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Resumo

Nesta tese discutimos vários aspectos da física de neutrinos. Começamos introduzindo o

estado atual descrevendo a teoria padrão de oscillação de neutrinos. Exploramos também

vários cenários de física exótica, aquela além da teoria padrão de oscilações que possam

ser testadas em experiments atuais e futuros. Dividimos o trabalho em duas frentes:

Fenomenologia e Teoria. Na parte de fenomenologia trabalhamos com interações não-

padrão de neutrinos, não-unitariedade da matriz de mistura e efeitos de curta distancia

em experimentos de oscilação. Na parte teórica nós analisamos modelos especí�cos como

o Warped Flavor Symmetry Model e o Revamped A4, nos quais utilizamos de correlações

entre o ângulo de mistura atmosférico e a fase de CP para obter limites no espaço de

parâmetro dos modelos. Além disso, mostramos que é possível utilizar uma relação simples

entre o ângulo atmosférico e o ângulo de reatores para, de forma independente de modelo,

restringir modelos de massa de neutrinos de alta energia.

Keywords: Neutrinos,Oscilação de Neutrinos, Física Além do Modelo Padrão



Abstract

In this thesis, we discuss several aspects of �avor neutrino physics. From

the standard picture of neutrino physics, we describe the present scenario of neutrino

oscillations and explore many beyond standard oscillation scenarios that could be observed

or tested in current and future experiments. In the phenomenological side, we worked

with Non-standard neutrino interactions and Non-unitarity of the neutrino mixing matrix

in long and short baseline experiments. In the theoretical side, we also analyzed speci�c

models such as the Warped Flavor Symmetry and the Revamped A4, where we used the

correlations among the atmospheric mixing angle and the CP-phase. We showed that it

is possible to also use the correlation between the atmospheric and the reactor angle to

model-independently constraint high energy neutrino mass models.

Keywords: Neutrinos, Neutrino Oscillation, Beyond Standard Model
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Chapter 1
Introduction

�It is no good to try to stop knowledge from going forward. Ignorance is never

better than knowledge.�

Enrico Fermi

In the Standard Model of particle physics, one can group quarks and leptons in three pairs

each. Those are the so-called Fermion Families. Each family behaves approximately in

the same way as the other except that they have di�erent masses. This is illustrated in

Table 1.1 below.

Leptons Quarks

Family SU(2) Doublet

Electron

 νe

e


e

Muon

 νµ

µ


µ

Tau

 ντ

τ


τ

Family SU(2) Doublet

Up

 u

d


U

Charm

 c

s


C

Top

 b

t


T

Table 1.1 � Fermion particles in the Standard Model and their grouping into Families.

For each family, it is given a name or '�avor'. For the leptons, we have an
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electron, muon and tau �avors. The �avor physics is the area that studies the interactions

between all the fermion and quark families in order to explain why they behave the way

they do and how to explain their parameters.

In this work we concentrate on the neutrinos ν because they provide a clear pathway

to search for new physics: Neutrino mass is the �rst laboratory observation of physics

beyond the Standard Model. Also, neutrino masses are strange. They are very tiny in

comparison to all the other particles we observe.

During this Ph.D. we concentrated on neutrino �avor physics by the systematic study

of various scenarios that go beyond the Standard Model of particle physics and how

they could be tested in current and future neutrino experiments. We divided our work

into two distinct approaches: (1) Phenomenology: We studied Non-standard neutrino

interactions, Non-unitarity of the mixing matrix and sterile neutrinos and (2) Theory:

We studied symmetry �avor models and the correlation they predict among the mixing

angles. In particular, the Warped Flavor Symmetry model and the Revamped A4 model.

In Chapter 2 we present the importance of the neutrinos in the current scenario

of particle physics. In Chapter 3 we present the theory of neutrino oscillations, the

experimental evidence and a detailed discussion on the correct way of derivating the

neutrino oscillation probability. In Chapter 4 we present the theory behind various beyond

standard model e�ects that are expected to be present in the neutrino oscillations, which

includes Non-standard Interactions, Sterile Neutrinos, and Non-unitarity. In Chapter 5

We summarize various phenomenological analysis performed during this Ph.D., which

include changes in the meson decay rate due to non-standard neutrino interactions, the

interplay between θ13 in the measurement of θ23 octant and physics in short-baseline liquid

argon detectors. In Chapter 6 we summarize all the theoretical analysis we performed in

various models of neutrino masses. And �nally in Chapter 7 we present our �nal remarks

and conclusions. In Attachment B.1 we list all the scienti�c production that as published

or are under review, which resulted from this work.
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Chapter 2
Introduction to Neutrino Physics

�Isn't it enough to see that a garden is beautiful without having to believe

that there are fairies at the bottom of it too?�

Douglas Adams

2.1 Importance of the Neutrino

Neutrinos are present on high energy physics and cosmology. In the former, it

shines a glimpse of physics beyond the standard model, while in the later, it plays a very

important role in the evolution of the universe. This is why the physics community is

turning its e�orts toward the understanding of all the theory that permeates the mystery

that the neutrino is.

We lack knowledge on many parameters of the neutrino sector: (i) The Majo-

rana/Dirac character of the neutrinos, (ii) The mass scale and ordering and (iii) charge

conjugation-parity (CP) phase(s). Describing such parameters may be a way to unveil

new and testable physics. Also, almost any extension of the standard model that can

be constructed to explain neutrino masses introduces new particles. Those can produce

several new interesting e�ects that are beyond our current knowledge of the universe:

Presence of sterile neutrinos, non-unitary of the neutrino mixing matrix and non-standard

interactions.
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This is why the leptonic �avor physics and neutrino oscillations are a hot topic

in experimental and theoretical particle physics. In special, the high energy physics com-

munity has its eyes on future neutrino experiments such as T2(H)K [17, 18], NOνA [19]

and DUNE [20] that might probe for the �rst time the yet-to-be-measured CP phase, neu-

trino mass ordering and will reach a fantastic precision for the other neutrino parameters.

It is exciting that the last two parameters to be measured in the Standard

Model (SM) is present in the neutrino physics: The lightest neutrino mass and the CP

phase. Measuring neutrino mass is hard, but we might be able to do it with cosmology [21,

22] and, if neutrinos are in fact Majorana particles, in neutrinoless double beta decay

(0νββ) [23, 24]. On the other hand, we have the CP phase, which might be related to

cosmology in the Leptogenesis mechanism [25], that may help to explain the asymmetry

of matter and anti-matter in the universe.

Last, but not least, all oscillation parameters and the structure of neutrino

mass matrix is predicted by many neutrino mass models, and the precise measurements

of all the parameters can be an important tool to probe the space parameters and even

exclude such theories.

This points to open questions regarding the �avor sector of the SM which can

be understood in the future, by the study of the neutrino. In particular (1) why the

matter particle mass are so hierarchical (and why are neutrino mass so tiny . 1eV), (2)

why the value of the mixing angles of the quarks and neutrinos are the way they are

and why is it di�erent for quarks and leptons (3) Can the neutrinos be a bridge to dark

matter?

Unfortunately, few practical applications of neutrino physics exist. We name

them: A new era of neutrino astronomy is being born as this text is written [26]. Moreover,

neutrinos are a fascinating tool to understand our Sun's interior [27] and can be used to

take a very pixelated picture of it with, probably, the biggest camera ever built: the 50

kt water tank of Kamioka mine [28]. Also, they allow us to measure the earth's density

pro�le [29] and to monitor nuclear reactor activity and construction [30, 31, 32, 33, 34].

In spite of its few practical applications, neutrinos are a door to new physics.

That is why they are so broadly studied in modern high energy physics. Maybe someday,
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we can use them to perceive the universe di�erently and do things we cannot do now.

2.2 Pocket Summary of Neutrino Physics

The standard model (SM) of particle physics predicts the existence of 3 neu-

trinos, all being massless neutral fermions, that interact only via weak interactions. They

belong to a SU(2) multiplet, in conjunction with the left part of the charged leptons. So

far, experiments found no deviation from the interaction predictions of SM,

LInt = − g√
2
ναL /WlαL −

g

2 cos θW

ναL /ZναL (2.1)

where g is the SU(2) interaction constant, θW is the Weinberg angle and α = e, µ, τ de-

�nes the interaction basis.

Neutrino masses, on the other hand, are not expected, and they are seen as

an extension to the standard model. It turns out that the basis where neutrinos have a

de�nite mass is di�erent from that of which they are produced via the weak interactions

of Eq. 2.1. This induces the well known neutrino oscillation. This means that the key

operator in the leptonic �avour physics is the mixing matrix U that relates both basis,

and can be parametrized by 3 angles and a complex phase,

U =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (2.2)

where cij = cos θij and sij = sin θij.

Neutrino theory is very well understood and the interested reader �nds very

complete mathematical descriptions in many textbooks, in special we cite [35, 36]. Also,

one can �nd a more focussed discussion on the nature of neutrino masses and mixing

parameters in Sec 2.6
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2.3 Present Status of Neutrino Parameters

In spite of its importance, we still lack knowledge of much of the neutrino

parameter space. That is because neutrinos interact too weakly to allow precision mea-

surements to be performed. Large collaborations around the world are making a huge

e�ort to change this scenario, by building oscillation experiments that will allow us to

probe the parameters to an unprecedented level of precision.

There are three groups that perform a global analysis of most of the neu-

trino experiments in order to provide a consistent picture of current neutrino parameter

values [37]. All groups are reasonably consistent between each other, therefore here is

presented only one set of parameter values in Table 2.1.

Parameter N.H. I.H.∑
imi <0.18 eV <0.18 eV

∆m2
21[10−5 eV2] 7.55+20

−16 7.55+20
−16

|∆m2
31|[10−3 eV2] 2.50+0.03

−0.03 2.42+0.03
−0.04

me [MeV] 548.57990946(22)

mµ [MeV] 105.6583715 (35)

mτ [MeV] 1776.86 (12)

|VPMNS|

NH IH

sin2 θ12 0.320(20) 0.320(20)

sin2 θ13 0.0216(83) 0.0222(76)

sin2 θ23 0.547+20
−30 0.551+18

−30

δCP/π = 1.32± 0.21

Table 2.1 � Current values of lepton mass and mixing acording to [37]. N.H. Corresponds to Normal
Hierarchy of neutrino masses (that is, m3 > m1) while I.H. stands for Inverted Hierarchy of
neutrino masses (that is, m1 > m3).

In this text, we will always assume the central value of the parameters pre-

sented in this table, unless stated otherwise. A careful look at this table shows the current

missing gaps on the leptonic sector: (1) The mass scale of neutrinos described by
∑
mi

(2)The sign of ∆m2
31 which describes the mass hierarchy. (3) The correct position of θ23

at the trigonometric circle, that is: is it maximal (θ23 = π/4) above or below π/4? and

(4) although currently experiments points to δCP ≈ 3π/2 what are the true value of it

inside 3σ?
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2.4 Neutrino Interactions in the Standard Model

There is no formal de�nition of which particle one should or should not call

neutrino, but in the SM context, the neutrinos να are the neutral left-handed spin-half

particles, which interact only via weak interactions. Thus, its Lagrangian before symmetry

breaking is constructed by the SU(2) multiplet Lα,

Lα =

 ναL

lαL

 (2.3)

where α = e, µ, τ . So, the electro-weak interaction is,

LWint = −1

2
L̄α

(
g~τ . ~/W + g′ /B

)
Lα + ĒαR /BEαR (2.4)

where ~τ are the SU(2) generators and ~W are the vector bosons of the SU(2) and B is the

vector boson of the U(1) symmetry, Eα are the right-handed charged leptons. Notice that

the SU(2) interaction acts only on the left-handed particles. The U(1) symmetry is not

yet the usual electromagnetic symmetry and because of that is denoted as U(1)Y . The

Higgs mechanism gives mass to the charged fermions, therefore it couples to the Higgs

�eld, H, resulting in an interaction of the form,

LHint = −
Y l
αβ√
2
L̄αHEβR +H.c. (2.5)

Y l is a 3× 3 complex matrix. As usual, the Higgs �eld acquires a VEV 〈h〉 = v 6= 0 and

one can expand its �eld in a convenient gauge to H = (0, v + h(x)) resulting on a mass

term for the charged particles. At principle the matrix Y l
α,β is general. Naively one could

think that it necessarily implies a mix among fermion families. That is not the case as

there is a freedom in the basis choice which allows the Y l diagonalization. Notice that

it is not the case in the quark sector: There are two Higgs couplings to quarks, Y u and

Y d in order to ensure all the quarks to be massive. The inclusion of the two Yukawa

matrix increases the number of parameters to 6 quarks masses, 3 mixing angles and the

CP violation phase.
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2.5 General Neutrino Masses

The EW-symmetry break induces a Dirac mass for charged leptons through

the interaction in the Lagrangian of Eq. 2.5. Neutrinos, on the other hand, are chargeless.

This imples a di�erent possibility, a Majorana mass term which allows a neutrino mass

matrix that contains both Dirac and Majorana terms at the same time. In a general

context we introduce the right-handed neutrinos νR and write the Dirac-Majorana mass

matrix as a 2× 2 complex matrix M , so that,

M =

 ML MD

(MD)† MR

 (2.6)

which are a compressed notation assuming a number nL of L neutrinos and nR of R

fermions. The ML is a nL × nL Symmetric matrix, MR is a nR × nR Symmetric matrix

and MD is a nR × nL general complex matrix. The Lagrangian then reads,

Lν =ν̄Li/∂νL + ν̄Ri/∂νR+

−
ML

αβ

2

(
−νTαLC†νβL +H.C.

