 13, 11 1in, Lio, L7 1], MBTA [119) 120)]
and SPIIR [ 21]. These pipelines employ different strategies to cross-correlate template banks
with the unexplored time series data from the detector, while mitigating non-Gaussian non-
stationary noise, also known as glitches (see Section 2.4.3). In this particular work, we provide
a high-level overview of some of the particularities of the GstLAL pipeline. For an in-depth
read about the full workflow we recommend the interested reader to refer to [+, 127].

3.2.4 GstLAL

Time-domain matched filtering

We have derived the expression for the optimal SNR popy and the SNR p in Eq. 3.13. To
reduce the latency of this calculation in the frequency domain, the GstLAL analysis computes
the matched filtering in the time domain [/77, , 84, . To find the expression of the
time-domain SNR, we first define the complex form of the SNR. The complex SNR of the ith
complex template normalized h.,(t) of the template bank, and the data d(t) is,

zi(t) = x;i(t) + 1y (t) = 4/000 Weﬂwftdf’ where 4/000 }W

x;(t) is the matched filter response to the +-polarized with orbital phase ¢o, while y;(t) is the
matched filter response to the x-polarized with orbital phase ¢q+ 7/2. The output of GstLAL
is the real-valued x;(t) with the real normalized template h;(t), instead of the complex-valued
2;(t), which can be formulated in time domain using the convolution theorem,

df =1. (3.20)
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nit) =2 [~ ADE) mre gy [ "t + )h(r) dr
) (3.21)

ei27rft.

where we have defined d(7) as the whitened data, and h(7) is the whitened signal. Eq. 3.21
will need to be evaluated a second time to compute the SNR response to the x-polarized part,

y;(t). Thus, the SNR will be
p = max |z;(t) + iy, ()] (3.22)
This is referred to as a two-phase filter, which has twice the degrees of freedom of a single-
phase filter. To alleviate the duplicated computational cost GstLAL uses other methods to
compute effectively [127].

Decomposition of the template bank

The high coverage of the template bank naturally leads to a high redundancy. To decompose
the template bank GstLAL firstly divides it into partially overlapping sub-banks with similar
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frequency evolution, based on the chirp mass M and effective spin x.g. This process is known
as “split banks” and their typical size is O(100) pairs of templates (one for the 4-polarization
and one for the x-polarization) [!22]. Afterwards, every template within a split bank is padded
with zeros to have the same template length. Hence, every template can be divided into smaller
pieces, with each smaller piece referred to as a time slice. Each successive time slice contains the
frequency content up to a factor of two from the previous slice. This allows GstLAL to exploit
the Nyquist theorem by using an appropriate sampling frequency for low- and high-frequency
regions [110].

To further reduce the high dimensionality of the templates, GstLAL uses singular value
decomposition, which aims to project a high dimensional input into a lower-dimensional basis.
In the context of the template bank decomposition, singular value decomposition is performed
in every time slice to retain only the most important basis waveform [!27].

&2-statistic

As we have seen in Section 2.4.3, the detector strain contains transient bursts of non-Gaussian
data that can mask or mimic GW signals, producing large peaks in the SNR time series. As
glitches in the detector could yield large SNRs, to mitigate them GstLAL also calculates a
signal consistency check, known as ¢2-statistic, whenever it records an SNR above a certain
threshold. Such check is done by determining how similar the SNR time series of the data is
with respect to the expected SNR time series from the real signal at a §t time window around
the peak [! 10]. Mathematically, the £2-statistic is defined as,

S5t |2(t) — 2(0) R(t) dt
S22 = 2R(t)[P)dt
where z(t) is the complex SNR time series, z(0) is its peak and R(t) is the auto-correlation

series between the complex template waveform and itself. GstLAL weights the SNR with &2
defining

&=

(3.23)

p
(14 max (1,62)*/2) "

which is utilized to generate triggers [121].

V2 = (3.24)

Triggers

When an unknown signal is cross-correlated with the template bank, it generates SNR time
series associated with the templates in the bank. When the weighted SNR, 75, associated with
a template exceeds a certain threshold, the GstLAL pipeline records a feature vector known as
a “trigger,” which contains the maximum SNR, £2, 7, masses, spins, and other parameters.
It often happens that multiple triggers from different templates match the same signal in
the data (either of terrestrial or astrophysical origin). They differ in the trigger time, as well
as SNR and &2 values. All such triggers must be associated with the same candidate and
for this reason, they need to be clustered together to form a single candidate. The GstLAL
pipeline adopted a simple approach to solve this problem: the triggers with the largest SNR
peak within the vicinity (£1s) will be defined as the cluster centroid and utilized for further
analysis'. While this approach has the benefits of being simple, it discards many pieces of
information, such as the position of the various triggers within the template bank and their
time ordering. For illustration, Fig. 3-3 shows the triggers associated with GW190521 during

! Another clustering of triggers is performed at a later stage of the pipeline. However, this has no importance
for our purposes.
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the intermediate-mass black hole (IMBH) search in O3 for Hanford (left panel) and Livingston
(right panel). We represent the IMBH template bank (grey) as a function of the progenitor
masses, and the templates that produced an SNR peak (blue). The pattern manifested across
the template bank is almost identical for both detectors, implying that they formed due to the
same signal of astronomical origin.

Each trigger is ranked [127, : ] according to its probability of originating from an
actual signal. The goal of the pipeline is then to obtain a list of triggers, ordered by their
likelihood A to be of astrophysical origin.
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FIGURE 3-3: IMBH template bank from O3 (grey) as a function of the progenitors’ masses
measured in Mg and logarithmic scale. We colour in blue the templates that generated a
trigger with their mazimum SNR p due to the presence of GW190521. (Top panel) Hanford
detector. (Bottom panel) Livingston detector.
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3.3 Unmodelled searches

While CBC signals are well-understood, other transient GW signatures arise from complex
astrophysical processes that are hard to model due to their poor characterization and/or asso-
ciated high computational cost. As we have seen in Section 2.1.2, this type of GW signals are
known as burst, and they are characterized by having short duration (< 1 s) and a wide variety
of frequency ranges. Because of this, GW searches need to be sensitive to a large spectrum of
GW waveforms, providing the opportunity to find unexpected physical phenomena.

3.3.1 Excess power

Burst algorithms search for excess power, or energy, in time-frequency representations with
minimal (targeted search) or no assumptions (generic search). Finding faint GW of unknown
morphology with this method is challenging due to the presence of transient non-Gaussian
and non-stationary noise, known as glitches (see Section 2.4.3). However, since glitches may
be produced by the detector and/or its surroundings, it is unlikely that glitches with sim-
ilar time-frequency representations occur simultaneously in detectors that are thousands of
kilometres apart. Thus, burst searches exploit coincident information from the detectors in
the time-frequency domain by combining the data from different detectors either incoherently
[73, |—generating single detector triggers and searching for coincidences at a later stage—or
coherently || 2~]—generating a unique list of triggers based on combined detector data. In the
current work, we focus on the coherent case, where excess power algorithms are used to analyze
network detector data using a constrained likelihood function. This function depends on the
source’s sky position and considers the corresponding antenna patterns of the interferometers
and the time delays between interferometer pairs. Henceforth, we will refer to this method as
“coherent analysis” [120].

While excess power-based algorithms cannot rely on models to provide summary statistics
of GW candidates. Indeed, while CBC searches use the SNR p to characterize the loudness of
the GW signals (Eq. 3.13), burst searches use,

Bygs = / ~ h()de, (3.25)

—00

which corresponds to the total GW signal energy and has units of Hz~/2. We can also

parameterize GW burst signals using their intrinsic values [I30]. Assuming a well-localized
burst signal h(t) in time, and frequency and its Fourier transform h(f), we can define a central
time t., central frequency f., duration o2 and bandwith o? as,

t, — /o;t“z;;)fdt, = 2/000 flfz(h‘];)>|2df

2 [ 2 |h(t)? 2 > QVL(JC)’Q
ot = [ (t-t) iyt of=2[ (-1 i

(3.26)

where (h?) = h,.. We can also define the dimensionless quality factor as Q = v/2f./0y,
which describes the characteristics of the signal in terms of its frequency localization and
how it changes over time. While the exact definitions of these quantities are algorithm- and
representation-dependent, it is common to use this set of parameters to express the time and
frequency content of the signal.

The frequency content of the GW waveform is unknown a priori, so burst searches do not
rely on Fourier transforms, which are better suited for global frequency analysis, and instead
they use wavelet transforms.
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3.3.2 A short introduction to wavelet analysis

The idea of approximating signals using the superposition of functions has existed since the
early 1800s following the discovery of Fourier transforms. The main accomplishment of Fourier
transforms is to analyze a time domain signal for its frequency content, as the Fourier coefficients
of the transform represent the cosine and sine contribution at each frequency. However, there
was a need to extend beyond Fourier analysis, as it is inadequate for handling signals with sharp
transitions. Fourier series convergence and orthogonal systems gradually lead to a transition
from frequency analysis to scale analysis, i.e. analyzing functions by creating mathematical
structures that vary in scale, which is the fundamental idea behind wavelet analysis.

Wavelets process data at different scales or resolutions, such that, in a sense, we can see
the forest and the trees. If we look at a signal with a large “window”, we will notice gross
features, while if we use a small “window”, we will notice smaller details. The main procedure
of wavelet analysis is to adopt a wavelet prototype function, known as mother wavelet that will
act as the basis of the analysis. Then, the temporal analysis is performed with a contracted,
high-frequency version of the mother wavelet, while the frequency analysis is performed with a
dilated, low-frequency version. This procedure is also less sensitive to noise as it measures the
average fluctuations of the signal at different scales. The interested reader may refer to [1 7]

A
7%

Frequency
Frequency

%

% ;

Time Time

FIGURE 3-4: (Left): Fourier transform with a fixred window in the time-frequency plane. The
same rectangular window is used to analyze high and low frequencies. (Right): Wavelet
transform with a sketch of Daubechies wavelets in the time-frequency plane. The different
window sizes allow us to see small and gross features. Reproduced from [171].

To highlight the main differences between the Fourier and wavelet transform, in the left
panel of Fig. 3-4, we represent a schematic Fourier transform with a rectangular window of a
certain size. Because the size of the window is constant, the resolution of the analysis is the
same at all locations in the time-frequency plane. This uniform resolution can be a limitation
when analyzing signals with varying frequency content, as it does not allow for better time
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resolution at high frequencies.

In contrast, the Short-Time Fourier Transform (STFT) allows for some flexibility by en-
abling the use of shorter time windows at high frequencies, thereby improving time resolution
for those components. However, the STFT still lacks the inherent adaptability of wavelet trans-
forms. In Fig. 3-4 (right panel), we illustrate the coverage of a sketch of Daubechies wavelets
[132] with varying windows. Wavelets naturally adjust their window sizes based on frequency
content, offering a significant advantage over both the standard Fourier analysis and STFT.

Indeed, to effectively isolate signal discontinuities, it is beneficial to have short basis func-
tions for high frequencies and long basis functions for low frequencies. This adaptive capability
of wavelets allows for a fine time resolution in the presence of high-frequency components while
still providing detailed frequency analysis for low-frequency components. As a result, wavelet
transforms are particularly well-suited for analyzing signals with non-stationary characteristics,
where a balance between time and frequency resolution is essential.

Mathematically, the continuous wavelet transform of a continuous signal z(¢) with the
mother wavelet ¢ is defined as [1 30, 137],

X(a,b) = \}a | st (7) dt (3.27)

where 1* is the complex conjugate of the mother wavelet ¢ time-shifted by b and scaled by
a. The wavelet is normalized by a factor 1//a to ensure that each wavelet has the same energy
independently of the scaling and shifting. Thus, the properties of the mother wavelet ) at each
scale determine our ability to resolve in time and frequency. For small values of a we achieve
a large time resolution at the expense of uncertainty in frequency, while for large values of a
we have an improved frequency resolution at the expense of time. Note that the quality factor
@ is constant Va.

The mother wavelet ¢ (¢) must satisfy the condition of finite energy and admissibility, which
are respectively defined as,

E, = /_Z W()[2dt < 00, Oy = /°° B, < o (3.28)

—o W

where ~ represents as usual the Fourier transform and w = 27 f is the angular frequency.
The admissibility constant C, forces )(w) to decay faster than w towards zero with 9 (w) = 0.

Wavelet transforms are more flexible than Fourier transforms, as they have infinite possible
sets of basis functions. Finding an appropriate set of basis functions for wavelet applications
is non-trivial and it is an active field of research also in the GW community. In the following
Section, we provide details about the wavelets employed by coherent WaveBurst (cWB): a
burst pipeline that uses a coherent excess power analysis among detectors with wavelet packet
transforms, a far more versatile transform than wavelets. Wavelet packet transforms have the
same time-frequency resolution at each scale, such that, in the case of cWB, the time resolution
doubles while the frequency halves at every subsequent scale. For illustration we show in
Fig. 3-5 the time-frequency representation of the first detection, GW150914, comparing the
spectrograms of cWB, which uses wavelet packet, and Omicron, which uses a modification of
the Fourier transform, known as Q-transform [7].

In the following Section, we describe the wavelet packet of cWB, their data conditioning
and multi-resolution analysis. We recommend to the interested reader to refer to [120] and
[131], and references therein for an in-depth description of the full pipeline.
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FIGURE 3-5: GW15091} in LIGO Hanford. Left: ¢WB spectrogram, first time-frequency
representation of a GW signal. Right: Omicron spectrogram retrieved from [77]. Note the
reduction on the spectral leakage of ¢WB spectrogram with respect to the Omicron spectrogram.

3.3.3 Coherent WaveBurst
Wilson-Daubechies-Meyer bases

As the appropriate selection of a wavelet basis is fundamental for detecting burst GW signals,
Gabor bases and their variations are commonly employed for GW analysis due to their flex-
ibility, analytic Fourier representation, and immediate projection onto the various detectors
described by a simple phase shift [/27, |. Still, they do not form an orthogonal basis, as
the wavelets are highly correlated. Utilizing a local orthonormal basis of wavelets has several
advantages: the energy is conserved, the inverse wavelet transform is well-defined, and the
time-frequency data samples are statistically independent [129].

For this aim, cWB combines the conventional Wilson-Daubechies transform and the Meyer
wavelet, forming the Wilson-Daubechies-Meyer (WDM) wavelet transform [120]. It is com-
pactly supported in the frequency domain, i.e. it vanishes outside a finite interval and it decays
faster than any inverse polynomial in the time domain, making it particularly convenient for
transient signals. The main features of WDM transform are a fast computation via fast Fourier
transform, shorter transformation filters and an improvement over spectral leakage, i.e. a bet-
ter time and frequency localization, respectively, as well as a simple analytic expression for the
time-delay filters. This is observed in the left panel of Fig. 3-5, which presents less spectral
leakage than the right panel. For the interested readers, we derive the formalism of WDM
bases in Appendix A.2.

Data conditioning

While the fast Fourier transform eases the wavelet calculation, cWB still needs to perform
a coherent search among detectors. To compute these expensive calculations cWB relies on
ROOT [137], a C++ library developed by CERN for fast data analysis. Furthermore, cWB is
designed to be highly parallelizable with a low computational load.

As we have seen in the previous chapter, searches of GW are hampered by different sources
of fundamental noises that arise from the different subsystems within the detector and its
environment. In searches for the unknown, such as the one performed by ¢WB, a proper
understanding of the background for its subsequent mitigation is crucial to claim the detection
of a transient GW signal. For this aim, cWB usually analyzes time periods between 300s and
600 s, as lowering the duration of the analyzed data would bias the evaluation of the background.
The ¢cWB methods to mitigate transient and persistent noise are as follows.
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Linear prediction error: In Section 2.4.2 and 2.4.3 we have described the persistent and tran-
sient noise of the detector. These types of noise hinder the sensitivity of unmodelled
algorithms, so to mitigate it authors in [I1:0] have proposed an algorithm called linear
prediction error, which assumes that the n'" sample of a sequence z[n] is modelled by
a linear combination of the previous M samples, such that the error of the predicted
sequence is

eln] = z[n| — &[n| where Z[n] = Zl c[m]zn —m], (3.29)

where Z[n] the predicted sequence, and ¢[m] the coefficients which are chosen to minimize
0. = 1/N XN | |e[n]|? over a representative training sequence of length N. Assuming x[n]
to be a stationary and stochastic process, we can predict the coefficients ¢[m| using the
Yule-Walker equations for auto-regressive processes with lag k,

> rim — klc[m] =r[k] where r[k] = ]1[ > znjzln—|k|] Vke[l,M]. (3.30)
k=1 n=|k|

c¢WB implements this method to predict the behaviour of safe auxiliary channels, i.e.
channels insensitive to GW, and subtract these disturbances on the main strain of the
detector h(t), such as noise lines and glitches on the frequency band of interest of burst
searches (see |14, 139] for details). While in [/0] the authors apply it on time series,
c¢WB implemented it with the wavelet packet transform, applying it to each wavelet layer
w of the WDM decomposition. In this way, the linear prediction error in the wavelet
domain removes data artefacts but preserves the PSD of the noise floor [110].

Whitening: as we have seen in Section 2.5.4, whitening is a standard procedure for GW time
series analysis. ¢WB also employs whitening procedure to highlight transient GW with
WDM decomposition. First, we shall remember that ¢WB is a coherent analysis of d
detectors (or networks), such that the discrete time series is represented in the time-
frequency domain via wavelet packet transform, namely z4[k]. Here, k represents the k"
pixel of the time-frequency representation. Assuming Gaussian noise of detector d, we
can calculate the PSD Sy[k] of the data x4[k] with WDM decomposition, such that the

whitened data will be wg[k] = z4[k]/\/Sa[k].

Multi-resolution analysis

After the conditioning of the data with WDM transform, the time-frequency representations
from all detectors are combined to obtain the time-frequency-energy maps E[k] = >, w3[k],
where E[k] is maximized over all possible sky locations. When applying the wavelet transform,
the algorithm selects the most energetic pixels (core), above a pre-defined threshold dependent
on the noise floor, and their neighbours (halo). Thus, core and halo pixels are combined in
a cluster, representing an event. Such procedure is repeated for different decomposition levels
forming a super-cluster. Then, cWB estimates the likelihood A of the clusters and super-cluster
being a GW signal, forming a list of candidates. For details on the likelihood calculation, the
interested reader shall refer to [129] and references therein.
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3.4 Background estimation

As we have described in the previous sections, in a nutshell, a search pipeline is a sequence
of operations that inputs the raw data of the interferometer and produces a list of detection
events or triggers, i.e. potential GW candidates, solving a hypothesis testing (see Section 3.1).
Nonetheless, after forming a list of triggers we still need to compute their significance with
respect to an accidental background.

3.4.1 Poisson process

Let us imagine an ideal detector where we can measure triggers caused by an astronomical
source of GW. In our experiment of duration 7, we monitor A(¢), the cumulative count of
triggers as a function of time. We can repeat our experiment of duration 7 N times, taking
the average of A(t), A(t). If the source we are measuring is stationary, the average At ) would
be a linear function of time, but if the source is non-stationary, A(¢) will have a non-linear
dependency. As we are interested in a duration-independent quantity, we define R(t) the rate
density of the source

R(t) = e

Contrary to A(t), which mixes the intrinsic parameters of the source with an extrinsic

parameter (the observation time), R(t) depends only on the intrinsic parameters. If we were to

repeat our experiment infinite times, obtaining an infinite number of independent measurements
in identical conditions over a duration 7, we would obtain the “true” rate density

(3.31)

N
ﬁ(t) = lim ==L % RAb);

Jim =L (3.32)

where R denotes the measured rate density. From the definition in Eq. 3.31, we can calculate
the mean number of events produced during the experiment.

A t __ —
)\:/ dX:/ R()dt = Rt (3.33)
0 0 R()—R

If the measured source is stationary, the probability distribution of getting n events related
to this system in a period ¢ is given by the well-known Poisson distribution,

Ane—k
P(n|A) = — . (3.34)
and the expected number of events is
RitVeRt  _  ~ o (ppi-l -
Z]P (Jj|IA) = Zj(),'e = Rte ™ Z]()ll = Rte RteRt = Rt (3.35)
j=1 J: =1 J =

Therefore, in a single experiment we can measure the “true” rate density R by dividing the
number of events produced by the period. Hence, defining ¢; and N; as the duration and the
number of triggers produced by the " experiment, the average over N experiments yield,

N 75 N N

Vot R, SNt (Nt) 1 X -
271\1[ iy =t jv< i/ ]) Z where T =) " t; (3.36)
2 =1t 2=l =t

If each experiment has duration ~ 7, we can smlphfy the average rate density as
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t?

with variance 6R = —{/ — 3.37

TN TV N’ (3:37)
where we are taking into consideration that N is produced by a Poisson process with variance
N. Once we have measured the average rate density R we can estimate the probability of

getting n events from the measured source for any period ¢,

= Ri)ie Rt
PUIRe = T
| dP IN Nt/ry~t  (Nt/r) (3:3%)
— * t/T)~ t/T)’
with error 6P = |—=|0R = —{/ —e NU/7 ( ; /7) — ( /T)
dR TVN (7 —1)! J!
Particularly, we are interested in obtaining 7 > 1 triggers, such that,
P(j > 1|Rt) =1— PO|Rt) =1 — e, (3.39)

Note that this calculation assumes a stationary source, where the merger rate is not a
function of time. If the source is non-stationary, R(t) does not exist, since it is impossible to
distinguish between variations produced by a random process and statistical fluctuations due
to a changing rate density. Thus, to improve our measurement of R(t), we must observe the
source for a longer time. Nonetheless, this results in a worse measurement of R(t), as we can
only observe for a finite period at a given scale so that smaller fluctuations will be indiscernible.
Since the interferometers are evolutionary machines, we need to adjust the observation time to
the data quality flags, described in Section 2.6.

This derivation provides a robust framework for analyzing the rate of GW events detected
by an ideal detector. By defining the rate density R(¢), we can distinguish the intrinsic prop-
erties of the astronomical source from observational parameters, allowing for a more accurate
characterization of the source’s behaviour. This analysis also highlights the importance of re-
peated experiments to obtain reliable estimates of the rate density R(¢) and provides tools for
calculating the significance of observing events, accounting for measurement uncertainties. In
the next section, we describe how to compute the significance of a GW candidate in a more
realistic scenario.

3.4.2 Time-shift analysis and false alarm rate

As discussed in Section 2.4.3, the presence of transient non-Gaussian and non-stationary noise,
known as glitches, hampers the detection of GW signals. Indeed, if a trigger is produced
in a single detector, it is challenging to assess if it has an astronomical or terrestrial origin.
Nonetheless, as the production of glitches is localized within the detector, it is unlikely that
glitches with similar characteristics occur simultaneously in detectors that are thousands of
kilometres apart. Similarly to Burst searches, that exploit time-coincidence between detectors
(see Section 3.3), we can also use this idea to assess the significance of the triggers of our
experiment, i.e. estimate the accidental background.

Let us imagine we have several GW interferometers connected as a network of I detectors.
Let us also consider a trigger produced in the network of detectors with statistic A* at t. + At,
where At includes the light travel time between detectors and statistical fluctuations. We could
measure the uniqueness of our coincident trigger by comparing it to the population of triggers
of the experiment, known as foreground. However, it is challenging to assess the origin of the
foreground, so we need to construct a background population, where there is no correlation
between detectors induced by a GW signal.

In Fig. 3-6a we can observe a network I = {D;, Dy, D3}, where the measurement started at
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FIGURE 3-6: Sketch of data in a network of detectors.

to. The vertical lines indicate the production of foreground triggers. In this sketch, we depict
single triggers, happening in individual detectors, double triggers, occurring in two detectors
simultaneously, and triple triggers, appearing simultaneously in all detectors. To construct
a background population where the triggers from different detectors are uncorrelated, we can
time-shift the detectors with respect to another detector. In Fig. 3-6b we fix D; and time shift
D,y and Ds relative to Dy by Aty and At,, respectively. Subsequently, the coincident triggers
observed in the time-shifted data will serve as the background triggers, which are accidental
coincidences and not due to actual astrophysical events. Note that At; and Aty need to be
large enough to ensure that the slide is roughly independent, a requirement that may vary
depending on the search.

To increase the significance of our foreground trigger, we need to compare it with an exten-
sive population of background triggers. Hence, we make the process of time-sliding the data
At iterative by defining the time shift T, = [At;, where [ is known as lag. When [ = 0 we
recover the foreground, which is also known as zero-lag. Another relevant quantity is the total
observing time of the foreground or search time T, and the total observing time of the back-
ground T,. In our setup, for the [* time-shift T; > Ty, since the overlap between detectors
will decrease with increasing offsets. Nonetheless, it is possible to perform time shifts on a
ring, where data that slides past the end of the segment is placed at the beginning. Note that
even in this scenario, time shifts will result in different durations due to gaps in the data. To
achieve a significant estimation of the background we would perform L time shifts, such that
Tf <T, = Zlel TbJ.

To assess the significance of our trigger with statistic A* from the foreground, we compare
it with triggers produced within the background, known as false alarms. We can define the
false alarm probability P, as the probability of obtaining j > 1 triggers with a statistic A > A*
within the background, during the time of the search Ty. From Eq. 3.39 this is

Pr(j > 1F(A*),Ty) =1 — e TOITr, (3.40)

Here, we define F(A*) as the false alarm rate of a trigger with statistic A*, measured as [1(]

- L Nj(A > A
.F(A*) — zl:z lj(_’b - )

, (3.41)

where N, represents the false alarms of the [*! time-shift, i.e. the number of background
triggers within the [*® time-shift with statistic A > A*. As before, T}, is the total background
time. It is relevant to note that for each slide the duration of T;; will vary, so we define the

51



Chapter 3. Transient Gravitational-Wave Searches 3.4. Background estimation

effective number of slides N = T,/T}, so that

ﬁmﬂ_ELﬁMZAﬂ_ﬁmZAﬂ_NmEAﬂ
LTy /Ty ;N T

We define | N(A > A*) as the total number of background triggers with A > A* in all time
shifts, while N(A > A*) is the average number of false alarms in a single experiment with a T
duration. Since this is the mean of a stationary Poisson process, so from Eq. 3.37 the error is

- 1 [ NA>A) 1 |[N(A>A*) /N(A>A%)
SF(A¥) 7 ~ P = T (3.43)

This method allows us to create an accidental background, i.e., a large population of un-
correlated background triggers, through iterative time shifts. In this way, we obtain a robust
statistical framework for assessing the significance of GW candidates, enabling us to quantify
the likelihood that a given trigger is due to a genuine astronomical source.

. (3.42)
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Chapter 4

Machine Learning Foundations

The contemporary world has been undoubtedly marked by the birth of the Internet, allowing
communications between networks and devices far apart. Immediately following its develop-
ment came the creation of the World-Wide Web at CERN, also called the Web, to make the
collective knowledge of humans available to each individual using machines [ /!]. The Web
serves as a platform to access, create, share and store information in a wide range of formats,
generating rapidly enormous and complex data sets commonly referred to as Big Data, which
require advanced processing techniques to extract valuable insights. Indeed, we are currently
facing the era of Big Data, where we not only generate a tremendous amount of information
daily via social media, business transactions or mobile devices, among others [| 7], but we also
create gigantic experiments to unveil the mysteries of the Universe, such as the Alice [ 17], the
James-Webb telescope [ |']], LIGO-Virgo-KAGRA detectors, and the future Deep Underground
Neutrino Experiment [! /7], just to name a few.

These huge data sets are not only filling up terabytes of storage at vertiginous speeds but also
creating novel jobs to analyze them in the search for useful information, be it a more efficient
business strategy or new physics. In the era of Big Data, scientists are revisiting algorithms
from the early 60s and 70s to exploit these data sets, where the idea of machines learning to
perform a task based on previous experience was explored. Indeed, the “field of study that
gives computers the ability to learn without being explicitly programmed” was already coined
as Machine Learning by Arthur Samuel back in 1959 [ 10]. Nonetheless, it was only in the past
decade that machines were able to learn mainly due to the following reasons:

1. Big Data: as machines can learn from experience, it is fundamental to have a large number
of examples, which contribute to the effectiveness and generalization of these models.

2. Hardware: in the previous century computing resources were far more limited and in-
efficient than nowadays. It was not until 1999 that Nvidia created their first graphics
processing unit (GPU), which accelerates model calculations.

3. Software: open-source, scientific computing frameworks played a pivotal role in the de-
velopment of the field and its worldwide applications. These frameworks provide efficient
tools for the computation of models, accessible to both beginners and experts.

Nowadays, Machine Learning (ML) is a booming enterprise, with billions of dollars being
invested in the field, and more than 100 scientific articles being published daily. Furthermore,
ML is a transversal tool at the intersection of Statistics and Computer Science, with applications
ranging from the medical field [! 7] to economics and finance [ =]. In this regard, the field
of GW is not an exception, but before glancing at the current state-of-the-art, we will need to
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understand a few concepts. In the present chapter, we will give an overview of the different
ways that machines can learn from data, how we can design our algorithm by simplifying the
human brain, and how we can enhance it by exploiting the particularities of the data.

4.1 On the learning landscapes

Depending on the objective of the learning, as well as the data availability, the model will need
a different strategy to learn. In ML we can divide the learning strategies between supervised,
unsupervised and reinforcement.

Supervised learning: this type of learning requires input examples X associated with a label
y, also known as the target, to perform future predictions based on past evidence. We
denote X as the space of the inputs, and ) as the space of the targets. Thus, the
algorithm’s goal is to learn a mapping function h : X — ). We can split the learning
into three stages:

1. Training: in this stage the algorithm sees all the pairs (X;,y,) for t € 1,...,T, where
T is the size of the training data set. In this stage, the goal of the model is to learn
the mapping h by minimizing a loss function (see Section 4.2.1). This stage is similar
to the situation where a student is given lectures to learn a certain task.

2. Validation: in this stage the algorithm sees all the pairs (X,,y,) forv € 1,..., V|
where V' is the size of the wvalidation data set. The algorithm is not learning to
perform the task, but rather it is doing a preliminary test of its performance. The
main goal of this stage is to prevent overfitting [|19], i.e. the algorithm fits the
training data perfectly, but it fails to generalize in the validation data. The validation
stage also serves to improve the performance of the algorithm by adjusting it via
fine-tuning [150]. It is useful to compare this stage to the situation where a student
is given a mock exam to check what they have learned.

3. Testing: in this stage the algorithm sees all the pairs (X, y.) for e € 1,..., E, where F
is the size of the testing data set. In this phase, the algorithm is on its final version,
and it is evaluated to provide an unbiased performance. It is useful to compare this
stage to the situation where a student is given a final exam to test their capabilities.

It is important to note that the training, validation and testing input data sets come
from the same initial data set. Then, it is imperative to divide the initial data set, so
that the examples are not repeated in the other subsets. As ML algorithms need a lot of
examples to learn, a rule of thumb to split the original data set is 80% for training, 10%
for validation, and 10% for testing.

When the target is discrete, we refer to the task as classification as the labels are pre-
defined classes. In turn, a classification task can be binary, if we want to differentiate two
different classes, or multi-class if we want to differentiate between more than two classes.
On the other hand, when the target is continuous, we refer to the task as regression. If
our goal is to simply estimate a single variable from the input data we call it univariate
regression, but if we want to estimate several variables that are dependent on the input
data we call it multivariate regression. In Chapter 8 and 9 we use two different supervised
classification algorithms for GW searches.

While supervised learning has several applications, these methods also have some limita-
tions: generating labels is expensive, and usually it requires the arduous work of experts,
which in turn can bias the labelling process. Another problem is that supervised algo-
rithms are unable to handle unknown classes.
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Unsupervised learning: supervised learning relies on knowing the target y, but for some ap-
plications, this information is not available due to lack of resources, or simply because the
ground truth is unknown. Conversely, unsupervised learning does not require labels and
only relies on the input examples X to capture the underlying distribution of the input,
finding relationships or patterns in the data set. An example of unsupervised learning
would be clustering, which based on unordered inputs, arranges them, for example, based
on their similar characteristics. In this context, the algorithm minimizes a loss func-
tion based on the similarities or “distances” between examples. In Chapter 6 we use a
supervised algorithm applied to the field of GW.

Some limitations of unsupervised approaches are that evaluating their performance and
interpretation is often challenging due to the lack of ground truth. Related to the previous
point, avoiding over-fitting is more difficult, as the algorithms can capture irrelevant or
noisy features of the data.

Reinforcement learning: This type of learning strongly overlaps with the field of Artificial
Intelligence, where the algorithm does not learn to perform a task based on input data,
with or without labels, but it rather it takes decisions by interacting with the environment.
In this framework, the algorithm, or agent, is located in an environment, or world, with
certain rules. The agent will move in this world, passing from one state to another by
maximizing a reward function, which specifies the learning task. If we give the proper
“hints” to the agent, it will successfully learn what states are preferred, and what states
it should avoid. Reinforcement learning is closest to the way we, humans, learn, and
it is also one of the most complex. Applications of reinforcement learning are, but not
limited to, robotics and control systems [171]. While in this dissertation we do not use
reinforcement learning, the interested reader shall refer to [172].

Input

Data with Data without States

labels labels
Loss Supervised Unsupervised Reinforcement Reward
Learning Learning Learning
Yo, e Bl B e -
R — l l l ........................ B luation

Mapping Patterns Actions

Output

FIGURE 4-1: Sketch of the different types of ML, namely, supervised (green), unsupervised
(orange) and reinforcement (blue).

In Fig. 4-1 we present a sketch summarizing the main three different types of learning.
However, these learnings can be mixed, giving place to semi-supervised approaches [! 7] or
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active learning [ ], among others. Now that we have seen the different ways algorithms learn,
in the following we explain how we can design a machine that learns.

4.2 The realm of deep learning

The success of ML lies in creating algorithms
able to learn from past experiences, and per-
form future predictions. While several ML
algorithms are capable of generalizing, they
commonly suffer from the curse of dimen-
sionality, i.e. the explosive nature of high-
dimensional spaces results in an exponential
increase of the computational efforts to learn
from the input data [!70]. The curse of di-
mensionality does not only impact their com-
putational cost, but also it decreases the per-
formance of algorithms, since with a linear
increase of the dimensionality, the number
of examples needed to achieve a good per-
formance increases exponentially. Nonethe-
less, a ML algorithm can remove irrelevant
features in the data, learning useful informa-
tion, and beating the curse of dimensionality,
namely, artificial neural networks. Note that
in this particular work, we do not provide an
overview of o.ther ML algorithms, but we rec- FIGURE 4-2: Representation of a galazy by
ommend the interested reader to refer to [150]. DALL-E 2 [1°7], a DL model.

The idea of mathematically defining the
human brain has been around for almost 100
years, but it was not until the birth of Big Data that these ideas became a reality. Indeed,
artificial neural networks, in combination with Big Data and the improvement of hardware
and software, opened the door to the realm of Deep Learning (DL). In this realm we can find
applications from the autonomous car [170], to text [|77] and art generation [!7%]. As an
example, in Fig. 4-2 we show the picture of an artificial galaxy generated with DALL-E 2 [157].
In this section, we present the formalism of artificial neural networks, the building blocks of
Deep Learning (DL), based on the material of [159].

4.2.1 Simplifying the human brain
The architecture of a neuron: the perceptron

The human brain is a complex organ that serves as a command centre of the nervous system,
being composed of billions of neurons, which are its basic computational unit. The main tasks
of the neurons are to receive information, via its dendrites as an electromagnetic pulse, then
interpret the signal in the nucleus and create, or fire, a response signal that is carried to the
next neuron via the azon, which connects to other neurons via synapses.

In 1958, psychologist Frank Rosenblatt introduced the first mathematical simplification of
the human neurons, known as perceptron [100]. In this mathematical neuron, the information
is given by a n-vector x = [zy,...,x,]. Similarly to the previous case, x travels along the axon
and interacts multiplicatively with the dendrites via the synapsis, or weights, w = [wy, ..., w,].
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The goal of the mathematical neuron is to learn the synaptic strength, which controls the
strength of the influence of the previous neuron. In a simplistic model, the information of the
dendrites is summed, such that if the sum is above a certain threshold, the neuron fires a signal
along the axon. This firing rate is modelled as the activation function f : R — R, which is
non-linear.

Thus, we can mathematically define the a output, also known as activation as,

a= f(zn: w;x; + b), (4.1)

where b is the bias term, which can be interpreted as the error of the model. In the left
panel of Fig. 4-3 we present a cartoon of a biological neuron, while in the right panel, we show
a sketch of its mathematical simplification related to Eq. 4.1.

Dendritesi Cell body
Dendrites X1 e > :

Input

Output

activation
function :

Output

Nucleus

FIGURE 4-3: (Left:) Cartoon of a biological neuron, the basic computational unit of the

human brain. (Right:) Sketch of its mathematical model.

We can then define a neural network as a stacking of neurons, where neurons are arranged in
layers. Such a model is also known as multi-layer perceptron (MLP). Now, we consider a neural
network of n; = 3 layers, with hidden layers L, and Ly, and an output layer L,,. Each layer
L; has a matrix of weights I/Vz(j) and vector of biases bgl) , where the weights are the connection
between the unit j of layer [ and the unit ¢ of layer [ + 1, and the bias is associated to the unit
1 of layer [ 4+ 1. Then, the MLP can be mathematically described as,

ai? = fOV ey + W s + Wighes + 07) (42)
a5 = f(Wii' ey + Wi wa + Wigs + 857) (43)
as? = F(W oy + Wi s + Wi s + b5 (44)
hwa(x) = ai” = FV 0t + WEay” + Wigay” +07). (4.5)

Without initial consideration of assumption n; = 3, the final output hy,(z) = a§3) is defined
as the hypothesis or prediction of neural network. By defining 2/*! = ?:1 Wl-(jl)a?j + b}, we can
recast in a!” f(zi(l)), and in turn, Eq. 4.2 — 4.4 in

i =

LD 00 L O gD p( D) (4.6)

Thus, by organizing the parameters as matrices, and using matrix-vector operations we can
exploit the usage of efficient hardware, such as GPUs.
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The firing of a neuron: the activation function

The activation function f is a crucial component of the neuron since it decides which neurons
should be “activated” based on the input information, i.e. the weighted sum of its inputs. As
the activation function introduces a non-linearity, this enables the neurons to learn complex
patterns in the data.

The choice of activation function is determined by the nature of the input data, but some
historically well-known activation functions are,

1
e~ i
et
softmax (r;) = ——, 4.8
) =5 (@5)
2

Note that the sigmoid function, defined in range [0, 1], is a particular case of the softmax
activation function. Due to the definition of these three activation functions, large values
of information within the neurons provide constant values which inhibit the information flow
within the network. This implies that the activation function is “saturated” and it is commonly
known as vanishing gradients [101]. To solve this issue we need a function that tends to infinity,
such as the Rectified Linear Unit (ReLU) and similar,

0, ifz<O0.
x, if > 0.

ax, if z <O0.

4.10
x, ifx>0. ( )

ReLU (z;) = { , Leaky ReLU (z;) = {

In Fig. 4-4 we compare the
sigmoid with ReLU activation
function. As we can see, while 1] g0 20/ ReLU
for large input values the sig-
moid function we get a constant
value, either 0 or 1 if the input
is positive or negative, ReLLU
does not only avoid this satu-
ration, but it also favours pos-
itive input values, which lead
to better behaviour of the in-
formation flow through the net-
work. ReLU is widely used °Z5 5 Y T 5 20
in the DL community, but it nput (x) nput (x)
does not achieve the best per-
formance for every application. FIGURE 4-4: Comparison of sigmoid (left) and ReLU (right)
Indeed, the activation function gctivation functions. Note the difference in activation range.
is an active field of research in
DL, where scientists do not only create novel activation functions but combine current ones
[102]. This is because a proper understanding of the activation function, and the flow of infor-
mation through the network’s architecture are key for the learning of neural networks.

Activation
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The learning of a neuron: the loss function, gradient descent and backpropagation

We have talked about how we can design a neural network, but, despite mentioning it, we
have not explained how the information flows within the model. Assuming that we have a
supervised neural network that learns the fixed training set {(z™, yM), ... (2™ y™)} of m
training examples, we want to minimize the loss function,

m nl 1 s Si+1
J00) = [ =5 (Ahata) )| + 5 S 305 (W) (4.11)
m i \2 I=1 i=1 j=1

The first term is an average sum-of-squares error between the ground-truth y and the
prediction of the model hyy,. The second term is the regularization, known as weight decay,
controlled by the weight decay parameter A. Note that s; refers to the number of nodes of layer
l.

The goal of the neural network is to find VVU and bgl) that minimize the loss function
J(W,b). Drawing an analogy, consider that we are at the top of a mountain with poor visibility
due to atmospheric conditions. If our goal is to descend to the base swiftly, we naturally seek
the quickest route — analogous to finding the path with the steepest negative slope from a
mathematical perspective. This technique is called gradient descent [!0], and neural networks
are employed to find the optimal solution. Mathematically, one iteration of (W(l) b(l)) with

ij 2 i
gradient descent is,

1 9 o
—— W, b) =W - aq > J(W b, y@)] + AW}P) (4.12)
J(W, b; 2,y ), (4.13)

where « is the learning rate, i.e. how wide is the step that we take to descend, which
controls the learning process. It is important to note that at the beginning of the iteration

(WUZ), bZ ) is unknown, so we set them to be random values, rather than all zeros, so the layers

of the neural network learn different functions [101]. Now we need an efficient way to compute
our tuple (VVZ’J7 bl). An efficient method, widely used, is backpropagation, which computes the

gradients through a recursive application of the chain rule.

