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The gluon masses

S.A. Larin

Institute for Nuclear Research, 60-th October Anniversary prospect, 7-A, Moscow 117312,
Russia

E-mail: larin@inr.ac.ru

Abstract. It is shown that the fundamental Lagrangian of Quantum Chromodynamis should
be modified by the adding gluon masses to produce the mass-gap in accordance with the Källen-
Lehmann spectral representation. On mass-shell renormalizability and unitarity of the resulting
theory is demonstrated.

The discovery [1] of asymptotic freedom in Quantum Chromodynamics (QCD) has lead
to the establishment of QCD as the theory of strong interactions. The gauge bosons
of the theory, the gluons, are considered to be massless to have gauge invariance and
correspondingly renormalizability. The introduction of the non-zero Lagrangian gluon masses
into the fundamental QCD Lagrangian was considered to be forbidden because of the violating
either renormalizability or untarity of the corresponding theory. Giving masses to gauge bosons
via the Higgs mechanism [2] is also not allowed since colored Higgs particles are rejected by
experiments.

Quite recently it was found that the non-abelian Yang-Mills theory [3] with masses of the
Proca type is in fact on mass-shell renormalizable [4]. Unitarity of the theory of the Proca type
is obvious since it contains only physical degrees of freedom (no ghosts).

In the present paper it is shown that it is impossible to obtain the necessary mass-gap
in QCD with zero Lagrangian gluon masses. The fundamental QCD Lagrangian should be
modified by the adding non-zero Lagrangian gluon masses of the Proca type to produce the
mass-gap in accordance with the Källen-Lehmann spectral representation [5]. On mass-shell
renormalizability of the resulting theory is discussed.

The Lagrangian of QCD is

LQCD = −1

4
F aµνF

a
µν + iψfγµDµψf −mfψfψf (1)

−1

ξ
(∂µAaµ)2 + ∂µca(∂µc

a − gfabccbAcµ) + counterterms,

where F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν is the gluon field strength tensor, Dµ = ∂µ − igAaµT a

is the covariant derivative. The quark fields ψf transform as the fundamental representation
of the colour group SU(3) , f = u, d, s, c, b, t is the flavour index. The gluons Aaµ transform as
the adjoint representation of this group. ca are the ghost fields, ξ is the gauge parameter of the
usually chosen general covariant gauge, fabc are the structure constants of the group, T a are
the generators of the fundamental representation. g = g(µ) is the renormalized strong coupling
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constant, g2/(16π2) ≡ as, mf = mf (µ) is the Lagrangian (renormalized) mass of a quark with a
flavor f , and µ is the renormalization point. The summations over repeated indexes are assumed.

Let us consider the vacuum polarization function Π(q2)

(−q2gµν + qµqν)Π(q2) = i

∫
dxeiqx〈0| T jµ(x)jν(0) |0〉. (2)

where jµ =
∑
f qfψfγµψf is the electromagnetic quark current and qf = 2/3,−1/3, ... is the

electromagnetic charge of the quark with a flavor f .
According to general principles of local quantum field theory the function Π(q2) satisfies the

Källen-Lehmann [5] spectral representation

Π(q2) =
1

12π2

∫ ∞
4m2

π

ds
R(s)

s− q2 − i0
, (3)

where the ratio R(s) = σtot(e
+e− → hadrons)/σ(e+e− → µ+µ−) is the normalized total cross-

section of electron-positron annihilation into hadrons, mπ is a pion mass.
The Källen-Lehmann representation determines the analytic properties of Π(q2) which should

be an analytic function in the complex q2-plane with the cut starting from the first physical
threshold, i.e. as it is dictated by experiments from the two-pion threshold q2 = 4m2

π. In
particular, one gets for the discontinuity of Π(q2) on the cut

∆Π(q2) ≡ Π(q2 + i0)−Π(q2 − i0) =

{
i R(q2)/(6π) at s > 4m2

π

0 at s < 4m2
π.

(4)

Perturbative QCD produces the following expression for the discontinuity

∆Π(q2)pQCD = θ(q2) ρgluon(q2) + θ(q2 − 4M2
u) ρquark(q

2). (5)

The gluon spectral density ρgluon(q2) contributes for q2 > 0 as it is indicated by the theta-
function θ(q2). This is the known zero threshold. It arises from those absorptive parts of
Feynman diagrams of Π(q2) which are produced by purely gluonic cuts of the diagrams (i.e. by
the Cutcosky cuts which cross only gluon propagators of diagrams). As it is well known such
diagrams appear for the first time at the four-loop level in the order a3s (corresponding cuts cross
3 gluon propagators).