)
+

−
MR

αβ

2

(
−νTαRC†νβR +H.C.

)
+

−MD
αβ ν̄αRνβL − (MD)†αβ ν̄αLνβR (2.7)

where α, β runs through all the possible neutrino generations properly. If right-handed

neutrinos have degenerate masses to left-handed neutrinos, than the neutrinos are of the

Dirac-Type, which means that Dirac neutrinos are a very special case in the context of

neutrino physics.

2.6 Flavour Mixing Parameters

Unfortunately, experiments do not have enough precision yet to measure neu-

trino masses. Nevertheless, part of the parameter space is known to a precision degree

that reachs percent level. Those parameters appear by analysis of the Lagrangian of the
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SM. In Section (2.4), it was argued that the introduction of neutrino masses could result

on a mixture among lepton families. This can be seen by the mass and interaction term

after symmetry breaking Eq. (6.4),(2.4)

L = −g
2

(
l̄αL /W

−
ναL + ν̄αL /W

+
lαL + ναL /Z

0
ναL + lαL /Z

0
lβL

)
−Mν

αβ (ν̄αLνβR + ν̄αRνβL)−M l
αβ

(
l̄αLlβR + l̄αRlβL

)
(2.8)

It is written here the most general Lagrangian, for three families of fermions in the SM plus

the Dirac mass term for neutrinos (the general case should not be hard to generalize).

This is written in the so called Flavour Basis. This basis arises naturally because the

Lagrangian must be SU(2) symmetric. Also, experiment suggests lepton universality [38,

39, 40, 41, 42]. On the other hand, M l and Mν have no de�nite form and are 3 × 3

complex matrices∗.

Physics should be invariant by basis rotation. Thus, let's unitary rotate

the four di�erent leptons, lL, νL, lR, νR by denoting each roation by a unitary matrix:

V l
L, V

ν
L , V

l
R and V ν

R , respectively. Now, the mass matrices become,

M
′ν
αβ = Mν

α′β′(V
ν∗
L )αα′(V

ν
R )β′β (2.9)

M
′l
α′β′ = M l

αβ(V l
L)α′α(V l∗

R )ββ′ (2.10)

and

(V l∗
L )αγ(V

ν
L )γβ

(
l̄αL /W

−
νβL

)
(
ν̄αL /Z

0
ναL

)
(
l̄αL /Z

0
lαL

)
(2.11)

Notice that the neutral current remains diagonal because the transformations are unitary.

This means that �avor changing neutral currents (FCNC) are suppressed by the neutrino

mass in the SM. We can now de�ne the mass basis by imposing both leptons types to

have diagonal matrix:

M l
α′β′(V

l∗
L )αα′(V

l
R)β′β = Diag{me,mµ,mτ} ≡ M̂l. (2.12)

∗notice that these are the two matrix that can spoil the diagonalization of the interaction.
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and

M
′ν
α′β′(V

ν∗
L )αα′(V

ν
R )β′β = Diag{m1,m2,m3} ≡ M̂ν . (2.13)

Notice that if Mν = 0 the change of basis of Eq. (2.12) will not change any physics,

since it can be absorbed by the neutrino transformation without consequences. This is

not true when Mν 6= 0. We can now de�ne the PMNS matrix that describes the basis

in which neutrinos are produced by charged current interactions in comparisson with the

mass basis:

UPMNS = (V l
L)†.V ν

L (2.14)

the Pontecorvo-Maki-Nakagawa-Sakata [43, 44], UPMNS that can be parametrized by three

angles and a phase in the Dirac case,

UPMNS =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (2.15)

where cij = cos(θij) and sij = sin(θij). For the Majorana neutrinos, we have two less

degrees of freedom that cannot be phased away and the PMNS matrix is modi�ed to,

UPMNS → UPMNS.P (2.16)

where P contains the two new phases, φ1 and φ2,

P =


1 0 0

0 eiφ1 0

0 0 eiφ2

 (2.17)

Thus, relating the �avour basis to the mass basis requires the action of UPMNS not V ν
L .
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Chapter 3
Neutrino Oscillation

�It doesn't matter how beautiful your theory is, it doesn't matter how smart

you are. If it doesn't agree with experiment, it's wrong.�

Richard P. Feynman

In this Chapter, we analyze carefully the concept of neutrino oscillations. We

start by the experimental evidence that was compelling for physicists to accept that

neutrino oscillates. Then, we present the theory of neutrino oscillations, starting in a very

simple and didactic manner within a 2-neutrino framework. Later we go by the several

types of theoretical formulations of neutrino oscillations, by pointing out its limitations.

We brie�y discuss the concept of oscillation experiments and present current and future

long-baseline neutrino experiments characteristics.

3.1 Experimental Evidence

The recent Nobel Prize of 2015 was given to the discovery of neutrino os-

cillation, the e�ect of producing a neutrino of �avor να and detecting a di�erent neu-

trino �avor, νβ and that the observed oscillations require neutrino mass. Two physicists,

Takaaki Kajita and Arthur McDonald were awarded the prize, each representing two

groundbreaking experiments, the SuperKamiokande (SK) [45] and the Sudbury Neutrino

Observatory (SNO) [46, 47], respectively. The SNO experiment measured an adiabatic
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(non-oscillatory) �avor conversion of solar neutrinos caused by the matter e�ect of our

Sun. While SK measured neutrinos from di�erent sources, including the solar. The solar

neutrinos points to the existence of an oscillation scale, which we now understand as being

related to the mass di�erence of two neutrinos, the oscillation length is lsolar
osc = 4πE

|∆m2
sol|
.

The result of KamLAND collaboration [48] remarkably shows the oscillation pattern of

neutrino propagation. Their result is depicted in Fig. 3.1.
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Figure 3.1 � Kamland oscillation data. The Red line represents a two neutrino �t, while the blue points
the data obtained by the experiment both as a function of L0/Eν [km/MeV] where L0 = 180
km. The mass di�erence measured from this result is ∆m2

sol = (7.58± 0.21)× 10−5 eV2.

The �gure shows the ratio between the expected number of νe considering

oscillation and no-oscillation in Red and the data points divided by the non-oscillation

Monte Carlo simulation in Blue as a function of L0/Eν , L0 = 180 km is the e�ective

baseline calculated by the �ux-weighted distances of all the 55 nuclear power units near

the detector.

The SK experiment also measured the number of atmospheric neutrinos as a

function of distance. SuperKamiokande is a 50 kton water Cherenkov detector buried 1

km underground and optimized to measure muon and electron neutrinos of a wide range of

energies, from 0.1 to 10 GeV. The atmospheric neutrinos are a subsequent product of pion

and muon decay originated from the collision of cosmic rays in the earth's atmosphere.

They travel distances ranging from 15 km up to 13000 km before interacting at the

detector. Their measurement are consistent with another two �avor conversion, νµ → ντ ,
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but with another oscillation length: latm
osc = 4πE

|∆m2
atm|

with |∆m2
atm| ∼ 2.5× 10−3 eV2.

The second oscillation length was con�rmed by a conceptually di�erent ex-

periment, the disappearance of reactor electron anti-neutrinos at Double-Chooz [49] and

RENO [50]. While Kamiokande shows that neutrinos produced in the atmosphere νµ are

being transformed into νx, the reactor experiments measure the transition of νe into νx.

The amplitude of this transition is much smaller than the solar and atmospheric, which

arises the need of three di�erent mixing angles between the neutrinos: θ12 for the solar

neutrinos, θ23 for the atmospheric and θ13 for the reactors.

3.2 The 2-Neutrino Picture

The data presented in the previous section can be �tted by the simple 2-

neutrino oscillation picture. It describes the να → νβ transition. The (survival) probabil-

ity of detecting a να changes as a function of energy (E) and distance (L) transversed by

the neutrinos in the form

P (να → νβ) = 1− sin2 2θji sin
2

(
1.267

∆m2
ij[eV

2]L[m]

E[MeV ]

)
. (3.1)

where θji is called the mixing angle and ∆m2
ij = m2

j −m2
i is the mass squared di�erence.

The theory of neutrino oscillation is very much similar to that of the well

known spin rotation under a magnetic �eld [51]. Neutrinos (να), α = eµ are created as

ortogonal combinations of propagation Eigenstates (νi),

|νe〉 = cos θ|ν1〉+ sin θ|ν2〉, (3.2)

|νµ〉 = − sin θ|ν1〉+ cos θ|ν2〉. (3.3)

They can be propagated by the Hamiltonian of the system H, such that H|νi〉 = Ei|νi〉,
that is,

|να(L)〉 = U(L, 0)|να(0)〉 = e−iHL|να(L = 0)〉 = cos θe−iE1L|ν1〉+ sin θ−iE2L|ν2〉. (3.4)

where U(L, 0) is the usual quantum mechanics propagator. The probability of a state να
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oscillate to a state νβ after it propagates a distance L is,

Pνα→νβ(L) ≡ |U(L, 0)βα|να(0)〉|2 = δαβ + (1− 2δαβ)

[
sin2 2θ sin2

(
∆EL

2

)]
(3.5)

It turns out that, in vaccum, νi are the mass Eigenstates and the Hamiltonian can be

written as H =
√
p2 +M2, which means ∆E ≈ ∆m2

2E
if p ≈ E >> mi. Where ∆m2 =

m2
2−m2

1 and E the neutrino energy. On Fig. 3.2 we plot the appearance and disappearance

oscillation probability as a function of E for tipical reactor neutrinos experiments baseline

L = 1.5 km and θ = θ13 ≈ 8.8◦. The value of sin2 2θ were ampli�ed 10 times to be visible

in the �gure.

2 4 6 8 10
0.01

0.05

0.10

0.50

1

E [MeV]

P
(α
→
β
)

L=1.5 km

Disappearance
Appearance

Figure 3.2 � Disappearance (blue) and Appearance (red) neutrino oscillation probability for a typical
value of reactor neutrino experiments baseline L = 1.5 km, and θ = θ13 ≈ 8.8◦. The value
of sin2 2θ were ampli�ed 10 times to be visible in the plot.

We now know that there are at least 3 neutrinos with at least two mass-squared

di�erences (∆m2
21 and ∆m2

31). Therefore, this result is an approximation, which is valid

under two conditions: (1) ∆m2
a

E
<<

∆m2
b

E
≈ L, in this case, the oscillation from ∆m2

a did

not start yet, or (2) ∆m2
b

E
≈ L << ∆m2

a

E
, where the oscillation due to ∆m2

a is so fast, that

it gets averaged out at the detector. In both cases ∆m2 = ∆m2
b and sin2 θ is an e�ective

mixing angle, that depends on the actual three neutrino mixing angles θij.
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3.3 3-Neutrino Oscillation Probability

Three neutrino oscillation probability is a trivial extension of the discussion in

last section. The three neutrinos να, α = e, µ, τ are created as an ortogonal combination

of the three massive neutrinos νi, i = 1, 2, 3,

|να〉 =
3∑
i=1

(UPMNS)∗αi|νi〉. (3.6)

where UPMNS is a 3× 3 unitary matrix parametrized as in Eq. 2.15. The Hamiltonian in

mass basis can be approximated by

H0 =


0 0 0

0 ∆21 0

0 0 ∆31

 (3.7)

where ∆ij = ∆m2
ij/2E. Thus, the oscillation probability for three families, Pαβ(L) is,

Pαβ(L) = |Uαj|2|Uβj|2 + 2
∑
j>k

|UβjU∗αjUαkU∗βk| cos

(
∆m2

jk

2E
L− φβαjk

)
(3.8)

where φβαjk = Arg
[
UβjU

∗
αjUαkU

∗
βk

]
. This can be extended for anti-ν by changing φβαjk →

−φβαjk.
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Figure 3.3 � 3-anti-Neutrino oscillation probability (blue) Peµ for baseline of L = 53 km as the JUNO
Experiment. For comparisson, we draw also the 2-neutrino probability (black).

Two interesting new e�ects arise by introducing three neutrinos: (1) There

are two di�erent oscillation lengths L21 = 2E/∆m2
21 and L31 = 2E/∆m2

31 that can be

observed. (2) A 3×3 oscillation matrix allows the introduction of a Charge-Parity phase,

δCP , which changes the oscillation probability when passing from να → νβ to να → νβ. On

Fig. 3.3 we plot the oscillation probability as a function of energy for a medium baseline

experiment, as a case study we use the JUNO experiment [52], with L = 53 km. This is

an interesting case because matter e�ects are small, and we can see at the same time the

oscillations due to ∆m2
21 and ∆m2

31, in the �gure, the 2-ν case is depicted in black while

the 3ν in blue.

3.3.1 Vaccum Probability I: An Incorrect way

The oscillation probability amplitude can be calculated by usual quantum

mechanics. First we take the initial state to be created as a plane wave at t = 0, ψ(x, t) =

Neipx, with momentum p and N a normalization. Since the experiment usually measure

the momentum p with an uncertantie ∆p such that ∆p >> mi−mj, neutrinos are created
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as a coherent combination of mass neutrinos,

|initial〉 = |να(x, t = 0)〉 =
∑
i

U∗αiNe
ipi.x|νi〉 (3.9)

and the �nal state is propagated as,

|νfinal〉 ≡ |να(x, t)〉 = e−iHt|να〉, (3.10)

where the free Hamiltonian is,

H =
√
P 2 +M2. (3.11)

Here, P is the Momentum operator and M the mass matrix in a convenient basis. If

E, p >> mν we can write,

H ≈ P

[
1 +

1

2

(
M

P

)2
]

= P +
M2

2P
(3.12)

and cT ≈ L the distance traveled by the neutrino. Hence, the �nal state is

|νfinal〉 = |να(L, T = L/c)〉 =Uα1e
−im

2
1

2p
L|ν1〉+ Uα2e

−im
2
2

2p
L|ν2〉+ Uα3e

−im
2
3

2p
L|ν3〉

=e−iΦ
(
Uα1|ν1〉+ Uα2e

−i∆m2
21

2p
L|ν2〉+ Uα3e

−i∆m2
31

2p
L|ν3〉

)
(3.13)

with ∆m2
ij = m2

i −m2
j .