The core of backpropagation is to first perform a “forward pass” to compute the activations
throughout the network, and then to do a “backward pass” computing the amount on “error
term” which measures the difference between the computed activation and the true target value.
In detail, the backpropagation algorithm is:

1. “Forward pass” computing the activations of the layers

2. m; being the output layer, and ¢ each output unit,

i = 0z n12|y hwp(z )| = —(yi —a") - f'(5") (4.14)
3. Forl=n;—1,...,3,2, where ¢ each node in layer [,

(ZW”W“)) (=) (4.15)
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4. Finally, we compute the desired partial derivatives,

O IWbia,y) = a6, J(W, bz, y) = oY (4.16)
oW

We can redefine this process using matrix-vector multiplications and efficiently perform the
computation with GPUs. Note that backpropagation is a special case of a technique called
automatic differentiation, so for a deeper understanding we recommend the reader [1(7)].

In the context of gradient descent, we define an epoch as a gradient descent update where
the network has seen all the training data, so it updates its weights and biases accordingly.
While for small data sets it is feasible to see them all at once in a single gradient descent
update, this is prohibitive with larger data sets. To solve this issue, stochastic gradient descent
[107] allows to perform gradient update in small subsets or batches randomly sampled. It is
recommended for batches to be as big as the memory of the training device allows so that
the neural network sees sufficient examples per gradient update. While this process alleviates
computational complexity, it also introduces randomness in the training, which is beneficial for
its convergence. Nonetheless, depending on the application it may be challenging to achieve
convergence of the training process with these optimization algorithms, also known as optimiz-
ers, so other methods have been developed. We recommend referring to [/07], and references
therein for alternative optimizers. Note that we refer to pre-defined parameters of the network,
such as the learning rate or the number of epochs, as hyperparameters, and we refer to the
parameters learnt by the network, such as the weights, as simply parameters.

As in the case of the activation functions, the creation of novel optimization algorithms, loss
functions, and neural network architectures, are active fields of research in the DL community.
These choices are application-dependent, and their details are (in principle) always provided in
DL papers for the sake of reproducibility.

4.2.2 Convolutional neural networks

MLP is composed of learnable parameters, such as weights and biases. A single layer of input n
and a number of neurons m needs to learn (n+1) x m parameters. To understand how complex
neural networks can be, we provide an example: we are given the task of classifying pictures
of cats and dogs with a single-layer neural network of 50 neurons. The input images have a
shape of (height, width, depth) = 32 x 32 x 3, where the depth is also known as the number of
channels, and in this context, it represents the three colours that compose the images, namely,
red, green, and blue. Now, to feed the images into the network we will have to flatten them
to size n = 32 x 32 x 3. Therefore, the total number of learnable parameters of this neural
network is

(n+1) xm=(32x32x3+1) x50 = (3,072 + 1) x 50 = 153, 650.

This single-layered neural network is tremendously expensive, and it will suffer from the
curse of dimensionality as we increase the resolution of the images. Moreover, these networks
also break the spatial information of the input by flattening it, relating each pixel to every
other pixel in the image. Indeed, in an image not all pixels are related, as it is not necessary to
understand the pixels of the background to understand that a cat or a dog is present. Therefore,
fully connected architectures, such as the MLP, learn irrelevant relations between pixels.

The revolution in DL came from the field of Signal Processing, where scientists had de-
veloped filters that extracted specific local characteristics of the image, such as the edges or
textures. These filters are functions designed with domain knowledge and applied to the input
signal using convolutions. Thus, the whole idea would be to learn them with neural networks.

62



Chapter 4. Machine Learning Foundations 4.2. The realm of deep learning

In the context of image processing, an image is essentially defined as a matrix of values that
correspond to its colors, and whose shape is h X w X d. Note that we are taking the convention
of height x width x depth. Then, a filter, also known as kernel, is a squared matrix of shape
kx kx1, where k < h,w. The neurons forming the kernel are interconnected to a subset of size
k x k x 1, also referred to as the receptive field. In this way, the kernel is simply looking at local
features in this small subset of pixels, sharing the learnable parameters, known as parameter
sharing. As before, assuming an input image of size 32 x 32 x 3, and a convolutional layer of
kernel 3 x 3, the number of parameters that it needs to learn is

(n+1)xk=(32x32x3+1)x3=(3,012+1) x 3=09,219.

While large kernels provide a wider receptive field, they are also more computationally intensive.

A way to increase the receptive field at a low computational cost is with dilation &, where
we “skip” & neighbours when convolving the input and the filter. As we are not only interested
in a single part of the image, we need to slide the kernel through it with a given step size,
defined as stride s. Moreover, sometimes the input can be too small, so we might need to
increase its size by adding zeros around it, a process known as padding p. In Fig. 4-5 we show
the sketch of two inputs being convolved by a pre-defined kernel.

FIGURE 4-5: (Left:) Sketch of a kernel of size k = 3 over an input 6 x 6 x 1, a dilation
d =1, a stride s =2 and a padding p = 1. (Right:) Sketch of a kernel of size k = 3 over an
input 7 x 7 x 1, a dilation d =2, a stride s = 1 and a padding p = 0, retrieved from [100].

On the left panel of Fig. 4-5 we can see that the input (blue), of original size 5 x 5 X 1, was
padded with a vector of zeros (p = 1), giving an input shape 6 x 6 x 1. The kernel (green) is
a squared matrix of size 3 x 3 x 1, or k = 3, with a dilation 4 = 1 and a stride s = 2. On the
right panel of Fig. 4-5 we can see that the input (blue) has an original size 7 x 7 x 1, and has
no padding (p = 0). The kernel (green) is also a squared matrix of size 3 x 3 x 1, or k = 3, with
a stride s = 1, and a dilation 4 = 2, which increases the receptive field by skipping neighbours.

We can think about the kernel to be a feature map that highlights and extracts the main
features of the input to perform the task. Since the input will have more than a single relevant
feature, we want to use f kernels per convolutional layer to build more expressive models.
Given an input of size h;, X w;, X d;;, that we convolve with f kernels of sizes k, with dilation
d, stride s and padding p, we can calculate its output shape hyu X Wour X dous as,

hin+2Xp—d x(k—1)—1

hout S +1
Wour | = | [wint2xpdxk-1)-1| , 4 (4.17)
dout °

f

If no padding is used, the width and the height of the images will always be wy,; <
Win, Powt < hin, but the output is conditioned by the number of kernels, or feature maps.
To read a more detailed work about the different types of convolutions refer to [100].
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The principal idea behind convolutional neural networks (CNN), and one of the reasons
behind the success of DL, is the stacking of convolutional layers to form complex architectures.
Indeed, each layer of the CNN looks at different patterns since they can learn different filters,
depending on the information provided by the previous layers. Thus, these layers learn to
recognize visual patterns by first extracting local features and subsequently combining them to
obtain higher-level representations, also known as latent representations.

The shape of these architectures is application dependant, and the parameter space of
hyperparameters to choose is gigantic: we do not only need to define the number of layers,
the number of neurons per layer, and the way that we connect them but also there are other
functions that we can add, such as batch normalization [107], maz-pooling [ 00], dropout [1 1],
among others. In this hyperparameter space, the challenge is not to find the optimal solution
to our problem, but rather a solution that is enough. As we add neurons and layers, CNN grow
in complexity, which in turn does not only bring the problem of intensive computation but the
challenge of interpretability. Indeed, CNN, and other DL models, are complex and their inner
workings opaque, so they have been granted the name of “black boxes”.

Nonetheless, great effort is being made to understand these models that are transforming
our society. In the vibrant and fast-evolving field of DL, where the past is a couple of months
old, scientists are arduously investigating how to interpret these models, challenging computer
scientists, mathematicians, statisticians, and even, philosophers [!05]. But as Albert Einstein
said “if you want to know the future look at the past”, in the current work we will review some
of the applications of ML and DL in the field of GW.

4.3 Review of gravitational-wave applications

In 2015, during the first observing run (Ol>’ Cumulative Count of Events and (non-retracted) Alerts
Advanced LIGO [7], and Advanced Virgo = e

[0] successfully detected a BBH coalescence
through the direct observation of GW [7].
After an upgrade of the detectors to in-
crease their sensitivity, in November 2016,
02 started, followed by further significant
upgrades, which initiated O3 in April 2019.
While during O1 and O2, 11 candidates were
observed, 74 candidates were detected over
03, and more candidates are expected in the
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as a function of the observing days. Coloured

areas correspond to observing runs.

As we have seen in Section 2.2, in the com- ,FIG,URE 4-6: Cumulative count of
. e gravitational wave events detected by LIGO
ing years, the sensitivity of the second gener-

ation of detectors will improve further. As and Virgo, split by observing run. Note that

Advanced LIGO, Advanced Virgo and KA- 03 has becin divided betufeen 03a and O30.
GRA [73], approach their design sensitivity, Credits to LIGO-Virgo-KAGRA.
and other interferometers, such as LIGO Aun-
dha [11], are added into the network, the detection rate of GW observations will keep increasing.
Moreover, with the construction of the third generation of detectors, such as LISA [I 1], Einstein
Telescope [17] and Cosmic Explorer [1(], the detection rate will grow steeply and GW signals
will spend from hours to even days in their sensitivity band [100, [70].

Increasing the detection probability will increment the size of the search parameter space,
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and also add noise contribution caused by overlapping signals, known as confusion noise [171].
As a consequence, matched-filter search algorithms (see Section 3.2 for details) will become
computationally unfeasible as the template banks grow in complexity, while the excess of power
search algorithms (see Section 3.2 for details) will need more data to characterize the background
and find GW signals. Parameter estimation algorithms will also be subjected to confusion
noise biases [ 77, |, and rapidly, current methods that rely on Markov Chain Monte Carlo
(MCMC) [! 7] and nested sampling [!77], will become computationally prohibitive, with the
growing number of GW signals to analyze.

The challenges in GW research require innovative solutions, and ML has emerged as a
crucial tool for addressing them. ML is an adaptive and transversal tool, with the ability
to improve its performance over time as the available training data increases. This is an
important characteristic within the field of GW, as the detectors are evolving machines where
novel sources of noise and interference are bound to arise (see Section 2.4). Furthermore,
the main advantage of ML techniques is their rapidity because most of the computations are
made during the training stage. In the past few years, researchers have explored different ML
applications to GW data analysis, such as feedback systems for the next generation of detectors,
noise reduction, identification and modelling of non-gaussian transient burst noise, detection of
modelled or unmodelled GW sources, GW signal extraction, and fast inference of intrinsic and
extrinsic GW parameters.

In this review section, we will provide an overview of some of the key achievements of ML
in the field of GW, but we recommend the reader to refer to [170, |77] for exhaustive reviews.

Detector characterization

In Section 2.4 we have explained different sources of noise that impact the sensitivity of the
detector. The state of the detector is continuously monitored by thousands of auxiliary channels
to witness the interferences caused by the main strain of the detector h(t). Understanding these
couplings is fundamental to mitigate persistent and transient noise that hinder GW searches.

DeepClean [ 74, | was built to associate auxiliary channels to predict non-linear persis-
tent noise, using a similar idea to the linear prediction error (see Section 3.3.3), but using a
fully-convolutional autoencoder. On another note, iDQ [/ ©0), 127] is an embedding of supervised
ML classifiers that combine auxiliary channels and the main strain of the detector h(t) to de-
tect non-Gaussian transient burst noise in low latency. In the case of GW170817 [~ 1], masked
by an Extremely Loud glitch in LIGO-Livingston, iDQ reported witness auxiliary channels in
low-latency, enabling the subsequent sky-location of GW170817.

As we have seen in Section 2.4.3 glitch identification and characterization is a crucial first
step towards their mitigation, but due to their overwhelming amount, their characterization by
hand is unfeasible [0, 20, (/1]. For this aim, researchers have built Gravity Spy [0, 07, 77,

], to identify glitches in LIGO, and GWitchHunters [/ =2, 70], to identify glitches in Virgo.
Both algorithms combine supervised ML algorithms, in particular multi-class CNN, and citizen
science to characterize glitches according to their morphologies in GW strain data h(t)in time-
frequency representations.

However, this procedure presents several limitations. Supervised learning needs fixed class
definitions that are not exhaustive nor representative of all glitch morphologies, as there could
be many possible sub-classes to discover [(7]. Furthermore, as GW detectors are improved,
novel glitch morphologies could arise [/7]. Moreover, generating these labels is an expensive
task, since ML methods need a lot of examples for training, and experts must vet the labelling
procedure. To overcome these limitations, authors in [ 7] proposed combining an unsupervised
approach, providing results consistent with other supervised approaches.
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Searches of GW sources

A fundamental part of modelled searches is the creation of accurate waveforms for the construc-
tion of template banks. Due to the increasing parameter space of GW searches, scientists have
explored the usage of ML for faster generation of more complex and exotic CBC waveforms.
For this aim a variety of ML methods have been implemented, such as Gaussian Processes
[184, , 120], MLPs [187, , , , , 192], deep neural networks [0, , , 189],
autoencoders [100, 107], transformers [10%] and generative adversarial networks [109]. More-
over, we can also use ML to enable a fast sampling to construct template banks [107].

However, during the third generation of GW detectors, modelled searches that employ
matched-filtering approaches will become computationally prohibitive, so researchers are also
exploring ML to test the search hypothesis:

Null hypothesis (Hy): the time series s(t) does not contain a GW — P(h|s) < P,
Alternative hypothesis (H,,): the time series s(¢) contains a GW — P(h|s) > P,

Indeed, several investigations tackle this problem to identify BBH [200), , | and BNS
[203, , , 200] with CNN; relying on the fast prediction and generalization ability of these
methods, just to name a few. These propositions intend to be an alternative to matched-filtering
approaches, but they do not acquire the precision of current state-of-the-art modelled pipelines.
However, ML does not need to substitute existing methods; instead, it can complement and
even enhance their performance, fostering a synergistic relationship. With this idea in mind,
authors in [207] translated matched-filtering to a multi-layer perceptron, and then optimized it
via gradient descent, enhancing its initial performance.

In a similar line of thought, unmodelled searches that rely on the excess of power algorithms
need to discriminate between glitches and Burst signals, and ML can also learn to differentiate
between both classes. Indeed, that is the idea behind XGBoost [2(¥, ], a decision-tree based
algorithm, and GMM [21()], a Gaussian Mixture Model. These algorithms rely on the information
provided by ¢WB and enhance its sensitivity towards GW signals. Moreover, ML algorithms
can also learn to identify glitches based on the wavelet transform of ¢WB, improving the

characterization of the background [ 1 1]. Conversely, several authors have created independent
search algorithms with ML: some authors tackle targeted Burst searches of, for example, core-
collapse-supernovae [ 12, , , ], cosmic strings [210] or long burst [217, ]; while

other authors have focused on more generic searches [219, ) .
Last, but not least, ML has also been used for searches of continuous waves [222, , ,
|, and the stochastic background [220].

Parameter estimation

As we mentioned before, in the third-generation era, the number of GW signals to extract
physics will be computationally unfeasible. For this aim, different authors have proposed to
approach this problem with different ML algorithms. In the following, we present a non-
exhaustive list of different applications for parameter estimation.

Some authors use standard CNN algorithms [777, ], but variational autoencoders, such
as Vitamin [22Y], seem to provide an enhanced performance. More recently, there has been a
development of normalizing flow approaches that tackle the Bayes theorem [23()] in different
ways, such as Dingo [2], ], that employs an autoregressive normalizing flow; Nessai [/,

|, which implements nested sampling with normalizing flows; the works in [225, 220], where
the authors use a CNN to extract the main features of the data and provide this information
to a normalizing flow; and the recent usage of truncated marginal neural ratio estimation [27]
with Peregrine, for LIGO data applications, and Saqqara [2"], for LISA data applications.
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Chapter 5

From Searches to Machine Learning

In Chapter 4, we provided an overview of the building blocks of ML techniques. Nonetheless,
due to their transversality and flexibility, ML applications tend to be problem-dependent, and
users need to make educated choices, dependent not only on the task at hand but also on the
particularities of the data. This inherent “know-how” of ML is not an exception in GW data
analysis, where the particularities of the GW target sources (see Section 2.1), and the properties
of detector noise (see Section 2.4) significantly influence the selection of statistical methods of
search algorithms or “pipelines”.

Therefore, in this chapter, we transition from the concept of a traditional GW search to
an ML-based detection pipeline. We revisit the importance of data representation and provide
an overview of the challenges ML faces in mitigating the background of glitches. Additionally,
we situate this thesis within the broader field, highlighting advancements toward the next
generation of GW searches.

5.1 A search pipeline as a classification task

As we described in Chapter 3, a search pipeline is a sequence of operations that inputs the raw
data of the interferometer and produces a list of detection events or triggers, i.e. potential GW
candidates, to solve the following hypothesis testing,

Null hypothesis (Hy): the time series s(t) does not contain a GW — P(h|s) < P
Alternative hypothesis (H,,): the time series s(¢) contains a GW — P(hls) > P.

given a decision threshold P,. While state-of-the-art search pipelines construct the likelihood
ratio A (Eq. 3.3), we can build a supervised ML model that predicts the probability of the input
data containing a GW signal based on past evidence, i.e. the model will learn the mapping
h: X — )Y between X, the space of the detector’s input X, and ), the space of the targets y
(see Section 4.1). In ML such a supervised task can be defined as a classification problem, that
can be binary or multi-class. If we perform a binary classification, we will distinguish between
two classes: a true class, usually represented by y = 1, and a negative class, usually represented
by ¥ = 0. On the other hand, if we perform a multi-class classification, we will distinguish
between C' classes.

In the context of GW searches expressed as binary classification tasks, y = 0 implies that
a GW signal is not present in the input data, while y = 1 implies that it is present. To learn
such a task, the model minimizes the loss function known as binary cross-entropy,
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ify=1
ify=0,

—loggj,
—log (1 —19),

where §j represents the probability predicted by the model that y = 1. We can generalize our
binary classification to C' classes by minimizing the categorical cross-entropy loss function,

L(y,9) = —[ylogg + (1 —y)log (1 — 7)] :{ (5.1)

C
Ly, 9) = = >_y;log ), (5.2)

J
where, traditionally, the true target y; is represented as a one-hot vector. To interpret the
output of the neural network as a probability ¢, binary classification tasks use the sigmoid
function, Eq. 4.7, while multi-class approaches use softmax, Eq. 4.8. These loss functions' have
several desirable properties: they are easy to compute, differentiable and provide a probabilistic
interpretation of the model’s output [22)]. However, they are sensitive to class imbalance, which
occurs when the defined classes have significantly different sizes of samples.

In Section 3.1 we derived the equation of the likelihood ratio A (Eq. 3.3), and we noted
that it is a monotonically increasing function of the posterior probability P(h|s) of the GW
signal h being present in the time series s. The main objective of the search pipelines is to use
A as a statistical measurement, known as ranking statistic, to create a decision rule to detect
GW signals. The fundamental difference between a state-of-the-art search algorithm and a
ML-based algorithm is that this ranking statistic is not designed, but rather, learnt. Indeed,
the prediction g of our ML model will be our ranking statistic, redefining, once again, the
hypothesis testing of the GW search as,

Null hypothesis (Hy): the time series s(t) does not contain a GW — g < P,
Alternative hypothesis (H,,): the time series s(¢) contains a GW — ¢ > P,

Note that the decision
threshold P, is not depen-
dent on the learning process
of the ML algorithm, and it

TABLE 5.1: Confusion matriz of GW + noise (positive class)
against only noise (negative class)

can be defined a posteriori to Actual class
tune its performance. GW + noise Noise
. . . T Fal
Given this decision rule, Predicted | GW + noise Lrue False
there are two correct and two class positive (TP) | positive (FP)
erroneous outcomes. If cor- Noi False True
i oise ) .
rectly we predict that a GW negative (FN) | negative (TN)

signal is or is not present in
the time series s, we call this “true positive” (TP) or “true negative” (TN). Conversely, if we
incorrectly predict that a GW signal is present in the data, we call this “false positive” (FP),
or, most commonly in the GW field, false alarm. If we incorrectly predict that a GW signal
is not present in the data, we call this “false negative” (FP), or false dismissal. In ML this
information is commonly summarized in the confusion matriz (see Table 5.1).

From the confusion matrix, we can extract several metrics to evaluate the performance of
ML algorithms, such as,

IThey are particular functions of neural networks, and as such, they will be minimized via gradient descent,
similarly to the example provided in Eq. 4.11. Nonetheless, other ML can be used to solve this classification
problem, but they lie outside the scope of this work.
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5.2. The importance of data representation

TP+TN

all correct classifications

A = = )
CC = Py FPT N+ TN all classifications (accuracy), (53)
TP GW signals correctly classified o
TPR = = t t t 4
h TP+ FN all GW signals (true positive rate), (54)
FP misclassified noise L
FPR = TNLFP 1 noise (false positive rate), (5.5)

among others. In this ML context, FPR is the equivalent to the false alarm probability
Pr (see Eq. 3.40). Nonetheless, it is relevant to note that the metrics derived from the
confusion matrix nor the given probability g are not a measure of significance. Specifically, a
comprehensive ML-based detection system must consider accidental backgrounds (see Section
3.4.2) to accurately compute the significance of predictions {.

5.2 The importance of data representation

As we discussed in Chapter 4,
ML is revolutionizing our con-
temporary world. One of the
keys to ML success is not only
the vast amount of information
in the era of Big Data in the
form of images, text, videos
and audio, but also the con-
struction of tailored ML algo-
rithms to process these large
data sets. A clear example is
the design of CNN (see Section
4.2.2), capable of encoding im-
ages of flamingos or pelicans in
latent representations that lit-
tle have to do with our under-
standing of what a flamingo or
a pelican is (see Fig. 5-1).

Flamingo Pelican

FIGURE 5-1: Flamingos and pelicans as seen by a ML

model, retrieved from [2/0].

Due to the strong dependency of ML methods on the quality and quantity of data, it
is essential to carefully consider the representation of input data. In practical applications,
especially in domains sensitive to accuracy such as precise physics experiments, this becomes
even more crucial, as the data must provide sufficient information to accurately represent
natural phenomena. In the following, we revisit some of the data representations used in ML

applications for GW searches.

- Time series: GW detectors produce continuous time series data, making time-domain anal-
ysis straightforward with minimal post-processing beyond noise reduction methods. This
approach is particularly useful for CBC signals, which are well-localized in time within
the sensitivity band of ground-based detectors, and have a linearly increasing frequency.
By limiting the frequency range of interest, this analysis can effectively highlight these
signals. However, interpreting time series data is challenging, especially in the presence
of a complicated background of glitches with complex frequency contents.

- Time-frequency: This representation provides a comprehensive view of how the signal’s
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frequency content evolves. These methods are particularly effective for analyzing non-
stationary GW signals, whose frequency components change dynamically. However, they
are computationally intensive, requiring additional post-processing to achieve an opti-
mal representation and balancing the trade-off between time and frequency resolution.
Nonetheless, most DL methods are designed to extract features from 2-dimensional rep-
resentations, such as CNN, facilitating better integration of available models within the
ML community.

- Feature vectors from state-of-the-art pipelines: Over the past two decades, current
GW search pipelines have been fine-tuned to an exquisite level of accuracy to detect GW
signals buried within the detector data. These pipelines process GW data by extracting
meaningful features that have been extensively studied and validated within the GW
research community. These well-defined features can be integrated with cutting-edge
ML models to enhance the ability to distinguish between GW signals and glitches, and
potentially extrapolate beyond current theoretical frameworks. However, strong domain
knowledge is required to correctly interpret the results of this combined approach.

Having explored the various data representations crucial for effective ML applications, it is
evident that distinguishing transient GW signals from a background of glitches that can mimic
or obscure true GW signals (see Section 2.4.3) remains a significant challenge. In the following
section, we will explore how current transient GW searches mitigate glitches and how ML can
enhance these efforts.

5.3 Mitigation of a glitch background

A fundamental utility of a network of interferometers is to find coincident time triggers across
independent experiments. This capability is crucial not only for locating GW signals in the sky
but also for minimizing the background of glitches that hinder GW searches, as glitches are less
likely to occur simultaneously in different detectors. Indeed, this principle is employed by GW
searches through incoherent or coherent analysis methods: incoherent analysis generates single
triggers and searches for time coincidences at a later stage, while coherent analysis generates a
unique list of triggers by combining coincident detector data (see Section 3.3.1).

ML algorithms, particularly CNN, can significantly enhance both incoherent and coher-
ent analysis methods in GW) searches. In incoherent analysis, the speed and generalization
capabilities of ML methods enable rapid and efficient inference, which can then be used in sub-
sequent steps to identify coincidences across different detectors, reducing background noise from
glitches. This approach is especially beneficial for low-latency scenarios, where swift detection
within seconds is crucial for initiating timely electromagnetic follow-ups.

In incoherent analysis, ML algorithms can learn to identify GW signals based on time co-
incidences between different detectors. CNN, in particular, can process multiple data streams
like handling different colour channels in images (see Section 4.2.2). As more ground-based de-
tectors become operational, additional data streams can be incorporated, potentially enhancing
further the detection capabilities and improving the accuracy of GW searches.

A common advantage of both analysis methods is that ML algorithms can directly learn
information about background noise, particularly glitches, which helps with their mitigation.
However, as mentioned in Section 5.1, class imbalance—where current true GW signals are
vastly outnumbered by background noise and glitches—can bias our algorithms, leading to
higher rates of FP and FN. Due to a poor minimization of the loss function, some algorithms
might become biased towards classifying signals as positive detections (“yes-classification”),
drastically increasing the number of FP. Therefore, it is essential to carefully consider class
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balance and optimize loss functions to enhance the accuracy and reliability of GW detections.
Furthermore, when dealing with real data, there is a risk of unknowingly contaminating the
dataset with unidentified glitches, which further complicates the detection process.

Throughout this work, we address these issues using different approaches: we investigate
various data representations to enhance the performance of the algorithms, explore advanced
loss penalization techniques to ensure stable learning and overall robustness, and implement
different methods to tackle class imbalance. These comprehensive approaches collectively con-
tribute to overcoming the challenges posed in this and previous sections. As we refine these
methods, we lay the groundwork for the next generation of GW searches.

5.4 Towards the next-generation of searches

At the end of their lives, massive stars ~ 8 — 100M, have accumulated ~ 1.4 Mg, of elements
of the iron family in a compact core due to thermonuclear fusion processes. Then, the iron
core cannot support its own weight and experiences a gravitational collapse. The most common
core-collapse mechanism is known as the neutrino-driven mechanism [2/ 1, 212] and is expected
to be responsible for the majority (> 99%) of all core-collapse supernovae (CCSNe) explosions.
The basic theory of CCSN explosion is consistent with SN 1987 A, which was detected via
electromagnetic radiation and low energy neutrino emission [’ 12]. Nonetheless, GW and neu-
trino emission, as opposed to electromagnetic radiation, provide direct and unique information
about the inner dynamics of the collapse, since they are produced at its inner core.

As stellar evolution predicts, CCSN can produce remnants, either a neutron star or a black
hole, but progenitors within = 50— 130M, cannot produce a remnant due to pair-instability su-
pernovae [, 215]. Nonetheless, in nature, we also observe supermassive black holes (SMBH),
such as Sagittarius A* in the Milky Way Galaxy [0, |. A plausible explanation for their
formation is the hierarchical mergers of intermediate-mass black holes (IMBH) [21%, 17]. The
direct observation of IMBH populations via GW would not only strengthen the possible evolu-
tionary link between stellar and SMBH, but unveil the details of the pair-instability mechanism
and elucidate their influence in galaxy formation. Conclusive observation of IMBH remained
elusive until the detection of gravitational-wave signal GW190521, which lies with high confi-
dence in the mass gap predicted by the pair-instability mechanism.

Despite falling in the sensitivity band of second-generation detectors, modelled searches
of IMBH and unmodelled searches of CCSN are hampered by the presence of non-gaussian
transient burst noise, known as glitches (see Section 2.4.3). In particular, Blip glitches are
detrimental to these searches due to their short duration (~ 0.04s), shared frequency range
(~ [30,250] Hz) and abundance within the detector. In this thesis, we enhance the searches of
these astronomical events with three different neural-network-based strategies:

Chapter 6. Simulating transient noise bursts: glitches impact GW searches since they
can mimic and mask GW signals, lowering the confidence of potential candidates and
biasing astrophysical parameter estimation. Because of this, there is a need for better
modelling and inclusion of glitches in large-scale studies. In particular, in this work
we use a DL algorithm to learn the underlying distribution of Blip glitches from O2 of
LIGO, demonstrating that this approach can be extended to other glitch morphologies
and detectors.

Chapter 7. Detection of anomalous transient noise bursts: current approaches to glitch
identification use supervised models to learn their morphology in the main strain with a
fixed set of classes. This type of approach has several limitations: supervised learning
needs a large amount of human intervention to provide class labels; the different class
definitions are not flexible nor exhaustive, as several sub-classes of glitches could exist;
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and the main strain is not a witness of the physical process that generates the glitch. A
challenging but interesting possibility is to encode the relevant information provided by
auxiliary channels that monitor the state of the interferometers utilizing an unsupervised
ML algorithm to find anomalous glitches. In this way, we learn the underlying distribution
of glitches and we uncover unknown glitch morphologies, and overlaps in time between
different glitches and misclassifications.

Chapter 8. Enhancing unmodelled CCSN searches: Although CCSN are among the
most energetic processes in the universe, their GW signal is expected to be extremely
faint. Moreover, due to the complexity and stochasticity of the waveform, generating
CCSN waveforms from Numerical Relativity is challenging and computationally intensive.
Thus, our primary goal in this work is twofold: on one hand, we generate an inexpensive
set of phenomenological waveforms that mimic the monotonic rise of the CCSN GW signal
in the time-frequency representation. On the other hand, we built a CNN to learn this
monotonic rise training and validating on the phenomenological waveforms, and testing
on CCSN GW signals simulated with Numerical Relativity to probe its interpolation
ability.

Chapter 9: Enhancing modelled IMBH searches: Current modelled searches are matched-
filtering based. Templates that closely match the unknown data generate a trigger. Under
the assumption that IMBH signals and glitches have triggered different templates over
time, we exploit this information to distinguish them with DL. In this way, DL provides
a complementary statistic to enhance the current searches of IMBH.
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Simulating Transient Noise Bursts

This chapter is based on work presented in Ref. [219] and its companion, Ref. [?70], where I
led part of the pre-processing of the data and the construction of the model. T also led the post-
processing, performance evaluation, and writing of both manuscripts, as well as the subsequent
tests for review in LIGO-Virgo-KAGRA collaboration.

6.1 Introduction

While current GW search techniques for transient signals (< 1 minute) have been extremely
successful, their sensitivity is still limited by transient glitches (see Section 2.4.3). Despite
considerable efforts to mitigate the impact of glitches on GW searches [, ()], they remain one
of the major limiting factors in the detection and parameter estimation of transient GW signals.
Moreover, glitches also bias ML applications in the field of GW, as their true population in
real data is unknown. This necessitates better modelling and inclusion of glitches in large-scale
studies, such as stress-testing pipelines.

In this chapter, we address this need by learning the underlying distribution of glitches
using ML, specifically employing a generative ML method called generative adversarial networks
(GAN) [251]. Additionally, we provide several examples of applications and make our findings
accessible to the broader scientific community through our Python package, gengli.

6.2 Data

6.2.1 Identification and classification

Due to the challenges posed by glitches, such as reducing the amount of analyzable data, biasing
astrophysical detection, affecting parameter estimation, and even mimicking GW signals (see
Section 2.4.3 for an overview), it is essential to develop robust techniques to identify and
characterize these noise sources for their possible elimination.

In previous LIGO and Virgo science runs, this classification was performed by visual in-
spection, which soon proved to be slow and inefficient []. During O2 run, the detection rate
of glitches was ~ 1 min~!; so due to the overwhelming amount of glitches present in data,
identifying them by hand was unfeasible. A promising option is to construct ML algorithms to

identify and classify glitches [277, (1) 252]. However, another challenge arises since a pre-labeled
data set is necessary to train such algorithms.
With this goal in mind, Zevin et al. [(7] developed pioneer work to classify transient noise,

called Gravity Spy. In this work, both problems are addressed: volunteers provide large
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labelled data sets to train the ML algorithms through Zooniverse infrastructure, while ML
algorithms learn to classify the rest of the glitches correctly, providing feedback to participants.
In practice, a glitch time series that we wish to classify is fed to the algorithm that generates the
Q-transform of its input (see [(7] for details). Then, Gravity Spy classifier assigns a class and
a confidence value cgg to the Q-transform of the glitch, where cgg represents the confidence of
the label assigned. Gravity Spy uses a multi-class classification, and it differentiates between
23 glitch classes and the absence of glitch inside the Q-scan, known as No__ Glitch class, in O2
[65]. This type of approach has some limitations that have been briefly discussed in Section
2.4.3.

6.2.2 Blip glitches

This work focuses on Blip
glitches, introduced in Sec-
tion 2.4.3, due to their e

abundance during O2 run o
and their simple morphol- » 2
ogy.  Blip glitches hin- |

der both the unmodelled * L
Burst and modelled CBC ™ '
searches [77, 7], with par- = R
ticular emphasis in com- % %
pact binaries with large to- © ©
tal mass, highly asymmet- 0

025 0125 00 0125 025 0.25 . 00 0125
i ime (s)

F25

-20

o

ric component masses, and Time (s)
spins anti-aligned with the

orbital angular momen- FIGURE 6-1: Time-frequency reperesentation of a Blip glitch

tum. For illustration, in  pppeyeq from Gravity Spy [0)] (left) and a GW signal with

Fig. 6-1, we see the sim- total mass 106.61 133 M, (right).
ilarities between a Blip an

IMBH in O2 noise. More-
over, since there is no clear correlation to the auxiliary channels, they cannot be removed from
astrophysical searches yet.

6.2.3 Pre-processing
TABLE 6.1: Size of the Blip set for each

The construction of our data set strongly relies on detector in the different phases of the
the confidence provided by Gravity Spy. Thus, pre-processing: selection, reconstruction
to create a high confidence data set, we select and evaluation.
the Blip glitches from LIGO-Livingston (L1) and
LIGO-Hanford (H1) detectors of O2! run that have Pre-processing Livingston Hanford
a confidence cig > 0.9. -

Glitches are surrounded by stationary and un- CN%:;H; glgps 5540 6768
correlated noise, which will hinder the learning of -
our ML method. Therefore, it is necessary to BW output 5461 5612
extract glitches from the stream data maintain-  Num. Blips

ing their original morphology. For this aim, we %> 0.9 3654 3407
employ BayesLine [!(] to whiten the glitches lo- N Bl
cally and BayesWave (BW) [137] to extract the i s 32901 2587

2 .3
Cas> Cas = 0.9

!Data from GWOSC https://www.gw-openscience.org/data/
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glitches from the uncorrelated noise. BW uses non-

orthogonal continuous Morlet-Gabot wavelets (see

Section 3.3.2) to fit and reconstruct the input signal, but the selection of the set of Morlet-
Gabot wavelets is made with a trans-dimensional Reversible Jump MCMC [27 ] that acquires
a trade-off between the complexity of the model and the quality of the fit. The input signal is
represented as a set of wavelets whose reconstruction is their addition.

In our particular framework, the input provided to BW is a time series containing the Blip
glitch that is 2.0s long. However, to avoid training the CT-GAN algorithm in irrelevant data
and speed up the training phase, the samples of the final training set have 938 data points
sampled at 4096 Hz, constituting 0.23 s of data.

Since the reconstruction is not perfect, we lose around 2% and 18% of the data for L1
and H1, respectively (see Table 6.1). To assess the quality of the reconstructions, we inject
them in real whitened noise and evaluate it with Gravity Spy classifier, selecting Blips with
a ctg > 0.9 to generate high-quality input data. After this heavy pre-processing, the training
data set is composed of around 66% and 50% of the initial data for L1 and H1, respectively.

Moreover, as mentioned in Section
2.4.3, Blips can be found in the fre-
quency band [30, 250] Hz, but BW might
introduce certain high-frequency contri-
butions that will hinder the learning of
our ML algorithm. For illustration, in
Fig. 6-2 (left) we plot BW reconstruc-
tion (grey), where we coloured the char-
acteristic Blip peak (blue) and the high-
frequency contribution (light blue). To
eliminate the high-frequency contribu-
tion, we initially set an empirical thresh-
old to remove power excess in the sur-
roundings of the peak. Nonetheless,
some high-frequency contributions over-
lap with the Blip and cannot be re-
moved with this method. Thus, to min-
imize this contribution and generate a
smoother input to enhance the learn-
ing of our model, we employ regularized
Rudin-Osher-Fatemi (rROF) proposed in
255

This algorithm solves the denoising
problem, s = g + n, where g is the
smooth reconstruction of glitch and n is
the noise, as a variational problem. The
solution ¢ is computed as follows:

i = argmin{R() + 5 7o)} (0.1

where R(g) is the regularization term
that constrains the data, which refers
to the quality of the smooth reconstruc-
tion g. F(g) is the fidelity term, which
measures the L2-distance between the g
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FIGURE 6-2: (Top left) Blip glitch reconstructed
with BW (grey), where we colour the characteristic
Blip peak (blue) and the undesired high-frequency
contribution (light blue). (Top right) Blip glitch
reconstructed with BW (grey) and denoised with
A = 0.5 (dashed orange). We colour in green the
denoised characteristic Blip peak. (Bottom)
Resulting ASD for the reconstructed Blip with BW
(grey) and its denoised version with A = 0.5
(dashed orange). We also show the ASD of the
characteristic peak with (blue) and without
denoising (green), as well as the high-frequency
contribution (light blue).
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glitch and the observed signal s. A regularises and controls the relative weight of both terms
in the equation. It is important to note that this parameter needs to be tuned manually to
achieve the desired level of denoising.

To assess the quality of the denoised Blip glitches, we use the Gravity Spy classifier for
different \ parameters again, and we found A = 0.5 to be a trade-off between preserving the
structure of the glitch and removing the non-smooth high-frequency contribution. In Fig. 6-2
(right), we plot the BW reconstruction denoised with rROF (dashed orange), and the denoised
characteristic Blip (green). In Fig. 6-2 (bottom), we show the ASD of the BW reconstruction
with and without denoising (grey and dashed orange), as well as the characteristic peak with
and without denoising (blue and green) and the original high-frequency contribution (light
blue). We can observe that we maintain the structure of the characteristic peak by damping
the power of the high-frequency contribution.

To verify that we can preserve the structure of Blips according to the current state-of-the-art,
we compare in Fig. 6-3 the Gravity Spy confidence of reconstructed Blips cZg (blue), against
denoised reconstructed Blips c2,g (orange) from L1. As we can observe, both distributions are
similar since they have similar means pgg and standard deviations ogg. Finally, we select the
Blip glitches with cZg > 0.9 and ¢,g > 0.9, to ensure the high quality of the input data of the
algorithm. Due to this heavy post-processing only ~ 50% and ~ 60% of the initial data from
H1 and L1 are preserved, respectively

2000 A
1000 1
500 ;

200
100 ;
50 1

B BW: jgs = 0.892, 0gs = 0.131
E=0 BW + rROF: ugs = 0.874, 0gs = 0.151

Instances

20 1
10
5_

2_

02 04 06 08 10
Confidence of Gravity Spy

FIGURE 6-3: Comparison between the reconstructed and the denoised population of Blip
glitches for L1. For the reconstructed set ctg = 0.892 4 0.003 and for the denoised set
g = 0.874 4+ 0.004 at 95% confidence level.

6.3 Methodology

ML methods are not only limited to pattern recognition tasks. GAN can learn the underlying
distribution of a population to produce artificial examples from Gaussian noise. With this idea
in mind, the authors in [270] employed a conditional GAN to burst signals, allowing them to
generate multiple classes of signals with the same algorithm and to interpolate through different
classes, creating mixed signals. The powerful generation capability of GAN suggests that they
can be applied to generate artificial glitches, as demonstrated in this work Indeed, this is an
interesting avenue, as it is fundamental to properly understand the background of glitches to
assess the performance of GW search algorithms with minimal biases. Hence, this work aims
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to learn the underlying distributions of glitches with GANs. In the following subsection, we
provide more details about GAN methodology and the architecture of our network.

6.3.1 Generative adversarial networks

GAN [201] are a class of generative algorithms in which two neural networks, typically convolu-
tional neural networks (CNNs), compete with each other to achieve realistic image generation.
One network, known as the generator, is responsible for generating new images from random
noise, while the other, known as the discriminator, tries to discriminate the generated images
from the real training data. The generator progressively learns which features of the real images
should be mimicked to fool the discriminator and save them into the latent space, which can
be understood as a compressed representation of the input data learnt by the generator (see
discussion in Section 4.2.2).