The quark spectral density ρquark(q
2) arises from the quark cuts of the diagrams (i.e. from the

cuts which cross two or more quark propagators of the diagrams). It contributes for q2 > 4M2
u

where Mu is the perturbative pole mass of the lightest u-quark, defined as the pole of the quark
propagator within perturbation theory. A perturbative quark pole mass Mf = mf (µ) + O(as)
naturally appears after summation of perturbative loop corrections to a quark propagator. It
is a renormalization group invariant quantity, i.e. independent on the renormalization point µ
and on the choice of the subtraction scheme. In this sense it behaves as a physical object and
that is why it is natural to use this definition of a quark mass to parametrize the theory.

We will not discuss here the important by themselves questions of convergence or divergence
of corresponding perturbative QCD series at low or at high energies. Here we will just accept
the constructive approach that our conventional perturbation theory is adequate to the exact
solution of the theory, i.e. it correctly reproduces the perturbative expansion of the exact
solution. (We assume that the exact solution is in principle obtainable if we know enough
mathematics.)

Hence one gets within QCD that ∆Π(q2) is non-zero in the energy interval 0 < q2 < 4m2
π

since the perturbative contribution ∆Π(q2)pQCD is non-zero in this interval. And we would
like to stress here that one should get in QCD an exact zero below the two-pion threshold
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as it is dictated by experiments. There are of course also non-perturbative contributions, i.e.
contributions of the type of e−1/as which are invisible in the perturbative expansion at as = 0+

e−1/as = 0 · as + 0 · a2s + ...

But here we note that non-perturbative contributions can not exactly cancel the perturbative
contribution in the continuous interval 0 < q2 < 4m2

π because of the different analytucal
dependence on on the coupling constantas. To get that ∆Π(q2) = 0 at 0 < q2 < 4m2

π in
agreement with experiments one should move perturbative gluon and quark thresholds above
q2 = 4m2

π. That is why we should introduce the non-zero Lagrangian gluon masses.
One could object that peturbative contributions in the exact solution for ∆Π(q2) could be

moved above the two-pion threshould with the help of the suitably arranged θ-function. E.g. the
gluon perturbative contribution could be moved above the two-pion threshould in the following
way

θ
(
q2 −M2f(as)

)
ρgluon(q2), (6)

where f(as) is some function which is zero at as = 0 and M2 is a dimensional parameter
such that M2f(as) is a renormalization group invariant quantity which produces the necessary
mass-gap below the two-pion threshold.

But perturbative expansion of the contribution of eq.(6) would contain terms with δ(q2) and
its derivatives arising from the differentiating the θ-function and we do not see such terms in
real perturbative expansion. Thus the contributions of the type of eq.(6) are excluded in the
exact solution of the theory.

The naive objection here is that nobody trusts perturbation theory below the two-pion
threshold, i.e. that the corresponding perturbative series is heavily divergent in this energy
region. But for us only the principal existence of the pertubative series with finite coefficients
below the two-pion threshold is of importance here independently on the question of its
divergence.

Thus one obtains the following restrictions on the (perturbative pole) masses of gluons and
quarks

(3Mgl)
2 > 4m2

π, (7)

4M2
u > 4m2

π.

Although the restriction on Mu seems to be quite strong for the lightest u-quark it is not excluded
from the first principles.

To construct QCD with massive gluons we will follow the approach of [4]. Presently this is
the only known way to get (on mass-shell) renormalizable theory of massive gluons without
color scalars (color scalars are rejected by experiments). Within this approach one starts
from a renormalizable theory with scalar fields using the Englert-Brout-Higgs mechanism of
spontaneous symmetry breaking [2] and after transition to the unitary gauge removes remaining
massive scalar fields. Thus we add to the massless QCD Lagrangian (1) the scalar part to begin
with the following general Lagrangian

LQCD+scalars = −1

4
F aµνF

a
µν + iψfγµDµψf −mfψfψf+ (8)

(DµΦ)+DµΦ + (DµΣ)+DµΣ− λ1
(
Φ+Φ− v21

)2
− λ2

(
Σ+Σ− v22

)2
−λ3

(
Φ+Φ + Σ+Σ− v21 − v22

)2
− λ4

(
Φ+Σ

) (
Σ+Φ

)
+Lgf + Lgc + counterterms,
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where we introduced two triplets Φ(x) and Σ(x) of complex scalar fields in the fundamental
representation of the SU(3) color group to get all gluon massive. Lgf is the gauge fixing part
of the Lagrangian in some chosen gauge and Lgc is the corresponding gauge compensating part
with the Faddeev-Popov ghost fields.