The overall phase factor Φ =
m2

1

2p
can be dropped out since it does not contribute

to the probability amplitude. Since the neutrino mass is very small, we can take p ≈ E,

the mean energy, thus, the probability amplitude Sβα of detecting a |νβ〉 =
∑

i Uαi|νi〉
neutrino is,

Sβα = Uα1U
∗
1β + Uα2U

∗
2βe
−i∆21 + Uα3U

∗
3βe
−i∆31 . (3.14)

with, ∆ij =
L∆m2

ij

2E
. Notice that this probability amplitude is di�erent from the unity

matrix only when ∆m2
ij 6= 0 for some i 6= j. The total probability is [53],

P (να → νβ) = |Uαj|2|Uβj|2 + 2
∑
j>k

|UβjU∗αjUαkU∗βk| cos

(
∆m2

jk

2E
L− φβαjk

)
(3.15)

where φβαjk = Arg
[
UβjU

∗
αjUαkU

∗
βk

]
and for anti-ν one have to change only φβαjk →

−φβαjk.
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The quantity Ljk = 2π 2E
∆m2

jk
is the oscillation length. Notice that for the

existence of an oscillation pattern, it is necessary that m2
jk 6= 0 for some combination

of j, k. Neutrino oscillation is a pure quantum mechanical e�ect and is much similar to

other processes, like spin precession or Kaon/anti-Kaon system. Neutrinos are created as

a superposition of states that propagates slightly di�erent for a given momentum p, the

lightest neutrino travels faster than the heavier ones and get ahead of them. Thus, the

states get out of phase and do not sum to the initial �avor state.

3.3.2 Vacuum Probability II: An Almost Correct way

Previously we saw the famous derivation of neutrino oscillation probability. Al-

beit being famous, it is wrong. Surprisingly, though, it gives the correct result. There are

subtle assumptions in this derivation that are not always true nor physically acceptable.

It is easy to see the limitations of this derivation: The oscillation pattern stands

up to in�nity. Nevertheless, since the mass eigenstates travel with di�erent speeds, at some

point their wave-packets do not overlap anymore∗ and the oscillation should cease, as it

is well known for supernovae netrinos [54].

Two assumptions were taken in last section:

1. Neutrino phase evolves as: EiT − piL =
m2
i

2p
L, as T = L.

2. Neutrinos are formed by plane waves.

Notice that assumption 1. does not imply that all the neutrino energies/momentum

are the same, as one might think. Nevertheless, the assumption T = L is an ad-hoc as-

sumption and does not come from any calculation. Also, changing it slightly would lead

to di�erent results [55]†.

The other assumption of plane wave solutions implies the momentum pi and

energy Ei of the neutrino to be perfectly known. This should actually destroy the oscil-

∗or better say, the overlapping distance becomes bigger than 1/∆p.
†e.g. Ti = L/vi = EiL/pi imply the phase shift

m2
i

p L.
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lation pattern since you would know perfectly the neutrino mass [56].

The second assumption is much easier to deal with, as it is possible to simply

loose the plane wave assumption. As we shall see, by assuming a spread in the neutrino

momentum, it is possible to show that the oscillation should cease to exist for distances

longer than the coherence length of the wave functions [57]. So, let us assume that a mass

eigenstate i has a momentum spread φi(q, p) so that the �avour neutrino α in momentum

space can be written as,

|να(x, t)〉 =
∑
i

U∗αi

ˆ
dqφi(q, p)

ei(q.x−Ei(q)t)(√
2π
)3 |νi〉. (3.16)

The exact form of the function φi does not need to be known, but should follow some

reasonable assumptions: (1) It is centered at the momentum p and quickly vanishs to

zero as |p − q| becomes larger than the momentum spread σi. (2) It is normalized:´
dq|φi(q, p)|2 = 1. Thus, the amplitude for detecting a neutrino νβ at position L is,

Sβα(L, T ) =

ˆ
dx〈νβ(x− L)|να(x, t = T )〉 (3.17)

=
∑
i

U∗αiUβi

ˆ
dx(√
2π
)3dqdq

′φi(q, p)φ
∗
i (q
′, p)ei[x.q−(x−L).q′−Ei(q)T ],

With Ei(q) =
√
q2 +m2

i . We can �rst integrate over x resulting in a δ(q − q′) that can
be used to further integrate over q′ and we get,

Sβα(L, T ) =
∑
i

U∗αiUβi

ˆ
dq|φi(q, p)|2ei(L.q−Ei(q)T ) (3.18)

Since |φi(q, p)|2 is highly peaked around p, at �rst approximation we can assume (L.q −
Ei(q)T ) does not vary much inside p− σi < q < p+ σi and write,

ˆ
dq|φi(q, p)|2ei(L.q−Ei(q)T ) ≈ ei(L.p−Ei(p)T )

ˆ
dq|φi(q, p)|2 = ei(L.p−Ei(p)T ) (3.19)

and we recover the plane wave solution of Eq. 3.14 if T = L. But now we can go further

and include the second order approximation,

ˆ
dq|φi(q, p)|2ei(L.q−Ei(q)T ) ≈ ei(L.p−Ei(p)T )

ˆ
dδq|φi(δq + p, p)|2ei(L−viT )δq (3.20)

where δq = q − p and vi = dE(q)/dq|q=p = p/Ei. The integral can be approximated by a



CHAPTER 3. NEUTRINO OSCILLATION 37

Gaussian-Like expansion,

|φi(δq, p)|2 = e2 ln |φi(δq−p,p)| = e2 ln |φi(q,p)| = Ne2φ̇(0)δq+φ̈(0)δq2+... (3.21)

where φ̇(0) = d ln |φi(δq−p,p)|
dδq

∣∣∣
δq=0

= 0 since q = p is a maximum of the wave-packet and,

(σ2
i )
−1 ≡ φ̈(0) =

d2 ln |φi(δq − p, p)|
(dδq)2

∣∣∣∣
δq=0

. (3.22)

N ensures the normalization condition to the probability. At second order, Eq. 3.21

ressembles a Gaussian-packet and results in,

ˆ
dq|φi(q, p)|2ei(L.q−Ei(q)T ) ≈ ei(L.p−Ei(p)T )− (L−viT)2

σ2
i

4 (3.23)

Thus, the transition matrix is,

Sβα(L, T ) ≈
∑
i

U∗αiUβie
i[L.p−Ei(p)T ]− (L−viT)2

σ2
i

4 (3.24)

Here, (L−viT )2σ2
i

4
is a damping term that kills the probability when L−viT are too di�erent.

We can now understand the origin of the condition L = T : The coherence of states can

only happen to neutrino waves that propagates with velocities vi ≈ L/T . Since L is

precisely known to the experiment and the detection is usualy performed during a time

interval T − ∆T/2 to T + ∆T/2, where ∆T >> T osc
ij , the oscillation time. What we

observe experimentaly is an avarage in time of the probability transition,

Pβα(L) =

ˆ
dT |Sβα(L, T )|2 =

∑
ij

U∗αiUβiU
∗
βjUαj

ˆ
dTN2ei[−(Ei(p)−Ej(p)T ]−

(L−viT)2
σ2
i +(L−vjT)

2
σ2
j

4

(3.25)

thus,

Pβα(L) =
∑
ij

U∗αiUβiU
∗
βjUαje

−i∆ji−Φij (3.26)

as usual,

∆ji =(Ei(p)− Ej(p))
(σ2

i vi + σ2
j vj)

σ2
i v

2
i + σ2

j v
2
j

L ≈
m2
i −m2

jL

2p
=

L

Lij
. (3.27)
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But we get a very interesting function Φji,

Φij =
(Ei(p)− Ej(p))2

σ2
i v

2
i + σ2

j v
2
j

+
L2σ2

1σ
2
2(vj − vi)2

σ2
i v

2
i + σ2

j v
2
j

(3.28)

≈
(m2

j −m2
i )

2

4p2(σ2
i + σ2

j )
+

(
Lσ1σ2|m2

j −m2
i |

4p2

)2

≡ 1

L2
ij(σ

2
i + σ2

j )
+

(
L

Lcoh
ij

)2

Notice that Φij ≥ 0 where Φij = 0 means mi = mj. Moreover, the Φij function contains

a L independent part, 1
L2
ij(σ

2
i+σ2

j )
. It regulates how di�erent the masses should be in order

for the neutrinos to be created coherently. As |mi −mj| grows, Lij → 0 and eventualy

the L independent term kills the oscillation pattern.
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Figure 3.4 � Illustration of two wave packets with σi = 0.3 [a.u.] and momentum p = 1 [a.u.] propagation
through space: Dashed-Line means t = 0, Dot-Dashed Lines are for t = 50 [a.u.] and full
line t = 100 [a.u.]. Also, m1 = 0.5 [a.u.] and m2 = 1.0 [a.u.]. Plot made for this PhD thesis.

The most interesting part is L2 dependent and is related to the coherency

length Lcoh
ij = |Lij|/σ1σ2. Since the neutrino wave packets travel at di�erent speeds, they

separate during propagation. Thus, even if they start at with 100% overlap, at some point

in space they won't overlap anymore and neutrino oscillation will cease. The wave packets

propagation is illustrated in Fig. 3.4. The dashed line represents the initial wave packets

and the Dot-Dashed and full lines the function after propagation. Notice that the gray

area representing the overlap between both wave-functions shrinks as the time progress.
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3.3.3 Vaccum Probability III: QFT approach

The intermediate wave packet model presented in the previous section provides

a great improvement on the calculation of neutrino oscillations: the existence of a coher-

ence length Lcoh
ij in which neutrinos cannot oscillate anymore. Nevertheless, it doesn't

completely solve all the issues on the derivation of the oscillation probability:

(1) Oscillating neutrinos cannot be directly observed. It is more relevant to create a

model that accounts for the source/detection particles in the reaction

(2) An exact model for the wave packets is not possible since we are introducing them

by hand. Especially the fact that we cannot measure the wave packet directly since

we do not access the neutrinos. Moreover, it is not reasonable to think that all

wave-packets will be the same, or that the mean momentum is the same.

(3) The subtle assumption of arriving at the detector with the same time t = T is not

justi�ed.

(4) It is hard to accommodate decay of the propagating particle, using the intermediate-

wave-packet model.

Those issues are solved by a Quantum Field approach to the problem. Here, we present

a summarized version of the detailed calculation of [58].

In a neutrino experiment, what is really observed are the initial state produc-

tion (detection) particles PI (DI) and �nal states containing a pair of tagged lepton/anti-

leption, lα, lβ, that is,

PI +DI → PF +DF + lα + lβ. (3.29)

We can draw the �rst order diagram of this reaction as in Fig 3.5. L is a macroscopic

distance. PF (DF ) is the �nal state of production (detection) particles and can be in-

terepreted as multi-particle system. The dashed-region corresponds to the unlocalization

of the production/detection process.



CHAPTER 3. NEUTRINO OSCILLATION 40

ν ν

PI

PF lα

L = Long Distance

Detector
lβ

Figure 3.5 � Feynman Diagram for the process of neutrino oscillation. The whole process is described
by the criation of neutrino tagged by lepton lα, neutrino propagation by a macroscopic
distance L and detection of the neutrino tagged by lβ . Notice that α 6= β is a possibility.
In the plane wave approximation the dashed part (production/detection) is sepparated from
the propagationand are substituted by neutirnos created with plane wave distribution of
momentum.

The Feynman Diagram produces the transition matrix

Aαβ = 〈PF , lα; lβ, DF |T
{
e−i

´
dx4HI

}
− 1|PI ;DF 〉. (3.30)

A state |A〉 is de�ned by its creation operator and a wave-packet function that describes

how the localization process takes place,

|A〉 =

ˆ
[dp]ψAa

†
A(p)eip.x|0〉 (3.31)

x is the quadri-position vector of the particle and [dp] = d3p

(2π)3
√

2E(p)
. Here, we assume a

Gaussian wave function with meam momentum p and width σA, that is,

ψA(~p) =

(
2π

σ

)3/4

e−
(p−p)2

4σ2 (3.32)

Notice that this assumption is much more reasonable than assuming a form for the neu-

trino's wave packet since it is possible to prepare the production/detection system.