At the end of the training, new im-
ages are drawn by randomly taking a la-
tent space vector and passing it to the
generator, which has learned to translate Training Data
it into a realistic image. Fig. 6-4 shows ‘
an overview of the original architecture of

Discriminator |
GAN for generating 2-dimensional data,

but all the forthcoming developments Generator / I @E _[Rea'

still hold for 1-dimensional data. This Random False
early approach has been shown to work @

well under some hyperparameter config-
urations [77¢]. However, early GAN ar-
chitecture [271] suffers from the signifi-
cant problems of vanishing gradients (see
Section 4.2.1) and meaningless loss func-  FIGURE 6-4: Typical GAN architecture retrieved

L )V Generated Data

tion [259] where the minimization of the from [257].
loss does not translate into improved per-
formance.
Wasserstein GANs [200] (WGAN) were developed to address these issues by making use of
the Earth’s mover distance estimator?, or Wasserstein-1 distance (W7) [201], which computes

the similarities between two distributions. Mathematically, we can define the Wasserstein
distance between the real distribution P, and the generated distribution P; as

Wi(Py, P5) = ,Yeni(%f’Pi) Eyalllz —yll] (6.2)
where inf refers to the infimum, a set’s greatest lower bound, and II(P,, P;) is the set of all
joint distributions y(x,y). E g~y ||z — yl|] is the expected value of the distance between z, a
sample from the real distribution P,, and y, a sample from the generated distribution P;.

W1 is evaluated through the discriminator as the training progresses and increases mono-
tonically while never saturating, providing a meaningful loss metric even for two disjoint dis-
tributions. Since W; is continuous and differentiable, it yields reliable gradients, allowing us
to train the discriminator till optimality to obtain high-quality generations. This change of
paradigm led Arjovsky et al. [200] to reformulate the optimization problem as

Oopt = arg mein Wh(P,, Pz), (6.3)

2Earth Mover’s Distance metaphorically refers to the idea of shifting piles of “dirt” from one distribution to
another, minimizing the total “cost” required for the transformation.
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where W is evaluated between the real distribution P, and generated distribution P;. Eq. 6.3

can be written as
0, = arg min max  L(¢,0 6.4
Pt & 0 ¢:||D(z,9)|L<1 ( ) ( )

with the discriminator loss
L(,0) = —Eqp, |D(x, )| + Esup, | D(#,6)|,  where & = G(z,0) (6.5)

where z is a batch of the generator’s la- tent vector. D and G refer to the discriminator and
the generator with parameters ¢ and 6, respectively. E,.p, indicates that the expression has
been averaged over a batch of real samples z, while F;.p, has been averaged over a batch of
generated samples . The new condition over ¢ in expression Eq. 6.4 imposes a constraint
on the discriminator D, which must be 1-Lipschitz continuous [200]. This property limits the
values of the discriminator’s D gradient, resulting in a less aggressive discriminator. However, it
avoids null gradients that could destabilize the learning process of the generator G. By ensuring
the discriminator remains 1-Lipschitz continuous, we achieve a balance where the discriminator
is effective but does not impede the generator’s training through excessively flat gradients.

In practice, this can be achieved in two ways: clipping the weights of the discriminator
beyond a specific value ¢ [200], or adding a regularization term to the discriminator loss, defined
in Eq. 6.5, known as gradient penalty (GP). While the first solution is a poor way to enforce
the Lipschitz condition, the second solution has been widely accepted. The mathematical
formulation of GP is as follows:

Lit = L($,0) + \GP(¢) with GP(¢) = Esp,

(V.09 ~1)°],  (66)

where \ is known as the regularization parameter, ||-||o stands to the L?-norm and # is evaluated
following
T=xt+x(l—-1) (6.7)

with ¢ uniformly sampled ~ [0, 1]. This method has shown impressive applications such as [207],
but it is not restricted to WGANs [20, 20]. Nonetheless, unlike weight clipping, GP cannot
enforce the Lipschitz condition everywhere, particularly at the beginning of the training. This
can prevent the generator from converging to the optimal solution. To overcome this obstacle,
Wei et al. [207] have proposed a second penalization term to add to the loss from Eq. 6.5, called
consistency term (CT). They applied their new constraint to two perturbed versions of the real
samples z, introducing dropout layers into the discriminator architecture. This ultimately leads
to two different estimates noted D(z’,¢) and D(z”,¢). CT is defined as follows

CT(¢) = Eyp,|maz (0, d(D(z', ¢), D(", )

(6.8)
+0.1d(D_(2',¢),D_(z",¢)) — M')] ,

where d(.,.) is the L? metric, D (., $) stands for the second-to-last layer output of the dis-
criminator, and M’ is a constant value. Wei et al. found that controlling the second-to-last
layer output helps improve the performance of the WGANs. Thus, the final discriminator loss
is then [207]:

Lot = L(¢,0) + M1 GP(¢) + My CT (), (6.9)
with Ay being the consistency parameter. This type of WGAN was called CT-GAN, which is
the one that we employ in this work. Note that while the work of Weit et al. [207] was for

2-dimensional inputs, we have adapted the network to 1-dimensional inputs, as we use time
series to achieve a flexible modelling.
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6.3.2 Network architecture

The architecture of the networks has been inspired by the work presented in [27%] but nearest-
neighbour (NN) sampling layers have been preferred over strided convolution layers in the
generator structure. The convolution parameters were chosen to be fixed through the generator
and discriminator layers with kernel £ = 5, no padding and stride s = 1. Leaky ReLU(-, a« = 0.2)
has been chosen as the activation layer for both discriminator and generator, except for the
output layer of the generator, which uses a tanh(-) activation, allowing values ~ [—1,1], (see
Section 4.2.1 for details).

In the generator structure (see Fig. 6-5), we also employ a dilation factor of 2, 4, 6, 8 and
16 for successive layers to enlarge its receptive field and, in turn, its expressivity power, at the
exact computational cost [!02]. Batch normalization [/07] has been added to the generator
architecture to make it both stable and faster to learn. The discriminator structure (see Fig.
6-6) is composed of convolutions on which spectral normalization [200] is employed to stabilize
the training. Dropout layers are added, excluding the first and last layers, which is required
by the consistency term (Eq. 6.8). A brief overview is provided in Section 4.2.2 and references
therein.

Latent Space 1

NN upsampling + 1024

Conv. + BatchNorm
+ LeakyReLU

64 1
NN
"’ Conv. Tanh
sampling

Generated Blip

FIGURE 6-5: Generator structure including NN upsampling, convolution layers and
LeakyReL U activation.

128

Conv. + Dropout

Conv. LeakyReLU + LeakyReLU

Input
Blip

FIGURE 6-6: Discriminator architecture showing strided convolutions, dropout layers and
LeakyReL U activations.
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6.3.3 CT-GAN training procedure

During the training of the CT-
GAN algorithm, both the gener-

ator and the discriminator need 0.10 - : :
to be updated at similar rates 0.05- — Discriminator
to acquire stability and guaran- 2 000 " , Generator
tee convergence. The task of S ™ V\V VWJ\M . ok

the discriminator is more diffi- =0.057 17/

cult since the generated samples -0.10-— - - ; ; .
that the discriminator intends to 0.06 ° 100 200 300 490 500
classify can be anywhere in the S | — Consistency term
data space, and change for each E 0.041 M\ | —— Gradient penalty |
new iteration [207]. Hence, to 5 0.024 YA wvdwuwwuww

assure the stability of both net- o M

works, we update the discrim- 0.00 At et ettt s thaadhnnts ot
. . 200 300 400 500
inator 5 times per update of Epochs

the generator, for each epoch.
We employ RMSProp optimizer
[20%] with a learning rate = 10~* FIGURE 6-7: Graph representing the discriminator loss
for both discriminator and gen-  (blue), generator loss (pink), CT (green) and GP (orange)
erator, and we train the CT- penalisation as a function of the epochs.
GAN for 500 epochs, where we
again define an epoch as the number of times the network has passed through the whole dataset.
A GPU TITAN V with a memory of 96 Gb allowed us to train our model in =~ 7.75 h.

To monitor the behaviour of
the CT-GAN during the train-
ing phase, we represent the gen-

erator and the discriminator loss 07 ] S TBTim;es
as a function of the epochs in 0.6- = Fa,fe blips |
Fig. 6-7. We can observe that '
both networks stabilize around @ 05

epoch 100 and continue to os- é 041

cillate around wvalues close to E

zero until the training is com-  § .

plete. After several experi- &« . -

ments, we concluded that while

CT regularised the generator, 0.17 n

dropout regularised the discrim- 0.0 iy

inator and GP balanced both. ' 100 1000

This stability can also be ob- Peak Frequency (Hz)
served in the behaviour of the

CT and GP penalizations in Fig.  piqupp 6-8: (Top) Peak frequency for Tomte (pink) and
0-7, where both terms tepsi to Blip (green) from L1 retrieved from Gravity Spy/i’],
zero as the network stabilizes. 00 cyred with Omicron spectrograms [77]. In blue we plot

The values that helped the CT- the peak frequency of the artificial Blips from L1.
GAN to converge were CT = 5

and GP = 5, with a dropout rate

of 0.6. These values were obtained after several experiments, but in future works, it would be
interesting to employ Optuna [209], which is a hyperparameter optimization framework used
to automate hyperparameter searches.
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6.4 Results

6.4.1 Blip generation

After the training of the CT-GAN, and given a 100-dimensional vector drawn from a normally
distributed latent space (as is common in other GAN-related works), we can generate 10® Blips
from the input distribution of H1 and L1 in = 5s for both interferometers. It is relevant to
note that each Blip has a length ~ 0.23s with an amplitude € [—1, 1], whitened and sampled
at 4096 Hz. In Fig. 6-8, we compare the peak frequencies of real Tomte and Blip glitches from
L1 against our artificial population, where we can observe that the bulk of the distribution
of fake Blips is aligned with the real Blip population. As an example, we present in Fig. 6-9
different artificial Blips from L1 in the time domain, and for visualization, we also compute their
time-frequency representation as in [00]. In the time-frequency representation, we can see that
CT-GAN has been able to capture the distinct symmetric ‘teardrop’ of Blips in the expected
frequency range [30,250] Hz. Furthermore, we can observe that in the time representation,
we can reproduce different morphologies of the characteristic central peak. Even if by visual
inspection it would seem that the artificial generations are closely related to the real Blips from
02, it is necessary to perform a statistical test to assess the performance of CT-GAN.
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FIGURE 6-9: (Top row) Generated Blip of L1 plotted as a function of time. In red, we
represent the rescaled whitened Blip and in blue we plot its injection, both in the time domain.
(Bottom row) We show the time-frequency representation of the generated injected glitches.

6.4.2 Assessing performance

We employ four different methods to assess the quality of the population. On the one hand,
we employ their Q-scan representation to evaluate our artificial population with the current
state-of-the-art. On the other hand, we analyze their morphology in the time domain to take
into account the phase information:

« Gravity Spy classifier: To assess performance using an independent ML classifier,
we can inject the generated glitches in real whitened noise from O2 (see Fig. 6-9) and
evaluate them with Gravity Spy, which will return a confidence value cggs and a class
label. We use the same noise strain for each generated glitch to provide the classifier with
a fair comparison. Since the generated Blip has an amplitude € [—1, 1], we can re-scale
it according to a desired optimal signal-to-noise ratio (pe). For this aim, we relate poy
to the scaling parameter o by modifying the Wiener scalar product from Eq 3.9 as
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fmaac

_ oy [ 1a(f)]
fmin N 4/mm Sn(f)’df (6.10)

where g(f) represents the Fourier transform of artificial Blip g(t), and S, is the power
spectral density (PSD) of the fixed real whitened noise. With this expression we can scale
the artificial glitch to achieve the given piarger USINg: ¢ = prargetg/p. One of the main
drawbacks of this method is that it is computationally intensive (= 90 s/glitch) because
it is necessary to calculate the time frequency of the input time series for different time
windows.

p=(glg9)

« Wasserstein distance (W;): As explained in Section 6.3.1, the Wasserstein distance is
continuous and never saturating, allowing us to keep track of the quality of the generated
samples during the training. For further mathematical details, a formal definition can
be found in [200]. This metric is then an adequate tool to compare real and generated
glitches. This method is fast and efficient since the computation is performed in the time
domain (& 0.0026s/glitch).

« Match function (My): To compute the similarity between two signals, we can also use
the match function, which returns the match between both signals [270]. As we have
seen in Eq. 3.18, the match can be defined as the inner product between two normalized
signals @ and b maximized over time (¢) and phase (¢) [107],

My(a,b) := max (a, b). (6.11)
Since the signals are noise-free, we do not employ any PSD for normalization. This

calculation is performed in the frequency domain, and it is also fast and efficient (=~
0.0032s/glitch).

« Normalized cross-covariance (k(X,Y)): Assuming two random processes X and Y,
their cross-covariance between time ¢; and ¢ is defined as

Kxy(t,t2) = E[(Xy, — p(X0))) Ve, = p(Y2y))] (6.12)

To obtain the normalized cross-covariance coefficient, we divide the cross-covariance over
the standard deviation of each random process. The maximum value of this magnitude
is the metric employed to measure the similarity between two signals, as defined below
Kxy(ty,t
Kx(hstz) 2)) (6.13)

k = max (
0x0y

This calculation, which is also in the time domain, is most efficient (=~ 0.0011s/glitch).

Gravity Spy

For this procedure, we inject each generated Blip in real whitened detector noise and re-scale it
according to Eq. 6.10 to fix pyy. We can compute the confidence of Gravity Spy as a function
of the optimal SNR p,,; € [0.1,18.2]. This process is conducted on 10 Blip glitches of each
detector population.

In Fig. 6-10, we plot the classification labels, with maximum classification probability, for
different p,,; of H1 population, while we present the results of L1 in Appendix A.4. We can
observe that the dominant class is Blip and that the number of glitches in this class increments
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Gravity Spy classes

B pop: = 18.457
- popt= 7.572
2 - popt= 0.947
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FIGURE 6-10: Histogram of predicted Gravity Spy classes for 10® generated Blips from H]I.

by increasing pop, in opposition to other classes. Interestingly, when p,,; = 0.947, meaning
that the artificial Blip is not visible by eye in the time-frequency representation, around 500
artificial glitches are labelled as Blip.

One could think that this type of behaviour would be expected since CNNs can “see”
patterns that are invisible to the human eye, but the classifier can recognize glitches up to a
certain threshold (Omicron SNR > 7.5 [7]). Another reason might be that the training set of
Gravity Spy is imbalanced, so the classifier is biased towards the larger classes such as Blip.
Hence, it seems that Gravity Spy has a certain degree of miss-classification, so we employ
other metrics to test the performance of our CT-GAN.

Wasserstein distance, match function and normalised cross-covariance at testing

To measure the performance of the network, we use some alternative methods, namely Wasser-
stein distance (W;), match function (M), and normalized cross-covariance (k). These metrics
are employed to calculate the similarity between two different artificial Blips by and by, but we
can also use them to calculate the similarity between a single artificial Blip br and the real
population (Bg) or the artificial population (Bpg) from each detector. Such procedure is as
follows:

1. We use a certain similarity distance m to measure the distance between Blip b; and a
population B.

2. For each Blip b; € B we compute m;;(b;,b;), which yields a set of measurements 1/;.

3. We obtain the mean and the standard error of the previous set as p(M;) £ e(M;) at 99.7%
confidence interval.

The latter is the measure of similarity between the population B and b;. Note that the numerical
meaning of Wasserstein distance, match function, and normalized cross-covariance are different.
For the previous example,

o If b; is a reliable generation then Wy (B, b;) ~ 0, while M;(B,b;) ~ 1 and k(B,b;) ~ 1.

o If b; is an anomalous generation then W1 (B, b;) > 0, while M¢(B,b;) < 1 and k(B,b;) < 1.
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Since we are dealing with real data, the real population Br contains not only Blips but also
certain misclassifications. If the CT-GAN had learned the underlying distribution of the data,
we would expect that the real population Br and the artificial population Br had a similar
distribution, where reliable generations would be located in the bulk of the distribution. In
contrast, anomalous Blips would be located in the tails. Hence, under this assumption, we
would expect that, given a metric m, the similarity distance between the real and artificial
distribution m(Bg, Br), should be linearly related to the similarity distance of the artificial
distribution against itself, m(Bg, Br).

In Fig. 6-11, we plot the joint and marginal

distribution of both comparisons for different simi- TABLE 6.2: Pearson coefficient for

larity distances and show the results from the least-
squares estimate for each detector. Furthermore, in
Table 6.2 we present the Pearson coefficient result-
ing from the least-squares estimate, which repre-
sents the linear correlation between both variables
[271].

We observe that the resulting slopes (Fig. 6-11)
and the Pearson coefficients (Table 6.2) for each
metric and each detector are close to 1.0, mean-

different metrics and detectors.

Livingston Hanford

Wasserstein

0.993 0.999
distance
Match function 0.999 0.999
Normalised 0.996 0.999

cross-covariance

ing that both variables have a very strong linear
relationship and compatibility. Thus, all similarity
distances indicate that the bulk of the population is constituted by reliable blips, with the
presence of some anomalous generations that can be identified by fixing an empirical threshold.

Therefore, since the generated Blips represent the artificial and real populations, we conclude
that the CT-GAN has learned the underlying distribution of Blips from L1 and HI.

6.4.3 Assessing poor generations

When dealing with real data, one must bear in mind that certain anomalies might be present
in the data. In our particular context, our data sets might contain glitches that have a dis-
tinct morphology from the mean of the population. Such differences might not be visible in
a time-frequency representation, so Gravity Spy might introduce certain miss-classifications
that contaminate the input dataset. Since CT-GAN can learn the underlying distribution,
it can also generate non-Blip glitches that are in the tails of the distribution. For certain
studies, the presence of anomalies might be counterproductive, so differentiating reliable from
anomalous generations is crucial. For this aim, we propose several metrics to identify these
miss-generations.

To use Gravity Spy classifier, we inject the generated Blips in real whitened noise with
a fixed optimal SNR p,,» = 18.46, according to Eq. 6.10. From the classification, we select
the generated Blips that belong to the three dominant classes: Blip, Repeating Blips, and
No_ Glitch.

In Fig. 6-12 we plot the joint and marginal distribution as probability densities of Gravity
Spy confidence against the alternative metrics for H1 (see Appendix A.4 for details about L1).
We can observe that according to Gravity Spy Blip, Repeating Blips, and No_ Glitch seem
to belong to distinct probability densities. However, according to the alternative metrics, the
probability densities remain centred according to a certain value for different classes. Further-
more, there seems to be no correlation between Gravity Spy confidence and other metrics in
the joint distribution, so to further understand our results, we proceed to inspect the results
by selecting examples,
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FIGURE 6-11: (Top) We represent the joint and marginal distributions of W1(Bg, Br) and
W1(Br, Br) in logarithmic scale for L1 (blue) and H1 (orange) and their best fit. (Bottom)
We represent the joint and marginal distributions of the pairs [M;(Bgr, Br), M¢(Bp, Br)| and
[k(Bgr, Br), k(Br, Br)| for L1 (blue and pink) and H1 (orange and green), as well as their
best fit. The coloured regions in the marginal distributions represent the confidence interval at
6 standard deviations.

87



Chapter 6. Simulating Transient Noise Bursts 6.4. Results

> 1 i ‘E i l A
3 ! ! — A £02- [ ] i I B
8% | ' 83 i :
A c oz || A I A e
501 — b = D K . i
© | o d
L/ 1N : |
£ 90 S & 0.0- ——
‘ A
0.2 . I - o é
-©7 o Y5
S
° . * 4 a s
o |a % Hra o | 2.:53.. oa & ==
ol Lt R or{ AL ENNRR |
. M :".‘ 4 as S, At
o °a °a .4.’ '.".0 ‘.“A:“
- s A 0 ° a La < 0.6 2T e x 4l a & &%
= o © o s f a = ...‘ < Y Al a Lt
= & ® a, a = Py A
< 0.04 1 -t E Laat * ol 4 R
0.5 v - @ J
° asd 4
L] ° L] a A
A. o ° N oA
0.4 LI Tl
e — -. ) P 2y | | k== S S
LY
0.3 + = 1
00 02 04 06 08 10 00 01 02 00 02 04 06 08 10 00 01 02
Confidence cgs Probability density Confidence cgs Probability density
s Blip » Repeating_Blips o No_Glitch s Blip s Repeating_Blips o No_Glitch
(A) Wasserstein distance (W7) (B) Match function (Mjy)
2 A 1] a
$ 02 H oy I OO B
T 1
z oA | T ¢
301 e e s IR D
©
Q
: “
% 0.0
0.8 1 el g
0.7 /ij
0.6 1
S
3
0.51
0.4 1
0.3
Qo
0.0 0.2 0.4 0.6 0.I8 1.0 0.0 0.1 0.2
Confidence cgs Probability density

s Blip » Repeating_Blips o No_Glitch

(¢) Match function (Mjy)

FIGURE 6-12: Joint and marginal distribution of Gravity Spy confidence cgs at popr = 18.46
against different metrics for different glitch classes for H1: Blip, Repeating Blips and
No_ Glitch. We mark in the marginal distributions selected generated glitches A (solid blue),
B (dotted pink), C (dashed green) and D (dash-dotted blue).
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o Glitch A: This glitch is labeled as a Blip with a high confidence according to Gravity
Spy (cgs =~ 0.99). Furthermore, the chosen metric has situated this glitch in the bulk of
the distribution, meaning that it is a reliable Blip generation.

o Glitch B: This glitch is labeled as a Repeating Blips with a confidence cgg =~ 0.72.
However, according to our metrics, it is a reliable generation.

o Glitch C: This glitch is labeled as a No_ Glitch with a confidence cgs =~ 0.59. However,
according to our metrics, it is also a reliable generation.

e Glitch D: This glitch is labeled as a Blip with a high confidence according to Gravity
Spy (cgs =~ 0.89). Nonetheless, the chosen metric has situated this glitch in the tail of
the distribution, meaning that it is an anomalous Blip generation.

In Fig. 6-12, we can observe that according to the alternative metrics, glitches A, B and C
are situated around the centre of the probability density, while glitch D is located in the tails.
Moreover, for further visualization in Fig. 6-13, we present the selected in the time domain, and
we also plot their time-frequency representations. We can observe that while glitches A, B, and
C seem to have a similar shape and magnitude, they differ from anomalous glitch D. Moreover,
with these metrics, we are able to identify anomalous generations that deceive Gravity Spy

classifier, and their exclusion from the generated data set can be performed by imposing a
threshold.
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FIGURE 6-13: Time series representation (top row) and Q-scan representation of selected
glitches from H1

6.4.4 Limitations

The main shortcoming that we encountered when training the CT-GAN was the limited amount
of data preserved after the heavy pre-processing. CT-GAN needs a large number of samples to
learn the underlying distribution, which might be a limitation when extending our methodology
to other classes of glitches that are less common in the LIGO-Virgo streams. Nonetheless, some
researchers are developing techniques to tackle this limitation that we will explore in future
works [272].
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Another relevant shortcoming of this study is the fact that the quality of our input data set
strongly relies on BW reconstruction and Gravity Spy classification. In our particular case,
Blip glitches have a simple morphology, but some undesired contributions were introduced by
BW and some miss-classifications were introduced by Gravity Spy. Other glitches might be
even harder to extract and/or classify with the current state-of-the-art due to their complex
form, which in turn will hinder the performance of our CT-GAN. Moreover, longer and more
complex glitches will need better architectures to be able to learn the underlying distribution
of the data.

6.4.5 Applications

In the following, we provide examples of possible applications that can be explored in future
works:

A. Glitch population statistics: Learning the distributions of glitches allows us to understand
their populations further and compare their different characteristics. In this way, we can
develop statistics to analyze their morphologies, populations, and production rates in
more detail as was discussed in [27]. For illustration in Fig. 6-14, employing generated
Blips, we have reduced the dimensionality of the artificial population of L1 with Principal
Component Analysis (PCA) [271]. By visual inspection, we can see three main clusters
that we classify with Gaussian Mixture ® [270]. Each point represents a single fake Blip
in PCA space coloured according to their cluster label.

6 4 *
*
4 1 *
X,
o
2 7 f
o~ * o
< * *
@] %*
o 0 . *
*
*
o " * N
—2 1 Clusters * R
0 *
1 * % ¥
-4 , *
6 -4 -2 0 2 4 6 8
PCA 1l

FIGURE 6-14: PCA representation of fake Blip population of H1, clustered with Gaussian
Mixture. The 5% most anomalous Blips according to the distance W1(Bpg, Br) are marked
with a star.

Furthermore, we have marked with a star 5% of the most anomalous Blips present in the
population, according to their distance Wi (Bp, Br). It would be interesting to investi-
gate the differences between the clusters in these distributions in future work. Another
possibility would be to link the features of the Blip glitches with their representation in
the latent space of the CT-GAN, as it was proposed in [277].

B. Glitch template banks: It is well-known that Blip glitches have a similar morphology to
Intermediate-Mass Black Hole (IMBH), which hinders the detection of such events. With

3For both algorithms, we employ scikit-learn implementation [27]
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our generator, we could create glitch templates to use matched-filtering techniques in
unknown signals to compute a ranking statistic and weigh it in the likelihood function
of detection pipelines. In this way, we would provide another metric to distinguish Blip
glitches from IMBH.
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FIGURE 6-15: The singular values (o) are obtained from a set of 10® whitened glitches using
SVD [75], normalized by the mazimum singular values (0,q.). The glitches are generated
from CT-GAN. The spectrum of singular values is seen to fall sharply, implying only a few
singular values (e.g., ¢ = 10), and corresponding basis vectors are sufficient to represent the
glitches. See Fig. 6-16 in which the relative reconstruction error for these glitches has been

shown based on £ = 1,5,10. For performing SVD based matched filtering for glitch templates,

we followed the framework presented in [1°7].

We could use the standard matched-filter method [17] to compute the SNR time series for
a specific glitch template. However, performing a matched filtering operation for a large
glitch bank will be a huge task as computational time will increase drastically. We need
to handle the scalability issue of the computational time of performing matched filtering
with the increased number of glitch templates as we would expect to manage many glitch
templates.

We can resolve this scalability issue if we adapt the matched filtering framework used in
the GstLAL [112] | pipeline for the searches of GW signals from CBC sources. We
observed that a few numbers of basis obtained using Singular Value Decomposition (SVD)
[278, , , | can also represent the glitch templates and that basis can be used
to get the matched filter output quickly. The computational time complexity of matched
filtering can be reduced as the required number of basis vectors is much less than the
number of glitch templates.

To show the efficacy of this framework, we generated 10% glitches for the L1 detector
using our proposed CT-GAN-based glitch generator. We used 1 second data, sampled at
4096 Hz for this study. The data contains an injected glitch and coloured Gaussian noise
with Advanced LIGO Zero Detuned High Power noise power spectral density [2©!]. Since
the generated glitches are around 0.23s (938 data points) sampled at 4096 Hz, we padded
them with zero and made them 1 s long to generate the noisy data. The amplitudes of the
injected glitch were adjusted for a target SNR of 10. Further, we used Zero Detuned High
Power to whiten the data and the glitch templates. We computed the SNR time-series
for each glitch template based on (a) standard matched-filter method [!7] redefining Eq.
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3.9 as oy
(s|g) =4Re /OOOWdf, (6.14)

Option (b) is the SVD based matched filter [1 2] in which a set of few top basis vectors
have been computed from glitch-matrix first. Since each glitch template has 4096 data
points, therefore the dimension of the glitch matrix is of size 10® x 4096 after stacking
all the glitches together. After that, the basis vectors are matched-filtered against data,
and the SNR time-series has been computed by combining coefficients of each glitch and
matched filter output obtained based on basis and data.

For our example, we obtained that 10 top-basis vectors are sufficient to represent those
10? glitches, as it can be observed in Fig. 6-15. It shows that the singular values of a
set of 10® glitches fall steeply, which implies a few top-basis (e.g., 10,20) can be used
to represent those glitches. We have chosen the number of top-basis (¢) = 1,5,10 and
reconstructed the glitches in our analysis. We have computed the reconstruction error for
each glitch as follows:

e =92 =Ballz gy g (6.15)

192

where g, is the reconstructed whitened glitch based on ¢ = 1,5, 10 basis vectors respec-
tively and ||||2 represents Ly norm, and « is the number of total glitch templates. We
also computed the fractional SNR-loss [127] for each glitch templates based on following
definition:

%:M;azm,---,mf’) (6.16)

Pa |Pal
With the increasing number of bases, the relative reconstruction error should be decreased.
To corroborate this statement, in Fig. 6-16, we choose three different cases with varying
¢ =1,5,10. Fig. 6-16 shows the probability density of the relative error €, for £ = 1,5, 10
respectively. The figure shows that the relative error is less for ¢ = 10, whereas the
relative error is high for £ = 1. Similarly, we obtained the fraction SNR loss for all glitch
templates for these three cases. Fig. 6-17 shows the construction of glitch and SNR time-
series based on ¢ = 1,5,10 number of basis respectively. Both plots show that ¢ = 10
is sufficient to reconstruct the whitened glitches and represent the SNR time series. If
we increase the number of bases, the reconstruction errors (%, €a) can be reduced but
matched filtering cost would increase. Hence, we need to choose a minimal set of bases
for which computation cost and also the reconstruction errors are low. We have chosen

[ = 10 as that minimal number for this specific example.

In a follow-up work, we will explore the possibility of the construction of a glitch bank
construction, with a discussion on how to obtain ranking statistics, and signal consistency
tests.

C. Mock data challenges: With our methodology, we can generate glitches in the time domain.
The user could generate as many glitches as necessary, selecting the ones that represent
best the real distribution and injecting them in real detector noise to create a realistic data
challenge. Moreover, since certain anomalies are generated, those can also be selected for
stress-test analysis algorithms.

As a preliminary test, the author in [217] injected some Blip glitches in the O3a data to
evaluate how they will impact the long-duration analysis with a dedicated neural network
called ALBUS. For visualization, we present the output in the right panel of Fig. 6-18.
Since a time resolution is much larger than the glitch duration (i.e., < 0.3 s), the injected

92



Chapter 6. Simulating Transient Noise Bursts 6.4. Results

00 02 04 06 08 10
Eq

FIGURE 6-16: The plot shows the distribution of relative errors for the reconstruction of the
103 whitened glitches generated using CT-GAN. The relative error (e,) is calculated for each
case.
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FIGURE 6-17: This figure shows the histogram based on the fractional SNR loss (%) for a

set of glitches (103). For each glitch template, the SNR time-series were obtained based on (a)
Standard matched-filter scheme and (b) SVD based matched filtering framework presented in
[127] by varying the top-basis numbers as £ = 1,5,10 respectively.
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glitch appears as a vertical line. The structure of the glitch is fully recovered and improves
the detection capability of ALBUS. As suggested in [?70], when learning different classes
of glitches, we could also interpolate between them to generate hybrid classes. This
hybrid dataset could be employed to discover unknown classes of glitches and improve

the efficiency of detection algorithms.
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FIGURE 6-18: Ezxzample of glitch injection. The left image shows the input time-frequency
map while the right panel shows the output of ALBUS. Retrieved from [’17].

D. New glitch detection: Once the network has learned the underlying distribution of the data,
with certain modifications, it can output how likely it is for an unknown signal to belong
to the known distribution. This metric can detect anomalous generations and provide
feedback to classification algorithms. For example, this information Gravity Spy could
re-classify certain anomalies, which could imply the definition of new glitch classes and
their further characterization.

E. Improving glitch classification: One of the main challenges of working with real data is
dealing with imbalanced data sets. With our methodology, once more classes are learned,
we could generate balanced data sets to improve the accuracy of classification algorithms.

6.4.6 gengli package

To make this method available for a broad audience, the trained CT-GAN was made available
within the package gengli?, which is a flexible and user-friendly tool for glitch generation.
With this tool, it is straightforward to use the generator network to produce random glitches
starting from random samples from its latent space. The output of the generator, namely a
raw glitch, is a whitened glitch evaluated on a fixed length time grid at a constant sampling
rate 4096 Hz and an amplitude in the range [—1, 1]. We can generate a raw glitch in ~ 10 ms
on a laptop.

The raw glitch generated by the GAN is often not suitable for immediate application,
so several post-processing steps are required, which have been implemented in gengli. In

4The code is released as a Git repository: https://git.ligo.org/melissa.lopez/gengli, and the full
documentation can be found in https://melissa.lopez.docs.ligo.org/gengli/index.html.
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FIGURE 6-19: A whitened glitch added to the white noise of Einstein Telescope, retrieved
from [210].

the following, we provide a brief description, but the interested user should refer to the full
documentation.

Post-processing

The simplest post-processing step implemented in gengli is resampling® the raw glitch at a
desired sampling rate. As conceptually, the glitch forms part of the detector noise, to add the
raw glitch to it, the noise time series needs to be whitened so that the resulting time series is:
Sw = Ny + G- Nonetheless, the user might need the raw time series with the glitch, so we need
to re-color it. Mathematically,

se = F 1/ Sn(f)50) (6.17)

where s,, and s, are the whitened and coloured detector noise containing the glitch, respec-
tively, and S, (f)’ represents the PSD of the noise. Here, F~! is the inverse Fourier transform.
Furthermore, it is useful to scale the glitch to inject it at a desired “loudness”; or SNR p using
Eq. 6.10. In Fig. 6-19 we plot an artificial glitch (blue) scaled to & pigrger, added in the white
noise of Einstein Telescope, in time-series and time-frequency representation. Note these are
built-in functionalities.

Selecting generations

As for any randomly distributed quantity, any randomly generated glitch comes with a different
degree of “similarity” with respect to the statistical distribution. We want to make this notion

5When upsampling, we make the key assumption that there are no interesting features at frequencies higher
than 4096 Hz.

95



Chapter 6. Simulating Transient Noise Bursts 6.4. Results

mathematically precise and define an anomaly percentile for each randomly generated glitch.
As before, we consider three distances between a pair of glitches:

o Wasserstein distance dy: a standard measure of distance between distributions, com-
monly employed in ML and defined in [201].

o Mismatch djy;: a measure of distance based on the details of the filtering, standard in the
GW field, and defined as 1—match from Eq. 6.11.

o Cross covariance d..:. we employ the quantity 1 — k, where k is the normalized cross-
covariance as defined in Eq. 6.13.

We then generate a benchmark set of N, glitches from the generator. For each of the
Ny(Np, — 1)/2 pairs of glitches in the benchmark set, we compute the three distances above. In
Fig. 6-20 we show the distribution for a population of N, = 1000.

For each new glitch being generated, we compute the set of average distances (dw, dar, dec)
between the glitch and the benchmark set and we measure the set of percentiles (pw, Prm, dec)
of each of the distances with respect to the benchmark distances. The triple (pw, Prmm, dec) is
our novelty measure for the glitch. This allows us to filter glitches based on an anomaly score
interval [Pmin, Pmaz]- The code will output only glitches for which all the three anomaly scores
lie within the given interval.
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FIGURE 6-20: Probability distribution of distances (dw,dyr, de.) for a benchmark population
of 103,
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6.4. Results

Gravity Spy studies

During the review process of LIGO-Virgo-
KAGRA, we realized that there was an over-
writing error in Gravity Spy classifications of
gengli. Gravity Spy stores images, with a
pre-defined name, to then read them and pro-
vide a classification. When parallelizing the
code, Gravity Spy would overwrite the im-
ages, giving the wrong classification, i.e. if
image A was stored, immediately it would
overwrite with image B, to then store the
classification of B as the classification of A.
This problem caused the Fig. 6-12 to have an
erratic behaviour in the Gravity Spy confi-
dence cgg dimension.

Once this issue was solved, we repeated
some of the calculations from [219] but with
a larger p range. For this aim, we created
a population of 10 glitches and we injected
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FIGURE 6-21: Average Gravity Spy
confidence cag for 103 artificial Blip glitches,
generated with gengli, as a function of SNR

p.

them in real whitened noise with SNR p € [1.0,50], using the procedure presented in Section
6.4.2. Note that this SNR is > ppgips ~ 20, as we want to test the behaviour of Gravity Spy for
louder signals. To avoid the influence of the background we use the same real whitened noise
from H1 in the range [1262540000, 1262540040] GPS time for every glitch realization. Note that
this time series includes sufficient data to avoid border effects in the whitening procedure.

In Fig. 6-21 we present the average
Gravity Spy confidence cgg for 103 arti-
ficial Blip glitches as a function of SNR p.
We can observe that cqg decreases as we in-
crease p, with a minimum of cgg =~ 0.65 at
p ~ 7.5, As we will see in the next graph-
ics, this minimum is because Gravity Spy
is confident that there is no glitch in the
input data, known as No__ Glitch class, un-
til we increase the loudness of the glitches
to p ~ 7.5. As we pointed out in Sec-
tion 6.4.2, this behaviour is expected, since
Gravity Spy is trained on Omicron’s trig-
gers with p > 7.5. Furthermore, Gravity
Spy performance decreases slowly with the
increase of p, which might be a symptom
that Gravity Spy is biased towards loud-
ness. Nonetheless, further investigation is
needed.

In Fig. 6-22 we correct Fig. 6-10, where
we plot the classification labels, with maxi-
mum classification probability, for different
pPopt of H1 population. As we mentioned be-
fore, we can observe that at p = 1.0 every
glitch is classified as No Glitch, since the
signal is below the bed of the noise. How-
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FIGURE 6-22: Gravity Spy classes for 103
generated Blips from HI.
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ever, as we increase p = 7.43, Gravity Spy classifies some of the glitches as Blips, and some
others as Repeating Blips. At p = 18.32 most glitches are classified as Blips, with some mis-
classifications probably caused by anomalies in the data. Nevertheless, as we increase p, the

number of Blip classifications degrades, increasing the number of glitches that are classified as
Kot Fish or Blip_Low_Frequency.
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FIGURE 6-23: Joint and marginal distribution of Gravity Spy confidence cgs at popr = 18.46
against mis-match dy; for different glitch classes for H1: No__Glitch (blue), Blip (orange),
Repeating_Blips (brown), Blip_Low_ Frequency (grey), Chirp(pink), Koi_Fish (green).

In Fig. 6-23, and to correct Fig. 6-12, we present the joint and marginal distribution of
cgs as a function of the mismatch dj;, as defined in Section 6.4.6. Note that the marginal
distributions are expressed as probability densities. For Fig. 6-23a, where p = 1.0, we can see
how every glitch is classified as No__Glitch with cgs =~ 1.0. As we increase p = 7.43 (see Fig.
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6-23b) Gravity Spy starts to change its classification towards Blip class, which is dominant
with high cgg for p = 18.43 (see Fig. 6-23c). However, for p = 45.55 and as observed in Fig.
6-23d, while still most of the glitches are classified as Blip, we begin to see misclassifications of
Blip__Low_ Frequency and Koi_Fish with cgs > 0.6. As a final test, we selected a glitch that
was anomalous according to Gravity Spy but not gengli (Fig. 6-24a), and a glitch that was
anomalous for both, Gravity Spy and gengli (Fig. 6-24b).
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FIGURE 6-24: Selected genglt glitches. (Top panel): confidence cgs as a function of SNR.
(Middle panel): Raw glitch signal output from gengli. (Bottom panel): spectrogram of glitch
injected in real detector noise from H1 at p = 18.32.

On one hand, in Fig. 6-24a (middle panel) we can see that the glitch has a narrow peak,
but according to gengli’s metrics, its morphology is close to the rest of the glitch population
(low dy, high dy; and di). In the top panel, we can see that Gravity Spy is unable to see
this glitch until p = 11.89, wrongly classifying it as Whistle with cgs ~ 1.0 for 15 < p < 40.
Afterwards, cgs degrades with increasing p. In Fig. 6-24a (bottom panel) we can see that the
glitch is faint even at p = 18.32.

On the other hand, in Fig. 6-24a (middle panel) we can see that the glitch does not have a
standard Blip morphology (high dy, low djs and dy). Since it is an anomalous glitch, Gravity
Spy is confused about its class. In Fig. 6-24a (bottom panel) we can see that the glitch at
p = 18.32 does not have the characteristic “tear-drop” shape of Blip glitches.
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6.5 Discussion

As we have seen in the previous Sections, gengli is a powerful tool to further understand current
glitch identification algorithms, and help enhance searches of GW, as it was proposed in [ 17],
and [210]. Nonetheless, the main limitation of gengli is that it can produce a single class of
glitches, and according to experts in detector characterization, 23 classes exist. In Section 6.4.4,
we commented that one of the main limitations of this approach is that GAN need a lot of data
to learn the underlying distribution of the population, which might be challenging for glitch
classes with < 100 samples. Furthermore, the pre-processing using BW is computationally
intensive. Indeed, just to extract the populations of Blip, Tomte and Koi Fish glitches during
03 we had to use ~ 1.2 million CPU hours.

To overcome this issue, authors in [222] and [2%] propose to use TorchGAN and ProGAN,
respectively, with time-frequency representations, instead of time series, for all glitch classes.
The main goal of these two approaches is to tackle the imbalanced problem of Gravity Spy,
where some glitch classes have less than 100 examples, while other classes have more than 10, 000
examples. Nonetheless, this is also a problem for GAN-based algorithms. Thus, authors in [2+”]
propose to over-sample glitch classes to 5,000 examples, i.e. they sample randomly from the
class distribution allowing examples to occur more than once. On the other hand, authors in
[257] do not employ similar techniques as, due to the architecture of ProGAN, the underlying
distribution of the data is learnt with a better generalization and less overfitting.

While both algorithms proposed in [222] and [2%] show high performance when classifying
artificially generated glitches with CNN, proving the added value of data-augmentation ap-
proaches, these methods are less flexible for mock data challenges as the glitch is not separated
from the original background, a non-trivial task. Hence, authors in [?%] and [2%7] continue to
think about novel GAN architectures in time-series, also demonstrating that data-augmentation
approaches will not only be relevant for current detectors, but also for third generation detectors
such as Einstein Telescope.

