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Introduction

Along with the discovery of a large variety of sub-atomic particles during the twenti-
eth century, a set of models were developed trying to explain the elementary compo-
sition of matter and the fundamental interactions. In the second half of the century,
a quantum field theory that described the experimental observations was successfully
built, the so-called Standard Model (SM) [1–3].

An important piece of the Standard Model is the mechanism of spontaneous
electroweak symmetry breaking proposed by Higgs, Brout, Englert, Guralnik, Hagen
and Kibble [4–6]. It is introduced in the Standard Model to make it compatible
with the massive vector bosons W± and Z0, mediators of the weak interactions, as
well as with the masses of the fermions. In addition, this mechanism predicts the
existence of a new particle, the longly searched Higgs boson.

Experiments at the LEP and Tevatron colliders searched the Higgs boson during
years, without finding evidences of it, but setting exclusion at different ranges for
its mass [7, 8].

One of the main objectives for the construction of the Large Hadron Collider
(LHC) at CERN was to give a final answer to the question of the existence of the
SM Higgs boson. The LHC is currently the newest and most powerful instrument
for particle physics research. It is designed to collide protons with an unprecedented
center-of-mass energy of

√
s = 14 TeV and a luminosity of 1034 cm−2s−1. It has

already been operated during three years at 7 and 8 TeV, reaching a luminosity of
7.73× 1033 cm−2s−1. Several detectors have been built to probe the collisions at the
LHC, among which the general purpose detectors ATLAS and CMS are the ones
that allow the Higgs boson search.

In the frame of my doctoral studies, I have worked in the ATLAS experiment,
participating in the measurement of the photon production, and principally in the
search for the Standard Model Higgs boson in the diphoton decay channel. This
channel has been the most promising one for the Higgs boson search and its study
at low mass.

In 2009, the sensitivity of the H → γγ analysis to observe or exclude the Higgs
boson with collisions at

√
s = 10 TeV was evaluated, based on Monte Carlo sim-

ulations. I have contributed to this analysis in particular in the estimation of a
component of the background, the so-called reducible background. The result of
this analysis was later extrapolated to

√
s = 7 TeV, and this work is reported in [9].

With the first LHC collision data, collected in 2010 at
√
s = 7 TeV, some mea-

surements of the prompt photon and diphoton production cross-section were per-
formed [10–12]. I have participated in these analyses estimating the possible con-
tributions to the background from non-collision events. These non-collision events
include those induced by the proton beams through interactions different from the
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Introduction

proton-proton collisions, and cosmic-ray showers that reach the ATLAS detector.
Additionally, I have studied an alternative method for the measurement of the pho-
ton sample purity, based on photon isolation criteria using tracking information.

The first results of the H → γγ analysis considering collision data were reported
at beginning of 2011 in [13,14], based on the data collected in 2010; after that, five
documents were published based on data collected in 2011 [15–19], and two docu-
ments [20, 21] have been published in 2012 reporting results from the combination
of data collected in 2011 and 2012, at

√
s = 7 TeV and

√
s = 8 TeV respectively.

In the ATLAS collaboration, the H → γγ analysis is performed by a group of
about one hundred people. I have been part of this group, participating at different
levels of the working chain, that includes: data-preparation, optimizations of the
event selection, statistical analysis, and the edition of ATLAS internal and public
notes.

This document begins with an introduction to the Standard Model Higgs boson
in Chapter 1. Then the LHC and the ATLAS experiment are presented in Chap-
ter 2. The reconstruction, calibration and identification of prompt photons with the
ATLAS detector are described in Chapter 3. The statistical procedure followed for
the Higgs boson search is explained in Chapter 4. Chapter 5 presents the H → γγ
analysis performed between spring and summer of 2012, and the corresponding re-
sults, based on data collected in 2011 and the first half of 2012. A summary of
other results on the search for the SM Higgs boson considering different channels
and experiments are reported in Chapter 6, and then the conclusions are given. Ad-
ditionally, the Appendix A presents the non-collision background studies performed
in the frame of the photon production measurements.

14



Chapter 1

The Standard Model Higgs boson

The factors that brought to the prediction of existence of the Higgs boson in the
Standard Model (SM) are briefly presented in this chapter; details can be found
in [22–24]. It also presents the scenario of the Higgs boson search before the era
of the Large Hadron Collider (LHC), the Higgs production mechanism at the LHC,
and the decay modes that are used for its search.

1.1 The Prediction of the SM Higgs boson

1.1.1 Gauge symmetries

In the Standard Model, the description of the interactions between elementary parti-
cles is derived using symmetry principles. A symmetry is understood as an operation
that can be performed on a system leaving it invariant. From Noether’s theorem,
every symmetry of nature is associated with the conservation of a physics quantity.

The Standard Model is constructed using the so-called local gauge symmetry, in
which the symmetry of the interactions is associated with the conservation of some
quantities (charge, color, etc.) locally, i.e. at the point where the interaction occur.
A local gauge transformation is one whose parameters depend on the space-time
point where it is applied, like:

ψ → eiθ(x)ψ; (1.1)

where θ is a function of the time and space coordinates.
Consider the Dirac Lagrangian, which describes a spinor field, associated with

an electron like particle with spin 1
2

and mass m,

L = iψ̄γµ∂µψ −mψ̄ψ. (1.2)

If the transformation of Equation 1.1 is applied to this Lagrangian, one can see that
it is not invariant under this transformation.

In order to make this Lagrangian locally gauge invariant, one is obliged to add
some extra terms. One ends up introducing a vector field Aµ, that transforms as
follows

Aµ → Aµ +
1

q
∂µθ(x); (1.3)

where q is a free parameter that corresponds to the charge of the particle associated

15



Chapter 1. The Standard Model Higgs boson

with the spinor field.

The Lagrangian for a vector field Aµ, associated with a spin 1 particle, is

L = −1

4
F µνFµν +

1

2
m2
AA

νAν (1.4)

The first term is the kinetic term of the field, where F µν = ∂µAν − ∂νAµ. It is
invariant under the transformation in Equation 1.3, but the second term is not.
Thus, the vector field has to be necessarily massless (mA = 0), to keep the local
gauge invariance.

After the introduction of the vector field, the resulting new Lagrangian is

L =
[
iψ̄γµ∂µψ −mψ̄ψ

]
− 1

4
F µνFµν −

(
qψ̄γµψ

)
Aµ. (1.5)

The vector field Aµ represents the photon field, and the Lagrangian in fact describes
the interactions between Dirac fields and the photon Maxwell fields (quantum elec-
trodynamics).

The symmetry considered above is called U(1) gauge invariance. Similarly, a
model that describes the strong interactions is obtained with local gauge trans-
formations of a group SU(3), and the whole Standard Model is constructed with
a symmetry group denoted as SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The rules that govern
the interactions are extracted by interpreting the Lagrangians after making them
satisfying these symmetries.

1.1.2 Spontaneous symmetry-breaking

While the procedure explained above works to describe the strong and electromag-
netic interactions, its implementation is not straightforward for the weak interaction.
The gauge field introduced in Equation 1.5 must be massless, otherwise the desired
local gauge invariance is broken. But, the W± and Z0 vector bosons that mediate
the weak interactions are massive; their mass explains the relative weakness of the
weak force with respect to the electromagnetic force, and the short range of weak
interactions.

The way to introduce the massive vector bosons in the Standard Model keep-
ing the local gauge invariance is to use the mechanism proposed by Higgs, Brout,
Englert, Guralnik, Hagen and Kibble [4–6], commonly known as Higgs mechanism,
in which a phenomenon called spontaneous symmetry-breaking is used. Here, an
example is given to show how this mechanism works.

Consider a complex field that combines two real fields

φ =
1√
2

(φ1 + iφ2) , (1.6)

with Lagrangian

L =
1

2
(∂µφ)∗(∂µφ)− V (φ), (1.7)

with
V (φ) = −µ2(φ∗φ) + λ(φ∗φ)2. (1.8)

16



1.1. The Prediction of the SM Higgs boson

Figure 1.1: Potential of the Lagrangian in Equation 1.11 (in square brackets) as a function of the potential
components φ1 and φ2.

Require this Lagrangian to be invariant under local gauge symmetry transformations
of the group U(1),

φ→ eiθ(x)φ. (1.9)

As above, some terms need to be added, introducing gauge fields. In fact, there is a
procedure to find the required terms, which consists on replacing the derivative of
the Lagrangian by a covariant derivative, which for this example is

Dµ ≡ ∂µ + iqAµ. (1.10)

Thus, the result is

L =
1

2
Dµφ∗Dµφ−

[
−µ2(φ∗φ) + λ(φ∗φ)2

]
− 1

4
F µνFµν . (1.11)

In order to interpret this Lagrangian, a particular treatment is required because
of the form of the potential (in square brackets). The ground state of this potential
is infinitely degenerated, as illustrated in Figure 1.1. There are infinite states in the
circle of minimum potential,

φ1
2 + φ2

2 = v2, with v2 ≡ µ2

λ
. (1.12)

v is called vacuum expectation value. One has to choose one ground state as ref-
erence, and develop the Lagrangian re-writing the field φ in terms of fields that
fluctuate around the chosen ground state. For simplicity one can choose the mini-
mum φ1 = v and φ2 = 0, and define the fields η and ξ as

η = φ1 − v, ξ = φ2. (1.13)

The fact of choosing one ground state among the infinite possibilities and re-
formulating the Lagrangian based on it is what is called spontaneous symmetry-
breaking, because the symmetry is left with an arbitrary selection to perform the
calculation.

17
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The result of developing Equation 1.11 in terms of η and ξ is

L =

[
1

2
(∂µη)(∂µη)− v2λη2

]
+

[
1

2
(∂µξ)(∂

µξ)

]

+

[
−1

4
F µνFµν +

1

2
q2v2AνAν

]
(1.14)

− 2ivq(∂µξ)A
µ

+ cubic and quartic terms.

The first term in square brackets corresponds to a scalar field that is associated with
a particle of spin 0 and mass

mη =
√

2v2λ. (1.15)

The second term corresponds to a massless scalar field; this type of fields are called
Nambu-Goldstone bosons, and are known to appear when there is spontaneous sym-
metry breaking. And the third term is a massive gauge vector field, just as required
in the electroweak model; the mass of this gauge vector field is

mA = qv (1.16)

1.1.3 The Higgs mechanism

In the previous section, the required massive vector field has been introduced; never-
theless, the Goldstone boson also introduced is not compatible with the experimental
observations, and in addition the term in the third line suggest that the current in-
terpretation of the Lagrangian is not correct. This issue is solved in the so-called
Higgs mechanism [4–6] by choosing a particular gauge.

Re-define η and ξ in such a way that the field φ can be written as

φ =
1√
2

(v + η)eiξ/v, (1.17)

and consider a vector field that transforms as

Aµ → Aµ +
1

qv
∂µξ, (1.18)

The result of re-developing the Lagrangian of Equation 1.11 in terms of these re-
defined η and ξ is the following

L =

[
1

2
(∂µ)(∂µ)− v2λη2

]
+

[
− 1

16
F µνFµν +

1

2
q2v2AνAν

]
(1.19)

+ cubic and quartic terms.

The Goldstone boson has disappeared; more precisely, it has been “eaten” by a new
Aµ polarization. And the particle associated with η is what is called a Higgs particle.
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1.1. The Prediction of the SM Higgs boson

1.1.4 The SM Higgs boson

In the Standard Model, the Higgs mechanism is used to introduce the mass terms
of the W± and Z0 vector bosons. In this case, a SU(2) doublet of complex scalar
fields is introduced

φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
, (1.20)

with Lagrangian

L = (∂µφ)†(∂µφ)−
[
−µ2(φ†φ) + λ(φ†φ)2

]
. (1.21)

This time, the Lagrangian is required to be invariant under local gauge trans-
formations of the group SU(2)L ⊗ U(1)Y , which introduces four gauge vector fields
W a
µ , a = 1, 2, 3, and Bµ, for the SU(2) and U(1) symmetry groups respectively.

These gauge fields are introduced by replacing the derivative of the Lagrangian by
the following covariant derivative

Dµ ≡ ∂µ +
i

2
gσaW a

µ +
i

2
g′Y Bµ; (1.22)

where g and g′ are coupling strength constants, σa are the Pauli matrices, and Y is
a hyper-charge associated to the U(1) group.

In order to interpret the Lagrangian, the potential ground state considered is

φ1 = φ2 = φ4 = 0, φ3 = v, (1.23)

and the scalar doublet field is parametrized around this ground state with four real
fields θa (with a = 1, 2, 3) and h,

φ =
1√
2

(
0

v + h

)
eiσ

aθa/v. (1.24)

After developing the Lagrangian, the three fields θa disappear, and h is the only
one that remains. The particle associated with h is the predicted Standard Model
Higgs boson. Its mass is given by the relationship

mH =
√

2v2λ. (1.25)

λ and µ are free parameters, and so the Higgs boson mass is also free in the theory.

The physical vector boson fields are linear combinations of the fields W a
µ and Bµ.

The charged weak boson fields are combinations of W 1,2,

W± =
1√
2

(
W 1 ∓ iW 2

)
. (1.26)

The mass for these bosons is found to be

mW =
1

2
gv. (1.27)

Similarly, the photon and the neutral weak boson fields are combinations of W 3
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and B,

A =
g′W 3 + gB√
g2 + g′2

, and Z =
gW 3 − g′B√
g2 + g′2

, (1.28)

and their masses are found to be

mA = 0, and mZ =
1

2
v

√
g2 + g′2. (1.29)

In addition, a relation between the W± and the Z0 masses can be also derived

mW

mZ

= cos θW with tan θW =
g′

g
. (1.30)

θW is called Weinberg angle or weak mixing angle.

The masses of the fermions would violate the gauge symmetry, but they are also
allowed thanks to the scalar doublet. The coupling between the fermions and the
Higgs boson are related to the fermion masses.

1.2 Constraints on the Higgs boson mass

1.2.1 Theoretical constraints

There are some theoretical constraints on the mass of the Standard Model Higgs
boson mH, correlated with the energy scale Λ beyond which the SM is not anymore
valid and from which new phenomena should emerge. Namely, the requirements
bringing these constraints are: unitarity of the amplitude for electroweak scatter-
ing processes, renormalization and triviality of the electroweak theory, and vacuum
stability.

• The unitarity requirement constraints the Higgs boson mass to be below
∼ 700 GeV; otherwise unitarity is violated, unless there is physics beyond
the SM at energies in the TeV range that restores it. This is because the
participation of the Higgs boson in some vector boson scattering processes
regularizes their cross-sections at high energies, avoiding unitarity violation,
but the Higgs boson coupling with the vector bosons depends on its mass.

• The renormalization and triviality of the electroweak theory sets an upper
limit to the Higgs boson mass that vary with the energy scale Λ, as shown
in Figure 1.2 by the red band. From the theory renormalization, the Higgs
boson quartic self-coupling depends on the energy scale of the interaction; at
high energy, the quartic self-coupling of the Higgs boson grows and eventually
becomes infinite. The energy scale point where the coupling becomes infinite,
called Landau pole, depends on the Higgs boson mass. Then, from another
point of view, for a given energy domain of validity of the Standard Model
there is a limit for the Higgs boson mass.

• From the theory renormalization a lower limit for mH also results, that also
depends on the Λ; it is known as the vacuum stability bound and is shown by
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1.2. Constraints on the Higgs boson mass

at the TeV scale, the Higgs boson mass is allowed to be in the range

50 GeV <∼ MH <∼ 800 GeV (1.181)

while, requiring the SM to be valid up to the Grand Unification scale, ΛGUT ∼ 1016 GeV,

the Higgs boson mass should lie in the range

130 GeV <∼ MH <∼ 180 GeV (1.182)

Figure 1.19: The triviality (upper) bound and the vacuum stability (lower) bound on the
Higgs boson mass as a function of the New Physics or cut–off scale Λ for a top quark mass
mt = 175 ± 6 GeV and αs(MZ) = 0.118 ± 0.002; the allowed region lies between the bands
and the colored/shaded bands illustrate the impact of various uncertainties. From Ref. [136].

1.4.3 The fine–tuning constraint

Finally, a last theoretical constraint comes from the fine–tuning problem originating from

the radiative corrections to the Higgs boson mass. The Feynman diagrams contributing to

the one–loop radiative corrections are depicted in Fig. 1.20 and involve Higgs boson, massive

gauge boson and fermion loops.

69

Figure 1.2: Theoretical constraints over the Higgs boson mass as a function of the energy scale limit Λ for the
validity of the Standard Model [24]. The upper (red) band corresponds to the triviality bound and its uncertainties,
and the lower (green) band corresponds to the vacuum stability bound and its uncertainties.

the green band in Figure 1.2.

More details about these theoretical constraints can be found in [24].

1.2.2 Experimental exclusion before the LHC

The experiments at the Large Electron-Positron collider (LEP) have excluded the
existence of a Standard Model Higgs boson with mass below 114.4 GeV, with 95%
of confidence level. This exclusion has been obtained from data collected in e+e−

collisions at different center-of-mass energies between 91 and 209 GeV. In these
collisions the SM Higgs boson was expected to be produced through the so-called
Higgs-strahlung process e+e− → Z∗ → HZ, where the Higgs boson is radiated by
a Z vector boson. The plot on the left side of Figure 1.3 shows the final results on
the Higgs boson search at LEP [7]. In this plot, the exclusion limits are expressed
as limits on the Higgs boson to Z vector boson coupling.

On top of the LEP results, the Tevatron experiments also set exclusion limits
on the SM Higgs boson mass; the right side plot of Figure 1.3 shows the results
published by Tevatron in the summer of 2011 [8]. From these results, the SM Higgs
boson was excluded in the mass range 156 - 177 GeV, and also in a small range
at low mass till ∼108 GeV, confirming the LEP results. These limits were set
based on data collected on proton-antiproton collisions at a center-of-mass energy
of
√
s = 1.96 TeV.

1.2.3 Indirect experimental constraints

In addition to the direct mass range exclusions, information about the possible value
of the Higgs boson mass have been obtained through a global fit to electroweak pre-
cision measurements, and testing the coherence of the Standard Model. This is done
exploiting predicted dependency of electroweak processes on the Higgs boson mass.
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Figure 1.3: 95% confidence level upper limits on a SM-like Higgs boson produciton cross-section, normalized to the
SM predicted cross-section, as a function of the boson mass hypothesis mH, obtained by the LEP experiments [7]
on the left side and Tevatron experiments [8] for the summer of 2011 on right side.

This fit has been performed by several groups: among others the LEP Electroweak
Working Group [25] and the Gfitter group [26]; Figure 1.4 shows as an example the
result obtained by Gfitter for the summer of 2011.

The plot shows the resulting ∆χ2 test statistic values as a function of the Higgs
boson mass hypothesis mH. Independently of the Higgs boson direct search, if the
Standard Model is the right theory, this result indicated that the Higgs boson mass
is below ∼ 130 GeV with 68% of confidence level, and below ∼ 170 GeV with 95%
of confidence level. Further details can be found in [27].
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95% of confidence level.
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Process Generator Cross-section
tt̄ MC@NLO 160 pb

single top MC@NLO σs = 3.9 pb, σt = 58.7 pb and σWt = 13.1 pb
W → lν + 0-5 partons ALPGEN/PYTHIA 31.8 nb
Z→ ll + 0-5 partons ALPGEN/PYTHIA 3.1 nb

W (→ lν)+bb̄ + 0-3 partons: ALPGEN 9.5 pb
Z(→ ll)+bb̄ + 0-2 partons: ALPGEN 28.9 pb

Table 1: The production cross-sections for some important background processes at 7 TeV.

2.2 Higgs Boson Productions
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Figure 1: Representative leading order diagrams of Standard Model Higgs boson production.

At the LHC, the Higgs boson may be produced via several different processes, such as those shown
in Fig. 1. These have all been calculated at NLO precision or better and the cross-sections are shown
in Fig. 2. Gluon fusion, 1(a), produced through a heavy quark loop, is known at next-to-next-to-leading
order (NNLO) in QCD and including electroweak (EW) corrections [8–10] with soft gluon re-summation
up to next-next-to-leading log (NNLL) [11]. Vector Boson Fusion (VBF), 1(b), is known at NLO QCD
and with EW corrections. The associated production with a W or a Z, 1(c), is known at NNLO QCD
including EW corrections and the associated production with a pair of top quarks, 1(d), is known at
NLO. In order to be consistent with the perturbative order at which the cross-section of background is
calculated, the cross-sections of these processes are taken at NLO for all the SM processes considered in
this paper.
The cross-sections of both signal and background processes depend strongly on √s. Cross-section

ratios, defined as the cross-sections normalised to their values at √s = 10 TeV, are given in Table 2 and
illustrated in Fig. 3 for √s values between 2 and 14 TeV for a few selected processes. From 10 TeV to
7 TeV, cross-section reductions are approximately 50% for the signal (MH = 160 GeV), 32% forW , 40%
forWW and 60% for tt̄ production.
Five Higgs bosons are predicted in the MSSM: two neutral CP-even known as h and H , one CP-odd

A and two charged H±. At tree level, the Higgs sector in MSSM is described by two parameters, usually
chosen to be the mass of the CP-odd Higgs mA and the ratio of vacuum expectation values tanβ . The
neutral Higgs bosons are produced mainly through two processes at the LHC: in association with bottom
quarks and through gluon fusion, as shown in Fig. 4.
The cross-section for the gluon fusion process is calculated in the same way as for the standard

model gg→ H processes. The cross-section of the b-associated process can be calculated either in a

2

Figure 1.5: Feynman diagrams for the different Higgs boson production processes at the LHC proton-proton
collisions: a) gluon fusion, b) vector boson fusion (VBF), c) associated production with a vector boson (VH),
d) associated production with a top quark pair [29,30].

 [GeV] HM
80 100 200 300 400 1000

 H
+

X
) 

[p
b]

   
 

→
(p

p 
σ

-210

-110

1

10

210
= 8 TeVs

L
H

C
 H

IG
G

S
 X

S
 W

G
 2

01
2

 H (NNLO+NNLL QCD + NLO EW)

→pp 

 qqH (NNLO QCD + NLO EW)

→pp 

 WH (NNLO QCD + NLO EW)

→
pp 

 ZH (NNLO QCD +NLO EW)

→
pp 

 ttH (NLO QCD)

→pp 

Figure 1.6: Standard Model Higgs boson production cross-section as a function of the Higgs boson mass hypothesis,
for the LHC proton-proton collisions at a center-of-mass energy

√
s = 8 TeV [28].

1.3 The Higgs boson search at the LHC

1.3.1 Higgs boson production at the LHC

In the proton-proton collisions at the LHC, the Higgs boson is expected to be
produced through four different main processes: gluon fusion, vector boson fusion
(VBF), associated production with a vector boson and associated production with
a top-antitop quark pair. Figure 1.5 shows Feynman diagram examples for these
four processes, and Figure 1.6 shows the Standard Model expected cross-sections for
each process as a function of the Higgs boson mass hypothesis, for proton-proton
collisions at a center-of-mass energy of

√
s = 8 TeV [28–30].

The gluon fusion (Figure 1.5-a) is the main Higgs boson production mode at the
LHC. The gluon fusion is produced through a loop of quarks, mainly top quarks. Its
cross-section is computed up to next-to-next-to-leading order (NNLO) in QCD [31–
36], improved with QCD soft-gluon re-summation calculations up to next-to-next-
to-leading logarithmic order (NNLL) [37, 38] and next-to-leading order (NLO) EW
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corrections [39, 40]. The computed values are compiled in [41–43]. The theoretical
uncertainty on the gluon fusion cross-section is about 10%.

The vector boson fusion VBF (Figure 1.5-b) is the second-leading mode in the
Higgs boson production at the LHC, contributing to about 10% of the production
for a Higgs boson mass of 150 GeV. In this process the Higgs boson is produced by
the interaction of two vector bosons radiated by incoming quarks. The VBF has an
experimental signature that consists in the presence of two jets (the experimental
signature of quarks) in the forward regions of the detector, close to the proton beam
axis (details about the experiment geometry are discussed in Chapter 2). This
signature allows reducing backgrounds in the Higgs boson search and disentangling
VBF events from other production modes. The cross-section for the vector boson
fusion is calculated at NLO in QCD, with electroweak (EW) corrections [44–46] and
approximate NNLO QCD corrections [47]. The uncertainty on this cross-section is
about 3%.

In the associated production with a vector boson (Figure 1.5-c), the Higgs boson
is radiated by a vector boson, the so-called Higgs-strahlung mechanism. The pres-
ence of the vector boson in the final state represents an important distinguishing
signature for this process. (This process was the main Higgs boson production mode
at LEP, and the second leading one at Tevatron, where its signature was exploited by
the search channels with the highest sensitivity.) The cross-sections for this process
is calculated at NLO [48] and at NNLO [49], and NLO EW radiative corrections [50]
are applied. The uncertainty on this cross-section is about 4%.

The associated production with top quarks (Figure 1.5-d) has a low cross-section,
two orders of magnitude below the one for the gluon fusion; nevertheless its signa-
ture can be exploited in the event selections, for instance for a low mass Higgs
boson, when it decays to a b-quark pair (see next section). For the tt̄H associated
production, the cross-section calculations are done at NLO in QCD [51–54].

1.3.2 Higgs boson search channels

The Higgs boson decay branching ratios are shown on the left side of Figure 1.7,
and the cross-section times branching ratio for the Higgs boson search channels at
the LHC are presented on the right side; both sets of values are shown as a function
of the Higgs boson mass hypothesis (MH).

At the very low mass, the Higgs boson decays mainly to a bb̄ pair; nevertheless,
at the LHC, due to the high cross-sections for the QCD processes with the same
signature, the background for an inclusive bb̄ channel is too high to allow a sensitive
search. Additionally, the experimental bb̄ invariant mass resolution is low, which
makes the observation of a signal even more difficult in this decay channel. This
Higgs boson decay is only considered when the signature of the V H and tt̄H associ-
ated production processes are exploited. For similar reasons the H → gg, H → ττ
and H → cc̄, decays does not provide good sensitivity for a Higgs boson observa-
tion. However, the H → ττ decay is considered exploiting the VBF production
mode signature.

In this low mass range (below mH ∼ 125 GeV), the rare H → γγ decay is the
one providing the highest sensitivity. The γγ invariant mass resolution is good, and
therefore this channel provides a clear signal and allows precise measurements of a
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Figure 1.7: Left: Standard Model Higgs boson decay branching ratios as a function of the Higgs boson mass
hypothesis. Right: Cross-section times branching ratios for the SM Higgs boson at

√
s = 8 TeV as a function of the

mass hypothesis, for the decay channels used for the Higgs search at the LHC [28–30].

signal mass.
Above mH ∼ 125 GeV, the H → WW (∗) → lνlν channel becomes the one with

highest sensitivity, until mH ∼ 200 GeV. Due to the presence of neutrinos in the
final state (which are invisible for the detectors), the full invariant mass can not
be reconstructed, but only the transverse invariant mass, which corresponds to the
particles’ kinematics in the plane perpendicular to the beam axis. But, the high
cross-section and the experimental signature for this channel give a favorable signal-
to-background ratio.

For mH & 200 GeV, the H → ZZ channels are dominant in sensitivity.
The H → ZZ(∗) → 4l with l = e, µ is a particularly good channel. It has

good invariant mass resolution, it provides high sensitivity to a Higgs boson signal
in basically all the mass range (120 - 600 GeV), and the background rate for this
channel is quite low; for this reason it is sometimes referred to as the golden channel.

Around twice the top quark mass, mH ∼ 350 GeV, the branching ratio for the
H → tt̄ decay increases rapidly. Nevertheless, the high QCD background prevents
the Higgs boson search in this channel.

Details on the Higgs boson production at the LHC and the decay processes can
be found in [29,30].

1.3.3 The H → γγ channel

As mentioned above, the H → γγ channel is the most sensitive to observe the Higgs
boson at the very low mass, below 125 GeV. At the LHC, the search in this channel
is performed from 110 GeV, around the exclusion limit set by LEP and Tevatron,
up to 150 GeV.

The Higgs boson decays to two photons through loops of W bosons and fermions,
mainly top quarks, as shown in Figure 1.8. The branching ratio for this decay in the
mentioned mass range is about 0.2%. The calculation of this branching ratio include
NLO corrections in QCD and EW [55, 56], and it has an uncertainty of 5%. The
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Figure 1.8: Feynman diagrams for the Standard Model Higgs boson decay to two photons in the lowest order.

Table 1.1: Cross-section and diphoton branching ratio for a Higgs boson with mass mH = 125 GeV [29, 30]. The
total cross-section and the one for the two mayor production modes are quoted for center-of-mass energies of 7 and
8 TeV.

mH
√
s

σtot σggF σVBF BR σ × BR
(pp→ H) (gg → H) (qq̄′ → H + qq̄′) (H → γγ) (pp→ H → γγ)

125 GeV
7 TeV 17.5 pb 15.3 pb 1.2 pb

2.3 · 10−3 40.3 fb

8 TeV 22.3 pb 19.5 pb 1.6 pb 51.3 fb

cross-section times branching ratio for this channel is around 50 fb at
√
s = 8 TeV.

Precise values of the cross-section and the H → γγ branching ratio for a Higgs
boson of mass mH = 125 GeV are quoted in Table 1.1, for center-of-mass energies
of 7 and 8 TeV.

This channel is affected by a large amount of background. The main background
source is the QCD diphoton production, called irreducible background. Figure 1.9
shows Feynman diagrams for the three main processes contributing to the photon
pair production at the LHC: a) the Born process qq̄ → γγ, b) the bremsstrahlung
process qg → qγγ, and c) the box process gg → γγ. The total cross-section for the
diphoton production [57] is about three orders of magnitude higher than the one for
the signal process pp→ H → γγ.

The second most important source of background is the associated production
of a photon with one quark or gluon, experimentally one jet. The experimental
signal of a quark or a gluon in the detector can eventually be wrongly taken as a
photon signal (details are discussed in Chapter 3). Feynman diagrams for the main
photon-jet production processes are shown in Figure 1.10. At the LHC, the total
cross-section for these processes [10, 58] is about six orders of magnitude above the
pp → H → γγ cross-section. Therefore, a good photon-jet discriminating power is
necessary in the experiments, for keeping this background low.

Additional sources of background are the QCD production of multi-jets and the
Drell-Yan processes; the Drell-Yan processes are those that yield two electrons in
the final state. They contribute to the background when both objects, both jets or
both electrons, are mis-identified as photons. Thanks to the photon identification
capabilities of ATLAS, the background corresponding to these processes represents
only a few percent of the diphoton candidate samples.
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Figure 1.9: Feynman diagrams for the three main processes contributing to the photon pair production at the
LHC: a) the Born process qq̄ → γγ, b) the bremsstrahlung process qg → qγγ, and c) the box process gg → γγ.

Figure 9.1(a-c). In terms of power counting in the strong interaction coupling αs, the tree level
processes qq → gγ and qg → qγ are at LO (O(ααs)) and the gluon fusion process gg → gγ
(so-called box in reference to the quark loop) is at NLO (O(αα3

s)). Given the quite large gluon
luminosity at the LHC this contribution could be sizeable, but is almost negligible representing
about 0.1% of the total cross section. At LO, the qq and qg processes contribute to approxi-
mately 95% and 5% respectively.
Contrary to a fixed-order NLO ME calculation, Pythia simulates a rather realistic description
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Figure 9.1: Feynman diagrams of the subprocesses of the γ-jet production at the lowest order
in αs.

of the γ-jet production events by implementing the parton shower (PS), although processes in-
cluded in Pythia are at LO only. The showering process ”dresses” an event by including initial-
and final-state radiations from the hard process. Other features provide a non-null final-state
transverse momentum, such as the underlying event and the primordial kT . The underlying
event in Pythia describes the fate of the remaining partons inside the two protons of the colli-
sion. The primordial kT simulates the Fermi momentum, i.e the motion of the partons inside
a proton. While a typical value of < kT >∼ 200 − 300 MeV/c could realistically be expected,
comparisons of Pythia to Tevatron data suggest that a larger value is required, about 4 GeV/c.
The PS modifies the parton and photon phase space, but leaves the total cross section un-
changed. The reach of Pythia events in the γ-jet phase space is illustrated in Figure 9.2.
However, if further selection cuts in the aforementioned phase space are required, the cross
section will unavoidably be altered.
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Figure 1.10: Feynman diagrams for the three main processes contributing to the production of a photon associated
with quark of gluon at the LHC.
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Chapter 2

The ATLAS experiment at the
LHC

ATLAS is one of the detectors installed at the Large Hadron Collider (LHC) at
the European Laboratory for Particle Physics (CERN) [59]. The LHC is currently
the most powerful instrument for particle physics research. It collides particles at
unexplored high energies, at very high rate, allowing the study of a large variety
of interesting physics processes. ATLAS has been designed to probe as much as
possible this new physics domain.

This chapter starts with a brief presentation of the LHC and continues with a
summarized description of the ATLAS detector and its components. Some emphasis
is given to one ATLAS component, the electromagnetic calorimeter, since it is a key
component for the reconstruction of photons. A complete description of the LHC
can be found in [60], and the ATLAS detector is described on details in [61,62].

2.1 The Large Hadron Collider

2.1.1 Introduction

Among the large particle colliders used for particle physics research, there are
hadron-hadron, lepton-lepton and combined hadron-lepton colliders. Hadron-hadron
colliders are in general the most appropriate to explore new energy domains; lepton-
lepton colliders are more convenient than the others to perform precision measure-
ments; whereas hadron-lepton colliders are particularly useful to study the internal
structure of the hadrons.

Hadron-hadron colliders allow exploring simultaneously a wide range of energies
in the particles’ search. Though they operate with a fixed beam energy, they actually
provide interactions in a wide energy range. The reason is that in hadron collisions
at high energies the interactions actually occur between the hadron constituents,
quarks and gluons, rather than between the hadrons as a whole. The interacting
quarks and gluons carry a fraction of the hadron energy, that vary between zero and
one.

To reach the high unexplored energies, using hadrons is a better option than
using leptons/electrons. Since hadrons are heavier than electrons, they lose less
energy than electrons through synchrotron radiation in circular accelerators.
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The Large Hadron Collider (LHC) is a proton-proton circular accelerator and
collider constructed at CERN, at the Franco-Swiss frontier, near Geneva. It has a
circumference of 27 km and is installed underground, about 100 m below the surface.
It is placed in a tunnel that was previously occupied by the LEP collider. The LHC
has been designed to perform collisions at an unprecedented energy and luminosity1,
specifically a proton-proton center-of-mass energy of

√
s = 14 TeV and a luminosity

of L = 1034 cm−2s−1 (the collisions at the previous most powerful hadron collider,
the Tevatron, were performed at

√
s = 1.96 TeV and L = 4 × 1032 cm−2s−1 [63]).

The LHC can also collide heavy ions, specifically lead nuclei, with an energy of
2.8 TeV per nucleon and a luminosity of 1027 cm−2s−1.

2.1.2 Objectives

The LHC allows to perform a large variety of particle physics studies. Here, they
are synthesized in three general objectives:

• The main objective is the search of new particles, starting with the Standard
Model Higgs boson (on which this thesis is reporting about), the particles
predicted by supersymmetric theories and others predicted by more exotic
models. The beam energy at the LHC will allow exploring up to a few TeV’s
in the mass scale.

• Studying with high precision the Standard Model (SM) physics processes.
The LHC is a large source of b-quarks, top quarks, vector bosons, among
other particles and physics processes. It will allow for instance to improve
the measurements of the top quark and the W boson masses, and of their
production cross-sections. The large amount of B hadrons produced allows
studying CP violation and determining with higher precision the CKM matrix
parameters. Deviations of these precision measurements from the Standard
Model predictions would be indirect evidences of new physics.

• Studying the strong interaction in a quark-gluon plasma. The heavy ion colli-
sions at the LHC produce a state of matter with extremely high energy density
and temperature. At this state, quarks and gluons are expected to be no longer
confined inside hadrons. This state is the so called quark-gluon plasma.