At �rst order, the quantity T
{
e−i

´
dx4HI − 1

}
can be described by two interactions,

Aαβ = 〈PF , lα; lβ, DF |T
{ˆ

d4x1d
4x2HP (x1)HD(x2)

}
|PI ;DF 〉 (3.33)
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where

HP (x1) =
GF√

2

∑
γi

U∗ωiνi(x1)Γµlω(x1)JPµ (x1) (3.34)

HD(x2) =
GF√

2

∑
γj

Uθjlθ(x2)Γµνj(x2)JDµ (x2) (3.35)

(3.36)

where Γµ = γµ(1 − γ5) is the usual weak-interaction vertex with GF the Fermi constant

and Uαi the neutrino mixing matrix. JAµ is the production (detection), A = P (A = D),

weak currents. Applying the wick-contractions it is possible to simplify the matrix element

to

Aαβ =
∑
i

ˆ
d4qU∗αiUβiA

P
αi(q)

[
G(q2)e−iq.L

]
ADβi(q) (3.37)

q is the internal neutrino νi quadri-momentum. G(q2) is the scalar propagator, L =

xD − xP is the quadri-position di�erence between detection and production. APαi (A
D
βi) is

the production (detection) matrix elements which are function of the neutrino momentum

q as well as the momentum of the production/detection particles,

APαi =

ˆ
d4x1[dpI ][dpF ][dpα]ψ(pI)ψ

∗(pF )ψ∗(pα)Mαi(pI , pF , pα, q)e
ix1.(pI−pF−pα−q) (3.38)

ADαi =

ˆ
d4x2[dkI ][dkF ][dpα]ψ(kI)ψ

∗(kF )ψ∗(pβ)Mβi(kI , kF , pβ, q)e
ix2.(kI−kF−pβ+q) (3.39)

and

Mαi(pI , pF , pα, q) =
GF√

2
JPµ (pI , pF )ui(q)Γ

µv(pα), (3.40)

Mβi(kI , kF , pβ, q) =
GF√

2
JDµ (kI , kF )u(pβ)Γµui(q). (3.41)

Here, we denote JAµ (q1, q2), A = P,D; as the fourier transform of JAµ (x). the variables pI ,

pF , pα are the quadri-momentum of the production particles PI , PF and lα respectively,

while similar for the detection particles. Notice that the integration over xi, i = 1, 2

ensures the conservation of momentum in each vertex.

Assuming that Mαi, Mβi vary slow enough around the meam momentum of

each particle, we may substitute the quantities M by their value at the mean momentum

of the particles, since ψA(pA) is a highly peaked function. Thus,
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Aαβ =
∑
i,s1

U∗αiUβi

ˆ
d4qM0

αi(q)Ψ(q)
[
G(q2)e−iq.L

]
M0

βi(q), (3.42)

where

M0
αi(q) =Mαi(pI , pF , pα, q) (3.43)

M0
βi(q) =Mβi(kI , kF , pβ, q).

As we will see, in most cases, one can also substitute q in those functions by the value of

an on-shell neutrino. Ψ(q) is called the overlap function and depends on the production

and detection particle wave-functions,

Ψ(q) =

ˆ
d4x2d

4x1[dpI ][dpF ][dpα][dkI ][dkF ][dpα]eix1.(pI−pF−pα−q)eix2.(kI−kF−pβ+q)×

× ψ(pI)ψ
∗(pF )ψ∗(pα)ψ(kI)ψ

∗(kF )ψ∗(pβ) (3.44)

The assumption of Gaussian function for each ψ(P ) as in Eq. 3.32 is usefull because it is

possible to perform the integral and calculate Ψ(q) analitically,

Ψ(q) =
π2

(σ3
pPσeP )(σ3

pDσeD)
e−fP (q)−fD(q) (3.45)

where,

fA(q) =
(~q − ~p)2

4σ2
pA

+
(q0 − p0 − (~q − ~p).~vA)2

4σ2
eA

. (3.46)

A = P,D stands for production and detection variables respectively and

σ−2
pA =σ−2

FA + σ−2
IA + σ−2

lA , (3.47)

σ−2
eA =σ−2

pA

[
1

σ2
pA

(
σ2
FA~v

2
FA + σ2

IA~v
2
IA + σ2

lA~v
2
lA

)
− ~v2

A

]

~viA are the velocities of particle i. ~vA is the resulting velocity of the detection/production

particles avaraged by their momentum spread,

~vA = σ−2
pA

(
σ2
FA~vFA + σ2

IA~vIA + σ2
lA~vlA

)
(3.48)

and p = (p0, ~p) is the momentum transfer during the entire reaction,

p = pI − pF − pα = kI − kF − pβ. (3.49)
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This is as far as we can go analitically without making any extra assumption.

Let us now pause for a moment to analyze the meaning of the fundamental Eq. 3.42. It

represents the coherent sum of the reactions that create neutrinos i with momentum q,

those neutrinos are propagated to a distance L by the propagator G(q2)e−iq.L and �nally

detected. The creation reaction is described by the matrix elementM0
αi and the detection

by M0
βj. Φ(q) represents the weight by which one should integrate all those processes and

is conceptually equivalent to the intermediate neutrino wave packet, except that it allows

us to model it by analyzing the production/detection process.

3.3.4 Obtaining the Standard Oscillation Probability Formula

In order to be able to obtain the neutrino oscillation formula it is necessary to

make two assumptions,

(i) Neutrinos are stable, thus: G(q) = i
q2−m2

(ii) Neutrino masses are small, thus: Mαi ≈Mαj and Mβi ≈Mβj even if j 6= i.

Returning to Eq. 3.42, the hard part is to perform the d4q integration. We can use the

Grimus-Stockinger theorem [59] and �rst integrate over d3q, which gives,

ˆ
d3q

ψ(q)ei~q.
~l

q2 −m2 + iε

L→∞−−−→ −2π2

L
ψ

(√
q2

0 −m2
~l

L

)
ei
√
q2
0−m2l (3.50)

This result imply that in the limit of large L = |~l|, the integral converges to the limit of

real neutrinos propagating in the direction of L with momentum compatible with q2 = m2,

that is, on shell. This theorem is valid as long as q2
0 > m2 and the derivatives of ψ(q) and

itself decreases at least with 1/~q2 if ~q2 →∞.

Plugging-in this result in Eq. 3.42 and calculating the squared matrix element we obtain,

|Aαβ|2 =
∑
ij

U∗αiUβiUαjU
∗
βj

ˆ
dq0dq

′
0

4π4

L2
M0

αi(q)[M
0
αj(q

′)]∗M0
βi(q)[M

0
βj(q

′)]∗Ψ(q)Ψ∗(q′)×

e
i
[√

q2
0−m2

i−
√

(q′0)2−m2
j

]
L
ei(q0−q

′
0)T (3.51)
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The detector observes the time average of neutrinos passing through a time ∆T . Thus,

we will need to integrate over T with ∆T >> Tosc, which will result in an approximate

delta function that sets q0 = q′0 when integrating over dq′0 and we remain with,

|Aαβ|2 =
∑
ij

U∗αiUβiUαjU
∗
βj

ˆ
dq0

8π5

L2
M0

αi(q)[M
0
αj(q)]

∗M0
βi(q)[M

0
βj(q)]

∗×

×Ψi(q)Ψ
∗
j(q)e

i
[√

q2
0−m2

i−
√
q2
0−m2

j

]
L (3.52)

The function Ψi(q)Ψ
∗
j(q) can be re-written as,

4π4

L2
Ψi(q)Ψ

∗
j(q) = Φ(~p×~l)e−fi(q0)−fj(q0) (3.53)

where

fi(q0) =
∑
A=P,D

(
√
q2

0 −m2
j)− ~p.

~l
L

2σpA

2

+

(
q0 − p0 − (

√
q2

0 −m2
i
~l
L
− ~p).~vA

2σeA

)2

. (3.54)

The function φ is a geometrical factor,

Φ(~p×~l) = N
e
− (~p×~l)2

4σ2
P
l2

L2
(3.55)

This represents the cone around which one can send a neutrino from the source and hit

the detector at a distance L given the Gaussian spread σP in the momentum space. And

N is a normalization factor so that N
´
dΩΦ = 1. Due to the exponential nature of

fi(q0), we can use Laplace's method to perform the �nal integration by expand it around

its maximum value and Gaussian integrate the result, we get,

|Aαβ|2 =|M0
α(p)|2Φ(~p×~l)

(∑
ij

U∗αiUβiUαjU
∗
βje
−i

∆m2
ijL

4p0
−Φij

)
|M0

β(p)|2 +O

(
∆m2

ijL

4p0

)
(3.56)

φij = φij(L, p0) is a function of the distance, energy and the detection/production pa-

rameters that regulate the energy and distance that one can observe the oscillation, it

is equivalent to φij in Eq. 3.28, but now it depends on how one calculate the process of

neutrino production.
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Eq. 3.56 is the squared matrix elements that are used in the Fermi's Golden

Rule of the colision described by Fig. 3.5. If we apply the phase space integration we

obtain the usual result in which there is a decoupling between production from the �ux

(φ), propagation due to oscillation and detection through cross section (σ),

Nνα→νβ ∼ φPI→Pf+να+lα
(p0)× Pαβ(p0)× σDI+νβ→Df+lβ(p0) (3.57)

where

Pαβ(p0) =
∑
ij

U∗αiUβiUαjU
∗
βje
−i

∆m2
ijL

4p0
−φij (3.58)

3.3.4.1 The Simplest Case Study

For illustration, we can take the simplest case of a pion decaying into a charged

lepton lα and a neutrino ν (π → lα + ν) propagating (and possibly oscillating) and being

detected via inverse beta decay reaction (ν + p+ → n + lβ), which can be interpreted as

a neutrino oscillation from α→ β and given by the diagram of Fig. 3.6.

ν νπ−

lα

L = Long Distance

lβ

p+

n

Figure 3.6 � The Feynman diagram representing the leptonic pion decay into a charged lepton lα and a
virtual neutrino ν that propagates a long distance L and is detected via inverse beta decay
by transforming a proton in the detector into a neutron and a charged anti-lepton lβ .

The cross section, dσ, for this reaction is given by,

dσ = (2π)4 〈|M |2〉
mp| ~pα|

δ(4)(pπ + pp − pα − pβ − pn)
d3pβ

(2π)32Eβ

d3pα
(2π)32Eα

d3pn
(2π)32En

. (3.59)

Where pa corresponds to the 4-momentum of particle a. One can use the three momentum

delta function to integrate over d3pn. Now, assuming the pion and proton at rest and

also assuming pn << Mn, the �nal delta function reads δ(mπ + mp − mn − Eα − Eβ)

and ~pn = −( ~pα + ~pβ). Thus, we can also integrate over pα
Eα
dpα = dEα and obtain Eα =
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mπ +mp −mn − Eβ. And we arive at

dσ

dEβdΩβ

=
〈|M |2〉 |~pβ|
28π5mpmn

dΩα (3.60)

We now recal that 〈|M |2〉 contains the Gaussian function Φ( ~pα×~l), thus, sin2 θα .
σ2
p

|~pα| <<

1, where θα is the angle between ~l and −~pα. For simplicity we will set θα = 0 which results

in
dσ

dEβdΩβ

=
〈|M |2〉 |~pβ|
27π4mpmn

∣∣∣∣
θα=0

(3.61)

Now 〈|M |2〉 depends on θβ, φβ. For this simple con�guration, ~vP = ~vα and ~vD = ~vβ,

which means

fi(q0) =

(√
q2

0 −m2
i − pα

)2

2σ2
(3.62)

with σ−2 = (σ−2
α +σ−2

β )/2. This means that Ψi(q0) is independent of the angles of ~pβ and

the integration in dΩβ can be done analitically. We obtain,

dσ

dEβ
=

4f 2
πm

2
πG

2
fEβ

π3l2

∑
ij

U∗αiUβiUαjU
∗
βj

ˆ
dq0

[
Eα(q2

0 + pipj)− q0pα(pi + pj)e
i(pi−pj)l−fi(q0)−fj(q0)

]
(3.63)

where pi =
√
q2

0 −m2
i with mi the mass of neutrino i. Applying the Laplace's Method of

integration we obtain,

dσ

dEβ
=

4f 2
πm

2
πG

2
fEβ

π3l2
×
∑
ij

U∗αiUβiUαjU
∗
βj|Mij|2e

−2πi l
losc
ij
−φ0

ij−
(

l

lcoh
ij

)2

(3.64)

where

|Mij|2 =
[
Eα(q2

0 + pipj)− q0pα(pi + pj)
]

(3.65)

q0 is now de�ned by the equation

2

pα
=

1

pi
+

1

pj
(3.66)
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and

loscij =
2π

pj − pi
(3.67)

lcohij =

√
|m2

i +m2
j − pipj|

2πσ
loscij (3.68)

φ0
ij =

2
√

2π
√
p2
i + p2

j

(pi + pj)(losc
ij )σ

2

(3.69)

These quantities have the usual physical meaning. loscij is the length at which the prob-

ability oscillates by 2π. This oscillation can be observed as long as l < lcohij or else the

neutrinos' wave-packet will have a relevant sepparation that will disentangle their oscilla-

tory behavior. φij gives the maximum mass sepparation the neutrinos may have in order

for them to keep oscillating at any distance, if φij << 1 one can observe the oscillation,

otherwise it is exponentially suppresed.
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2= 5 MeV2
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Figure 3.7 � Illustration of two wave packets with σi = 0.3 [a.u.] and momentum p = 1 [a.u.] propagation
through space: Dashed-Line means t = 0, Dot-Dashed Lines are for t = 50 [a.u.] and full
line t = 100 [a.u.]. Also, m1 = 0.5 [a.u.] and m2 = 1.0 [a.u.]. Plot made for this PhD thesis.

On Fig. 3.7 we show the cross-section of Eq. 3.64 for a 2-neutrino scenario and

di�erent mass squared di�erences, ∆m2 = ∆m2
21 (black),5 MeV2 (blue) and 15 MeV2 (red).

Notice that as mass increases, the overall size of σ decreases due to the e�ect distance

independent factor. Also, all oscillations cease to exists for large L. This happens for

L/Losc ∼ 102 because we took σP , σD = 0.1.
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For a more detailed discussion of neutrino oscillations in the context of quantum �eld

theory, see [58].