6.6 Conclusion

In this chapter, we have discussed the generation of glitches with ML. In our work based on
[219] and [270)], we have developed a methodology to generate artificial Blip glitches from real
data using a ML algorithm known as GAN. To be able to generate these glitches, the input
Blips need to be processed: the signals are selected from Gravity Spy data to be reconstructed
with BayesWave and smoothed with the rROF algorithm. Because of this heavy processing,
only around 66% and 50% of the initial data from L1 and H1 is preserved.

Due to the instability of GAN algorithms, in this particular research, we trained a CT-GAN
[265] modified to process 1-dimensional inputs instead of 2-dimensional. The network uses the
Wasserstein distance as a loss function, which allows it to train its discriminator to optimality.
It is heavily penalized to avoid training instabilities and to accurately learn the underlying
distribution of Blips.

To assess the performance of CT-GAN, we generate a population of 103 Blip glitches for
both H1 and L1. The quality measurements employed are Gravity Spy classifier and similarity
distances. The results of these metrics indicate that the neural network was able to learn the
underlying distribution of Blip glitches from H1 and L1, despite the presence of some anomalous
generations due to imperfections of the input data set. Furthermore, it has been observed that
the similarity distances can detect miss-classifications from glitch classifiers.

In this proof-of-concept investigation, we have demonstrated that it is possible to isolate
Blip glitches from their surrounding noise and learn their underlying distribution with an ML-
based method in the time domain, providing several examples of its usage. This methodology
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allows us to generate better quality data, and it provides us with flexibility that would be
challenging to achieve with time-frequency representations. Furthermore, we also present our
open-source package gengli: it provides an easy-to-use interface to the trained GAN output
and has some additional features such as building a glitch population with or without anomalies,
resampling, re-colouring and scaling, and further examples within the documentation. As a
proof-of-concept, we use gengli to understand the behaviour of Gravity Spy.

The long-term goal of this investigation is to learn other classes of glitches in the time do-
main. While extracting glitches from its background is an expensive task, it could be improved
via specific wavelet design for glitches, among other possibilities. Nonetheless, a fundamental
issue remains: there is no guarantee that all glitches belonging to a certain class present the
same standard behaviour.
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Chapter 7

Detection of Anomalous Transient
Noise Bursts

This chapter is based on work presented in Ref. [220] and its companion, where I supervised
the data pre-processing, the construction of the models and the assessment of the performance.
I also was the lead writer in [2=0].

7.1 Introduction

While glitch identification and characterization is a crucial first step towards their mitigation
(03, 20], current glitch classifications are not flexible, nor exhaustive nor representative of all
glitch morphologies, basing their classification on a combined human and ML approach using
the main strain of the detector h(t) (see Section 2.4.3 for a discussion). In this context, unsuper-
vised ML methods to identify glitches could help overcome such limitations. In this chapter, we
propose a novel ML algorithm that combines auxiliary channel information-where the physical
mechanism of the resulting glitch is recorded-with an unsupervised anomaly detection algo-
rithm. Due to the overwhelming amount of information, we encode the auxiliary channels from
LIGO Livingston in the fractal dimension, a measure of the complexity of the time series. This
representation of the data is input to a data-driven algorithm, which consists of a convolutional
autoencoder with periodic convolutions that learns the underlying representation of the data,
clustering glitches according to their similarity in a compressed representation. By exploiting
this compressed representation for anomaly detection, we can identify glitches that strongly
deviate from the general distribution of the input data, improving the understanding of glitch
populations.

While unsupervised ML algorithms are agnostic, as they do not make prior assumptions
regarding the data distribution, it is challenging to interpret their results. To understand
the results of our algorithm and assess its performance we can compare the output of our
algorithm with the findings of supervised glitch classifiers, employing them as a benchmark. In
the following, we describe the benchmark used in this work, the selection of glitch populations
and the FD-encoding of the data.
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7.2 Data

7.2.1 Characterization via auxiliary channels

The status of GW detectors is continuously monitored through a large set of data streams at
various sampling rates, outputting ~ 10° time-series from instrumental and environmental
sensors. These auxiliary channels can be divided into safe (insensitive to GW) and unsafe
(sensitive to GW). Depending on their origins, glitches present varied morphologies in different
sets of auxiliary channels. Some subset of these channels may serve as “witnesses” of glitches
and are used to create data quality flags before performing GW searches [ 1=, 12, 79].

Despite the huge amount of auxiliary channels in a single detector, many of them do not
provide useful information for noise transient investigations as they remain constant or vary
with a consistent pattern, constituting a data set containing redundant and/or non-informative
characteristics [747, , 02]. Therefore, LVK researchers have compiled a “reduced” standard
list of ~ 10% auxiliary channels that are used in data quality investigations. In this work, we
limit our investigation to safe auxiliary channels with sampling rates > 512 Hz, yielding a set
of 347 channels.

7.2.2 Fractal dimension

The first step towards characterizing glitches through safe auxiliary channels requires identi-
fying anomalous data stretches within them [/50, 73, 79]. In [225], the author proposes the
measurement of fractal dimension (FD) as an additional effective tool for characterizing the
instrument output in low latency. FD is an index that characterizes the self-similarity of a set
and provides a measure of the complexity of the signal in the context of signal processing [2~1].
There are several definitions of this quantity [200), , |, implying that the FD measure
for a physical process can differ depending on the chosen definition. Nonetheless, we focus on
the F'D wvariation over time as an indicator of the evolution of the signal’s complexity. As the
presence of a glitch in the data affects the noise power spectrum, which in turn varies the value
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Fractal Dimension
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Time [seconds] from 2020-02-04 06:56:40 UTC (1264834618.0)
FIGURE 7-1: Fractal dimension over a two-minute period of L1 data for the
L1:LSC-PRCL_OUT_DQ auxiliary channel. Fach point represents the fractal dimension for one

second of data, and the red regions indicate the time period containing Whistle glitches. The
grey region indicates the confidence interval of the fractal dimension at one standard deviation.
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of FD, we are only interested in the relative change which is definition independent.

To illustrate this, Fig. 7-1, reproduced from [’=%], presents the variation of FD for two
minutes of data from the L1:LSC-PRCL_0OUT_DQ auxiliary channel, which measures the Power
Recycling Cavity Length (PRCL) from the Length Sensing Control (LSC) of the LIGO Liv-
ingston (L1) interferometer. The computation was performed with a time window W(t) = 1s,
i.e. every FD value is the result of encoding 1s of the input data. Points greater than one
standard deviation ¢ from the mean FD correlate to the presence of Whistle glitches in the
detector. As we can observe from Fig. 7-1, FD can be an effective tool to further understand
the coupling between glitches and auxiliary channels. To extend this analysis to a larger set
of safe auxiliary channels and glitch classes, we first need to speed up the FD calculation to
near-real time.

Following [”~~] we numerically estimate the measured FD with the variation (VAR) method
(see [254] for details). For a discretely-sampled set of data with N measurements C € RY, we
can define a sliding window to compute the variation of the data with centre [ and scale k,

]:k,l = |HlaX [Cl—ka cee 7Cl+/€] — min [Cl—k7 e 7Cl+k]| . (7]‘)

Thus, the VAR estimator for a given scale k is,

VAR 1 N—-1—k
k) = E Fi 7.2
A ( ) N — ok it ks ( )
As we can see in Algorithm 1, the implementation in [2%%] computes the maximum and

minimum over a range of values at each iteration k,[ (lines 5 and 6). The runtime of this
implementation is O(N?). A significant speed-up can be achieved using Algorithm 2 based on
[202]. It uses the fact that at iteration k£ 4 1 we can compute the maximum as

max|Ci—(k41); - - - » Cly (1)) = max{max [C(l_l)_k, . ,C(l_1)+k] , (73

max [C(Hl)fk, e 7C(l+1)+k] 1,

where the components of the right-hand side have already been computed at iteration k. This
step is done on line 10 in Algorithm 2, and likewise in line 11 for the minimum. Now, the
computational complexity of the FD calculation is O(N?log(N)) and the practical speed-up
can be seen in Fig. 7-2, where we compute FD with both methods over data increasing in
length. While this speed-up is not apparent for short stretches of data at low sampling rates,
it becomes significant at sampling rates > 4096 Hz.

In practice, with Algorithm 1 with computational complexity O(N?), and given 1h of data a
single auxiliary channel sampled at 16, 386 Hz, we were able to FD-encode it in 1 h, but with an
efficient implementation with numba [20] of Algorithm 2 based on [207], with computational
complexity O(N?log(N)), we can now process it in 11s. With further parallelization in a
cluster, the FD computation could characterize glitches in low latency. Now that we have a
fast computation of FD-value, we can construct a data set for our application.

7.2.3 Selected glitches

In the present work, we employ Gravity Spy- a supervised classification method that uses time-
frequency representations of h(t)-as a benchmark, finding anomalies from its high-confidence
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Algorithm 1 Implementation of the VAR method from [

Input: [ vector of size N.
Output: A vector of size N/2.

1:
2:
3:

4
5:
6
7
8:

9:
10:

All...N/2] =0
for k=1to N/2 do
F=10
forl=kto N —Fkdo
F=FU{max{f[l —k],..., fl+k]}
—min{f[l — k],..., fll + k]|}}
end for

Alk] = mean(F)
end for
return A

Algorithm 2 Improved algorithm for the VAR method.

Input: [ vector of size N.
Output: A vector of size N/2.

= = e = s e
SO AN S I sl

All...N/2]=0
u[l...N—2]=0
bl...N—2]=0
fori=1to N -2do
uli] = max{f[i],..., f[i + 2|}
bli] = min{f[d],..., f[i + 2]}
end for
A[l] = mean(u[l...N —2] —=b[1...N — 2]
for i =2 to N/2 do
for j=1to N —2i do
ulj] = max{u[j], ulj + 2]}
blj] = min{b[j], b[j + 2[}
end for
Ali] = mean(u[l... N —2i] —b[l... N — 2i])

. end for
. return A
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FIGURE 7-2: Comparison of the fractal dimension computing algorithms for varying number
of data points. Benchmarks done on a Intel’ Xeon® Processor E5-2630 v/ CPU @ 2.20GHz.
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FIGURE 7-3: From left to right: Q-transform of No_Glitch, Whistle, Tomte and
Scattered_Light retrieved from Gravity Spy [0)].

classifications (see a description in Section 2.4.3). In this proof-of-concept work we use clean
data samples and three different classes of glitches. The different classes are represented in Fig.
7-3. Our focus is on Whistle, Tomte and Scattered_Light glitches (see 2.4.3 for a description).
Additionally, we include the No_Glitch class, which indicates the absence of significant excess
power in the Gravity Spy spectrograms. This class represents a stable behaviour of the GW
detector, which is reflected by non-deviant FD values. For No_Glitch, we select GPS times ¢
where no glitch is present, which in A(¢) contain no apparent excess of power. For the three
classes of glitch data, we select GPS times ¢t of three distinct glitch morphologies in LIGO
Livingston with Gravity Spy confidence > 90% [0¢]. One must note that for the glitches ¢
represents the peak time of the Omicron alert. The three morphologies are chosen to have
short and long-duration glitches that are abundant in LIGO Livingston data (> 800 samples
per class), and that impact GW searches due to their wide frequency contribution. Moreover,
in this study, we focus on LIGO Livingston, as the author in [2%%], but this investigation could
be extended to LIGO Hanford and Virgo.

7.2.4 Auxiliary channels encoded in fractal dimension

Given a time ¢ of interest, we select an array of GPS time with duration At = 8s, where t is in
the center. For each array of time, we retrieve 347 safe auxiliary channels with sampling rates
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> 512 Hz, excluding the GW strain h(t), that is then whitened and encoded in FD with time
windows W(t) € {0.25,0.5,1,2}s. For each W(t) we have At/W(t) — 1 time bins to ensure
that t is in the center of the FD-encoded data, yielding a total of 56 time-bins per channel.
Since the duration of Scattered_Light is ~ 2 —4s and the duration of Tomte is ~ 0.25s, the
length of these varying time windows ensure that any glitch morphology will be contained at
least within W(t) = 2s [07]. Note that the sampling rate of each independent auxiliary channel
varies, but we only encode safe channels with a sampling rate > 512 Hz, to have enough data
points to perform a calculation of the FD, as demonstrated by the experiments in [2:5].

Limited by the number of Whistle present in LIGO Livingston, for the initial data set we
select 896 GPS times for each class defined in Section 7.2.3 and presented in Fig. 7-3, yielding
a balanced data set. Since each auxiliary channel monitors distinct physical processes, their
average F'D measurements can differ, giving priority to certain channels over others. To improve
the stability of our model, we normalize in the range [0, 1] the data of each auxiliary channel,
as we are only interested in their relative variation. Normalizing collectively would give more
importance to the channels with higher FD and dismiss the channels with lower FD.

We reduce the dimensionality of the normalized dataset, which originally has dimensions of
347 channels x 56 time bins, using a data-driven approach. Our goal is to retain the channels
that capture the most relevant features of the glitches compared to the No_Glitch class. The
procedure is as follows:

1. Defining Dy as the set of No_Glitch FD-encoded, we compute the average of all ele-
ments in Dng, p(Dxg), to minimize extreme deviations of FD. This will be the common
background when No_Glitch is present.

2. For a single glitch d¢ encoded in from a certain class C, we subtract the background as
dc — pu(Dne). This subtraction highlights the deviations produced by the presence of a
glitch in the data.

3. We identify auxiliary channels A that present a low FD deviation with respect to the
background since their contribution is similar to the absence of a glitch. Thus, given a
glitch dc and a channel A, if doa — u(Dng), S 1072V glitches de, the auxiliary chan-
nel A is removed. This threshold represents a balance between data compactness and
expressiveness. Too many channels can introduce irrelevant information, while too few
may overlook the overall data trends.

This pre-processing reduced the dimensionality to a shape of 50 channels x 56 time bins .
In Fig. 7-4 we show an example of 8 s of FD-encoded data. To train the ML model presented in
the next section we will use the three glitch morphologies, with a total of 2688 samples, which
contain the structure that we wish to unravel. One must note that while supervised approaches
must use a subset of the data to assess the generalization ability of the model, in the present
unsupervised approach we are interested in learning the details of the data at hand, such that
all data instances are employed.
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FIGURE 7-4: A sample encoded in fractal dimension with 347 safe auziliary channels and 56 time bins. Notably, the same event is replicated
four times with a different time window: time bins € [0,31) have a time window W(t) = 0.25 s, time bins € [31,46) have W(t) = 0.5 s, time
bins € [46,53) have W(t) = 1 s, time bins € [53,56] have W(t) = 2s.
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7.3 Methodology

The novelty of this work lies in combining auxiliary channel information with ML in the context
of anomaly detection. The complexity of the FD dataset implies two main challenges:

o Lack of ground truth: While glitch morphologies have been widely studied, there is no
guarantee that all glitches belonging to a certain class present the same standard be-
haviour. In this work, the labels assigned by Gravity Spy are not considered ground
truth and are used only for analysis and comparison purposes.

o Lack of absolute ordering: The ordering in the channels is arbitrary, as they measure
different physical magnitudes. Consequently, it is not expected to find local patterns in
the vertical axis with any particular channel ordering. Thus, our model needs to learn
patterns beyond local correlations in an order-independent way.

Reconstruction

A x
Concatenate =120 f=150 f =150 f=150 f =150
2c—1

FIGURE 7-5: Outline of the autoencoder with periodic convolutions implementation. The
input data which is concatenated yields a shape (t,2c — 1) is presented in green.
Downsampling convolutions are coloured in dark orange while upsampling convolutions are
coloured in dark blue. Each convolution is followed by a Rectified Linear Unit (ReLU)
activation function coloured in orange. This architecture yields a reconstruction of shape (t,c).

7.3.1 Tackling lack of ground truth: convolutional autoencoder

To address the concern of lack of ground truth, we employ an autoencoder in the context of
anomaly detection. Autoencoders are a type of deep-learning algorithm known for their ability
to uncover essential structures and patterns within unlabeled datasets, as well as their effec-
tiveness in anomaly detection [207, ]. They achieve this by compressing the data into a
lower-dimensional or sparse format, known as an embedded space, maintaining the most rele-
vant information from the dataset (encoding), and subsequently reconstructing it (decoding).
The encoding is expected to employ important sub-structures that can be difficult to notice in
the original representation space due to its higher dimensionality and feature redundancy [290].
As a consequence, the learned embedding serves as a reference for detecting irregularities in the
glitch data, since data points that deviate significantly from their embedded representations
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FIGURE 7-6: Ezxample of periodic convolution where input of shape (2¢ — 1,t) is convolved
with a kernel k = ¢ = 4. All cyclic channel permutations are convolved, so there is no absolute
ordering.

are likely anomalous. Still, the embedded space can be hard to interpret itself, since it forms a
high-dimensional space in which the data is densely packed.

When dealing with data with a natural order between the features, convolutional filters can
be used to detect (hierarchically combined) local structures and patterns that allow a complex
encoding model without an exponential increase of its parameters [207, , |. While our
data is two-dimensional (time bins X auxiliary channels), given that we want to preserve the
detail in the time dimension, we allow our model only to convolve along the channel dimension
using 1-dimensional convolutions.

7.3.2 Tackling lack of absolute ordering: periodic convolutions

To address the concern of lack of absolute ordering and the possible lack of local patterns to
exploit with limited range convolutional filters, we employ a periodic convolution with filters
sized to cover all channels instead. We take inspiration from circular convolutions, which are
used in the field of signal processing and consider the input signals as circular, or periodic,
rather than finite, i.e. the end of the signal wraps around to the beginning, creating a cyclic
or periodic nature [209]. In the context of this work, we use convolutional filters with a size
equal to the number of channels, so that the filter has the opportunity to ignore the data’s
arbitrarily chosen channel ordering. The model applies these filters periodically, hence the
name, so that learned filters can still be used by the model to encode structures and patterns
found on different channel combinations.

The outline of the autoencoder’s structure is presented in Fig. 7-5. Periodic convolutions
were implemented with tensorflow [(0] and keras [/ ]] using a custom approach: given input
with ¢ auxiliary channels and ¢ time bins, the input gets duplicated and concatenated along the
channel axis, removing the last channel, as it is represented in Fig 7-6. In this way, each cyclic
permutation of channels is seen only once. Thus, the dimensionality of the input fed into the
model is (¢, t) + (¢ — 1,t) = (2¢ — 1,1), (see second block of Fig. 7-5 where the concatenation
happens). To maintain the time dimension, we convolve along the channel dimension with a
kernel size k = ¢ x 1, stride s = 1, filters f = 120 and no padding. This custom approach
ensures that there is no specific spatial ordering in the vertical (channel) dimension and that
the model can capture correlations between all the channels.

Once the first convolutional layer has captured the data patterns between arbitrary channels,
the rest of the encoder architecture has the goal of constraining the data into an embedded
space. Thus, it consists of two conventional downsampling convolutional layers with kernel
sizes k =5 x 1 and k = 2 x 1 with f = 150, respectively, represented in Fig. 7-5 in dark orange.
The decoder structure is a mirror of the encoder, but with up-sampling convolutional layers
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instead, coloured in blue in Fig. 7-5. The resulting embedded space has a dimensionality of
5 x 56 with f = 150, which we will use to detect anomalies.

After each convolutional layer a Rectified Linear Unit (ReLU) [102] activation function is
employed to introduce non-linearity in the model (see Fig. 7-5 in orange). The ReLU activation
function avoids vanishing gradients [10}]. The model was trained for 500 epochs and a batch
size of 168, using the Adam optimizer [}()1], with a learning rate [, = 1073. The loss function
employed is the Mean Squared Error (MSE) loss, which represents the cumulative squared error
between the input and its reconstruction [107]. To assess the performance of the model, we use
the reconstruction error ez which is defined as follows:

c—1t-1
er =D (Dig = Dyu)’, (7.4)
k=0 1=0
where D; is the input to the model and D, its reconstruction [:00]. We expect that lower

reconstruction errors translate to more accurate anomaly identification.

7.3.3 t-distributed stochastic neighbour embedding

As discussed in the previous section, the embedded space is still high dimensional and difficult
to interpret. Hence, to further lower the data dimensionality and make the data distribution in
the embedded space easier to interpret, we use the t-distributed stochastic neighbour embedding
(t-SNE) method', which projects high-dimensional data in a low-dimensional space, preserving
local relationships between data points and underlying structure of the data, but releasing
global relationships between data points [07]. While the t-SNE variables do not have an
interpretable physical meaning, they are a linear correlation of physical variables and they can
be traced back to assess their contribution.

After obtaining the 2-dimensional projection of the embedded space with t-SNE, it is
straightforward to visualize the distribution of the different data points, which correspond
to the glitch instances, as we show in the next section (see Fig. 7-8). The 2-dimensional plot
is expected to reveal different clusters and interesting structures in the data since data points
that are distant from the main clusters of their predicted class are anomalies. By labelling
each glitch with its corresponding Gravity Spy label with confidence > 90%), outliers and new
glitch morphologies are expected to be identified.

7.4 Results

To assess the performance of the autoencoder presented in the previous section, we show the
achieved reconstruction errors eg € [0.001,0.014], as seen in Fig. 7-7. The three glitch classes
present similar distributions, with the Scattered_Light class reaching the highest reconstruc-
tion error ez = 0.014. The reconstructed input differs from its original on 1.75% and 17.5%
in the best and worst reconstructed pixels, respectively. Note that the model reconstructs 98.8
% of glitches with egr < 0.002, which is a low error given the range [0.0,1.0] of the input data.
In general, it appears that pixels from the same auxiliary channel have similar reconstruction
errors, which translates to the preservation of FD-encoded data structure within the given
auxiliary channel.

In Fig. 7-8 we present joint and marginal distributions of the t-SNE projections with three
different representations of the data: the original dataset with 347 auxiliary channels, the
reduced dataset with 50 auxiliary channels (see Section 7.2.4), and the embedded space with
shape 5 x 56 with f = 150. These t-SNE representations cluster the input data in different

ITSNE function from scikit-learn library [277] was employed.
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FIGURE 7-7: Histogram with the reconstruction errors eg for each glitch class in logarithmic
scale.

regions of the space, such that the samples in the out-skirts will be considered anomalies. We
use the labels of Gravity Spy to track in which regions of t-SNE space the different classes
fall.

In Fig 7-8a, the t-SNE projection of the original FD-encoded data with 347 safe auxiliary
channels clusters the glitch by similarity, which is consistent with Gravity Spy’s classification
revealing some overlap between classes, especially between Tomte and Scattered_Light, as
well as between Whistle and No_Glitch. A dataset with instances of dimensions 347 x 56
introduces an enormous complexity. Therefore, we reduce the dimensionality of the data,
using the safe auxiliary channels that show the most variance in the FD-encoding, which is
related to the presence of glitches (see Section 7.2.4). Such reduction in dimensionality yields a
more compressed representation of the input data and less overlap between the glitch classes,
as can be seen in Fig. 7-8b since there are fewer sub-clusters of each class. We use this reduced
representation to train the autoencoder on Tomte, Scattered_Light and Whistle, as we are
interested on learning the main FD-characteristics that may be related to these glitches. After
training it, which yields small reconstruction errors ez, we can project its embedded space in
2 dimensions with t-SNE, as we can see in Fig. 7-8c. We can observe that it looks similar to
the reduced t-SNE in Fig. 7-8b, but its marginal distributions seem smoother since the model
is learning the general trend of local and global correlations of the FD-encoded data. While
at each compression we are discarding some characteristics of the data, we are maintaining
the general trend of the data which, as stated before, is consistent with what is observed by
Gravity Spy in A(t), the main strain of the data. We remind the reader that the labels in Fig.
7-8a, 7-8b and 7-8c are classifications of Gravity Spy with confidence > 90%.

To explore the embedded space, in Fig. 7-8c, we have manually outlined the distinct clusters.
In the following, we present the time-frequency of the strain h(t) of some anomalous examples
found in the outskirts of these clusters solely employing safe auxiliary channels. The reader
will encounter glitch classes that have not been mentioned before in the present work, but their
description can be found in [07].

e Region 1 corresponds to the main Tomte cluster. However, some Whistle and Scattered
_Light labels are also present. From this region, in Fig. 7-9a we show a glitch classified
as Whistle but with an anomalous morphology, and in Fig. 7-9¢ we show a misclassified
Wandering Line glitch classified as a Whistle. In Fig. 7-9b we present a glitch classified
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as Scattered_Light but its morphology is similar to Scratchy, and in Fig. 7-9d we can
see a Scattered_Light with an anomalous morphology.

e Region 2 is a sub-cluster of Whistle, with Tomte and Scattered_Light overlaps. In
Fig. 7-10a, we see a Tomte glitch that is revealed to be overlapping with a Scratchy glitch
in a longer time window. In Fig. 7-10c we see a Tomte glitch overlapping with a smaller
Tomte glitch. Fig. 7-10b shows a Fast Scattering glitch mislabelled as Scattered_Light
and Fig. 7-10d presents a Scattered_Light overlapping with an unknown morphology.

« Region 3 is a cluster with anomalous glitches from the 3 different glitch classes. Examples
of anomalies are presented in Figs. 7-11a and 7-11d, which are labelled as Whistle but
have distinct morphologies that differ from any of the 22 Gravity Spy classes. Another
anomalous glitch from this region is the misclassified glitch shown in Fig. 7-11b, which
was labelled as Tomte but has a morphology consistent with Fast Scattering. Another
example of an anomalous glitch from this region presents as an overlap as shown in Fig. 7-
11c. The glitch was labelled as Scattered_Light but seems to be a Tomte overlapping
with an unknown morphology.

« Region 4 corresponds to the main Scattered_Light cluster. In this region, there is
a high presence of Tomte labels, which could indicate that both physical processes are
related. In Fig. 7-12a, we present a glitch from this region that was labelled as Tomte but
is consistent with the Koi_Fish class, while 7-12b was also labelled as a Tomte but seems
to be an overlap between Tomte and Scratchy.

« Region 5 corresponds to the main Whistle cluster, where we find some Scattered_Light
labels as well as a few Tomte labels. In Figs. 7-13a and 7-13c we see Tomte glitches that
appear to be overlapping with Scratchy glitches, in Fig. 7-13b we see a glitch labelled as
Scattered_Light but could be a novel morphology, and in Fig. 7-13d we see a Scratchy
glitch misclassified as Scattered_Light.

The outliers found at the outskirts of their clusters are visually and manually selected
from the t-SNE representation in Fig. 7-8c, to automate the procedure in future works. After
outliers have been selected, their spectrograms in h(t) are visually inspected by comparing them
to standard Gravity Spy morphologies. With this procedure, a total of 177 anomalies were
found out of 2688 samples, which implies 6.6% of the data. In particular, for each class, we
found:

o Whistle: 49 anomalies were found, 45% are unknown morphologies, 28% are Gravity
Spy misclassifications, and 27% are glitch overlaps.

o Tomte: 57 anomalies were found, 32% are unknown morphologies, 21% are misclassifica-
tions, and 47% are glitch overlaps.

e Scattered Light: 71 anomalies were found, 28% are unknown morphologies, 72% are
misclassifications, and only one case of overlap is found.

After a visual inspection, we found that for Whistle most outliers constitute unknown mor-
phologies, while for Tomte most anomalies are due to overlaps, where it is common that two
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(A) Glitch labeled as Whistle, but appears to be an anomalous morphology.
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misclassification.
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(D) Glitch labeled as Scattered_Light, but appears to be an anomalous morphology.

FIGURE 7-9: Region 1: Example of anomalous glitches in the embedded space.

Tomte happen simultaneously. For Scattered_Light, most outliers correspond to misclassi-
fications, since the other seven glitch classes happen at similar frequency intervals and dura-
tion periods, namely Low_Frequency_Burst, Low_Frequency_Lines, Power_Line, Scratchy,
Air Compressor, Paired_Doves and Fast_Scattering.

While the misclassification of glitches could be countered with the improvement of training
strategies, data set construction or class definitions, the identification of anomalies arising from
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(A) Glitch labeled as Tomte. On the spectrogram with the longer time window, we can see an overlap between
a Tomte and Scratchy glitch.
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(B) Glitch labeled as Scattered_Light. It is consistent with the Fast_Scattering morphology, being a
misclassification.
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(D) Glitch labeled as Scattered_Light. On the left plot, an unknown morphology is overlapping at the
beginning of the Scattered_Light.

FI1GURE 7-10: Region 2: Example of anomalous glitches in the embedded space.

overlaps and novel morphologies would still be hampered by the strict class definitions from
supervised methods. Therefore, unsupervised approaches, such as the one presented in this
work, will improve the understanding of glitch populations for their subsequent mitigation.
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(B) Glitch labeled as Tomte, but its shape is consistent with Fast_Scattering, being a misclassification.
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(D) Glitch labeled as Whistle. The observed shape is inconsistent with any Gravity Spy classes, constituting
an anomalous glitch morphology.

FIGURE 7-11: Region 3: Example of anomalous glitches in the embedded space.

7.5 Discussion

In this chapter we have performed an exploratory analysis of a reduced set of safe auxiliary
channels from LIGO Livingston with FD-encoding in the context of anomaly detection. The
focus of this work is, on one hand, to explore the potential of this data representation in the
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(A) Glitch labeled as Tomte, but consistent with Koi_Fish class, being a misclassification.
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(B) Glitch labeled as Tomte, but seems to be an overlap between a Tomte and a Scratchy, being an overlap.

FIGURE 7-12: Region 4: Fxample of anomalous glitches in the embedded space.

context of glitch characterization, and on the other hand, to build a data-driven model to cluster
glitches in an unsupervised way with direct information from the detector, finding anomalies
that deviate from the general distribution of the data.

For this aim, we first speeded up the FD calculation from a computational complexity of
O(N?) in [255] to O(N?log N), constructing the FD-encoded safe auxiliary channel data set.
Afterwards, we implemented a periodic convolutional autoencoder to learn the local and global
structure of the data, compressed in a lower-dimensional space, known as embedded space.
The reconstruction errors of the output of the autoencoder were ~ 98.8% of glitches < 0.002,
implying that the autoencoder was able to learn the general trend of the data.

We can also observe the reliable compression of the autoencoder, using solely safe auxiliary
channels, when we project the embedded space in a two-dimensional t-SNE. This t-SNE rep-
resentation clusters the different classes in separate regions which are consistent with Gravity
Spy’s observation in the main detector strain, h(t). Samples that deviate significantly from
their closest cluster are considered outliers. Representing these outliers in h(t), we observed
novel morphologies that strongly deviated from the standard definitions of Gravity Spy.

This methodology has shown that the safe auxiliary channel in the FD-encoding acts as a
complementary representation to the visualization of h(t), used to characterize the noise of the
detector and to identify glitches for their subsequent mitigation. Furthermore, our algorithm
is flexible and completely data-driven, capable of uncovering misclassifications, glitch overlaps
and novel glitch morphologies. While our method is independent of supervised classification
algorithms, we used Gravity Spy as a benchmark to quantify its performance: in our FD-
encoded auxiliary channel data, constituted by 2688 times where glitches were present in h(t),
we found a 6.6% of anomalies caused by unknown morphologies labelled as their closest glitch
class, similar morphologies assigned the incorrect class or glitch overlaps being overlooked.

Up to the date of publication of this manuscript, we are not aware of another investigation
that uses unsupervised learning with auxiliary channels.
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be a novel morphology.
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misclassification.

FIGURE 7-13: Region 5: Example of anomalous glitches in the embedded space.

7.6 Conclusion

As we have discussed in the previous sections the FD is a powerful tool to encode the infor-
mation glitches from the auxiliary channels in a lower dimensional space. Additionally, our
approach of integrating the latent space of the autoencoder with t-SNE offers an even more
intuitive, lower-dimensional representation for interpreting the “glitch space”. Indeed, our un-
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supervised approach discovers novel morphologies and glitch overlaps that are disregarded by
static supervised methods.

Data-driven approaches, such as the one demonstrated in this work, can unveil anomalies
present in the data and reveal relations between glitch classes, allowing us to further understand
the glitch population. However, despite its strengths, our approach has certain limitations. In
this proof-of-concept study, we focus on only three glitch classes out of the 22 well-known
categories, which limits the generalizability of our findings. Additionally, although we selected
channels based on the most significant FD variance, this selection differs from the standard set of
channels typically used by LIGO experts. This discrepancy poses challenges for explainability,
making it more difficult to relate our results to the underlying physical processes that LIGO
experts are familiar with.

In future work, this approach will be extended to the general population of LIGO-Livingston
and other interferometers to enhance the identification of glitches. Moreover, we will provide
an anomaly score to assess the significance of the outliers found by our algorithm and explore
a data fusion representation containing both the FD-encoded auxiliary channel data and the
strain A(t) in time-frequency representation, providing not only information about the physical
process within the detector but also their impact on h(t). Last but not least, we will investigate
the correlation between safe auxiliary channels highlighted by our model and glitches appearing
in h(t), in the search of witness auxiliary channels to improve glitch mitigation in GW searches.
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Chapter 8

Enhancing Unmodelled Core-Collapse
Supernova Searches

This chapter is based on work presented in Ref. [205] and its companion, Ref. [109], where I
led the construction of the models, the performance evaluation and the post-processing. I also
was one of the lead writers in [10%], and T was the lead writer in [209].

8.1 Introduction

High-energy cosmic neutrinos, as well as GW emission, are two novel messengers of astronomical
sources. These new messengers, along with electromagnetic radiation and cosmic rays, give new
insights into the most extreme energetic cosmic events. Among them, supernova explosion is
one of the most challenging targets of this new astronomical approach.

While GW have been detected from mergers of binary black holes (BBH) and binary neu-
tron stars (BNS), core-collapse supernovae (CCSN) have not yet been detected and they still
represent a puzzle to solve. We had confirmation of the basic CCSN theory through the detec-
tion of MeV neutrinos from the SN1987A [213]: the collapse of a massive star’s core is driven
by the release of gravitational energy and the vast majority of this energy is realised in neutri-
nos. However, the details of the mechanism of the explosion are still an open question and the
astronomical community is trying to disentangle it.

Massive stars (M > 8M,,) spend most of their lives burning hydrogen into helium, which
settles in the core and, when temperatures increase sufficiently, burns into heavier nuclei until
the iron is reached. Having reached the Chandrasekhar mass (= 1.4 M) the iron core cannot
support its weight and undergoes a gravitational collapse.

The slow contraction of the growing and ageing iron core speeds up when its central tem-
perature ~ 1 MeV. At this stage, thermal v photons become sufficiently energetic to partially
disintegrate the iron-group nuclei to a-particles and free nucleons. At such high densities, the
cross-section of the interaction of neutrinos with matter becomes large, such that neutrinos be-
come trapped in the core. Within milliseconds, the centre reaches nuclear matter density, where
the heavy nuclei dissolve in a phase transition to a uniform nuclear medium, and neutrinos can
only escape by diffusing out of the neutron star rather.

As the density increases up to nuclear saturation density, heavy nuclei are disintegrated into
free nucleons, producing neutrinos that become trapped. At the same time, the sharp rise of
the incompressibility, due to repulsive contributions to the nuclear force between the nucleons,
halts the collapse of the inner core forming a proto-neutron star. During the collapse, electrons
are absorbed by nucleons through beta processes, reducing electron degeneracy pressure and
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accelerating the collapse. The bounce occurs when nuclear interactions between nucleons,
primarily neutrons, become the dominant force. As the core rebounds, it produces a shock wave
that stalls at around 100 km from the centre. Helped by the additional thermal energy deposited
by the neutrinos diffusing out of the proto-neutron star, the shock may revive in timescales
of hundreds of milliseconds disrupting the entire star and producing an electromagnetic signal
known as supernova [0, 212].

This so-called neutrino-driven mechanism [7/1], is the dominant theory to explain CCSN
explosions in slowly rotating progenitors. Observationally only ~ 1% of the events show sig-
natures of fast rotation (broad-lined type Ic supernovae || 1] or long gamma-ray bursts [112]),
neutrino-driven explosions are likely the most common type of CCSN, and our focus of this
chapter.

In a supernova explosion, GWs are generated in the inner core of the source, so that this
messenger carries direct information of the inner mechanism. The feasibility of this scenario will
be supported by the joint observation of neutrino and GW emission from CCSN, by assessing the
correlation between neutrino emission and collapsed core motion. Although the phenomenon
is among the most energetic in the universe, the amplitude of the GW impinging on a GW
detector is extremely faint. For a CCSN in the centre of the Milky Way, a rare event, we
could expect amplitudes of the metric tensor perturbations in ~ [1072! — 10723], unlike BBH
or BNS. To increase the detection probability we should increase the volume of the universe
to be explored, which can be achieved both by decreasing the detector noise and using better-
performing algorithms.

The impossibility of using template-matching techniques in this case, due to the complexity
and stochasticity of the waveform, makes it necessary to find new ways to improve the detection
statistics. As we have seen in Section 3.3, current efforts to search for GW from CCSN include

targeted searches for observed nearby supernovae [117, | and all-sky generic searches for
bursts [20, 2 1]. For the latter two independent pipelines are used: coherent Waveburst (cWB)
[715] and omicron-LIB (oLiB) [127], while BayesWave [1 7] is a followup of c(WB GW candidate

events. These searches use algorithms based on excess power to identify signals buried in the
detector’s noise without taking advantage of any specific feature of CCSN waveform.

In [210] it has been proposed the use of ML techniques to take advantage of the peculiarities
of the CCSN GW signal to increase our detection capability with respect to current methods.
In particular, the focus was on the monotonic rise of the GW signal in the time-frequency plane
due to the g-mode excitation, which is the dominant feature present in the GW spectrum. A

similar approach has been followed recently by [117, , , | and in general there has
been an increasing interest in the GW community for the use of ML methods (see Section 4.3).
In this chapter, we follow a similar approach as in [110], labelled as previous work. The

main differences are:
- the use of a more sophisticated CNN;

- the injection of simulated CCSN signals in real noise of the three advanced detectors of the
LIGO-Virgo network, as measured during August 2017 during O2 ([10] only considered
Gaussian noise);

- the improvement of the phenomenological templates used during the training of the CNN
network to better match results from numerical simulations.

8.2 Data

In the next Section, we describe our newly improved phenomenological waveform templates that
are used to train the CNN. For a comparison of performance between the previous work in [41(]
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and the present work, we use the same data set of [110], labelled as previous set (see Section
8.2.3), for training and validating of the new neural network architectures. Afterwards, to
tune our CNN we train the algorithm with the new phenomenological templates injected in the
real noise (see Section 8.2.4). Finally, we test the network with injections of phenomenological
waveforms (see Section 8.2.5) and waveforms from CCSN numerical simulations (see Section
8.2.6).

8.2.1 Phenomenologial waveforms

As in the case CBC phenomenologi-

cal waveforms (see Section 3.2.2), we

consider a parametric phenomenological 81 0
waveform designed to match the most 71 *
common features observed in the numeri- 6
cal models of CCSN. We focus our atten-

tion on the g-modes excitation, or gravity =
modes, which are induced by a buoyancy
restoring force [319]. This is the most
common feature of all numerical models
developed so far to describe the CCSN a
phenomena, responsible for the bulk of
the GW signal in the post-bounce evolu-
tion of the proto-neutron star. The mea-
surement of the g-mode has been pro-
posed as a way of inferring the proper-
ties of the proto-neutron star [see e.g.

) ) Y ]'

Our phenomenological template aims
to mimic the rising arch observed in CCSN simulations. To this end, we will consider a damped
harmonic oscillator with a random forcing, in which the frequency varies with time. The
phenomenological templates we used differ from the ones in [11(] in two aspects: we use a
new and more flexible parametrization for the frequency evolution and we use the distance
as a parameter. The phenomenological templates are calibrated to mimic the features in the
numerical simulations for non-rotating progenitor stars by [121, , , , , , ,

, ], named waveform calibration set, hereafter.

The new parametrization describes the evolution of the frequency of the g-modes, v(t), as
a cubic spline interpolation to a series of discrete points, (t;, v;), where t; corresponds to post-
bounce times. Given the relatively simple behaviour of () observed in numerical simulations,
it is sufficient to use three points with ¢; = (0,1, 1.5) s. vy, v1, and v, are then three parameters
of the template.

In [210] the amplitude of the generated waveforms has been chosen according to the SNR.
In this work, we want to go one step further and use distance as a parameter for the waveform
generator. To do that we relate the amplitude of the waveform with its distance using the data
in the waveform calibration set. First, we need to measure the typical strain of the g-mode
component for each simulation.

To this aim, we apply a high pass filter at 200 Hz, and then we use the section of the
waveform containing 99% of the waveform energy to compute the root mean square (rms)
value. This procedure filters out signal power at lower frequencies related to other effects
different to g-modes (standing-shock accretion instabilities [172], prompt convection [}2] and
large-scale asymmetries due to shock propagation [171]) that are not considered in this work.

—24.0 —23.5 —23.0 —22.5 -22.0 —21.5 —21.0
10810 frms

FIGURE 8-1: Number of simulations with a given
g-mode root mean square (rms) strain at 10 kpc (per
logarithmic interval) for 2-dimensional (blue bars)
and 3-dimensional (red bars) simulations in the
waveform calibration set.
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FIGURE 8-2: FExample of a phenomenological waveform generated by the waveform generator.