We can choose the following shifts of scalar fields by the quantities v1 and v2 to generate
masses of all eight gluons

Φ(x) =

 φ1(x) + iφ2(x) + v1
φ3(x) + iφ4(x)
φ5(x) + iφ6(x)

 , Σ(x) =

 σ1(x) + iσ2(x)
σ3(x) + iσ4(x) + v2
σ5(x) + iσ6(x)

 . (9)

Choosing for simplicity v1 = v2 ≡ v one obtains the following massive terms for gluons in the
Lagrangian

LM = m2
gl

[
(A1)2 + (A2)2 + (A3)2 +

1

2
(A4)2+ (10)

1

2
(A5)2 +

1

2
(A6)2 +

1

2
(A7)2 +

1

3
(A8)2

]
,

where m2
gl ≡ g2v2 is the gluon mass parameter of the theory.

After the chosen shifts the following four combinations of scalar fields

φ1 +
λ3

λ1 + λ3
σ3, σ3, σ1 + φ3, σ2 − φ4 (11)

become massive Higgs particles.
The following eight combinations

σ1 − φ3, φ4 + σ2, φ2 − σ4, φ2 + σ4, φ5, φ6, σ5, σ6 (12)

become massless Goldstone ghosts.
Now one can make transition to the unitary gauge. All ghost fields as usual disappear from

the Lagrangian. Following the approach of [4] one can remove in the unitary gauge all Higgs
fields from the Lagrangian preserving on mass-shell renormalizability of the theory.

To give the derivation of this statement let us consuder as an example the simplified case
(the generalization to the above case will be straightforward). Let us consider the known model
given by the initial SU(2)-invariant Lagrangian of interaction of vector bosons and scalar fields
possessing the spontaneously broken symmetry

L = −1

4
F aµνF

a
µν + (DµΦ)+DµΦ− λ

(
Φ+Φ− v2

)2
(13)

with the doublet of scalar fields Φ(x) in the fundamental representation of the group.

Here DµΦ =
(
∂µ − ig τ2

aW a
µ

)
Φ is the covariant derivative, τa are the Pauli matrices, λ > 0,

v2 > 0. (This model can be considered as the Standard Model of electroweak interactions without
U(1)-interaction and fermions. The derivation given below can be applied also to the complete
Standard Model, the γ5- matrix being treated within dimensional regularization according to
the technique of [6].)

To get the complete Lagrangian one makes the standard shift of the scalar field fixes the
gauge and adds ultraviolet counterterms. Let us consider two gauges: the widely used Rξ-gauge
[7], [8] with an arbitrary parameter ξ and the unitary gauge.

The theory in the Rξ-gauge describes three physical massive vector bosons with the mass

m = gv/
√

2, and the physical Higgs field χ with the mass M = 2λv. Here are also Goldstone
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ghosts φa and Faddeev-Popov ghosts ca with masses ξm2. The structure of the counterterms
(consistent with gauge invariance and Slavnov-Taylor identities [9, 10] to ensure unitarity) is
well known, see e.g. [11].

The propagators in the unitary gauge defined by the gauge condition φa = 0 are obtained
from those of the Rξ-gauge by taking the limit ξ → ∞. The theory in the unitary gauge is
renormalizable only on mass-shell, i.e. Green functions are divergent at ε → 0 ( ε being the
parameter of dimensional regularization) but the S-matrix elements are finite.

To consider renormalization for our purpose it is convenient to use the Bogoliubov-Parasiuk-
Hepp subtraction scheme [12]. As it is well known in this scheme a counterterm of e.g. a
primitively divergent Feynman diagram is the truncated Taylor expansion of the diagram itself
at some fixed values of external momenta. Hence counterterms of mass dependent diagrams are
also mass dependent. Needless to say that subtractions should respect Slavnov-Taylor identities.