2.1.3 General layout

A set of linear and circular accelerators are used to accelerate protons and heavy
ions before their injection into the LHC. Most of these accelerators already existed
at CERN before the design of the LHC, and they were upgraded to satisfy the LHC
necessities. Figure 2.1 shows a schematic view of the CERN accelerator complex.
For protons, the acceleration chain is as follows: protons reach 50 MeV of energy
in a linear accelerator (LINAC), then 1.4 GeV in the Synchrotron Booster, 25 GeV
in the Proton Synchrotron (PS) and 450 GeV in the Super Proton Synchrotron

1In particle physics, luminosity, or instantaneous luminosity, is an important quantity to char-
acterize the performance of particle colliders because the particle interaction rate depends on this
quantity (more details about luminosity are discussed in Section 2.1.5).
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Figure 2.1: The CERN accelerator complex [64]. The LHC is the last ring (dark grey line) in a chain of particle
accelerators. The smaller machines are used in a chain to help boost the particles to their final energies. The yellow
spots correspond to the main detectors installed at the LHC. For some of the machines, the construction finishing
year and the length are indicated.

(SPS). Then, they are injected into the LHC in both directions, clockwise and anti-
clockwise. Once there, protons are accelerated up to the nominal energy and they
collide at four different points. At these interaction points, detectors have been
constructed to probe the showers of particles produced in such collisions.

There are six detectors installed at the LHC: ATLAS, CMS, ALICE, LHCb,
TOTEM and LHCf. ATLAS and CMS are designed to cover the widest possible
range of physics in the proton-proton and heavy ion collisions, while LHCb and
ALICE are designed to study specific phenomena.

• LHCb [65] is dedicated to probe the decay of B hadrons for precision measure-
ments of CP violation and rare decays.

• ALICE [66] is dedicated to the heavy ion collisions to study the strong inter-
action.

The detectors used by the TOTEM and LHCf experiments are positioned near the
CMS and ATLAS detectors, respectively. They are designed to focus on particles
which are scattered very forward, i.e. in directions very close to the beams.
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• TOTEM [67] measures the total cross-section of proton-proton collisions. This
information will complement the physics analysis done at the other experi-
ments at the LHC.

• LHCf [68] is dedicated to the measurement of neutral particles emitted in the
very forward region. Its measurements will help to interpret and calibrate
cosmic-ray experiments.

2.1.4 The LHC main ring

In a circular particle accelerator, particles circulate in a vacuum pipe and they are
driven using electromagnetic devices. Some of them are: dipole magnets utilized to
keep the particles in their nearly circular orbits; quadrupole magnets to focus the
beam; and electromagnetic resonator cavities to accelerate the particles and then
keep them at a constant energy, by compensating for energy losses.

At the LHC, the beam pipe is kept at ultrahigh vacuum, specifically at 10−13 atm.
This is necessary to avoid collisions with gas molecules.

Among the electromagnetic devices, at the LHC, the ones with most challenging
requirement are the dipole magnets. They need to provide a magnetic field of 8.33 T
to keep protons at 7 TeV in the LHC circular orbit. This is achieved using niobium-
titanium (NbTi) superconducting coils, which are cooled down to a temperature
below 2 K using superfluid helium; working at this temperature is necessary to reach
the required magnetic field. Other accelerators, Tevatron, HERA and RHIC, use
the same superconductor alloy, but cooled by supercritical helium to temperatures
slightly above 4.2 K. Those machines operate with magnetic fields, below and around
5 T, lower than the one required by the LHC.

The LHC is a proton-proton collider unlike the previous hadron colliders Teva-
tron and SPS, where collisions were done between protons and anti-protrons. Using
antiprotons would have limited the luminosity at the LHC, for they are more com-
plicated to produce at high rates and to store for large periods of time than protons.

The proton-proton collisions imply of course two counter-rotating proton beams,
and therefore the necessity of two rings with opposite magnetic fields. But the
reduced space in the early created LEP/LHC tunnel didn’t allow having two sepa-
rated rings. Therefore, in order to fit the two rings inside the tunnel, the LHC use
a magnet design called “twin bore”.

The twin bore magnet consists of two sets of coils and beam channels within
the same mechanical structure and cryostat. Figure 2.2 shows a cross-section of the
LHC dipole magnet. In addition to satisfying the space constraint, this design has
also the advantage of reducing the cost.

The LHC is not a perfect circle, it has eight arcs and eight straight sections. The
straight sections are approximately 528 m long and house the interaction points
and the accelerator utilities; Figure 2.3 shows how these elements are distributed at
the eight straight sections. There are four points where the beams cross from one
magnet bore to the other providing the particles’ interactions. The ATLAS and CMS
detectors are located at interaction points that provide high luminosity; they are
at the straight sections 1 and 5, respectively. The ALICE and LHCb detectors are
located at medium luminosity interaction points in the sections 2 and 8. These two
straight sections also house the injection systems for the beams. The remaining four
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Figure 3.3: Cross-section of cryodipole (lengths in mm).

an important operation for the geometry and the alignment of the magnet, which is critical for the
performance of the magnets in view of the large beam energy and small bore of the beam pipe.
The core of the cryodipole is the “dipole cold mass”, which contains all the components cooled
by superfluid helium. Referring to figure 3.3, the dipole cold mass is the part inside the shrinking
cylinder/He II vessel. The dipole cold mass provides two apertures for the cold bore tubes (i.e. the
tubes where the proton beams will circulate) and is operated at 1.9 K in superfluid helium. It has an
overall length of about 16.5 m (ancillaries included), a diameter of 570 mm (at room temperature),
and a mass of about 27.5 t. The cold mass is curved in the horizontal plane with an apical angle of
5.1 mrad, corresponding to a radius of curvature of about 2’812 m at 293 K, so as to closely match
the trajectory of the particles. The main parameters of the dipole magnets are given in table 3.4.

The successful operation of LHC requires that the main dipole magnets have practically iden-
tical characteristics. The relative variations of the integrated field and the field shape imperfections
must not exceed ∼10−4, and their reproducibility must be better than 10−4after magnet testing and
during magnet operation. The reproducibility of the integrated field strength requires close control
of coil diameter and length, of the stacking factor of the laminated magnetic yokes, and possibly
fine-tuning of the length ratio between the magnetic and non-magnetic parts of the yoke. The struc-
tural stability of the cold mass assembly is achieved by using very rigid collars, and by opposing
the electromagnetic forces acting at the interfaces between the collared coils and the magnetic yoke
with the forces set up by the shrinking cylinder. A pre-stress between coils and retaining structure

– 23 –

Figure 2.2: Cross-section of LHC superconducting dipole magnet [60].

Figure 2.3: Schematic view of the LHC layout [60].
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straight sections do not have beam crossings; the sections 3 and 7 contain collimation
systems, the section 4 contains the accelerating cavities, and the section 6 house the
beam dumping system.

2.1.5 Performance

The goal of the LHC is producing as many events as possible corresponding to the
physics processes of interest, with the highest possible signal-to-background ratio; of
course, these criteria drive the observation sensitivity in the search of new particles,
and the precision of the measurements. The rate of events for a given physics
process Rp is equal to the machine luminosity L times the process cross-section σp.

Rp = Lσp (2.1)

Integrating this expression over a given time period of collision yields the following
expression for the number of events Np that occur:

Np = σp

∫
Ldt (2.2)

The cross-sections for the processes of interest at the LHC increase with the
center-of-mass energy in the collisions, as shown in Figure 2.4. This figure shows
for instance the cross-section evolution with

√
s for a Standard Model Higgs boson

hypothesis with mass 150 GeV. This cross-section increases by a factor of one hun-
dred from the Tevatron operating energy of

√
s = 2 TeV to the LHC design energy

of
√
s = 14 TeV; for the currently operating energy of the LHC,

√
s = 8 TeV, the

increment factor is about thirty.
The machine luminosity depends on the particle beam characteristics. At the

LHC, protons circulate assembled in bunches with around 1011 protons per bunch.
The machine is nominally designed to accommodate one bunch every 25 ns in the
beam, and a total of 2808 bunches per beam. The beams will circulate at almost
the speed of light, which makes a beam revolution frequency of about 10 kHz for
the LHC circumference. For a beam with particles distributed in a Gaussian way in
each direction, the luminosity can be written as follow:

L =
N2

bnbfrevγr

4πεnβ∗
F (2.3)

where Nb is the number of particles per bunch, nb the number of bunches per beam,
frev the revolution frequency, γr the relativistic gamma factor, εn the normalized
transverse beam emittance, β∗ the beta function at the collision point, and F a
geometric luminosity reduction factor due to the crossing angle at the interaction
point. The emittance is a measure of the spread of the particles’ position and
momentum, and the beta function is a measure of the beam focalization at the
interaction point.

Nominal design values for some of these beam parameters are quoted in the last
column of Table 2.1. For these values, the corresponding instantaneous luminosity
is about 1034 cm−2s−1.

The luminosity at the LHC is not constant during collisions, but it decays due
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4 Physics selection strategy
This chapter provides an overview of the strategy for the online selection of events in ATLAS.
The challenge faced at the LHC is to reduce the interaction rate of about 1 GHz at the design lu-
minosity of 1 × 1034 cm−2 s−1 online by about seven orders of magnitude to an event rate of
O(100 Hz) going to mass storage. Although the emphasis in this document will be on the contri-
bution of the HLT to the reduction in rate, the final overall optimization of the selection proce-
dure also includes LVL1.

The first section describes the requirements defined by the physics programme of ATLAS. This
is followed by a discussion of the approach taken for the selection at LVL1 and HLT. Next, a
brief overview of the major selection signatures and their relation to the various detector com-
ponents of ATLAS is given. Then, an overview of the various parts of the trigger menu for run-
ning at an initial luminosity of 2 × 1033 cm−2 s−1 is presented, together with a discussion of the
expected physics coverage. The discussion in this chapter concentrates on the initial luminosity
regime; the selection strategy for the design luminosity phase will crucially depend on the ob-
servations and measurements during the first years of data taking. This is followed by a de-
scription of how changes in the running conditions are going to be addressed, and finally ideas
for the strategy of determining trigger efficiencies from the data alone are presented.

Details on the implementation of the event-selection strategy, in terms of the software frame-
work to perform the selection, can be found in Section 9.5. More information on selection-algo-
rithm implementations and their performance in terms of signal efficiency and background
rejection are given in Chapter 13. Finally, Chapter 14 addresses the issue of system performance
of the online selection, presenting our current understanding of the resources (e.g. CPU time,
network bandwidth) needed to implement the selection strategy presented in this chapter.

4.1 Requirements

The ATLAS experiment has been designed to cover the physics in proton–proton collisions with
a centre-of-mass energy of 14 TeV at LHC. Amongst the primary goals are the understanding of
the origin of electroweak symmetry breaking, which might manifest itself in the observation of
one or more Higgs bosons, and the search for new physics beyond the Standard Model. For the
latter it will be of utmost importance to retain sensitivity to new processes which may not have
been modelled. The observation of new heavy objects with masses of O(1) TeV will involve very
high-pT signatures and should not pose any problem for the online selection. The challenge is
the efficient and unbiased selection of lighter objects with masses of O(100) GeV. In addition,
precision measurements of processes within and beyond the Standard Model are to be made.
These precision measurements will also provide important consistency tests for signals of new
physics. An overview of the variety of physics processes and the expected performance of
ATLAS can be found in [4-1]. Most of the selection criteria used in the assessment of the physics
potential of ATLAS are based on the selection of at most a few high-pT objects, such as charged
leptons, photons, jets (with or without b-tagging), or other high-pT criteria such as missing and
total transverse energy. Furthermore, ATLAS expects to take data during the heavy-ion running
of the LHC.

The online event-selection strategy has to define the proper criteria to cover efficiently the phys-
ics programme foreseen for ATLAS, while at the same time providing the required reduction in
event rate at the HLT. Guidance on the choice of online selection criteria has been obtained from
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the variety of analyses assessing the ATLAS physics potential, aiming for further simplification
to a very few, mostly inclusive, criteria.

Event selection at LHC faces a huge range in
cross-section values for various processes, as
shown in Figure 4-1. The interaction rate is
dominated by the inelastic part of the total
cross-section with a cross-section of about
70 mb. The inclusive production of b-quarks
occurs with a cross-section of about 0.6 mb,
corresponding to a rate of about 6 MHz for de-
sign luminosity. It is worth noting that the
cross-section for inclusive W production, in-
cluding the branching ratio for the leptonic
decays to an electron or a muon, leads to a rate
of about 300 Hz at design luminosity. The rate
of some rare signals will be much smaller, e.g.
the rate for the production of a Standard Mod-
el Higgs boson with a mass of 120 GeV for the
rare-decay mode into two photons will be be-
low 0.001 Hz. The selection strategy has to en-
sure that such rare signals will not be missed,
while at the same time reducing the output
rate of the HLT to mass storage to an accepta-
ble value.

The online selection thus has to provide a very
efficient and unbiased selection, maintaining
the physics reach of the ATLAS detector. It should be extremely flexible in order to operate in
the challenging environment of the LHC, with up to about 23 inelastic events per bunch cross-
ing at design luminosity. Furthermore, it has also to provide a very robust, and, where possible,
redundant selection. It is highly desirable to reject fake events or background processes as early
as possible in order to optimize the usage of the available resources. Presently the selection is
based on rather simple criteria, while at the same time making use of the ATLAS capabilities to
reject most of the fake signatures for a given selection. It is, however, mandatory to have addi-
tional tools such as exclusive criteria or more elaborate object definitions available for the online
selection.

4.2 Selection criteria

In order to guarantee optimal acceptance to new physics within the current paradigm of parti-
cle physics, we have taken an approach based on emphazising the use of inclusive criteria for
the online selection, i.e. having signatures mostly based on single- and di-object high-pT trig-
gers. Here ‘high-pT’ refers to objects such as charged leptons with transverse momenta above
O(10 GeV). The choice of the thresholds has to be made in such a way that a good overlap with
the reach of the Tevatron and other colliders is guaranteed, and there is good sensitivity to new
light objects, e.g. Higgs bosons. Enlarging this high-pT selection to complement the ATLAS
physics potential requires access to signatures involving more exclusive selections, such as re-
quiring the presence of several different physics objects or the use of topological criteria. A fur-

Figure 4-1  Cross-section and rates (for a luminosity
of 1 × 1034 cm−2 s−1) for various processes in proton–
(anti)proton collisions, as a function of the centre-of-
mass energy. 
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Figure 2.4: Cross-section and rates (for a luminosity of 1034 cm−2s−1) for various physics processes in proton-
(anti)proton collisions, as a function of the centre-of-mass energy

√
s [69].

to the degradation of the intensity and the emittance of the beams. There are
several factors contributing to this beam quality degradation, but the main cause is
simply the reduction of the number of protons per bunch because of the collisions.
Considering all the affecting factors, the luminosity lifetime is estimated to be about
15 hours (this is the time required to reach 1/e of the initial luminosity).

In the machine operating cycle, there is an amount of time required to pre-
accelerate the protons up to 450 GeV and fill the LHC, to further accelerate them
to the collision energy, and after a collision period and the beams are dumped to
ramp down the magnets to the 450 GeV working configuration. This turnaround
time is theoretically at least 70 minutes, but in practice it is estimated to be on
average 7 hours.

Then, given the luminosity lifetime and the average turnaround time, the optimal
amount of time for the collision period in each operating cycle is 12 hours. Finally,
assuming that the machine can operate for 200 days per year, the total integrated
luminosity per year is expected to be around 80 fb−1.

2.1.6 Operational history

The LHC started to collide protons at the end of 2009. These firsts collisions were
performed at a center-of-mass energy of

√
s = 900 GeV, and later at

√
s = 2.36 TeV,

above the Tevatron operating energy.
After a winter shutdown, the LHC restarted operating in march 2010, this time
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Table 2.1: Parameters of the LHC proton-proton collisions for the data-taking periods: 2010, 2011 and 2012 [70,71],
and the design values [60]. The quoted parameters are: the center-of-mass energy

√
s, the number of protons per

bunch Nb, the number of bunches per beam nb, the bunch-to-bunch time spacing ∆t, the normalized transverse
beam emittance εn, the instantaneous peak luminosity L and integrated luminosity per year. Each value quoted
corresponds to the one of best performance achieved during the year.

Parameter 2010 2011 2012 Nominal√
s [TeV] 7 7 8 14

Nb 1.15× 1011

nb 368 1380 1380 2808
∆t [ns] 150 50 50 25
εn [µm rad] 3.75
β∗ [m] 3.5 1.0 0.60 0.55
L [cm−2s−1] 2.07× 1032 3.65× 1033 7.73× 1033 1034

Int. lumi. per year [fb−1] 0.0481 5.61 21.7 80

with collision at 7 TeV, during about eight months. It started with a low luminosity
of about 1027 cm−2s−1 that was gradually increased, achieving 2.07×1032 cm−2s−1 at
the end of the year. After this period of proton-proton collision, the LHC performed
heavy ion collisions for a few weeks.

During 2011, the LHC continued colliding protons at 7 TeV and increasing the
luminosity up to 3.65×1033 cm−2s−1, with a few weeks of heavy ion collisions at the
end of the year. During that year the LHC provided a total integrated luminosity
of about 6 fb−1 to each of the high luminosity experiments, ATLAS and CMS.

In 2012, the proton-proton center-of-mass energy has been increased to 8 TeV,
and ATLAS has recorded a total of 21.7 fb−1 of data.

There were a few weeks of proton-heavy ion collisions at beginning of 2013, and
now there is a long shutdown of about two years. During this period the machine is
being prepared to achieve the design goal energy of

√
s = 14 TeV, and the detectors

will be upgraded.
Figure 2.5 shows how the instantaneous peak luminosity has increased as a func-

tion of the time during the last three year. In Table 2.1, the beam parameters for
each operating year are compared with each other and with the design values. Each
value quoted in this table corresponds to the one of best performance achieved dur-
ing the year. Additionally, Figure 2.6 shows the cumulative integrated luminosity
delivered to ATLAS per day, for each year.

2.2 The ATLAS experiment

2.2.1 Detector overview

ATLAS as well as CMS is a general-purpose detector. It has been designed to
probe both the proton-proton and heavy ion collisions at the LHC, and to study the
different physics processes that could occur in these collisions.

These detectors measure a shower of relatively stable particles traveling in all
directions, particles able to travel at least some meters before decaying. This shower
of particles is the product of the different physics processes that occur, and it carries
information about these processes. It is composed of electrons, muons, neutrinos,
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Figure 2.5: Peak instantaneous luminosity delivered by the LHC to ATLAS per day versus time, during the
proton-proton runs of 2010, 2011 and 2012 [71].
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Figure 2.6: Cumulative integrated luminosity delivered to ATLAS versus time, during stable beams and for proton-
proton collisions, in linear (left side) and logarithmic scale (right side) [71]. This is shown for the 2010 (green), 2011
(red) and 2012 (blue) runs.

photons, neutral and charged hadrons, and perhaps still unknown particles. They
are either direct product of the hard processes (called prompt particles), or they are
the product of secondary processes. The prompt particles usually travel isolated
from other particles, and there are also groups of particles assembled together in
objects called jets. The jets are the product of quark or gluon hadronization and
subsequent decays of unstable hadronic particles, or the hadronic decay of tau-
leptons; the jet direction and energy are associated with the direction and energy of
its originating particle. The task of the detector is to measure the direction of flight
and the momentum (or kinetic energy) of these different particles and jets, and to
allow identifying them.

Like most of the detectors in this kind of experiments, ATLAS has a cylindrical
shape, as shown in Figure 2.7. It has been designed and arranged in such a way that
the proton beams pass through the cylindrical axis, and the collisions take place at
its center. ATLAS is 44 m long and has a diameter of 25 m; it weights 7000 tons.
It is the largest in volume among the LHC detectors.

In order to accomplish its objectives, ATLAS as most of this type of detectors is
composed of four concentric, also cylindrical, layers or sub-detectors. From the in-
side to the outside, there are: an inner tracker or inner detector, an electromagnetic
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Figure 2.7: Schematic view of the ATLAS detector with its different constituent parts [62].

calorimeter, a hadronic calorimeter, and an outer tracker or muon spectrometer.
These different sub-detectors are highlighted in the ATLAS sketch shown in Fig-
ure 2.7, and Figure 2.8 shows how the different particles interact with them.

The inner tracker allows reconstructing the trajectory of charged particles while
they are bent by a magnetic field. The curvature of the particles in the magnetic field
allows deducing their charge sign and computing their momentum. By extrapolating
the measured trajectories, the vertexes formed by the particles can be reconstructed.
The neutral particles are invisible to the tracker.

The calorimeters allow measuring the energy of the particles by stoping them,
absorbing all their energy. Photons and electrons deposit their energy in the electro-
magnetic calorimeter by generating an electromagnetic shower of secondary parti-
cles, while hadrons pass throughout the electromagnetic calorimeter without loosing
much energy, and deposit most of their energy in the hadronic calorimeter. Only
muons and neutrinos traverse the hadronic calorimeter without being stopped.

Muons leave their track through all the different sub-detectors, but without
loosing much energy. They are the only particles sensed by the outer tracker, and
that is why this last sub-detector is called muon spectrometer. Muons are also bent
by a magnetic field while they traverse the muon detector, which allows performing
an additional measurement of their momentum, after the inner tracker measurement.
The magnetic field in the barrel of the muon detector is generated by an enormous
toroidal-shape magnet; the ATLAS name is in fact due to this enormous toroid that
surround the detector, A Toroidal LHC ApparatuS.

Neutrinos very rarely interact with matter and so they are not sensed by the
detector. Nevertheless, their presence in an event can be inferred through the mea-
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Figure 2.8: Sketch representative of different kind of particles passing through the ATLAS sub-detectors [72].

surement of the vectorial total momentum in the plane transverse to the beam. For
momentum conservation, this total momentum component is expected to be ap-
proximately zero, otherwise it indicates the presence of one or more neutrinos not
detected, or the presence of others weakly interacting particles not known yet.

As explained above, jets are a bunch of particles arriving all together in a given
region of the detector. In general, jets contain mainly hadrons. In the detector, a
jet is characterized by a wide cluster of energy deposited in both calorimeters (wide
cluster in comparison with what a single particle does), and a bunch of tracks in the
inner detector depending on its content of charged particles.

Combining all the information provided by the different sub-detectors allows an
identification of the different particles, and a reconstruction of the events.

There is an additional important component of this type of detectors not men-
tioned yet, it is the trigger. Each event that is detected represents a large amount
of information to record, and the collision rate in these experiments is extremely
high. Usually, with the computational technologies available at the time of each
experiment, there is neither the disk-space to store all the information, nor the way
to record it with the speed it would demand. Additionally, the fraction of events
interesting to study is usually very small among all the collisions. So, the task of
the trigger is to perform an extremely quick preselection of the events, at the same
time that the collisions occur, before recording them.

2.2.2 The ATLAS collaboration

The ATLAS detector has been constructed and is now operated by an international
collaboration, with the participation of over three thousands physicists, engineers,
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technicians and students, from 174 institutes and 38 countries.

2.2.3 Detector requirements

The detectors in this kind of experiments typically have to fulfill stringent con-
straints:

• Fast detection technologies; components able to measure particles quickly and
without significant dead-time. As mentioned above, the LHC in nominal op-
eration mode will provide proton bunch-crossings for ATLAS every 25 ns.

• Detectors and electronics resistant to high radiation doses; in particular the
inner tracker sensors and the components in the forward region, which receive
the highest radiation.

• Detectors with high granularity able to distinguish several particles traveling
very close to each other.

In addition, since the LHC provides unprecedented high energy collisions and
high luminosity, these requirements becomes more stringent for the LHC detectors
than for previous experiments. For instance, at the high luminosity provided by the
LHC, not one but several interactions occur per proton bunch crossing, the so-called
event pileup. On average, 23 interactions per bunch crossing are expected in nominal
conditions at the LHC (at the Tevatron experiments, there were on average about 6
pileup interactions). This entails a large number of particles arriving to the detector
at the same time, and therefore the necessity of high granularity components. The
number of particles is even larger in the heavy ion collisions.

For the design of ATLAS, the performance requirements have been evaluated
considering the physics processes that could occur at the LHC collisions, at the TeV
scale. The considered processes include Standard Model (SM) physics, Higgs boson
processes and physics beyond the SM at high energies, in particular the different
production and decay modes of the Higgs boson. They provide a varied set of
experimental signatures to detect, including all the different particles mentioned in
Section 2.2.1. Possible new particles at high mass, masses of a few TeV, would decay
to very energetic leptons, photons, etc.

Another point that has been considered is that the hadron collisions are highly
dominated by the QCD production of jets. Therefore, ATLAS needs to provide very
good separation between prompt particles and jets, especially photons and electrons
which are more easily faked by jets. It is necessary to allow to disentangle the rare
events of interest from this large QCD background.

Then, the requirements for the ATLAS detector can be summarized in the fol-
lowing items:

• High precision reconstruction of tracks and vertices. The reconstruction of
secondary vertices is crucial for the identification of jets originated by b-quark
(b-jets). The B-hadrons have relatively long lifetime, and so they are usually
able to fly slightly away of the primary vertex before decaying. Also a pre-
cise reconstruction of the collision primary vertices permits to disentangle an
interesting event from simultaneous pileup events.
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• The particles’ transverse energy needs to be measured with good precision over
a large range, from some GeVs up to a few TeVs.

• The calorimeters have to provide information to discriminate electrons and
photons from jets.

• The particles in the events are distributed in all directions, so the sub-detectors
have to cover as much as possible the solid angle around the interaction point;
in particular the calorimeters, which have to provide almost full coverage until
the forward region close to the beam direction. This large coverage is very
important to allow the good calculation of the missing transverse energy.

• The muon spectrometer is required to measure the muon pT with good preci-
sion up to a few TeV’s.

• A trigger able to keep a high efficiency for the events of interest while providing
high background rejection.

2.2.4 Coordinate system and nomenclature

The left side sketch of Figure 2.9 shows the coordinate system used to describe the
detector, and the motion of the particles resulting from the collisions. The origin of
the system is set at the nominal interaction point, at the center of the detector. The
z-axis is set in the direction of the beams, the positive x-axis is defined as pointing
to the center of the LHC ring, and the positive y-axis is defined as pointing upwards.
The azimuthal angle φ is measured around the beam axis, and the polar angle θ is
measured with respect to the beam axis.

The variables labeled “transverse” are defined in the plane transverse to the beam
direction, the x-y plane, unless it be stated otherwise; for example, the transverse
momentum pT or the transverse energy ET. In the same way, the variables labeled
“longitudinal” are referred to the z-axis direction.

There are some others variables frequently employed; they are:

• The rapidity y; for a particle with energy E and longitudinal momentum pz,
it is defined as

y =
1

2
ln

(
E + pz

E − pz

)
. (2.4)

ATLAS

beam

�
�

�
�

�

LHC-ring center

beam

Figure 2.9: Left: Coordinate system used in ATLAS. Right: Correspondence between the pseudorapidity η and
the polar angle θ for some specifics values.
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The rapidity of a particle is a quantity that transforms in an additive way
under boosts in the z direction, and thus the rapidity difference ∆y between
two particles is a Lorentz invariant. It means that at hadron colliders where the
collision products are boosted along the beam axis, the ∆y difference between
two particles at the lab frame is the same as in the collision center of mass
frame, which is convenient.

• The pseudorapidity η; it is defined as

η = − ln

[
tan

(
θ

2

)]
. (2.5)

It is an approximation of the rapidity of a particle when the particle’s mass is
negligible with respect to its momentum. In hadron colliders, the rapidity y
or the pseudorapidity η are used as polar coordinates, and they are used more
commonly than the angle θ. This is also convenient because the distribution
of the particles emerging from the collisions as a function of y or η tends to be
flat. The right side of Figure 2.9 shows the η values for some specifics values
of the angle θ.

The relation between the momentum p and the transverse momentum pT of
a particle can be written as a function of the particle’s pseudorapidity η as
follows:

p = pT cosh η (2.6)

• The distance ∆R in the pseudorapidity-azimuthal-angle space (η-φ); it is de-
fined as

∆R =

√
∆η2 + ∆φ2. (2.7)

• The transverse d0 and the longitudinal z0 impact parameters; they are defined
for a particle track as the transverse and the longitudinal distances to the
nominal collision point at the point of closest approach.

2.3 Magnet system

The magnet system of ATLAS consists of a central solenoid and three toroidal
magnets, the large barrel toroid and two end-cap toroids, as shown in Figure 2.10.

2.3.1 Central solenoid

The solenoid provides a 2 T magnetic field for the inner detector, which is located
inside it. The magnetic field is parallel to the beam axis; therefore the charged
particles are bent in the x-y plane, changing their φ direction of flight. The solenoid
is 5.8 m long and has a diameter of about 2.5 m.

An important constrain for the design of the solenoid was to keep a low amount
of material in front of the electromagnetic calorimeter. Hence, the solenoid con-
sists of a single-layer coil of an Al-stabilized niobium-titanium (NbTi) supercon-
ductor, that allows producing the high magnetic field while keeping the solenoid
thin. Additionally, it shares the cryogenic and vacuum system with the barrel of
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Figure 2.1: Geometry of magnet windings and
tile calorimeter steel. The eight barrel toroid
coils, with the end-cap coils interleaved are
visible. The solenoid winding lies inside the
calorimeter volume. The tile calorimeter is
modelled (section 2.2.2) by four layers with dif-
ferent magnetic properties, plus an outside re-
turn yoke. For the sake of clarity the forward
shielding disk (section 3.2) is not displayed.

Figure 2.2: Bare central solenoid in the factory
after completion of the coil winding.

phases. The cold-mass and cryostat integration work began in 2001. The first barrel toroid coil
was lowered in the cavern in fall 2004, immediately followed by the solenoid (embedded inside the
LAr barrel calorimeter). The remaining seven barrel-toroid coils were installed in 2004 and 2005,
and the end-cap toroids in the summer of 2007.

2.1.1 Central solenoid

The central solenoid [2] is displayed in figure 2.2, and its main parameters are listed in table 2.1.
It is designed to provide a 2 T axial field (1.998 T at the magnet’s centre at the nominal 7.730 kA
operational current). To achieve the desired calorimeter performance, the layout was carefully
optimised to keep the material thickness in front of the calorimeter as low as possible, resulting
in the solenoid assembly contributing a total of ∼ 0.66 radiation lengths [9] at normal incidence.
This required, in particular, that the solenoid windings and LAr calorimeter share a common vac-
uum vessel, thereby eliminating two vacuum walls. An additional heat shield consisting of 2 mm
thick aluminium panels is installed between the solenoid and the inner wall of the cryostat. The
single-layer coil is wound with a high-strength Al-stabilised NbTi conductor, specially developed
to achieve a high field while optimising thickness, inside a 12 mm thick Al 5083 support cylin-
der. The inner and outer diameters of the solenoid are 2.46 m and 2.56 m and its axial length
is 5.8 m. The coil mass is 5.4 tonnes and the stored energy is 40 MJ. The stored-energy-to-mass
ratio of only 7.4 kJ/kg at nominal field [2] clearly demonstrates successful compliance with the
design requirement of an extremely light-weight structure. The flux is returned by the steel of the
ATLAS hadronic calorimeter and its girder structure (see figure 2.1). The solenoid is charged and
discharged in about 30 minutes. In the case of a quench, the stored energy is absorbed by the en-
thalpy of the cold mass which raises the cold mass temperature to a safe value of 120 K maximum.
Re-cooling to 4.5 K is achieved within one day.

– 20 –

Figure 2.10: Toroidal magnets and the central solenoid in red, and the barrel of the hadronic calorimeter in various
colors (blue, green and orange).

the electromagnetic calorimeter, in order to avoid having additional walls between
the two components and therefore minimizing the amount of material. In this way,
the solenoid constitutes only about 0.66 radiation lengths X0 for particles at normal
incidence.

2.3.2 Barrel and end-cap toroids

The barrel and end-cap toroids produce magnetic fields of about 0.5 T and 1 T,
respectively, for the muon detector. These toroidal magnets consist each one of
eight superconducting coils arranged to form cylinders, as shown in Figure 2.10.
The large barrel toroid is 25.3 m long and has internal and external diameters of
9.4 m and 20.1 m respectively. While the end-cap toroids are 5 m long and have
internal and external diameters of 1.65 m and 10.7 m. Ideally, the magnetic field
lines make big circles around the beam axis, and so the muons are bent changing
their η direction.

2.4 Inner detector

The inner detector (ID) is used to reconstruct the trajectory of charged particles;
for this, it has a set of layers where the charged particles are sensed as they pass
throughout them. The ID is shown Figure 2.11; (a) shows the whole tracking sys-
tem, while (b) and (c) show detailed sketches of the barrel and end-cap sections.
The whole system is 6.2 m long and it has a 2.1 m diameter. Beginning from the
innermost part, there are layers of silicon pixels sensors, layers of silicon micro-strip
sensors (SCT), and a transition radiation tracker (TRT).

As the magnetic field at the ID bents particles in the x-y plane, the precision
of the transverse momentum estimation relies on the precision of the φ coordinate
measurements at the various layers.
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(a)

(b)

(c)

Figure 2.11: (a): Schematic view of the Inner Detector. (b): Structure of the inner detector in the barrel region.
(c): Structure of the inner detector in the end-cap regions. [62]
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2.4.1 Precision silicon sensors

At the inner detector barrel, the silicon sensors (pixels and micro-strips SCT) are
arranged on concentric cylinders around the beam axis (see Figure 2.11-b), while
in the end-caps, they are located on disks perpendicular to the beam axis (see
Figure 2.11-c). Each particle crosses nominally three pixel layers and four micro-
strip double layers. These silicon sensors cover the region |η| < 2.5.

These sensors consist of crystals of a silicon semiconductor material submitted to
a potential difference. When particles pass through the semiconductor they create
electron-hole pairs. Then, the electrons are collected by electrodes generating a
current that is measured.

In a pixel sensor, the electrodes are arranged in a two-dimensional matrix, and
thus these sensors provide two-dimensional information at the sensor plane. They
give an intrinsic measurement accuracy of 10 µm in the azimuthal φ direction, and
115 µm in the longitudinal z direction at the barrel and transverse-radial R direction
at the end-caps. The pixel layers have a total of about 80.4 million readout channels.

The micro-strip sensors themselves only provide information in one direction at
the sensor plane (the electrodes are “strips”). Therefore, the sensor modules are
arranged in pairs forming double sensor layers, with a small rotation of 40 mrad be-
tween them. In this way, they create a grid and provide the required two-dimensional
information. The micro-strip double layers provide an intrinsic accuracy of 17 µm
in φ, and 580 µm in z and R, and they have a total of about 6.3 million readout
channels.

For a good performance in the high radiation environment at the LHC, these
silicon sensors need to operate at temperatures between −10◦C and −5◦C. With this
purpose, the sensor supporting structure has a refrigeration system with a coolant
circulating at −25◦C.

The first pixel layer is just at 5 cm from the beam axis. It is called B-layer. It
allows determining whether a particle is originated at the collision point (primary
vertex) or a few millimeters away as a decay product of another particle (at a
secondary vertex).

An additional sensor layer is planned to be inserted in the future; it will be closer
to the beam axis than the current B-layer. It will improve the vertices reconstruction
precision, and therefore the capability to disentangle multiple vertices very close to
each other, in high pileup conditions.

2.4.2 Transition radiation tracker

The transition radiation tracker (TRT) provides a large number of R− φ measure-
ments per track, typically 36, which complement the silicon sensor measurements
for the transverse momentum estimation. It doesn’t provide information in the η
direction. The inner radius of the TRT is about 60 cm, and the outer radius is about
1 m. It covers the region |η| < 2.0.

The TRT consists of several tens of thousands, 4 mm diameter, straw tubes.
They are parallels to the beam axis in the barrel region and they are arranged
radially in wheels in the end-caps (see Figure 2.11). These straws are filled with a
gas that is ionized whenever charged particles pass through. Each straw has in the
center a wire, and a potential difference is applied between the wire and the straw’s
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inner wall. Thus, the ions are drawn to the straw’s wall, while the electrons are
drawn to the central wire generating a current.