The upper panel shows the strain as a function of time and the lower panel the corresponding

spectrogram. The white-dotted curve shows the time-frequency dependency used to generate the
waveform. White circles represent the pairs (t;,v;) used to generate it.

Fig. 8-1 shows the logarithmic distribution of the rms strain for 2-dimensional (assuming axial
symmetry) and 3-dimensional (without symmetry constraints) numerical simulations at 10 kpc.
There are significant differences between different simulations depending on the dimensionality.
The mean and standard deviation for each distribution is

10g10 hrms,QD - _224 :l: 0427
logg Arms,sp = —23.1 £ 0.29

for the 2-dimensional and 3-dimensional cases, respectively. Given that 3-dimensional sim-
ulations are more realistic, we use their normalization to generate our phenomenological wave-
forms. As a consequence, template amplitudes are about a factor of 5 smaller than typical
2-dimensional simulations. In our waveform generator, the strain of each of the waveforms is
scaled to have a rms strain corresponding to a sample following a normal distribution with
mean and standard deviation of our normalization, and scaled to the corresponding distance.

In synthesis, we have a
waveform template that de-
pends on a set of 8 free param-
eters as reported in table 8.1.
In this table, the quality fac-
tor, @, refers to the damping
of the harmonic oscillator and

TABLE 8.1: Parameter space of the phenomenological
templates. The second, third and fourth columns indicate the
range minimum and mazimum, respectively) for each
parameter and the spacing used in the sampling of the
parameter space. For () and D, we show the actual values
instead. All times are post-bounce times.

the driver frequency, Variver, t0 parameter | min. max. A description

the mean frequency of the ran- tini [8] 0 0.2 0.1 | beginning of the waveform
dom impulsive forcing acting ;. [s] 02 15 0.1 end of the waveform
on the oscillator [see 510, for [Hz 50 150 50 frequency at bounce
details]. Additionally, for any ), | 1000 2000 500 frequency at 1 s
combination of those parame- , 11,] 1500 4500 1000 frequency at 1.5 s
ters we can generate multiple Variver [Hz] | 100 200 100 driver frequency
realisations due to the random Q (1,5, 10) quality factor

component in the excitation of  p) [kpc] (1,2,5,10,15) distance to source

the harmonic oscillator and on
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the random value of the rms strain. To represent the variety of g-mode features observed in
the waveform calibration set, we provide ranges covering all the possibilities (see table 8.1).
To this parameter space one has to add additional restrictions to ensure the monotonicity
(ry > 11 > 1) and convexity ((v1 — vg)/(t1 — to) > (2 —11)/(ta — t1)) of v(t), as seen in
the numerical simulations. We have created the waveform template bank that contains 504
different realisations of this parameter set, for each distance, resulting in applying the restric-
tions above to the 9,072 possible combinations of the parameters in table 8.1. In this way,
we obtain a reasonably dense covering of the parameter space. The computational time of the
generation of one phenomenological waveform is about 6 ms. This makes it possible to generate
the large template banks necessary to train the CNN, which would be prohibitively expensive
using multidimensional numerical simulations.

8.2.2 Image generation

In Section 4.3 we commented that almost
all GW events detected by LIGO-Virgo net-
work so far, if confirmed, are associated with
CBC systems with the peculiar chirp shape
of the signal. This feature is used to extract
the signal from the detector noise adopting
a matched filter approach (see Section 3.2.1).
In the case of CCSN, data must be selected
and processed using different algorithms. To
enhance the detection probability and reduce
the false alarm rate, the proposed method im-
plies selecting data in a time window given by
the neutrino observatories, taking advantage

Hanford

Livingston

of common GW features predicted by CCSN o)
numerical simulations. >

To assess the robustness of our method, we  §
selected data from O2 of the Advanced GW § e eE 2
detectors, without relying on any neutrino in- -0.5 00 05 1.0

. . time (s)

formation. In particular, we chose a stretch
of real data even containing glitches (see Sec- FIGURE 8-3: From the top; the WDM
tion 2.4.3), taken during August 2017, when spectrogram of LIGO Hanford, LIGO,
Virgo joined the run [0]. The period includes Livingston and Virgo shown in red, green and
about 15 days of coincidence time among the  plye, respectively. At the bottom: the image
three detectors and we used this data set to obtained by stacking the previous three

generate about 2 years of time-shift data to  spectrograms. In this case, the signal is present
train and test the neural IletWOI“k as a noise ]ust m Hanfo/,ﬂd and Livin‘gston SO that the

class. combined signal is yellow.
To build images for our neural network al-

gorithm we use the internal features of cWB algorithm® (see Section 3.3.3). In our work, we
used this software tool to compute the WDM transform (refer to Section 3.3.3 for details), on
the base of which the images of 256 x 64 pixels are built covering the frequency band [0, 2048] Hz
and a time range of 2s. Because the GW signal is embedded in noise and difficult to extract,
in [110] a technique to visually enhance the coincidences among all the interferometers of the

1cWB home page, https://guburst.gitlab.io/;
public repositories, https://gitlab.com/gwburst/public
documentation, https://gwburst.gitlab.io/documentation/latest/html/index.html.
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TABLE 8.2: List of models of the test set used in the injections. Myzanms corresponds to the
progenitor mass at zero-age in the main sequence (ZAMS). Unless commented, all progenitors
have solar metallicity, result in explosions and their GW signal do not show signatures of the

standing-shock accretion instability (SASI).

Model name reference Mgaus comments
s9 [335] 9M, Low mass progenitor, low GW amplitude.
525 [335] 25M¢, Develops SASI.
s13 [335] 13M Non-exploding model.
s18 [330] 18 M, Higher GW amplitude.
he3.5 [330] - Ultra-stripped progenitor (3.5M He core).
SFHx [337] 15M Non-exploding model. Develops SASI.
mesa20 [338] 20M,
mesa20__pert [338] 20Ms  Same as mesa20, but including perturbations.
s11.2 [01] 11.2M,
L15 [328] 15M Simplified neutrino treatment.

network has been developed. The method consists of using primary colours for the spectro-
grams: red (R) for LIGO-Hanford, green (G) for LIGO-Livingston and blue (B) for Virgo. A
random example of the input of the CNN is shown in Fig. 8-3.

The main results in this work present some differences with respect to [10]:

- incorporation of the information of the source distance.
- coverage of larger parameter space with our phenomenological waveforms.
- as mentioned before, usage of real data from O2.

- usage of all spectrograms, instead of the ones detected by cWB.

We define the starting time of each image every 2s, echoing the choice made in [110]. The
images containing the central time of injected signals are considered as event class, instead,
the ones without signals are noise class. The injected signal is expected to be about 600-700
ms in duration, drawn everywhere in the image, with a small probability of being between two
consecutive images. Such images are also used for training, so the network can recognise also
the partial signature of the event.

8.2.3 Previous set

In [210], phenomenological supernova signals were injected in Gaussian noise simulating the
final expected sensitivity of Advanced LIGO and Virgo detectors. Signals were injected at
fixed network SNR, and did not include any information about source distance. This set was
constructed using the information given by ¢WB algorithm and, unlike in the following data
sets, only using events passing the first stage of cWB analysis. This set contains about 10, 000
images with signals for 11 different SNR ranging from 8 to 40 and the same amount with only
noise, 75% of the signals are used to train the network and 25% for validation.

8.2.4 Training set

The training set for CCSN signals has been constructed injecting waveforms at fixed distances:
0.2, 0.4, 1, 2 and 3 kpc. For this purpose, we have used the waveform template bank described
in Section 8.2.1 injecting, for each distance, of the order of 70,000 waveforms, with random sky
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localization. 75% of the set is used in the actual training while the remaining 25% is used for
validation. The upper distance has been chosen according to the requested minimal SNR of
the injected signals, in which the trace of the CCSN signal is distinguishable from the noise in
the image passed to the neural network.

8.2.5 Blind set

In the blind set, we injected a new ensemble of about 260, 000 simulated signals, generated by
the phenomenological templates described in Section 8.2.1. In this case, distance is chosen in
a uniform distribution between 0.2 and 15 kpc, and positions in the sky are randomly chosen.
This set is used to quantify the detection efficiency and to test the network. The set is bigger
than the training set, to maintain enough statistics for all the distances.

8.2.6 Test set

For the final test, we perform injections using CCSN waveforms from numerical simulations
found in the literature. In particular, we focus on 3D simulations of non-rotating progenitors
representative of the neutrino-driven mechanism. The selection test set, hereafter, see Table 8.2,
is performed based on the realism of the computed simulations in terms of neutrino transport
and equation of state and on the completeness of the GW signal’. The selection includes
models with a variety of features in the GW spectrum and coincides with the choice for ongoing
supernova searches by the LIGO-Virgo-KAGRA collaboration. In particular, select models with
a variety of progenitor mass Myays at zero-age in the main sequence (ZAMS), which refers to
the mass of a star when it first begins to fuse hydrogen into helium in its core, marking the
start of its main sequence phase. Furthermore, unless specified all models have solar metallicity,
i.e. abundance of elements heavier than hydrogen and helium, and do not show signatures of
standing-shock accretion instability SASI. Except for model L15, none of the models coincides
with the models selected for the waveform calibration set used in Section 8.2.1. With this
choice, the injected waveforms are in practice completely uncorrelated to any information we
have used to train the CNN network. The procedure is similar to the one used for the blind
set of the previous test: we injected about 65000 waveforms uniformly in distance and sky
directions, from 100 pc to 15 kpec.

8.3 Methodology

8.3.1 Inception blocks and ResNet

In Section 4.3, we have seen that DL algorithms have emerged as a new tool also in the GW
field. These methods can perform rapid predictions since all the intensive computation is
diverted to the one-time training stage, which could make them orders of magnitude faster
than the conventional matched-filtering techniques (see Section 3.2.1). In addition, there are
no limitations in the size of the templates bank of GW signals, and even more, it is preferable
to use large data sets to cover as deep a parameter space as possible. Due to this fact, they
sparked the interest of several authors, who have built deep-learning algorithms to demonstrate
their power on specific examples, including CCSN [ 17, , ] (see Section 4.3).

As we have explained in Section 4.2.2, CNN is a specialized kind of DL algorithm to process
data that has a known grid-like topology and can learn to differentiate a variety of input
types due to its ability for pattern recognition [729]. With these ideas in mind, [?10] provided
clear evidence that, under relatively simplified conditions, deep CNN algorithms could be more

2Some of the models in the literature compute less than 100 ms after bounce or have a poor sampling rate.
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efficient in extracting GW signals from CCSNe than the current methodology. Therefore, we
aim to improve the neural network developed in [ 0], going deeper with convolutions to increase

accuracy while keeping computational complexity at a reasonable cost.

The most straightforward way of improv-
ing the performance of a deep neural network
is by increasing its size, which includes the
number of layers and the number of neurons

Filter
concatenation

per layer. Nonetheless, enlarging a network Conv3x3 T (SeyeEd
implies training a larger amount of parame- L T 1 I
ters and over-complicating the model, which \ Conv 1x1 Conv 1x1 Max Pool 3x3

increases dramatically the computational cost
and reduces the generalization ability of the
network, i.e. the network would be prone to
over-fitting. A fundamental way of solving
these issues would be to move from fully con-
nected to sparsely connected architectures, as
discussed in [710]. In this work, a sophisti-
cated network topology is built, the so-called Inception network, that tries to approximate a
sparse structure. The architecture is composed of blocks of convolutions, known as Inception
modules.

The input of each block is convolved in parallel by separate CNN layers with different
kernels, while the outputs of all the convolutions are stacked, as we can observe in Fig. 8-4. In
such a way, a sparse network is built without the necessity of choosing a particular kernel size,
but computational complexity increases drastically. To prevent a high computational cost the
authors introduce dimensionality reduction, i.e. 1 x 1 x 1 convolutions that reduce the depth
of the output. Note that we are taking the convention of height x width x depth as in Section
4.2.2. Thus, if we convolve our input w;, X h;, X d;, with f filter 1 x 1 x 1, stride s = 1 and
padding p = 0, according to Eq. 4.17 the output will be w;,, X h;, x f. Therefore, if f < d;, the
depth and the number of parameters will be greatly reduced. In later releases of the Inception
network, the authors explore further the idea of dimensionality reduction.

In [211], they explore other ways of factorizing convolutions in various settings, especially
to increase the computational efficiency of the solution without reducing the expressiveness of
the block. Firstly, the authors examine the factorization into smaller convolutions, where they
claim that 5 x 5 x 1 convolution can be factorized into two 3 x 3 x 1 convolutions since the
final output has the same dimensions, being the main difference the number of parameters.

A 5 x 5 x 1 convolution needs (5% x d;, + 1) X dyy parameters to train, while for two
3 x 3 x 1 convolutions it is necessary to train 2 x (3% X d;, + 1) X d,y parameters, which
is less computationally expensive. Secondly, they analyze the factorization into asymmetric
convolutions, such that e xcx 1 — {ex1x 1, 1 xe¢x 1}. Again, the outputs of both processes
have the same dimensionality but different amounts of parameters, (¢ x di, + 1) X doys >
2 X (¢ X1 Xdy+1) X dyy. Thus, in [311] the authors factorize 5 x 5 x 1 into 3 x 3 x 1, which
in turn are factorized by 3 x 1 x 1 and 1 x 3 x 1 convolutions, to lighten the calculations.

Another obstacle of deeper networks is the degradation problem, where with increasing
depth, accuracy gets saturated and then degrades rapidly. In [12]; this problem is approached
by introducing a deep neural network, called Residual Network or ResNet. This network can
learn the identity function using shortcut connections that skip one or more layers, which are
also known as “skip connections”. Therefore, the network is reminded every few layers how
was the input a few layers before, which can be translated into learning the identity function
with a simple demonstration. Furthermore, in [1”] different empirical results show that the
degradation problem is well addressed since accuracy gains are obtained from increasing depth.

NS

Previous layer

FIGURE 8-4: Inception module with
dimensionality reduction, adapted from [7/0].
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Due to the improvements in accuracy obtained with Inception network and Resnet, in [717]
authors explore the combination of these two architectures, while factorization is discussed in
[211]. As a result, they developed, among others, an architecture called Inception-Resnet v1
which is ~ 90 layers depth. It was demonstrated that the introduction of residual connections
led to a dramatic improvement in the computational speed while showing that Inception-Resnet
algorithms achieved higher accuracies with fewer iterations of the training phase.

Our problem is simpler than the task performed in [?17], since we only need to discriminate
between two classes: inputs that contain a GW CCSN signal with noise (event class) and inputs
that contain only noise (noise class). Hence, the need to increase the complexity of the CNN
in our case is due to the loudness of the noise power, rather than the number of the different
classes. As a consequence, we developed reduced (“mini”) versions of Inception v3, Resnet and
Inception-Resnet v1, using the original building blocks of those networks, but adapting them
to our needs and limiting the number of layers to < 30 to avoid over-fitting.

8.3.2 Mini architectures

Mini Resnet
Input
]
Convolution
Convolution
Av. Max Pool
Convolution
Convolution
Av. Max Pool
Dense

Input
Av. Max Pool
Inception v4 A

Av. Max Pool

Convolution
Inception v4 A

Mini Inception v4

Input
Convolution
Av. Max Pool

Mini Inception-
Inception-resnet A
Inception-resnet A
Inception-resnet A
Inception-resnet A
Inception-resnet C
Inception-resnet C
Inception-resnet C
Inception-resnet C

Av. Max Pool

Res net vl

FIGURE 8-5: Reduced or “mini” versions of Resnet, Inception v4 and Inception-Resnet vl for
the best performing architectures with minimal fine-tunning.

In this section, we present the reduced architectures, namely Mini Resnet, Mini Inception
v4 and Mini Inception-Resnet v1. Several variations of these architectures were explored and in
this work, we present the best-performing ones. For the development of the networks, including
the model definition, and the training and validation phases, we have used the Keras frameworks
[201], based on the TensorFlow backend [711]. We employ Adamax optimizer, with a learning
rate of 0.001 and we train each network for 20 epochs [117]. The activation function of all the
convolutional layers is ReLLU activation function, and we use binary cross-entropy loss function
and a sigmoid activation function for the output (see Section 4.2.1).

Excessive Max pooling hinders the learning process, as it might extract crucial information
that the consequent layers need. Therefore, we use a minimal amount of pooling layers, but an
optimized version would require further parameter reduction. In Figs. 8-5 we provide a scheme
of these networks and in the following, we present their main characteristics:

o Mini Resnet: it has a single “skip connection” (represented as an arch). This is because
when increasing the number of layers and “skip connections”, the performance of the
network decreased rapidly for short architectures (< 30 layers). This network has a total
of 381,390 parameters and a single epoch takes 31 s.
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o Mini Inception v4: we implement the block of Inception v4 A (see |

network has a total of 250,251 parameters and a single epoch takes 26 s.

] for details). This

o Mini Inception-ResNet v1: we implement the block of Inception-ResNet A. The modules
Inception-ResNet-B and Reduction-B are the most expensive blocks since the convolutions
inside them are 1 x 7x 1, 7x1x 1 and 7 x 7 x 1, so they are discarded for this work (see
[217] for details). Hence, we discard these modules to implement the reduced version of
this algorithm. This is the most complex network and the most expensive to train, as it
has a total of 522,346 parameters and a single epoch takes 43 s. In an optimized version,
Reduction blocks should be present to enlighten the computations.

Due to its high preliminary performance we shrink the number of parameters of Mini
Inception-ResNet by interspersing Inception-Resnet modules with Reduction-A blocks and fine-
tuning it. In the following, we describe the full-optimized architecture of Mini Inception-ResNet.

8.3.3 Optimized architecture of Mini Inception-Resnet

For the development of our optimized Mini Inception-
Resnet network, we employ Adam optimizer [’ 1°] with
a learning rate {r = 0.001 and € = 107% to avoid divisions
by zero when computing back-propagation, and ReL.U ac-
tivation function. We employ a batch size of 64 because
it is a good trade-off between computational complexity
and performance.

Despite facing a classification problem with two
classes, the approach used in [!10] is to employ the cate-
gorical cross-entropy loss function with a softmax activa-
tion function in the last layer, i.e. the problem is treated
as a multi-class classification problem with two classes.
In this work, we simplify this approach by using a binary
cross-entropy instead and a sigmoid activation function for
the output, i.e. we address the problem as a classification
problem with a positive class (event class) and a negative
class (noise class). Therefore, the output of the network
is a probability vector #, which contains the probabilities
of the template belonging to one class or another. The
classification task is then performed according to a pre-
defined threshold 6*, i.e. the template will be classified as
event class only if this probability overcomes 6*.

In [213], the authors build 5 different types of
blocks, namely Inception-ResNet-A, Inception-ResNet-B,
Inception-ResNet-C, Reduction-A and Reduction-B. As
we mentioned in the previous Section, to alleviate the
computational complexity of the model we use Inception-
ResNet-A and Inception-ResNet-C. We also shrink the
number of parameters of our network by interspersing
Inception-Resnet modules with Reduction-A blocks, as
presented in Fig. 8-6.

The Inception-ResNet-A block (see Fig. 8-7) is equiv-
alent to the Inception module shown in Fig. 8-4. It is

Input (256x64x3)

256x64x3

l

Conv 7x7 (f=32, s=2)

Output: 29x125x32

|

Reduction-A

Output: 15x63x52

|

2xInception-resnet-A

Output: 15x63x72

!

Reduction-A

Output: 8x32x92

|

Inception-resnet-A

Output: 8x32x102

|

Reduction-A

Output: 8x32x112

l

2xInception-resnet-C

Output: 4x16x142

l

Reduction-A

Output: 4x16x152

l

Inception-resnet-C

Output: 2x8x172

|

Reduction-A

Output: 2x8x182

|

Sigmoid

Output: 1

FIGURE 8-6: The overall schema

of the Mini Inception-Resnet
network.

interesting to note that the Max Pooling layer is substituted by the “shortcut connection”, and
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the 5 x 5 x 1 convolution is factorized by two 3 x 3 x 1 convolution layers. Moreover, the
Inception-ResNet-C block (see Fig. 8-8a) is equivalent to the Inception module without the
5 x b x 1 convolution layer. Note that the Max Pooling layer is again replaced by the “shortcut
connection”, and the 3 x 3 x 1 convolution is factorized by 1 x 3 x 1 and 3 x 1 x 1 convolution
layers. The module Reduction-A (see Fig. 8-8b) shrinks the number of parameters thanks to a
3 x 3 x 1 Max Pooling layer.

‘ Relu activation ‘

y
Conv 1x1
(f=10, s=1)
Conv 3x3
Conv 3x3 =10, s=1
Conv 1x1 (f=10, s=1)
(f=10, s=1) Conv 3x3
Conv 1x1 (f=10, s=1)
(f=10, s=1) 4
Conv 1x1 ‘
(f=10, s=1)

‘ Relu activation ‘

FIGURE 8-7: The schema for Inception-ResNet-A, adapted from [7]7].

Due to its deepness, the resulting Mini Inception-Resnet architecture is much more flexible
than the one presented in [10]. As we have discussed previously, increasing the number of lay-
ers might be counterproductive and would drastically increase the computational complexity
of the network. Nonetheless, these two concerns are solved with the incorporation of “shortcut
connections”, which allows the input not to be forgotten, and a factorized grid-like architec-
ture that alleviates the computational complexity of the CNN, on top of avoiding over-fitting.
Thus, Mini Inception-Resnet is ~ 30 times more complex, as the previous network has ~ 6000
parameters and the optimized Mini Inception-Renset has ~ 99,000 parameters.

‘ Relu activation ‘ Filter concat
Conv 1x1
(hlogi Conv 3x3
Conv 3x1 Max Pool 3x3 Conv 3x3 (&104 s=1)
(f=10, s=1) s=1 =10, s=1
L 4 (s=1) (f=10, s=1) Conv 3x3
(=10, 5=1) conv1x3 B
(f=10§ s=1) Conv 1x1
Conv 1x1 (f=10, s=1)
(f=10, s=1)

Filter concat

‘ Relu activation ‘

(A) The schema for (B) The schema for
Inception-ResNet-C. Reduction-A.

FIGURE 8-8: Schematic blocks from original Inception-Resnet, adapted from [7]7]

8.3.4 Training methodology

In this section we describe how we convert training images into categorical data for the identi-
fication of CCSN signatures in Gaussian and real noise, solving our binary classification task.

As in [110], we train the network using curriculum learning, where we start training with the
easiest data sets, and then, gradually, the task difficulty is increased. We note that, although
our set of phenomenological waveforms is constructed using a series of fixed distances, the

133



Chapter 8. Enhancing Unmodelled Core-Collapse Supernova Searches 8.4. Results

SNR follows a statistical distribution resulting from the random process used to generate the
waveforms, for each of these distances (see Sect. 8.2.1). In practice, instead of using the distance,
we define data as a set of inputs whose SNR is fixed in a pre-defined range. In this way, the
difficulty of the data sets increases with decreasing SNR. It is important to note that it is key
to obtain a high performance when learning easy examples at high SNR, to be able to capture
the hard examples later on. The data sets are balanced so that 50% of the templates belong
to the event class and 50% to the noise class. Because the present network is much larger than
that in [?10] where we had balanced training and validation sets, here we use 75% of the data
for training and 25% for testing.

The previous work [710] measured the performance of the neural network in terms of the
efficiency nonw, equivalent to the TPR (Eq. 5.4), and the false alarm rate FARcnN

misclassified noise rp
all classified events ~FP + TP
where these metrics are presented in Table 5.1. In this research, we also measure the

performance of our network with the receiver operating characteristic curve (ROC curve), which
is created by plotting the TPR against the FPR (Eq. 5.5).

FARcyy = (8.1)

8.4 Results

8.4.1 Comparison of mini architectures in Gaussian noise

To train and validate the networks, we use the data set described in [}10], composed of wave-
forms ranging in the interval SNRe [8,40]. This choice allows us for a direct comparison with
[710] and to make an informed decision on the choice of the architecture to optimize. In Fig.
8.3.2 we plot efficiency noyny and the false alarm rate FARqo v as a function of the SNR for the
three architectures presented in 8-5. Note that these networks have not been fully optimized
but are rather a proof of concept for the final design of the full architecture.

Efficiency and FAR for different architectures

100.01 —————
—— F12

97.5 /

95.0 - 7 10
s / o 2
S 92.5 X —e— Mini Inception-Resnet v1 <
~ P - 2
2 90.01 o / M?n! Inception v4 6 z
é S Z Mini Resnet o

o b

87.5 1 /A\ 4

85.0 - / i S

// .x\\\ r2
82.5 1 /
T -———- *-—-—-——-0-——0—-——-0 [0
8 10 12 15 20 25 30 35 40
SNR

FIGURE 8-9: nenn (solid lines) and FARcny (dashed lines) as functions of SNR computed
during the validation process for architectures presented in 8.3.2

As we can observe, Mini Inception v4 (pink) and Mini Resnet (orange), have a similar
performance in terms of efficiency nenn, but Mini Inception v4 has a lower FARcyy. Due to
its complexity and generalization ability, Mini Inception-Resnet v1 acquires the lowest FARcn N
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for large SNR, and it has the largest nonyn, except for low SNR. Due to its better performance,
we focus only on the Mini Inception-Resnet v1 network, which is optimized in the next Section
and used for the different tests presented in the rest of this work.

8.4.2 Comparison with previous results in Gaussian noise

In this subsection, we will describe the experiments performed with injections in Gaussian
noise. To train and validate Mini Inception-Resnet v1, we use again the data set described in
Section 8.2.3, composed of waveforms ranging in the interval SNRe€ [8,40]. This choice allows

for a direct comparison with the results in [710] and it helps to improve the present software
architecture.
To improve the performance of [710] it is necessary to minimize F'AR¢yx while maximizing

Nenn- Therefore, from Eq. 8.1 we wish to minimize FP instead of FN, i.e. we need to penalize
the algorithm when it classifies noise class as event class. To be able to penalize the algorithm
we implement weighted binary cross-entropy, where we assign weight w to the noise class and
weight 1 to the event class. We vary this parameter between w € [1.0, 3.5], where w = 1 would
be equivalent to a normal binary cross-entropy and w = 3 would mean that it is 3 times more
important to correctly classify the noise class rather than the event class. Nonetheless, in this
work, we only present the results of w € {1.0,2.0} to be able to compare the best working case
(w = 2.0), with the base case (w = 1.0).

Moreover, the algorithm returns the probability 6 that a certain template belongs to the
event class. We want this probability to be high without dramatically decreasing oy . There-
fore, we define the decision threshold #* in the range [50%,85%]|; when a given probability
exceeds this value, we will classify the template as an event, otherwise, it is classified as noise.
Therefore, we perform different experiments to tune w and 6. In figures 8-10 and 8-11, we

obtain noyy and FARony for w = {1,2} and 6 = {50%, 65%, 85%}.

Efficiency and FAR for different 8" threshold for w=1.0
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FIGURE 8-10: nony (solid lines) and FARcny (dashed lines) for different SNRs computed
during the validation process for w = 1.0 and different 6* thresholds.

In Fig. 8-10, we report the high performance of low 6 in terms of 1oy, paying the price
in even relatively high FARcny. The opposite behaviour occurs for high 6. To be able to
improve the probability distribution 6, we will penalize the loss function with w = 2.0. This
means that the impact of correctly classifying noise is twice higher than correctly classifying
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events, as we show in Fig. 8-11 where the FARsyy is minimized with respect to Fig. 8-10
with some cost in neyy-.
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FIGURE 8-11: nony (solid lines) and FARcny (dashed lines) for different SNRs computed
during the validation process for w = 2.0 and different 6* thresholds.

Notice that w will penalize the learning, so if the network is learning correctly the results
would be enhanced, but it will lead to poor results otherwise. This is evident when we compare
the results shown in the figures 8-10 and 8-11: if we increase w we have less performance in
terms of noyy, with little gains in FARony. To have a comparison between Fig. 8-10, 8-11
and the results from the previous paper [11(], we plot the validation results of Mini Inception
Resnet for w = {1,2} in Fig. 8-12. Since we want to obtain a trade-off between neyy and
FARcnN, we settle w = 2.0 and 0* = 65%.

The main improvement of our network with respect to [10] is the minimization of FARcn N
towards ~ 0% for SNR in range [15, 20], while maintaining the same ncyy. We note also that
the poor performance at low SNR is because this architecture is susceptible to the strong
presence of Gaussian white noise, as it is pointed out in [3/0]. Hence, the role of the deci-
sion threshold #* = 65% is two-fold. On one hand, with this decision threshold, we obtain
max (FARcny) ~ 4% for low SNR which is the upper limit obtained by the previous pa-
per [210]. On the other hand, 8* = 65% provides us with a fair trade-off between neyy and
FARcnN as we have discussed before.

In terms of speed performance, in a GPU Nvidia Quadro P5000 it takes 1h 18 min to train,
validate and test Mini Inception Resnet for this particular data set with 5 epochs for each SNR.
A great part of this time is employed in training the neural network, so with bigger data sets
the computational time will increase. Nonetheless, once the network is trained, the prediction
is performed within seconds.

8.4.3 Training and validation in real O2 noise

In this section, we describe the experiments performed using the training set (section 8.2.4).
This set contains injected phenomenological signals in real noise in the interval SNRe [1,232].
As before, for each data set at a given SNR, we calculate FARcny and noyy during the
validation. We also vary the penalization parameter w € {1,2}, and as in the previous Section
we choose w = 2 and the decision threshold 6* = 65%.
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FIGURE 8-12: figure
nenn (solid lines) and FFARcny (dashed lines) as functions of SNR computed during the
validation process of w = {1,2}, with 6* = 65%, and [10], where 0* = 50%.
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FIGURE 8-13: nony (solid line) and FARcny (dashed line) for SNR in range [1,232], for
w = 2.0 and 0* = 65%. These results are obtained from validating 25% of the data that we
have not trained on.

For the network to learn correctly the input, it is crucial to perform a smooth “curriculum
learning”. Due to the difficulty of the data set, we separate the event templates into bins of size
N and noise templates are packed accordingly. We performed the training for different N but
a better trade-off between noyy and FARqoyy was observed for N = 30,000, which provided
a smoother transition between SNR bins. Therefore, in Fig. 8-13 we show the results of the
validation having fixed N = 30,000, 0* = 65% and w = 2.

In Fig. 8-13 we note that noyy is ~ 98% above SNR = 32 and below this value, noyy
starts decreasing. Instead, FFARcny is ~ 0% but increases for SNR < 20. For lower SNR
values the method tends to show an erratic behaviour, that we foresee due to the statistical
structure of the real noise.

This procedure is rather fast. In terms of speed performance, in a GPU Nvidia Quadro
P5000 it takes 2h 21 min for Mini Inception-Resnet to train and validate for this particular
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data set, but only 10 min to predict the blind set and test set. The time increase in the training
phase is because now we set the number of epochs to 10 instead of 5 to guarantee a better
convergence of the network’s trainable parameters.

8.4.4 Testing in real O2

In this section, we present the re-
sults obtained when we used the
network trained and optimized in
the previous Section on the data
of the blind set (section 8.2.5) and
the test set (section 8.2.6). The
network has not been trained by
any of the images of these two
sets so they can be used for the fi-
nal test of the performance of the
network. The signals injected in
the blind set correspond to wave-
forms generated by the same pro-
cedure used to generate the train-
ing set, while the injections in
the test set correspond to realistic
CCSN waveforms.

In Fig. 8-14, we report the
histogram of the injections in the
real noise. Such a plot shows the
robustness of the decision thresh-
old #* = 65% even in the case of
real detector noise.

In Fig. 8-15 we plot the ROC
curve and we calculate the area
under the curve (AUC).

We note the high perfor-
mance of the test set (AUC=0.79)
compared with that obtained
for the blind set (AUC=0.90).
Even if we only trained our
network with phenomenological
waveforms from the template
bank described in Section 8.2.1,
such waveforms mimic the be-
haviour of the test set described
in 8.2.6, which is the main reason
behind such good results.

Another interesting graph that
shows the resemblance between
the blind set and test set is Fig.
8-16a. Here we plot noyy as a
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FIGURE 8-14: Histogram of real detector noise and
injections in real-time as a function of the probabilities
predicted by Mini Inception Resnet. The vertical line
represents the chosen decision threshold 6* = 65%. Given
the counts of the ith bin c¢; and its width b;, we define the
probability density as c¢;/ (XN ¢; x b;), where N is the total
number of bins of the histogram.
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FIGURE 8-15: Performance of our neural network for the
blind set and the test set for {w, N,0*} = {2,30000,65%}.
AUC is presented in the legend of the plot.

function of the distance. As we can see, at short distances, there is a difference in efficiency
between blind set and test set of ~ 10%, but when we increase the distance, they seem to reach
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a lower limit at noyy =~ 60%. In Fig. 8-16b we also plotted ncyy against SNR. For low SNR,
the difference in efficiency noyy in the two cases, blind set and test set, is around 10%, while
for SNR > 15 we obtain the same efficiency. These final results assess the robustness of this
method to detect CCSN signals embedded in the real noise.
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FIGURE 8-16: Performance evaluation computed during the testing process for
{w, N, 0*} = {2,30000,65%}.

8.5 Discussion

The search of CCSN signals is carried by an algorithm whose architecture trains 98,997 param-
eters, significantly more than the 3,210 parameters taken into account in [110]. This implies
an increase in the network complexity by a factor of 30. We trained the Mini Inception-Resnet
using about 26,000 images corresponding to spectrograms of phenomenological waveforms in-
jected in real noise of the three detector network LIGO-Virgo during O2, and a similar number
of images without signals. We used the curriculum learning with decreasing value of the SNR
for the training. The significant differences with [210] are:

- the increase of the training images by a factor ~ 10,

- the extended variability of the injected waveforms, to mimic the behaviour of the results
from the CCSN numerical simulations,

- the novel waveform parametrization for the frequency evolution,
- the use of real detector noise instead of Gaussian one,
- images are no longer built by applying a SNR threshold by ¢cWB.

Firstly, we developed three different architectures to improve the detectability of a GW
signal from CCSN: Mini ResNet, Mini Inceptio v4 and Mini Inception ResNet v1. After the
first preliminary results, we decided to fine-tune Mini Inception ResNet v1 due to its better
performance. Secondly, to compare the efficiency of this new method with previous results,
we run the optimized version of the Mini Inception-Resnet network with the same setup as in
[210]. The validation step shows that with the appropriate choice of parameters (6* = 65%
and w = 2) we minimize the FARcyy towards ~ 0 % almost maintaining the same efficiency
neny for the range of SNRe [15, 20].

Then, we tested this method by injecting signals in the noise data of the LIGO-Virgo network
taken during the second observation run. We have applied this analysis method to detect two

139



Chapter 8. Enhancing Unmodelled Core-Collapse Supernova Searches 8.5. Discussion

classes of signals. The first one is a blind set composed of the same phenomenological templates
having the same analytical structure as those signals of the training set. The second one is
based on 3-dimensional realistic numerical CCSNe simulations available in the literature.

In the validation process, carried on using the dedicated 25% of the training set where signals
are uniformly distributed in distance between [0.2, 15] kpc, we obtain about 80% efficiency with
a false alarm rate of about 5% for SNR= 16, see figure 8-12.

When applying the same method trained with phenomenological templates to the case
of realistic GW signals from 3-dimensional numerical simulations (test set), we still obtain a
reliable performance. Overall, when compared to the case of the blind set, the efficiency at
SNR > 15 is very similar while at lower SNR we observe a reduction of less than 10%, see figure
8-16a. The satisfying agreement is an indication that our phenomenological template generator
is mimicking the main features observed in realistic CCSN and therefore, it supports the choice
of this kind of template to train CNNs. Moreover, the high performance of the network for
both testing data sets implies a high generalization ability, meaning that the network is not
prone to over-fitting. However, the decrease in efficiency at low SNR could be an indication
that some of the features of CCSN are not perfectly captured by the templates, for example,
the variability of the waveform amplitude for the duration of the signal (we consider that is in
average constant) or the presence of low-frequency components associated with SASI. Future
work could incorporate these two features to improve the performance of the search method.

One of the advantages of the newly developed phenomenological templates is that they
contain information about the distance to the source, which allows us to study the performance
of the blind set with respect to the distance and to compare directly with the results of the test
set. Concerning the distance, the efficiency shows in general a quick drop at ~ 2kpc followed by
a gentle decline, falling to about 60% at 15kpc. This contrasts very much with the behaviour
for the SNR that shows a steep decline at SNR, ~ 15. The reason for this difference is that, at
a given distance, there is some variability in the amplitude of the possible waveforms, which
tends to smooth out the results over a range of distances. We expect that at larger distances the
efficiency will keep decreasing towards zero, but we did not see this effect within the limited set
of distances used in this work. The performance with the realistic test set is somewhat worse
than with the blind set, but the difference in efficiency is never larger than 10%, in agreement
with the results obtained as a function of SNR.

We note that these results have been obtained using realistic waveforms from 3-dimensional
models, which are in general about a factor of 5 weaker than those of 2-dimensional simulations.
It is also important to notice that we have used real O2 noise, so the results are expected to be
better for the current detector configuration, which recently ended O3, and will improve further
once the final sensitivity of LIGO, Virgo and KAGRA detectors will be achieved. These two
factors make it difficult to compare our results with those obtained in other papers using injec-
tions based on 2-dimensional simulations, simulated Gaussian noise and/or ultimate detector
sensitivity [217, 212, 211].

In fact, for the case of neutrino-driven explosions in [ 7] they use a set of waveforms from 55
numerical simulations (mixed 2-dimensional and 3-dimensional) to perform about 10° injections
with random orientations in the sky in the range ~ [0.2,200] kpc. Using a LIGO-Virgo-KAGRA
network with optimal sensitivity, they obtain an efficiency of 50% at 4 kpc with a false alarm
probability of 0.1%. These results are similar to our work, however, a closer comparison is
difficult since they are using an interferometer network with design sensitivity.

The work of [217] focused on using Genetic Programming algorithms to improve the sig-
nificance of a single interferometer detection. For that purpose, they trained the algorithm
making injections of CCSN waveforms in real detector noise from the LIGO-Virgo O1. For the
case of neutrino-driven explosions, the algorithm is trained using waveforms from 2-dimensional
and 3-dimensional CCSN simulations (8 in total) injected at different locations in the sky and
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distances in the range ~ [1,7.5] kpc (about 15,000 injections in total). Similarly to [?10], they
employed cWB pipeline. For waveforms from 3-dimensional simulations (not the same as ours),
they get an efficiency of 86% at 3.16kpc with 12% of false negatives. Again, the results are
in the bulk of our numbers but it is difficult to compare since they are using a network with
lower sensitivity than ours and the injections that are comparable to ours amount only to 4
different signals. Their results show that a detection with high significance (3-0) for signals
with an SNR as low as 10 is possible. However, it should be noted that, in their case, the same
waveforms were used for training and testing.

Finally, [7! ] utilized a CNN trained using 5 waveforms from neutrino-driven CCSN 3-
dimensional simulations injected in Gaussian noise considering the spectral sensitivity curve of
Virgo during O3. The training was performed with about 25,000 random injections in the sky
at distances between ~ [0.01, 10] kpc. To test the robustness of the method they also accounted
for short-duration detector noise transients, known as glitches, in simulated data. When using
different waveforms for training and testing, they obtain an efficiency of ~ 90% of all triggers
with a ~ 10% false alarms (all distances in the range). When using the same waveforms for
testing and training they observe a drop in the efficiency, below 50%, for values of the SNR in
the range [11, 16], depending on the waveform.

Despite the differences with earlier works, overall our results seem consistent with other ML
approaches. The drop of the efficiency at SNR ~ 10 — 15 is common for all algorithms (except
for [217] that do not show this metric), which makes one wonder if there is some intrinsic
limitation of ML algorithms that prevent to get closer to SNR ~ 8, a typical value for optimal
template-matching algorithms. It could also be possible that more complex architecture or
training sets with different pixel resolutions might improve the efficiency of this method. These
are aspects that we would like to explore in the future.

8.6 Conclusion

We developed a new ML algorithm to further improve the detectability of a GW signal from
CCSN, following the path traced in [!10]. Regarding the applicability of our method for the
GW detection, we have considered a detection threshold, 8* = 65%, that results in a FARcnN
of about 5% at SNR ~ 15 (or a FPR of ~ 10% at TPR= 50%). These values could be
appropriate for an observation with high confidence of an event in coincidence with a neutrino
signal. In those cases, the neutrino signal is expected to be bounded within 20s during the
initial SuperNova Early Warning System (SNEWS) alert [ 17] and very likely well within 1s in
the detailed analysis of high sensitivity neutrino detectors such as Super-K [215]. If the method
were to be used in all-sky non-triggered searches, the range of values of false alarm rate needed
to make a detection with high confidence could be achieved by using values of 8 very close to
100%. The efficiency of the algorithm in this regime is something that could be explored in
future work. Moreover, these results are promising for future detections of GWs from CCSN
because the network allows us to observe more than half of the events within 15 kpc.

This work has multiple possible extensions. At present the entire data processing is rather
fast: the training and validation phase, performed in the real detector noise, is done in 2 hours
and 21 minutes using a GPU Nvidia Quadro P5000, while predicting the test set takes 3 ms for
each 2 s long image. Given that we take advantage of the Keras/TensorFlow framework, widely
used within the ML community, it should be easy to increase the complexity of our current
CNN or to incorporate the latest developments in ML algorithms, with a reasonable increase
in the computational cost of the signal search. Furthermore, we could increase the number of
classes to be able to detect other GW sources with the same architecture.