3.4 The Matter E�ect

Even though neutrinos interact very little at energies around a few GeV, it is

possible to probe tiny e�ects in their propagation when transversing a medium. That

is because neutrino oscillations are sensitive to a phase di�erence in the Hamiltonian

eigenvalues ∆E = Ei − Ej, which can be as small as ∼ 10−13 eV. In fact, such e�ect

was �rst predicted in [60, 61]. The coherent forward scattering of neutrinos traveling

through matter gives them an e�ective mass. This is very similar to difraction of fotons

or electrons in a not so dense medium. In the SM, such interactions can be described by

the 4-fermi-interaction Lagrangian,

L =
GF√

2
(νlγ

µl)(lγµνl) +
GF

sθw
√

2
(lγµl)(νl′γ

µνl′) + h.c. (3.70)

Since on earth matter is formed by electrons, protons and neutrons, only l = e, u, d are

relevant. Moreover, charged currents act only upon electron neutrions and neutral current

changes the propagation of all neutrinos in the same way. Under those conditions, the

Hamiltonian that is responsible to the neutrino propagation in the �avor basis can be

written as,

H = UH0U
† + V (3.71)

where V is the matter potential matrix, in the �avor basis and can be written as

Vαβ = vccδeαδeβ + vncδαβ (3.72)

with vcc =
√

2GFne the charged current potential and vnc = −GFnn/
√

2 the neutral

current potential. ne(nn) is the electron (neutron) density of the medium. Since vnc only

changes a global phase, it can be subtracted from the Hamiltonian. This means that the

physically relevant parameter for most cases is the potential vcc.

Now, instead of diagonalizing UH0U
†, one should diagonalize H. The oscilla-

tion probability has the exact same form as Eq. 3.8, but now the mixing angles in vacuum
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θij should be changed to the mixing angles in matter θmat
ij (x) and the dispersion relation

will also change due to the matter potential Emat = Emat(x) where x de�nes the local

position of the neutrino during propagation. Both will depend on ne(x).

3.4.1 Constant Matter E�ect

For pedagogical reasons, we will simplify the calculation of the matter e�ect

into a 2-neutrinos scenario traveling in constant matter potÃantial. In this case, we have

only one mixing angle θ and one mass squared di�erence ∆m2. The Hamiltonian is,

Hmatter =
∆m2

2E

 sin2 θ cos θ sin θ

cos θ sin θ cos2 θ

+ vcc

 1 0

0 0

 (3.73)

Any 2× 2 symmetric matrix can be brought to a convinient form,

Hmatter =

 −A B

B A

+ C1 (3.74)

where C is a global phase irrelevant for our problem. Such matrix has eigen-values

±
√
A2 +B2 and mixing angle tan 2θ′ = B/A. In our case,

A =
∆m2

4E
cos 2θ − vcc

2

B =
∆m2

4E
sin 2θ (3.75)

Thus, the phase di�erence between the matter states are

∆m2
matter =

√
∆m4 + (2Evcc)2 − 4∆m2Evcc cos 2θ

tan 2θmatter =
sin 2θ

cos 2θ − 2Evcc/∆m2
(3.76)

This explicitly shows that θmatter is e�ectively di�erent than the vaccum angle θ. Notice

the special case when ∆m2 cos 2θ = 2Evcc, called ressonant transitions, which results in
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a maximal mixing of θmatter = π/4 and mass di�erence of

∆m2
matter = ∆m2 sin 2θ. (3.77)

The phenomenology of 3ν case is analogous, but harder to perform analitically. For

illustration we plot on Fig. 3.8 the oscillation probability for the DUNE experiment (L =

1300 km) as a function of energy in two cases, for an electron density of 2.957 g/cm3 in

blue and in the vacuum in red.

0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05
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Pμe

Matter Probability
Vaccum Probability

Figure 3.8 � 3-Neutrino oscillation probability
Pµe in matter (blue) and in Vaccum
(red) for the baseline of DUNE ex-
periment L = 1300 km as the Juno
Experiment.

3.4.2 Matter Adiabatic Transitions

The adiabatic transitions due to the matter potential were �rst described in

the works [62, 63, 61]. It treats the �avor adiabatic transitions of neutrinos propagating in

a varying density medium. In this case, the mixing angles θmatter at which the Hamiltonian

is diagonal will change as neutrino propagates. Thus, for a �xed L, the matter eigenstates

of the Hamiltonian are not global propagation eigenstates and di�erent transitions may

occur. If the change in the medium density is slow enough (adiabatic), the mixed neutrino

states has time to adjust and evolves adiabatically. The condition for it to happen is [64],

γ =

∣∣∣∣ 2E

∆m2
matter

dθmatter

dx

∣∣∣∣ =

∣∣∣∣12 sin 2θmatter

∆m2
matter/2E

dvcc
dx

∣∣∣∣ << 1. (3.78)
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γ is called the adiabaticity parameter. To see the origin of this condition and its meaning,

we write the evolution equation for a 2-neutrino system explicitly,

i
d

dx
ν =

1

2E
Um

 −m2
matter 0

0 m2
matter

U †mν (3.79)

Remember that now both the m2
matter and the mixing angle in the rotation matrix Um

depends on L, thus even if we unitary-rotate ν ′ = Umν we still get a non-vaninshing term
d
dL
Um. Indeed,

i
d

dx
ν ′ =

 1

2E

 −m2
matter 0

0 m2
matter

+ i

(
U †m

dUm

dx

) ν ′ =
 −m2

matter

2E
idθmatter

dx

−idθmatter

dx

m2
matter

2E

 ν ′

(3.80)

Notice that the o�-diagonal terms in Eq. 3.80 are generated exactly by dθmatter

dL
. Also, if

the o�-diagonal terms are much smaller than the diagonal ones (that is γ << 1), there

is no transition between states ν ′. This means that the adiabadic condition of Eq. 3.78

imply that conversion between the local matter eigenstates can be neglected and the eigen-

states propagates independently. Therefore, in such condition, the admixture of neutrino

states are given by the matter mixing angle at the production of the neutrino θ0
matter, but

oscillation is still modulated by the phase di�erence introduced by ∆m2
matter/2E.

This discussion imply that if say an electron neutrino is produced as (θmatter(L =

0) = θ0),

νe(L = 0) = cos θ0ν1 + sin θ0ν2 (3.81)

and the propagation is adiabatic, neutrinos νi will evolve as

νi(L) = e±i
´ L
0

∆m2
matter
2E

dxνi(0). (3.82)

If they are detected at a position L (θmatter(L) = θ1), the oscillation probability is,

P adia
ee =

1

2

[
1 + cos 2θ0 cos 2θ1 + sin 2θ0 sin 2θ1 cos

(ˆ L

0

∆m2
matter

2E
dx

)]
. (3.83)
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The most compeling example of adiabatic transitions are neutrinos from the sun. Since

the distance is several times greater than the oscillation length, the oscillatory term can

be avareged out, resulting in

P adia
ee =

1

2

[
1 + cos 2θ0 cos 2θ1

]
. (3.84)

For E >> 2 MeV, vcc >> ∆m2/2E and cos 2θ0 = −1 (that is νe are created as νmatter
2 ).

Outside the sun the medium density is zero, cos 2θ1 = cos 2θ and the propagation is

adiabatic, thus,

P sun
ee (E >> 2MeV) = sin2 θ ≈ 0.307 (3.85)

taking θ = θ12.

Since the adiabaticity parameter, γ depends on the energy of the neutrino,

even for solar neutrinos their propagation can be a bit more complicated because sun's

density can be so high that it can start at densities higher than the resonant condition

in Eq. 3.77 and decreases to eventually get to vacuum. In the resonant regime, the

adiabaticity parameter can be relevant and transitions from matter states can occur.

Under this assumptions, Eq. 3.84 is slightly changed to the so-called Parke formula [65]

due to neutrinos crossing the resonance density non-adiabatically,

Pee =
1

2

[
1 + (1 + 2P ) cos 2θ0 cos 2θ1

]
. (3.86)

where P are the crossing probability between the states at resonance, if the crossing is

adiabatic P << 1.

3.4.3 Theoretical derivation of the Matter potential

Here we will present a theoretical derivation of Eq. 3.72. When passing through

a medium, the propagation of neutrinos changes sligtly because it interacts coherently with

the medium. To the propagation Hamiltonian it should be added a new potential term,

U †PMNSH0UPMNS → U †PMNSH0UPMNS + Vmatter (3.87)
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where Vmatter is called the matter potential. This can be understood by the diagram of

Fig. 3.9 below,

να(p1) νβ(p2)

q q

Matter

∼ [νi(x)ΓAνj(x)][q(x)ΓAq(x)]

Figure 3.9 � Generic 4-point interaction for matter e�ect

Where q is the particles in the medium. On earth only q = e, p, n are relevant.

ΓA is any combination of gamma matrix operators. This form is general, since any 4-point

fermion interaction with 2 neutrinos can be written with a neutrino current of the form

νi(x)ΓAνj(x) through the Fierz Identity, see [66]. This can be seen from the neutrino

lagrangian if re-written conveniently,

L = ν

(
i/∂ −M +

∑
q

ΓAJ
A
q

)
ν, (3.88)

where JA = GqqΓAq is an opperator that arrises from interactions of Fig. 3.9. We will

see that only the ΓA = γ0 part of JA is relevant in most cases, thus, it will change the

Einstein energy relation to (E−V )2 = p2 +m2, which intuitively generates the correction

of Eq. 3.87.

The e�ective Hamiltonian due to a �xed q has the form,

Hint(x) =
Gq
ij√
2

[νi(x)ΓAνj(x)][q(x)ΓAq(x)]. (3.89)

The matter potential is,

Vαβ =

ˆ
dxd~p2

1

2

∑
s2

∑
i′j′

Gq
ij√
2
〈U∗βjνj(p1, s1)q(p2, s2)|f(p2, T )

([νi′(x)ΓAνj′(x)][q(x)γµq(x)]) |Uαiνi(p1, s1)q(p2, s2)〉. (3.90)

Notice that we assumed that the �nal momentum of the neutrino and the lepton won't

change. That is because we are interested in the soft (coherent and foward) and elastic
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scattering of neutrinos in matter. Also, we included an integration over particle q momen-

tum and spin and added the Fermi occupation function, f(p2, T ), in order to averaged

over the matter states.

The coherent foward scathering hypoteses guaratees that 〈q(p2, s2)| and |q(p2, s2)〉 have
the same momentum, therefore,

1

2

∑
s2

〈q(p2, s2)|q(x)ΓAq(x)|q(p2, s2)〉 =
N q(~p2)

2Ep2

1

2

∑
s2

uq(p2)ΓAuq(pe)

=
N q
s2

(~p2)

4Ep2

Tr[(/p2
−mq)ΓA]. (3.91)

where,

N q(~p2) =
1

v
〈q(p2, s2)|a†(p2)a(p2)|q(p2, s2)〉, (3.92)

is the number density operator of particle q with momentum ~p2 and spin s2. We can now

integrate over p2 momentum and de�ne the function

jqA =

ˆ
d~p2f(p2, T )

N q(~p2)

4Ep2

Tr[(/p2
−mq)ΓA]. (3.93)

The neutrino part is easier. Since we do not have the f(p2, T ) function,

ˆ
dx〈νj(p1, s1)U∗βj|νi′(x)ΓAνj′(x)|Uαiνi(p1, s1)〉 =∑

s,s′

ˆ
dpdp′dx

U∗βjUαi

2V
√
EpE ′p

〈ajs1(p1)a†i′s(p)aj′s′(p
′)a†is1(p1)〉uν(p, s)ΓAuν(p′, s′)eix(p−p′),

(3.94)

the integration over x generates a delta function that guarantees p = p′ and we can now

use the properties of creation and anihilation operator an write‡,

∑
s,s′

ˆ
dx〈νj(p1, s1)U∗βj|νi′(x)ΓAνj′(x)|Uαiνi(p1, s1)〉 =

∑
ij

U∗βjUαi

2V Ep1

uν(p1, s1)ΓAuν(p1, s1)δij′δi′j.

The matter potential becomes,

Vαβ(p1, s1) =
Gαβ√
2Ep1

jqATr

[
(/p1

+mν)

(
1 + γ5/s1

2

)
ΓA

]
(3.95)

‡Notice that for anti-neutrinos we get instead bi′sb
†
j′s′ resulting in a minus sign and Gαβ → G∗αβ .
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where s1 is the spin polarization vector of the neutrino. This is the general case matter

potential. Further discussion can be foun in [67, 68, 69].

3.4.4 Matter E�ect in The Standard Model

In the standard model, the matter potential takes a very simple form. In

principle, one should consider Eq.3.95 for both charged and neutral current, and for

particles q = e, n, p. Nevertheless, neutral currents act exactly the same way for all

neutrino �avours, thus, it will produce a term of the form Vnc ∝ 1 which makes no

di�erence as it is a global phase in the oscillation amplitude. Thus, only q = e via

weak charged current interaction is relevant. Therefore, on Eq. 3.95, Gαβ = δαeδβeGF.

Moreover, ΓA = γµ(1− γ5) and we get,

jqµ =

ˆ
d~p2f(p2, T )

N e(~p2)

Ep2

pµ (3.96)

Assuming isotropic electron density, the integration becomes zero for µ 6= 0 since
´
d~p2~pM(p) =

0, for an isotropic function M(p). Thus,

jqµ = neδµ0 (3.97)

where ne is the mean density of electrons in the medium. Thus,

V SM
αβ (p1) =

δαeδβeGFne√
2Ep1

Tr

[
(/p1

+mν)

(
1 + γ5/s1

2

)
γ0(1− γ5)

]
(3.98)

if s1 = +1, that is, neutrinos are right-handed,
[
(/p1

+mν)
(

1+γ5/s1

2

)
γ0(1− γ5)

]
∼ m2

ν/E.