Additionally, the straws are made of materials with different refraction indices.
Then, when the charged particles pass through, they radiate photons that also ionize
the gas, which makes the signal stronger. Since electrons radiate more photons than
charged hadrons like pions (because electrons are lighter than hadrons), the TRT
has also electron identification capabilities.

Each straw tube provide an intrinsic accuracy of 130 µm. The whole TRT has a
total of 351 000 readout channels.

By design, the tracking system is expected to provide a transverse momentum
resolution σpT

/pT = 0.05% pT ⊕ 1% (with pT in GeV).

2.5 Calorimeters

The energy of the particles is measured with the calorimeters, by stopping them with
dense materials and measuring the energy that they deposite. The incident particles
interact with these materials generating secondary particles with lower energy, that
further interact with the material and generate more of them, thus creating a shower.
Photons and electrons interact electromagnetically with the electrons and nuclei in
the matter, while hadrons have mainly strong interactions with the nuclei.

Consequently, the typical amounts of matter necessary for the development of an
electromagnetic and a hadronic shower are different. For electromagnetic interac-
tions at high energy, the characteristic amount of matter is the radiation length X0,
while for hadronic interactions the equivalent quantity is the nuclear interaction
length λI ; X0 is typically one order of magnitude smaller than λI . Therefore, one
can take advantage of those interaction differences to measure separately the energy
of electrons or photons, and hadrons, in different calorimeter sections.

The ATLAS calorimeters are presented in Figure 2.12. A set of different electro-
magnetic and hadronic calorimeters cover all the region |η| < 4.9. This η coverage
gives a large acceptance for jets and allows a good measurement of the missing trans-
verse energy. The electromagnetic calorimeter has a fine granularity in both η and
φ directions in the region |η| < 2.5, which is also the η region covered by the inner
detector; it allows a good reconstruction of photons and electrons in this region.

2.5.1 The electromagnetic calorimeter

The electromagnetic (EM) calorimeter is of primary importance for the search of
the Higgs boson in the diphoton decay channel. Photons are reconstructed in this
sub-detector, where their energy and direction of flight is measured. In the mass
range where H → γγ is a key decay channel for the Higgs boson search, the intrinsic
width of the Higgs boson mass peak is negligible; therefore, the width of the exper-
imental signal peak in the diphoton invariant mass spectrum relies completely on
the resolution of the reconstructed photon kinematic variables.

Before describing the ATLAS EM calorimeter, its geometry and performance,
the characteristics of electromagnetic showers are briefly presented.
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Figure 2.12: Schematic view of the ATLAS calorimeters [62].

Electromagnetic showers

Electrons and photons interact with matter through different processes depending
on their energy. Figure 2.13 shows on the left side the fractional energy loss by
electrons per radiation length X0, in lead, as a function of the electron or positron
energy, for the different interaction processes. On the right side, it shows also the
cross-section for different photon interaction processes as a function of the photon
energy, in lead.

At high energy, above a few tens of MeV, the electron and photon interactions
with matter are dominated by two related processes, the electron bremsstrahlung
radiation of photons and the production of electron-positron pairs by photons (on the
right side plot of Figure 2.13, the labels κnuc and κe correspond to the cross-sections
for pair production by photon interactions with nuclei and electrons respectively).

The radiation length X0 is both: the mean distance over which a high-energy
electron loses 1/e of its energy by bremsstrahlung radiation, and 7/9 of the mean
free path for pair production by a high-energy photon [73,74]. It is usually measured
in g cm−2, and it changes from one material to another. The typical values for the
ratio radiation length over density X0/ρ are of a few centimeters or fractions of a
centimeter; for lead which is used in the ATLAS calorimeter, this ratio is about
0.6 cm [73].

At low energy, electrons interact predominantly by ionizing atoms, ejecting elec-
trons out of them; the energy at which the electron fractional loss of energy by
bremsstrahlung and ionization are equivalent is known as critical energy Ec, and it
is another important quantity in the characterization of EM showers. It is also a
material dependent parameter; for lead, the critical energy is about 7 MeV.

The main photon interaction at the MeV energy scale is the Compton inelastic
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Figure 27.10: Fractional energy loss per radiation length in lead as a
function of electron or positron energy. Electron (positron) scattering is
considered as ionization when the energy loss per collision is below 0.255
MeV, and as Møller (Bhabha) scattering when it is above. Adapted from
Fig. 3.2 from Messel and Crawford, Electron-Photon Shower Distribution
Function Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but we have modified
the figures to reflect the value given in the Table of Atomic and Nuclear
Properties of Materials (X0(Pb) = 6.37 g/cm2).

At very high energies and except at the high-energy tip of the bremsstrahlung
spectrum, the cross section can be approximated in the “complete screening case”
as [38]

dσ/dk = (1/k)4αr2
e{(4

3 − 4
3y + y2)[Z2(Lrad − f(Z)) + Z L′

rad]

+ 1
9(1 − y)(Z2 + Z)} ,

(27.26)

where y = k/E is the fraction of the electron’s energy transfered to the radiated
photon. At small y (the “infrared limit”) the term on the second line ranges from
1.7% (low Z) to 2.5% (high Z) of the total. If it is ignored and the first line
simplified with the definition of X0 given in Eq. (27.22), we have

dσ

dk
=

A

X0NAk

(
4
3 − 4

3y + y2
)

. (27.27)

This cross section (times k) is shown by the top curve in Fig. 27.11.
This formula is accurate except in near y = 1, where screening may become
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Figure 27.14: Photon total cross sections as a function of energy in carbon
and lead, showing the contributions of different processes:

σp.e. = Atomic photoelectric effect (electron ejection, photon absorp-
tion)

σRayleigh = Rayleigh (coherent) scattering–atom neither ionized nor excited
σCompton = Incoherent scattering (Compton scattering off an electron)

κnuc = Pair production, nuclear field
κe = Pair production, electron field

σg.d.r. = Photonuclear interactions, most notably the Giant Dipole
Resonance [48]. In these interactions, the target nucleus is
broken up.
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Figure 2.13: Left: Fractional energy loss by electrons per radiation length, in lead, as a function of the electron
or positron energy, for the different interaction processes. Right: Cross-section for different photon interaction
processes as a function of the photon energy, in lead [73] (the labels κnuc and κe correspond to the cross-sections
for pair production by photon interactions with nuclei and electrons respectively).

scattering, and at lower energy than these ones, the main process is the photoelectric
effect (p.e.), accompanied by the Rayleigh elastic scattering.

For high energy electrons and photons, the longitudinal development of the elec-
tromagnetic shower is driven by the high-energy part of the cascade, it scales as the
radiation length in the material, and it drives the thickness of the electromagnetic
calorimeters. The mean longitudinal profile of energy deposition is reasonably well
described by a gamma distribution, with the maximum differential deposition of
energy typically occurring at a xmax depth:

xmax = X0

[
ln

(
E

Ec

)
+ Cj

]
, j = e, γ; (2.8)

where E is the energy of the incident particles, and Ce = −0.5 for electron-induced
cascades and Cγ = +0.5 for photon-induced cascades. For electrons and photons
with energies between 10 and 100 GeV, in lead, xmax is between 7 and 10 radiation
lengths.

The transverse development of electromagnetic showers in different materials
scales with the Molière radius RM, given by [73,75,76]

RM = X0
Es

Ec

, (2.9)

where Es ≈ 21MeV . On the average, only 10% of the energy lies outside a cylinder
with radius RM, and about 99% is contained inside of 3.5RM [73]. In lead, the
Molière radius is about 3 radiation lengths.

A lead-liquid argon accordion calorimeter

The ATLAS EM calorimeter uses lead layers with liquid argon (LAr) in-between,
as shown in Figure 2.14. The interactions of an incident particles through the
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Figure 2.13 – En haut : géométrie en accordéon du calorimètre électromagnétique. L’amplitude
des plis dans le tonneau varie avec la profondeur de manière à obtenir des modules projectifs.
L’angle des plis évolue également pour maintenir constante la largeur des gaps d’argon liquide. En
bas : agencement des couches d’absorbeur, d’argon liquide et des électrodes dans le calorimètre
électromagnétique.

fonctionnement d’ATLAS. Son utilisation implique cependant une température de fonctionnement
de 88K : le tonneau (avec le solénoïde) et les bouchons sont ainsi placés dans trois cryostats, qui
s’ajoutent au bilan de matière en amont du calorimètre.

La figure 2.13 montre également que les couches du calorimètre s’agencent selon une géométrie
particulière en accordéon. Celle-ci a comme avantages décisifs sur la traditionnelle géométrie à
plaques parallèles une couverture complète en φ sans aucun recouvrement ni espace mort, et une
extraction rapide des signaux (qui s’effectue par l’avant pour le premier compartiment, et par
l’arrière pour les deux autres). Dans le tonneau les vagues de l’accordéon sont suivant R, avec des
arêtes parallèles à l’axe du faisceau. Dans les bouchons les vagues sont suivant z, avec des arêtes
radiales.

Segmentation du calorimètre

Un des intérêts de la technologie à argon liquide avec électrodes de cuivre est la possibilité de
segmenter aisément le calorimètre par le dessin des électrodes et leur regroupement en cellules.
Ainsi trois compartiments longitudinaux sont présents pour |η| < 2,5, puis deux au-delà :

Le compartiment avant a pour fonction de reconstruire précisément le début des gerbes élec-
tromagnétiques, afin d’optimiser la réjection π0/γ. Il est pour cela segmenté très finement en
η (généralement ∆η ∼ 0,0031). Il compte pour environ 4,3 X0 de matière.

Le second compartiment est conçu pour contenir l’essentiel des gerbes électromagnétiques,
avec environ 17 X0 de matière. Il a une granularité de ∆η × ∆φ = 0,025 × 0,025.

Le compartiment arrière, très court (2 X0 de matière à η = 0), est utilisé pour la mesure de la
fin des gerbes électromagnétiques les plus énergétiques. Sa granularité en η est plus grossière
(0,05).

Le choix des segmentations dépend ainsi d’un compromis entre la précision de la reconstruction
des gerbes et le rôle dévolu à chaque couche d’une part, et le nombre de canaux de lecture d’autre
part, puisque la complexité de l’ensemble, les effets du bruit et de la diaphonie augmentent avec ce
nombre de voies de lecture. Le détail de la segmentation du calorimètre est donné dans la table 2.3.

Figure 2.14: Sketch of a transverse section of the barrel electromagnetic calorimeter. It shows the accordion-shape
lead liquid-argon layers.

lead generate the electromagnetic shower, and a fraction of the resulting low energy
particles, mainly electrons and positrons, ionize the liquid argon. Then, the electrons
produced in the ionization are collected in copper electrodes kept at a high voltage
potential in the middle of the liquid argon gap, generating a current that is measured.
The number of particles ionizing the argon is proportional to the energy of the
incident particle, and so is the measured charge and maximum current.

This kind of calorimeter is called sampling calorimeter; the lead in this case is
said to be the absorber material, while the LAr is the active material.

In this calorimeter, the structure of absorbers and electrodes has an accordion
geometry, as shown in Figures 2.14 and 2.15. This is a characteristic feature of
this calorimeter. This accordion geometry provides a full coverage in φ without any
cracks.

Calorimeter geometry

The EM calorimeter consists of a barrel that covers the region |η| < 1.475, and two
end-cap components covering the regions 1.375 < |η| < 3.2. The barrel surrounds
the superconducting solenoid; it is 6.4 m long, and its inner and outer radii are 1.4 m
and 2 m respectively. Each end-cap wheel is 63 cm thick, and have inner and outer
radii of 33.0 cm and 2.1 m respectively.

This calorimeter has a fine granularity in η and φ in the region |η| < 2.5, and
a coarser granularity in the rest of the end-caps. The calorimeter is also divided in
the longitudinal direction; there are three layers in the region |η| < 2.5, and two
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Figure 2.15: Sketch of a barrel module where the different layers are clearly visible. The granularity in η and φ of
the cells of each of the three layers is also shown. [62].

Table 2.2: Granularity on η and φ in different η regions for each layer of the electromagnetic calorimeter [62].
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Table 1.3: Main parameters of the calorimeter system.
Barrel End-cap

EM calorimeter
Number of layers and |η | coverage

Presampler 1 |η | < 1.52 1 1.5 < |η | < 1.8
Calorimeter 3 |η | < 1.35 2 1.375 < |η | < 1.5

2 1.35 < |η | < 1.475 3 1.5 < |η | < 2.5
2 2.5 < |η | < 3.2

Granularity ∆η ×∆φ versus |η |
Presampler 0.025×0.1 |η | < 1.52 0.025×0.1 1.5 < |η | < 1.8

Calorimeter 1st layer 0.025/8×0.1 |η | < 1.40 0.050×0.1 1.375 < |η | < 1.425
0.025×0.025 1.40 < |η | < 1.475 0.025×0.1 1.425 < |η | < 1.5

0.025/8×0.1 1.5 < |η | < 1.8
0.025/6×0.1 1.8 < |η | < 2.0
0.025/4×0.1 2.0 < |η | < 2.4
0.025×0.1 2.4 < |η | < 2.5
0.1×0.1 2.5 < |η | < 3.2

Calorimeter 2nd layer 0.025×0.025 |η | < 1.40 0.050×0.025 1.375 < |η | < 1.425
0.075×0.025 1.40 < |η | < 1.475 0.025×0.025 1.425 < |η | < 2.5

0.1×0.1 2.5 < |η | < 3.2
Calorimeter 3rd layer 0.050×0.025 |η | < 1.35 0.050×0.025 1.5 < |η | < 2.5

Number of readout channels
Presampler 7808 1536 (both sides)
Calorimeter 101760 62208 (both sides)

LAr hadronic end-cap
|η | coverage 1.5 < |η | < 3.2

Number of layers 4
Granularity ∆η ×∆φ 0.1×0.1 1.5 < |η | < 2.5

0.2×0.2 2.5 < |η | < 3.2
Readout channels 5632 (both sides)

LAr forward calorimeter
|η | coverage 3.1 < |η | < 4.9

Number of layers 3
Granularity ∆x×∆y (cm) FCal1: 3.0×2.6 3.15 < |η | < 4.30

FCal1: ∼ four times finer 3.10 < |η | < 3.15,
4.30 < |η | < 4.83

FCal2: 3.3×4.2 3.24 < |η | < 4.50
FCal2: ∼ four times finer 3.20 < |η | < 3.24,

4.50 < |η | < 4.81
FCal3: 5.4×4.7 3.32 < |η | < 4.60
FCal3: ∼ four times finer 3.29 < |η | < 3.32,

4.60 < |η | < 4.75
Readout channels 3524 (both sides)

Scintillator tile calorimeter
Barrel Extended barrel

|η | coverage |η | < 1.0 0.8 < |η | < 1.7
Number of layers 3 3

Granularity ∆η ×∆φ 0.1×0.1 0.1×0.1
Last layer 0.2×0.1 0.2×0.1

Readout channels 5760 4092 (both sides)

lead thickness in the absorber plates has been optimised as a function of η in terms of EM calorime-
ter performance in energy resolution. Over the region devoted to precision physics (|η | < 2.5), the
EM calorimeter is segmented in three sections in depth. For the end-cap inner wheel, the calorime-
ter is segmented in two sections in depth and has a coarser lateral granularity than for the rest of
the acceptance.

– 9 –
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Figure 2.16: Cumulative amounts of material in front of the accordion calorimeter and in the different calorimeter
layers [62], for the barrel (left) and end-cap (right) regions. It is shown in units of radiation length X0, and as a
function of |η|.

layers in the rest. In addition, there is a thin LAr layer with electrodes before the
other layers; it is called pre-sampler and covers the region |η| < 1.8. The η coverage
and granularity of each layer are quoted in Table 2.2. Figure 2.15 shows a sketch of
the different layers in the barrel, with the granularity details.

Figure 2.16 shows the cumulative amounts of material in front of the accordion
calorimeter and in the different calorimeter layers. It is shown in units of radiation
length X0, as a function of |η|. The thickest layer is the second one. The EM showers
deposit most of the energy in this second layer and finish in the third layer.

The pre-sampler or layer 0 serve to estimate the energy lost by the particles when
traversing the material in front of the calorimeter. If the electromagnetic shower
starts before the calorimeter, there will be certain amount of energy deposited in
the pre-sampler; measuring it allows applying a correction later.

The first layer has very thin granularity on η; it is also called strip-layer because
the cells have a strip-shape. This thin granularity provide very useful information
for discriminating prompt electrons or photons from jets (details about the photon-
jet separation with information from this first layer are discussed in Chapter 3,
Section 3.4). It allows also to compute precisely the η direction of the particles (as
discussed in Chapter 5, Section 5.2.4).

Performance

The energy measurement resolution can be written as follows:

σE
E

=
a√
E
⊕ b⊕ c

E
, (2.10)

where the energy E is in GeV.

The first term is a stochastic term. It corresponds to the statistical fluctuations
on the number of low energy particles generated in the electromagnetic shower that
ionize the liquid argon. The coefficient a is called sampling term; it is associated
with the dead material in front of the calorimeter, and with the fraction of secondary
particles that ionize the argon (there is another fraction that is absorbed by the lead
layers). a is typically 10% for sampling calorimeters.

The second term b is called constant term. It is due to the non-uniformities of
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the calorimeter. For the ATLAS EM calorimeter, the global constant term for the
region |η| < 2.5 is nominally expected to be reduced to 0.7%. Currently, it has been
estimated to be (1.2 ± 0.1(stat.) +0.5

−0.6(syst.))% for the barrel and (1.8 ± 0.4(stat.) ±
0.4(syst.))% for the regions 1.52 < |η| < 2.47 of the end-caps [77]. This is the
dominant term on the energy resolution for photons in the H → γγ analysis.

The last term is due to electronic noise summed over the readouts of the various
calorimeter cells covered by the shower. This term is only significant for low energy
particles.

2.5.2 Hadronic calorimeter

The hadronic calorimeter is used to measure the energy of hadrons, which traverse
the EM calorimeter without loosing much energy. This calorimeter consists in a
barrel section (|η| < 1.7) and two end-cap components (1.5 < |η| < 3.2). In this
case, the barrel calorimeter uses scintillating plates as active material, whereas the
end-caps are LAr calorimeters.

The barrel calorimeter uses steel sheets in order to generate the hadronic shower
and scintillating fibers as active material. They are placed in planes perpendiculars
to the beam, forming layers of steel and the scintillating material. When the particle
shower pass through the scintillating tiles, they emit light in an amount proportional
to the incident energy. Then fibers carry the light to devices where the light intensity
is measured.

The LAr end-caps of the hadronic calorimeter function based on the same prin-
ciple used by the EM calorimeter. But in this case, copper is used as absorber and
the structure geometry is different.

2.5.3 Forward calorimeters

The forward calorimeters cover the region 3.1 < |η| < 4.9. There are three modules
in each end-cap. The first one uses copper as absorber and is optimized for electro-
magnetic measurements, while the other two use tungsten and measure mainly the
hadronic energy. In these calorimeter, the electrode structure consists of concentric
rods and tubes parallel to the beam axis, and they use also liquid argon as active
material.

2.6 Muon spectrometer

The muon spectrometer measures the muon trajectories and momentum. The mo-
mentum is estimated from the muon trajectory curvature caused by the magnetic
field provided by the toroidal magnets. A view of this sub-detector is shown in
Figure 2.17. It covers the region |η| < 2.7.

The muon spectrometer is built with gaseous detectors of different models. All
of them function based on the same principle, which is also the working mechanism
of the TRT in the inner detector (described in Section 2.4.2). A gas is ionized
when a charged particle pass by, and the ions and electrons drift towards electrodes,
generating a current. In the barrel, these gaseous detectors are arranged on large
concentric cylinders around the beam axis, while in the end-cap, they are located on
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2.6. Muon spectrometer

Figure 2.17: Schematic view of the ATLAS muon spectrometer [62].

large disks perpendicular to the beam axis. There are three main layers in the barrel
and three in each end-cap; each of these layers is composed of various sub-layers of
detectors.

The different detector models are used to attend different requirements. Some
detectors provide precision measurements of the track coordinate in the principal
muon bending direction (η), and some others provide quick information for the
trigger system.

The detectors providing precision measurements on η are: Monitored Drift Tubes
(MDT) in the barrel and the external part of the end-caps (|η| < 2.0), and Cathode
Strip Chambers (CSC) in the forward region (2.0 < |η| < 2.7). The MDTs only
provide information in the η direction, with a resolution of about 35 µm per chamber;
while the CSCs measure both coordinates η and φ with resolutions of 40 µm and
5 mm, respectively.

The detectors providing quick information to the trigger are: Resistive Plate
Chambers (RPC) in the barrel, and Thin Gap Chambers (TGC) in the end-caps.
They deliver signals with a spread of 15–25 ns, which satisfy the time requirements.
These detectors also complement the MDTs measurements by providing information
in both directions, η and φ.

In this large spectrometer, the chamber alignment and the detailed knowledge
of the magnetic field are important factors that affect the pT resolution. The inter-
chamber alignment has to achieve a precision of 30 µm. For this, the chambers are
continuously aligned using a system of 12000 optical devices. The magnetic field
needs to be known with a precision of a few per mil. It is achieved monitoring the
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field continuously with a system of about 1800 Hall sensors.

The muon spectrometer is expected to provide a 10% transverse momentum
resolution for muons of one TeV.

2.7 Trigger system

The trigger system is basically a filter that has the task of selecting the interesting
events. It has to decrease the event rate from the nominal bunch crossing rate of
40 MHz to a rate of about 200 Hz, a rate at which data can be written to permanent
storage. The trigger system consists of three different levels, called, level 1 (L1),
level 2 (L2) and event filter (EF).

The first level uses a limited amount of the total detector information to take
a decision in less than 2.5 µs. It reduces the event rate to about 75 kHz. The
L1 trigger searches for objects with high transverse momentum, muons, electrons,
photons and jets, as well as large missing and total transverse energy. In order to
do that, L1 utilizes the trigger chambers in the muon spectrometer, and reduced-
granularity information from all the calorimeters. For each event, the L1 trigger also
defines one or more Regions-of-Interest (RoI’s); these are the regions of the detector
where the selection process has identified interesting features. This information is
then used by the higher level triggers.

The second level uses all the information available within the RoI’s, with full
granularity and precision. This is approximately 2% of the total event information.
The L2 reduces the trigger rate to approximately 3.5 kHz, with an event processing
time of about 40 ms.

Finally, in the EF trigger, events are reconstructed completely, using algorithms
similar to the ones used for the offline analysis. It is done in about four seconds,
and it reduces the event rate to ∼ 200 Hz, such as it is desired.

All the selection criteria used by the different trigger levels are organized in
trigger menus. These trigger menus serve to classify events into physics channels
and store them separately. For example, there is a trigger menu that requires at least
two reconstructed photons with ET > 20 GeV and satisfying some photon quality
minimal requirements. To perform the H → γγ analysis reported here, it was
enough to process events triggered by this menu or similar ones; it didn’t required
processing all the data recorded by ATLAS. The criteria used in these menus are
optimized as the luminosity increases, to satisfy the limits on the output rate.

2.8 Computing framework

2.8.1 Computing facilities

The LHC produces an enormous amount of data, about 25 PB per year; the com-
puting resources to store, distribute and analyze these data are provided to all
the scientists around the world participating in the LHC experiments through the
Worldwide LHC Computing Grid (WLCG) [78]. The WLCG links more than 170
computing centers in 36 countries.
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At the WLCG, the computing facilities are organized in four tiers. The first
processing of the data coming out from the experiments is done at CERN, on what
is called the Tier-0. A copy of the raw data and the product of this first processing is
stored at the Tier-0, and a backup copy is made on Tier-1 facilities. There are eleven
Tier-1 centers distributed around the world. These centers are used to reprocess the
data, and allow the access and analysis of the processed data. Derived datasets
for specific analysis are copied to the Tier-2 facilities for further analysis. There are
currently around 140 Tier-2 sites. Individual scientists access these facilities through
local computing resources, which are referred to as Tier-3. The Tier-3’s are either
local clusters in a laboratory or even personal computers.

A CERN Analysis Facility provides an additional analysis capacity, with an
important role in the calibration and algorithmic development work.

2.8.2 Software

In order to process and analyze the data coming from the detector, as well as for
producing simulation samples and analyzing them, the ATLAS collaboration uses a
software framework called Athena [79]. It is also used at the level 2 and event filter of
the trigger. It is based on a software architecture called Gaudi [80] that was originally
developed by the LHCb experiment, but nowadays it is a common project of both
experiments. The Athena framework is primarily based on the C++ programming
language, and Python language scripts are used to set the configuration options for
the program execution.

2.8.3 Data processing and formats

The ATLAS detector produces about one petabyte of data per year; for an efficient
distribution and analysis of these data, various storage formats have been defined,
containing information at different processing levels.

The raw data delivered by the detector is stored in a format called Raw Data
Object (RDO), which contains about 1.6 MB per collision event.

These datasets are processed to derive physical parameters and objects associated
to the particles found in each event. This process is called reconstruction. Initially,
the information from individual calorimeter cells is combined to build energy clus-
ters, the hits on the different layers of the tracker are combined to reconstruct track
segments and later the particle tracks, among others. Then, this information is
further combined to obtained the more complex objects associated to the particles,
objects like photons, electrons, muons, tau-leptons, jets, missing transverse energy,
primary vertices, etc. The output of this process is store in two data formats, Event
Summary Data (ESD) and Analysis Object Data (AOD). The ESD contains typically
one megabyte per event, and it has sufficient information to allow a rapid tuning of
the reconstruction algorithms and calibrations. The AOD represent about 100 kB
per event and contains the information necessary for the physics analysis.

Finally from the AOD format, a Derived Physics Data (DPD) is created to reduce
further the size of the analysis objects. These DPDs are defined by the different
physics groups according to the individual necessities. On average DPDs contains
10 kB/event. DPDs can be read directly with ROOT [81], which is an analysis
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package commonly used in Particle Physics.

A complete description of the ATLAS software and computing framework can
be found in [82].

2.9 Simulation

Since the beginning in the ATLAS experiment, there has been the necessity of
doing simulations in order to prepare physics analysis, as well as to evaluate both
the detector and the analysis performances. The ATLAS simulation program can
be divided into three separate modules, event generation, detector simulation, and
digitization. Then, the simulated data is processed through the same reconstruction
chain described in the previous section used for real data.

At the event generation, the physics processes that occur at the collisions are
modeled. Generators model the initial and final-state radiation in these processes,
the hadronization process and decays. The event generators most commonly used
in ATLAS are PYTHIA [83, 84] and HERWIG [85]; they are based on the Monte
Carlo technique.

The pileup is simulated by overlaying each event with a variable number of
simulated inelastic proton-proton collisions, taking into account the structure of
the beam bunch train at the LHC. The samples are usually prepared in advance,
before the data-taking; they are prepared with a distribution of the mean number
of interactions per bunch crossing some wider than what is expected for real data,
and then event weights are used to match the real data distribution.

The ATLAS detector simulation is done using GEANT4 [86]; this is a toolkit
that provides both a framework and the necessary functionalities for running detec-
tor simulations in Particle Physics. It includes optimized solutions for geometry de-
scription and navigation through the geometry, the propagation of particles through
detectors, description of materials, as well as modeling of physics processes.

Then, the hits produced by G4ATLAS need to be translated into the output
actually produced by the ATLAS detector. This is the digitization. In this step the
propagation of charges or light into the active media as well as the response of the
readout electronics are taken into account.

A complete description of the ATLAS simulation framework can be found in [87],
and the tuning of the MC generators to describe the collision environment is pre-
sented in [88].
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Chapter 3

Identification and reconstruction
of photons in ATLAS

The search of the Higgs boson decaying in two photons requires the identification
of photons and the reconstruction or measurement of their energy and direction of
flight. This chapter explains how this is done in ATLAS.

As discussed in the previous chapter, Section 2.5.1, photons as well as electrons
deposit most of their energy in the electromagnetic (EM) calorimeter, generating
electromagnetic showers. The photon reconstruction is performed using mainly this
sub-detector, and it has many aspects in common with the reconstruction of elec-
trons, starting by the fact that photon and electron candidates have the same seeds
in the EM calorimeter.

In the reconstruction of photons, two different signatures are distinguished, cor-
responding to converted and unconverted photons. A converted photon is the one
that produces an electron-positron pair before arriving to the calorimeter, by inter-
acting with the material that is in front of the calorimeter. The converted photons
are distinguished thanks to the reconstruction of the electron/positron tracks and
the associated vertices, in the inner detector.

The ATLAS detector allows a precise reconstruction of photons and electrons in
the region |η| < 2.5. The electromagnetic calorimeter has been designed to have
high granularity in this region, and the inner detector has been designed to provide
tracking information in the same region.

The identification and reconstruction of photons have been developed based on
Monte Carlo simulations, and validated and refined using test beams and collision
data.

3.1 Reconstruction of photon candidates

The shower generated by an electron or photon in the electromagnetic calorimeter
spans various cells; the electron and photon reconstruction starts with the clustering
of neighboring cells in the EM calorimeter in which energy has been deposited. The
algorithm used for this clustering procedure is described in details in [89]; it is called
“sliding-window”.

The η-φ space of the EM calorimeter is scanned, looking for local maximums of
the sum of the transverse energy deposited in cells enclosed by a rectangular window
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of fixed size. Cells from the three layers of the EM calorimeter and the pre-sampler
are all considered. The size of the window is ∆η × ∆φ = 0.075 × 0.125, which
corresponds to 3× 5 cells of the second layer of the EM calorimeter (in Chapter 2,
Figure 2.15 and Table 2.2 give details about the EM calorimeter granularity). If a
local maximum is found and the corresponding transverse energy is above a threshold
of 2.5 GeV, a pre-cluster of cells is built. The η and φ positions of each pre-cluster
are calculated as the energy-weighted barycenter of the cells in the core of the pre-
cluster, in a window of ∆η × ∆φ = 0.075 × 0.075 (3 × 3 cells of the calorimeter
second layer).

Then, these pre-clusters are classified according to tracking information as cor-
responding to electrons, converted or unconverted photons. If one or more of the
tracks reconstructed in the inner detector are found to match with a pre-cluster, the
pre-cluster is classified either as electron candidate, as converted photon candidate
or as both; otherwise, i.e. if no track is found to match the cluster, it is classified
as unconverted photon candidate. Details about this classification are discussed in
the next section.

After this classification is done, the electromagnetic clusters are built, with a
transverse size that depends on the η region where the cluster is located and on
the hypothetical corresponding particle. For electrons and converted photons in the
calorimeter barrel, the cluster size used is ∆η × ∆φ = 0.075 × 0.175 (3 × 7 cells
of the EM calorimeter second layer); for unconverted photons in the barrel it is
0.075 × 0.125 (3 × 5 cells); and for any object in the end-caps it is 0.125 × 0.125
(5×5 cells). The cluster size has been optimized to be large enough to include most
of the electromagnetic shower, but not too large to minimize the noise impact. Since
the magnetic field in the inner detector bents the trajectories of the electron and
positron resulting from a photon conversion, in opposite directions in the transverse
plane, the electromagnetic showers from converted photons are wider in φ than the
ones from unconverted photons. The electron showers are also wider in φ than
the ones from unconverted photons because of the electrons’ curved trajectories in
the inner detector, throughout which electrons suffer bremsstrahlung radiation and
interactions with the material. In the end-caps, the φ cluster size is the same for
all the particle types because the effect of the magnetic field is small. The clusters
in the end-caps are larger in terms of ∆η and number of cells than the ones in the
barrel; this is because in the end-caps the cells are physically smaller than in the
barrel.

For each cluster, the η and φ positions are calculated at each layer of the elec-
tromagnetic calorimeter independently, computing the energy-weighted barycenter
of the cluster cells. Then, these position measurements are corrected for systematic
biases, induced for instance by the size of the cells, or by the accordion geometry
(details about these corrections can be found in [90]).

The measurement of the photon energy is discussed later, in Section 3.3.

The photon reconstruction efficiency has been evaluated using Monte Carlo sim-
ulation of H → γγ events (with a Higgs boson mass hypothesis of mH = 120 GeV),
considering photons with transverse momentum above 20 GeV [91]. Figure 3.1 shows
the obtained efficiency as function of the photons pseudorapidity η (left side) and
their transverse momentum pT (right side), for converted and unconverted photons
separately, as well as for all of them. Here, the efficiency is defined as the frac-
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Figure 3.1: Photon reconstruction efficiencies as a function of photons true η and pT, for unconverted and converted
photons separately. This efficiency estimation has been done using Monte Carlo simulation of H → γγ events
(mH = 120 GeV), considering photons with transverse momentum above 20 GeV [91].

tion of the true photons with a given η position and pT that are reconstructed as
photons candidates by ATLAS. In the physics analysis, only photons in the regions
|η| < 1.37 and 1.52 < |η| < 2.37 are actually considered; photons in the transi-
tion regions between the barrel and end-caps of the calorimeter (1.37 < |η| < 1.52)
are not considered because they are poorly reconstructed. Considering only pho-
tons in the allowed η regions, the reconstruction efficiency has been found to be
97.82± 0.03%; for converted photons it is 94.33± 0.09%, and for unconverted pho-
tons it is 99.83±0.01%. 2.11±0.03% of the photons are wrongly reconstructed only
as electron candidates, and only 0.06± 0.01% of the photons are not reconstructed
at all.

3.2 Identification of electrons, converted and

unconverted photons

The classification of electromagnetic clusters as corresponding to electrons, con-
verted or unconverted photons is done based on tracking information.

After the reconstruction of tracks, oppositely charged tracks with transverse mo-
mentum pT > 0.5 GeV are associated to built photon conversion vertex candidates.
For the reconstruction of each vertex, a fit is performed considering the parameters
of the two tracks with the constraint that the two tracks form a vertex, and since
photons are massless the angle between the two tracks is constrained to be zero.

Conversion candidates with a single track are also reconstructed. They cor-
respond to conversions in which one of the electrons has transverse momentum
pT < 0.5 GeV and is not detected, or to conversions in which the two electrons have
high pT, they travel very close to each other and they are reconstructed as a single
track; the last case happens mostly when the conversion occurs in the transition
radiation tracker (TRT). Only tracks without associated measurements in the first
layer of the tracker are considered as single-track conversion candidates. For these
conversion candidates, the vertex is taken as placed at the location of the first mea-
surement in the tracker.

The matching between the tracks and the electromagnetic clusters is done by
extrapolating the tracks from their last measurement to the calorimeter second layer.
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Figure 3.2: Close-up view in the transverse plane of a converted photon candidate. Only reconstructed tracks
with pT > 2 GeV and |η| < 1.4 are shown, and only the hits in the pixel, SCT and TRT layers with −1 < |η| < 0
are shown. Starting from the primary vertex (shown as a large magenta dot on the left), the photon conversion
vertex (brown dot) can be seen at a radius of 8.1 cm, followed by the pixel hits (magenta dots), SCT clusters (green
segments) and TRT hits (blue dots and red dots). The electron track (blue line) has pT = 56.1 GeV and matches well
with the electromagnetic cluster (shown in yellow at the outer radius). The positron track has pT = 4.0 GeV [18].

If the η and φ distances between the track and the cluster at this layer are below
0.05, they are said to match with each other; it is extended to 0.1 in φ on the side
where the bremsstrahlung losses are expected.

In order to further distinguish between photons and electrons, especially be-
tween converted photons and electrons, a combination of additional criteria on the
characteristics of the cluster-associated tracks are considered, like the following:
• the type of reconstructed tracks, i.e. if they were reconstructed only from TRT

measurements or if they included also measurements from the silicon tracker; it
is taken into account because TRT-only tracks have less momentum resolution
and η information than the ones with information in the silicon layers;

• the transverse momentum of the tracks;

• the compatibility between the track momentum and the energy measured in
the cluster;

• as mentioned before, the presence of associated measurements in the first layer
of the tracker (the so-called B-layer) is considered; for this requirement, a map
of the dead modules of the tracker is taken into account, in order to check if
the required measurement should be expected or if the corresponding module
is dead.