In the future, this algorithm presented here will be compared under realistic conditions
with the methods currently in use within the LIGO-Virgo collaboration to evaluate the real
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advantages of the method. While this line of research will be extended to O3, it is also important
to improve the current phenomenological waveforms, as they have several limitations:

1.

they do not include polarization, so they can be used as a prediction of the strain at one

single detector, but cannot be used properly for networks of detectors.

. they only contain the contribution of the g-mode to the signal but not additional modes
that are expected to appear, such as SASI.

the parameter space and calibration used was based on a limited set of simulations and

applied to a limited set of parameters being, for many parameters, just best guesses.

Therefore, we are currently extending this effort to produce phenomenological waveforms
that overcome these issues, i.e. ccphen v4. In Fig. 8-17 we show the time domain representation
and the time-frequency representation of the catalogue waveforms (top row, model TM1 on
the left and model mesa20_v_LR on the right), as well as their optimized phenomenological
waveforms (bottom row).
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FIGURE 8-17: Catalog waveforms (top row) with their optimized phenological waveform from
ccphen (bottom row) represented in time and time-frequency domain.

On one hand, the ccphen waveform with the g-mode in Fig. 8-17c can capture the general
frequency trend of the model TM1 present in Fig. 8-17a, but is not as spread in frequency and
it cannot reproduce the final peaks of the catalogue model. On the other hand, the ccphen
waveform with g-modes and SASI in Fig. 8-17d captures the general frequency content of
the g-modes and SASI of model mesa20 v LR in Fig. 8-17b, but it lacks complexity in its
frequency components and it does not match the start time of SASI of the catalogue waveform.

We expect that this improvement in the generation of phenomenological waveforms will
enhance the interpolation abilities of our neural network.
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Chapter 9

Enhancing Modelled
Intermediate-Mass Binary Black Hole
Searches

This is an unpublished chapter, where I led the pre-processing of the data, the fine-tuning of
the models, the performance evaluation and the post-processing.

9.1 Introduction

The formation of supermassive black holes (SMBH) is not yet fully understood, despite their
presence in nearly every galaxy, including the Milky Way [210, 217]. Although SMBHs could
grow to their tremendous size over billions of years through fast accretion rates, SMBHs with
masses of 10 M have been discovered in the early Universe at redshift z > 6.5, suggesting
that other mechanisms might be involved in their rapid formation [ 19].

As stellar evolution predicts, stars with a helium core mass in the range ~ 32 — 64 M, are
subject to pulsation pair instability, while stars with helium core mass in range 2 50 — 130 M,
leave no remnant due to pair-instability supernovae [/, ]. Because of this mass gap, a
plausible explanation for the formation of SMBH is the hierarchical mergers of intermediate-
mass black holes (IMBH) [21%, 17]. Therefore, direct observation of IMBH populations would
strengthen the possible evolutionary link between stellar mass black holes and SMBH.

The Advanced LIGO [)] and Advanced Virgo (V1) [(], detected 11 candidates during O1
and O2, none of which were IMBH candidates [! |, , ]. Indeed, the detection of IMBHs
in GW searches remained elusive until the detection of GW190521 during O3 [12, 17]. The
estimate of the individual mass components of GW190521 was (my,ms) = (85714, 66757) Mg,
being the mass of the remnant M; = 14277 Mg, and making it the first conclusive direct
observation of an IMBH [357].

Despite falling in the sensitivity band of current GW interferometers, IMBH searches are
challenging as few cycles of the signal can be observed with current ground-based detectors.
State-of-the-art searches employ weakly modelled algorithms, such as cWB (see Section 3.3.3) in
its IMBH configuration [715, 125], or modelled algorithms using matched-filter-based techniques
(see Section 3.2.1) [17]. Nonetheless, matched-filtering approaches are well-known for being
computationally intensive, resorting to simplifications to reduce the computational cost, which
might reduce their candidate significance [77]. Furthermore, IMBH searches are also hampered
by glitches (refer to Section 2.4.3 for an overview).
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As we discussed in Section 4.3, to enhance the sensitivity of current searches, a novel ap-
proach is to combine them with ML algorithms, fostering a synergistic relationship. With this
idea in mind, it has been proposed to optimize matched-filtering with ML [207], and to optimize
the performance of cWB providing information about the background [205, , , ]. Ina
similar line of thought, in this work, we propose to enhance matched-filtering-based algorithms
utilizing information provided by matched-filtering but performing a more flexible search of
GW signals. Therefore, we employ the resulting triggers from the matched-filtering search
(presented in Section 3.2.4) to train an ML algorithm and distinguish between glitches and
simulated IMBH signals in O3 real single-detector data, using H1, L.1 and Virgo (V1), (see
Section 9.4.3). Afterwards, we construct a background of time shifts and assess the perfor-
mance of the method with simulated IMBH signals (see Section 9.4.4). It is relevant to note
that while this particular investigation focuses on IMBH, this method can be extended to other
CBC signals.

9.2 Data

In Section 3.2.1 we provided an overview of the basic matched-filtering method, and in 3.2.4 we
described how a trigger is generated by the matched-filtering algorithm used in this research,
GstLAL, when a template waveform is cross-correlated with a signal. It often happens that
different templates “match” an unknown signal buried within the time series s(¢). As a result,
N triggers are “matched” or associated with such unknown signal within a finite time window
At, which we refer to as cluster of triggers. After recording all such triggers, GstLAL selects
the loudest SNR trigger within the cluster (clustering step), which we refer to as the centroid.
Afterwards, these centroids are ranked according to GstLAL likelihood function A to claim a
candidate [127].

Given the morphological time-frequency differences between glitches and GW signals, we
expect the “matched” templates to exhibit a meaningful structure to differentiate them with ML
methods. We refer to this inherent structure as cluster tracks, or simply tracks. In particular,
we are interested in tracks generated in single-detector, right after the matched-filtering step.
Hence, to maintain as much information as possible, we reproduce the IMBH search of GstLAL
during O3 [17], terminating the process before the clustering step.

This work aims to utilize supervised learning (see Section 4.1) to differentiate GW from
glitches. Thus, we construct two different data sets: a controlled data set which contains
well-known glitches and simulated IMBH signals, referred to as known data set; and a second
data set which contains real GW signals and other a priori unknown signals, which we use
to construct an accidental background of time shifts (see Section 9.2.4 for details), referred to
as unknown data set. While the first data set is employed to assess the performance of the
method, the second data set is used to understand the significance of the ML statistic.

In the following subsection, we describe the simulated IMBH signals, and the different glitch
classes present in the known data set. In Section 9.2.2 we describe the clustering procedure
utilized for defining a track. In Section 9.2.3 we show the patterns generated by an IMBH
simulation and a glitch through the template bank, and we define the feature vector associated
with the triggers that will be the input to the ML model. Last but not least, in Section 9.2.4
we discuss how we construct the accidental background.

9.2.1 Injections and glitches

Since we want to distinguish between IMBH signals and glitches in a controlled environment,
namely the known data set, we inject simulated IMBH signals in O3 real detector noise, la-
belled as the Injection class. For this aim we use IMRPhenomD approximant [)] with masses
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my € [50,400] My and my € [10,250] Mg, and dimensionless spins x1, x2 € [0,0.99], uniformly
sampled within the specified range with aligned spins. The distances are uniformly sampled
from the range d € [10,250] Mpc. The inclination is sampled from a uniform distribution, and
the sky-localization is randomized.

Furthermore, we select six different glitch populations from the data set of Gravity Spy
(see Section 6.2.1) during O3, namely Blip, Fast_Scattering, Koi_Fish, Low_Frequency Burst,
Tomte and Whistle (refer to Section 2.4.3 for details). Note that these glitches have been
selected with a Gravity Spy confidence > 90%, and they are chosen to have short and long
durations, a wide frequency contribution, and abundant occurrences in current ground-based
interferometers.

9.2.2 Clustering

As we discussed in Section 9.2 we employ the known data set, whose classes were defined in the
previous section. In this study, we are interested in exploring the generalization power between
the first and second half of the third observing run, namely O3a and O3b, respectively. For
this aim, we use the known data set from O3a for training, validation and testing (see Section
9.4.2), while the known data set of O3b is used to test this generalization power (see Section
9.4.3). In the following, we describe how the cluster tracks of these data sets were defined.
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FIGURE 9-1: A Fast Scattering glitch labelled by Gravity Spy. (Top) SNR of GstLAL tracks
as a function of time, where each point represents a template. tp, (orange) and t,.. (pink)
mark the beginning and end of the cluster, respectively, while toysier (red) indicates its centroid
given by Gravity Spy. (Bottom) Q-transform of the time series containing the Whistle
labelled by Gravity Spy.

- Known data set: Since we know the GPS time when an Injection or a glitch occurred,
we use it as the centroid of the cluster, t.yuster, and we select a window t,, = = At around
it. We have experimented with At € {0.05,0.1,0.2,0.5,1} s to find the optimal ¢,, of the
cluster since IMBH signals are short. It is relevant to note that while we experiment
with different t,,, once the algorithm has trained with a given t,,, this value is fixed for
validation and testing. We provide a thorough discussion on the selection of optimal ¢,
in Section 9.4.1.

- Unknown data set: Usually clusters have a centroid with the highest p, and a set of
neighbours with smaller p. For illustration, in the top panel of Fig. 9-1 we can observe
the SNR of a cluster with this behaviour. In a realistic setting, we do not know the
GPS time of the centroid of the cluster t.user a priori, so we define them following a
procedure similar to PyCBC [1175]. We order all the triggers according to their GPS time.
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Afterwards, we divide the whole observing run in windows of £1s, starting from the
beginning of the run. Within each window, we select the trigger with maximum p as the
centroid, so that teyuster = tmaxp- As before, we select t,, = £ At around ¢yyser to define
the cluster.

While the methodology outlined above provides a systematic approach to identifying and
analyzing matched-filtering clusters, it is a simplified approach with several limitations. One
significant caveat is the assumption that the trigger with the highest SNR within a given window
accurately represents the true centroid of a cluster, particularly in the unknown data set. This
approach may lead to inaccuracies if multiple signals or glitches overlap within the window,
potentially causing the algorithm to misidentify the centroid or miss other relevant triggers with
slightly lower SNR. Additionally, the fixed window size, although optimized for specific signal
characteristics like IMBH signals, might not be ideal for unexpected GW signals of unknown
length, leading to suboptimal clustering in some cases. These factors could introduce biases or
reduce the accuracy of the clustering, highlighting the need for further refinement and validation
of the clustering algorithm in future work.

9.2.3 Trigger tracks

As we mentioned in Section 3.2.4 when the maximum SNR p associated with a template is over
a certain threshold, it will produce a trigger with intrinsic parameters \;,; associated. In this
particular work, we reduce the single-detector \;,; associated with the ith template forming
the feature vector ¢,

¢i = {Pz‘y i, M1, Mg, Sz, Slz,i}y (9.1)

containing the SNR p, the consistency check £ (see Eq. 3.23), the masses of the progenitors
(my, my) and the z-component of their spins (£, &), respectively. As we mentioned before, an
unknown signal s(¢) might have an associated track, so to illustrate this scenario we show in
Fig. 9-2 the tracks generated by an Injection (Fig. 9-2a) and a Blip glitch (Fig. 9-2b) projected
in the mass and SNR. We show the O3 IMBH template bank as a function of the progenitor
masses my and mso, where every dot represents a template. We also colour the tracks, where
their colour is related to the maximum SNR, p. As we can see in Fig. 9-2a, the Injection
matches a concrete space in the low-mass region at p ~ 10, and a slightly sparse space in the
higher-mass region at p ~ 20. On the other hand, in Fig. 9-2b the templates matching the
Blip glitch are at p ~ 12, being sparse in the progenitor mass dimension. Assuming that the
distribution of GW and glitch tracks possess distinct underlying features, we can employ ML
methods to differentiate them.

9.2.4 Time shift and false alarm rate

As we discussed in Section 5.1, it is fundamental
for a search algorithm to evaluate the acciden-
tal background. Unlike in Chapter 8, where we
assess the number of FPs in the context of the
ML algorithm, in this chapter we also construct
a time-shifted background and evaluate the false

TABLE 9.1: Total time of search (Ts) for
different detector combinations, measured
in Years.

Time of Search (75)

alarm rate using Eq. 3.42. Since the offsets of H1L1 (no V1) 0.0000382
the time shifts should be large enough that each H1V1 (no L1) 0.1117765
slide can be thought of as an independent experi- L1V1 (no H1) 0.1338800
ment, we chose to slide L1 in steps of 3s, and V1 H1L1V1 0.5619618

in steps of 6s with respect to H1. We performed
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FIGURE 9-2: O3 IMBH template bank as a function of the progenitor masses in logarithmic
scale, where every grey point represents a template from the bank. Triggers associated with an
Injection or a Blip glitch are coloured according to the maximum SNR, p.

enough time shifts to produce 1,000 yr of data in triple detector coincidence. Afterwards, the
time shifts are binned according to their coincidence type and their time of background.

To minimize the FPs, the types of detector time coincidences analyzed in this work are
either double or triple. Using 3.42, it is necessary to properly measure the time of the search T
and the time of the background T;. If we are measuring the time in double-time coincidence,
for example, between H1 and L1, it would imply that V1 was down at that time (no V1).
Otherwise, if all detectors record data simultaneously, it is considered a triple-time coincidence.
In Table 9.1 we can see an overview of the time of the search T,. Since H1L1 (no V1) is
extremely small, it is computationally intensive to generate 1000 yr of time shifts. Thus, in the
interest of time and computational resources we focus on triple-coincident time as we expect a
better performance.

As in a standard search, to assess if two tracks are coincident, we only consider tracks within
the time coincidence window. For example, using the H1L1V1 time-coincidence, we can have
tracks that occur in all detectors simultaneously and tracks that occur only in H1 and L1.
Thus, we will have double coincident tracks, such as H1L1, during HIL1V1 time, as well as
triple coincident tracks in HIL1V1 during HIL1V1 time.

9.3 Methodology

In Section 4.3 we have discussed how the challenges in GW research require innovative solutions,
and how ML has emerged as a crucial tool for addressing them due to its adaptability and
transversality. Following similar thoughts to [207], where the authors seek to enhance current
state-of-the-art search algorithms with ML applications, we use the triggers generated by the
IMBH search of GstLAL during O3 to train a classification algorithm for multiple classes. In
this way, we output a statistic to differentiate between IMBH signals and glitches, providing
direct information about the nature of these populations.
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9.3.1 Feature vector

Under the assumption that different signals have different track structures, it is possible to learn
them with ML. Tracks have data structures known in ML as multi-instance representation,
where N feature vectors ¢;, also known as triggers, represent a given example. This implies
that each track may contain a different number of triggers for each example. Consequently, the
input length to our ML model changes from one example to another. This poses a limitation
because standard ML techniques only accept fixed-length inputs. As a proof-of-concept to
overcome this obstacle, we average all the feature vectors ¢; associated with a given signal by
weighting them with p, resulting in the following input feature

N . .
d = {p,€,m1, My, 51,51} where T = Z}lﬂ (9.2)
2im1 Pi
fori € 1,..., N the triggers associated with each signal. In this way, we give more weight

to the template that best “matches” a given signal. This weighted average enhanced the
performance of our ML model with respect to a standard average.

9.3.2 Tackling class imbalance

While we can simulate a large
number of GW signals, glitches
have a finite nature. Despite
their occurrence rate being ap-

TABLE 9.2: Original data set size before sampling

Hanford Livingston Virgo

proximately ~ 1min~!, some (H1) (L1) (V1)
classes of glitches are more com- Injections 85107 101307 54436
mon than others [!2]. For ex- Blip 2717 1701 1534
ample, in L1 there are > 104 Fast_Scattering 114 18589 -

Tomtes, while there are ~ 103 Koi_Fish 5147 4061 731
Whistles. In Table 9.2 we show  Low__Frequency_Burst 1523 109 3044
the original size of our train- Tomte 537 18619 674
ing and validation set, which Whistle 1946 95 246

is highly imbalanced. This is

problematic for classification ML algorithms, as heavily imbalanced datasets tend to be biased
towards the majority class to minimize their loss function. This may wrongly be interpreted as
a “good” performance, while in reality, the model is only learning a single class: the largest one.
Similarly to [2©7], to circumvent this issue we use undersampling or oversampling techniques:

- Undersampling: In our data set, the number of Injections performed is significantly
higher than the largest glitch class. Thus, we randomly sample this class to match the
size of the oversampled glitches.

- Oversampling: To oversample we use bootstrapping with replacement, which stochas-
tically resamples the existing data set allowing the same example to appear more than
once [351]. Using this method, we oversample all glitch classes to equal the size of the
largest glitch class.

While this method improved the performance of our ML method, it is important to realize
that bootstrapping with replacement does not generate new data nor gives new information
about the classes. If the original data set does not represent the class population, it will bias
the ML algorithm producing overfitting.

To avoid overfitting we use K-fold cross-validation [355]. This method partitions the data
set in K subsets or folds (see Fig. 9-3). The model is evaluated K times, using a different fold
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as validation in each iteration, while training on the rest of the folds. This allows for a more
robust estimate of the model’s performance, as it accounts for the variability in the data and
limits the potential for overfitting. In particular, we chose K = 9 as it is a trade-off between
computational complexity and performance.
As we mentioned in Section 9.2.2

we want to test the generalization foiq1 Validate
ability of the MLP (see Section
4.2.1) for O3a and O3b. Therefore,
we use the known data set of O3a for
the standard ML procedure of train-
ing, validation and testing, splitting
the data set into 80% for training, FoldK —1 Train Train
10% for validation and 10% for test-
ing with the K-fold cross-validation
method. Once we have tested in
known data set of O3a, we use the
whole known data set of O3b to test ~ FIGURE 9-3: Illustration of K-fold cross-validation.

the generalization ability of the MLP.

Train Train

Fold 2 Validate Train Train

Validate

Fold K Train Train Validate

il
11!

9.3.3 Training model

To differentiate IMBH signals from glitch classes (see Sections 2.4.3 and 9.2.1), we construct
an MLP (discussed in Section 4.2.1) for each detector, that inputs the feature vector ® (see
Eq. 9.2) and outputs a probability vector that indicates the likelihood for each class. The size
of this probability vector depends on the detector: we distinguish 7 classes for H1 and L1, but
6 classes for V1, as Fast_Scattering class is not present in that detector.

We implemented the MLP structure in PyTorch [00]. After several experiments, we se-
lected the best-performing architecture from our results: it consists of 3 hidden layers of 350
each, using the ReLLU activation function [107], except the output layer that uses Softmax ac-
tivation function, since it is a multi-class task (see Section 4.2.1). This MLP architecture is
common for each GW detector, but they have been trained separately, i.e. it is a single-detector
classifier. To optimize the networks we use cross-entropy loss function, and Adam optimizer
[215]. Moreover, to adjust the number of epochs and avoid overfitting we implemented an
early stopping algorithm [357]. We define an epoch as the number of times the network has
passed through the whole training and validation data set. Thus, the early stopping algorithm
calculates the difference in validation accuracy A, between the current epoch, e, and the best

epoch, e”*'. The training process finishes if
Ae i ebest < 9 3
| val val | > 6 ( . )

during 150 epochs, with ¢ = 0.0001. For the learning rate, we use an adaptive learning rate
built-in the PyTorch function ReduceLROnPlateau. Setting the initial learning rate to 1073,
if the validation accuracy remains constant after 100 epochs, the learning rate decreases 10%.
The combination of these methods proved to increase the performance while decreasing the
time needed for fine-tuning.

9.3.4 Time coincident tracks

Even though the MLP receives direct information from the Injection class and various glitch
classes, misclassifications are still common due to the simplicity of the feature vector (see Section
9.3.1). Nonetheless, if a potential GW signal is detected in multiple detectors, the likelihood of
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it being of astronomical origin increases significantly. Hence, it is standard in GW searches to
evaluate triggers that happened within the light time travel between detectors: 10 ms between
H1 and L1, 27ms between H1 and V1, and 26 ms between L1 and V1. An additional 5ms is
considered for statistical fluctuations [1(0].

For the Injection class of the known data set, we can identify coincident tracks because
we have access to the ground truth. However, for the glitches of the known data set and the
unknown data set itself, this information is not available a priori, so we need to define criteria for
when two tracks are time coincident. In a standard matched-filtering search, a time coincident
trigger occurs when the same template triggers in different detectors within the light travel
time between them.

In this work, the approach is inherently different, as we do not deal with individual trig-
gers but with averaged tracks. Thus, two tracks from different detectors are considered time
coincident if the average time of the triggers within each track falls within the light travel
time and time fluctuations. Nevertheless, even if two tracks are time coincident, there is no
guarantee that they originate from the same signal. Therefore, two tracks are only considered
time coincident if they have at least one common trigger. If tracks from different detectors
coincide in time, we assign to the coincidence a probability equal to the harmonic mean, one
of Pythagorean means [175, |, of each trigger, relabelling our statistic for N detectors as

Pinj = N/(Q_ Pinjs) (9-4)

where P,,; is the probability of being an Injection (see Section 9.2.1 for a description). It is
important to note that the MLP performs a single-detector inference, and the time coincident
step is computed independently afterwards. In future works, it would be interesting to provide
the full information of the time coincident tracks to a ML algorithm. This integration could
enhance the model’s ability to distinguish GW signals from glitches.

9.4 Results

In the present Section, we show the results of the performance of the MLP model with H1
data. The results for L1 and V1 can be found in the Appendix A.5. Firstly, in Section 9.4.1, we
describe the selection of the time window t,, for the known data set of O3a, i.e. the controlled
data set of O3a composed of simulated GW signals and well-known glitches. Afterwards, in
Section 9.4.2, we show the results of the training and validation with the previous data set. In
Section 9.4.3 we test the model with the known data set of O3a and O3b. In Section 9.4.4 we
assess the significance of the ML inference with the accidental background of time shifts.

9.4.1 Selecting a time window

As mentioned in Section 9.2.2, we explored different time windows t,, for each GW detector,
namely H1, L1 and V1. To evaluate the performance of the algorithms without fine-tuning
them we use the ROC curve, which is represented as the TPR as a function of FPR [200]. A
relevant point is that our task is a multi-class classification, so to compute the ROC curve,
which is usually employed in binary classification, we need to reduce our problem to a pairwise
comparison, i.e. Injection class (positive class) against all other classes (negative class).
Furthermore, it is custom in ML to calculate the area under the ROC curve as an evaluation
metric, since models with a larger area under the curve have a better performance. However,
in the field of GW, it is required to know the performance of the model at low FPR as we
want to minimize the number of FPs when claiming detection, i.e. the number of glitches
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FIGURE 9-4: ROC curve for different time windows t,, in H1, i.e. TPR as a function of FPR

in logarithmic scale. The positive clas

s is Injection class, while the negative class is any of the

other classes. (Top) Testing in the known data set of O3a. (Bottom) Testing in the known
data set of O3b. Note that the dashed line indicates a random guess.

incorrectly classified as GW signals.
in range [0.1,0.9] with a spacing of 0
a given probability exceeds this value

For this aim, we select a grid of decision thresholds 6*
.1 and in range [0.9,1.0] with a spacing of 0.01. When
, we classify the input as a positive, i.e. Injection class,

otherwise, it is classified as negative, i.e. any other class. As this grid of decision threshold is
not usual in ML, the area under the curve has a different magnitude, so instead we select the

t, with the best performance in know
In Fig. 9-4 we present the ROC
curves of H1 for the known data set
of O3a (Fig. 9-4a) the known data
set of O3b (Fig. 9-4b). In Fig. 9-
4a we can observe that the TPR de-
grades as we increase the size of t,,.
In Fig. 9-4b we can see a similar
behaviour but a higher FPR range.
However, at FPR < 107!
the performance drops dramatically
below the random classifier line
(dashed line), which implies that the
model is making random guesses.
As we increase the size of t,, the
performance of the algorithm de-
creases. This behaviour could be
caused by the short duration of
IMBH signals, meaning that if we
define t,, to be large, the clusters
will contain random triggers that
will bias the classification task. Fur-
thermore, this behaviour is also ob-
served in L1 and V1 (see Appendix
A.5.1 for details), so we conclude
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FIGURE 9-5: A Whistle glitch labelled by Gravity Spy.
(Top) SNR of GstLAL tracks as a function of time,
where each point represents a template. tp, (orange)
and tmaz (pink) mark the beginning and end of the
cluster, respectively, while toysier (Ted) indicates its
centroid given by Gravity Spy. (Bottom) Q-transform
of the time series containing the Whistle labelled by
Gravity Spy. While Gravity Spy labels a single glitch,
GstLAL identifies both.
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that t,, = 0.05s is the best time window for our task.

It is relevant to note that one limitation of this method is the lack of ground truth when
defining the centroid .. of a glitch. As an example, in Fig. 9-5 we show a Whistle labelled
by Gravity Spy. The time centre of the cluster, . yster, is marked in red, and according
to Gravity Spy, it is associated with a single Whistle. GstLAL identifies two clusters that
correspond to two Whistle instead, as can be seen from the bottom panel. In future works, it
would be relevant to study the effect of this offset on the behaviour of the model.

9.4.2 Training with known data set of O3a
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FIGURE 9-6: Comparison between training and validating with 9-fold cross-validation for H1
during O3a. (Top) Mean accuracy at 3 standard deviations (shaded region) as a function of
the epochs during training and testing. (Bottom) Average 9-fold cross-validation loss as a
function of the epochs during training and testing.

Once we have selected t,, and after several fine-tuning experiments, we can train and
validate our model with the known data set of O3a. As we mentioned in Section 9.3.2, we use
9-fold cross-validation to enhance the performance of the algorithm. Thus, in Fig. 9-6 we show,
for training and validation, the mean accuracy (top panel) and loss (bottom panel) of the 9-fold
cross-validation as a function of the epochs, where the shaded region represents +3 standard
deviations. Note that the loss is plotted in logarithmic scale so we can appreciate the difference
between training and validation loss is minimal, which implies that the model is not overfitting.
Another relevant point is that both mean accuracy and loss seem to have sharp peaks around
epochs 900 and 1700, which could imply that the learning is unstable. However, this is a known
effect of the adaptive learning rate that we described in Section 9.3.3. The described behaviour
is also present in L1 and V1, whose results can be found in Appendix A.5.2.

9.4.3 Diving into the known data: machine learning performance

Employing GPU Tesla V100 with a memory of 16 Gb allowed us to train our model in ~ 17.40 h
for H1 data, ~ 15.55h for .1 data, ~ 31.20 h for V1 data. Such a large amount of time is mainly
due to the 9-fold cross-validation procedure. Nonetheless, once the models are trained we can
predict a single input in 2.9 x 107%s. As we also want to test the generalization power of the
model between O3a and O3b known data set, we present their confusion matrix for H1 in Fig.
9-7 (see results for L1 and V1 in Appendix A.5.3). While in the y-axis we represent the ground

152



Chapter 9. Enhancing Modelled Intermediate-Mass Binary Black Hole Searches 9.4. Results

truth, in the x-axis we represent the predictions of the model. Furthermore, the percentages in
the rows sum 100%, and the elements in the diagonal were successfully classified.

0.8

0.6

True class

-0.4

-0.2

-0.0

Predicted class Predicted class

(A) O3a known data set.. (B) O3b known data set.

FIGURE 9-7: Relative values of the confusion matrixz for the test set for H1. The y-axis
represents the groud-truth, i.e. the true class, and the z-axis represents the prediction of the
model, i.e. the predicted class.

In Fig. 9-7a we show the confusion matrix of the test using the O3a known data set
for H1, where the accuracy is 98.8%. We can see that 93.2% of Injections were correctly
classified with little amount of misclassifications. However, for the O3b known data set the
accuracy decreases sharply to 73.0%. We can see in Fig. 9-7b that some of the glitches are
wrongly classified as Injections or other classes. In particular, the Fast_Scattering class seems
to be the most problematic, as 36.2% of them seem to be classified as Injections and 26.7% as
Low__Frequency_Burst. This lack of generalization between O3a and O3b is common to L1 and
V1, where the accuracy in O3a is 95.8% and 99.3%, and the accuracy in O3b decreases to 67.5%
and 75.9%, respectively. The misclassification of Fast_Scattering is also present in L1, but the
misclassification of Low Frequency Burst as Fast Scattering is more acute. Interestingly, in
V1, the most problematic is the Whistle class (see Fig. A-8 and Fig. A-9 in Appendix A.5.3).

To assess the degree of misclasification during O3b with respect to the SNR distribution we
compute the TPR as a function of the average SNR p (Fig. 9-8a). For this aim, we arrange the
Injections in SNR bins and compute their TPR setting the decision threshold to be Pj,; = 0.9.
Interestingly, we can observe that the TPR is high for low p, showing dip at p ~ 8 of TPR ~ 0.85
for H1 , and TPR ~ 0.7 for L1 and V1. Moreover, the TPR becomes unstable at p > 15.

To explain this behaviour we need to observe the SNR p distributions, computed by Omi-
cron [73], of the different classes for the known data set of O3b (Fig. 9-8b). Firstly, it is
important to note that Gravity Spy classifies glitches with Omicron SNR > 7.5. In Fig. 9-8b
we show the distribution of p, the resulting SNR from Omicron, where we can still observe that
most glitch populations are centred around p ~ 8, which explains the dip in Fig. 9-8a. Our
method understands that most classes of problematic glitches, such as Fast Scattering, Tomte
and Low_ Frequency Burst are around this value, so it does not have trouble distinguishing
Injections at lower p. Note that at p < 5 the model simply differentiates between Whistle,
Fast_Scattering and Injection classes. Furthermore, as p increases, the population of Injec-
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FIGURE 9-8: (Top panel) Single detector TPR as a function of the average SNR p in the
known data set of O3b for H1, L1 and V1 . (Bottom panel) SNR p probability density of
different classes in the known data set of O3b.

tions decreases, so due to the low statistic at p > 15 the TPR seems unstable. We note that
a different SNR distribution for the Injection class might lead to a different behaviour of the
TPR as a function of the SNR. We will leave this exploration to future work.

A possible cause for this lack of generalization between O3a and O3b can be the fact that the
interferometers are evolving systems, so the glitches produced at the beginning of the observing
run can be different from the ones produced at the end. Furthermore, we remind the reader
that while the Injections class is the actual ground truth, there is some bias in the definition
of the glitch classes (e.g. Fig. 9-5). Another reason is the limitation of the model itself, as
we are performing a multi-classification task with information on 6 variables (see Eq. 9.2). To
lower the number of FPs, i.e. glitches that are incorrectly classified as Injections, in this single-
detector task we can use time coincidence between detectors (see Section 9.3.4 for a definition),
since it is less common for glitches to appear in several interferometers at the same time.

In Fig 9-9 we present the probability of being an Injection (Py,;) for the known test set of
H1, in blue, L1, in red, and their time coincidence, in purple. In the top panel, we present the
probability density of the Injection class, while in the bottom panel, we show the probability
density of the glitches. In the top panel, we can observe that, for both detectors, while the
MLP model classifies many Injections as such with large F;,;, there are still many Injections
that have a low F;,;, which can be misclassified as glitches. Conversely, the MLP model gives
many glitches a low Fj,;, but there are still many glitches with a high F;,;. To increase Pj,;
of Injections and lower the P;,; of glitches, we use time coincidence. Hence, enforcing time
coincidence increases Pj,; of Injections (top panel), while completely discarding the glitches
(bottom panel). Moreover, under the assumption that tracks with a low number of triggers are
produced by detector noise we limit our analysis to tracks with 10 triggers or more.

Time coincidence, together with track reduction, discards many Injection tracks: while we
have 21900 tracks in H1 and 43100 tracks in L1, their coincidence yields only 8967 tracks. As
before, in Appendix A.5.3 we present the coincident results of the pairs L1 and V1, and H1
and V1, where an identical behaviour can be observed.
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FIGURE 9-9: Probability density of being Injection, using the known test set of O3b for H1, in
blue, L1, in red, and their time coincidence, in purple. (Top) Probability density of elements
in the Injection class in logarithmic scale. (Bottom) Probability density of elements in all the

other classes, i.e. glitches, in logarithmic scale. Given the counts of the ith bin ¢; and its
width b;, we define the probability density as c¢;/ (XN ¢; x b;), where N is the total number of
bins of the histogram.

9.4.4 Diving into the known data: significance of P, statistic
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FIGURE 9-10: ROC curve of double and triple detector time (H1L1V1) for Eq. 9.5 (dashed
lines) and Eq. 9.6. Here, TPR is the rate of correctly classified GW injections from the zero
lag, while FPR is the rate of incorrectly classified time slides background tracks.

Up until now, we performed the standard statistical tests in the field of ML with P;,; as
our probability. Nonetheless, as we discussed in Section 5.1, a ML based detection algorithm
requires a proper understanding of the significance of its statistics considering the accidental
background. With the time-shifted background, we intend to find extreme values of R-nj (see
Eq. 9.4), but due to the probabilistic nature of ML algorithms, our statistic saturates at 1 as
we can see in Fig. 9-9. Since we are interested in the region with the highest probability we
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redefine our statistics as

—log (1 — Py,;) +e, (9.5)
where - represents again the harmonic mean (see Eq. 9.4 for a definition), and ¢ = 107" is
added to prevent undefined behavior when ij ~ 1, ensuring numerical stability. The main
advantage of using the harmonic mean in this context is that it places more emphasis on smaller
values, which helps to down-rank candidates with lower statistics. To assess the performance of
this statistic we compute the ROC curve, but with a different definition of TP and FP. TP are
coincident GW injections of O3a present in the zero lag that has been identified by GstLAL,
i.e. they produce a track. On the other hand, FP are the coincident tracks of the time shifts
of O3. With this definition we can construct the ROC curve stepping on different values of
our statistic —log (1 — P,,;) + €. Note that better performing ROC would be the ones that
maximize the area under the curve (AUC). It is relevant to note that, as we are working with
triple time if one detector does not observe the signal, then its contribution PZ;jlk =0 (see Eq.
9.4).

In Fig. 9-10 t th
of —Iio 1(g1 _p A)Wf Epl(rzsazlfle d lien(ig)gl E;ljr\ig TABLE 9.3: Area under the curve (AUC) from
8 it P ROC curves in Fig. 9-10.

detector time (HI1L1V1) for different detec-
tor combinations. We can observe that H1L1

and H1V1 have a better performance than Time HIL1V1
L1V1. This implies that the L1V1 combi-

) ) Detector
nation has more background tracks, possibly
due to a larger glitch population in both de- HILI1 9281.54
tectors for different reasons. On the other “log (1— By)) H1V1 9113.69
hand, HIL1V1 has a better performance than " L1V1 8843.81
double-coincidences since we only have two HIL1V1 9838.81
ba(:l{{ggi)und tracks. We summarize their AUC HiL1 9752 80
in Table 9.3.

As we have seen for L1V, it is possible  Pinj/(£2/SNR?) fjgj g;}gzg
that the behaviour of MLP is overly opti- HIL1V1 9877 87

mistic, caused by a combination of its training
in a completely controlled population-GW simulations and well-known glitches-and an overly
simplified track input. Because of this, we explored a combination of P;,; with variables used
in traditional GW searches, such as SNR and £2. The best-performing statistic was

Pinj/(€2/SNR?), (9.6)

where again - represents the harmonic mean. We present in Fig. 9-10 (solid lines) its ROC curve
in triple detector time (HIL1V1). We can observe that all double coincidences have improved
greatly with respect to the statistic —log (1 — PMJ) + €. Moreover, in triple coincidence, the
AUC is 9877.87, while before it was 9838.81 (see Table 9.3).

In GW searches, a common magnitude to assess the performance is to use the false alarm
rate (FAR) measured in yr~1(see Eq. 3.42), constructed by employing the time shifts. In
particular, it is custom to represent the inverse FAR (iFAR) as a function of the ranking
statistic, Py,;/(€2/SNR?), which we show in Fig. 9-11. This plot relates the ranking statistic
with the iFAR significance, i.e. the number of false alarms per the number of analysis times

measured in years. As an example, if we have P,;/(¢2/SNR?) a 150 for H1L1 coincidence,
then we will have an iFAR =~ 0.01, or equivalently, one false alarm per 100 years. Note that
H1L1V1 is in the bottom left corner as it has two samples.

A principal characteristic of a GW ranking statistic is that it increases monotonically as the
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FIGURE 9-11: Inverse false alarm rate (iFAR) as a function of the ranking statistic in triple
time (H1L1V1) for different detector combinations. The solid lines show the time-shifted
background with real GW signal tracks, while dashed lines show the time-shifted background

without them.

probability of finding a GW signal increases. Because of this, real GW signal tracks would lay
on the far right of the iFAR distribution, increasing the false alarm. To investigate whether our
ranking statistic behaves in this way we remove all tracks that correspond to real GW signals,
yielding the dashed line distributions. While there is a noticeable discrepancy in the H1L1
distribution, this issue does not occur with HIV1 and L1V1. This may be due to the lower
sensitivity of V1 or a limitation of our statistics.
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FIGURE 9-12: TPR, i.e., the rate of correctly classified GW injections, at iFAR = 0.1
(equivalent to one per 10 years) for different detector combinations in triple time (H1L1V1).
Error bars represent the standard error at 3 standard deviations.

To further understand the performance of our statistic, we measure the recovery of GW
injections from O3a. To compute the TPR, we fix iFAR at 0.1, or equivalently, one per 10
years, using the results in Fig. 9-11. In Fig. 9-12 we present TPR as a function of the injected
SNR (Fig. 9-12a) and as a function of the luminosity distance Dy, in Mpc (Fig. 9-12b).
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In Fig. 9-12a we can observe that for all detector combinations TPR & 0.95 for injected
SNR 2 8. For SNR < 8 there is a drop in performance for double coincidence tracks, while
triple coincident tracks maintain their TPR until ~ 5 injected SNR. However, we must note
that for an injected SNR ~ 5 there is less statistic, as we can observe from the increase in size
of the vertical error bars. In Fig. 9-12b we can observe that the TPR for H1V1 and L1V1
decreases steeply for D; 2 0.6 Mpc, possibly due to the lower sensitivity of V1. Moreover, H1L1
and H1L1V1 have a similar trend, with a drop in performance at D; 2 1.2 Mpc. As in the case
of the injected SNR, there is less statistic for D; 2 1 Mpc. In future work, we could conduct a
broader injection campaign to mitigate these issues.

9.5 Discussion

In the previous Sections, we showcased the utilization of matched-filtering triggers to learn
the patterns, or tracks, of different types of signals from single-GW detectors. It is relevant
to highlight the reliance of the ML model on a mere 6 parameters (see Eq. 9.2) to perform
the multi-classification task. This approach does not only recover successfully the test set of
the population we have trained on but also accurately recovers injections of GW signals. In
future works, it would be interesting to compare these results with state-of-the-art algorithms
to better quantify the performance of our method.

Despite these achievements, certain limitations must be noted. The primary constraint
is that we characterize the feature vector of our input with only 6 features. Before this in-
vestigation, we have not utilized a feature selection procedure for the definition of the input
feature vector, as we have limited ourselves to variables that are well-understood in the GW
community. Such an approach could enhance the performance of the model.

Another limitation pertains to the ranking statistic itself. In this work, we have combined
the statistic of the ML model with standard measurements such as SNR and £2. Due to time
constraints, this exploration was limited, but it does not imply that our ranking statistic is
the optimal one. In future works we will further explore enhancing our statistic with different
variable combinations. However, we expect that the largest improvement would come from the
inclusion of the time dimension, i.e. the behaviour of the signal through the template bank.
This will most likely provide valuable insight useful to enhance the distinction between these
classes.

9.6 Conclusion

In this investigation, we propose a flexible method to detect CBC signals combining the robust-
ness of matched-filtering as an optimal filter, with the generalization power of ML algorithms.
Thus, we construct an MLP model to learn from sets of the matched filtering triggers, labelled
here as tracks, and perform a multi-classification task in a single detector. Specifically, we
tackle the IMBH search of GstLAL during O3, but this method could be extended to other
CBC signals and matched-filtering algorithms.

Since multiple templates could potentially match a given signal, meaning that the input
to the model would have variable length, in this proof-of-concept work, we have reduced the
dimensionality of the problem by averaging the matching templates and weighting them by
SNR. Another difficulty of our task is to deal with highly unbalanced data, so to mitigate this
problem, we undersample large classes and oversample small classes. Nonetheless, this could
bias the model towards certain repetitive features, so to avoid overfitting we employ 9-fold-
cross-validation and early-stopping algorithm. In the following, we revisit some of the major
results of this method:
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- Controlled data set: We trained our model in O3a data, and we tested its generalization
ability in O3b. We used the standard ML statistics to test its robustness. We obtained
accuracies of 98.8%,95.8% and 99.3% for H1, L1 and V1 in O3a test set, while showing
a sharp decrease in accuracy of 73.0%, 67.5% and 75.0% for H1, L1 and V1 in O3b test
set (see Section 9.4.3). This drop in performance was caused by the influence of glitches,
so we decided to implement time coincidence to lower this background.

- Nowel time coincidence: To enhance the performance of the model, we enforce time
coincidence among detectors, which greatly reduces the background of glitches. As we
are dealing with clusters of triggers, instead of single triggers, we take the average time
of the cluster and the light time travel between detectors to consider that tracks from
different detectors coincide in time (see Section 9.3.4).