For left-handed neutrinos (s1 = −1), we have,

V SM
αβ (p1) =

√
2GFneδαeδβe. (3.99)
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3.5 Neutrino Oscillation Experiments

Neutrino oscillations is long proved to be a reallity. The mixing angles were

measured with a precison around a few percent. Meanwhile, the physics community still

lack knowledge in the leptonic sector. There are two parameters that still need to be

measured: the δCP phase and the lightest neutrino mass. Also, the atmospheric angle θ23

contains a degeneracy in its parameter space [70], known as the octant problem. On top

of that, neutrino masses are the �rst laboratory based phenomenon that deviates from

the predictions of the SM.

Characteristics T2K [71] NOνA [72] DUNE [20] T2HK [73]

Baseline 295 km 810 km 1300 km 295 km

Detector Size 22.5 kt 14 kt 40 kt 2× 190 kt

Target Water Liq. Scintilator Liq. Argon Water

Mean Energy 0.6 GeV 2.0 GeV 2.5 GeV 0.6 GeV

Exposure (POT) 7.8× 1021 3.6× 1021 1.47× 1021 1.56× 1022

Status
Running

(10% POT)
Running

(17% POT)
Approved

Expected 2026
Approved

Expected 2032

Table 3.1 � Summary of characteristics of current (T2K and NOνA) and Future (DUNE and T2HK)
neutrino experiments. The exposure is in units of Protons on Target (POT).

In order to push foward the frontier in particle physics many big scienti�c

collaborations were organized to explore the unknowns of neutrino physics. In special,

the long-baseline neutrino experiments can measure the δCP [74], might be able to solve

the octant problem [7] and will determine if the lightest neutrino is m1 or m3 [75, 76]. On

Table 3.1 we summarize the main characteristics of longbaseline experiments: T2K [71],

NOνA [72], DUNE [20] and T2HK [73]. In the following sections we describe how each

experiments work.

In this work, we will focus only on long-baseline experiments. Nevertheless, it

is worth to brie�y mention that there are a lot more neutrino experiments. Accelerator-

based short-baseline such as the SBN experiment [2] and MiniBoone [77] are running

and searching for sterile neutrino and will be fundamental to measure neutrino cross
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section for the long-baseline experiments. The future JUNO experiment [52] is a medium

baseline experiment in China and might be able to measure the neutrino mass hierarchy.

IceCube [78] is located in the South Pole and can measure the most energetic neutrinos

from the cosmos (up to PeV scale!). The Katrin experiment [79] promise to be sensitive to

neutrino masses of about ∼ 0.2 eV through beta decay. And last but not least, a handfull

of neutrinoless double beta decay experiments [80] that try to discover the true nature of

neutrino mass.

3.5.1 Production of a Neutrino Beam

Since neutrinos do not have an electric charge, it is very challenging to produce

high intensity and collimated neutrino beams. The current technology of accelerator

neutrinos relies on the decay of pions to produce the necessary luminosity.

A primary accelerator collides protons of high energy� ( O(10 − 100) GeV)

into a target, usually Graphite. About 85% of those collisions produces secondary meson

particles consisting mostly of pions (∼ 94%) and kaons (∼ 6%). Those are collimated by a

very strong magnetic �eld before entering into a decaying pipe. The experiments usually

allow two modes, the neutrino (anti-neutrino) mode where only π+ (π−) are selected

through the magnetic �eld. The mesons are unstable and decay, mostly to νµ + µ+

(νµ + µ−). There is a small contamination of other neutrinos such as νe, νe and νµ(νµ),

which are regarded as an intrinsic background. The remaining charged particles collide

into a second target and are absorbed. Only neutrinos remain on the beam, that �nally

arrives at the detectors.

�That is why the exposure is measured as POT.
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Figure 3.10 � Schematics of the neutrino beam production. A beam of protons (red) is set to collind into
a target (gray) that produces a beam of secondary particles (green) consisting mostly of
pions, that are focalized to later decay into neutrinos (black-Dashed) and charged leptons.
Figure produced for this thesis.

A schematics of the neutrino beam production is found in Fig. 3.10. In red

we depict the proton beam source, in gray the primary target of Graphite and in red the

resulting meson beam, that later decay into neutrinos. A futuristic concept of accelerator-

based neutrino beams aims to use the tertiary muons produced by the pion decay. Those

can be stored and accelerated into another detector, and later decay into a neutrino beam,

thus, providing a much more clear �ux. Those are called neutrino factories [81] and a

realistic experimental concept is the MOMENT experiment [82].

3.5.2 Current Long-Baseline Experiments

The two long-baseline neutrino oscillation experiments that are currently run-

ning are the T2K and NOνA experiments. Both recently performed the �rst measurements

of the δCP. T2K measures: δCP/π = −1.4± 0.7 [83] and NOνA: δCP/π = 0.17± 1 [84]. It

is interesting to note that their result is in a ∼ 2σ tension [85]. Which might be solved in

the future, or reveal new physics. Below we present both experimental con�gurations in

detail.

1. T2K: The Tokai to Kamiokande (T2K) experiment [86] consists of an accelerator-

produced neutrino beam from the J-PARC facility. The beam is pointed o�-axis

(by a 2.5◦ angle) to the well-known Super-Kamiokande detector located 1 km inside
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Mount Ikeno (Japan) 295 km from the neutrino source. The experiment has three

detectors: The on-axis near detector (INGRID), the o�-axis near detector (ND280),

which measures the non-oscillated �ux and the far detector, the Super-Kamiokande

(SK) which is a 22.5 kt water Cherenkov neutrino detector. SK is also used to study

solar, atmospheric neutrinos and proton decay and exists since 1983, therefore,

its response is very well understood. The J-PARC Neutrino beam is produced

via pion decay producing neutrinos with energy around 0.6 GeV. It can run in

both neutrino and anti-neutrino mode. Its expected �nal exposure is 7.8 × 1021

protons on target (POT), it already runs 10% of this value. In order to simulate the

experiment, we will assume an uncorrelated 5% signal normalization error and 10%

background normalization error for both neutrino and antineutrino appearance and

disappearance channels respectively. On Fig. 3.11 we present the expected neutrino

spectrum and the sensitivity of the experiment for the parameter θ23 and δCP.
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Figure 3.11 � Left: In Black the expected number of νe events as a function of measured neutrino energy
with the total POT expected by end of T2K run and in Red the oscillation probability.
Right: Expected sensitivity in the θ23 − δCP plane of T2K experiment for 1, 2 and 3σ of
C. L. Plot made for this PhD thesis.

3. NOνA : The Neutrinos at the Main Injector O�-axis νe Appearance (NOνA) ex-

periment [87, 88, 72] is an o�-axis (by a 0.80 angle) accelerator based superbeam

experiment. The neutrino beam is produced by the Fermilab Main Injector, the old

injection accelerator of the famous TEVATRON. The experiment consists of two

detectors, the near detector is located at the Fermilab site while the far detector

is a 14 kt Liquid Scintillator Detector placed in Ash River, Minnesota, 810 km
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away from the neutrino source. The o�-axis position is chosen in order to produce

neutrinos with energy around 2 GeV. The expected POT is 3.6 × 1021 divided in

50%/50% neutrino/anti-neutrino mode. Our simulations assume uncorrelated 5%

signal normalization error and 10% background normalization error for both modes.

On Fig. 3.12 we present the expected neutrino spectrum and the sensitivity of the

experiment for the parameter θ23 and δCP.
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Figure 3.12 � Left: In Black the expected number of νe events as a function of measured neutrino energy
with the total POT expected by end of NOνA run and in Red the oscillation probability.
Right: Expected sensitivity in the θ23 − δCP plane of NOνA experiment for 1, 2 and 3σ
of C. L. Plot made for this PhD thesis.

3.5.3 Future Long-Baseline Experiments

The DUNE [20, 89, 90, 91] and T2HK [18, 73] experiments are the two largest

neutrino experiments envisioned in the near future. They plan to measure neutrino pa-

rameters to unprecedented precision, they will be able to measure the neutrino mass hi-

erarchy and might be able to solve the octant problem. Below we describe both expected

experimental con�gurations.

4. DUNE : The Deep Underground Neutrino Experiment (DUNE) is a longbaseline

future generation experiment. Its neutrino beam is produced by the LBNF facility

and is shot on-axis to its far detector, which is a Liquid Argon Time Projection
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Chambers (LArTPC). DUNE will use 4-modulus of 10 kt located at Sanford Under-

ground Research Laboratory in Lead, South Dakota, 1300 km away from its beam

source. The experiment should run for 3.5 yrs in neutrino/anti-neutrino mode each.

The detailed con�guration we used to simulate the experiment follows the GLB �le

provided by the collaboratio [92]. On Fig. 3.13 we present the expected neutrino

spectrum and the sensitivity of the experiment for the parameter θ23 and δCP.
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Figure 3.13 � Left: In Black the expected number of νe events as a function of measured neutrino energy
with the total POT expected by end of DUNE run and in Red the oscillation probability.
Right: Expected sensitivity in the θ23 − δCP plane of DUNE experiment for 1, 2 and 3σ
of C. L. Plot made for this PhD thesis.

2. T2HK : The Tokai to Hyper-Kamiokande (T2HK) is an upgrade of the T2K ex-

periment by the addition of the Hyper-Kamiokande (HK) detector. The HK will

consist of 2 water Cherenkov tanks with 190 kt mass. They will be located at the

same site of SK, therefore its baseline is still 295 km. There will also be an upgrade

on the J-PARC beamline leading to a 1.53×1021 POT exposure for the T2HK ex-

periment running in a 1:3 ratio of neutrino/anti-neutrino. The T2HK is expected

to be operational by 2025. In our simulations, we assume a similar neutrino energy

resolution as T2K and beam normalization error. On Fig. 3.14 we present the ex-

pected neutrino spectrum and the sensitivity of the experiment for the parameter

θ23 and δCP.
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Figure 3.14 � Left: In Black the expected number of νe events as a function of measured neutrino energy
with the total POT expected by end of T2HK run and in Red the oscillation probability.
Right: Expected sensitivity in the θ23 − δCP plane of T2HK experiment for 1, 2 and 3σ
of C. L. Plot made for this PhD thesis.

3.6 Conclusion

In this Chapter we presented the concept of neutrino oscillation. We started by

presentend a short review of the experiments that settled the ground to the understanding

of neutrino oscillations. We also introduced the theoretical framework for the standard

3-neutrino oscillation in three di�erent theoretical approaches. The quantum mechanical

approach is easier to understand and more intuitive, but it is fundamentaly incorrect since

it makes some assumptions that are not valid in every context. We then follow to present

the Quantum �eld theory explanation for the standard 3-neutrino oscillation and we arive

at what are the necessary conditions in order for the validity of the quantum mechanis

approach. Neutrino oscillations are consistent with every neutrino experiment and is the

future of the experimental neutrino physics and in the last section of this Chapter we

show the future of longbaseline neutrino experiments.
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Chapter 4
Beyond Standard 3-Neutrino Oscillation

�I am in a charming state of confusion�

Ada Lovelace

4.1 What is Beyond Standard Oscillation?

As discussed on Chapter 3, neutrino oscillation is an experimental fact. It can

only exist if neutrinos have masses and if they are di�erent. Thus, neutrino oscillation

is a phenomenon beyond the standard model. Nevertheless, it is possible to describe the

neutrino oscillations without the account of any other particle. It su�ces the assumption

on neutrino mass. Also, the nature of the neutrino mass does not change any of the

equations: Dirac Neutrinos and Majorana Neutrinos oscillate in the same way [93].

It is useful to de�ne a standard picture for neutrino oscillations that accounts

for all the experimental data that was tested, we call it here the Standard 3-Neutrino

Oscillations or S3νO for short: There exists only 3 type neutrinos νi, i = 1, 2, 3. Those

have masses mi, that are di�erent, thus ∆m2
ij = m2

j − m2
i 6= 0 if i 6= j. Neutrinos

are created, in vaccum, as a combination of νi via the weak-interaction, which we will

call νe, νµ and ντ by their charged lepton partners, and we can relate both basis by a

unitary matrix U †PMNS = U−1
PMNS. The neutrinos feel a matter potential when travelling

through matter due to charged current and neutral current weak interactions. This can
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be mathematically summarized into the propagation Hamiltonian written in �avour basis,

H0 = UPMNS.Diag[0,∆m2
21/2p,∆m

2
31/2p].U

†
PMNS+Diag[vcc, 0, 0]+(p+m2

1/2p+vnc)I. (4.1)

Where p ≈ E is the neutrino momentum and vcc =
√

2GFne is the charged current

matter potential, with ne the electron density in the medium. The term proportional to

the identity will not be detectable by neutrino oscillation, as it is a global phase.

In next section we will present experimental and theoretical aspects of neutrino

oscillation and masses that lead the physics community to explore many di�erent models

that change the assumptions in the construction of S3νO. We will call them Beyond S3νO

(BS3νO) physics.