Figure 3.2 displays as example a two-track photon conversion candidate. Further
details about the photon conversion reconstruction can be found in [61,90,91].

The high pileup conditions at the high luminosity LHC complicates the iden-
tification of converted and unconverted photons. The large amount of tracks re-
constructed in the inner detector increases the probability of finding by chance a
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Figure 3.3: Fraction of reconstructed photons classified as unconverted and converted, with one and two associated
tracks, as a function of the average number of interactions per bunch crossing [92]. This plot has been done with
collision data collected in 2012 at

√
s = 8 TeV.

track matching the electromagnetic clusters. Recently, the criteria considered for
the identification of converted photons have been re-optimized in order to make the
photon conversion reconstruction more robust against the pileup. Figure 3.3 shows
the stability of the fraction of reconstructed photons classified as unconverted and
converted, with one and two associated tracks, as a function of the average number
of interactions per bunch crossing, after this optimization. This plot has been done
with collision data collected in 2012 at

√
s = 8 TeV.

The fraction of electrons that is misidentified as photons has been estimated to
be around 8%. It has been estimated from collision data, selecting Z → ee events.

3.3 Photon energy measurement

Most of the energy carried by a photon or electron is deposited in the cells included
in the corresponding cluster, but there is also a small fraction of energy lost by
interactions with the material in front of the calorimeter, a fraction that is left out on
the sides of the cluster boundary and another deposited behind the EM calorimeter.
Additionally, as discussed in the previous chapter, Section 2.5.1, a fraction of the
particles generated in the electromagnetic shower in the cells is absorbed by the
lead layers and not by the liquid-argon, and thus a fraction of the energy is not
directly measured. In order to take all this into account, the energy of the particle
is reconstructed as follows [90].

Ereco = Efront + Ecal + Eback. (3.1)

The energy deposited by the particle in the three layers of the accordion calorime-
ter Ecal is estimated as a function of the energy measured by the cells in each layer of
the cluster E1,2,3, considering a calibration factor fcal (accounting for the calorimeter
sampling fraction), and a correction factor fout for the fraction of energy left out on
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the sides of the cluster:

Ecal = fcal(X, |η|)

(
3∑

i=1

Ei

)
[1 + fout(X, |η|)]. (3.2)

The factors fcal and fout are estimated separately in bins of |η| and of the longitudinal
barycenter of the shower X, or shower depth, defined as:

X =
EpsXps +

∑3
i=1EiXi

Eps +
∑3

i=1Ei
; (3.3)

where Xps, X1,2,3 are the longitudinal depths, expressed in radiation lengths (X0),
of the pre-sampler and the layers of the calorimeter respectively, computed from the
centre of the detector. X1,2,3 and Xps are functions of |η|.

The energy deposited in front of the calorimeter Efront is parametrized as a
function of the energy deposited in the pre-sampler Eps:

Efront = a(Ecal, |η|) + b(Ecal, |η|)Eps + c(Ecal, |η|)Eps
2. (3.4)

The parameters a, b and c are estimated separately in bins of |η| and the computed
Ecal value. In the region 1.8 < |η| < 3.2, not covered by the pre-sampler, the energy
deposited in front of the calorimeter is parametrized as a function of X.

Finally, the energy deposited behind the EM calorimeter Eback is estimated from
the computed Ecal value, with a leakage correction factor fleak:

Eback = Ecalfleak(X, |η|). (3.5)

The factor fleak is estimated also separately in bins of |η| and X.

The different calibration parameters are estimated separately for electrons, con-
verted and unconverted photons, using Monte Carlo simulation of single particles
with different fixed energies from 5 GeV to 1 TeV.

As done for the cluster position, some fine corrections are applied to this mea-
sured energy, to take into account systematic effects from the accordion structure of
the calorimeter and the size of the cells (details can be found in [90]). These correc-
tions change as a function of the η and φ position of the clusters, with a periodicity
equal to the size of the cells in the η direction, and with a periodicity equal to the
lead absorber spacing in the φ direction since the amount of passive material varies
slightly.

Performance of the energy measurement

For the design constant term of the EM calorimeter of 0.7% (Chapter 2, Sec-
tion 2.5.1), the expected relative resolution on the photon energy measurement σ/E
is shown in Figure 3.4 as a function of η, for different photon energies, and separately
for unconverted and converted photons on the left and right side respectively. This
energy resolution is extracted from a Gaussian fit to the core of the distribution of
the ratio Ereco/Etrue, the reconstructed energy over the photon true energy. For the
design constant term, for photons with transverse energy around 50 GeV like those
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Figure 3.4: Fractional photon energy resolution as a function of the photon measured pseudorapidity, for different
photon energies, and separately for unconverted and converted photons on the left and right side respectively. These
plots reflect the performance of the photon energy measurement at beginning of 2010, evaluated with Monte Carlo
simulation [93].
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Figure 3.5: Fraction of photons for which the ratio Ereco/Etrue is below the fitted Gaussian mean minus 1.5σ,
for different photon energies, and separately for unconverted and converted photons on the left and right side
respectively. The dashed red line in these plots indicates the value expected for a Gaussian distribution. These
plots reflect the performance of the photon energy measurement at beginning of 2010, evaluated with Monte Carlo
simulation [93].
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Figure 3.6: Amount of material, in units of radiation length X0, traversed by a particle as a function of eta.
The left side plot shows material in front of the pre-sampler and the electromagnetic calorimeter, and the right
side plot shows the material up to the inner detector boundaries. The last plot shows the contributions of the
different detector elements separately. The extra material used for systematic studies is also indicated, by the
dashed lines [77].
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expected from a Higgs boson decay, the relative resolution in the central part of
the detector (|η| < 0.6) would be around 1.5%. For other η regions the resolution
is expected to be less good, due to the higher amount of material in front of the
calorimeter, in particular for converted photons. These figures can be compared
with the plots in Figure 3.6, which show the estimated amount of material in front
of the calorimeter as a function of η.

In addition, the plots in Figure 3.5 show the fraction of photons on the low
energy tail of the distribution of Ereco/Etrue; specifically, the fraction of photons for
which the ratio Ereco/Etrue is below the fitted Gaussian mean by more than 1.5σ.
It is shown separately on the left side for unconverted photons and on the right
side for converted photons. The dashed red line in these plots indicates the value
expected for a Gaussian distribution. The values obtained for converted photons are
significantly larger than the value expected for the Gaussian, and also larger than the
values obtained for unconverted photons. These mis-calibrated converted photons
correspond to conversion electrons and positrons that deposit a significant fraction
of energy out of the cluster. These plots reflect the performance of the photon energy
measurement at beginning of 2010, evaluated with Monte Carlo simulation. Now
additional corrections are applied to the energy measured for converted photons,
which consider the radius at which the conversions occur, partially reducing this
effect.

In-situ energy calibration

After computing the photon energy using the simulation-based calibration described
above, additional corrections are applied to rectify for mis-simulated non-uniformities
of the calorimeter. These corrections are derived from an inter-calibration of differ-
ent η regions of the calorimeter, performed with real collision data. This is done
using Z → ee events, constraining the observed di-electron invariant mass distri-
bution to follow the well-known shape of the Z boson peak from the Monte Carlo.
Details can be found in [77]. In this inter-calibration, residual mis-calibration factors
αi are defined for different i-th η bins, in such a way that

Ereco = Etrue(1 + αi). (3.6)

The values obtained for αi from the collision data collected in 2010 are shown in
Figure 3.7. They are within ±2% in the barrel region, and within ±4% in the regions
1.52 < |η| < 2.47 of the end-caps.

Similarly, the αi factors have been estimated for low transverse energy electrons
from J/ψ → ee events. The values obtained are in good agreement with the ones
computed from the Z → ee events. This allowed checking the linearity of the energy
measurement.

The αi factors have been additionally cross-checked comparing the electron en-
ergy measured in the electromagnetic calorimeter with the momentum measured in
the inner detector, with W → eν events, and directly with photons from Z → llγ
events, with l = e, µ. Figure 3.8 shows a comparison of the di-electron invariant
mass distribution for Z → ee events on 4.6 fb−1 of data collected in 2011, after
applying the inter-calibration corrections.

The constant term of the EM calorimeter has been also estimated from the
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Table 3.1: Photons-jet discriminant variables used for the identification of photons [91]. Two sets of cut thresholds
have been defined for the selection of photons with these variables; they are called loose and tight . The variables
considered for each of the two selections are indicated.

Category Description Name Loose Tight
Acceptance |η| < 2.37, 1.37 < |η| < 1.52 excluded – �
Hadronic leakage Ratio of ET in the first sampling of the hadronic

calorimeter to ET of the EM cluster (used over the
range |η| < 0.8 and |η| > 1.37)

Rhad1 � �

Ratio of ET in all the hadronic calorimeter to ET of
the EM cluster (used over the range 0.8 < |η| < 1.37)

Rhad � �

EM Middle layer Ratio in η of cell energies in 3 × 7 versus 7 × 7 cells Rη � �
Lateral width of the shower w2 � �
Ratio in φ of cell energies in 3×3 and 3×7 cells Rφ �

EM Strip layer Shower width for three strips around maximum strip ws 3 �
Total lateral shower width ws tot �
Fraction of energy outside core of three central strips
but within seven strips

Fside �

Difference between the energy associated with the
second maximum in the strip layer, and the energy re-
constructed in the strip with the minimal value found
between the first and second maxima

∆E �

Ratio of the energy difference associated with the
largest and second largest energy deposits over the
sum of these energies

Eratio �

Table 5: Variables used for loose and tight photon identification cuts.

10

measured and predicted di-electron invariant mass distribution for Z → ee events,
from the resolution of the peak [77]. The constant term is the dominant term on
the energy resolution in the range relevant for the H → γγ analysis. In order to
estimate the constant term, the sampling and noise terms have been taken from the
Monte Carlo simulation. The resulting values are the ones quoted in Chapter 2,
Section 2.5.1. Then, the Monte Carlo simulations used for physics analysis have
been arranged according to the results of this estimation.

3.4 Photon identification

The photons that need to be measured are those directly produced by the interaction
of quarks and gluons, photons radiated by quarks before the hadronization process,
and photons from the decay of a fundamental boson (like the Higgs boson); they
are called prompt photons.

Any reconstructed photon candidate that does not correspond to a prompt pho-
ton is considered/called fake photon. The largest fraction of fake photons in ATLAS
corresponds to jets, which deposit a significant fraction of their energy in the elec-
tromagnetic calorimeter. In particular, the jets that most look like a photon in the
EM calorimeter are jets with a leading neutral hadron, mainly π0, decaying to a
collimated photon pair.

In order to reject fake photons, a set of discriminant variables is defined, based
on the shape of the photon electromagnetic shower in the calorimeter. In total, ten
variables are defined; they are explained briefly in Table 3.1, and details can be
found in [90].
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Figure 3.9: Photon candidates in the electromagnetic calorimeter. The yellow spots correspond to the energy
deposited by the photons in the different cells. The pre-sampler (PS) and the three layers of the EM calorimeter
are indicated. The photon candidate on the left side has the shower shape typically expected for a prompt photon,
while the deposit on the right side corresponds very likely to two photons from a π0 decay.

Jets typically deposit a large fraction of energy in the hadronic calorimeter. So,
two variables (Rhad1 and Rhad) are based on the amount of energy deposited in
the hadronic calorimeter in the region behind the electromagnetic cluster. The two
variables are used alternatively in different η regions.

The energy deposition by jets in the calorimeter is usually wider than the photon
showers. This difference between jets and photons is exploited with three variables
(Rη, w2 and Rφ). They consider the lateral distribution of energy in the second
(middle) layer of the EM calorimeter.

After filtering the photon candidates considering these variables, most of the fake
photons correspond to the collimated photon pairs from neutral hadrons. The fine
granularity of the first (strip) layer allows computing five discriminant variables (ws3,
ws tot, Fside, ∆E and Eratio), which provide an excellent separation between photons
and fake photons. The strip layer allows to distinguish between two maxima of
deposited energy very close to each other and a single one, as illustrated in Figure 3.9.
This figure shows two photon candidates in the EM calorimeter; the one on the left
side has the shower shape typically expected for a prompt photon, but the one on
the right side corresponds very likely to a photon pair from a π0 decay.

Figure 3.10 shows as example the normalized distributions of these discriminating
variables obtained from Monte Carlo simulation, for unconverted photon candidates
with ET > 20 GeV in the region 0 < |η| < 0.6 [91]. This is shown separately for
prompt photons and for fake photons from jets.

Two sets of cut thresholds have been defined for the selection of photons with
these discriminant variables; they are called loose and tight [91]. The optimization of
the thresholds is performed separately in bins of η, to take into the account variation
of the variable distributions due to the geometry of the detector. The optimization
is done based on Monte Carlo simulation, using the TMVA toolkit [94].

The loose selection allows performing a sort of pre-selection. As indicated in
Table 3.1, loose only includes cuts on the hadronic leakage variable and on two
of the variables computed with the calorimeter’s second layer information. The
same thresholds are used for converted and unconverted photons, as well as for the
identification of electrons in a similar loose set of cuts. The efficiency of this selection
is above 95% and 90% for unconverted and converted photons respectively. Loose
is used at the trigger level to select photon and electron candidates.
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Figure 3.10: Normalized distributions of the calorimetric discriminating variables obtained from Monte Carlo
simulation, for unconverted photon candidates with ET > 20 GeV in the region 0 < |η| < 0.6. This is shows
separately for prompt photons and for fake photons from jets [91].

Tight represents the nominal selection used for physics analysis and includes cuts
in all the discriminant variables. The cut thresholds are optimized to provide a selec-
tion efficiency around 85% for prompt photons with ET > 40 GeV, and to maximize
the fake photon rejection. The optimization is done separately for converted and
unconverted photon candidates.

The tight selection also includes an acceptance restriction, requiring the photon
candidates to be in the region |η| < 2.37, excluding the region 1.37 < |η| < 1.52,
which corresponds to the transition between the barrel and end-caps, where photons
are poorly reconstructed.

As an alternative to the tight set of cuts, a neural-network [94] based selection
has been also defined. It deals better with the correlations between the different vari-
ables and provides a better separation between photons and jets than the cut-based
selection. Nevertheless, it also requires an accurate knowledge of the discriminant
variable distributions for prompt and fake photons. Detailed studies of these distri-
butions with Monte Carlo and collision data have allowed to use the neural-network
based selection in the H → γγ search with the collision data collected in 2011.

After requiring the photon candidates to satisfy the tight identification criteria,
only one jet out of a few thousands is mis-identified as photon.

When comparing the distributions of the discriminant variables predicted by
Monte Carlo (MC) simulations with the ones observed in real collision data, some
small differences are observed. In order to take this into account when using the
simulation for physics analysis, the discriminant variable values are slightly shifted
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Figure 3.11: Photons identification efficiencies as a function of the photon transverse energy ET, for different
η regions, for the

√
s = 7 TeV collision collected in 2011 [95]. These plots show both the values obtained from

corrected Monte Carlo simulation and the ones obtained with data-driven methods [95].

by a factor equal to the difference between the MC and data distribution means.

Additionally, the photon identification efficiency is monitored using real collision
data with three independent methods (data-driven methods). One of the methods
uses photons from Z → ``γ decays to directly measure the efficiency for low ET

photons; another method uses Z → ee events as reference sample, and exploits the
similarities between the electromagnetic showers induced by electrons and photons
to calculate the photon identification efficiency; the third method uses a sample
of photon candidates and sidebands defined using isolation criteria (details can be
found in [95]).

After the Monte Carlo simulations are corrected, only small differences of the
order of 5% remains between the efficiencies obtained from MC and from the data.
These small differences are taken as systematic uncertainties on the efficiency for the
physics analysis presented in this thesis. Figure 3.11 shows for example the iden-
tification efficiencies obtained for unconverted photons as a function of the photon
transverse energy ET, for different η regions, for the data collected at

√
s = 7 TeV

in 2011 [95].

69



Chapter 3. Identification and reconstruction of photons in ATLAS
N

ot
re

vi
ew

ed
,f

or
in

te
rn

al
ci

rc
ul

at
io

n
on

ly

Figure 1: Sketch illustrating the isolation computation. The grid represents the electromagnetic calorime-

ter middle-cell granularity. The egamma candidate energy is mostly contained in the central white

∆η × ∆φ = 5 × 7 rectangle. A yellow cone of size ∆R = 0.4 is drawn around the candidate. In

the EtconeXX variables (no noise suppression), all cells within this cone are used, whereas in the

topoPosEMEtconeXX variables (with a topological noise suppression), cells belonging to 420 topo-

logical clusters (orange) are used.

Process RunNumber tags comments

Single electron 7 < ET < 80 GeV 107030 r2973 no pile-up

Single electron 80 < ET < 500 GeV 107033 r2955 ”

Single photon 7 < ET < 80 GeV 107020 r2973 ”

Single photon 80 < ET < 500 GeV 107023 r2955 ”

Z→ e+e− Pythia 106046 e815, s1272

Z→ e+e− Powheg+Pythia 108303 e825, s1272

Z→ e+e− Sherpa 114609 e931

Photon + jets Pythia (DP17) 115802 e825, s1299, r3068 µ̄ = 20

Photon + jets Pythia 115802 ” , ” , r3069 µ̄ = 30

Photon + jets Pythia 115802 ” , ” , r3070 µ̄ = 40

Photon + jets Pythia (DP35) 115803 ” , ” , r3068 µ̄ = 20

Photon + jets Pythia 115803 ” , ” , r3069 µ̄ = 30

Photon + jets Pythia 115803 ” , ” , r3070 µ̄ = 40

Photon + jets Pythia (DP70) 115804 ” , ” , r3068 µ̄ = 20

Photon + jets Pythia 115804 ” , ” , r3069 µ̄ = 30

Photon + jets Pythia 115804 ” , ” , r3070 µ̄ = 40

Photon + jets Alpgen (1 parton) 116390 e825 2 jets (ET > 20 GeV)

Photon + jets Alpgen (2 partons) 116391 ” ”

Photon + jets Alpgen (3 partons) 116392 ” ”

Photon + jets Alpgen (4 partons) 116393 ” ”

Photon + jets Alpgen (5 partons) 116394 ” ”

Di-photon Sherpa (2DP20) 126389 e1028, r3108 2 γ, pT > 20 GeV/c

gg→H→ γγ, Pohweg+Pythia 116870 e873

Table 1: List of the various Monte Carlo samples considered in this note. The simulation and reconstruc-

tion tags are s1310 and r3043, unless otherwise specified. For the last sample mH = 125 GeV/c2.

2

Figure 3.12: Illustration of the isolation transverse energy Eisol
T computation [92]. It shows the η-φ space of the

calorimeters around a photon candidate. The grid indicates the cells of the second layer of the electromagnetic
calorimeter. Reconstructed topological-clusters are indicated in red, and the yellow region represents the area where
the topological-clusters are considered. The transverse energy deposited in the electromagnetic cells indicated by
the central white rectangle is subtracted in the computation, to exclude the energy deposited by the photon itself.

3.5 Isolation criteria

Around fake photons from jets, there is usually some activity in the detector (i.e.
tracks, deposited energy), corresponding to the jet additional particles; while around
prompt photons, on average, there is not much activity. Thus, in order to further
reject fake photons from jets, the photon candidates are required to satisfy some iso-
lation criteria. In ATLAS, two isolation criteria are defined: the isolation transverse
energy Eisol

T that considers the transverse energy deposited around photon candidates
in the calorimeters; and the tracking isolation pisol

T that considers the transverse mo-
mentum of the tracks reconstructed around the photon candidates [91].

Calorimetric isolation

The isolation transverse energy Eisol
T is built using cell clusters reconstructed in the

electromagnetic and hadronic calorimeters; these clusters are reconstructed following
an algorithm described in [89], and they are called topological clusters. The clustering
algorithm groups together neighboring cells as long as the signal in the cells is
significant compared to the noise.

For a photon candidate, Eisol
T is computed by summing up the transverse energy

of the topological clusters whose barycenters are located within a circle of radius of
0.4, in the η-φ space around the photon, as illustrated in Figure 3.12. In order to
exclude the energy deposited by the photon itself, the transverse energy deposited
in the electromagnetic cells within a rectangular window centered on the photon
candidate is subtracted from the sum; the size of this rectangular window is ∆η ×
∆φ = 0.125× 0.175 (5× 7 cells of the EM calorimeter second layer).

Various η-φ radii are tested for the reconstruction of the Eisol
T variable. On the

one hand, the largest is the region considered, the largest fraction of the jet energy
is collected, but on the other hand, also more noise is included. The Eisol

T used in
the analysis presented in this thesis have been reconstructed using a radius of 0.4,
which has been found to be the optimal for this analysis.
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Various corrections are applied to the isolation transverse energy to maximize
its discrimination power. The photon energy that leaks out of the central rectangle
of 5× 7 cells is subtracted from Eisol

T . This energy leakage is estimated using Monte
Carlo simulation, as a function of the transverse energy and η position of the photon
candidate.

The ambient transverse energy contribution to the isolation transverse energy is
estimated and subtracted from Eisol

T . This is the contribution from the underlying
event and both in-time and out-of-time pileup. The underlying event represents
all the activity resulting from a proton-proton interaction that is not associated
with the hard interaction process. The in-time pileup contribution corresponds
to the activity resulting from the additional multiple proton-proton interactions
that occur simultaneously in the analyzed event bunch-crossing. The out-of-time
pileup corresponds to the collisions occurred in previous bunch-crossings; the time
required by the calorimeter cells to achieve their ground state is larger than the time
separation between consecutive bunch-crossings, thus the remnants of the activity
in the calorimeter from previous events affect Eisol

T .

Actually, part of the noise from pileup is reduced in the reconstruction of the
topological clusters, which is performed with a noise-suppressing algorithm that also
minimizes the electronic noise in the cell energy measurement [89].

The ambient transverse energy to be corrected is estimated event per event fol-
lowing the algorithm suggested in [96]. For each reconstructed jet, a transverse
energy density is computed as the ratio between the jet transverse energy and its
area. Considering the jets reconstructed in a given event, the median of the distri-
bution of this density is taken as an ambient transverse energy density in the event,
which is later multiplied by the area considered in the isolation computation to esti-
mate the correction. Details about the implementation of this correction in ATLAS,
as well as about the photon energy leakage correction, can be found in [10,97].

In Figure 3.13, the black points show the Eisol
T distribution of a sample of photon

candidates that satisfy the identification criteria. The solid black line corresponds
to the result of a multi-component template fit of the distribution, the template
distribution corresponding to prompt photons is shown in red, and the template
corresponding to fake photons from jets is shown in blue.

The computation of the isolation transverse energy using topological clusters has
been recently implemented in ATLAS. Previously, instead of using these clusters, the
individual cells of the calorimeter were directly considered. The previous variable
had a remaining sensitivity to the out-of-time pileup, that has been removed in the
new variable, thanks to the noise suppression procedure used for the reconstruction
of the topological clusters. This is shown in Figure 3.14, which presents the mean
of a Crystal Ball [98] function fitted to the isolation transverse energy distribution
for electrons from Z → ee events, as a function of the bunch crossing identifiers; the
plot on the left side corresponds to the previous isolation variable, and the one on
the right side corresponds to the newly implemented isolation computation.

In theH → γγ analysis, the photon candidates are required to haveEisol
T < 4 GeV;

above 95% of the prompt photons that satisfy the identification criteria, described
in the previous section, pass this isolation cut, which rejects more than half of the
fake photons remaining.

The validity of the Eisol
T distribution predicted by the Monte Carlo simulations
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Figure 3.13: Eisol
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Figure 3.15: Normalized tracking isolation pisol
T distributions obtained from Monte Carlo simulation for prompt

photons (red squares) and fake photons (circles), after requiring them to satisfy the identification criteria [90]

is monitored comparing the collision data and Monte Carlo distributions obtained
for electrons from Z → ee events, and for photons in Z → llγ, with l = e, µ,.
The Monte Carlo distributions are slightly shifted with respect to the collision data
distributions by about 100 MeV; this shift implies a difference on the isolation cut
efficiency for prompt photons of about 0.2%, which has a negligible impact in the
results of the H → γγ analysis presented in this thesis.

Tracking isolation

The tracking isolation pisol
T is computed as the scalar sum of the transverse momen-

tum ptrk
T of the tracks reconstructed around the photon candidate, with the distance

∆R between each track and the photon candidate direction below a given radius
(typically 0.3). The tracks to be considered are required to have transverse momen-
tum ptrk

T > 1 GeV; this cut rejects a large amount of tracks from the underlying
event and pileup, and thus minimizes their effects on the tracking isolation. In the
case of converted photons, the tracks associated to the conversion are excluded. In
addition, in order to avoid including conversion tracks corresponding to the photon
candidate but that have not been associated to it, the tracks are required to have
an associated hit in the first layer of the tracker, and to have a transverse impact
parameter d0 < 1 mm.

Figure 3.15 shows the normalized pisol
T distributions obtained from Monte Carlo

simulation for prompt photons (red squares) and fake photons (empty circles), after
requiring them to satisfy the identification criteria [90].

The tracking isolation has both advantages and disadvantages compared with
the calorimetric isolation.

On the one hand, the tracking isolation only considers information of charged
particles, while the calorimetric isolation includes information of both charged and
neutral particles. Therefore, the jet rejection achieved using the tracking isolation
is lower than the rejection achieved with the calorimetric isolation. For the same
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Chapter 3. Identification and reconstruction of photons in ATLAS

reason, the association of the calorimetric isolation with the partonic isolation is
more straightforward than for the tracking isolation; the partonic isolation is the
one computed in Monte Carlo generators, considering quarks and gluons around a
photon. In the measurements of the production cross-section of isolated prompt
photons performed in ATLAS, only calorimetric isolation has been used to facilitate
the comparison of the measurements with the theoretical predictions.

On the other hand, a tracking isolation might be more robust against pileup
than the calorimetric isolation. First, the tracking isolation does not suffer the out-
of-time pileup that affects the calorimeter. Second, a very robust tracking isolation
may be computed if the primary vertex of the analyzed event is identified, by con-
sidering only tracks associated to it. This is straightforward in the case of electrons
and muons, but this is not the case for photons. In this case, a sufficiently precise
identification of the primary vertex is only achieved for photons with early conver-
sions, with hits in the silicon tracker. (The identification of the primary vertex in
diphoton events for the H → γγ analysis is discussed in Chapter 5, Section 5.2.4).

In the analysis presented in this thesis, only the calorimetric isolation has been
used, but in a later version of the analysis reported in [21], the tracking isolation
has been also used as a complement to the calorimetric one.
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Chapter 4

Statistical analysis procedure

In the search for the Standard Model (SM) Higgs boson, the compatibility between
a dataset and two different hypotheses is tested, the background-only hypothesis
and the background plus SM Higgs boson-signal hypothesis. This chapter describes
the statistical procedure used to perform this comparison quantitatively. Slightly
different approaches have been used in the various experiments where the Higgs
boson search has been performed. This chapter describes the procedure that the
ATLAS and CMS collaborations have agreed to use, which is presented in [99].

4.1 General aspects

The tests of the different hypotheses are performed based on data distributions that
are sensitive to the underlying physics on which the hypotheses have been made. For
example, in the search of the Higgs boson in the diphoton decay channel in ATLAS,
the diphoton invariant mass distribution is used. In this case, while the background
has a smoothly decreasing distribution, the Higgs boson signal distribution is a
narrow peak.

For the hypothesis tests a likelihood function needs to be defined. In the case of
the ATLAS H → γγ analysis, an un-binned likelihood function is used. It is defined
as follows:

L(data|µ, θ) = k−1
∏

i

[µSfs(xi) +Bfb(xi)] e
−(µS+B); (4.1)

where fs and fb are probability density functions for the expected signal and back-
ground respectively, and S and B are the corresponding number events expected.
µ is referred as the signal strength; it is a scale factor on the number of signal events,
which is defined with respect to the expected number of signal events expected for
the SM Higgs boson. θ represents the set of so-called nuisance parameters. The
nuisance parameters are all the function parameters that are not of central interest,
but that are needed to model the pdf’s; in this case µ is the parameter of central
interest. The data for which the likelihood function is evaluated are either the actual
experimental data or pseudo-data (also called toy). The pseudo-data are generated
randomly, considering a hypothesized probability density function (pdf). k is the
number of events in the dataset for which the likelihood function is evaluated.

The values of the parameters for which the likelihood function achieves a max-
imum are the values that best fit the data sample; they are denoted with the cor-
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responding parameter symbol and a hat, for example µ̂ or θ̂. Technically, they
correspond to the parameters that are left free in a fit, while the symbols without
hat correspond to parameters fixed in the fit.

4.2 Testing the signal-plus-background hypothesis

In the search for the SM Higgs boson, usually, various signal-plus-background hy-
potheses with different signal strengths are tested. For each signal strength µ, one
computes the confidence level at which signal strengths equal or larger than µ can be
excluded. Then, the µ value for which a given confidence level is achieved is reported,
commonly the one corresponding to 95% confidence level, denoted as µ95%CLs . In
this way, a 95% confidence level upper limit is set over the possible signal strengths.

Assuming the Higgs boson decay branching ratios to be as expected in the Stan-
dard Model, these limits can be taken as limits over the Higgs boson production
cross-section.

At the LHC, the exclusion limits are computed using a method called CLs [99,
100], which is a modified version of a classical frequentist method. In this method,
the hypothesis tests are done using a function of the data called test statistic, defined
in this case in terms of a likelihood function ratio, as follows:

q̃µ =





−2 ln
[
L(data|µ,θ̂µ)

L(data|0,θ̂0)

]
for µ̂ < 0,

−2 ln
[
L(data|µ,θ̂µ)

L(data|µ̂,θ̂)

]
for 0 6 µ̂ 6 µ,

0 for µ̂ > µ;

(4.2)

where θ̂µ refers to the values of θ that maximizes the likelihood function, given the

data and a specific signal strength value µ, µ = 0 in the case of θ̂0. On the other
hand, µ̂ and θ̂ correspond to the global maximum of the likelihood function.

Figure 4.1 shows example distributions of q̃µ=1; the blue line distribution corre-
sponds to toys generated with a background-only pdf, and the red line distribution
corresponds to toys generated with a signal-plus-background pdf with µ = 1. As
can be seen in this figure, the background-only datasets tend to have higher values
of q̃µ than the signal-plus-background datasets.

In the definition of q̃µ, on the one hand, the different definition for the cases
with µ̂ < 0 corresponds to the physics fact that the number of signal events can
only be positive. On the other hand, the definition q̃µ = 0 for the cases with µ̂ > µ
produces a Dirac peak in the distribution of q̃µ, at q̃µ = 0; it is imposed because
the objective is to set exclusion limits on signal strengths equal or larger than a
given value, and not on a specific signal strength value. Without this, q̃µ would be
a variable discriminant of a specific µ value.

The signal confidence level CLs(µ) for a given dataset and the µ value under test
is computed as the ratio

CLs(µ) =
pµ

1− pb
. (4.3)

Here, pµ is the probability for signal-plus-background datasets to be more background-
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4.2. Testing the signal-plus-background hypothesis

like than the analyzed dataset,

pµ = P (q̃µ > q̃obsµ | signal + background); (4.4)

where q̃obsµ is the “observed” value of q̃µ (the value found for the analyzed dataset).
Similarly, (1− pb) is the probability for background-only datasets to be more back-
ground-like than the analyzed dataset,

1− pb = P (q̃µ > q̃obsµ | background-only). (4.5)

Technically, the procedure to compute CLs(µ) for a given µ value is:

1. Find q̃obsµ .

2. Find the values of the nuisance parameters θ̂obs0 and θ̂obsµ that best fit the
analyzed dataset when the signal strength is fixed to zero and µ, respectively.

3. Generate background-only toys with the nuisance parameters θ̂obs0 , and signal-
plus-background toys with signal strength µ and with the nuisance parameters
θ̂obsµ .

4. Compute for each toy the value q̃µ, as done for the real dataset, and build

probability density functions f(q̃µ|µ, θ̂obsµ ) and f(q̃µ|0, θ̂obs0 ) for the signal-plus-
background and background-only hypothesis respectively.

5. Based on these pdf’s, compute pµ and (1− pb), as follows

pµ =

∫ ∞

q̃obsµ

f(q̃µ|µ, θ̂obsµ )dq̃µ, (4.6)

1− pb =

∫ ∞

q̃obs0

f(q̃µ|0, θ̂obs0 )dq̃µ, (4.7)

!

!

!

Figure 4.1: Example distributions of the q̃µ=1 test statistic for toy (pseudo-data) generated with a background-only
pdf in blue and with a signal-plus-background pdf in red [99].
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6. Finally, compute CLs(µ) using Equation 4.3.

If the obtained value is CLs = α, one can state that signal strengths equal or
larger than the tested value are excluded with (1− α) confidence level.

Usually, this procedure is repeated for several µ values until finding CLs = 0.05.
The corresponding signal strength value is the one denoted as µ95%CLs . Then, it can
be stated that signal strengths equal or larger than µ95%CLs are excluded at 95% of
confidence level.

The limits set using CLs are more conservative than the ones obtained with other
methods, for a protection against setting limits on very weak signal strengths for
which there is not sensitivity; the limits in these cases can be driven by downward
fluctuations of the background [99].

Expected limits

When exclusion limits are computed using a given dataset, usually, the median
expected limits for the background-only hypothesis are also computed; they are
used as reference values. In order to obtain these median expected limits, one has
to generate background-only toys, and to find for each of them µ95%CLs following the
procedure described above. In this way a distribution of µ95%CLs values is obtained
for background-only datasets. From this distribution, one can extract the median µ
value that would be excluded in 50% of equivalent experiments, and one can extract
also the µ values excluded in 16%, 84%, 2.5% and 97.5% of the times. These last
values correspond to the ±1σ and ±2σ bands for the expected limits.

Technically, it is not necessary to re-built the probability density functions
f(q̃µ|µ, θ̂obsµ ) and f(q̃µ|0, θ̂obs0 ) of a given signal strength for each of these toys; they
can be built only once and used for the different background-only toys.

4.3 Asymptotic approximation for setting

exclusion limits

The computation of exclusion limits as described above consumes significantly
computing resources and time, in particular the extraction of the expected limits.
In addition, during the optimization of an analysis, the expected limits are usually
computed several times with alternative configurations, looking for the one that
provides the best sensitivity. For this reason, an approximation, proposed in [101],
is used for the computation of the limits. With this approximation, the generation
and analysis of toy pseudo-experiments is not required, and thus the computing time
and resources required is largely reduced.

For the analysis of a small number of events, the results from this approximation
are not guaranteed to be accurate, but their validity improves as the number of
events increases. For the analysis presented in this thesis, the asymptotic approxi-
mation has been used, after checking the validity of the results with toys.

Before presenting the approximation, the so-called Asimov dataset is explained.
It is a special artificial dataset introduced in [101] that is used in the asymptotic
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Figure 4.2: Asimov dataset. The black points correspond to an Asimov dataset with ten thousand values, built to
follow the pdf shown by the red line.

approximation. Actually, the Asimov dataset is a powerful tool that has allowed a
quick computation of several quantities in the H → γγ analysis.

Asimov dataset

An Asimov dataset is one artificially built to follow perfectly a probability density
function (pdf), without statistical fluctuations.

For an observable x, a range (x0, xf ), and a pdf f(x) normalized in this range, an
Asimov dataset can be built in the following way. The first value x1 in the dataset
is set in such a way that the following condition is satisfied,

∫ x1

x0

f(x)dx =
1

2Nevt

; (4.8)

where Nevt is the total number of events in the dataset. Then, the following values
xi are determined using the condition

∫ xi

xi−1

f(x)dx =
1

Nevt

. (4.9)

Figure 4.2 shows as an example a histogram (black points) filled with an Asimov
dataset with ten thousand values, built to follow the pdf shown by the red line.