- Computational efficiency: This method only uses 6 variables to perform this classification
(see Eq. 9.2), and while its training is intensive, we can classify a given input in 2.9x107¢s.
As this process is highly parallelizable, this computation essentially is inexpensive.

- Construction of accidental background: We constructed the time shift background to as-
sess the significance of our ranking statistic (see Section 9.4.4) and tested its performance
on simulated IMBH signals. With an iFAR = 0.1yr, we have a TPR = 0.8 at SNR ~ 5
for all detector combination. Regarding the luminosity distance, H1L1 and H1L1V1 have
a TPR 2 0.8, with a drop in performance at Dy = 1.2 Mpc.

In summary, this method has shown not only to have a robust performance in a controlled
environment classifying IMBH injections but also shown its generalization power in finding
simulated GW signals, demonstrating that it is possible to form a synergistic relationship
between current state-of-the-art matched-filtering techniques and novel ML methods.

In future work, we will explore a different ML method that can process varying length
inputs, as the time information might be relevant to enhance the performance of the model.
For this aim, several ML algorithms could be employed, such as recurrent neural network [301]
or even transformers with an attention mechanism [02]. With such a model we could perform a
fair comparison with state-of-the-art pipelines to quantify the potential improvements in IMBH
searches that this technology may offer. Furthermore, and as we mentioned before since this
methodology is flexible and simply relies on matched filtering computation, we could extend it
to other CBC signals and state-of-the-art matched-filtering algorithms.
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Conclusions and prospects

In 2015, the LIGO-Virgo collaboration achieved a groundbreaking milestone by detecting the
first GW signal from a BBH event, namely GW150914. This monumental discovery not only
confirmed the merger of two black holes but also established the field of GW astronomy. How-
ever, this achievement was the culmination of a challenging journey, requiring the collective
efforts of multiple generations of scientists who meticulously designed theoretical (see Chapter
1) and experimental frameworks (see Chapter 2) essential for this detection.

Towards the next generation of gravitational wave detection

As of the completion of this thesis, over 90 transient astronomical events have been confi-
dently detected during the past three observation runs by LIGO-Virgo collaboration and other
research groups. Beyond the first detection, some of the most noteworthy GW occurrences
include GW170817, which marked the pioneering multi-messenger observation involving both
gravitational waves and the electromagnetic spectrum; GW190521, that challenged the mass
gap due to pair-instability supernovae; or GW190814, an event characterized by significantly
asymmetric, possibly indicative of a NSBH merger.

The ability to make such observations has not solely relied on the construction of GW
interferometers (see Chapter 2) but the design of robust and sophisticated detection algorithms,
characterized by their exquisite accuracy (see Chapter 3), and the mitigation of background
noise, known as glitches (see Chapter 2). However, with the upgrade of second-generation
interferometers, and the construction of third-generation interferometers, the detection rate will
grow steeply, and GW signals will spend from hours to even days in their sensitivity band. This
evolving scenario will introduce novel challenges to current state-of-the-art detection algorithms,
as the increased detection rate will not only allow us to probe our current knowledge but will
also provide an opportunity to find unexpected physical phenomena.

In recent times, ML algorithms have sparked the interest of scientists due to their success
in solving various tasks in different domains, demonstrating their versatility and efficacy. The
GW field is no exception, with numerous authors exploring their potential (see Chapter 4).
In the context of an exploding field of both GW discoveries and ML applications, this thesis
advocates for using ML to complement state-of-the-art GW searches and even enhance their
performance, fostering a synergistic relationship. Hence, we establish a symbiotic relationship,
focusing on enhancing both modelled and unmodelled GW searches, particularly targeting
challenging signals like IMBH and CCSN, as well as modelling the noise background that poses
challenges to these searches, namely Blip glitches.
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Simulating transient noise burst

In Chapter 6, we have discussed the generation of background noise that hinders transient
GW searches, with a specific focus on disruptive Blip glitches. These glitches impede the
detection of IMBH and CCSN, as they have a short duration, a high rate of occurrence, and
are in the frequency band of interest. In the present work, we showcased the production of time
series of Blip glitches, adapting a ML algorithm for images to time series. We introduced several
statistical metrics to assess the performance of the algorithm and the quality of the generations.
Additionally, we have presented an open-source user-friendly interface for generating glitches,
known as gengli, providing a wide variety of applications to enhance the performance of
transient search algorithms.

Nonetheless, as highlighted in Chapter 6, one of the main limitations is the lack of ground
truth in glitch populations. This issue is tackled in the next chapter as a proof-of-concept
investigation. Another one of the main limitations of our work is the focus on a single class
of glitches, due to the resource-intensive nature of glitch extraction for its posterior modelling.
Several authors tackled this problem using less flexible approaches such as image generation,
but these studies often neglect proper mitigation of background noise.

Consequently, we advocate for increased efforts within the GW community to develop flex-
ible glitch modelling techniques, as this will greatly impact transient GW searches, enhancing
the confidence of GW candidates.

Detection of anomalous transient noise bursts

In Chapter 7, we explored a selected subset of safe auxiliary channels from LIGO Livingston,
employing FD-encoding to investigate its use in anomaly detection. The main goals of this
study were twofold: to evaluate the effectiveness of this data representation for characterizing
glitches, and to create a data-driven model that clusters glitches in an unsupervised fashion.
For this aim, we constructed a model that directly inputs encoded data from the auxiliary
channels of the detector to identify anomalies that stand out from the overall data pattern:
misclassifications, overlaps, as well as novel morphologies.

Despite the success of this proof-of-concept investigation, several challenges remain to be
addressed. In future work, we plan to extend this method to understand better the space
of LIGO-Livingston glitches by increasing the number of glitch classes and auxiliary channels
analyzed. Additionally, we will introduce an anomaly score to assess the significance of outliers
and explore data fusion between FD-encoding and the time-frequency representation of the
detector’s main strain, h(t). Furthermore, we aim to investigate the correlations identified by
the model among auxiliary channels and explore their potential significance in the context of
explainable ML.

Enhancing unmodelled core-collapse supernova searches

In Chapter 8, we discussed the CCSN phenomenon and emphasized the significance of detecting
its GW to unveil the inner workings of the collapse. While CCSN are among the most energetic
processes in the universe, their GW signals are expected to be extremely faint. To address this
challenge, we developed a ML learning model to learn the peculiarities of the CCSN using
the time-frequency representation of the current state-of-the-art unmodelled algorithm ¢WB.
Given the computational intensity and complexity of generating CCSN waveforms, we trained
the ML model on a set of phenomenological waveforms that capture key CCSN GW signal
features. This not only demonstrates the model’s ability to learn phenomenological waveforms
but also tests its generalization power to a catalogue of CCSN GW waveforms from Numerical
Relativity.
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However, as highlighted in Chapter 8, to improve our work it is fundamental to refine
the phenomenological waveforms to ensure a closer resemblance to the CCSN catalogue. The
phenomenological set will play a crucial role in shaping the learning process of the ML model.
Additionally, an important aspect is extending this methodology to O3 and comparing its
performance with ¢cWB algorithm, incorporating a proper estimation of the background noise.
Nevertheless, with further development, this could be a stand-alone search algorithm tailored
for targeted searches of CCSN GW signals.

Enhancing modelled intermediate-mass binary black hole searches

In Chapter 9, we discussed the importance of detecting a population of IMBH to unravel the
formation of compact objects within the mass gap resulting from pair-instability supernovae.
Despite falling in the sensitivity band of current ground-based detectors, IMBH are challenging
to detect due to their short duration and similarity to the background noise, known as glitches.

As matched-filtering methods do not directly include information about the background
and the target signal, and under the assumption that triggers generated by these methods are
inherently different depending on the signal’s origin to analyze, we leverage this information
through a ML model. In this way, we use single-detector triggers from GstLAL to train a ML
model in real O3 detector noise and simulated IMBH. Afterwards, we employ time coincidence
between detectors to lower the noise background. Moreover, we construct a background of
time shifts to assess its performance with a set of simulated IMBH GW signals. In future
works, it would be interesting to compare these results with the current state-of-the-art search
algorithms to assess the performance of our method.

Nonetheless, as highlighted in Chapter 9, the principal limitation of this proof-of-concept
work is the disregard of the time dimension, which could provide valuable information to the
model, since constructing an ML algorithm with varying length is a challenging task. Therefore,
we advocate for continued research efforts in this direction, and the addition of these algorithms
to current state-of-the-art matched filtering methods.

The era of Machine Learning

Through this thesis we have described several ML applications in GW astronomy, showing
the future of GW data analysis is intertwined with the speed and generalization power of ML
algorithms. While still in the early stages, I strongly believe that ML methods will empower
exploration of the densest and most energetic regions of the Universe, enabling astronomical
discoveries beyond existing theoretical frameworks.

To finalize, I would like to share a quote, as it reflects not only the implications of ML in
the field of GW but also its broader impact on society.

"We live in a society exquisitely dependent on seience—and—technotogy machine
learning, in which hardly anyone knows anything about setence—andtechnology

machine learning. "
— Carl Sagan (1990), modified by Melissa Lopez (2024)
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Chapter A

Additional Resources

A.1 Dominant sources of noise

A.1.1 Thermal noise

Being one of the fundamental and dominant noise sources in the interferometer, as observed
in Fig. 2-7 (blue), thermal noise is associated with sources of energy dissipation, coming in
at least two forms: due to the Brownian motion of the mirrors, associated with the losses in
the mirrors’ material, and due to the suspension of the mirrors, related to losses in the wires’
material [107].

To understand the motion of the mirrors, we can describe a mass m moving as a harmonic
oscillator using the Langevin equation which describes Brownian motion:

dx? dx
Fy, =m— —+k Al
th =M+ O ke (A.1)
where Fy, is the fluctuating force with white spectral density F(w) = 4kgT'¢, ¢ is its damping
coefficient, and —kx is a restoring force [01]. Thus, solving this equation in the frequency

domain yields the power spectral density of the position due to the Brownian motion,

2 N 4kpT'¢
27 (w) =
(k — mw?)? + f2w?
where kp is the Boltzmann’s constant, T' the temperature of the mass, w the angular frequency
and ¢ the loss angle of the oscillator. Assuming a linear system in thermodynamic equilibrium,
the fluctuations due to dissipation increase the system’s noise, so that we can use the fluctuation-
dissipation theorem. We can cast the thermal driving force as

(A.2)

F3(w) = 4kpTR(w), (A.3)

where R(w) is the mechanical resistance where the dissipation happens, which comes from the
real part of the impedance Z(w). The fluctuation-dissipation theorem states that the power
spectrum of the force responsible for thermal fluctuations is related to the real part of the
impedance Z(w) such that

4]€BTU(O})
= T

()

where o(w) is the mechanical conductance, the real part of the admittance Y (w) = Z7(w).
For a simple oscillator, as described above, the impedance and admittance are

(A4)
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k Wi + i(wk — mw?)
/ iw (k —mw?)? 4+ w2 f? (A.5)
By substituting the admittance in Eq. A.4 we retrieve the Langevin equation. Hence, the
fluctuation-dissipation theorem can be regarded as a generalization of the Langevin equation.

A.1.2 Quantum noise

The detector’s sensitivity is limited as well by quantum noise, that comes from the quantum
nature of photons due to the Heisenberg uncertainty principle and quantum fluctuations [:07].
The limiting quantum noise sources of the GW detectors are, on one side, the photon shot noise,
hshot, that arises due to statistical fluctuations in the number of photons at the output domi-
nating at high frequencies; and on the other side, the quantum radiation pressure noise, h,qq,
that arises due to to the fluctuations in the mirrors’ positions induced by quantum radiation
pressure fluctuations dominating at low frequencies. Thus total quantum noise of a Michelson
interferometer in the frequency domain is:

hiot(f) = VB2t () + B20a( ). (A-6)

In the following, we describe in detail the effects of the shot noise and the quantum radiation
pressure on the sensitivity of the interferometer. We also recommend the reader to refer to [10(]
for an in-depth description of these sources.

Shot noise

In a Michelson interferometer, the average photon number per unit time <n> at the output and
its standard deviation An in a 7 time interval, are respectively

A [ APyt ™
<n> = %Poum An = o (A7)

where A is the laser wavelength and P,,; is the power of the interferometer output. We remind
the reader that in this notation the speed of light ¢ and Planck’s constant h are taken as funda-
mental units. We can set the optical power fluctuations as equivalent to position fluctuations,
such that the standard deviation in the displacement L, due to fluctuations in the average
photon number detected, for a time interval 7, is

An/<n> A
ALy = A A (A9)
o A Bt

where P, is the input power. The strain noise caused by the photon shot noise in the frequency

domain then yields,
~ 1/ A
= ) A.
hshot(f) L 27TR¢;, ( 9)

Therefore, increasing the input power of the laser, P,,, can improve the strain associated
with the shot noise, enhancing the detector sensitivity at all frequencies. Nonetheless, increasing
P, has its limitations from a practical point of view, as it affects h,qq.
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Quantum radiation pressure noise

A beam of photons that strikes a mirror is reflected wielding pressure on the mirror itself. If
this radiation pressure were constant, it could be compensated by a mechanism, but as the
number of photons arriving on the mirror fluctuates, so does the radiation pressure. This
uncertainty translates into uncertainty in the position of mirrors, which limits our ability to
precisely measure the change in the length of the arms due to a passing GW.

To calculate the sensitivity due to the radiation pressure, we consider a laser beam with
power P, that impinges perpendicularly on a mirror. Then, the force exerted is F,.q = P,

and the fluctuation of shot noise is AP, = w <n>, such that the fluctuations of the force in

the frequency domain yields,

21 Pin
A

Thus, the fluctuation of a mirror’s position of mass m caused by the fluctuations of this
force is,

AFrad(f) - : (AlO)

Alrad() = o5 APl ) = [T

As the power fluctuations in the two arms of the detector are anti-correlated, the effect on
the output is doubled. Thus, the effect of quantum radiation pressure in the strain is,

(A.11)

- 2AL,, 1 [87h
haa( ) = 22t ) [P

(A.12)

Quantum-enhancement: squeezed states

From Eq. A.9 and Eq. A.12 we can observe that while A, is independent of frequency, h,qq
scales as f~2. Moreover, while increasing P;, will lower Ao, this will come at the cost of
increasing h,.q. Shot- and radiation pressure noise are also known as phase- and amplitude-
noise, as they are related to the variance in phase and amplitude of the light, respectively.

A vacuum state of light, where the coherent amplitude is zero, has equal uncertainty in both
amplitude and phase quadratures, bounded to Heisenberg’s principle. To reduce the uncertainty
in one variable with respect to the other we can “squeeze” the state such that one variable has
less uncertainty than the other, as long as the Heisenberg inequality is satisfied. Thus, adding
phase-squeezed vacuum states reduces the shot noise below the quantum limit [207, ].

A.1.3 Seismic noise

Human, atmospheric and geological activity produce seismic noise, which is a type of envi-
ronmental noise dominant at low frequencies. Seismic noise can also couple with the optical
system of the detector producing an excess of noise in the main strain of the detector h(t) at
high frequencies [00]. The first design choice to counteract seismic noise is the location of the
detectors (see Fig. 2-5).Moreover, to isolate the test masses from seismic perturbations, the
detectors are equipped with sophisticated active and passive isolation systems.

- Active systems: They are composed of sensors that detect seismic fluctuation and apply
a force to counterbalance the perturbation in a wide range of frequencies.

- Passive systems: They use mechanical apparatus to dissipate seismic perturbances at
low frequencies. An example is the pendulum suspension of the mirrors that absorb
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perturbances at frequencies f > 1 Hz. Each stage of the suspension reduces the transfer
of seismic motion by a factor of 1/f2.

The interested reader can refer to [170] and [171] for an in-depth description of active and
passive systems in LIGO and Virgo interferometers respectively.

A.1.4 Gravity gradient noise

Another source of noise that impacts at low frequencies (f < 20Hz) is the gravity gradient
noise, also known as Newtonian noise. The gravitational field of Earth is non-uniform due to
the fluctuations in its mass distribution. Indeed, gravity gradient noise arises in GW detectors
because of the fluctuating density of the Earth beneath and near each of the interferometer’s
test masses. As we can observe in A-1, as a surface wave propagates in the vicinity of the test
masses, it tilts them causing a disturbance [172]. Mathematically, we can describe the motion
of the test masses caused by gradient gravity noise as

pBUIW ()

27 f2
where p is the mass density in the vicin-
ity of the test masses, and 5(f) a dimen-
sionless correction known as the reduced
transfer function. W is the displacement
rms-averaged over 3-dimensional direc-
tions: in the XY -plane the spectral den-
sity of the horizontal displacement is rep-
resented by X, where the seismic mo-
tions are considered to be horizontally l F, \ P, l .
isotropic, and the spectral density of the ¢
vertical displacement is Z [177]. -

To reduce gravity gradient noise it Propagation of surface wave
has been proposed to measure the rel-

evant ground motion gxpected to cou- FIGURE A-1: Schematic illustration of a
ple through local gravity and subtract g tyating gravitational force F, on a suspended

it. Another approach for the reduction of . mass, caused by the propagation of a surface
this noise is to build the interferometers wave through the ground.

underground, as in the case of KAGRA,
or even operate in the space, far from these density fluctuations, like LISA.

2X2(f) + 22(f)
3

7= (A.13)

at f 2 3Hz , WhereW(f):\/
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A.2 Wilson-Daubechies-Meyer formalism
In this section, we provide the formalism of WDM discussed in section 3.3.3. Consider a discrete
data x[k] sampled at fs with a maximum angular frequency 2 = 7 f; and window function ¢.
We define WDM filters of the time-frequency representation of z[k] as,
Wnm = Y fam|k]z[k]  where n,m € N (A.14)
k

The WDM basis functions in the Fourier domain are,

; ~ 1 ) ~
Gno(w) = e ™ p(w), Inm(w) = Ee""wT@bnm(w) form < M (A.15)
where ¥, (w) = O d(w + mAQ) + Cppind(w — mAQ) and M = AQQ = 2T (A.16)
T

where m > 0, Oy = 1, Copy = 4, AQ = 27 /T and 7 = 1/ f;. The generalized Meyer scaling
function ¢(w) in the Fourier domain is defined as

1

B E, |OJ| < A
olw) =4 V7 [7r1/n<|w|—A>} A<lo|<A4B
JAa 2\ ) s (A.17)
B(x;n,n) z B
here 24+ B = AQ, v,(z) = =~ B(z; :/all_bl

being B(x;a,b) the incomplete Beta function and n a parameter to control the sharpness of
the edges of the scaling function ¢(w). Under the condition that M € N so that filters f,,[k]
are discrete translations of fo,,[k], we can redefine g, to be

Gung = et Mo [&(w FO) + dlw— Q)}, for |w] < Q, (A.18)

for ¢ = 0 if M is even and ¢ = 1 otherwise. Thus, the new set §,,, forms an orthonormal
basis on [—(2, ], and its explicit WDM expansion is

Wno =T Y x[2nM + k]¢[k]

keZ
W = TV2Re|Cruyn Y- ™™ Ma[nM + k]g[k]|, for 0 <m > M (A.19)
kez
Worr =7 (=) 2[2nM + ¢M + k]¢[k]
kez

being ¢[k] the sampled values of ¢(¢). Employing the periodicity of the exponential factor,

j<2M
S emmM (] = 57 M M K]y (A.20)
j=0 keZ

Xolj] = 3" anM + 2kM + jo[2kM + j. (A.21)

kEZ

The summation on the left side of Eq. A.20 corresponds to the discrete transform of X, [j],
which has length 2M. Thus, we can use the fast Fourier transform for a speedy calculation of
X,[j] and its transform. Note that only half of the Fourier components in Eq. A.19 represent
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the WDM expansion, so the other half is given by the WDM expansion

Wno =7 Y z[(2n+ 1)) M + k]¢[k]

keZ
Dy = TV2IM| Crrppn > €™My [nM + Klp[k]|, for 0 <m > M (A.22)
kel
Wanr = 7Y (=1)*x[2nM + (1 — q)M + k|¢[k]
keZ

in the complementary orthonormal basis constructed from the time-shifted WDM basis
functions (see Eq. A.15) by T/2, so each WDM set (wym Or Wy,) gives a complete time-
frequency representation of the data.

A.3 Welch’s method

The most common method for estimating the PSD is Welch’s method which divides the time
signal into successive blocks, forming the periodogram for each block and averaging [171].
Mathematically, given a random process x[n| we define the periodogram as

1

N-1
Py mlwg] = M|im|2 = —| > z,nle N forne[0,...,M —1,mel0,..., K —1]

(A.23)
where the windowed segment of z[n| divided in M blocks is x,,[n] = w[n|z[n + mR], where
w(n] is the window function, R the window hop size and K the number of available segments
samples from x[n]. Periodograms represent the randomness within their block, so they need
to be averaged to obtain a “stable” statistical estimate of the noise spectral envelope. Thus,
the Welch estimate of the power spectral density is an average of periodograms across time,

W 1 K-1
S wk — Z Pg[;m7 (.dk (A24)

A.4 gengli: results for Blip distribution from LIGO Liv-
ingston

This appendix presents the results of Blips from the L1 distribution, which is compatible with
the H1 population. In Fig. A-2, we present a histogram of the classes assigned by Gravity
Spy to a population of 103 artificial Blips. As in Section 6.4, we can also observe that the
three dominant classes are Blip, Repeating Blips and No_ Glitch, and as we increase the
optimal SNR p,,:, the number of artificial glitches classified as Blip increases. As we stated
before, Gravity Spy classifier seems to be biased towards Blip class, since at very low pg, the
network will be unable to see the glitches. Another interesting question would be to assess the
influence of the detector noise in the classification task of Gravity Spy. Similarly to Fig. 6-12,
we present in Fig. A-3 the confidence of Gravity Spy as a function of alternative metrics for
the dominant classes.

In Fig. A-3, we can also observe that there is no apparent correlation between the measure-
ments and the confidence provided by Gravity Spy classifier. To inspect the results, we select
certain glitches according to the definitions in 6.4.2. Note that the anomalous glitch found
by Wasserstein distance (labelled as D) does not coincide with the one found by the match
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Gravity Spy classes
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Counts

FIGURE A-2: Histogram of predicted Gravity Spy classes for 10° Blips from L1.

function and normalized cross-covariance (labelled as D’). Gravity Spy was able to correctly
classify with high confidence glitches A and B, but glitches C, D, and D’ are misclassified.

For visualization and a better understanding of the results, we plot in Fig. A-4 the Q-
transforms and the time series injected in real whitened noise of the selected glitches. While
glitch A is classified by Gravity Spy as a perfect glitch, glitch C is miss-classified as No_ Glitch,
although their Q-transforms look similar. It is interesting to mention that the GAN was able
to generate a Repeating Blip because some repeating Blips are present in the input data set.

Glitches D and D’ which are misclassified by Gravity Spy, are situated in the tail of
the distribution of the similarity distances. While glitch D has a shape very different from a
standard Blip, glitch D’ has a very narrow peak.
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A.4. gengli: results for Blip distribution from LIGO Livingston
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FIGURE A-4: Time series representation (top row) and Q-scan representation of selected
glitches from L1.

A.5 IMBH search: results of LIGO Livingston and Virgo

A.5.1 Selecting a time window
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(A) Testing on O3a with known data set. (B) Testing on O3b with known data set.

FIGURE A-5: ROC curve for different time windows t,, in L1, i.e. TPR as a function of False
Positive Rate FPR in logarithmic scale. (Left) Testing in the known data set of O3a. (Right)
Testing in the known data set of O3b. Note that the dashed line indicates a random guess.

Similarly to Section 9.4.1, we show in Fig. A-5 and Fig. A-6 the ROC curves of L.L1 and V1,
respectively. We can observe that the TPR degrades as we increase the size of t,,, being this
decrease sharper for the known data set of O3b than for the known data set of O3a. Notably,
for V1 (see Fig. A-6), while the ROC curve of t,, = 0.05 in O3a is almost constant, the ROC
curve of O3b decreases even faster than in the case of O3b L1.

As in Fig. 9-4, in Fig. A-5 and Fig. A-6 t, = 0.05s has a better performance than other
time windows. A possible explanation for this behaviour could be that since IMBH signals are
short, larger time windows would add random triggers that are unrelated to the IMBH signal
itself, biasing the model. Hence, as in Section 9.4.1 we conclude that ¢,, = 0.05 is the best time
window for our task.
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FI1GURE A-6: ROC curve for different time windows t,, in V1, i.e. TPR as a function of

False Positive Rate FPR in logarithmic scale. (Left) Testing in the known data set of O3a.

(Right) Testing in the known data set of O3b. Note that the dashed line indicates a random
guess.

A.5.2 Training with known data set of O3a
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FIGURE A-7: Comparison between training and validating with 9-fold cross-validation during
training and testing. (Top row) Mean accuracy at 8 standard deviations as a function of the
epochs during. (Bottom row) Average 9-fold cross-validation loss as a function of the epochs.

As in Section 9.4.2) in Fig. A-9 we show, for training and validation, the mean accuracy
(top row) and loss (bottom row) of the 9-fold cross-validation as a function of the epochs for
L1 (left column) and V1 (right column), where the shadowed region represents +3 standard
deviation. Note that the loss is plotted in logarithmic scale, so we can appreciate that there is
less overfitting in V1 than in L1.

Another relevant point is the peaks in the loss functions, in particular around epoch 500 in
L1 and around epoch 1000 in V1. These peaks indicate a change in the learning rate due to
the adaptive learning rate scheme (see Section 9.3.3 for details).
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FIGURE A-9: Relative values of the confusion matriz for the test set for V1.

A.5.3 Diving in to the known data: performance evalutation

Similarly to Section 9.4.3, where we want to test the generalization power between the known
data sets of O3a and O3b for H1, we test the known data sets of O3a and O3b for L1 and V1,
presenting their confusion matrices in Fig. A-8 and Fig. A-9, respectively. In Fig. A-8a and
Fig. A-9a we can see that most inputs are correctly classified, yielding an accuracy of 95.81%
in L1 and 99.27% in V1. Nonetheless, Fig. A-8b and Fig. A-9b we can observe an increase of
false positives, decreasing the accuracy to 67.45% in L1 and 75.91% in V1.

In L1 (see Fig. A-8b), the Injections are mostly correctly classified, with 1.2% mislabelled as
Blip. However, 19.5% of Low Frequency Burst, 12.6% of Whistle and 11.3% of Fast_Scattering
are incorrectly classified as Injections. Interestingly, 54.5% of Low_Frequency Burst are mis-
classified as Fast_Scattering since they share a similar frequency range. In V1 (see Fig. A-9b),
the Injections are also mostly correctly classified, with 1.7% mislabelled as Blip. However,
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61.5% of Whistle and 16.3% of Blip are incorrectly classified as Injections. It is also interesting
to note that in this detector only 4.9% Low Frequency Burst are misclassified as Injections,
while a 10.2% and 11.5% of Tomte are incorrectly labelled as Blip or Low Frequency Burst,
respectively.
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FIGURE A-10: Probability density of being Injection (Py,;), using the known test set of O3b.
(Top row) Probability density of elements in the Injection class in logarithmic scale. (Bottom
row) Probability density of elements in all the other classes, i.e. glitches, in logarithmic scale.
Given the counts of the ith bin c¢; and its width b;, we define the probability density as
ci/ (=N ¢; x b;), where N is the total number of bins of the histogram.

Due to the poor generalization between O3a and O3b, we need to reduce the number of false
positives. For this aim, we enforce time coincidence as in Section 9.4.3. Similarly to Fig. 9-9,
in Fig. A-10 we present the probability of being Injection (P,,;) for L1 (left column) and V1
(right column). In the top row, we show the probability density of P;,; for the Injection class,
and in the bottom row, we show the probability density of F;,; for any other class. When we
enforce time coincidence, represented in yellow for L1 and V1, and in turquoise for H1 and V1,
P,,,; increases for the Injection class, while we completely discard all the other classes. Note
that this is at the cost of reducing the number of correctly classified Injections.
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Gravity: The Invisible Architect of the Cosmos

Gravity is the weakest of the fundamental forces, and we experience it every day here on Earth.
It’s so familiar that we barely notice its effects, as we can easily overcome it by lifting a single
finger. However, gravity behaves very differently on a cosmic scale. The universe is a dy-
namic and violent place, filled with billions of stars born in chaotic and energetic environments.
These stars spend their lives producing energy through nuclear fusion—a process that powers
the stars—and often end in massive explosions powerful enough to destroy entire worlds. Mean-
while, here on our small home, Earth, we are far removed from these astronomical cataclysms.
We are left to wonder what other worlds are dying and what new ones are being born around
those distant, shining stars.

Gravity, often referred to as the invisible archi-
tect of the cosmos, plays a vital role in shaping the
universe. It dictates the orbits of planets, governs
the formation of stars, and binds galaxies together.
As the force that holds the vast structures of the uni-
verse in place, gravity’s influence is both subtle and
profound. The nature of gravity has intrigued hu-
man minds since ancient times, leading to centuries
of scientific research.

In the 17th century, Sir Isaac Newton revolu-
tionized our understanding with his law of univer-
sal gravitation, which described how gravity affects
objects. However, while Newton’s work explained
how gravity operates, the true nature of this force
remained a mystery. It wasn’t until the 20th cen-
tury that Albert Einstein introduced the theory of
general relativity, providing a unified description of
gravity and paving the way for modern physics.

According to general relativity, gravity is a geo-
metric property of space-time, the four-dimensional
fabric that composes the universe. This fabric in-
cludes three dimensions of space and one of time. In
this flexible fabric, matter causes space-time to curve, and this curvature dictates how objects
move. For example, Earth orbits the Sun because it moves along the curved path generated by
the Sun’s mass in space-time. A fascinating consequence of these curved paths is the bending
of light, known as gravitational lensing. This effect is illustrated in Fig. S1.1, captured by
the James Webb Space Telescope, where several galaxies appear to have duplicates. In this
scenario, a massive object, like a galaxy, acts as a “magnifying glass,” allowing us to observe
objects located behind it and causing these duplicates as a consequence.

Another consequence of general relativity is that massive astronomical objects can distort
the very fabric of space-time. Imagine space-time as a lake of crystal-clear water, so transparent
that you can see all the way to the bottom. When a rock is thrown into this lake, it creates

FIGURE S1.1: James Webb Space
Telescope image with a large number of
lensed galazies. Credits: NASA, ESA,

CSA, and STScl.
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ripples on the surface. In this analogy, the lake represents space-time, and the ripples are
caused by astronomical cataclysm. These ripples are known as gravitational waves, and they
travel across the universe at the speed of light. After millions of years, they can reach Earth,
where we can now detect them.

Detecting ripples in space-time

Stars, much like humans, are born, age over incredibly long timescales, and eventually die. Dur-
ing their lifetimes, these massive clouds of compressed hydrogen continuously convert hydrogen
into helium through a process called nuclear fusion, which generates energy. Once they ex-
haust their hydrogen supply, stars begin fusing heavier elements to produce energy, progressing
through the periodic table until they reach iron.

At the end of their lives, very massive stars can
no longer support their own weight and collapse in-
ward. This collapse leads to a spectacular outward
explosion called a supernova, one of the most power-
ful events in the universe. In Fig. S1.2, you can see
one of the most famous remnants of such an explo-
sion: the Crab Nebula, which was formed by a su-
pernova observed nearly 1,000 years ago in 1054 CE.
Even though supernovae are incredibly energetic, the
gravitational waves they produce are very weak and
hard to detect. Not all supernova explosions leave
behind visible remnants like the Crab Nebula. What
remains after a supernova depends on the original
star’s mass. Sometimes, a supernova leaves behind
no remnant at all, while other times it forms a com-
pact object like a neutron star or a black

In astrophysics, a compact object refers to a mas-
sive celestial body that is relatively small. Super- FIGURE S1.2: Hubble Space Telescope
nova explosions can form either a black hole or a image of the Crab Nebula. Credits:
neutron star. A neutron star is an extremely dense, NASA and STScl.
compact star composed of neutrons, while a black
hole is an extremely dense, compact object that deforms space-time itself, absorbing every-
thing that comes near it, including light. For these types of objects, the description of gravity
provided by Sir Isaac Newton is no longer valid due to their extreme conditions, and we need
to adopt the theory of general relativity.

In nature, stars often form in binary systems, making it common to find pairs such as
binary neutron stars, binary black holes, or a neutron star and a black hole. These celestial
bodies orbit each other for billions of years, and during this time, their orbits gradually shrink
due to the emission of gravitational waves, which are ripples in space-time. Eventually, the two
compact objects collide in an astronomical cataclysm, merging to form a larger compact object.
The gravitational waves emitted from this collision travel throughout the universe for millions
of years, passing by countless galaxies. As they propagate, gravitational waves, like ripples on
the surface of a lake, deform space-time, including Earth and everything on it. However, we
remain unaware of their effects because the distortions they cause are extremely small.

To measure gravitational waves, scientists have built several detectors forming a network:
LIGO Hanford and LIGO Livingston in the USA, Virgo in Italy, and KAGRA in Japan. These
extremely complex instruments, known as interferometers, have exquisite precision to be able
to detect the tiny distortions caused by gravitational waves, measuring changes in distance
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as small as ~ 1/10,000th the diameter of a proton. You can think of these machines as the
most precise seismographs in the world—devices that detect and record waves—but instead of
measuring earthquakes caused by tectonic plate movements, they measure ripples in space-time
generated by cataclysmic events like supernova explosions and the collisions of black holes or
neutron stars. Due to their incredible sensitivity, these detectors can be affected by terrestrial
background noise, such as electrical malfunctions, thunderstorms, or even human activity. This
background noise can produce artefacts in the data, known as glitches, that mimic gravitational
wave signals and hinder their detection.

In 2015, the LIGO and Virgo detectors confirmed the existence of gravitational waves from
a merger of two black holes, labelled as GW150914, nearly a century after Albert Einstein
predicted them in his theory of general relativity. This groundbreaking discovery was awarded
the Nobel Prize in Physics in 2017, and, as of this writing, over 90 gravitational wave signals have
been detected since then. The immense work of the LIGO-Virgo-KAGRA collaboration has
opened a new and exciting way to listen to the symphony of the cosmos and unveil its mysteries.
Future research in gravitational wave astronomy promises to deepen our understanding of the
universe by probing the densest and most energetic regions of cosmic objects, which were hidden
from astronomers’ sight up until now.

Exploring the frontier of gravitational wave detection

Just as the soft melody of a street musician’s flute can be drowned out by the bustling noise
of the city, gravitational waves are incredibly subtle signals often masked by various sources
of detector noise. Detecting a gravitational wave signal in current ground-based detectors is
like finding a needle in a haystack: we capture only a few seconds of gravitational wave signals
amidst approximately 1,296,000 seconds (two weeks) of detector noise.

Current searches for transient gravitational
waves are like finding a needle in a haystack. These
searches rely on two main approaches: modeled
searches and unmodeled searches. Modeled searches
compare theoretical models from general relativity
to the detector data to determine if a given signal is
of astronomical origin. Unmodeled searches, on the
other hand, look for loud signals in the detector data
with little to no prior information. However, both
methods face challenges because gravitational wave
detectors produce glitches that can mimic gravita-
tional wave signals. To overcome this, both types
of searches also rely on a key idea: if a signal is
observed simultaneously in multiple detectors, it is
more likely to have an astronomical origin.

As current ground-based detectors are upgraded,
they will become more sensitive to gravitational
waves. The next generation of detectors, such as F1GURE S1.3: Interpretation of the
the Einstein Telescope, Cosmic Explorer, and LISA, cosmic auditorium. Credits:DALL - E 2
is expected to be even more sensitive, allowing us to
access the full symphony of the cosmos. In this scenario, we will enter the cosmic auditorium
and need to disentangle the sounds of different instruments. Each gravitational wave source,
such as colliding black holes or merging neutron stars, contributes its own unique “note” to the
cosmic symphony, much like individual instruments in an orchestra. As we enhance our ability
to detect these faint cosmic “notes,” we will uncover the rich tapestry of events that shape our
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universe. However new detectors will pose new data analysis challenges.

Just as the creation of the internet revolutionized our society, the development of artificial
intelligence (Al) is shaping it in profound ways every day. In recent years, we have advanced the
ability of machines to learn and perceive the world around us in a manner similar to humans.
This progress has led to remarkable milestones, including humanoid robots, real-time language
translation, autonomous vehicles, and generative algorithms. These Al-driven technologies
demonstrate the ability to analyze data and identify patterns at remarkable speeds, offering
solutions and insights that were previously unattainable. As an example, in Fig. S1.3 we show
the interpretation of the previous paragraph of DALL - E 2, an AT algorithm.

Thanks to the success of artificial intelligence (Al), especially machine learning—a branch of
Al—across many fields, scientists in large physics experiments are using these algorithms to find
interesting patterns in the data. Gravitational wave research is no exception. Machine learning
methods are versatile and can uncover surprising patterns in the data. However, to make these
methods flexible, they often become complex, making them hard to understand—a challenge
known as the "black box" problem. Additionally, because machine learning algorithms learn
from data, they need to be given high-quality data and meaningful features. Finally, humans
are needed to evaluate how well these algorithms perform, which is not always easy, especially
when discovering new patterns.

Unleashing the power of machine learning

Even though supernova explosions are among the most powerful events in the universe, the
gravitational waves they produce are incredibly faint and difficult to detect. Successfully cap-
turing these signals will give us valuable insights into the inner workings of these explosions,
helping us understand how they evolve.

We know that supernovae can create black holes
that are about 3 to 100 times the mass of our Sun.
On the other hand, we observe supermassive black
holes that can be millions of times the Sun’s mass,
like Sagittarius A* at the center of our Milky Way
galaxy, as shown in Fig. S1.4. Scientists believe
these giant black holes formed over time as smaller
black holes merged together. This leaves us with
a mystery: the missing link between smaller black
holes created by supernovae and the enormous su-
permassive black holes. These are called intermedi-
ate black holes, which have masses between 100 and
1,000 times that of the Sun. Detecting more grav-
itational waves from intermediate black holes, like
those from the event GW190521, could help us piece
together the story of how supermassive black holes
form and how they shape the galaxies around them.

FIGURE S1.4: Sagittarius A*, the
Mitigating glitches supermassive black hole at the center of
the Milky Way. Credits: FHT.

Gravitational wave detectors are incredibly com-
plex machines made up of many optical components.
These detectors have thousands of sensors that con-
stantly monitor their condition in real time. Due to their high sensitivity, glitches lasting only a
few seconds often occur in different parts of the detector and show up in the main data stream.
Because we can’t predict when a glitch will appear, it’s crucial to understand their forms and
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patterns to identify them and reduce their impact on the data. However, this is a challenging
task because glitches happen frequently, about once every second.

A promising way to tackle the issue of glitches in gravitational wave detectors is to cate-
gorize them based on their shapes, or "morphologies", in the main stream of the detector. By
combining human expertise with machine learning algorithms that are good at finding pat-
terns, we can better identify these glitches, which is the first step toward reducing their impact.
However, there are challenges in this approach. One difficulty is determining when a glitch is
absent from the data, which makes it hard and time-consuming to fully understand the results
of search algorithms. Another issue is that the exact cause of a glitch is often unknown, making
it challenging to find effective solutions to prevent them.

In this thesis, we address the first problem by using a generative machine learning algorithm
to learn the population of one of the most abundant glitches: Blips. Blips are short lived
and affect the frequencies of interest of gravitational wave searches, particularly hindering the
searches of supernova and intermediate mass black holes. By creating a synthetic population
of these glitches, we can improve our search algorithms in a controlled environment.

We also address the second issue using a machine learning algorithm for anomaly detection.
We compress the data of auxiliary channels where these glitches are produce. By compressing
this data, the algorithm can identify patterns and learn about the glitches based on their phys-
ical processes within these channels. This approach allows us to uncover unexpected patterns
and gain a better understanding of the complex nature of these glitches.

Pattern recognition for intermediate-mass black holes and supernovae

Machine learning algorithms are only as effective as the data they are given. To discover
interesting patterns, these algorithms require large amounts of high-quality data. So far, we
have detected over 90 gravitational waves, but this number isn’t sufficient to teach a machine
learning algorithm what a gravitational wave looks like. Because of this limitation, we rely
heavily on simulations of these astronomical events. We have a good understanding of the
physics behind black hole mergers, which allows us to simulate them accurately. However,
simulating a supernova explosion is much more complex. A supernova involves several forces
and processes, making it difficult to model. Creating a simulation of a supernova is also
extremely resource-intensive, often taking months of computation time on a supercomputer.

Machine learning algorithms are excellent at learning patterns and have a remarkable abil-
ity to generalize from them. In this thesis, we leveraged this ability by generating signals that
are somewhat similar to actual supernova simulations. The key idea is that machine learning
algorithms can first learn from these approximate dataset and then refine their understanding
using the actual simulations. Additionally, the machine learning method learns that gravita-
tional waves are usually detected in several detectors simultaneously.

Traditional search algorithms for intermediate-mass black holes have been refined over the
last 20 years to effectively transform the stream of data from gravitational wave detectors into
meaningful features. However, these search algorithms primarily rely on simulations. Machine
learning algorithms, on the other hand, can learn directly from both simulations and glitches.
However, without the right features, it can be very difficult for machine learning to tell the
difference between real signals and noise. In this thesis, we develop a symbiotic relationship
between traditional search methods and machine learning algorithms. The machine learning
models learn the features generated by the traditional search algorithms, enabling them to
better distinguish genuine gravitational waves from background noise.