4.2 Non-Standard Interaction

A simple way of extending the idea of S3νO is to imagine that there might

exist a new 4-fermion interaction of the form,

Hint(x) =
Gq
αβ√
2

[νi(x)ΓAνj(x)][q1(x)ΓAq2(x)], (4.2)

that is di�erent from the standard model interactions. This implies the existence of non-

standard interactions (NSI) and can be accomplihed by the introduction of heavy bosons

or scalar particles [94, 95]. In a minimal scenario, one can assume the interaction to be

similar to that of the standard model, which can be parametrized as [96],

Hint(x) = εq1q2αβ

GF

√
2

[να(x)ΓAνβ(x)][q1(x)ΓAq2(x)], (4.3)

This can generate three interesting e�ects on neutrino oscillations. A di�erence in the

production (P)/detection (D), which we denote by the εAαβ, A = P,D,

|να(t)〉 = (1 + εPαγ)U
∗
γi|νi(t)〉 (4.4)

〈νβ| = 〈νj|Ujγ(1 + εDγβ)
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And a di�erent matter e�ect,

Vmatter = Diag[vcc + vnc, vnc, vnc] + vccεαβ (4.5)

where,

εαβ = εeeαβ +
Nu

Ne

εuuαβ +
Nd

Ne

εddαβ (4.6)

Where Nu (Nd) is the number of u(d) type quarks in the medium. On earth, Nu
Ne
≈ Nd

Ne
≈ 3

and inside the sun Nu
Ne
≈ 2Nd

Ne
≈ 1. Constraints on all those parameters can be found

in [97, 98]. Although, recent discussion argue that bounds production/detection diagonal

parameters εAαα cannot extracted from such experiments, since one can always absorb such

e�ects in the de�nition of CKM matrix and the weak-constant [99].

NSI were deeply studied in the literature in various context, specially in the matter e�ect

of long-baseline experiments [100, 101, 102, 103, 104, 105, 106].

Production/Detection NSI can produce a very interesting zero-distance e�ect.

In the example of a neutrino beam containing only muon neutrinos (take for example

neutrinos produced by pion decay), it is possible to detect electron neutrinos, if the

interactions in the detector is di�erent from that of the production,

Pµe(L = 0) = |(1 + εPee)ε
D
µe + (1 + εDµµ)εPeµ|2. (4.7)

Another interesting feature of NSI is the existence of regions of degeneracies in the pa-

rameter space [1, 107], which happens to cancel the visible e�ect of NSI even for large

values of the εαβ parameters in the matter.
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Figure 4.1 � Example of Degeneracy of NSI space parameter. The regions corresponds to the percentual
di�erence of the Pµα of less than 1%. For a baseline of L = 1300 km, the DUNE baseline.
The black dot is the S3νO point for sin2 θ32 = 0.413. Notice that at the point (sin2 θ32, εττ ) =
(0.535, 0.7) all the curves intercept each other. This plot made for this PhD thesis as an
updated version of similar �gure of Reference [1].

This can be observed in Fig. 4.1 where we plotted the regions |P SM3ν
µα −

PNSI
µα |/P SM3ν

µα < 1% for various values of εττ and sin2 θ23. The points where all curves

intercept each other are degeneracies that are di�cult to observe in neutrino experiments.

4.2.1 Scalar Non-Standard Interaction

The NSI presented on Section 4.2 requires that the 4-Fermion interaction

should be of the form,

Hint(x) =
Gq1q2
αβ√
2

[νi(x)ΓAνj(x)][q1(x)ΓAq2(x)], (4.8)

with ΓA = γµ or γµ(1 − γ5). This is the usual interaction for spin-1 bosons. That is

not always the case for scalar particles. It is not uncommon that a model prediction

generates a Yukawa interaction gijνiνjφ. This simple case of a (pseudo-)scalar mediator

gives ΓA = 1 (or 1−γ5) and we would obtain for an isotropic dense medium, from Eq. 3.93,

je = −me

ˆ
d~p2f(p2, T )

N e(~p2)

Ep2

= −me

〈
ne
Ee

〉
(4.9)
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Therefore, from Eq. 3.95, the neutrino matter potential for a typical scalar interaction is

V SM
αβ (p1) =−

〈
ne
Ee

〉
meGαβ√

2
Tr

[
(/p1

+mν)

(
1 + γ5/s1

2

)]
= −
√

2Gαβ

〈
neme

Ee

〉
mν

Ep1

and similar for a pseudo-scalar. Thus, the matter potential goes as V scalar ∼ O(mν/Eν)

and does not seem to contribute for usual matter e�ects. A recent paper argues that this

is a very di�erent type of NSI that changes the neutrino mass [108]. To see the di�erence,

we re-write Eq. 3.88 by explicitly showing di�erent opperators for scalar NSI,

L = να [γµ(i∂µ + Jµ1 ) + (Mν + J2)] να.

Jµ1 is a vector current typical from the SM neutrino interactions and standard NSI while

J2 a scalar NSI. It is clear from this that Jµ1 changes the energy-momentum relation

pµ → pµ + Jµ1 , while J2 changes the γµ independent part of the Lagrangian, that is, the

neutrino mass is now: Mν → Mν + J2. In fact, if the medium contain non-relativistic

electrons Ee ≈ me, J2 results in an e�ective neutrino mass matrix: M eff
ν = Mν + MS,

where MS =
√

2Gαβne.

One must be carefull, as not all scalar interactions leads to this kind of NSI.

Let's take as a case study the Type-II SeeSaw. The Yukawa interaction Lagrangian is,

LY =LTαCiσ2Y∆∆Lβ + λφφ
T iσ2∆†φ+ h.c. (4.10)

C is the charge conjugation matrix. ∆ = 1√
2
σi∆i, ∆i = (∆1,∆2,∆3) is a tripplet scalar.

L is the usual fermion doublet, φ a singlet scalar and σi the Pauli matrices. Applying

Euler-Lagrange to the full lagrangian, we obtain,

∆α
classic =

[
(Dµ)2 + λφ ~Tφ

†~σφ+ (M2
∆ + λ3φ

†φ)
]−1

αβ

[
µφ̃†σβ + LY †∆σ

βiσ2CL
]

≈ 1

M2
∆

[
µφ̃†σαφ+ LY †∆σ

αiσ2CL
]

(4.11)

Which can be applied to Eq. 4.10 and the scalar ∆ integrated out, which results in terms

of 4-fermions interactions of the form

Hint =
1

M2
∆

(
LTCiσ2Y∆~σL

) (
LY †∆~σCiσ2L

)
(4.12)
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Notice the crucial ~σ. It appears because we are connecting a 3 dimensional representation

of SU(2), ∆, to a bi-dimensional representation of SU(2), L. Eq. 4.12 can be re-arranged

by a Fierz transformation, resulting in,

Hint = −
(Y∆)σγ(Y∆)†αβ

M2
∆

(ναγ
µνγ)

(
lσγµlβ

)
. (4.13)

Which is the usual NSI interaction. Therefore, not all scalar interactions are di�erent

from the standard NSI.

4.3 Sterile Neutrinos

Another way of extending the S3νO is the addition of extra light sterile neu-

trinos. The idea is that they should be light enough to participate in oscillation, msterile .

1 eV. Notice that now the mixing matrix is not an unitary 3 × 3 matrix, but rather, an

unitary N × N , where N = 3 + nsterile. This implies that the number of parameters rise

quickly. There are N(N − 1)/2 mixing angles. If neutrino masses are Dirac type there

are also (N − 1)(N − 2)/2 phases, while for Majorana neutrinos, N(N − 1)/2 phases.

The neutrinos are called sterile, because they cannot interact via weak-interactions. If

they interact via weak-forces, they should have been observed in the famous LEP mea-

surement of the Z decay width. It was reporter the number of neutrino Nν as [109],

Nν = 2.9840± 0.0082 (4.14)

Notice the key assumptions on this measurement: Z-boson couplings to neutrinos are

described by the Standard Model. Therefore, one could add another neutral fermion

with coupling to Z, as long as the interaction coupling constant gnew is small enough:

(gnew/gsm)2 . 5× 10−3.

Cosmology also puts constraints on the e�ective number of neutrinos by observing anisotropy

of cosmic microwave backgorund and barion acoustic oscillation. The quoted conservative

value by the PDG [53] is,

N eff
ν = 3.13± 0.32, (4.15)

where the ΛCDM model preditcs N eff
ν = 3.045. This bound is harder to overcome, since

they only depend on the neutrinos' states to be populated around their decouple temper-
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ature.

All in all, sterile neutrinos are a hot topic in neutrino physics. This is due to

three recent experimental indications in favor of short baseline oscillations:

1. The reactor anti-neutrino anomaly [110]: The number of detected νe are below the

expected by a few %, which indicates a 3.1σ signi�cance of neutrino de�cit. This

anomaly can be explained by a mass squared di�erence of about 1 eV2 and a mixing

angle around sin2 2θnew ∼ 0.15.

2. The Gallium neutrino anomaly [111]: Gallium based neutrino experiments rely on

the reaction νe + 71Ga → 71Ge + e− as a detection of neutrinos from a radioac-

tive source. They observe a de�cit of neutrinos in two independent experiments:

GALEX [112] and SAGE [113]. The signi�cance of the de�cit is 2.9σ and a mass

squared di�erence of around 1 eV2 and sin2 2θnew ∼ 0.1 may also explain the results.

3. The LSND anomaly [114]: the LSND experiment observes an electron anti-neutrino

excess from a neutrino beam created via muon-decay-at-rest. The MicroBooNE

experiment was build to test such parameter space and con�rmed the de�cit of

neutrinos [77]. The anomaly is about 3.8σ of statistical signi�cance and the required

neutrino mass should be greater than 0.1 eV2 and sin2 2θ ∼ 10−2.

A global �t analysis of all the experiments and constraints to sterile neutrinos can be

found in [115].

In the near future, we might be able to observe sterile neutrinos. There exists an on-

going experiment called the Short-Baseline Neutrino Experiment (SBNE) [2]. It is a

three-detector experiment, designed to �nally rule out or con�rm the existence of ster-

ile neutrinos in the expected range of parameters of LSND. It relies on neutrinos from

the Booster Neutrino beam at Fermilab, created from pion decay. The neutrinos energy

ranges from 0.5 to 1.5 GeV and the baselines rage from 100 to 600 m. The expected

sensitivity can be found in Fig. 4.2.
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4.4 Non-Unitarity

In the last section, we discussed the existence of light sterile neutrinos. Those

that can show up in short baseline oscillations. In general, there is nothing that guar-

antees that the neutrino masses should be small. In fact, the bounds from Z-decay and

Cosmology will not apply if the extra neutrinos are heavy enough. Moreover, almost

all the neutrino mass models require the existence of heavy, or very heavy (Mν > 1014

GeV), extra neutrinos. Thus, it is natural to include heavy neutrinos in the framework of

neutrino oscillations.

Nevertheless, we saw on Section 3.3.3 that heavy neutrinos cannot participate

on oscillation because they break coherence between the states. In fact, if the mass is

higher than the experimental energy, they are kinematicaly forbidden to be created. It

is very interesting to notice that, in spite of all those obstacles, the existence of heavy

neutrinos might have an impact on light neutrino oscillations. Since only the N × N

mixing matrix is unitary, massive neutrinos induces a non-unitarity of the 3 neutrino

mixing matrix. To see that, let's assume that A is the 3 × 3 part of a larger unitary-
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mixing N ×N mixing matrix.

UN×N =

 A W

S T

 (4.16)

thus, A might not be unitary [116]. This can be seen by de�ning two matrix,

k = Matrix3×n = Ω†(A, S) (4.17)

ω = Matrixnh×n = (W,T) (4.18)

Where Ω is a unitary matrix that rotates the leptons in case some model implies non-

diagonal charged lepton mass. Notice that unitarity of Un×n implies

k†k = I3×3 (4.19)

ω†ω = Inh×nh (4.20)

kk† + ωω† = In×n (4.21)

That means that only the sum A†A+S†S is the unity. Moreover, the interaction lagrangian

in the mass basis becames,

L = i
g√
2
W−
µ lγµkνa +

ig

2sθw
Zµν(k†.k)ν + heavy ν ′s (4.22)

Which makes both interactions (charge and neutral) of light neutrinos to cease being

diagonal as k and (k†.k)n×n can mix all the neutrinos. The implementation of the matter

potential is an ongoing discussion in the literature [117, 118, 119]. We will discuss both

implementations in Section 4.4.1. In order to understand the concequences of a non-

unitarity of the 3 × 3 mixing matrix, we start by writting down the relation between

neutrinos in �avour/mass basis. The interesting projection P = kk† de�nes the �avour

(interaction) basis, as να are the states ν ′ where,

P |ν ′〉 = |ν ′〉. (4.23)

which can be accomplished by,

|ν ′〉 = |να〉 = kαa|νa〉 (4.24)
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α = e, µ, τ and a = 1, 2, ...N . The physical quantity measured by experiments is the

probability amplitude,

P (να → νβ) = |Sβα|2 (4.25)

where Sβα is the transition matrix element,

Sβα = 〈νβ|να(t)〉 = 〈νβ|e−iHt|να〉 (4.26)

with Hamiltonian in the mass basis given by,

H =
√
P 2 +M2 (4.27)

In vaccum, when E < mH , heavy neutrinos are not kinematically possible, and can only

exists as virtual particles, which can only be detected in a short period of time related to

the Heisenberg principle. This can be described mathematicaly by an imaginary part of

the neutrino eigen-values, Im[
√

P2 + M2] ≡ Γ 6= 0. Part of the amplitude is suppressed by

an exponential factor of the order of Γ ∼ mH . This forbids the appearence of the massive

neutrinos if the distance L is macroscopic. Thus, the only mixing matrix that survives is

A, that is not necessary unitary. The �nal 3× 3 (hermitian) Hamiltonian is of the form,

Hnon−uni = A†.Diag[0,∆m2
12/2E,∆m

2
13/2E].A (4.28)

and

Snon−uni
βα = A.e−iLHnon−uni .A† (4.29)

It was shown in [120] that it is possible to write A in a very convenient form,

A = ANP .UPMNS (4.30)

With UPMNS the usual unitary mixing matrix described by the three mixing angles θ12, θ13, θ23

and the usual δCP phase and ANP a triangular matrix that summarize the e�ect of non-

unitary in few parameters,

ANP =


α11 0 0

α21 α22 0

α31 α32 α33

 . (4.31)
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Here αii are real parameters and αij, i 6= j are complex, which add only 3 new independent

phases to the problem. The proof for this decomposition can be found in Appendix A.1.