An Asimov dataset is representative of an ensemble of toy datasets. If a pdf is
fitted to an Asimov dataset to estimate a given parameter, the value that correspond
to the median of the results from fitting many toys is directly obtained.

Asymptotic approximation

A test statistic alternative to the one given in Equation 4.2 is defined as

qµ =




−2 ln

[
L(data|µ,θ̂µ)

L(data|µ̂,θ̂)

]
for µ̂ 6 µ,

0 for µ̂ > µ,

(4.10)
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without the special treatment for the cases with µ̂ < 0.

The distributions of qµ, apart of the Dirac peak at qµ = 0, are expected to follow
a χ2 distribution for one degree of freedom, for Wilks’ theorem [102]. This allows
various simplifications at the moment of computing exclusion limits. For example,
for signal-plus-background datasets generated with signal strength hypothesis µ, the
qµ distribution approaches to the pdf

f(qµ|µ) =
1

2
δ(qµ) +

1

2

1√
2π

1
√
qµ

exp
(
−qµ

2

)
with qµ > 0. (4.11)

On the other hand, the distributions of q̃µ are more complex. In this case, the
equivalent of Equation 4.11 has been shown in [101] to be

f(q̃µ|µ) =
1

2
δ(q̃µ) +





1
2

1√
2π

1√
q̃µ

exp
(
− q̃µ

2

)
for 0 6 q̃µ 6 µ2

σ2 ,

1√
2π(2µ/σ)

exp
[
−1

2

(q̃µ+µ2/σ2)2

(2µ/σ)2

]
for q̃µ >

µ2

σ2 ;
(4.12)

where σ is the standard deviation of µ̂, in this case for signal-plus-background
datasets, and it is a characteristic parameter of the distribution.

Nevertheless, in the asymptotic limit, the test statistics q̃µ and qµ have been
found to provide the same results for the exclusion upper limits [101]. For this
reason, in order to take advantage of the simplifications of qµ, it is often used.

The cumulative probability function for the pdf f(qµ|µ) (Equation 4.11) is [101]

F (qµ|µ) = Φ
(√

qµ
)

with qµ > 0, (4.13)

and similarly, for background-only datasets the cumulative probability function is
found to be:

F (qµ|0) = Φ
(√

qµ −
µ

σ

)
with qµ > 0; (4.14)

where Φ is the cumulative function for the normal Gaussian:

Φ(x) =
1

2

[
1 + erf

(
x√
2

)]
(4.15)

As explained in [101], the standard deviation σ of µ̂, for background-only datasets,
can be obtained computing qµ for a background-only Asimov dataset (the resulting
qµ is denoted as qµ,A), using the relation

σ2 =
µ2

qµ,A
; (4.16)

Then, from Equations 4.14 and 4.16, CLs is obtained

CLs =
1− Φ(

√
qµ)

Φ(
√
qµ,A −√qµ)

. (4.17)

In order to compute the median expected limit µmedup for the background-only
hypothesis, with (1−α) confidence level, one needs to consider the median expected
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qµ value for this hypothesis, which is qµ,A. It yields

µmed
up = σΦ−1(1− 0.5α) (4.18)

Similarly, one can find a general expression for the µ values corresponding to the
Nσ error bands [99]:

µmed+Nσ
up = σ{Φ−1[1− αΦ(N)] +N} (4.19)

4.4 Testing the background-only hypothesis

This chapter explains how to quantify the importance of an excess, in order to make
statements about its compatibility with statistical fluctuations of the background.
Here, the importance of an excess is quantified based on the probability that the
background fluctuates creating a signal-like excess equal or larger than what is ob-
served. This probability (p-value) is usually denoted as p0.

p0 is computed using a test statistic defined as follows:

q0 =





0 for µ̂ < 0,

−2 ln
[
L(data|0,θ̂0)

L(data|µ̂,θ̂)

]
for µ̂ > 0,

(4.20)

The more important is an excess, the larger is the difference between the two likeli-
hoods considered in this equation and the larger is the corresponding q0 value. (For
a given dataset, L(data|µ̂, θ̂) is always larger or equal than L(data|0, θ̂0).)

Again, the different treatment for the cases with µ̂ < 0 is associated with the
physical fact that the number of signal events can only be positive. In this case,
it produces a Dirac peak in the distribution of q0, at q0 = 0; it represents the 50%
of the times that background-only datasets have downward fluctuations. Figure 4.3
shows the q0 distribution for background-only toys.

The background-only toys are generated following frequentist conventions, using
the nuisance parameter values θ̂obs0 and event counts following Poisson probabilities.
From this toys distribution a probability density function f(q0|0, θ̂obs0 ) is built.

The probability p0 corresponding to a given experimental observation qobs0 is
evaluated as follows:

p0 = P (q0 > qobs0 |background-only) =

∫ ∞

qobs0

f(q0|0, θ̂obs0 )dq0 (4.21)

Usually, the p0 values are translated to a scale of significance (Z), or number of
standard deviations. It is done by using the inverse of the cumulative function for
the normal Gaussian Φ [101],

Z = Φ−1(1− p0) (4.22)

For example, in the background-only hypothesis, the probability to have an excess
with 5σ significance (Z = 5) is p0 = 3 · 10−7; 5σ is conventionally the significance
required for claiming the observation of a new particle.
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Figure 4.3: Distribution of the q0 test statistic for background-only toys [99].

Going back to the q0 test statistic definition, actually the definition for the cases
with µ̂ < 0 has been modified in the latest version of the statistical recommendations
to be used at the LHC. Now q0 is defined as:

q0 =





+2 ln
[
L(data|0,θ̂0)

L(data|µ̂,θ̂)

]
for µ̂ < 0,

−2 ln
[
L(data|0,θ̂0)

L(data|µ̂,θ̂)

]
for µ̂ > 0,

(4.23)

The only reason for doing this is verifying the sanity of the analysis allowing also the
quantification of negative fluctuations: in the background-only hypothesis positive
and negative fluctuations should be equal, on the average. The p0 values computed
using the definition in Equation 4.20 are called capped p0, and they are always below
0.5; while the ones computed with this last definition are called un-capped p0 and
they can go above 0.5.

Asymptotic approximation for quantifying an excess

In the asymptotic limit, the distribution of q0 for background-only datasets follows a
χ2 distribution for one degree of freedom, for Wilks’ theorem [102]. It is illustrated
in Figure 4.3, where the solid line corresponds to the χ2 distribution for one degree
of freedom. Then, the probability p0 can be directly calculated from q0 as [101]

p0 = 1− Φ(
√
q0), (4.24)

as well as the significance
Z =

√
q0. (4.25)

Which largely reduces the computing time and resources required.
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Figure 4.4: For a scan of mass region, Nu is defined as the number of times that the observed q0 as function of
mH up-cross a given q0 value threshold u. The up-crossing points are indicated by the blue dots. [99].

Look-elsewhere effect

In the Higgs boson search, various Higgs boson mass hypotheses (mH) are tested,
not only one, and therefore various excesses in different regions of the hypothesis
discriminant distribution are quantified; for example in the H → γγ analysis, a scan
is performed over a given region of the diphoton invariant mass mγγ distribution.
The p0 value is the probability of the background to fluctuate creating a signal-like
excess equal or larger than what is observed, when a single test is performed, or for
a single mass point.

When several tests at different mass points are performed, for the largest excess
(i.e. the one with highest significance) observed anywhere in the scanned mass
region, the probability to be equal or larger on significance than the one observed
in the analyzed data-sample is higher than p0. For this reason, p0 is better referred
as local p0 and the associated significance as local significance.

The global test statistic to be associated with the search in some broad mass
range can be written as follows:

q0(m̂H) = max
mH

[q0(mH)]. (4.26)

Then, a global p0 and a global significance could be extracted by building a pdf for
f(q0(m̂H)|0, θ̂obs0 ) using toys. The ratio of global and local p-values is usually referred
to as trial factor.

Nevertheless, in the asymptotic regime and for very small p0 values, this effect
can be evaluated with a less computing demanding procedure proposed in [103]. In
this reference, it is shown that the global p0 value can be written as follows:

pglobal
0 = P [q0(m̂H) > u|background-only] 6 〈Nu〉+

1

2
Pχ2

1
(u). (4.27)

For a mass region scan, Nu is defined as the number of times that the observed q0

as function of mH up-cross a given q0 value threshold u, as illustrated in Figure 4.4;
in this figure the up-crossing points are indicated by the blue dots. Here, Pχ2

1
is the

survival function of χ2 for one degree of freedom.

It is also shown that the average number of up-crossings at two levels u and u0
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are related by the following formula [103]

〈Nu〉 = 〈Nu0〉e−
(u−u0)

2 . (4.28)

Thus, 〈Nu〉 for a large value of u, at which the pglobal
0 value need to be computed,

can be obtained by estimating 〈Nu0〉 for a lower threshold u0; and 〈Nu0〉 can be
estimated with a relatively small number of toys.

4.5 Systematic uncertainties

In order to consider a systematic uncertainty on a parameter of a pdf used in the
likelihood function, an additional nuisance parameter θi is introduced, constraining
it by a probability density function ρ(θi) defined by the concerned uncertainty.

For example, lets consider the parameter corresponding to the expected number
of signal events S in the likelihood function (see Equation 4.1). This parameter is
fixed to its estimated value during the likelihood function maximizations (i.e. during
the fits). In order to consider the relative uncertainty σS on the estimated value of S,
a scale factor parameter θS is introduced for S. But, this scale factor is constrained
introducing in the likelihood function for instance a gaussian pdf ρS(θS), with a
width defined by the σS, as follow:

ρS(θS) =
1√

2πσS
exp

[
−(θS − 1)2

2σS2

]
. (4.29)

In this case the likelihood function would be defined as:

L(data|µ, θ) = k−1
∏

i

[µθSSfs(xi) +Bfb(xi)] e
−(µS+B)ρS(θS); (4.30)

In the generation of toys, the value of a nuisance parameter associated with an
uncertainty is taken randomly for each toy according to the constraint pdf ρ(θi).

For two observables with 100% correlated uncertainties, a single nuisance pa-
rameter is introduced to scale the corresponding observable parameter.

Actually, the Gaussian pdf is not suitable for positively defined observables like
the expected number of signal events. In cases like this one, the recommendation is
to use a log-normal pdf as constraint. The log-normal pdf is defined as:

ρ(θ) =
1√

2π ln(κ)
exp

[
− ln2(θ)

2 ln2(κ)

]
1

θ
. (4.31)

The width of the log-normal pdf is characterized by κ. κ = 1.10 implies that the
observable can be larger or smaller by a factor 1.10.
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Chapter 5

The H → γγ analysis

5.1 Introduction

The H → γγ channel is one the most promising modes to search the Standard
Model (SM) Higgs boson at low mass, at the Large Hadron Collider (LHC). It is the
channel with the highest sensitivity in the mass range below 125 GeV, down to the
exclusion limit set by the LEP experiments at 114 GeV. In the analysis presented
here, the Higgs boson search is performed from 110 GeV to 150 GeV.

The photons expected from the Higgs boson decay are very well reconstructed
in ATLAS, as shown in Chapter 3. Both, the direction and energy of these particles
are very well measured. Then, the distribution of invariant mass for diphotons from
the H → γγ process is expected to be a narrow peak, with about 3.8 GeV of full
width at half maximum (FWHM). Nevertheless, this peak is expected to appear on
top of a quite large amount of background, whose statistical fluctuations difficult
the peak observation.

The processes contributing to the background in the H → γγ search are: the
QCD diphoton production (γγ background), the associated production of a photon
with jets (γj background), the processes with several jets in the final state (jj
background) and the Drell-Yan processes. The second and third processes in this
list contribute to the background when one or two jets fragmenting into neutral
mesons (mainly π0) are misidentified as photons. The Drell-Yan background is due
to the misidentification of electrons as photons, mostly as converted photons. The
γγ background is usually referred as irreducible, while the rest of the background
components together are called reducible. The γγ and γj components constitute
most of the background.

The statistical procedure used to quantify the probability of having a signal in
the analyzed data sample has been discussed in Chapter 4.

A set of event categories have been defined in order to increase the sensitivity
to observe a signal. The diphoton candidate events are classified in these categories
according to either kinematic or experimental criteria, making event sub-samples
with different signal-to-background ratio.

This analysis started to be developed about 20 years ago [104]; it has been used as
a benchmark during the design of the ATLAS electromagnetic calorimeter. Several
documents reported estimations of the sensitivity to observe the Higgs boson based
on Monte Carlo (MC) simulations; among these documents there are [9, 90, 105].
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After the LHC started operating, several publications have been done reporting
the results of analyzing the increasing collected data [13–21, 106]. As well, various
students have made PhD theses on this subject; among these theses, some of them
made recently in French laboratories are [107–110]. Since the time of MC based
studies, different strategies of analysis have been evaluated, and since the first data
results presented two years ago, the analysis has evolved improving its sensitivity.
What is described here corresponds to the analysis performed between spring and
summer 2012; these are the results published in [106], which are basically the same
results presented at CERN on the 4th of July seminar and at the ICHEP 2012
conference [20], except for some minor modifications.

As you will see in details in the last section of this chapter, an excess of events
has been observed in the diphoton invariant mass distribution at 126.5 GeV. For
this reason, this mass value is used as reference point in several tables and figures
quoting the signal expectations in this document.

5.2 Samples

5.2.1 Data samples

Two data samples have been used for this analysis. The first sample correspond to
the data taken by ATLAS in 2011 during the proton-proton collisions at

√
s = 7 TeV.

The second sample correspond to the data taken in the first half of 2012, until June
18th, at

√
s = 8 TeV collisions.

During these two data taking periods the instantaneous luminosity has varied
from about 1032 cm−2s−1 to 6.8 × 1033 cm−2s−1. Figure 5.1 shows the distribution
of the mean number of interactions per bunch crossing for each period. On average,
the mean number of interactions per bunch crossing is about twice larger for the
8 TeV sample than for the 7 TeV sample. The bunch-to-bunch time spacing has
been kept to be 50 ns in both years.

The data are required to satisfy quality criteria based on the good functioning
of the calorimeters, the inner detector and the trigger system, and the beam qual-
ity. These requirements are applied to small sets of data corresponding to short
data taking periods, of about one minute. After these data-quality conditions, the
integrated luminosity on the 7 TeV sample is estimated to be 4.8 fb−1, with a rela-
tive uncertainty of 1.8% [112]. For the 8 TeV sample, the integrated luminosity is
estimated to be 5.9 fb−1, with a relative uncertainty of 3.6%. Details on how the
luminosity is calculated can be found in [111,112]; the uncertainties on the estimated
luminosities are different because different methods have been used.

5.2.2 Monte Carlo samples

Signal samples

For theH → γγ signal studies, Monte Carlo (MC) samples produced with a complete
simulation of the ATLAS detector are used. Two set of samples have been produced,
one at

√
s = 7 TeV and another at

√
s = 8 TeV; they have been produced for several

Higgs boson mass hypotheses from 100 to 150 GeV, every 5 GeV, and separately
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Figure 5.1: Luminosity-weighted distribution of the mean number of interactions per bunch crossing for the 2011
and 2012 data [71]. This shows the full 2011 run and 2012 data taken between April 4th and June 18th. The
integrated luminosities recorded by ATLAS and the mean mu values are given in the figure. Details about how the
mean number of interactions per crossing is calculated can be found in [71,111].

for the five Higgs boson production modes at the LHC: gluon fusion, vector boson
fusion, and the associated production modes with the W and Z vector bosons and
with top quarks. For the leading production mode represented by the gluon fusion,
about hundred thousand events have been generated per sample, and for the other
modes about thirty thousand events, corresponding to integrated luminosities of
more than hundred times the one in the data samples.

The MC samples corresponding to the Higgs boson production via gluon fu-
sion and vector boson fusion have been generated at next-to-leading order (NLO)
with POWHEG [113, 114], interfaced with PYTHIA [83, 84] for the showering and
hadronization processes. The samples for the associated production modes have been
generated with PYTHIA. Whenever PYTHIA is used, the version PYTHIA6 [83] is
used for the

√
s = 7 TeV samples, and PYTHIA8 [84] for the

√
s = 8 TeV.

The samples have been normalized according to the production cross-sections
from high order calculations, quoted in Chapter 1, Section 1.3.

For the gluon fusion samples at
√
s = 7 TeV, event weights are applied to match

the Higgs boson transverse momentum distribution obtained from high order calcu-
lations [38]. While for the 8 TeV sample, it was taken into account directly during
the sample generation with POWHEG.

Event weights are also assigned in the gluon fusion samples to correct for the
destructive interference between the gg → γγ and gg → H → γγ processes [115].
These corrections range between −2% and −5%, depending on the diphoton invari-
ant mass.

Background samples

Some background Monte Carlo samples with complete simulation of the ATLAS
detector have been used for cross-checks, but not for extracting information that
affects the final results. Prompt diphoton γγ samples have been generated with
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SHERPA [116], and samples of the associated production of prompt photons with
jets γj have been generated with ALPGEN [117].

In order to test the parametrization used for the background diphoton mass dis-
tribution, three generator level MC samples have been used; these samples have
been used only for an estimation of the systematic uncertainties assigned to the
parametrization. For these samples, a very high number of events have been gen-
erated, so that the statistical fluctuations are negligible. The γγ component of the
background, which is the main component, has been produced with three MC gener-
ators with high order calculations, RESBOS [118], DIPHOX [119], and SHERPA [116];
while a common sample of the reducible background has been used for the three sam-
ples. The name of the generator used for the γγ component is used to refer to each
of the three MC samples below. The γj and jj components have been generated
with SHERPA and PYTHIA6 [83] respectively. The Drell-Yan component has been
added following the shape extracted from the data, from the reconstructed Z → ee
peak. The different background components have been combined according to the
data-driven estimated fractional composition of the data sample, reported in Sec-
tion 5.4, and each full composite MC sample has been normalized to the number of
events found in the data sample.

Since a very large number of events is required to avoid statistical fluctuations,
the MC generation level output has been used without full simulation of the detector,
but detector effects that may affect the mass distribution have been taken into
account:

• The photon identification efficiency as a function of the photon transverse
momentum has been introduced through event weights.

• In the preparation of the PYTHIA and SHERPA samples, the photon en-
ergy has been smeared to take into account the detector resolution, and for
each photon a conversion status has been assigned randomly, according to the
expected conversion fractions for the different detector regions.

• In the case of the γj and jj samples, event weights have been assigned to take
into account the jet rejection as a function of the jet transverse momentum.

5.2.3 Diphoton event selection

An explanation of the photon reconstruction and the requirements applied in the
photon selection used for this analysis have been given in Chapter 3.

The selection of diphoton events starts at the trigger level. For the 7 TeV col-
lisions, at the first trigger level, events were required to have at least two electro-
magnetic clusters with transverse energy ET > 12 GeV or ET > 14 GeV, according
to the data-taking period. Additionally, at the higher trigger levels, events were
required to have at least two photons satisfying the loose identification criteria and
with ET > 20 GeV.

For the 8 TeV collisions, a similar trigger selection is used, but the transverse
energy thresholds were increased. It was done to reduce the event rate at the high
luminosity conditions during 2012. At the first trigger level, the electromagnetic
cluster leading on transverse energy is required to have at least 16 GeV, and the
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sub-leading one at least 12 GeV. At the higher levels, the leading and sub-leading
photon ET thresholds are 35 and 25 GeV respectively.

For the offline selection, events are required to have at least two reconstructed
photons, with each photon satisfying the following requirements:

• |η| < 1.37 or 1.52 < |η| < 2.37. The excluded regions 1.37 < |η| < 1.52
correspond to the transition between the barrel and the end-caps of the elec-
tromagnetic calorimeter.

• Object quality criteria. The photon candidates reconstructed in problematic
regions of the detector are not considered.

• Calorimeter-based identification (ID) criteria. The neural-network based se-
lection is used for the 7 TeV sample, while the cut-based tight criteria are used
for the 8 TeV sample.

• The isolation transverse energy is required to be Eisol
T < 4 GeV.

• The photon leading on transverse energy is required to have Eγ1
T > 40 GeV,

and the sub-leading one Eγ2
T > 30 GeV.

The different thresholds used in this selection, on the photon transverse energy,
for the photon identification and for the isolation criterion, have been optimized
to provide the best compromise between sensitivity and robustness of the analysis.
Details about how the analysis sensitivity is evaluated have been given in Chapter 4.

The use of the neural-network for the photon ID requires a detailed study of the
distributions used as input. The different pileup conditions in 2012 make necessary
an update of previous studies with the recent 8 TeV sample. It is currently in
progress, and that is why for the moment the simpler cut-based selection has been
used for the 8 TeV sample.

Then, the diphoton invariant mass mγγ is computed as described in Section 5.2.5,
and only events with mγγ between 100 and 160 GeV are considered for the analysis.
After the whole event selection, 23788 diphoton candidates have been found in the
7 TeV sample in this mass range, whereas 35251 candidates were selected in the
8 TeV sample.

Figures 5.2, 5.3, 5.4 and 5.5 display four of the selected diphoton candidate
events. The green region represents the electromagnetic calorimeter, and the energy
deposited by the photons is represented by yellow clusters in this region. In the
first event, Figure 5.2, one of the photons have been reconstructed as a converted
photon. The panel on the middle right side shows a close-up view of this photon,
where the electron-positron pair tracks are visible. In the event shown in Figure 5.3,
the detector looks quite busy because of the multiple interaction pileup. Figures 5.4
and 5.5 show events where jets have been also reconstructed, and in the event on
Figure 5.4 the diphoton-system has high transverse momentum. These are features
that are used to classify the events into different categories in order to increase the
sensitivity for the observation of a signal; it is discussed in details in Section 5.5.
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Figure 5.2: Diphoton candidate event from the
√
s = 7 TeV collisions. The sub-leading photon has been recon-

structed as a converted photon. The green region represents the electromagnetic calorimeter, and the two yellow
clusters in that region correspond to the energy deposited by the photons. The panel on the middle right side shows
a close-up view of the converted photon, where the electron-positron pair tracks are visible. The conversion radius
is estimated to be 8.1 cm. Here are the values for some important parameters of this photon pair: Eγ1

T = 66.8 GeV,

ηγ1 = −0.27, Eγ2
T = 56.9 GeV, ηγ2 = −0.67, mγγ = 125.8 GeV, pγγT = 10.4 GeV and pTt = 3.1 GeV (pTt is

defined in Section 5.5.2). Only tracks with transverse momentum above one GeV and with hits in all the tracking
sub-sections, satisfying some quality requirements, are shown.
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Figure 5.3: Diphoton candidate event from the
√
s = 8 TeV collisions. In this event, the detector looks quite

busy because of the multiple interaction pileup. The green region represents the electromagnetic calorimeter, and
the two yellow clusters in that region correspond to the energy deposited by the photons. Here are the values
for some important parameters of this photon pair: Eγ1

T = 62.2 GeV, ηγ1 = 0.39, Eγ2
T = 55.5 GeV, ηγ2 = 1.18,

mγγ = 126.9 GeV, pγγT = 9.3 GeV and pTt = 6.5 GeV (pTt is defined in Section 5.5.2). Only tracks with transverse
momentum above one GeV and with hits in all the tracking sub-sections, satisfying some quality requirements, are
shown.
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Figure 5.4: Diphoton candidate event from the
√
s = 8 TeV collisions. In this event, the diphoton-system have high

transverse momentum, and one jet has been also reconstructed. The green region represents the electromagnetic
calorimeter, and the two yellow clusters on the left side in that region correspond to the energy deposited by the
photons. The jet is indicated by the red transparent semi-circle. Here are the values for some important parameters
of this photon pair: Eγ1

T = 63.0 GeV, ηγ1 = 0.50, Eγ2
T = 56.1 GeV, ηγ2 = −0.96, mγγ = 127.0 GeV, pγγT = 83.9 GeV

and pTt = 83.3 GeV (pTt is defined in Section 5.5.2). The jet has EjT = 113 GeV and ηj = −0.9. Only tracks
with transverse momentum above one GeV and with hits in all the tracking sub-sections, satisfying some quality
requirements, are shown.
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Figure 5.5: Diphoton candidate event from the
√
s = 8 TeV collisions. In this event, two jets have been recon-

structed in the forward region, like what is expected for a typical Higgs boson event in the vector-boson fusion
(VBF) production mode (the experimental signature of the Higgs boson VBF events is discussed in Section 5.5.3).
The jets are indicated by the transparent semi-circles, in red and gray color. Here are the values for some important
parameters of this photon pair: Eγ1

T = 80.1 GeV, ηγ1 = 1.01, Eγ2
T = 36.2 GeV, ηγ2 = −0.17, mγγ = 126.9 GeV,

pγγT = 44.3 GeV and pTt = 6.2 GeV (pTt is defined in Section 5.5.2). And here are the values for some parameters

corresponding to the jets: Ej1T = 120 GeV, ηj1 = −2.9, Ej2T = 81 GeV, ηj2 = 2.7 and mjj = 1.6 TeV. The difference
∆φ between the diphoton system and the two-jets system is 2.9. Only tracks with transverse momentum above one
GeV and with hits in all the tracking sub-sections, satisfying some quality requirements, are shown.
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5.2.4 Selection of the primary vertex

While in an event with prompt leptons the lepton tracks point explicitly to its
corresponding primary vertex (PV), in a diphoton event, since there is no always
track associated to the photons, it is not obvious which of the multiple reconstructed
primary vertices corresponds to the photon pair. The PV identification is relevant for
two aspects of the analysis: for a precise estimation of the photon pseudorapidity η
which is an input for the diphoton invariant mass computation, and for a selection
of jets associated to the diphoton system.

The η measurement given by the photon cluster barycenter in the calorimeter
would correspond to the photon direction of flight if the photon were originated at
the geometrical center of the detector. Nevertheless, the position of the proton-
proton interactions in ATLAS in the longitudinal z-axis is dispersed with a RMS
of about 50 mm, which imply an imprecision on the measured η direction of pho-
tons; in fact, the resolution on the photon pseudorapidity η is dominated by the
determination of the PV z-position.

A selection of diphoton events with jets is done to separate signal candidates
from production modes generating jets in the final state. The selection of these
events is presented in Section 5.5.3. In order to avoid considering jets from pileup
events, the jet selection includes a requirement based on the tracks associated to
both the jet under study and the selected primary vertex. The identification of the
primary vertex is also relevant if a tracking isolation criterion is used in the photon
selection, to consider only tracks from the selected PV to avoid pileup effects, as is
now done in the ATLAS H → γγ analysis [21].

An estimation of the PV z-position can be extracted from each photon candidate.
The electromagnetic cluster barycenter measured at the first layer of the calorimeter
is combined with the cluster barycenter in the second layer by fitting an straight-line
in the R-z plane; the interception of this line with the ATLAS beam axis provides
an estimation of the PV z-position zγ, with an associated uncertainty σzγ [90]. In
the case of early converted photons with measurements in the silicon tracker, the
coordinates of the conversion vertex are also considered in the fit of the straight-line,
which provides a precise measurement of the PV z-position.

Figure 5.6 shows the distribution of the difference ∆z between the two zγ mea-
surements provided by unconverted photons in diphoton events, with both photons
reconstructed in the calorimeter barrel. The figure shows a comparison of the dis-
tributions obtained with Monte Carlo simulation and with data collected in 2011,
in two periods with different beam and pileup conditions [20]. A good agreement
between the different distributions is observed.

The two z estimations zγ1 and zγ2 from the two photons in the event are com-
bined, considering also the distribution of reconstructed primary vertices in the z
direction. It is done computing a weighted average, taking into account the corre-
sponding estimation uncertainties σzγ1 and σzγ2 , and the RMS of the distribution of
primary vertexes in the z direction, which is about 5.5 cm. It yields a common value
zγγ with uncertainty σzγγ. Then, this z estimation is used together with information
of the various primary vertices reconstructed in the event in order to choose one of
them.

For each reconstructed primary vertex, the sum of pT
2 of all the tracks associated

to it is computed. This sum tends to be higher for the hard-scattering vertices

94



5.2. Samples

 [mm]CaloPointing z∆
-150 -100 -50 0 50 100 150

E
nt

rie
s 

/ 1
0 

m
m

 (
no

rm
al

iz
ed

)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 *=1.5 m)βData 2011 (
*=1.0 m)βData 2011 (

)γγMC (

ATLAS Preliminary
-1

 Ldt = 4.9 fb∫ = 7 TeV, s

2 unconverted photons
|<1.37η|

Figure 5.6: Distribution of the difference ∆z between the two zγ measurements provided by unconverted photons
in diphoton events, with both photons reconstructed in the calorimeter barrel. It shows a comparison of the
distributions obtained with Monte Carlo simulation and with data collected in 2011, in two periods with different
beam and pileup conditions [20].

corresponding to the diphoton system than for the rest of overlapping vertices mostly
from soft interactions. For this discriminant variable, a probability density function
(pdf) for pileup vertices is extracted from collision events selected randomly during
the data acquisition, without any trigger-level requirement; these events are usually
called minimum bias events. A pdf for the hard-scattering vertices is also extracted
from the data, considering some Monte Carlo information and using the kernel
estimation technique from [120].

A likelihood function is built for the reconstructed primary vertices, as a function
of the PV z-position and of the sum of associated track squared pT. It is done
based on the per event z estimation from the photon pair information (zγγ) and the
corresponding uncertainty σzγγ, and the pdf’s extracted for the second variable, as
follows:

L(z,∑ pT
2; zγγ , σzγγ

)
= L(∑ pT

2
) · L(z; zγγ , σzγγ)

=
Phard

scat

(∑
pT

2
)

Pmin
bias

(∑
pT

2
) · exp

(
−(z − zγγ)2

2σzγγ2

)
;

(5.1)

where the first term gives the probability for a given PV to correspond to a hard-
scattering process, and the second term gives the probability for that PV to corre-
spond to the reconstructed photon pair. Then, the primary vertex with the highest
likelihood value in the event is selected.

The performance obtained using the alternative methods for the primary vertex
selection are shown in Figure 5.7. The left side figure shows the selection efficiency
as a function of the number of primary vertexes reconstructed per event, for signal
events. For the efficiency evaluation, the selection is considered effective if the
distance between the reconstructed PV selected and the Monte Carlo true PV is
less than 0.2 mm. The blue points correspond to the efficiency obtained with the
nominal selection method based on the likelihood function, and the black points
correspond to the one obtained considering only the sum of track pT squared.

The right side figure shows the diphoton invariant mass distributions expected
for signal events. The green distribution corresponds to the ideal case, considering
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Figure 5.7: Comparisons of the performance obtained using alternative methods for the primary vertex (PV)
selection described in the text. The left side figure shows the efficiency of the selection as a function of the
number of primary vertexes reconstructed per event, on signal events. For this efficiency evaluation, the selection
is considered right if the distance between the reconstructed PV selected and the Monte Carlo true PV is less than
0.2 mm. The figure on the right side shows the diphoton invariant mass distribution expected for signal events.
The green distribution corresponds to the ideal case, considering in the mass calculation the true position of the
Higgs boson primary vertex, and the red, pink and blue distributions are obtained with different estimations of the
PV z-position. Both figures were obtained from

√
s = 8 TeV Monte Carlo samples for a 125 GeV Higgs boson; the

figure on the left side only includes the events produced via gluon fusion and vector boson fusion.

in the mass calculation the true position of the Higgs boson primary vertex. The
red, pink and blue distributions correspond to z estimations considering the sum of
track squared pT only, the two photon pointing information only, and the nominal
z estimation from the likelihood function, respectively. One can see that the result
obtained with the likelihood function is the very effective and is close to the ideal
case, but if only the photon pointing information were used the result would be
similarly good.

5.2.5 Diphoton invariant mass

The diphoton invariant mass mγγ is computed from the photon parameters, ener-
gies Ei, pseudorapidities ηi and φi directions, as follows

mγγ =

√
2E1E2

[cosh(η1 − η2)− cos(φ1 − φ2)]

cosh η1 cosh η2

(5.2)

The reconstruction of these parameters has been discussed in Chapter 3.
For this calculation, the pseudorapidity η of the photons is estimated considering

the position of the photon cluster in the first layer of the EM calorimeter, and the
z position of the selected primary vertex.

The mass distributions of the data samples are shown in Figure 5.8. It is shown
on the top part for each data sample separately, on the left side for the 7 TeV sample
and on the right side for the 8 TeV sample, and on the bottom part combining both
samples. The overlaid solid red line present the background-only model fitted to the
data, and the dashed line shows the expected H → γγ signal for a Standard Model
Higgs boson of mass 126.5 GeV. The bottom inset displays the data residuals after
subtracting the background model. The background model presented here consists
of the sum of various background models fitted to separated data categories (the
data categorization is discussed in Section 5.5, and details on the data modeling are
discussed in Section 5.6).
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Figure 5.8: Diphoton invariant mass distribution, on the top part for each data sample separately, on the left side
for the 7 TeV sample and on the right side for the 8 TeV sample, and on the bottom part combining both samples.
The overlaid solid red line present the background-only model fitted to the data, and the dashed line shows the
expected H → γγ signal for a Higgs boson of mass 126.5 GeV. The bottom inset displays the data residuals after
subtracting the background model. The background model presented here consist of the sum of various background
models fitted to separated data categories (the data categorization is discussed in Section 5.5, and details on the
data modeling are discussed in Section 5.6).
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5.3 Expected signal

5.3.1 Signal mass distribution

The diphoton invariant mass distribution expected in this analysis for the signal of
a Higgs boson of mass 125 GeV is shown in the right side of Figure 5.7, in blue color,
for the

√
s = 8 TeV sample conditions. The expected full width at half maximum

(FWHM) of the peak is about 3.9 GeV. Figure 5.9 presents the expected mass
distribution under different pileup conditions, specifically for different values of the
mean number of interactions per bunch crossing. It shows the robustness of the
mass resolution against the pileup effects.

This mass distribution is completely driven by the detector resolution; compared
with this distribution, the intrinsicH → γγ mass distribution is almost a Dirac peak,
for it has a width of a few MeV at the low mass range [24].

The parametrization of the reconstructed photon energy resolution has a Gaus-
sian core and a non-gaussian tail toward low mass, which arises mostly from con-
verted photons that have lost a significant fraction of energy in the inner detector
material.

The following list presents the various sources of systematic uncertainties on the
expected diphoton mass resolution:

• Calorimeter energy resolution: The energy resolution of the electromag-
netic calorimeter is discussed in Chapter 2, Section 2.5.1; the main uncertainty
on the energy resolution for the energy range of interest in this analysis is
the uncertainty on the constant term. Varying the constant term within its
uncertainties, the effect on the diphoton invariant mass resolution has been
estimated to be of about 12%.

• Electron to photon extrapolation of the calibration: The photon energy
calibration based on an extrapolation of the electron calibration with Z → ee
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data events is described in Chapter 3, Section 3.3. The differences in the
calorimeter response to electrons and photons are assumed to be dominated
by the effects of the upstream material. A study has been done performing
the electron calibration procedure on Z → ee Monte Carlo samples, and ap-
plying this calibration to photons on H → γγ samples, with both sample sets
generated with additional upstream material on detector simulation. Then,
an uncertainty of 6% has been assigned to the mass resolution based on this
study.

• Pileup effects: In order to evaluate the impact of an imperfect simulation of
the pileup when generating the Monte Carlo samples, the MC samples have
been split in two sample sets with low and high pileup conditions, according
to the mean number of interactions per bunch crossing. The pileup effects
have been studied by comparing the mass resolution in both samples. An
uncertainty of 3% has been assigned due to these effects.

• Primary vertex selection: A mis-modeling of the information used for the
selection of the primary vertex would have an impact on the mass resolution.
These effects have been studied considering small differences observed between
the data and the MC samples. The effect on the mass resolution is found to
be smaller than 0.2% and is neglected.

The combination of all these uncertainties makes a total systematic uncertainty
of 14% on the width of the signal peak.

5.3.2 Uncertainty on the signal peak position

The calibration of the photon energy scale has been discussed in Chapter 3, Sec-
tion 3.3.

