

Study of neutron–nuclear spin correlation term with a polarized Xe target

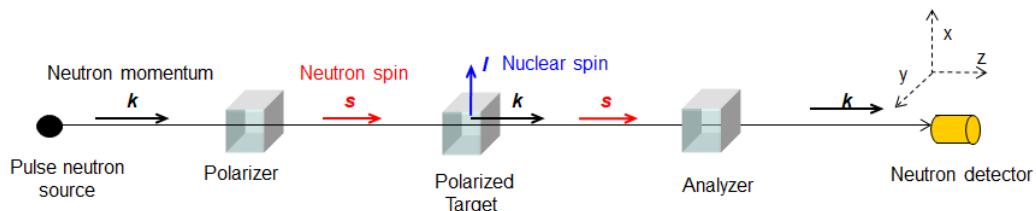
Kenji SAKAI^{1*}, Takayuki OKU¹, Takuya OKUDAIRA¹, Tetsuya KAI², Masahide HARADA¹, Kosuke HIROI¹, Hirotoshi HAYASHIDA², Kazuhisa KAKURAI², Hirohiko M. SHIMIZU³, Katsuya HIROTA³, Tomoki YAMAMOTO³, Takashi INO⁴

¹JAEA, Tokai, Ibaraki 319-1195, Japan

²CROSS, Tokai, Ibaraki 319-1106, Japan

³ Dept. of Physics, Nagoya University, Nagoya, Aichi, 464-8602, Japan

⁴KEK, Tsukuba, Ibaraki 305-0801, Japan


*E-mail:kenji.sakai@j-parc.jp

(Received January 6, 2020)

Study of a correlation term, $\mathbf{s} \cdot \mathbf{I}$, of a neutron spin \mathbf{s} and a target nuclear spin \mathbf{I} is important in investigating fundamental symmetry breaking in neutron-nuclear interactions, because it interferes with parity and time reversal non-conserving terms. Xe is an interesting material because a large parity non-conserving effect around neutron resonance peak has been observed, and also because its spin can be polarized to 10^{-2} – 10^{-1} at pressures of 10^{-1} – 10^0 atm by using a spin-exchange optical-pumping method. For this study, we plan to measure the spin-dependent cross section and neutron spin rotation, which are predicted to depend on neutron energy around the resonance peaks. As a first step, we measured a neutron polarizing ability caused by the spin-dependent cross section at a 9.6 eV s-wave resonance peak of ^{129}Xe when unpolarized neutrons transmit through the polarized Xe target, and obtained a significant value of $\sim 10^{-2}$ as a preliminary result.

KEYWORDS: SEOP, neutron polarizing ability, polarized Xe target, DB effect

1. Introduction

Figure 1. Propagation of polarized neutron through polarized target.

Polarized Xe has been utilized as a probe for investigating nuclear electric dipole moment by precisely measuring its Larmor precession, a standard sample for nuclear magnetic resonance (NMR), blood flow tracing, etc. [1, 2] In neutron science, it is interesting to study neutron–nuclear spin correlation terms using a polarized Xe target for studying the neutron optical theorem (NOPT). According to the NOPT, the propagation of a low-energy neutron through a target can be described using the forward-scattering