The work in this thesis aims to enhance the detection of gravitational waves from supernovae
and intermediate-mass black holes while reducing the impact of glitches. We have explored the
frontiers of transient gravitational wave detection by unleashing the power of machine learning.
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Zwaartekracht: De Onzichtbare Architect van het Universum

Zwaartekracht is de zwakste van de fundamentele krachten, en we ervaren het elke dag hier
op aarde. Het is zo vertrouwd dat we de effecten ervan nauwelijks opmerken, omdat we het
gemakkelijk kunnen overwinnen door slechts één vinger op te tillen. Echter, op kosmische
schaal gedraagt zwaartekracht zich heel anders. Het universum is een dynamische en woeste
plek, gevuld met miljarden sterren die geboren worden in chaotische en energieke omgevingen.
Deze sterren brengen hun leven door met het produceren van energie via kernfusie — een proces
dat de sterren aandrijft — en eindigen vaak in massale explosies die krachtig genoeg zijn om
hele werelden te vernietigen. Ondertussen zijn we hier op onze kleine thuisplaneet, de aarde,
ver verwijderd van deze astronomische catastrofes. We vragen ons af welke andere werelden
sterven en welke nieuwe worden geboren rond die verre, stralende sterren.

Zwaartekracht, vaak de onzichtbare architect van
het universum genoemd, speelt een cruciale rol in het
vormgeven van het universum. Het dicteert de ba-
nen van planeten, beheerst de vorming van sterren
en houdt sterrenstelsels bijeen. Als de kracht die de
grote structuren van het universum bij elkaar houdt,
is de invloed van de zwaartekracht zowel subtiel als
diepgaand. De aard van de zwaartekracht heeft de
menselijke geest sinds de oudheid gefascineerd, wat
heeft geleid tot eeuwen van wetenschappelijk onder-
zoek.

In de 17e eeuw revolutioneerde Sir Isaac New-
ton ons begrip met zijn wet van universele
zwaartekracht, die beschreef hoe zwaartekracht ob-
jecten beinvloedt. FEchter, hoewel het werk van
Newton uitlegde hoe zwaartekracht werkt, bleef de
ware aard van deze kracht een mysterie. Pas in
de 20e eeuw introduceerde Albert Einstein de the-
orie van de algemene relativiteitstheorie, die een
verenigde beschrijving van zwaartekracht bood en
de weg baande voor de moderne natuurkunde.

Volgens de algemene relativiteitstheorie is
zwaartekracht een geometrische eigenschap van de ruimtetijd, het vierdimensionale weefsel dat
het universum vormt. Dit weefsel omvat drie dimensies van ruimte en één van tijd. In dit flexi-
bele weefsel zorgt materie ervoor dat ruimtetijd kromt, en deze kromming bepaalt hoe objecten
bewegen. Bijvoorbeeld, de aarde draait om de zon omdat deze beweegt langs het kromme pad
dat wordt veroorzaakt door de massa van de zon in de ruimtetijd. Een fascinerend gevolg van
deze kromme paden is de buiging van licht, bekend als gravitatie-lensvorming. Dit effect wordt
geillustreerd in Fig. S52.1, vastgelegd door de James Webb Space Telescope, waar verschillende
sterrenstelsels duplicaten lijken te hebben. In dit scenario fungeert een massief object, zoals een

FIGURE S2.1: James Webb Space
Telescope afbeelding met een groot
aantal sterrenstelsels. Credits: NASA,
ESA, CSA en STScl.
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sterrenstelsel, als een “vergrootglas” en stelt ons in staat objecten te observeren die erachter
liggen en veroorzaakt deze duplicaten als gevolg.

Een ander gevolg van de algemene relativiteitstheorie is dat massieve astronomische ob-
jecten het weefsel van de ruimtetijd zelf kunnen vervormen. Stel je de ruimtetijd voor als een
meer van kristalhelder water, zo transparant dat je helemaal tot op de bodem kunt kijken.
Wanneer een steen in dit meer wordt gegooid, creéert het rimpelingen op het oppervlak. In
deze analogie vertegenwoordigt het meer de ruimtetijd, en de rimpelingen worden veroorzaakt
door een astronomische catastrofe. Deze rimpelingen staan bekend als zwaartekrachtsgolven,
en ze reizen met de snelheid van het licht door het universum. Na miljoenen jaren kunnen ze
de aarde bereiken, waar we ze nu kunnen detecteren.

Het detecteren van rimpelingen in de ruimtetijd

Sterren, net als mensen, worden geboren, verouderen over ongelooflijk lange tijdschalen, en
sterven uiteindelijk. Tijdens hun leven zetten deze enorme wolken van gecomprimeerd waterstof
continu waterstof om in helium via een proces genaamd kernfusie, dat energie genereert. Zodra
ze hun voorraad waterstof hebben uitgeput, beginnen sterren zwaardere elementen te fuseren
om energie te produceren, voortschrijdend door het periodiek systeem totdat ze ijzer bereiken.

Aan het einde van hun leven kunnen zeer
massieve sterren hun eigen gewicht niet meer dra-
gen en storten ze in. Deze instorting leidt tot
een spectaculaire explosie naar buiten, een super-
nova genaamd, een van de krachtigste gebeurtenis-
sen in het universum. In Fig. S2.2 zie je een van
de beroemdste overblijfselen van zo'n explosie: de
Krabnevel, die werd gevormd door een supernova
die bijna duizend jaar geleden in 1054 CE werd
waargenomen. Hoewel supernovae ongelooflijk en-
ergiek zijn, zijn de zwaartekrachtsgolven die ze pro-
duceren zeer zwak en moeilijk te detecteren. Niet
alle supernova-explosies laten zichtbare overblijfse-
len achter zoals de Krabnevel. Wat er na een super-
nova overblijft, hangt af van de massa van de oor-
spronkelijke ster. Soms laat een supernova helemaal
geen overblijfsel achter, terwijl het andere keren een

compact object vormt zoals een neutronenster of een ~ FIGURE S2.2: Hubble Space Telescope
zwart gat. afbeelding van de Krabnevel. Credits:

In de astrofysica verwijst een compact object NASA en STScl.

naar een massief hemellichaam dat relatief klein is.
Supernova-explosies kunnen ofwel een zwart gat of een neutronenster vormen. Een neutronen-
ster is een extreem dichte, compacte ster die bestaat uit neutronen, terwijl een zwart gat een
extreem dichte, compacte massa is die de ruimtetijd zelf vervormt en alles absorbeert wat in
de buurt komt, inclusief licht. Voor dit soort objecten is de beschrijving van de zwaartekracht
zoals gegeven door Sir Isaac Newton niet langer geldig vanwege hun extreme omstandigheden,
en we moeten de theorie van de algemene relativiteit toepassen.

In de natuur vormen sterren vaak binairen systemen, waardoor het gebruikelijk is om paren
te vinden zoals binaire neutronensterren, binaire zwarte gaten, of een neutronenster en een
zwart gat. Deze hemellichamen draaien miljarden jaren om elkaar heen, en gedurende deze
tijd krimpen hun banen geleidelijk door de emissie van zwaartekrachtsgolven. Uiteindelijk
botsen de twee compacte objecten in een astronomische catastrofe en smelten ze samen om
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een groter compact object te vormen. De zwaartekrachtsgolven die vrijkomen bij deze botsing
reizen miljoenen jaren door het universum en passeren talloze sterrenstelsels. Terwijl ze zich
voortplanten, vervormen zwaartekrachtsgolven, net als rimpelingen op het oppervlak van een
meer, de ruimtetijd, inclusief de aarde en alles daarop. We blijven echter onbewust van hun
effecten omdat de vervormingen die ze veroorzaken extreem klein zijn.

Om zwaartekrachtsgolven te meten, hebben wetenschappers verschillende detectoren gebouwd
die een netwerk vormen: LIGO Hanford en LIGO Livingston in de VS, Virgo in Italié en KA-
GRA in Japan. Deze extreem complexe instrumenten, bekend als interferometers, hebben
een verfijnde precisie om de kleine vervormingen veroorzaakt door zwaartekrachtsgolven te
detecteren, en meten veranderingen in afstand die zo klein zijn als ~ 1/10,000 van de di-
ameter van een proton. Je kunt deze machines zien als de meest nauwkeurige seismografen
ter wereld—apparaten die golven detecteren en registreren—maar in plaats van aardbevingen
veroorzaakt door bewegingen van tektonische platen te meten, meten ze rimpelingen in de
ruimtetijd die worden gegenereerd door catastrofale gebeurtenissen zoals supernova-explosies
en de botsingen van zwarte gaten of neutronensterren. Vanwege hun ongelooflijke gevoeligheid
kunnen deze detectoren worden beinvloed door aardse achtergrondgeluiden, zoals elektrische
storingen, onweersbuien of zelfs menselijke activiteiten. Deze achtergrondgeluiden kunnen arte-
facten in de gegevens veroorzaken, bekend als glitches, die zwaartekrachtsgolfsignalen kunnen
nabootsen en hun detectie bemoeilijken.

In 2015 bevestigden de LIGO en Virgo detectoren het bestaan van zwaartekrachtsgolven
afkomstig van de samensmelting van twee zwarte gaten, genaamd GW150914, bijna een eeuw
nadat Albert Einstein ze had voorspeld in zijn theorie van de algemene relativiteit. Deze
baanbrekende ontdekking werd bekroond met de Nobelprijs voor de Natuurkunde in 2017,
en, op het moment van schrijven, zijn er sindsdien meer dan 90 zwaartekrachtsgolfsignalen
gedetecteerd. Het immense werk van de LIGO-Virgo-KAGRA samenwerking heeft een nieuwe
en spannende manier mogelijk gemaakt om te luisteren naar de symfonie van het universum
en zijn mysteries te onthullen. Toekomstig onderzoek in de zwaartekrachtsgolvenastronomie
belooft ons begrip van het universum te verdiepen door de dichtste en meest energieke regio’s
van kosmische objecten te onderzoeken, die tot nu toe verborgen waren voor astronomen.

Het verkennen van de grens van gravitatiegolven-detectie.

Net zoals de zachte melodie van de fluit van een straat-
muzikant kan worden overstemd door het drukke stads-
geruis, zijn zwaartekrachtsgolven ongelooflijk subtiele
signalen die vaak worden gemaskeerd door verschillende
bronnen van waarnemingsruis. Het detecteren van een
zwaartekrachtsgolfsignaal in de huidige op de aarde
gevestigde detectoren is als het zoeken naar een speld
in een hooiberg: we vangen slechts enkele seconden
zwaartekrachtsgolfsignalen op te midden van ongeveer
1.296.000 seconden (twee weken) aan waarnemingsruis.

Huidige zoektochten naar transiénte zwaartekrachts-
golven zijn als het zoeken naar een speld in een
hooiberg. Deze zoektochten vertrouwen op twee hoofd-
benaderingen: gemodelleerde zoektochten en onge-
modelleerde zoektochten. Gemodelleerde zoektochten
vergelijken theoretische modellen uit de algemene rel-
ativiteit met de detectorgegevens om te bepalen of
een bepaald signaal een astronomische oorsprong heeft.

FIGURE S2.3: Interpretatie van het
kosmisch auditorium. Credits:

DALL - E 2
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Aan de andere kant zoeken ongemodelleerde zoektochten naar harde signalen in de detec-
torgegevens met weinig tot geen voorkennis. Beide methoden staan echter voor uitdagingen
omdat zwaartekrachtsgolfdetectoren glitches kunnen produceren die zwaartekrachtsgolfsignalen
nabootsen. Om dit te omzeilen, vertrouwen beide soorten zoektochten ook op een belangrijk
idee: als een signaal tegelijkertijd in meerdere detectoren wordt waargenomen, is het waarschi-
jnlijker dat het een astronomische oorsprong heeft.

Naarmate de huidige op de aarde gevestigde de-
tectoren worden geiipgraded, zullen ze gevoeliger
worden voor zwaartekrachtsgolven. De volgende
generatie detectoren, zoals de Einstein-telescoop,
Cosmic Explorer en LISA, zal naar verwachting
nog gevoeliger zijn, waardoor we toegang krijgen
tot de volledige symfonie van het universum. In
dit scenario zullen we het kosmische auditorium
betreden en moeten we de geluiden van verschil-
lende instrumenten ontcijferen.  Elke bron van
zwaartekrachtsgolven, zoals botsende zwarte gaten
of samensmeltende neutronensterren, draagt zijn
eigen unieke “noot” bij aan de kosmische symfonie,
net zoals individuele instrumenten in een orkest.
Naarmate we ons vermogen verbeteren om deze
zwakke kosmische “noten” te detecteren, zullen we
de rijke verscheidenheid aan gebeurtenissen die ons

universum vormgeven, onthullen. Nieuwe detectoren FIGURE S2.4: Sagittarius A*, het
zullen echter nieuwe data-analyse-uitdagingen met supermassieve zwarte gat in het centrum
zich meebrengen. van de Melkweg. Credits: EHT.

Net zoals de totstandkoming van het internet
onze samenleving heeft gerevolutioneerd, vormt de ontwikkeling van kunstmatige intelligen-
tie (AI) deze elke dag op ingrijpende wijze. In de afgelopen jaren hebben we de mogelijkheid
van machines om te leren en de wereld om ons heen waar te nemen op een manier die li-
jkt op die van mensen, verbeterd. Deze vooruitgang heeft geleid tot opmerkelijke mijlpalen,
waaronder humanoide robots, realtime taalvertaling, autonome voertuigen en generatieve al-
goritmen. Deze door Al aangedreven technologieén demonstreren het vermogen om gegevens
te analyseren en patronen te identificeren met verbazingwekkende snelheden, wat oplossingen
en inzichten biedt die voorheen onbereikbaar waren. Als voorbeeld tonen we in Fig. 52.3 de
interpretatie van de vorige paragraaf van DALL - E 2, een Al-algoritme.

Dankzij het succes van kunstmatige intelligentie (Al), met name machine learning—een tak
van Al—in vele velden, gebruiken wetenschappers in grote fysica-experimenten deze algorit-
men om interessante patronen in de gegevens te vinden. Zwaartekrachtsgolvenonderzoek is
hierop geen uitzondering. Machine learning-methoden zijn veelzijdig en kunnen verrassende
patronen in de gegevens onthullen. Om deze methoden echter flexibel te maken, worden ze
vaak complex, waardoor ze moeilijk te begrijpen zijn—een uitdaging die bekend staat als het
"black box'-probleem. Bovendien moeten machine learning-algoritmen, omdat ze leren van
gegevens, worden voorzien van hoogwaardige gegevens en betekenisvolle kenmerken. Ten slotte
zijn mensen nodig om te beoordelen hoe goed deze algoritmen presteren, wat niet altijd een-
voudig is, vooral niet bij het ontdekken van nieuwe patronen.
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De kracht van machine learning ontketenen

Hoewel supernova-explosies tot de krachtigste gebeurtenissen in het universum behoren, zijn
de zwaartekrachtsgolven die ze produceren ongelooflijk zwak en moeilijk te detecteren. Het
succesvol vastleggen van deze signalen zal ons waardevolle inzichten geven in de inwendige
werking van deze explosies en ons helpen begrijpen hoe ze zich ontwikkelen.

We weten dat supernovae zwarte gaten kunnen creéren die ongeveer 3 tot 100 keer de massa
van onze zon hebben. Aan de andere kant observeren we supermassieve zwarte gaten die
miljoenen keren de massa van de zon kunnen zijn, zoals Sagittarius A* in het centrum van
onze Melkweg, zoals getoond in Fig. 52.4. Wetenschappers geloven dat deze gigantische zwarte
gaten in de loop van de tijd zijn ontstaan doordat kleinere zwarte gaten samenkwamen. We
staan voor een raadsel: de ontbrekende schakel tussen kleinere zwarte gaten die door supernovae
worden gecreéerd en de enorme supermassieve zwarte gaten. Deze worden Zwarte gaten met
een middelmatige massa genoemd, die massa’s hebben tussen 100 en 1.000 keer die van de
zon. Het detecteren van meer zwaartekrachtsgolven van iZwarte gaten met een middelmatige
massa, zoals die van het evenement GW190521, zou ons kunnen helpen het verhaal van hoe
supermassieve zwarte gaten ontstaan en hoe ze de sterrenstelsels om hen heen vormgeven, in
kaart te brengen.

Het tegengaan van Glitches

Zwaartekrachtsgolfdetectoren zijn ongelooflijk complexe machines die bestaan uit veel optische
componenten. Deze detectoren hebben duizenden sensoren die voortdurend hun toestand in
realtime bewaken. Vanwege hun hoge gevoeligheid komen glitches die slechts enkele seconden
duren vaak voor in verschillende delen van de detector en verschijnen ze in de hoofdstroom van
gegevens. Omdat we niet kunnen voorspellen wanneer een glitch zal verschijnen, is het cruciaal
om hun vormen en patronen te begrijpen om ze te identificeren en hun impact op de gegevens
te verminderen. Dit is echter een uitdagende taak omdat glitches vaak voorkomen, ongeveer
eens per seconde.

Een veelbelovende manier om het probleem van glitches in zwaartekrachtsgolfdetectoren
aan te pakken, is door ze te categoriseren op basis van hun vormen, of "morfologieén", in de
hoofdstroom van de detector. Door menselijke expertise te combineren met machine learning-
algoritmen die goed zijn in het vinden van patronen, kunnen we deze glitches beter identificeren,
wat de eerste stap is naar het verminderen van hun impact. Er zijn echter uitdagingen bij deze
aanpak. Een moeilijkheid is het bepalen wanneer een glitch afwezig is in de gegevens, wat het
moeilijk en tijdrovend maakt om de resultaten van zoekalgoritmen volledig te doorgronden.
Een ander probleem is dat de exacte oorzaak van een glitch vaak onbekend is, waardoor het
moeilijk is om effectieve oplossingen te vinden om ze te voorkomen.

In dit proefschrift pakken we het eerste probleem aan door een generatief machine learning-
algoritme te gebruiken om de populatie van een van de meest voorkomende glitches te leren:
Blips. Blips zijn van korte duur en beinvloeden de frequenties die van belang zijn voor het
zoeken naar zwaartekrachtsgolven, met name het zoeken naar supernovae en zwarte gaten met
een middelmatige massa. Door een kunstmatige populatie van deze glitches te creéren, kunnen
we onze zoekalgoritmen in een gecontroleerde omgeving verbeteren.

We pakken ook het tweede probleem aan met behulp van een machine learning-algoritme
voor anomaliedetectie. We comprimeren de gegevens van hulpkanalen waar deze glitches worden
geproduceerd. Door deze gegevens te comprimeren, kan het algoritme patronen identificeren
en leren over de glitches op basis van hun fysieke processen binnen deze kanalen. Deze aanpak
stelt ons in staat om onverwachte patronen bloot te leggen en een beter begrip te krijgen van
de complexe aard van deze glitches.

187



Openbare Samenvatting

Patroonherkenning voor zwarte gaten met een middelmatige massa en supernovae

Machine learning-algoritmen zijn slechts zo effectief als de gegevens die ze krijgen. Om in-
teressante patronen te ontdekken, hebben deze algoritmen grote hoeveelheden hoogwaardige
gegevens nodig. Tot nu toe hebben we meer dan 90 zwaartekrachtsgolven gedetecteerd, maar
dit aantal is niet voldoende om een machine learning-algoritme te leren hoe een zwaartekrachts-
golf eruitziet. Vanwege deze beperking vertrouwen we sterk op simulaties van deze astronomis-
che gebeurtenissen. We hebben een goed begrip van de natuurkunde achter fusies van zwarte
gaten, waardoor we ze nauwkeurig kunnen simuleren. Het simuleren van een supernova-explosie
is echter veel complexer. Een supernova omvat verschillende krachten en processen, wat het
moeilijk maakt om te modelleren. Het maken van een simulatie van een supernova is ook
extreem intensief in termen van middelen, en kost vaak maanden aan rekentijd op een super-
computer.

Machine learning-algoritmen zijn uitstekend in het leren van patronen en hebben een op-
merkelijk vermogen om van daaruit te generaliseren. In dit proefschrift hebben we gebruik
gemaakt van dit vermogen door signalen te genereren die enigszins lijken op feitelijke super-
novasimulaties. Het belangrijkste idee is dat machine learning-algoritmen eerst kunnen leren
van deze benaderde dataset en vervolgens hun begrip kunnen verfijnen met behulp van de
feitelijke simulaties. Bovendien leert de machine learning-methode dat zwaartekrachtsgolven
meestal in meerdere detectoren tegelijkertijd worden gedetecteerd.

Traditionele zoekalgoritmen voor zwarte gaten met een middelmatige massa zijn in de
afgelopen 20 jaar verfijnd om de datastroom van zwaartekrachtsgolfdetectoren effectief om
te zetten in betekenisvolle kenmerken. Deze zoekalgoritmen vertrouwen echter voornamelijk op
simulaties. Machine learning-algoritmen kunnen daarentegen direct leren van zowel simulaties
als glitches. Zonder de juiste kenmerken kan het echter erg moeilijk zijn voor machine learn-
ing om het verschil te zien tussen echte signalen en ruis. In dit proefschrift ontwikkelen we
een symbiotische relatie tussen traditionele zoekmethoden en machine learning-algoritmen. De
machine learning-modellen leren de kenmerken die door de traditionele zoekalgoritmen worden
gegenereerd, waardoor ze beter in staat zijn om echte zwaartekrachtsgolven van achtergrondruis
te onderscheiden.

Het werk in deze thesis is gericht op het verbeteren van de detectie van gravitatiegolven van
supernova’s en zwarte gaten van middelmatige massa, terwijl de impact van storingen wordt
verminderd. We hebben de grenzen van de detectie van tijdelijke gravitatiegolven verkend door
de kracht van machine learning te benutten.
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La gravedad: el arquitecto invisible del cosmos

La gravedad es la mas débil de las fuerzas fundamentales y la experimentamos todos los dias
aqui en la Tierra. Es tan familiar que apenas notamos sus efectos, ya que podemos superarla
facilmente levantando un solo dedo. Sin embargo, la gravedad se comporta de manera muy
diferente a escala césmica. El universo es un lugar dinamico y violento, lleno de miles de mil-
lones de estrellas nacidas en entornos cadticos y energéticos. Estas estrellas pasan sus vidas
produciendo energia a través de la fusién nuclear, un proceso que las alimenta, y a menudo ter-
minan en explosiones masivas lo suficientemente poderosas como para destruir mundos enteros.
Mientras tanto, aqui en nuestro pequeno hogar, la Tierra, estamos lejos de estas catastrofes as-
tronémicas. Nos queda preguntarnos qué otros mundos estan muriendo y cudles estan naciendo
alrededor de esas estrellas distantes y brillantes.

La gravedad, a menudo referida como el arqui-
tecto invisible del cosmos, juega un papel vital en
la conformacién del universo. Dicta las orbitas de
los planetas, gobierna la formacién de estrellas y
mantiene unidas a las galaxias. Como la fuerza que
sostiene las vastas estructuras del universo en su lu-
gar, la influencia de la gravedad es tanto sutil como
profunda. La naturaleza de la gravedad ha intrigado
a la mente humana desde tiempos antiguos, lo que
ha llevado a siglos de investigaciéon cientifica.

En el siglo XVII, Sir Isaac Newton revolucion6
nuestro entendimiento con su ley de gravitacién uni-
versal, que describia como la gravedad afecta a los
objetos. Sin embargo, aunque el trabajo de Newton
explicaba como opera la gravedad, la verdadera nat-
uraleza de esta fuerza seguia siendo un misterio. No
fue hasta el siglo XX que Albert Einstein introdujo la
teoria de la relatividad general, proporcionando una
descripcion unificada de la gravedad y allanando el
camino para la fisica moderna.

Segun la relatividad general, la gravedad es una
propiedad geométrica del espacio-tiempo, el tejido
de cuatro dimensiones que compone el universo. Este tejido incluye tres dimensiones de espacio
y una de tiempo. En este tejido flexible, la materia provoca la curvatura del espacio-tiempo,
y esta curvatura dicta como se mueven los objetos. Por ejemplo, la Tierra orbita alrededor
del Sol porque se mueve a lo largo del camino curvado generado por la masa del Sol en el
espacio-tiempo. Una consecuencia fascinante de estos caminos curvados es la curvatura de
la luz, conocida como lente gravitacional. Este efecto se ilustra en la Fig. S3.1, capturada
por el telescopio espacial James Webb, donde varias galaxias parecen tener duplicados. En
este escenario, un objeto masivo, como una galaxia, actiia como una “lupa”, permitiéndonos
observar objetos situados detras de él y provocando estos duplicados como consecuencia.

FI1GURE S3.1: Imagen del telescopio
espacial James Webb con un gran
numero de galaxias lentes. Créditos:

NASA, ESA, CSA y STSeI.
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Otra consecuencia de la relatividad general es que los objetos astronémicos masivos pueden
distorsionar el mismo tejido del espacio-tiempo. Imagina el espacio-tiempo como un lago de
agua cristalina, tan transparente que puedes ver hasta el fondo. Cuando una roca se lanza a
este lago, crea ondas en la superficie. En esta analogia, el lago representa el espacio-tiempo y
las ondas son causadas por una catastrofe astronémica. Estas ondas son conocidas como ondas
gravitacionales y viajan a través del universo a la velocidad de la luz. Después de millones de
anos, pueden llegar a la Tierra, donde ahora podemos detectarlas.

Deteccion de ondas en el espacio-tiempo

Las estrellas, al igual que los humanos, nacen, envejecen durante escalas de tiempo increible-
mente largas y eventualmente mueren. Durante sus vidas, estas enormes nubes de hidrégeno
comprimido convierten continuamente hidrogeno en helio a través de un proceso llamado fusion
nuclear, que genera energia. Una vez que agotan su suministro de hidrégeno, las estrellas
comienzan a fusionar elementos mas pesados para producir energia, progresando a través de la
tabla periodica hasta que llegan al hierro.

Al final de sus vidas, las estrellas muy masivas ya
no pueden soportar su propio peso y colapsan hacia
adentro. Este colapso conduce a una espectacular
explosiéon hacia afuera, llamada supernova, uno de
los eventos mas poderosos del universo. En la Fig.
53.2, puedes ver uno de los remanentes mas famosos
de una explosion de este tipo: la nebulosa del Can-
grejo, que fue formada por una supernova observada
hace casi 1,000 anos en 1054 CE. A pesar de que las
supernovas son increiblemente energéticas, las ondas
gravitacionales que producen son muy débiles y difi-
ciles de detectar. No todas las explosiones de super-
nova dejan remanentes visibles como la nebulosa del
Cangrejo. Lo que queda después de una supernova
depende de la masa original de la estrella. A veces,
una supernova no deja ninguin remanente, mientras
que otras veces forma un objeto compacto como una

estrella de neutrones o un agujero negro. FIGURE S3.2: Imagen del telescopio
En astrofisica, un objeto compacto se refiere a espacial Hubble de la nebulosa del
un cuerpo celeste masivo que es relativamente pe- Cangrejo. Créditos: NASA y STScl.

queno. Las explosiones de supernovas pueden for-

mar un agujero negro o una estrella de neutrones. Una estrella de neutrones es una estrella
extremadamente densa y compacta compuesta por neutrones, mientras que un agujero negro
es un objeto extremadamente denso y compacto que deforma el espacio-tiempo en si mismo,
absorbiendo todo lo que se acerca a él, incluida la luz. Para este tipo de objetos, la descripcion
de la gravedad proporcionada por Sir Isaac Newton ya no es valida debido a sus condiciones
extremas, y necesitamos adoptar la teoria de la relatividad general.

En la naturaleza, las estrellas a menudo se forman en sistemas binarios, por lo que es
comun encontrar pares como estrellas de neutrones binarias, agujeros negros binarios o una
estrella de neutrones y un agujero negro. Estos cuerpos celestes orbitan entre si durante miles
de millones de anos y, durante este tiempo, sus oOrbitas se encogen gradualmente debido a
la emision de ondas gravitacionales, que son ondas en el espacio-tiempo. Eventualmente, los
dos objetos compactos colisionan en una catastrofe astronémica, fusionandose para formar un
objeto compacto mas grande. Las ondas gravitacionales emitidas por esta colision viajan por
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todo el universo durante millones de anos, pasando por innumerables galaxias. A medida que
se propagan, las ondas gravitacionales, como ondas en la superficie de un lago, deforman el
espacio-tiempo, incluida la Tierra y todo lo que hay en ella. Sin embargo, no somos conscientes
de sus efectos porque las distorsiones que causan son extremadamente pequenas.

Para medir las ondas gravitacionales, los cientificos han construido varios detectores que
forman una red: LIGO Hanford y LIGO Livingston en los EE.UU., Virgo en Italia y KAGRA
en Japén. Estos instrumentos extremadamente complejos, conocidos como interferometros,
tienen una precision exquisita para poder detectar las diminutas distorsiones causadas por
las ondas gravitacionales, midiendo cambios en la distancia tan pequenos como ~ 1/10, 000 del
diametro de un protéon. Puedes pensar en estas maquinas como los sismografos mas precisos del
mundo, dispositivos que detectan y registran ondas, pero en lugar de medir terremotos causados
por el movimiento de las placas tectonicas, miden ondas en el espacio-tiempo generadas por
eventos catastroficos como explosiones de supernovas y colisiones de agujeros negros o estrellas
de neutrones. Debido a su increible sensibilidad, estos detectores pueden verse afectados por
el ruido de fondo terrestre, como fallos eléctricos, tormentas eléctricas o incluso actividades
humanas. Este ruido de fondo puede producir artefactos en los datos, conocidos como glitches,
que pueden imitar las seniales de ondas gravitacionales y dificultar su deteccién.

En 2015, los detectores LIGO y Virgo confirmaron la existencia de ondas gravitacionales
provenientes de la fusion de dos agujeros negros, etiquetadas como GW150914, casi un siglo
después de que Albert Einstein las predijera en su teoria de la relatividad general. Este de-
scubrimiento revolucionario fue galardonado con el Premio Nobel de Fisica en 2017, y, hasta
la fecha de este escrito, se han detectado mas de 90 senales de ondas gravitacionales desde
entonces. El inmenso trabajo de la colaboracion LIGO-Virgo-KAGRA ha abierto una nueva y
emocionante forma de escuchar la sinfonia del cosmos y revelar sus misterios. La investigacion
futura en astronomia de ondas gravitacionales promete profundizar nuestra comprension del
universo al sondear las regiones mas densas y energéticas de los objetos césmicos, que hasta
ahora habian estado ocultas a la vista de los astronomos.

Explorando la frontera de la deteccion de ondas gravitacionales.

Asi como la suave melodia de una flauta de un
musico callejero puede ser ahogada por el bullicioso
ruido de la ciudad, las ondas gravitacionales son
senales increiblemente sutiles que a menudo estan
enmascaradas por diversas fuentes de ruido de los
detectores. Detectar una senal de onda gravitacional
en los detectores terrestres actuales es como encon-
trar una aguja en un pajar: capturamos solo unos
pocos segundos de senales de ondas gravitacionales
entre aproximadamente 1.296.000 segundos (dos se-
manas) de ruido de detector.

Las busquedas actuales de ondas gravitacionales
transitorias son como encontrar una aguja en un pa-
jar. Estas busquedas se basan en dos enfoques prin-
cipales: busquedas modeladas y btisquedas no mode-
ladas. Las busquedas modeladas comparan modelos
teodricos de la relatividad general con los datos del
detector para determinar si una senal dada tiene un FIGURE S3.3: Interpretacion del
origen astronémico. Las busquedas no modeladas, auditorio césmico. Créditos: DALL - E 2
por otro lado, buscan senales fuertes en los datos
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del detector con poca o ninguna informacién previa. Sin embargo, ambos métodos enfrentan
desafios porque los detectores de ondas gravitacionales producen glitches que pueden imitar
las senales de ondas gravitacionales. Para superar esto, ambos tipos de busquedas también se
basan en una idea clave: si una senal se observa simultaneamente en multiples detectores, es
mas probable que tenga un origen astronémico.

A medida que los detectores terrestres actuales se actualicen, seran mas sensibles a las ondas
gravitacionales. Se espera que la proxima generacion de detectores, como el Telescopio Einstein,
Cosmic Explorer y LISA, sea atin mas sensible, lo que nos permitira acceder a la sinfonia
completa del cosmos. En este escenario, entraremos en el auditorio cosmico y necesitaremos
desentrafar los sonidos de diferentes instrumentos. Cada fuente de onda gravitacional, como los
agujeros negros en colision o las estrellas de neutrones en fusién, contribuye con su propia “nota”
Unica a la sinfonia césmica, al igual que los instrumentos individuales en una orquesta. A medida
que mejoramos nuestra capacidad para detectar estas débiles “notas” césmicas, descubriremos
el rico tapiz de eventos que dan forma a nuestro universo. Sin embargo, los nuevos detectores
plantearan nuevos desafios para el andlisis de datos.

Asi como la creacién de internet revolucioné nuestra sociedad, el desarrollo de la inteligencia
artificial (IA) la estd moldeando de maneras profundas cada dia. En los tltimos anos, hemos
mejorado la capacidad de las maquinas para aprender y percibir el mundo que nos rodea de
manera similar a los humanos. Este progreso ha llevado a hitos notables, incluidos robots hu-
manoides, traduccion de idiomas en tiempo real, vehiculos auténomos y algoritmos generativos.
Estas tecnologias impulsadas por IA demuestran la capacidad de analizar datos e identificar
patrones a velocidades notables, ofreciendo soluciones e ideas que antes eran inalcanzables.
Como ejemplo, en la Fig. S3.3 mostramos la interpretacién del parrafo anterior de DALL - E
2, un algoritmo de IA.

Gracias al éxito de la inteligencia artificial (IA),
especialmente del aprendizaje automético, un sub-
campo de la TA, en muchos campos, los cientificos de
grandes experimentos de fisica estan utilizando estos
algoritmos para encontrar patrones interesantes en
los datos. La investigacion de ondas gravitacionales
no es una excepcion. Los métodos de aprendizaje au-
tomatico son versatiles y pueden descubrir patrones
sorprendentes en los datos. Sin embargo, para hacer
estos métodos flexibles, a menudo se vuelven com-
plejos, lo que los hace dificiles de entender, un de-
safio conocido como el problema de la "caja negra'.
Ademas, dado que los algoritmos de aprendizaje au-
tomatico aprenden de los datos, necesitan recibir
datos de alta calidad y caracteristicas significativas.
Finalmente, se necesita la intervencion humana para
evaluar el rendimiento de estos algoritmos, lo cual no
siempre es facil, especialmente cuando se descubren FIGURE S3.4: Sagitario A*, el agujero

nuevos patrones. negro supermasivo en el centro de la Via
Lictea. Créditos: EHT.

Liberando el poder del aprendizaje
automatico

Aunque las explosiones de supernovas son uno de los eventos mas poderosos del universo, las
ondas gravitacionales que producen son increiblemente débiles y dificiles de detectar. Capturar
con éxito estas senales nos brindara informaciéon valiosa sobre el funcionamiento interno de
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estas explosiones, ayudandonos a comprender como evolucionan.

Sabemos que las supernovas pueden crear agujeros negros que son aproximadamente de 3
a 100 veces la masa de nuestro Sol. Por otro lado, observamos agujeros negros supermasivos
que pueden tener millones de veces la masa del Sol, como Sagitario A* en el centro de nuestra
galaxia, la Via Lactea, como se muestra en la Fig. S3.4. Los cientificos creen que estos agujeros
negros gigantes se formaron con el tiempo a medida que los agujeros negros mas pequeinos se
fusionaban entre si. Esto nos deja con un misterio: el eslabon perdido entre los agujeros negros
mas pequeinios creados por supernovas y los enormes agujeros negros supermasivos. Estos se
denominan agujeros negros intermedios, que tienen masas de entre 100 y 1,000 veces la del
Sol. Detectar mas ondas gravitacionales de agujeros negros intermedios, como las del evento
GW190521, podria ayudarnos a reconstruir la historia de cémo se forman los agujeros negros
supermasivos y como influyen en las galaxias que los rodean.

Mitigacién de glitches

Los detectores de ondas gravitacionales son méquinas increiblemente complejas formadas por
muchos componentes 6pticos. Estos detectores tienen miles de sensores que monitorean con-
stantemente su estado en tiempo real. Debido a su alta sensibilidad, a menudo ocurren glitches
que duran solo unos segundos en diferentes partes del detector y aparecen en el flujo de datos
principal. Debido a que no podemos predecir cuando aparecera un glitch, es crucial comprender
sus formas y patrones para identificarlos y reducir su impacto en los datos. Sin embargo, esta
es una tarea desafiante porque los glitches ocurren con frecuencia, aproximadamente una vez
por segundo.

Una forma prometedora de abordar el problema de los glitches en los detectores de on-
das gravitacionales es categorizarlos segin sus formas o "morfologias" en el flujo principal del
detector. Al combinar la experiencia humana con algoritmos de aprendizaje automatico que
son buenos para encontrar patrones, podemos identificar mejor estos glitches, que es el primer
paso para reducir su impacto. Sin embargo, hay desafios en este enfoque. Una dificultad es
determinar cuando un glitch esta ausente en los datos, lo que hace que sea dificil y requiera
mucho tiempo comprender completamente los resultados de los algoritmos de busqueda. Otro
problema es que a menudo se desconoce la causa exacta de un glitch, lo que dificulta encontrar
soluciones efectivas para prevenirlos.

En esta tesis, abordamos el primer problema utilizando un algoritmo de aprendizaje au-
tomatico generativo para aprender la poblacién de uno de los glitches mas abundantes: Blips.
Los Blips tienen una vida corta y afectan las frecuencias de interés en las busquedas de ondas
gravitacionales, particularmente obstaculizando las busquedas de supernovas y agujeros ne-
gros de masa intermedia. Al crear una poblacién sintética de estos glitches, podemos mejorar
nuestros algoritmos de bisqueda en un entorno controlado.

También abordamos el segundo problema utilizando un algoritmo de aprendizaje automéatico
para la detecciéon de anomalias. Comprimimos los datos de los canales auxiliares donde se
producen estos glitches. Al comprimir estos datos, el algoritmo puede identificar patrones y
aprender sobre los glitches basandose en sus procesos fisicos dentro de estos canales. Este
enfoque nos permite descubrir patrones inesperados y obtener una mejor comprensién de la
naturaleza compleja de estos glitches.

Reconocimiento de patrones para agujeros negros de masa intermedia y supernovas

Los algoritmos de aprendizaje automatico son solo tan efectivos como los datos que reciben.
Para descubrir patrones interesantes, estos algoritmos requieren grandes cantidades de datos
de alta calidad. Hasta ahora, hemos detectado més de 90 ondas gravitacionales, pero este
nimero no es suficiente para ensenar a un algoritmo de aprendizaje automatico cémo se ve
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una onda gravitacional. Debido a esta limitacion, dependemos en gran medida de simulaciones
de estos eventos astronémicos. Tenemos una buena comprension de la fisica detras de las
fusiones de agujeros negros, lo que nos permite simularlas con precisién. Sin embargo, simular
una explosién de supernova es mucho méas complejo. Una supernova involucra varias fuerzas
y procesos, lo que dificulta su modelado. Crear una simulaciéon de una supernova también es
extremadamente intensivo en recursos, a menudo requiere meses de tiempo de computacion en
una supercomputadora.

Los algoritmos de aprendizaje automatico son excelentes para aprender patrones y tienen
una notable capacidad para generalizar a partir de ellos. En esta tesis, aprovechamos esta
capacidad generando senales que son algo similares a las simulaciones reales de supernovas. La
idea clave es que los algoritmos de aprendizaje automatico pueden aprender primero de estos
conjuntos de datos aproximados y luego refinar su comprension utilizando las simulaciones
reales. Ademas, el método de aprendizaje automatico aprende que las ondas gravitacionales
suelen detectarse en varios detectores simultaneamente.

Los algoritmos de busqueda tradicionales para agujeros negros de masa intermedia se han
refinado durante los ultimos 20 anos para transformar eficazmente el flujo de datos de los detec-
tores de ondas gravitacionales en caracteristicas significativas. Sin embargo, estos algoritmos
de buisqueda dependen principalmente de las simulaciones. Los algoritmos de aprendizaje au-
tomatico, por otro lado, pueden aprender directamente de las simulaciones y de los glitches. Sin
embargo, sin las caracteristicas adecuadas, puede ser muy dificil para el aprendizaje automatico
distinguir entre sefiales reales y ruido. En esta tesis, desarrollamos una relacién simbiotica entre
los métodos de busqueda tradicionales y los algoritmos de aprendizaje automatico. Los mod-
elos de aprendizaje automéatico aprenden las caracteristicas generadas por los algoritmos de
busqueda tradicionales, lo que les permite distinguir mejor las ondas gravitacionales genuinas
del ruido de fondo.

El trabajo en esta tesis tiene como objetivo mejorar la deteccién de ondas gravitacionales
de supernovas y agujeros negros de masa intermedia, al mismo tiempo que se reduce el impacto
de fallos. Hemos explorado las fronteras de la deteccion de ondas gravitacionales transitorias
aprovechando el poder del aprendizaje automatico.
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