Three factors have been found to induce significant uncertainties on the photon
energy scale, and therefore on the diphoton invariant mass scale. These are the
amount of material in front of the calorimeter, the calorimeter pre-sampler energy
scale and the method used for the in-situ calibration. As mentioned above, a differ-
ence on the amount of material expected to be in front of the calorimeter affects the
electron to photon extrapolation of the calibration. These effects have been consid-
ered separated for photons with |η| < 1.8 and |η| > 1.8, which correspond to the
regions covered and not covered by the calorimeter pre-sampler. The uncertainty on
the pre-sampler energy scale is of about 5% in the barrel and 10% in the end-caps.

The total uncertainty on the diphoton mass scale and therefore on the signal
peak position is estimated to be 0.6%.

5.3.3 Signal efficiency and yields

The H → γγ event selection efficiencies and the number of events expected for the
data integrated luminosities are quoted in Table 5.1, as obtained from the various
Monte Carlo samples at 7 and 8 TeV. These values are quoted for various Higgs
boson mass hypotheses, separately for the different Higgs boson production modes.
For a 125 GeV Standard Model Higgs boson, about 81 and 114 events are expected
in the 7 and 8 TeV diphoton samples respectively.
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Table 5.1: H → γγ event selection efficiencies and the number of events expected for 4.8 fb−1 of proton collisions
at
√
s = 7 TeV, and 5.9 fb−1 at

√
s = 8 TeV, as obtained from the various Monte Carlo samples. These values are

quoted for various Higgs boson mass hypothesis, separately for the different Higgs boson production modes.

ggF VBF WH ZH ttH Total√
s mH [GeV] ε[%] Nevt ε[%] Nevt ε[%] Nevt ε[%] Nevt ε[%] Nevt Nevt

7 TeV 110 37.3 71.7 37.9 5.2 33.5 2.8 33.5 1.5 33.7 0.4 81.6
115 39.5 73.8 40.1 5.5 34.9 2.8 35.5 1.5 34.9 0.3 83.9
120 40.9 73.5 42.1 5.8 37.0 2.6 36.9 1.4 35.9 0.3 83.6
125 42.0 70.9 43.8 5.8 38.1 2.4 38.4 1.3 37.2 0.3 80.7
130 43.1 66.3 44.8 5.7 39.3 2.1 39.9 1.2 37.8 0.3 75.6
135 44.6 59.8 46.9 5.3 40.7 1.8 40.8 1.0 38.7 0.2 68.1
140 45.2 51.7 48.7 4.8 41.8 1.5 42.3 0.9 39.5 0.2 59.1
145 45.8 42.3 49.8 4.1 42.5 1.2 43.6 0.7 40.5 0.2 48.5
150 45.8 31.6 49.7 3.1 44.1 0.9 44.7 0.5 40.7 0.1 36.2

8 TeV 110 33.8 100.6 34.5 7.4 29.9 3.7 29.5 2.1 27.3 0.6 114.4
115 35.6 103.8 36.2 7.9 30.6 3.6 32.5 2.1 27.9 0.6 118.0
120 37.2 103.6 38.1 8.2 32.7 3.4 32.9 2.0 29.4 0.6 117.8
125 38.3 100.3 39.6 8.3 33.9 3.2 34.2 1.8 29.7 0.5 114.1
130 39.1 94.1 41.2 8.0 35.1 2.8 35.9 1.6 31.1 0.5 107.0
135 40.4 85.3 42.4 7.6 35.7 2.4 36.6 1.4 32.2 0.4 97.1
140 41.1 74.0 43.0 6.8 37.0 2.0 36.8 1.2 32.4 0.3 84.3
145 41.6 60.6 43.7 5.8 38.0 1.6 38.5 0.9 33.6 0.3 69.2
150 41.7 45.3 44.8 4.4 38.2 1.1 39.2 0.7 34.0 0.2 51.7

The factors inducing uncertainties on the event selection efficiency are the fol-
lowing:

• Uncertainty on the photon identification efficiency: This uncertainty
has been evaluated separately for the 7 and 8 TeV samples, for which the
neural-network based and cut-based photon selections are used respectively.
It was done based on the comparison of the photon efficiency obtained using
Monte Carlo and various data-driven measurements. The data-driven estima-
tions were done using photons from Z → eeγ, electrons from Z → ee, and a
sideband technique (see Chapter 3, Section 3.4). Then, the uncertainty on the
diphoton efficiency is computed treating the uncertainties on the two photons
as fully correlated. It has been found to be 8% for the 7 TeV sample and 11%
for the 8 TeV sample.

• Pileup effects on the photon reconstruction and identification: This
uncertainty has been evaluated following a similar procedure to the one used to
evaluate the pileup induced uncertainty on the mass resolution (Section 5.3.1).
This study has been done independently for 7 and 8 TeV samples, obtaining
similar results. An uncertainty of 4% is taken into account to consider these
effects.

• Trigger efficiency: The trigger efficiency has been estimated using Monte
Carlo simulations and two data-driven approaches, a bootstrap method [121]
where another trigger configuration with lower threshold is used, and with pho-
tons from Z → eeγ events. The agreement between the data-driven methods
is at the level of 1%. Thus, a systematic uncertainty of 1% has been assigned
to the trigger efficiency.

• The photon isolation energy simulation: It implies an uncertainty on
the efficiency of the isolation requirement. For the 7 TeV sample it has been
estimated to be 0.4%, and 0.5% for the 8 TeV sample. These uncertainties
correspond to the differences observed between Monte Carlo and data samples
of Z → ee events. Specifically, a shift of ∼100 MeV is observed between
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5.4. Background composition

the isolation energy distribution from the two samples. This uncertainty is
negligible compared with the previous ones.

• Photon energy scale uncertainty: It entails an uncertainty of 0.3% on
the event selection efficiency, because of the kinematic transverse energy re-
quirement on the photon selection. It is negligible compared with the previous
uncertainties.

The theoretical uncertainties of the SM Higgs boson production cross section for
the different production processes are quoted in Table 5.7 (page 118) [29, 30]. The
uncertainties related to the parton distribution functions are estimated following the
prescription given in [122] and by using the PDF sets of CTEQ [123], MSTW [124]
and NNPDF [125]. They are assumed to be fully correlated among processes with
identical initial states.

The uncertainty on the Higgs boson decay branching ratio to two photons is
5% [126].

As quoted above, the uncertainties on the integrated luminosity are 1.8% for the
7 TeV sample, and 3.6% for the 8 TeV sample.

5.4 Background composition

As mentioned above, four kind of processes contribute to the background, γγ, γj,
jj and Drell-Yan ee processes. Using different methods and considering mainly
information from the data, the background fractions corresponding to each of these
components have been extracted. The methods used in this analysis have been also
used in the measurements of diphoton production cross-section done by ATLAS [12,
57], and some of these methods are extensions of methods used in the measurements
of the single photon production cross-section by ATLAS [10,11]. A brief description
of two of these methods is provided here, while further details can be found in the
documents reporting those measurements, and a description of a third decomposition
method can be found in [12].

The estimated background composition is not directly used to extract the final
analysis results, nevertheless this decomposition allows monitoring the performance
of the photons identification, and it is also used for background parametrization
studies.

5.4.1 Decomposition methods

The methods described in this section use the photon identification and isolation
variable distributions of the diphoton candidates. This information is used to dis-
tinguish three background components: γγ, γj and jj; the Drell-Yan background
component is included on the fraction of events assigned by these methods to the
γγ component, because the variables used do not discriminate between electrons
and photons. The data considered correspond to a sample larger than the nominal
one, for which the isolation cut is not applied, and some of the photon identification
criteria are relaxed.
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Figure 5.10: Photon isolation energy distributions for the 7 TeV sample, and projections of the two-dimensional
pdf’s resulting from the fit. It is shown on the left side for the leading photon candidates, and on the right side for
the sub-leading candidates.

One of the methods consists in a template fit of the two-dimensional isolation
energy distribution of the diphoton candidates. Each dimension corresponds to the
isolation energy for one of the photon candidates.

The unidimensional isolation energy distributions for prompt and fake photons
are extracted separately for the leading and sub-leading photons.

A control region rich in fake photons (misidentified jets) is used to extract their
isolation energy distribution. This control region is defined by requiring photons to
fail at least one of the tight cuts applied on four identification variables (wS3, Fside,
∆E, Eratio; they are defined in Chapter 3, Section 3.4). These four variables have
been chosen for having very low correlation with the photon isolation energy. This
control region is referred to as the non-tight region.

The isolation energy distribution of prompt photons is obtained from the distri-
bution of photon candidates that satisfy the identification criteria in the following
way: the fake photon distribution is normalized to match the distribution of can-
didates satisfying the identification criteria in the high isolation energy tail, above
7 GeV; this tail is dominated by fake photons; then the normalized fake photon
distribution is subtracted from the distribution of photon candidates, and the result
of the subtraction is taken as template for the prompt photons.

After extracting the probability density functions (pdf) for prompt photons and
fake photons (jets), four two-dimensional pdf’s are built, one for each background
component, γγ, γj, jγ and jj. Where the γj background have been decomposed in
two, γj and jγ, making the distinction of which photon candidate is the fake photon,
the leading photon candidate or the sub-leading one. Then, the sum of the four pdf’s
is fitted to the diphoton sample giving as result the background composition.

Figure 5.10 shows the photon isolation energy distributions for the 7 TeV sample,
and projections of the two-dimensional pdf’s resulting from the fit. It is shown on
the left side for the leading photon candidates, and on the right side for the sub-
leading candidates. The black line correspond to the sum of the four pdf’s, and the
solid red line shows the estimated γγ component.

Another method uses the number of diphoton candidates observed in control
sidebands to estimate the amount of γj and jj events in the signal region. The
photon signal region is the one defined by the nominal photon selection, where events
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Table 5.2: Estimated composition of the diphoton candidate samples, as obtained with the 2x2D sidebands method.
A sum in quadrature of statistical and systematic uncertainties is quoted.

√
s γγ γj jj Drell-Yan

7 TeV (78± 4)% (19± 3)% (1.8± 0.5)% (1.4± 0.1)%
8 TeV (75± 3)% (22± 2)% (2.6± 0.5)% (0.7± 0.1)%

are required to be isolated (Eisol
T < 4 GeV) and to satisfy the identification criteria.

Three control regions are defined for fake photons in the following ways: 1) requiring
the photon candidates to be not isolated, 2) requiring the photon candidates to be
in the non-tight sideband and isolated, 3) requiring the photon candidates to be in
the non-tight sideband and not isolated. It makes four different regions for photons
and a total of 16 different regions for diphoton events, distinguishing between the
leading and sub-leading photon candidates. After some simplifying assumptions, the
composition of events in the signal region is estimated using the number of events in
7 of the 16 regions and solving a system of linear equations. This method is called
2x2D sidebands because it uses two criteria for defining sidebands, the isolation and
identification criteria, and it is done twice; one set of sidebands is defined for each
photon candidate.

5.4.2 Drell Yan Background

The source for this background is the Drell-Yan process pp→ e+e−. It results from
the eventual mis-reconstruction of the electron tracks. The tail of the Z resonance,
which is just aside the invariant mass regions of interest, requires to take attention
to this background. It is estimated by computing the electron-to-photon misidenti-
fication rate, and then it is used to extrapolate the background from the number of
Z → ee events reconstructed as di-electrons.

The misidentification rate is estimated using the number of Z → ee events
reconstructed as electron-photon pairs, and the ones reconstructed as di-electrons,
in the invariant mass range 80 - 100 GeV. The misidentification rate has been found
to be about 8%.

5.4.3 Background composition results

The fraction of events obtained for each background component are listed in Ta-
ble 5.2, separately for the 7 and 8 TeV samples. These results where obtained with
the 2x2D sidebands method. The other methods have yielded results compatibles
with these ones. The diphoton purity of the samples has been estimated to be
(78± 4)% for the 7 TeV sample, and (75± 3)% for the 8 TeV sample.

The fraction of Drell-Yan background is lower for the 8 TeV sample than for the
7 TeV sample. It is expected because of the improvements made on the algorithm
of converted photon reconstruction, used for the moment uniquely for the 8 TeV
sample (see Section 3.1 on Chapter 3).

The background decomposition has been also performed in bins of mγγ. The
results obtained are shown in Figure 5.11, on the left side for the 7 TeV sample
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Figure 5.11: Estimated composition of the diphoton candidate samples as a function of the invariant mass, on the
left side for the 7 TeV sample and on the right side for the 8 TeV sample. These results where obtained with the
2x2D sidebands method. The small contribution from the Drell-Yan background is included shown together with
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and on the right side for the 8 TeV sample. In this figure, the small contribution
from the Drell-Yan background is included in the γγ component. Then, Figure 5.12
shows the estimated Drell-Yan background as a function of the mass mγγ, for the
8 TeV sample. In the region from 100 to 160 GeV, this background component is
mainly concentrated in the low mass part.

5.5 Event categorization

In order to increase the sensitivity to observe a SM-like Higgs boson, the events are
separated according to different criteria in ten categories, resulting in event sub-
samples with different signal-to-background ratios. The criteria considered for this
categorization are:

• the conversion status and η direction of the photons, for the resolution on the
photon energy measurement depends on them;

• a discriminant variable related to the diphoton transverse momentum pγγT ,
which exploits kinematic differences between the signal and the background;
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• and a 2-jet based selection, optimized to collect signal events produced by
vector-boson fusion.

Each of the two data samples is separated in the ten categories, making a total
of twenty event sub-samples.

Then, for the statistical analysis, signal and background pdf’s (probability den-
sity function) are defined for each category. They are fitted all simultaneously
keeping a common signal strength parameter µ.

5.5.1 Categorization according to the photon conversion
status and η direction

The photon energy resolution depends on the conversion status and η direction
of the photons. In Chapter 3, Figure 3.4 shows the energy resolution separately for
converted and unconverted photons, as a function of η. This figure shows also the
fraction of photons with energy badly measured. The energy is better reconstructed
for the unconverted photons than for the converted ones. In the central part of the
EM calorimeter barrel, low η, the photon energy is better measured than in the rest
of the calorimeter. And in the region near the transition between the barrel and the
end-caps, the energy is not very well measured.

Therefore, separating the events according to the photon conversion status and η
yields categories with different resolutions on the diphoton invariant mass. It means
that some categories will have a thinner signal peak, and therefore a better signal-
to-background ratio, than others.

Five event categories have been defined based on this energy resolution depen-
dency. They are defined as follows:
• Unconverted central: For events with both photons reconstructed as uncon-

verted, and both of them in the central part of the calorimeter barrel, specifi-
cally in the region |η| < 0.75.

• Unconverted rest: For events with both photons reconstructed as unconverted,
and not satisfying the η requirements to be in the category unconverted central.

• Converted central: For events with at least one photon reconstructed as con-
verted, and both photons in the central part of the calorimeter barrel (|η| <
0.75).

• Converted transition: For events with at least one photon reconstructed as
converted, and at least one photon near to the transition between the barrel
and the end-caps of the calorimeter, specifically in the region 1.3 > |η| > 1.75.

• Converted rest: For events with at least one photon reconstructed as converted,
and not satisfying the η requirements to be either in the category converted
central or converted transition.

The category unconverted central has the best resolution, while the category con-
verted transition has the widest peak.

The introduction of these five categories in the analysis improve the expected
sensitivity by about 15%. In spite of being the mass resolution the main motivation
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for this event classification, part of this gain is also due to kinematic differences
between the signal and the background; they are distributed differently among the
defined η bins.

5.5.2 Categorization based on the pγγTt discriminant variable

For the Higgs boson production modes vector-boson fusion (VBF), and associated
production with vector-bosons or top quarks (V H or tt̄H), the Higgs boson trans-
verse momentum is expected to be typically larger than for the production via
gluon fusion (ggF). It is also expected to be typically larger than the diphoton sys-
tem transverse momentum in the background processes. Therefore, the transverse
momentum of the diphoton system pγγT can be used as a discriminant variable for
these events.

There is a way to decompose ~p γγT in two orthogonal components which has been
found to be convenient to use [127, 128] because one of this components is almost
insensitive to the experimental momentum resolution of the individual photons [128].
This decomposition is illustrated in the following figure:
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Figure 5.13: Decomposition of ~p γγT .

The transverse momentum of the diphoton system ~p γγT is defined as usually,

~p γγT = ~p γ1

T + ~p γ2

T . (5.3)

The t̂ axis is defined in the direction of the vectorial difference between the two
photons’ transverse momentum,

t̂ =
~p γ1

T − ~p γ2

T

|~p γ1

T − ~p γ2

T |
. (5.4)

Then, ~p γγT can be decomposed in two, the component parallel to the t̂ axis ~p γγTl , and
the one perpendicular to the t̂ axis ~p γγTt ,

~p γγTl = (~p γγT · t̂) · t̂, (5.5)

~p γγTt = ~p γγT − (~p γγT · t̂) · t̂. (5.6)

The transverse component pγγTt is the one that is almost insensitive to the photon
momentum resolution, and it continue being a discriminant variable between the
different processes as pγγT . Figure 5.14 shows the pγγTt distribution for signal events
produced via gluon fusion in blue and for the rest of production modes in red, and
the distribution for the γγ and γj background events in green, as obtained from
Monte Carlo samples.
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In this analysis, events are separated according to the pγγTt values, as low pTt

events those with pTt < 60 GeV and high pTt events those with pTt > 60 GeV. Four
out of the five categories presented in the previous section are split in two in this
way, resulting in nine categories. The converted transition category which is the one
with bad mass resolution is not split.

In the resulting categories, the signal-to-background ratio for the high pTt cate-
gories is larger than for the low pTt categories.

This pTt based categorization increases the sensitivity to observe a SM Higgs
boson by about 6%.

5.5.3 2-jet category

In the signal events produced via vector boson fusion (VBF), the Higgs boson is
accompanied by two quarks in the final state (see the diagram in Figure 1.5, Chap-
ter 1), experimentally two jets 1. These two jets arrive typically in the forward
region of the detector, large η region, and represent a discriminant signature of
these events. The VBF process is the second leading in the production of the Higgs
boson at the LHC, and accounts for about 8% of the production for a 125 GeV Higgs
boson at

√
s = 8 TeV. In this analysis, a selection is defined to collect events with

this topology, and they are separated in an additional category. The introduction of
this category in the analysis provides an improvement of about 3% on the sensitivity
to observe a SM Higgs boson, and also allows studying the production mechanism
if a signal is observed.

The jets are reconstructed from topological clusters of energy deposits in the
calorimeters. The reconstruction is done using the anti-kt algorithm [129], with

1 Jets are the product of quark or gluon hadronization and subsequent decays of unstable
hadronic particles, or the hadronic decay of tau-leptons. Jets are a bunch of particles, mainly
hadrons, that arrive collimated in a given region of the detector. The jet direction and energy are
associated with the direction and energy of its originating particle.
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Figure 5.15: Distribution of number of jets per event that pass the jet selection described in the text, for signal
gluon fusion and vector boson fusion events separately, and for the background processes, including γγ and γj,
obtained from Monte Carlo samples. The signal distributions correspond to a Higgs boson of mass 125 GeV. The
data sample distribution is also shown. These distributions correspond to 7 TeV samples.

a radius parameter R = 0.4. The jet energy and direction are calibrated and cor-
rected based on Monte Carlo simulations and in situ studies, in which the transverse
momentum balance between a jet and a reference object are exploited to derive cor-
rection factors. Additionally, corrections are applied based on the number of primary
vertices reconstructed and the average number of interactions per bunch crossing, in
order to minimize the pileup effects. The jet direction is corrected considering the
reconstructed primary vertex with the highest sum of pT

2 of tracks associated to the
jet. Details about the jet reconstruction and calibration can be found in [130–132].

For the 2-jet category, jets are selected requiring:

• |ηj| < 4.5

• pjT > 25 GeV for the 7 TeV sample, and pjT > 30 GeV for the 8 TeV sample
for jets in the region 2.5 < |ηj| < 4.5. This second increased threshold is set
to reduce the contamination with jets from pileup events.

• Object quality criteria.

• For jets in the tracker acceptance region |η| < 2.5, the sum of pT of the tracks
associated to the jet and the selected primary vertex is computed, and it is
required be more than 75% of the total sum of pT of the tracks associated to
the jet; this fractional value is usually called jet-vertex fraction. This is done
to reduce the contamination with jets from pileup events.

• Jets are required not to overlap with the selected photons, requiring the dis-
tance ∆R in the η-φ space with respect to the photons to be higher than
0.4.

Then, the two jets with highest transverse momentum are chosen. Figure 5.15
shows the distribution of the number of jets per event that pass this selection for
signal gluon fusion and VBF events separately, and for the background processes,
including γγ and γj, obtained from Monte Carlo samples; the distribution is also
shown for the data sample. Then, Figure 5.16-a shows the transverse momentum
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b) Event distributions

jj
η∆

-10 -8 -6 -4 -2 0 2 4 6 8 10

E
nt

rie
s 

/ 1
 (

no
rm

al
iz

ed
 to

 u
ni

ty
)

0

0.05

0.1

0.15

0.2

0.25

0.3
2011 Data
γγ
-jetγ

j Uncertaintyγ+γγ
j Uncertaintyγ

=125 GeV
H

ggF m
=125 GeVHVBF m

ATLAS

 = 7 TeVs

-1
 Ldt = 4.8 fb∫

 [GeV] jjm
0 100 200 300 400 500 600 700 800

E
nt

rie
s 

/ 4
0 

G
eV

 (
no

rm
al

iz
ed

 to
 u

ni
ty

)

0

0.05

0.1

0.15

0.2

0.25 2011 Data
γγ
-jetγ

j Uncertaintyγ+γγ
j Uncertaintyγ

=125 GeV
H

ggF m
=125 GeVHVBF m

ATLAS

 = 7 TeVs

-1
 Ldt = 4.8 fb∫

φ∆
0 0.5 1 1.5 2 2.5 3

E
nt

rie
s 

/ 0
.2

25
 (

no
rm

al
iz

ed
 to

 u
ni

ty
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2011 Data
γγ
-jetγ

j Uncertaintyγ+γγ
j Uncertaintyγ

=125 GeV
H

ggF m
=125 GeVHVBF m

ATLAS

 = 7 TeVs

-1
 Ldt = 4.8 fb∫

Figure 5.16: Jet and two-jet event distributions for various variables used in the selection of events with the
topology of signal events produced via vector boson fusion (VBF). The different distributions are shown for signal
gluon fusion and VBF events separately, and for the background processes, including γγ and γj, obtained from
Monte Carlo 7 TeV samples. The signal distributions correspond to a Higgs boson of mass 125 GeV. The data
sample distributions are also shown. On the part (a), the transverse momentum pT and η distributions for the
leading and sub-leading selected jets separately are shown. On the part (b), the distributions correspond to the
following per event variables: the η different between the two jets ∆ηjj , the two-jets invariant mass mjj , and the
azimuthal angle ∆φ between the diphoton system and the two-jets system.
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pT and η distributions for the leading and sub-leading selected jets separately, for
the same samples.

Once the jet selection is done, three additional requirements are applied to the
events, based on three discriminant variables:

• The η difference between the two jets ∆ηjj is required to be larger than 2.8.

• The two-jets invariant mass mjj is required to be larger than 400 GeV.

• The azimuthal angle ∆φ between the diphoton system (vectorial-sum of the
photons’ momentum) and the two-jets system (vectorial-sum of the jets’ mo-
mentum) is required to be larger than 2.6 rad.

The distributions for these event discriminant variables are shown in Figure 5.16-b,
as before for signal gluon fusion and VBF events separately, for the main background
processes from MC, and for the data sample.

The efficiency of this jet based selection to collect signal VBF events has been
found to be 29% in the 7 TeV Monte Carlo samples, and 24% in the 8 TeV MC
samples.

5.5.4 Categorization summary

The photon η-conversion based separation of the events makes five categories, four
of them are split in two according to the pγγTt values resulting in nine categories, and
the 2-jet category makes a total of ten categories.

The number of signal events expected per category for a SM Higgs boson with
mass 126.5 GeV are quoted in Table 5.3, for the data integrated luminosities. Also
for each category, the fractions of events corresponding to each production mode are
given. The fractional contribution from the secondary production modes is higher in
the high pTt categories than in the low pTt categories, and the vector boson fusion is
the main production mode for events in the 2-jet category, contributing with about
70-75% of the events.

Table 5.3: Number of signal events expected per category for a mH = 126.5 GeV Standard Model Higgs boson,
for the data integrated luminosities, and fractional contribution per production mode for each category.

Contribution per prod. mode [%]√
s Category Nevt ggF VBF WH ZH ttH

7 TeV Inclusive 79.4 87.8 7.3 2.9 1.6 0.4
Unconverted central, low pTt 10.5 92.9 4.0 1.8 1.0 0.2
Unconverted central, high pTt 1.5 66.5 15.7 9.9 5.7 2.4
Unconverted rest, low pTt 21.6 92.8 3.9 2.0 1.1 0.2
Unconverted rest, high pTt 2.8 65.4 16.1 10.8 6.0 1.8
Converted central, low pTt 6.7 92.8 4.0 1.9 1.0 0.2
Converted central, high pTt 1.0 66.6 15.3 10.0 5.7 2.5
Converted rest, low pTt 21.1 92.8 3.8 2.0 1.1 0.2
Converted rest, high pTt 2.7 65.3 15.9 11.0 5.9 1.8
Converted transition 9.5 89.4 5.2 3.3 1.7 0.3
2-jet 2.2 22.5 76.7 0.4 0.2 0.1

8 TeV Inclusive 111.9 87.9 7.3 2.7 1.6 0.5
Unconverted central, low pTt 14.2 94.0 4.3 1.7 1.0 0.3
Unconverted central, high pTt 2.5 73.5 14.3 7.0 4.3 2.4
Unconverted rest, low pTt 30.9 93.7 4.2 2.0 1.1 0.2
Unconverted rest, high pTt 5.2 72.9 14.0 7.9 4.7 1.7
Converted central, low pTt 8.9 94.0 4.3 1.7 1.0 0.3
Converted central, high pTt 1.6 73.8 13.6 7.2 4.2 2.3
Converted rest, low pTt 26.9 93.8 4.2 2.0 1.1 0.2
Converted rest, high pTt 4.5 72.1 14.1 8.5 4.8 1.8
Converted transition 12.8 90.1 5.9 3.1 1.8 0.4
2-jet 3.0 30.8 69.3 0.4 0.2 0.2

110



5.5. Event categorization

 [GeV]γγm

105 110 115 120 125 130 135 140 145

 / 
0.

5 
G

eV
γγ

1/
N

 d
N

/d
m

0

0.02

0.04

0.06

0.08

0.1

0.12
ATLAS Simulation Unconverted central

Tt
high p

Converted rest
Tt

low p

γγ→H

 =  125 GeVHm

 = 8 TeV s

FWHM = 3.2 GeV

FWHM = 4.4 GeV

Figure 5.17: Diphoton invariant mass distributions for a SM Higgs boson with mass 125 GeV at
√
s = 8 TeV, for

the category with best resolution, unconverted central high pTt, and for the category converted rest low pTt which
has a wider peak than the first one.

Table 5.4: Number of diphoton candidates found in the data samples per category.

Category
√
s = 7 TeV

√
s = 8 TeV

Unconverted central, low pTt 2054 2945
Unconverted central, high pTt 97 173
Unconverted rest, low pTt 7129 12136
Unconverted rest, high pTt 444 785
Converted central, low pTt 1493 2015
Converted central, high pTt 77 113
Converted rest, low pTt 8313 11099
Converted rest, high pTt 501 706
Converted transition 3591 5140
2-jet 89 139
Total 23788 35251

A comparison of the signal diphoton invariant mass distribution for two cate-
gories is shown in Figure 5.17. It shows the distributions for the category with the
best resolution, unconverted central high pTt, and for the category converted rest
low pTt which has a wider peak than the first one.

The number of diphoton candidates found in the data samples per category
are quoted in Table 5.4, and the invariant mass distributions are shown in fig-
ures 5.18, 5.19 and 5.20. The solid red line overlaid to each distribution present the
background-only model fitted to the data, and the dashed line shows the expected
H → γγ signal for a Higgs boson of mass 126.5 GeV. (Details on the data modeling
are discussed in Section 5.6.) The bottom inset displays the data residuals after
subtracting the background.

Table 5.5 presents the full width at half maximum (FWHM) expected for the
signal peak in each category, and the signal-to-background ratio nS/nB expected for
a SM Higgs boson of mass 126.5 GeV. For the signal-to-background ratio calculation,
the number of background events is extracted from the background model fit to the
data, integrating the number of events in the mass region containing 90% of the
signal peak; then, of course only 90% of the signal events is considered.

The highest signal-to-background ratios are found in the categories: 2-jet, un-
converted central high pTt and converted central high pTt. It is important to know
that these are not necessarily the categories with the highest sensitivity for the sig-
nal observation, or the ones with the highest weight in the statistical analysis; this
is because the number of events in the category is also a determining factor.
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Figure 5.18: Diphoton Invariant mass distribution per category, on the left side for the 7 TeV data sample and
on the right side for the 8 TeV sample. The overlaid solid red line present the background-only model fitted to
the data, and the dashed line shows the expected H → γγ signal for a Higgs boson of mass 126.5 GeV. Details on
the data modeling are discussed in Section 5.6. The bottom inset displays the data residuals after subtracting the
background model.
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Figure 5.19: Diphoton Invariant mass distribution per category, on the left side for the 7 TeV data sample and
on the right side for the 8 TeV sample. The overlaid solid red line present the background-only model fitted to
the data, and the dashed line shows the expected H → γγ signal for a Higgs boson of mass 126.5 GeV. Details on
the data modeling are discussed in Section 5.6. The bottom inset displays the data residuals after subtracting the
background model.
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Figure 5.20: Diphoton Invariant mass distribution per category, on the left side for the 7 TeV data sample and
on the right side for the 8 TeV sample. The overlaid solid red line present the background-only model fitted to
the data, and the dashed line shows the expected H → γγ signal for a Higgs boson of mass 126.5 GeV. Details on
the data modeling are discussed in Section 5.6. The bottom inset displays the data residuals after subtracting the
background model.

Table 5.5: Full width at half maximum (FWHM) expected for the signal peak in each category, and the signal-
to-background ratio nS/nB expected for a mH = 126.5 GeV SM Higgs boson. For the signal-to-background ratio
calculation, the number of background events is extracted from a background model fit to the data, integrating the
number of events in the mass region containing 90% percent of the signal peak; then, of course only 90% of the
signal events is considered.

√
s = 7 TeV

√
s = 8 TeV

Category FWHM nS nB nS/nB FWHM nS nB nS/nB

Inclusive 3.8 72 2559 0.028 3.9 101 3585 0.028
Unconverted central, low pTt 3.4 9.4 155 0.061 3.4 13 225 0.057
Unconverted central, high pTt 3.2 1.3 7.2 0.181 3.2 2.3 13.6 0.169
Unconverted rest, low pTt 3.7 20 670 0.029 3.7 28 1122 0.025
Unconverted rest, high pTt 3.4 2.5 39 0.066 3.6 4.7 68 0.069
Converted central, low pTt 3.8 6.0 136 0.044 3.9 8.0 187 0.043
Converted central, high pTt 3.5 0.9 6.4 0.141 3.5 1.5 9.7 0.155
Converted rest, low pTt 4.2 19 967 0.020 4.4 24 1300 0.019
Converted rest, high pTt 3.8 2.5 51 0.049 3.9 4.0 71 0.056
Converted transition 5.5 8.5 704 0.012 6.1 12 821 0.014
2-jet 3.6 2.0 8.7 0.230 3.7 2.7 13.3 0.203
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5.5. Event categorization

5.5.5 Systematic uncertainties on the distribution of signal
events among the categories

Here is a list of factors that may change the expected distribution of the signal
events among the various categories:

• Amount of material in front of the calorimeter: If the amount of ma-
terial is higher than what is estimated, the photon conversion rate would
increase, increasing the number of events in the converted categories and re-
ducing it in the unconverted ones. This uncertainty has been evaluated com-
paring the nominal number of events per category with another set obtained
with a different Monte Carlo sample produced with a modified description of
the detector. An uncertainty of 4% has been assigned to the number of events
in the unconverted categories. The number of events corresponding to this 4%
of the unconverted categories represent 3.5% of the converted categories.

• Pileup effects: As discussed in Chapter 3, Section 3.1, an increase of the
amount of pileup events may increase artificially the photon conversion rate,
by increasing the fake conversion reconstruction. Also, more pileup may in-
crease the number of signal events passing the selection for the two-jet cat-
egory, because of jets from the pileup events triggering the selection. This
uncertainty has been evaluated following the same procedure used to evaluate
the uncertainty on the mass resolution due to pileup effects (Section 5.3.1).
The uncertainties that have been assigned are quoted in Table 5.7. The un-
certainty for the 2-jet category is significantly higher for the

√
s = 8 TeV MC

samples than for the 7 TeV ones because of the different pileup conditions.

• Theoretical uncertainty on the Higgs boson pT distribution: A varia-
tion of the Higgs boson pT distribution induces variations in the distribution of
the signal events between the low and high pTt categories. As the kinematics of
jets associated to the Higgs boson production is correlated to the Higgs boson
transverse momentum, it affects also the 2-jet category. This uncertainty has
been evaluated modifying the scale and parton distribution functions used in
the Monte Carlo sample generation. The uncertainties that have been assigned
are quoted in Table 5.7.

• Theoretical uncertainty on the cross-section for gg → H + 2 jets: This
uncertainty has an impact on the number of signal events from gluon fusion in
the 2-jet category, while it is negligible for the rest of categories. It has been
evaluated following the studies from [133,134], and has been found to be 25%.

• Underlying event simulation: The uncertainty due to the modeling of the
underlying event is estimated by comparing Monte Carlo samples generated
with different tunes of the underlying event [88]. The AUET2B tune is used for
the default results, while the Perugia2011 tune is used for systematic studies.
For the 2-jet category, a 30% uncertainty is assigned to the contribution from
gluon fusion and the associated production processes, and a 6% uncertainty is
assigned to the contribution from vector-boson fusion.
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Table 5.6: Systematic uncertainties on the signal peak position due to the uncertainties on the photon energy scale,
for each of the categories.

Category Relative uncertainty on the signal peak position [%]
Amount of material Presampler

Method |η| < 1.8 |η| > 1.8 Barrel End-Cap
Unconverted central, low pTt ±0.3 ±0.3 - ±0.1 -
Unconverted central, high pTt ±0.3 ±0.3 - ±0.1 -
Unconverted rest, low pTt ±0.3 ±0.5 ±0.1 ±0.2 -
Unconverted rest, high pTt ±0.3 ±0.5 ±0.1 ±0.3 -
Converted central, low pTt ±0.3 ±0.1 - - -
Converted central, high pTt ±0.3 ±0.1 - - -
Converted rest, low pTt ±0.3 ±0.2 ±0.1 ±0.1 -
Converted rest, high pTt ±0.3 ±0.2 ±0.1 ±0.1 -
Converted transition ±0.4 ±0.6 - - ±0.1
2-jet ±0.3 ±0.3 - ±0.1 -

• Jet energy scale: The uncertainty from the jet energy scale is evaluated
by varying the scale corrections within their respective uncertainties [130].
The uncertainty on the number of events per category is found to be 19% for
the 2-jet category, and 4% for the other categories. On the other hand, the
uncertainty on the jet energy resolution is found to have a negligible impact.

• Tracking jet-vertex fraction: The systematic uncertainty on the efficiency
of the jet-vertex-fraction requirement is estimated from the differences of ef-
ficiencies between data and MC simulation in Z + 2jets events. For the√
s = 8 TeV analysis, a 13% uncertainty is assigned.

• Primary vertex selection: The quantity sum of track pT
2, evaluated for

signal and background, used for the identification of the primary vertex, has
been varied by an amount larger than the difference observed between data
and MC. The effect on the expected yield in the different categories is smaller
than 0.1% and is neglected.

The factors inducing uncertainties on the photon energy and therefore on the
signal peak position have been introduced in the Section 5.3.2. These factors affect
differently the various categories. Table 5.6 summaries the uncertainties for each
category.