Let us consider S-matrix elements in the Rξ-gauge without external Higgs bosons (i.e. with
external W-bosons only in this simplified model). We will analyze the dependence of diagrams
on the Higgs mass M by using for convinience the expansion in large M (after renormalization
but before the removing regularization). The algorithm for the large mass expansion of Feynman
diagrams is given e.g. in [13] (where it is quite reasonably checked in calculations of the 4-loop
diagrams for the Z-boson decay into hadrons). It can be rigorously derived with the technique
of [14].

We separate all diagrams into physical ones which are not nullified in the limit ξ → ∞ and
unphysical ones which are nullified. In this limit the propagator of the W-boson reduces to the
known unitary form

lim
ξ→∞

< T (W a
µW

b
ν ) >= −iδab lim

ξ→∞

(
gµν − kµkν/m2

k2 −m2
+
kµkν/m

2

k2 − ξm2

)
= −iδab gµν − kµkν/m

2

k2 −m2

The propagators of the Goldstone bosons φa and ghosts ca vanish in this limit and
correspondingly all diagrams which contain these propagators are also nullified.

Thus in our notations the physical diagrams are the diagrams which do not contain Goldstone
bosons propagators or ghosts propagators and the unphysical diagrams are the diagrams which
contain such propagators.

Within the large-M expansion the physical diagrams with χ-propagators contain either terms
with integer negative powers of M2: 1

M2n , n = 1, 2, 3, ... or terms with non-integer powers of M2

(non-integer powers contain ε): 1
M2(k+lε) , k− integer, l− positive integer. This is because each

vertex with the large factor M2 has three or four attached χ-propagators due to the structure
of the Higgs boson self-coupling.

In contrast, unphysical diagrams can have polynomial in M terms due to the four-φ vertex
with the large factor M2. But they are ξ-dependent (they are nullified in the limit ξ →∞) and
this polynomial terms cancel in S-matrix elements.

In the renormalizable Rξ-gauge one can present ultraviolet renormalization in a standard
form of the Bogoliubov-Parasiuk R-operation for individual diagrams. This ensures that after
renormalization the M -dependent terms are finite at ε → 0 separately from M -independent
terms. Thus if one removes all M -dependent terms one is left with a finite expression.

On the Lagrangian level it means in the unitary gauge that one removes from LU all terms
containing the field χ and also all M -dependent terms in the counterterms. This should be
done in the unitary gauge because in the Rξ-gauge some diagrams containing propagators of
Higgs particle can give contributions not depending on the Higgs mass M . In contrast in the
unitary gauge all diagrams containing Higgs propagators give only contributions depending on
M so there is one to one correspondence between M -dependent diagrams and terms in the
Lagrangian containing the Higgs field χ
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The resulting theory is on mass-shell finite. This is the massive Yang-Mills theory of the
Proca type

LYM = −1

4
(∂µW

a
ν − ∂νW a

µ +
z1
z2
gfabcW b

µW
c
ν )2 +m2W a

µW
a
µ + counterterms.

Thus the Higgs mechanism can be considered as an efficient mathematical tool to observe
on mass-shell renormalizability of the massive Yang-Mills theory of the Proca type which is far
from to be obvious directly.

Let us now return to our Lagrangian (8) with two scalar triplets which after spontaneous
symmetry breaking has four Higgs particles (11). Following the above approach we can
remove in the unitary gauge all four Higgs fields from the Lagrangian preserving on mass-
shell renormalizability of the theory. The Lagrangian of the resulting QCD with massive gluons
is

Lmassive QCD = LM −
1

4
F aµνF

a
µν + iψfγµDµψf −mfψfψf + counterterms, (14)

where LM is given in eq.(10).
Let us note that on mass-shell renormalizability does not mean that one should consider

quarks and gluons as free external particles. It means that in the SU(3)×SU(2)×U(1) theory
the S-matrix elements with the physical external particles will be finite.

One can calculate the one-loop β-function in this theory to obtain for a massless
renormalization scheme (i.e. a scheme where renormalization group functions do not depend
on masses, e.g. the MS-scheme) the following result

β(as) = µ2
∂as
∂µ2

=
∑
i≥0

βia
i+2
s , β0 = −7

2
CA +

4

3
TFnf ,

here CA = 3 is the Casimir operator of the adjoint representation of the SU(3) color group,
TF = 1/2 is the trace normalization of the fundamental representation, nf is the number of
active quark flavors. Thus asymptotic freedom remains valid in the considered theory with
massive gluons.

The author is grateful to collaborators of the Theory division of INR for helpful discussions
and to the Organizing Committee of the Workshop for kind hospitality.
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