5.6 Data modeling

5.6.1 Signal parametrization

Figure 5.7 shows on the right side in blue the invariant mass distribution expected
in this analysis, for a SM Higgs boson with mass 125 GeV, at

√
s = 8 TeV, and the

continuous blue line shows the parametrization model. The model FS consists of a
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narrow Crystall Ball function2 FCB plus a gaussian FG, as follows:

FS(mγγ ;µCB,G, σCB, αCB, nCB, fCB, σG) = fCBFCB(mγγ ;µCB,G, σCB, αCB, nCB)+

(1− fCB)FG(mγγ ;µCB,G, σG);
(5.7)

where FCB and FG are normalized to one, fCB is the fraction of the distribution corre-
sponding to the Crystall Ball, σCB, αCB are nCB are parameters of the Crystall Ball,
σG is a gaussian parameter, and µCB,G is a common parameter of both functions.
The Crystall Ball function is the main component of the model. The non-gaussian
tail toward low mass arises mostly from events with converted photons that have
lost a significant fraction of energy in the inner detector material. The second term
of the model, the gaussian, corresponds only to a few percents of the distribution.
This gaussian component is wider than the Crystall Ball, and it models the events
with mis-calibrated photons and invariant mass laying far outside of the peak. The
Crystall Ball and gaussian are constrained to have the maximum at the same posi-
tion µCB,G.

As mentioned in Section 5.2.3, signal Monte Carlo (MC) samples have been
generated for several values of mH, from 100 to 150 GeV, in steps of 5 GeV. But in
the statistical analysis, the signal hypothesis is tested every 0.5 GeV, and one might
need to do it with an even finer step; for example in the case of observing a signal, for
the signal mass measurement. Then, in order to extrapolate the resolution function
for the intermediate mH values in a smooth way, a global fit of all the signal MC
samples is performed, where the signal model parameters are function of mH. It
provides a continuous smooth function for the resolution at any mH value in the
required range. Additionally, in this way one exploits at maximum the statistical
power of the MC samples, unlike fitting each sample separately. The width of
the peak and therefore the parameters σCB and σG increase linearly, as the mass
hypothesis mH increases.

This global fit includes also the parametrization of the number of signal events
expected for every Higgs boson mass hypothesis mH. This number is found to
change parabolically as function of mH, with a maximum around mH = 115 GeV.
The signal related values quoted in tables 5.1, 5.3 and 5.5 are outputs of the global
signal model.

The global fit is of course performed separately for every event category.

2The Crystall Ball function consists of a gaussian core with a power law tail on one side [98].
It is defined as follows:

FCB(m;µ, σ, α, n) = N

{
e−

(m−µ)2

2σ2 for m−µ
σ < −α

A
(
B − m−µ

σ

)−n
for m−µ

σ > −α

where

A =

(
n

|α|

)n
e−

α2

2 ,

B =
n

|α| − |α|.

Where µ and σ are the usual parameters of a gaussian function; µ is the position of the peak
maximum and σ control the peak width; n is the power for the tail; α corresponds to the point at
which the gaussian becomes the power law tail; and N is a normalization factor.
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Chapter 5. The H → γγ analysis

5.6.2 Signal systematic uncertainties

The systematic uncertainties on the expected signal have been discussed separately
in the previous sections, and are now compiled in Table 5.7. These uncertainties
can be classified in four sets, the ones affecting the expected number of events, the
uncertainties on the distribution of events among the categories (producing event
migrations), the ones affecting the mass resolution and the signal peak position.

Table 5.7: Compilation of systematic uncertainties on the expected signal. The values given are relative uncertain-
ties in percent unit.

Uncertainties source Relative uncertainty [%]√
s = 7 TeV

√
s = 8 TeV

Event yield

Higgs boson cross section (perturbative) ggF: +12
−8 ggF: +7

−8

Higgs boson cross section (PDF+αS) ggF: +8
−7 ggF: +8

−7

VBF: +2.5
−2.1 VBF: +2.6

−2.8
Photon identification ±8 ±11
Higgs boson branching ratio ±5
Pileup effects on the photon rec/ID ±4
Trigger ±1
Luminosity ±1.8 ±3.6
Distribution of events among the categories
Material Unconv: ±4

Conv: ∓3.5
Pileup effect Unconv: ±3 Unconv: ±2

Conv: ∓2 Conv: ∓2
2-jets: ±2 2-jets: ±12

Higgs boson pT modeling Low pTt: ±1.1
High pTt: ∓13

2-jets: ∓9
gg → H + 2 jets cross-section (2-jet) ±25
Underlying Event (2-jet) ggF: ±30

VBF: ±6
Jet energy scale (2-jet) ggF: ±19 ggF: ±18

VBF: ±8 VBF: ±9
Jet-vertex-fraction (2-jet) ±12
Mass resolution
Calorimeter energy resolution ±12
Electron to photon extrapolation of the calibration ±6
Effect of pileup on energy resolution ±3
Peak position
Photon energy scale see Table 5.6

These systematic uncertainties have been taken into account by introducing in
the model nuisance parameters with constraints, as explained in Section 4.5, Chap-
ter 4. The uncertainties on the event yields and on the distribution of events among
the categories are implemented with terms that scale the normalization of the signal
pdf per category. The terms added to consider the uncertainties on the resolution
affect the two parameters σCB and σG. The uncertainties quoted in Table 5.6 af-
fect the parameter µCB,G of the signal model. For most of the introduced nuisance
parameters the constraint pdf is log-normal. Only for the event migration uncer-
tainties, gaussian constraints are used. For the asymmetric uncertainties from the
Higgs boson cross-section, asymmetric log-normal pdf’s are used.

Most of the signal systematic uncertainties are treated as correlated between the
different categories, and between the 7 and 8 TeV models. In these cases, for each
uncertainty there is a single nuisance parameter common for all the categories. Only
the luminosity uncertainty is treated as uncorrelated between 7 and 8 TeV, because
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5.6. Data modeling

the luminosity measurement methods are different. In the case of the event migration
uncertainties, the uncertainty effects are anti-correlated among some categories. For
instance, an increase of the material in front of the calorimeter would increase the
number of events in the converted categories, and decrease it in the unconverted
categories, by the same number of events. That is why in Table 5.7 the two symbols
± and ∓ are used for some uncertainties.

5.6.3 Background parameterization and uncertainties

In this analysis, the invariant mass distribution of the background has a smoothly
decreasing shape, as one can see in Figure 5.8. This is also the case after splitting
the data in categories (see figures 5.18, 5.19 and 5.20). Initially, the background
was parametrized with an exponential function. Then, as the amount of data has
increased, reducing the relative size of the statistical fluctuations, small differences
between the background model and the true shape of the background might have a
non-negligible impact on the statistical analysis. This is true in particular because
the amount of background is quite large compared with the size of the expected
signal. An underestimation of the background in a region increases artificially the
significance of any excess observed there, and oppositely an overestimation of the
background decreases the excesses significance. In a similar way, this would bias the
exclusion limit results.

In order to reduce possible bias from the background parameterization, one can
for instance use a flexible functional form like a high order polynomial, which would
guarantee a good fit of the background shape. But using a very flexible model
would also reduce the statistical sensitivity to observe a signal. Then, one needs
to choose a model keeping a compromise between statistical power and goodness of
the background parameterization. The following sections contain descriptions of the
procedures used to estimate the size of possible background modeling biases, to take
into account the possible biases as a systematic uncertainty in the analysis, and to
choose among various alternative models.

Estimation of the possible bias induced by a background model

Let us consider the effect of mis-modeling the background in terms of number of
signal events fitted. Let us say that we generate toy pseudo-experiments with a
background-only model, and then fit them with a signal-plus-background model.
On one hand, if the background model used for the fit is the same as the one used
to generate the toys, the average number of signal events fitted will be zero (i.e.
statistically compatible with zero). On the other hand, if the background model used
for the fit is different from the one used in the generation of toys, the background
might be underestimated or overestimated in the region where the signal component
is placed, and the average number of signal events fitted will deviate from zero. Thus,
in this analysis a background mis-modeling is quantify as a bias on the number of
signal events fitted. The exercise described above could be also done performing
a single fit of an asimov dataset, instead of fitting toys pseudo-experiments (the
asimov dataset principle is explained in Chapter 4, Seccion 4.3).

Now, the true background shape is not known precisely, but the possible bias
induced by each of the models tested has been roughly estimated using three different
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Figure 5.21: Number of signal events fitted as a function of the signal mass hypothesis mH, obtained fitting a
background-only Monte Carlo samples, at

√
s = 7 TeV. It is shown on the left side for the inclusive samples and

on the right side for the category unconverted central, low pTt. The various curves were obtained with different
functions as background model, an exponential function (exp), 2nd, 3rd, 4th and 5th order polynomials (pol2, pol3,
pol4 and pol5), and the exponential of the a 2nd order polynomial(exp(pol2)).

Monte Carlo (MC) samples. The preparation of these samples has been described
in Section 5.2.2. These MC samples have been prepared with very high number of
events, so that the statistical fluctuations are negligible, like in an asimov dataset.
The main component of the background (the γγ background) have been generated
with three MC generators of high order calculations, RESBOS [118], DIPHOX [119],
and SHERPA [116].

Each of these background-only MC samples has been fitted with signal-plus-
background models, testing different functions for the background model, and vary-
ing the signal mass hypothesis mH from 110 to 150 GeV. Figure 5.21 shows as
example the number of signal events fitted as a function of mH for the different
background model functions, as obtained by fitting the DIPHOX MC sample for√
s = 7 TeV; it is shown on the left side for the inclusive samples and on the right

side for the category unconverted central, low pTt. As expected, one can see in this
figure that using the exponential and 2nd order polynomial functions as background
model, the bias induced by the model is larger than when using the high order
polynomials, which are more flexible than the former ones. After performing these
fits, the maximum absolute number of signal events fitted in the scanned range have
been taken as estimator of the possible bias for the background model under test.
The results on the bias estimation obtained with the three different MC samples are
compatibles with each other.

Implementation of background modeling systematic uncertainties

The estimated possible bias from the background model is introduced in the statis-
tical analysis as a systematic uncertainty. It is done by adding to the background
pdf a component with the shape of the signal pdf, with the normalization floating,
but with a gaussian constraint. The mean value of the gaussian constraint is set to
zero, and the width (the parameter σ) is set to the value of the estimated possible
bias; in this case, the possible bias estimated with the SHERPA sample is used.

As result of this implementation, the uncertainty on the signal strength param-
eter increases as if the background modeling uncertainty was added to it in quadra-
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5.6. Data modeling

ture. In the presence of an excess, in most of the cases this uncertainty reduces the
measured significance of the excess, and in the presence of a deficit, it reduces the
confidence level on the exclusion limit set.

Procedure to choose the background model

Several alternative background models have been tested. A first filtering of the
various models is done by requiring the estimated bias to be less than 20% of the
statistical uncertainty on the strength parameter µ, or less than 10% of the expected
number of signal events for a SM Higgs boson. If none of the two requirements are
satisfied, the background model under test is rejected. In this case, the results
obtained with the three Monte Carlo samples is considered, taking the maximum
estimated bias to match this requirement.

Then, with the remaining models, the expected p0 value for a SM Higgs boson is
computed, including the estimated bias for each of them as systematic uncertainty
with the procedure described above. The choice of the model is done based on
the expected p0 value at mH = 125 GeV obtained with each alternative. In this
way, both the systematic uncertainty and the statistical power associated to each
background model is considered for the selection.

Background models tested

Various functional forms have been tested as background model, an exponential
function, the sum of two exponentials, polynomials of second, third, fourth and fifth
order, the exponential of a second order polynomial, and the exponential of a third
order polynomial.

Another alternative that has been also tested is performing the fit in a reduced
mass range; the nominal fitting range covers 60 GeV (from 100 to 160 GeV), and
ranges of 40 and 30 GeV have been also tested. In these cases the fitting range
has been changed according to the signal mass hypothesis mH under test, in such a
way that mH is at the center of the fitting range. For example, when fitting with a
30 GeV range, the fits for the signal hypothesis mH = 115 GeV have been performed
in the range 100 - 130 GeV, while for the hypothesis mH = 150 GeV the fitting range
is 135 - 165 GeV3. On one hand, reducing the fitting range allows a given functional
form to fit the main region of interest, without requiring it to fit far away side bands.
In this way, the possible background modeling bias are reduced. But on the other
hand, the amount of data fitted is reduced and so the statistical power decreases.

Results of the background parameterization studies

The estimation of the possible bias and the choice of the background model have
been done separately for each category. The obtained results are summarized in
Table 5.8. It shows the functional form chosen for each data category, and the
estimated uncertainty for each of them. The fitting range chosen is the nominal
[100 - 160 GeV]. The single exponential function is used for the categories with low

3As the background distribution below 100 GeV change of form because of the Drell-Yan peak
and the kinematic turn-on, the fitting ranges have been limited to be always above 100 GeV. Thus,
following the previous example, for mH = 110 GeV the fitting range used is 100 - 130 GeV.
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Table 5.8: List of the functional forms chose for each of the categories, and the estimated possible bias from the
model, which are used as systematic uncertainty in the statistical analysis. The systematic uncertainty is quoted as
number of events.

Category Parametrization Uncertainty [Nevt]√
s = 7 TeV

√
s = 8 TeV

Inclusive 4th order pol. 7.3 10.6
Unconverted central, low pTt Exp. of 2nd order polynomial 2.1 3.0
Unconverted central, high pTt Exponential 0.2 0.3
Unconverted rest, low pTt 4th order polynomial 2.2 3.3
Unconverted rest, high pTt Exponential 0.5 0.8
Converted central, low pTt Exp. of 2nd order polynomial 1.6 2.3
Converted central, high pTt Exponential 0.3 0.4
Converted rest, low pTt 4th order polynomial 4.6 6.8
Converted rest, high pTt Exponential 0.5 0.7
Converted transition Exp. of 2nd order polynomial 3.2 4.6
2-jets Exponential 0.4 0.6

number of events in the sample, and a 4th order polynomial or the exponential of a
2nd order polynomial are used to fit the data samples with high number of events.

5.7 Results

The data distribution has been compared with the background-only and signal-plus-
background hypotheses, following the procedure described in Chapter 4. With the
amount of data considered in this analysis, we have the sensitivity necessary to
observe the Standard Model (SM) Higgs boson in most of the scanned mass range.
And in fact a signal-like excess of events has been observed in the region around
126 GeV. In the first section, the exclusion limit set aside this excess are presented,
and then studies and quantification of the excess are discussed.

5.7.1 Exclusion limits

The obtained exclusion limits are shown in Figure 5.22, as a function of the Higgs
boson mass hypothesis mH. This figure shows in the top part the limits obtained
independently with each sample, on the left side for the 7 TeV sample and on
the right side for the 8 TeV sample, and in the bottom part the results obtained
combining both samples. These are 95% confidence level upper limits on a SM-like
Higgs boson production cross-section, normalized to the SM predicted cross-section.

Combining the two samples (see the bottom part of the figure), the expected
median limits under the background-only hypothesis (red line) vary between 0.8
and 1.6 times the SM cross-section, with values below one in the mass range 110.0 -
140.5 GeV. On the other hand, the observed limit values (black line) are below one
in the mass ranges 112.0 - 123.0 GeV and 132.0 - 143.5 GeV, and so the SM Higgs
boson is excluded with 95% confidence level in these two regions.

But in the region around 126 GeV, the observed limits are significantly deviated
upward from the expected values, which indicates the presence of an excess of events.
On the top part of the figure, one can see that this excess appears in each of the
samples. The quantification of this excess is presented in the next section.
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Figure 5.22: 95% confidence level upper limits on a SM-like Higgs boson production cross-section, normalized to
the SM predicted cross-section, as a function of the boson mass hypothesis mH. It is shown on the top part as
obtained independently with each sample, on the left side for the 7 TeV sample and on the right side for the 8 TeV
sample, and on the bottom part as obtained combining both samples. The black line shows the observed limits.
And the red line, the green and yellow bands, show the expected median limits, the one and two standard deviations
respectively, under the background-only hypothesis.
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dashed lines show the expected median p0 in the case of having a SM signal at mH. The circles show the observed
p0 considering the energy scale systematic uncertainty (ESS), obtained via pseudo-experiments.

5.7.2 Excess quantification

The obtained p0 values are shown in Figure 5.23, as a function of the Higgs bo-
son mass hypothesis mH. As explained in Chapter 4, p0 is the probability of the
background to fluctuate creating a signal-like excess equal or larger than what is
observed. Thus, the lower is the p0 value, the less compatible is the data with the
background-only hypothesis, or in other words the more likely is a signal to be there.
The figure shows the results obtained independently with each sample, and from the
combination of both, the 7 and 8 TeV samples.

In this figure, the solid lines show the observed p0 values. In the 7 and 8 TeV
samples separately, the lowest p0 values are found precisely at mH = 126.0 GeV
and 127.0 GeV respectively (the mass scan have been done with 0.5 GeV steps).
These p0 values are of 2.4 × 10−4 and 4.8 × 10−4, and they correspond to 3.5 and
3.3 standard deviations σ, respectively.

Combining the two samples, the lowest p0 value is found at mH = 126.5 GeV, it
is 1.7× 10−6, and it corresponds to 4.6σ.

In addition, at the excess region, the observed p0 values have been computed con-
sidering the systematic uncertainty on the energy scale (ESS), via pseudo-experiments;
it is shown by circles in the figure. In this case, for the combined result, the signifi-
cance of the excess is 4.5σ.

Finally, considering the look-elsewhere effect, the global significance of the excess
is 3.6σ. As explained in Chapter 4, this correction takes into account the fact that
the test statistic is not only performed at one mass point, but it is done at different
points in the range 110 - 150 GeV. Thus, this correction provides the probability
of finding such an excess (or larger) anywhere in the scanned region, under the
background-only hypothesis.

Figure 5.23 also shows the expected median p0 in the case of having a Standard
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Figure 5.24: Diphoton invariant mass distribution, for the 7 and 8 TeV data samples together, overlaid with a signal-
plus-background model (solid line) fitted to this inclusive data distribution. The signal model used corresponds to
mH = 126.5 GeV. The dashed line shows the background component, a fourth order polynomial function. And the
bottom inset displays the data residuals after subtracting the background component.

Model signal at mH. It is shown by the dashed lines. One can see that the observed
excess is more significant than the signal expected median. At 126.5 GeV, the
expected median local significance is 2.5σ, while the corresponding observed value
quoted above is 4.6σ. Nevertheless, as will be shown in the next section, the observed
excess is still compatible with a SM Higgs boson.

The inclusive distribution of the diphoton invariant mass for the 7 and 8 TeV data
samples together is shown in Figure 5.24, overlaid with a signal-plus-background
model fit. The signal component used corresponds to the Higgs boson mass hy-
pothesis of 126.5 GeV, and the background has been modeled with a fourth order
polynomial. The bottom inset displays the data residuals after subtracting the
background component of the model.

Some additional checks of the observed excess have been performed, quantifying
the excess significance without splitting the data samples in categories, and also
using a nine categories separation without separating the VBF like events. The
results obtained are shown in Figure 5.25; on the left side it shows the obtained
p0 values, and on the right side it shows the corresponding significance (for the
inclusive and ten categories analysis only). The observed significance of the excess
obtained with the ten category analysis is higher than when the inclusive analysis
is performed, as expected for a SM Higgs boson like signal.

The excess quantification has also been done considering the sample for each
individual category separately. The obtained p0 values are shown in the top part of
Figure 5.26, on the left side for the 7 TeV sample and on the right side for the 8 TeV
sample, and in the bottom part the corresponding significances are shown. One can
see that the 126.5 GeV excess is consistently present in most of the individual
category sub-samples.
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Figure 5.27: The best-fit signal strength µ as a function of the Higgs boson mass hypothesis mH. It is shown on
the top part as obtained independently with each sample, on the left side for the 7 TeV sample and on the right
side for the 8 TeV sample, and on the bottom part as obtained combining both samples. The band indicates the
approximate 68% confidence level interval around the fitted value.

5.7.3 Excess characterization

The signal strength parameter µ has been defined in Chapter 4 as a scale factor on
the expected number of signal events, for the Standard Model Higgs boson. The sig-
nal strength values that best-fit the data sample for the different mH hypotheses are
shown in Figure 5.27, as a function of mH. For the excess position, mH = 126.5 GeV,
the best-fit signal strength is shown in Figure 5.28, as obtained independently for
each data category. Both figures, 5.27 and 5.28, show in the top part the results
obtained for each data sample, on the left side for the 7 TeV sample and on the
right side for the 8 TeV sample, and in the bottom part the results obtained from
the combination.

From the combined result, at mH = 126.5 GeV, the best-fit signal strength is
1.8 ± 0.5. The results from the independent fits per category are statistically con-
sistent with this value.

Considering the uncertainty, this µ value is compatible with one, which corre-
sponds to the SM cross-section for the Higgs boson. Additionally, since this µ value
was taken at the mH value giving the largest deviation from the background-only
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hypothesis, it is expected to have a positive bias, induced by positive fluctuations
of the background in the near region. This bias has been estimated with pseudo-
experiments and found to be about 8%.

Given the expected number of signal events quoted in Table 5.3, Section 5.5.4,
µ = 1.8 corresponds to about 340 signal events.

Now, in order to estimate both the mass and strength of this potential signal that
simultaneously best-fit the data, the following have been done. A two dimensional
scan of the test statistic −2 lnλ(µ,mH) 4 have been performed in the plane defined
by the two parameters, mH and µ. The result is shown in Figure 5.29. The cross
corresponds to the minimum of the test statistic, or best fit, and the solid and
dashed contour lines enclose the 68% and 95% confidence level regions respectively.
These contour lines have been computed assuming that the test statistic follows the
χ2 distribution, for the case of two degrees of freedom. This asymptotic assumption
has been validated with pseudo-experiments.

The dark lines in Figure 5.29 were obtained considering the systematic uncer-
tainty on the energy scale, while for the light lines this uncertainty was not consid-
ered. For the signal mass measurement, one can see that this systematic uncertainty
is as large as the statistical uncertainty.

The event categorization used in this analysis is sensitive to the SM Higgs boson
production modes. In this categorization, events are separated according to the pTt

values, which are typically lower for events produced by gluon fusion than for those
from other production modes. And there is one category for VBF-like events. So,
one can test also the consistency of the potentially observed particle with the SM
Higgs boson on the production modes.

With this purpose, the signal probability density function (pdf) have been de-

4see Equation 4.2 in Chapter 4
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composed in two components. One component corresponds to the production modes
gluon fusion (ggF) and the associated production with top quarks (tt̄H); both of
these processes depend on the coupling tH. The other component corresponds to the
production modes vector-boson fusion (VBF) and the associated production with
Z or W (V H); they depend on the coupling WH/ZH. Two independent signal
strength factors are defined for these two components; they are designated µggF+tt̄H

and µVBF+VH. Actually, the two signal pdf components per category have basi-
cally the same shape; it is only the distribution of signal events among the various
categories that is different.

Then, the values of µVBF+VH and µggF+tt̄H that are simultaneously compatibles
with the data sample have been estimated with the test statistic. The signal peak
position is treated as a nuisance parameter. The result is shown in Figure 5.30.
The mark × indicates the point one-one, which corresponds to the Standard Model
expectation. The cross corresponds to the best-fit, and the solid and dashed contour
lines enclose the 68% and 95% confidence level regions respectively. The excess is
found to be compatible with the SM expectation for the Higgs boson.
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Chapter 6

Overview of recent results of the
Higgs boson search

This is an overview of recent results of the search for the Standard Model (SM)
Higgs boson, by the ATLAS and CMS collaborations, and by the experiments at
the Tevatron [21,106,135–141].

With the collisions provided by the LHC during 2011 and 2012, the ATLAS and
CMS experiments achieved sensitivities beyond the one required to observe the SM
Higgs boson, in the mass range from 110 GeV to around 600 GeV. Apart of the
region around 125 GeV, the existence of a SM Higgs boson anywhere else in all this
mass range has been excluded with at least 95% of confidence level, by either of the
two experiments; Figure 6.1 presents the expected and observed upper limits on a
SM-like Higgs boson production cross-section, obtained by ATLAS and CMS on the
left and right plot respectively [106,136].
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Figure 6.1: 95% confidence level upper limits on a SM-like Higgs boson production cross-section, normalized to the
SM predicted cross-section, as a function of the boson mass hypothesis mH, obtained by ATLAS [106] (left side)
and CMS [136] (right side).
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6.1 Observation of a new particle

As shown in the previous chapter, the ATLAS experiment has observed a significant
excess of events in the diphoton invariant mass distribution. In addition to this
excess, another narrow excess of events has been observed in the invariant mass dis-
tribution of the four lepton system for the Higgs boson search via H → ZZ(∗) → 4l,
and a wide excess has been observed in the transverse invariant mass distribution
considered in the H → WW (∗) → eνµν/µνeν search. These results have been re-
ported by the ATLAS collaboration in summer of 2012 [106, 142, 143]. All of these
excesses are compatible with the SM Higgs boson and correspond to similar masses,
around 125 GeV. On top of that, by the same time, the CMS experiment has also
reported the observation of similar excesses in the various Higgs boson search chan-
nels, in the same mass region [135], as well as the CDF experiment at the Tevatron in
the H → bb̄ channel [140]. These independent and compatible results indicate that
the observed excesses correspond to a new particle, whose decay products indicate
an integer spin.

Figure 6.2 shows on the top part updated results of the search for the Higgs boson
in the diphoton decay channel, considering about 15 fb−1 of data in addition to the
data considered for the analysis reported in this thesis. The diphoton invariant mass
distribution is presented on the left side, and the excess quantification (the obtained
p0 values as a function of the Higgs boson mass hypothesis mH) is presented on the
right side. With the amount of data considered in this case, the 126.5 GeV excess
has a local significance of 7.4 standard deviations (σ), beyond the 5σ conventionally
required for stating the observation of a new particle. This updated result was
released in March of 2013, and is reported in [144].

In the middle and bottom part, Figure 6.2 shows the most recent ATLAS results
from the search of the Higgs boson in the decay channels H → ZZ(∗) → 4l and
H → WW (∗) → eνµν/µνeν, respectively. As in the case of the diphoton analysis
plots on the top part, mass distributions are shown on the left side, and the excess
quantifications are shown on the right side. The excess observed in the four leptons
invariant mass distribution has a local significance of 6.6σ, and the excess observed
in the transverse invariant mass distribution of eνµν/µνeν has a local significance of
3.8σ. Details about these analysis and results can be found in the documents [137,
138,142,143,145,146].

The p0 values resulting from the ATLAS combined analysis released in December
of 2012, considering the previous mentioned channels plus the H → ττ and H → bb̄
channels, are shown on the left side of Figure 6.3. This figure shows p0 values
obtained independently in the various channels with colored lines, and the black
line shows the combined result. The combined local significance of the excesses is
found to be 7σ. Similarly, the right side plot of Figure 6.3 shows the results reported
by the CMS collaboration, with a combined local significance of 6.9σ for the observed
excesses. As mentioned above, these results are compatible with the results obtained
by the experiments at the Tevatron, in particular with the observation of an excess
in the H → bb̄ channel by the CDF collaboration. Figure 6.4 shows the p0 values as
a function of the Higgs boson mass hypothesis obtained in the combined CDF and
D0 analysis, considering various channels. It shows the presence of a wide excess of
events, with the lowest p0 value at 120 GeV and corresponding to 3.0σ.
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a) H → γγ channel.
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b) H → ZZ(∗) → 4l channel.
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c) H → WW (∗) → eνµν/µνeν channel.
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Figure 6.2: Results of the ATLAS search for the Standard Model Higgs boson, as obtained in the H → γγ (a),
H → ZZ(∗) → 4l (b) and H → WW (∗) → eνµν/µνeν (c) decay channel [144–146]. The plots on the left show the
invariant mass and transverse invariant mass distributions observed for each channel, and the right plots show the
values obtained for the probability p0 of the background to fluctuate creating a signal-like excess equal or larger
than what is observed, as a function of the Higgs boson mass hypothesis mH.
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CMS [136] (right side), for various individual channels (H → γγ, H → ZZ(∗) → 4l, H →WW (∗) → lνlν; H → ττ ,
H → bb̄) and the combination all of them.
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Figure 6.4: Probability of the background to fluctuate creating a signal-like excess equal or larger than what is
observed, as a function of the Higgs boson mass hypothesis mH, as obtained in a CDF and D0 combined analysis,
considering various search channels [140].

6.2 Properties of the new boson

After the observation of this new boson, various studies have performed measuring
its properties and comparing them with the expectations for the Standard Model
Higgs boson.

Precise measurements of the boson mass have been performed by the ATLAS and
CMS collaborations, considering the H → γγ and H → ZZ(∗) → 4l channels, which
provide good mass resolution. Figure 6.5 shows two-dimensional plots presenting
confidence intervals in the signal strength-mass (µ, mH) plane, for each channel and
for their combination. The left side plot corresponds to ATLAS and the right side
plot corresponds to CMS. The ATLAS results in the H → γγ channel shown here
correspond to a recent update of the analysis reported in Chapter 5, considering
about 15 fb−1 of additional data; it is reported in [144].

On the one hand, in the case of the ATLAS individual mass measurements, the re-
sult obtained in the H → γγ channel is mH = 126.8±0.2(stat.)±0.7(syst.) GeV, and
for the H → ZZ(∗) → 4l channel it is mH = 124.3 +0.6

−0.5(stat.) +0.5
−0.3(syst.) GeV. Taking
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Figure 6.6: The best-fit signal strength µ obtained independently in different Higgs boson decay channels and
the per experiment combined result, as obtained by ATLAS for mH = 125.5 GeV on the left side, by CMS for
mH = 125.8 GeV on the middle part, and by the Tevatron for mH = 125 GeV on the right side [136,140,147].

into account the systematic uncertainty on the mass scale for the two channels and
their correlations, the compatibility between the two measurements is estimated to
be at the level of 2.4 standard deviations.

On the other hand, when the two channels are combined, the mass measure-
ment obtained by ATLAS is mH = 125.5 ± 0.2(stat.) +0.5

−0.6(syst.) GeV [147], and the
one obtained by CMS is mH = 125.8 ± 0.4(stat.) ± 0.4(syst.) GeV [136], which are
compatible with each other.

Measurements of the signal strength relative to the expected Standard Model
cross-section for the Higgs boson have been performed in different channels in the
various experiments. The three plots in Figure 6.6 show the measurements done
by ATLAS (left side plot), CMS (middle plot), and the Tevatron (right side plot).
These figures show results obtained per channel individually, as well as the combined
results per experiment. The obtained results show compatibility with a SM Higgs
boson. The result of the ATLAS combined measurement at mH = 125.5 GeV is
µ̂ = 1.43±0.16(stat.)±0.14(syst.) = 1.43±0.21 [147], for CMS at mH = 125.8 GeV
it is µ̂ = 0.88±0.21 [136], and for the Tevatron at mH = 125 GeV it is µ̂ = 1.35+0.60

−0.57.
(The signal strength value µ = 1 corresponds to the SM expected cross-section.)
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Figure 6.8: Left: Data distribution on the | cos θ∗| variable at the signal region, after background subtraction.
θ∗ is the polar angle of the photons with respect to the z-axis of a particular rest frame; this angle is sensitive to
the spin and parity of the new particle. The red line distribution corresponds to the SM expectation for the Higgs
boson, JP = 0+, and the blue line distribution corresponds to a graviton-like spin-2 particle with minimal couplings,
JP = 2+

m, produced via gluon fusion. Right: Distributions expected for the hypothesis JP = 0+ and JP = 2+
m,

on a likelihood ratio variable per dataset computed from the | cos θ∗| signal-plus-background distributions, obtained
from pseudo-experiments. The black line indicate the value obtained for the analyzed dataset [149].

Considering data categories sensitive to the production modes of the Higgs bo-
son, two parameters associated to the Higgs boson coupling strength with fermions
(κF ) and vector bosons (κV ) have been fitted to the data, in various Higgs boson
decay channels. The results are shown in Figure 6.7; the left side plot corresponds to
ATLAS and the right side plot corresponds to CMS. The results from both collabo-
rations are compatible with the Standard Model expectations for the Higgs boson.

The spin and parity of the new boson have also been investigated by studying the
kinematic distributions of the boson decay products. Figure 6.8 presents results of
a spin/parity measurement performed by the ATLAS collaboration in the diphoton
channel [149]. The dots on the left side show the data distribution on the | cos θ∗|
variable at the signal region, after background subtraction. Here θ∗ is the polar
angle of the photons with respect to the z-axis of the Collins-Soper frame described
in [150]; this angle is sensitive to the spin and parity of the new particle. The red line
distribution corresponds to the SM expectation for the Higgs boson, JP = 0+, and
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the blue line distribution corresponds to a graviton-like spin-2 particle with minimal
couplings, JP = 2+

m, produced via gluon fusion. The fact that the new boson is
observed in the diphoton decay channel implies that its spin is different from one, as
explained in [151,152]. The right side plot shows the distributions expected for the
two hypothesis, on a likelihood ratio variable per dataset computed from the | cos θ∗|
signal-plus-background distributions, obtained from pseudo-experiments, and the
black line indicate the value obtained for the analyzed dataset. From this observed
value, the probability for the observed particle to be JP = 2+

m is p2+
m

= 0.3%; this
hypothesis is excluded with 99.3% of confidence level. The probability to be JP = 0+

is p0+ = 58.8%. Details can be found in [149].
The spin and parity measurements have been also performed using the channels

H → ZZ(∗) → 4l and H → WW (∗) → eνµν/µνeν, by both ATLAS and CMS [137,
141,145,153–156]. The observed boson is found to be compatible with the hypothesis
JP = 0+, corresponding to the SM Higgs boson, and the hypotheses JP = 0− and
JP = 2+ are excluded with more than 95% of confidence level.
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Conclusions

A search for the Standard Model Higgs boson decaying to two photons performed in
the ATLAS experiment has been presented in this document. It considers proton-
proton collision data collected in 2011 and the first half of 2012; the data correspond
to 4.8 fb−1 of integrated luminosity at

√
s = 7 TeV, and 5.9 fb−1 at

√
s = 8 TeV.

The analysis has the sensitivity to exclude at 95% of confidence level the Standard
Model (SM) Higgs boson in the mass range 110.0 - 140.5 GeV. With the analyzed
data sample, the Higgs boson has been excluded in two mass ranges, from 112.0 to
123.0 GeV, and from 132.0 to 143.5 GeV, at 95% of confidence level.

In the middle mass range the SM Higgs boson is not excluded due to the presence
of an excess of events in the diphoton invariant mass distribution, not compatible
with the background only hypothesis. This excess has a local significance of 4.5
standard deviations, and is compatible with the signal of a SM Higgs boson of mass
126.5 GeV. Taking into account the fact that the test statistics is performed for
different mass points in the range 110 - 150 GeV, the global significance of the
excess is 3.6 standard deviations. It means that the probability for the background
to have a positive fluctuation equal or larger than the one observed, anywhere in
the tested mass range, is 1.6× 10−4.

This observation is compatible with other results obtained in independent searches
for the SM Higgs boson, which observe signals in the same mass regions. These
independent searches include searches in other decay channels by the ATLAS col-
laboration [106, 142, 143], in the diphoton and other decay channels by the CMS
collaboration [135,157], and by the experiments at the Tevatron [140]. All these re-
sults lead to the conclusion that definitively a new neutral particle has been observed
with mass around 125 GeV.

In the analysis presented here, the signal strength has been found to be 1.8±0.5
times the expected value for the SM Higgs boson, which indicates compatibility
between the observed signal and the Standard Model expectations.

Additionally, these results have been confirmed after the analysis of data col-
lected between July and December of 2012 [144], which represent 15 fb−1 of inte-
grated luminosity extra.
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Appendix A

Studies of non-collision
background for photon production
measurements

A.1 Introduction

Some measurements of the prompt photon and diphoton production cross-sections
have been performed based on the first LHC collision data, collected at low luminos-
ity in 2010, at

√
s = 7 TeV [10–12]; for these measurements, there was the necessity

of estimating the possible contributions to the background from non-collision events.
These non-collision events include events induced by the proton beams through
interactions different from the desired proton-proton collisions (beam-induced back-
ground), and cosmic-ray showers that reach the ATLAS detector. The beam-induced
background corresponds to protons lost from the beams that interact with collima-
tor components close to the ATLAS detector, or to interactions of the proton beams
with gas molecules in the beams’ trajectory.

In 2010 at the LHC, the collisions started with a low luminosity of∼ 1027 cm−2s−1,
that was gradually increased, achieving 2.07× 1032 cm−2s−1 at the end of the year.
Figure A.1 shows on the left side the mean number of interactions per bunch cross-
ing, and on the right side the cumulative integrated luminosity delivered to and
recorded by ATLAS, both as a function of the day in 2010. Apart from increments
on the number of bunches per beam, there were gradual improvements on the beam
collimation system, and on the vacuum conditions. Initially, the number of protons
per bunch (bunch intensity) was about 1010, and later it was increased to its nominal
value of about 1011.

The relative amount of non-collision background in the collision data samples is
expected to change with this evolution of the proton-beam parameters and luminos-
ity. The rate of cosmic-rays is independent of the beam parameters, and therefore
the increase of the number of interactions per bunch-crossing is expected to reduce
the relative fraction of cosmic-ray background in the collision samples. The num-
ber of interactions per bunch-crossing is proportional to the square of the bunch
intensity (see Chapter 2, Section 2.1.5); while the beam-induced background has
a linear dependence on the bunch intensity. Thus, the fraction of beam-induced
background in the collision samples is expected to decrease with the increase of the
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Figure A.1: The left side figure shows the mean number of interactions per bunch crossing, and the right side
figure shows the cumulative integrated luminosity delivered to (green) and recorded by ATLAS (yellow), both as a
function of the day in 2010 [71], for proton-proton collisions at

√
s = 7 TeV.

bunch intensity, as well as with the improvements in the optics and vacuum system.
The cross-section measurements mentioned above, for which the non-collision

background has been estimated, are the following:

• A measurement of the inclusive isolated prompt photon production, reported
in [10], based on data collected between April and beginning of August of 2010,
corresponding to an integrated luminosity of 880 nb−1. It is an estimation of
the differential cross-section as a function of the photon transverse energy Eγ

T,
in the range 15 6 Eγ

T < 100 GeV. Three pseudorapidity ranges are considered
separately, |ηγ| < 0.6, 0.6 < |ηγ| < 1.37 and 1.52 < |ηγ| < 1.81. In the rest of
this chapter, this measurement is referred as the one for photons at low pT.

• Another measurement of the inclusive isolated prompt photon production,
reported in [11], based on data collected between August and November of
2010, with an integrated luminosity of 35 pb−1. It is also an estimation of
the differential cross-section as a function of the photon transverse energy
Eγ

T, but in an Eγ
T range higher than the previous one, in this case the range

45 6 Eγ
T < 400 GeV. Four pseudorapidity ranges are considered separately,

|ηγ| < 0.6, 0.6 < |ηγ| < 1.37, 1.52 < |ηγ| < 1.81 and 1.81 < |ηγ| < 2.37. In the
rest of this chapter, this measurement is referred as the one for photons at
high pT.

• A measurement of the isolated diphoton production, reported in [12], also
based on the data collected between August and November of 2010, with an
integrated luminosity of 37 pb−1. It is an estimation of the differential cross-
section as a function of three variables, the diphoton invariant mass mγγ, the
total transverse momentum of the diphoton system pγγT , and the azimuthal
photon separation ∆φγγ. In the rest of this chapter, it is referred as the
diphoton measurement.

The method used in this background estimation study is described in Section A.2,
the event selections for the various analyses are presented in Section A.3, the ob-
tained results are shown in Section A.4, and the conclusions are summarized in
Section A.5.
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A.2 Background estimation method

The non-collision background has been estimated by an extrapolation from control
samples to the collision data samples. Before explaining how these control samples
have been collected, some details about the proton beam structure at the LHC need
to be introduced.

At the LHC, protons circulate in packets (bunches) which can be nominally
25 ns separated from each other, as explained in Chapter 2, Section 2.1.5. Under
this configuration, each revolution of the beams would yield a total of 3564 possible
bunch-crossings (BC) [158], which are identified with BCID numbers. However, not
all the bunch-slots can be actually filled with bunches, for operation practical and
security reasons.

The LHC fill is done by building bunch-trains, with several bunches equally
spaced followed by some empty gaps. At the end of 2010, the proton bunches in
a bunch-train had a separation of 150 ns, leaving five possible bunch-slots empty
in-between, and the bunch-trains contained a maximum of 32 bunches, followed by
a large gap. Early during that year, bunches were even injected individually, with
large gaps separating them from the closest bunches.

This beam structure yields several bunch-crossing configurations: paired, un-
paired and empty bunch-crossings, among other particular configurations not rele-
vant for this study.

• In the paired bunch-crossings, the bunch-slots in both beams are filled; they
are the ones producing the proton-proton collisions.

• In the unpaired bunch-crossings, the corresponding bunch slot is filled only for
one beam; this means that only one proton bunch pass through the interaction
region at the bunch crossing.

• In the empty bunch-crossings, both bunch-slots are empty, so no proton bunch
pass through the ATLAS interaction region at the bunch crossing.

The trigger system of the ATLAS detector is provided with detailed information,
containing the configuration for each BCID. Thus, the trigger lines aimed to collect
collision events are only active for the paired bunch-crossings. But additionally,
there are specific trigger channels similar to the collision ones dedicated to collect
data in the unpaired and empty bunch-crossings, which are used for the study of
non-collision background.

The dataset collected on empty bunch-crossings corresponds to cosmic-ray orig-
inated events, and it is used as control sample for this background. The dataset
collected on unpaired bunch-crossings include both, beam-induced and cosmic-ray
originated events, but it is mainly considered and referred in this analysis as a control
sample for the beam-induced background.

Among the unpaired bunch-crossings, some are not considered for the control
sample, because they might include interactions between filled bunches with satellite
bunches from the opposite beam. The unpaired bunch-crossings actually used are
only those that are at least three BCID’s apart from either paired BC’s or unpaired
BC’s with the filled bunch on the opposite beam; they are called unpaired isolated
bunch-crossings.
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The data collected in these unpaired isolated and empty BC configurations might
not correspond purely to the background processes under study, nevertheless they
serve to set upper limits to the amount of non-collision background in the collision
samples. Some remnants of protons circulate in bunch slots which are in prin-
ciple considered to be empty; they may lead for instance to some proton-proton
collisions on “unpaired bunch-crossings”, or beam-induced events on “empty bunch-
crossings”.

In order to estimate the amount of non-collision background on a collision data
sample, the event selection used for this nominal sample is applied to the control
samples; the events passing the selection on the control samples are counted, and
then the results are extrapolated to the nominal collision sample. For the extrap-
olation, one have to take into account the number of paired, unpaired and empty
bunch-crossings during the data-taking periods, Npaired, Nunpaired and Nempty, respec-
tively. The extrapolation factor for the unpaired bunch-crossing samples funpaired and
for the empty bunch-crossing samples fempty are defined as follows:

fi =
Npaired

Ni

, i = unpaired, empty; (A.1)

The number of bunch-crossings in each configuration is not constant among the dif-
ferent data taking periods, but it changes, and for this reason these scaling factors fi
change from one period to another as well.

The beam-induced events collected on unpaired bunch-crossings correspond to
the product of one proton bunch passing by the ATLAS interaction point. But in
the case of the paired bunch-crossings, on which collisions are collected, two bunches
pass by the ATLAS interaction point, and therefore the amount of beam-induced
background is twice the one observed in the unpaired bunch-crossings.

Since the rate of cosmic-ray background is independent of the beam parameters,
this background has been studied considering data collected only in a fraction of
the whole data-taking period. Then, in some cases, the cosmic-ray background has
been extrapolated to the full samples based on the time-length of the data-taking
periods. Differently, for the study of the beam-induced background, data from all the
different data-taking periods with different beam conditions have been considered.

A.3 Event selections

The event selections start as usual at the trigger, requiring the events to have at least
one photon or two photons, depending on the analysis, with transverse momentum
thresholds lower than the ones used in the offline selection (details can be found in
the documents reporting these analyses [10–12]).

The data must satisfy quality requirements based on the good functioning of the
calorimeters, the inner detector and the trigger, and the beam quality.

In order to minimize the amount of non-collision background, events are required
to have at least one reconstructed primary vertex, with at least three tracks asso-
ciated to it. Then, one or two reconstructed photons are required, which have to
satisfy some kinematic requirements, according to the analysis:

• For the photons at low pT, events are required to have at least one photon,
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with transverse energy Eγ
T > 15 GeV, in the pseudorapidity region |ηγ| < 1.81,

excluding the region 1.37 < |ηγ| < 1.52, which corresponds to the transitions
between the barrel and the end-caps of the calorimeter.

• For the photons at high pT, events are required to have at least one photon,
with Eγ

T > 45 GeV, in the region |ηγ| < 2.37, excluding the region 1.37 <
|ηγ| < 1.52.

• For the diphoton study, events are of course required to have at least two
reconstructed photons, with Eγ

T > 16 GeV, in the region |ηγ| < 2.37, excluding
the region 1.37 < |ηγ| < 1.52; additionally, each photon pair is required to have
a separation in the pseudorapidity-azimuthal-angle space of ∆R > 0.4 (∆R is
defined in Chapter 2, Section 2.2.4).

For either analysis, photons are first required to satisfy the loose identification
criteria, then the tight identification criteria, and finally a calorimeter based isolation
criterion (details about these requirements can be found in Chapter 3).

The contributions from the non-collision background to the collision data samples
have been evaluated at different stages of these selections. It has been done with
and without the reconstructed primary vertex requisite, with and without requiring
photons to satisfy the different photon identification criteria.

For the analysis of photons at high pT and diphotons, the background evalua-
tions done specifically without applying the loose identification criteria are expected
to over-estimate the background, for differences at the trigger level selections used
for the nominal and control samples. Nevertheless, the background is studied at
that stage of the photon selection, basically because only at that level the number
events on the control samples is large enough for looking at the event distribution
on different variables of interest. Additional evaluations of the total background are
done at other stages of the selection for which no bias are expected. The reason of
this over-estimation is the following; the trigger level selections used for the nominal
collision samples require the photon candidates to satisfy part of the loose identi-
fication criteria, while the trigger level selections used in the unpaired and empty
bunch-crossings for the control samples do not apply photon identification criteria.

A.4 Results

As expected, most of the non-collision events in the control samples fail the primary
vertex requirement. In the case of single photons, only about one percent of the
events collected in unpaired bunch-crossings satisfy this requirement, and about five
percent in the diphoton case. On the cosmic-ray control samples, less than one per
mil of the events has a reconstructed primary vertex.

Therefore, only if the non-collision background events occur simultaneously with
proton-proton interactions, they could have some significant contribution the nomi-
nal samples. The results presented in the following tables and figures were obtained
without the primary vertex requirement, so they correspond to a pessimistic esti-
mation of the background.
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Table A.1: Number of reconstructed photons Nγ on a nominal sample (collected on paired bunch-crossings),

number of photons on the control sample from empty bunch-crossings Nbkg
γ , the corresponding value Nbkg-w

γ after
considering event weights equal to the scaling factor from Equation A.1, and the fraction that it represent with

respect to the nominal sample Nbkg-w
γ /Nγ . These numbers are quoted before and after applying different photon

identification criteria. The data considered for this table correspond to two datasets labeled in ATLAS as run
160801 and run 160879, which correspond to the data-taking period E.

Photon ID Paired BC’s Empty BC’s Ratio

Nγ Nbkg
γ Nbkg-w

γ Nbkg-w
γ /Nγ [%]

None 438969 2418 13.88± 0.28 0.00316± 0.00006
loose 123281 870 4.99± 0.17 0.0040± 0.0001
tight 24811 5 0.029± 0.013 0.00012± 0.00005

A.4.1 Photons at low pT

Cosmic rays originated background

The estimation of cosmic-ray background for the low pT photons has been done based
on data collected in a couple of days, at beginning of August; these data correspond
to the datasets labeled internally in the ATLAS collaboration as run 160801 and
run 160879, and belong to the data-taking period E, which groups a large fraction
of the data collected in August, in 2010.

Table A.1 shows the number of reconstructed photons collected in paired bunch-
crossings Nγ, and the number of photons in the control sample from empty bunch-
crossings Nbkg

γ . For each of the photon candidates, a weight is assigned; this weight
is equal to the scaling factor defined in the Equation A.1. The values obtained after
considering the event weights Nbkg-w

γ are also quoted in the table, as well as the
ratio of this value with respect to the nominal control samples Nbkg-w

γ /Nγ. These
numbers are quoted for different stages of the selection, with and without requiring
photons to satisfy the different identification criteria.

When photons are required to satisfy the tight criteria, the relative amount of
cosmic-ray background decreases by one order of magnitude, with respect to the
equivalent value for loose photons.

Assuming the rate of cosmic-ray background per bunch crossing per time unit
to be constant in time, an estimation of the total amount of cosmic background
has been obtained for all the data taking period considered in the cross-section
measurement. Figure A.2 shows on the left side a comparison of the estimated
background with the number of photon candidates in the nominal sample, as a
function of the photon transverse momentum, and on the right side the relative
amount that the background represents with respect to the nominal sample. It
is shown for photons without any identification requirement, and for photons that
satisfy the loose criteria.

The background fraction increases with the photon transverse momentum. But
for the highest pT bin, the amount of cosmic-ray background is still quite low, below
0.2%.

Figure A.3 shows the estimated cosmic-ray background also as a function of pT,
for five different data taking periods, labeled in ATLAS as A, B, C, D and E. These
are periods that usually last a few weeks. As mention above, the LHC instantaneous
luminosity evolved significantly in 2010; for the period A, the luminosity was the
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Figure A.2: Cosmic-ray originated background extrapolated from a control sample collected on empty bunch-
crossings to a nominal collision sample. The left side figure shows the number of background photons together with
the number of photon candidates found in the nominal sample, and the right side figure shows the relative amount
of background with respect to the nominal photon sample. It is shown as a function of the photon transverse
momentum pT, requiring and without requiring photons to satisfy the loose identification criteria.
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Figure A.3: Cosmic-ray originated background extrapolated from a control sample collected on empty bunch-
crossings to a nominal collision sample. This is the relative amount of background with respect to the nominal
photon sample as a function of the photon transverse momentum pT, for photons required to satisfy the loose
identification criteria, and it is shown separately for different data-taking periods. The number of interactions per
bunch-crossing increased among these data taking periods, with the lowest values for the period A, and the highest
values for the period E.

lowest one, and period E had the highest luminosity. This figure shows that the
cosmic-ray background in the periods D and E is about two order of magnitude
lower than at the very beginning of the data-taking (period A).

Beam-induced background

Table A.2 shows the number of reconstructed photons collected on paired bunch-
crossings Nγ, the number of photons found in the control sample collected in un-
paired bunch-crossings, the valueNbkg-w

γ obtained applying the extrapolation weights,
and the proportion that this background amount represents with respect to the nom-
inal control sample Nbkg-w

γ /Nγ.
Figure A.4 shows on the left side the number of reconstructed photon candidates

on the nominal sample and the estimated background, as a function of pT. The right
side figure shows the relative amount of background with respect to the nominal
photon samples. This figure shows a strong dependence of the background on the
photon transverse momentum, as observed also in Figure A.2 for the cosmic-ray
background. For the highest pT bin, the background fraction is about 0.2%, for
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Table A.2: Number of reconstructed photons Nγ on a nominal sample (collected on paired bunch-crossings),

number of photons on the control sample from unpaired bunch-crossings Nbkg
γ , the corresponding value Nbkg-w

γ

after considering event weights equal to the scaling factor from Equation A.1, and the fraction that it represent with

respect to the nominal sample Nbkg-w
γ /Nγ . These numbers are quoted before and after applying different photon

identification criteria.

Photon ID Paired BC’s Unpaired BC’s Ratio

Nγ Nbkg
γ Nbkg-w

γ Nbkg-w
γ /Nγ [%]

None 3035440 174 555± 61 0.0183± 0.0020
loose 836092 24 54± 19 0.0064± 0.0022
tight 164509 0 − −
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Figure A.4: Non-collision background extrapolated from a control sample collected on unpaired bunch-crossings
to a collision nominal sample. The left side figure shows the number of background photons together with the
number of photon candidates found in the nominal sample, and the right side figure shows the relative amount
of background with respect to the nominal photon sample. It is shown as a function of the photon transverse
momentum pT, requiring and without requiring photons to satisfy the loose identification criteria.
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Figure A.5: Non-collision background extrapolated from a control sample collected on unpaired bunch-crossings
to a collision nominal sample. The left side figure shows the number of background photons together with the
number of photon candidates found in the nominal sample, and the right side figure shows the relative amount of
background with respect to the nominal photon sample. It is shown for different data-taking periods, requiring and
without requiring photons to satisfy the loose identification criteria. The number of interactions per bunch-crossing
increased among these data taking periods, with the lowest values for the period A, and the highest values for the
period E.
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loose photons.

In Figure A.5, the absolute and relative estimated amount of non-collision back-
ground is shown as a function of the data-taking period. This figure shows a lower
amount of background for the last two periods (D and E) than for the first ones,
which is expected given the beam parameters and luminosity evolution. About 98%
of the photon candidates used for the photon production measurement have been
collected in periods D and E, where this background is estimated to be lower than
0.01%.

Comparing the amount of background estimated from the control samples col-
lected in the unpaired and empty bunch-crossings, quoted on tables A.2 and A.1,
and shown in figures A.4 and A.2 respectively, one can conclude that after requiring
the photons to satisfy the loose identification criteria, a significant fraction of the
control sample collected on unpaired bunch-crossings should correspond in fact to
cosmic-ray originated background.

A.4.2 Photons at high pT

Cosmic rays originated background

In the cross-section measurement for photons at high pT, the data used was col-
lected between August and November of 2010, while for the study of the cosmic-ray
background, only data collected in a first part of this data-taking period was used,
specifically data collected in August. The number of interactions per bunch-crossing
for this first part of the data-taking was lower than for the rest. Therefore, the rel-
ative amount of cosmic-ray background in a nominal photon sample obtained in
this study is expected to be higher than for the whole dataset considered in the
measurement.

The estimated amount of cosmic-ray background is quoted in Table A.3, for
different stages of the photon selection. Even without requiring photons to satisfy
identification criteria, this background is below 0.1% of the nominal photon sample.
Additionally, when photons are required to satisfy the tight identification criteria,
this background fraction decreases by two orders of magnitude.

The estimated cosmic-ray background is shown as a function of the photon pseu-
dorapidity η and transverse momentum pT in Figure A.6. This is the relative amount
of background with respect to the nominal photon sample. On the left side, it is
shown as a function of η, with and without requiring photons to satisfy the loose
criteria. On the right side, it is shown as a function of pT for photons satisfying
the loose criteria, for different pseudorapidity regions. One can see that this relative
amount of background is higher for the η region corresponding to the barrel than for
the one corresponding to the end-caps, which is expected for cosmic-ray originated
background. As observed previously in Section A.4.1, the cosmic-ray background
fraction increases with the photon pT. This background represents 1% of the loose
photon sample in the highest pT bin [200, 400), and it is expected to significantly
decrease with the tight requirements.
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Table A.3: Number of reconstructed photons Nγ on a nominal sample (collected on paired bunch-crossings),

number of photons on the control sample from empty bunch-crossings Nbkg
γ , the corresponding value Nbkg-w

γ after
considering event weights equal to the scaling factor from Equation A.1, and the fraction that it represent with

respect to the nominal sample Nbkg-w
γ /Nγ . These numbers are quoted before and after applying different photon

identification criteria. The data considered for this table correspond to data collected between August and November
of 2010.

Photon ID Paired BC’s Empty BC’s Ratio

Nγ Nbkg
γ Nbkg-w

γ Nbkg-w
γ /Nγ [%]

None 10225 1721 9.64± 0.23 0.0942± 0.0025
loose 9342 591 3.32± 0.14 0.0356± 0.0015
tight 4186 2 0.011± 0.008 0.00027± 0.00019
tight isolated 2551 2 0.011± 0.008 0.00045± 0.00032
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Figure A.6: Cosmic-ray originated background extrapolated from a control sample collected on empty bunch-
crossings to a collision nominal sample. This is the relative amount of background with respect to the nominal
photon sample. It is shown on the left side as a function of the photon pseudorapidity η, requiring and without
requiring photons to satisfy the loose criteria, and on the right side for photons satisfying the loose criteria as a
function of the photon transverse momentum pT, for the different pseudorapidity regions.

Table A.4: Number of reconstructed photons Nγ on a nominal sample (collected on paired bunch-crossings),

number of photons on the control sample from unpaired bunch-crossings Nbkg
γ , the corresponding value Nbkg-w

γ

after considering event weights equal to the scaling factor from Equation A.1, and the fraction that it represent with

respect to the nominal sample Nbkg-w
γ /Nγ . These numbers are quoted before and after applying different photon

identification criteria.

Photon ID Paired BC’s Unpaired BC’s Ratio

Nγ Nbkg
γ Nbkg-w

γ Nbkg-w
γ /Nγ [%]

None 746898 650 10300± 439 1.38± 0.06
loose 633342 30 452± 93 0.071± 0.015
tight 249297 1 17± 17 0.007± 0.007
tight isolated 148862 1 17± 17 0.011± 0.011

150



A.4. Results

|η|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

N
on

-c
ol

lis
io

n 
ba

ck
gr

ou
nd

 [%
]

-210

-110

1

10

All

Loose

 [GeV]
T

p
50 100 150 200 250 300 350 400

N
on

-c
ol

lis
io

n 
ba

ck
gr

ou
nd

 [%
]

1

10

210

| < 0.6η|
| < 1.37η0.6 < |
| < 1.82η1.52 < |
| < 2.37η1.81 < |

Figure A.7: Non-collision background extrapolated from a control sample collected on unpaired bunch-crossings to
a collision nominal sample. This is the relative amount of background with respect to the nominal photon sample.
It is shown on the left side as a function of the photon pseudorapidity η, requiring and without requiring photons
to satisfy the loose criteria, and on the right side for photons without identification requirements as a function of
the photon transverse momentum pT, for the different pseudorapidity regions.

Beam-induced background

Table A.4 contains the estimated amount of non-collision background, for different
stages of the photon selection. When photons are required to satisfy the loose
identification criteria the background fraction decreases by one order of magnitude,
and it further decreases by another order of magnitude when the tight criteria are
required.

Figure A.6 shows on the left side the estimated non-collision background as a
function of η, for photons required and not required to satisfy the loose criteria, and
on the right side as a function of pT, for photons without identification requirements,
for different pseudorapidity regions. This is the relative amount of background
with respect to the nominal photon sample. When the loose criteria are required,
the highest relative amount of background is found for large absolute values of η
(these are the forward regions closest to beam direction); this trend is expected
for beam-induced background. Figure A.7 shows on the right side that the largest
amount of non-collision background is found in the highest pT bin for the region
1.81 < |η| < 2.37; it is 20%, but it is expected to decrease by two orders of magnitude
when the tight photon identification criteria are required.

A.4.3 Diphotons

For the estimation of non-collision background in the diphoton candidate sample,
two types of background events have been considered: events in which both recon-
structed photons correspond to the product of a non-collision process, and events in
which a non-collision background photon overlaps with the production of a prompt
photon in a proton-proton interaction.

For the second case, one can estimate the relative amount of non-collision single
photons in a collision nominal sample, with respect to the number of diphoton
events selected, and then one has to consider the rate of prompt photon production
per bunch-crossing. This prompt photon rate per bunch-crossing can be obtained
dividing the rate of prompt photons per time unit Rγ by the rate of paired bunch-
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crossings per time unit Rpaired-BC:

Rγ

Rpaired-BC

=
Lσγ

npaired-BCfrev

∼ 2·1032cm−2s−1 · 2·10−7b · 10−24cm2/b

368 · 104s−1
(A.2)

∼ 10−5;

where L is the LHC instantaneous luminosity, σγ is the total cross-section for the
production of isolated prompt photons with ET > 16 GeV in the η acceptance region,
npaired-BC is the number of colliding bunch-crossings per revolution, and frev is the
beam revolution frequency. For the rough estimation of this ratio, the luminosity
and beam parameters corresponding to the last period of the 2010 data-taking have
been considered (these are quoted in Chapter 2, Section 2.1), and a rough estimation
of the photon production cross-section has been computed from the measurement
reported in [10,11].

Cosmic rays originated background

Like for the high pT single photons, the diphoton cosmic-ray background has been
studied with data collected in August of 2010, while the data considered for the
diphoton cross-section measurement correspond to the period from August to Novem-
ber of the same year. The relative amount of this background for the complete
dataset is expected to be lower than the values obtained in this study for a fraction
of the dataset.

Table A.5 summarizes the results obtained in the estimation of the cosmic-ray
background. Even before applying any photon identification criteria, the amount of
cosmic-ray originated diphotons is found to be quite small, less than 0.01%. Also
the number of cosmic single photons found after the whole selection is very small
compared with the number of collision diphoton events.

Figure A.8 shows on the left side the estimated cosmic-ray background for pho-
tons without identification requirement, as a function of the diphoton invariant mass
Mγγ (top), the transverse momentum pT,γγ (middle), and the azimuthal difference
∆φγγ (bottom). The background is below 0.1% for most of the bins, except for the
high pT,γγ bins where it represents a few percents of the diphoton sample. Neverthe-

Table A.5: Number of reconstructed diphotons Nγγ on a nominal sample (collected on paired bunch-crossings),

number of diphotons Nbkg
γγ and single photons Nbkg

γ on the control sample from empty bunch-crossings, the corre-

sponding values Nbkg-w
γγ and Nbkg-w

γ after considering event weights equal to the scaling factor from Equation A.1,

and the fraction that they represent with respect to the nominal sample Nbkg-w
γγ /Nγγ and Nbkg-w

γ /Nγ . These num-
bers are quoted before and after applying different photon identification criteria. The data considered for this table
correspond to data collected between August and November of 2010.

Photon ID Paired BC’s Empty BC’s Ratios

Nγγ Nbkg
γγ Nbkg-w

γγ Nbkg
γ Nbkg-w

γ Nbkg-w
γγ /Nγγ [%] Nbkg-w

γ /Nγγ [%]

None 1819 26 0.148± 0.029 8828 49.4± 0.5 0.0082± 0.0016 2.72± 0.07
loose 834 2 0.011± 0.008 2740 15.34± 0.29 0.0014± 0.0010 1.84± 0.07
tight 82 0 − 19 0.104± 0.024 − 0.13± 0.03
tight isolated 29 0 − 8 0.044± 0.016 − 0.15± 0.06
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less, according to Table A.5, this background fraction is expected to decrease about
one order of magnitude after applying the loose selection and even more with the
additional selection requirements.
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Figure A.8: Non-collision background extrapolated from control samples to collision nominal samples, for photons
without identification requirements. This is the relative amount of background with respect to the nominal diphoton
samples. The figures on the left side correspond to cosmic-ray background, extrapolated from a sample collected
on empty bunch-crossings. For the right side figures, the background was extrapolated from samples collected on
unpaired bunch-crossings, and correspond principally to beam-induced background. It is shown as a function of the
diphoton invariant mass mγγ (top), the total transverse momentum of the diphoton system pγγT (middle), and the
azimuthal photon separation ∆φγγ (bottom).

Beam-induced background

The results of the background extrapolation from the unpaired bunch-crossing sam-
ple are quoted in Table A.6. After requiring photons to satisfy the loose criteria,
the non-collision diphoton events are below 0.1% of the nominal sample.

In this case, the ratio Nbkg-w
γ /Nγγ achieves large values, nevertheless considering

the prompt photon rate per bunch-crossing of about 10−5, the probability of having
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Table A.6: Number of reconstructed diphotons Nγγ on a nominal sample (collected on paired bunch-crossings),

number of diphotons Nbkg
γγ and single photons Nbkg

γ on the control sample from unpaired bunch-crossings, the

corresponding values Nbkg-w
γγ and Nbkg-w

γ after considering event weights equal to the scaling factor from Equa-

tion A.1, and the fraction that they represent with respect to the nominal sample Nbkg-w
γγ /Nγγ and Nbkg-w

γ /Nγ .
These numbers are quoted before and after applying different photon identification criteria.

Photon ID Paired BC’s Unpaired BC’s Ratios

Nγγ Nbkg
γγ Nbkg-w

γγ Nbkg
γ Nbkg-w

γ Nbkg-w
γγ /Nγγ [%] Nbkg-w

γ /Nγγ [%]

None 132924 46 1628± 251 5909 175083± 2544 1.22± 0.19 132± 2
loose 48934 1 44± 44 384 11099± 640 0.09± 0.09 23± 1
tight 4227 0 − 35 1132± 207 − 27± 5
tight isolated 1665 0 − 22 662± 153 − 40± 9

in the diphoton sample a non-collision background photon overlapping with the
production of a prompt photon in a collision turns out to be quite small.

Figure A.8 shows on the right side the relative amount of non-collision back-
ground as a function of three variables: the diphoton invariant mass Mγγ (top), the
transverse momentum pT,γγ (middle) and the azimuthal difference ∆φγγ (bottom).
Again the highest relative amount of background is found in the high pT,γγ bins. The
values observed in these figures are of course expected to decrease after requiring
photons to satisfy the identification criteria.

A.5 Conclusions

The amount of non-collision background in the single photon and diphoton samples
has been estimated. This background estimation has been done based on control
samples collected in time slots in which only one or no proton bunch pass by the
ATLAS interaction point. These samples are expected to be dominated by beam-
induced and cosmic-ray originated events.

From the obtained results, the relative amount of non-collision background for
the three photon analysis considered [10–12] is expected to be below 0.1%, after
applying the nominal photons selections. This is the case for the different bins in the
different kinematic variables considered in those photon analyses. This amount of
background is negligible compared with the size of the uncertainties on the concerned
cross-section measurements, which are at least of 10%.
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à́ı1 of pp collision data collected in 2011 , Tech. Rep.

ATLAS-CONF-2012-123, CERN, Geneva, Aug, 2012.

[96] M. Cacciari, G. P. Salam, and S. Sapeta, On the characterisation of the
underlying event , JHEP 1004 (2010) 065, arXiv:0912.4926 [hep-ph].

[97] M. Hance and H. H. Williams, Measurement of Inclusive Isolated Prompt
Photon Production in Proton-Proton Collisions at

√
s = 7 TeV with the

ATLAS Detector. PhD thesis, Pennsylvania U., Philadelphia, 2011.
Presented 11 Jul 2011, CERN-THESIS-2011-044.

[98] J. Gaiser, Charmonium spectroscopy from radiative decays of the J /psi and
psi-prime, .

161

http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://www.sciencedirect.com/science/article/pii/S0010465508000441
http://arxiv.org/abs/0710.3820
http://arxiv.org/abs/0710.3820
https://herwig.hepforge.org/
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://www.sciencedirect.com/science/article/pii/S0168900203013688
http://dx.doi.org/10.1140/epjc/s10052-010-1429-9
http://www.springerlink.com/content/g13863141t7r7571/
http://arxiv.org/abs/1005.4568
https://cdsweb.cern.ch/record/1363300
http://cds.cern.ch/record/1099735
http://arxiv.org/abs/0901.0512
http://arxiv.org/abs/arXiv:0901.0512
http://cds.cern.ch/record/1345329
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ElectronGammaPublicCollisionResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ElectronGammaPublicCollisionResults
http://cds.cern.ch/record/1273197
http://arxiv.org/abs/physics/0703039
http://cds.cern.ch/record/1473426
http://dx.doi.org/10.1007/JHEP04(2010)065
http://link.springer.com/article/10.1007%2FJHEP04%282010%29065
http://arxiv.org/abs/0912.4926
http://cds.cern.ch/record/1367057


Bibliography

[99] LHC Higgs Combination Group, ATLAS Collaboration, CMS Collaboration,
Procedure for the LHC Higgs boson search combination in summer 2011 ,
Tech. Rep. ATL-PHYS-PUB-2011-011, CERN, Geneva, Aug, 2011.

[100] A. L. Read, Presentation of search results: The CL(s) technique, J.Phys.
G28 (2002) 2693–2704.

[101] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for
likelihood-based tests of new physics , Eur.Phys.J. C71 (2011) 1554,
arXiv:1007.1727 [physics.data-an].

[102] S. Wilks, The large-sample distribution of the likelihood ratio for testing
composite hypotheses , Ann. Math. Statist. 9:pp (1938) 60–62.

[103] E. Gross and O. Vitells, Trial factors or the look elsewhere effect in high
energy physics , Eur.Phys.J. C70 (2010) 525–530, arXiv:1005.1891
[physics.data-an].

[104] L. Fayard and G. Unal, Search for Higgs decay into photons with EAGLE.
Add. 1 Addendum on the Higgs search with photons. Add. 2 (final?) update
on Higgs decay to photons , .

[105] ATLAS detector and physics performance: Technical Design Report, 2.
Technical Design Report ATLAS. CERN, Geneva, 1999.
CERN-LHCC-99-15, ATLAS-TDR-15.

[106] ATLAS Collaboration, G. Aad et al., Observation of a new particle in the
search for the Standard Model Higgs boson with the ATLAS detector at the
LHC , Phys.Lett. B716 (2012) 1–29, arXiv:1207.7214 [hep-ex].

[107] P. Bernat and M. Kado, Recherche du boson de Higgs dans le canal de
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Observation d’une nouvelle particule
dans la recherche du boson de Higgs se désintégrant en deux photons
dans l’expérience atlas au lhc

Heberth Torres Dávila

Cette thèse présente une recherche du boson de Higgs du Modèle standard dans le
canal de désintégration en deux photons. L’étude est basée sur les collisions proton-proton
enregistrées par le détecteur ATLAS auprès du grand collisionneur de hadrons du CERN
(LHC), en 2011 et 2012. Les données analysées correspondent à 4,8 fb−1 de luminosité
intégrée à une énergie dans le centre de masse de la collision

√
s = 7 TeV, et 5,9 fb−1 à√

s = 8 TeV.
Dans la distribution de masse invariante des paires de photons, un excès d’événements

est observé aux alentours de 125 GeV. La probabilité d’avoir une fluctuation statistique
positive dans cette distribution égale ou supérieure à l’excès observé, dans la fenêtre de
masse étudiée [110 − 150 GeV], est de 1, 6 × 10−4. Cette probabilité correspond à 3,6
déviations standard. Des résultats similaire ont été obtenus dans les recherches du boson
de Higgs dans d’autres canaux de désintégration par la collaboration ATLAS, ainsi que
par CMS. Ces résultats démontrent l’existence d’une nouvelle particule, dont les propriétés
sont compatibles avec celles du boson de Higgs du Modèle standard.

Observation of a new particle
in the search for the Higgs boson in the two photon decay channel
in the atlas experiment at the lhc

Heberth Torres Dávila

This thesis presents a search for the Standard Model Higgs boson in the diphoton decay
channel. It is based on the analysis of proton-proton collisions collected with the ATLAS
detector at the Large Hadron Collider at CERN, in 2011 and 2012. The analyzed data
correspond to 4.8 fb−1 of integrated luminosity at a center-of-mass energy

√
s = 7 TeV,

and 5.9 fb−1 at
√
s = 8 TeV.

In the diphoton invariant mass distribution, an excess of events is observed around
125 GeV. The probability to have a positive statistical fluctuation in that distribution equal
or larger than the observed excess, anywhere in the explored mass range [110− 150 GeV],
is 1.6×10−4. This probability corresponds to 3.6 standard deviations. Similar results have
been obtained in the searches of the Higgs boson in other decay channels by the ATLAS
collaboration, as well as by CMS. These results indicate the existence of a new particle,
whose properties are compatible with those of the Standard Model Higgs boson.
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