The S3νO can be recovered by taking αii = 1 and αij = 0, i 6= j. Current bounds on

αii are also an ongoing discussion in the literature. Mostly because it is hard to extract

information from meson decay without a model dependent approach. In [120], they argue

to have obtained the least model dependent possible, and we present it here:

α2
11 ≥0.989 (4.32)

α2
22 ≥0.999

|α21|2 ≤0.0007

In special we notice that the constraint on |α21|2 comes from the NOMAD experiment [121],

which is a constraint directly from oscillation. Those constraints are reasonably tight. In

general it is common to imagine the neutrino sector as a poorly known region in the

paramter space. But recent experiments measured the mixing angles at the few percent

level. Also, under the N × N neutrino hypotesis, the unitarity of the mixing matrix is

quit well stablished.
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Figure 4.3 � Unitary triangles in the neutrino sector. The shaded regions represents the possible vio-
lations of non-unitary allowed by experiments in the most model independent scenario by
varying αij , the colors are: α21: Pink, α31: Green and α32: Blue. This plot was made for
this PhD thesis.

We can see it visually through the unitary triangles. They are de�ned by the

condition A†.A which is equal to I if A is unitary. In special, the o� diagonal terms
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(A†.A)ab are interesting because in the unitary case they should sum up to zero, thus, if

we draw each quantity A†iaAjb in a complex plane, they form a triangle. Any deviation

from unitary is represented by a non-closed triangle. This is shown in Fig. 4.3. We plot

the normalized neutrino triangle for the unitary case in Dashed line, and vary the non-

unitary parameters αij one at a time to draw the regions where the triangles won't close,

the colors are: α21: Pink, α31: Green and α32: Blue.

4.4.1 Non-Unitary Matter E�ect

In order to correctly understand the matter e�ect in presence of non-unitary,

we must start in the Lagrangian level and write down all the relevant interactions,

L =νj(i/∂ −mi)νj +
(
A†iαG

q1q2
αβ Aβj

)
νiγµνjJ

µ
q1q2

+

νa(i/∂ −ma)νa +
(
W †
aαG

q1q2
αβ Wβb

)
νaγµνbJ

µ
q1q2

+(
A†iαG

q1q2
αβ Wβa

)
νiγµνaJ

µ
q1q2

+
(
W †
aαG

q1q2
αβ Aβj

)
νaγµνjJ

µ
q1q2

(4.33)

i, j = 1, 2...nl corresponds to nl light neutrinos while a, b = nl + 1, nl + 2...nl + nh = N

corresponds to the heavy neutrinos. Applying Euler-Lagrange to this equation we get,

νclassic
a =

[
(i/∂ −ma +WGq1q2WγµJ

µ
q1q2

)−1W †Gq3q4AγνJ
ν
q3q4

]
ai
νi (4.34)

If ma masses are large, and the matter e�ect is small enough, we can approximate this

equation by,

νclassic
a ≈ − 1

ma

[
W †Gq3q4AγνJ

ν
q3q4

]
ai
νi (4.35)

This correction is of order m−1
a and goes to zero for ma → ∞. Thus, at zeroeth-order,

the e�ective lagrangian in mass basis is,

Leff =νj(i/∂ −mi)νj +
(
A†iαG

q1q2
αβ Aβj

)
νiγµνjJ

µ
q1q2

(4.36)

Since the heavy neutrinos contribution to the vectors goes to zero, we can transform to

mass basis to �avor basis by,

να = Aνi (4.37)
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or,

νi = A−1να (4.38)

Thus, we can write propagation matrix as,

Sβα = 〈νβ|e−iHL|να〉 =

N=nl+nh∑
ij

〈νβ|νj〉〈νj|S|νi〉〈νi|να〉
ma→∞−−−−→ A†βjSjiAiα (4.39)

where Sij in mass basis is,

S = e−iHL, (4.40)

with

H = Diag[0,∆m2
21/2E,∆m

2
31/2E] + A†.Diag[vcc − vnc,−vnc,−vnc].A (4.41)

4.4.2 Non-Unitarity in T2K Experiment

We showed in [3] that one can write the non-unitary neutrino oscillation prob-

ability as,

PNP
ee = α4

11Pee , (4.42a)

PNP
eµ = α2

11α
2
22

[
Peµ + 2Re

(
α21

α22

S∗eeSµe

)
+
|α21|2

α2
22

Pee

]
, (4.42b)

PNP
µe = α2

11α
2
22

[
Pµe + 2Re

(
α∗21

α22

SeeS
∗
eµ

)
+
|α21|2

α2
22

Pee

]
, (4.42c)

PNP
µµ = α4

22Pµµ + |α2
21|α2

22(Pµe + Peµ) + |α21|4Pee

+
∑

{a1,b1}6={a2,b2}

Re[α2a1α
∗
2b1
α∗2a2

α2b2Sa1b1S∗a2b2
]. (4.42d)

with Pαβ the S3νO transition probabilities. This form is very suitable to experimental

simulation, as it depends on well know quantities Pαβ, the new non-unitary parameters α

in a simple polynomial form and the S3νO transition probability Sαβ.

Notice that e and µ probabilities depend on only three out of the 6 α's, α11, α22

and α21, moreover, α11 and α22 appear only as overall factors that change too little the

equations to be noticed in current experiments. While in contrast, the channels Pµe and

Peµ has a non-trivial dependence on α21 which adds a complex phase φ = Arg[α21] with
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potential to mimic the δCP phase on neutrino experiments.Thus, φ and α = |α21| are the
only two most relevant new non-unitary parameters to future long-baseline experiments.

Neutrino experiments are designed to measure standard oscillation parameters.

This implies that the presence of unusual physics may spoil some of the sensitivity they

can reach. Thus, it is useful to analyze the presence of non-unitary in the context of future

experiments. As a case study, we took the T2(H)K experiment. We used the program

NuPro [122] to perform the simulation in three scenarios: (i) Mixing Matrix Unitary, (ii)

Mixing Matrix non-Unitary α ≤ 2.5% but no prior and (ii) Mixing Matrix non-Unitary

and prior to the Non-unitary parameters.
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�gure was taken from our work [3].

The χ2 de�ning the sensitivity is calculated by comparing number of neutrinos

in each bin as,

χ2 ≡ χ2
stat + χ2

sys + χ2
prior . (4.43)

Here, (χ2
stat, χ

2
sys, χ

2
prior) stand for the statistical, systematical, and prior contributions

respectively. χ2
stat is de�ned as a Pearson distribution,

χ2
stat =

Nbin∑
i

(
Npred
i −Ndata

i√
Ndata
i

)2

, (4.44)

Npred is the number of events for test values and Ndata
i is the number of events of the

assumed true values, which are the central values on Table 2.1. χ2
sys accounts the expected

5% �ux uncertainty for the neutrino and anti-neutrino modes independently,

χ2
sys =

(
fν − 1

0.05

)2

+

(
fν̄ − 1

0.05

)2

. (4.45)
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and �naly χ2
prior is a gaussian function of the mixing parameters around the central value

and erros in table 2.1.

The resulting χ2 of the simulations is found in Fig. 4.4 for T2(H)K in left

(right). The non-unitarity extra degree of freedom allows the extra phase φ to mimic the

spectrum of the unitary case and make the sensibility to go down.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

90
o

135
o

180
o

225
o

270
o

315
o

360
o

405
o

450
o

χ
2

Leptonic Dirac CP Phase δ
fit
CP

The effect of including non-unitarity at T2K+µSK [ δ
true
CP = -90

o
, NH ]

Unitary

Non-Unitary

Non-Unitary + Prior

 0

 50

 100

 150

 200

 250

90
o

135
o

180
o

225
o

270
o

315
o

360
o

405
o

450
o

χ
2

Leptonic Dirac CP Phase δ
fit
CP

The effect of including non-unitarity at T2HK+µHK [ δ
true
CP = -90

o
, NH ]

Unitary

Non-Unitary

Non-Unitary + Prior

Figure 4.5 � The marginalized χ2(δCP ) function at TNT2K under the assumptions of unitarity (blue),
non-unitary mixing with (black) or without (red) prior constraints. This �gure was taken
from our work [3].

A proposal for restoring (at least partialy) the sensitivity of T2(H)K is the

adition of a muon-decay-at-rest (µDAR) source, to be detected at the Super(Hyper)-

Kamiokande detector. The µDAR source is planned to operate at the J-Park laboratory.

If runing in parallel with the T2K experiment, it can supplement the ν spectrum with

a di�erent energy (∼ 50 MeV). In �gure 4.6 we show the spectrum and background of a

µDAR source. This, combined with a di�erent baseline makes it is possible to constraint

α21 in order to restore the sensitivity. As can be seen in the simulation of T2K+µDAR

in �gure 4.5 - left.
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Figure 4.6 � Left: Spectrum of a µDAR source. The red color are muon neutrinos while the blue curve
the electron neutrinos. Right : Sensitivity on |α21| assuming a L = 20 m near detector
at the µDAR source for various con�gurations of detector size and background ratio. This
�gure was taken from our work [3].

A simpler way to recover the sensibility of the T2(H)K experiment is the

measurement of |α21|. We can use the zero distance e�ect in order to accomplish that.

By setting L = 0 in Eq.4.42c we obtain the interesting result,

PNP
µe = α2

11|α21|2. (4.46)

Since α11 is close to 1, we can convert any bound on the µ → e transition in a bound

on |α21|. Now, instead of using the Super(Hyper)-Kamiokande as a detector, we need to

include a near detector at the µDAR source. A L = 20 m is feasable. The sensitivity

depends on the background and size of the detector. Possible constraints on |α21| for
di�erent con�gurations of the experiment can be found in Fig. 4.5 - right.
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4.5 Conclusion

The presence of anomalies in reactor and short-baseline neutrino experiments

and theoretically predicted new particles required to explain the smallness of neutrino

masses pushed the physics community to explore all the possibilities of expanding the

picture of the standard 3-neutrino oscillation. We presented a few: Non-Standard Inter-

actions, Non-unitary mixing matrix, and light sterile neutrinos. They are well motivated

by neutrino mass models but can be realized in a phenomenological point of view that

allows �ltering possible scenarios. Those new phenomena modify the behavior of neutri-

nos in such a way that might be visible in future experiments. Moreover, in special, we

showed that in some cases, they can even be mistakenly confused as standard physics, as

is the case of non-unitarity in T2K.
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Chapter 5
Neutrino Phenomenology

� Your assumptions are your windows on the world. Scrub them o� every once

in a while, or the light won't come in.�

Isaac Asimov

In this Chapter, we explore three physical measurements that are valuable to

physics that are deeply involved with neutrinos. We start by presenting the idea of using

meson decay experiments, in special, the spectrum of the measured charged lepton, that

is modi�ed if neutrinos couples to scalar particles. Then we present a discussion of two

di�erent neutrino oscillation phenomenology: (1) The synergy between long and short

baseline experiments necessary to obtain the correct value of θ23 and (2) The power of

the short-baseline program of Fermilab to constraint new physics.

5.1 Meson Decay Experiments

5.1.1 Meson Total Decay

It was pointed out by Mohapatra, Chikashige and Peccei [123] that the in-

troduction of a SU(2)L × U(1)Y singlet scalar particle to generate massive right-handed

fermion introduces a new U(1) global symmetry which can be spontaneously broken gen-
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erating, analogously of what happens in the Higgs mechanism [124, 125, 126], a massive

scalar particle and a massless Goldston boson, called Majoron.

At �rst sight one can naively say that the Majoron is not allowed experimen-

tally, as it could not be detected so far, however it was shown [123] that due to the

weakness of Majoron coupling to matter the presence of Majoron, in most cases, can be

neglected.

This is not the case for the leptonic Decay of mesons: P → l + ν, where i, l = e, µ, τ and

P = π,K,D,Ds and B. A Yukawa interaction between neutrino and a Majoron χ can

induce decays of the form P → lνχ, such decay induces corrections on the measured total

decay rate ΓTot = Γ (P → eν(γ)) + Γ (P → eνχ) and can be tested experimentally. This

corrections are of the form roughly as [127, 128, 129]

Γ(π → lνχ) ∼ 1

4π
|Vqq′ |2G2

fm
3
π

(
|gl|2

32π2

)
(5.1)

where Gf is the Fermi constant, mπ is the pion mass, |gl|2 =
∑

α |glα|2, where gαβ is the

Majoron-neutrino Yukawa coupling, Vqq′ is the CKM element, and α, β = e, µτ . So that

any experimental con�rmation (deviation) on the ratio RP = Γ(P→eν(γ))
Γ(P→µν(γ))

compared to the

theoretical prediction can be used to put limits (evaluate) on the coupling constants. The

RP ratio is known to agree experimentally [130] and theoretically [131, 132, 133] up to

∼ 10−3(10−2), within the error.

An analysis of [134], probing the Majoron coupling via pion total decay and τ or µ decay

spectrum, obtained the limits,

|ge|2 < 2.2× 10−5

|gµ|2 < 1.8× 10−4

|gτ |2 < 1.8× 10−2. (5.2)

This limits were reached assuming the mass, mχ, of the Majoron as zero, using the

fact that it is a Goldstone boson. Nevertheless early results in QCD by Peccei and

Quinn [127, 128] and S. Weinberg [135] point out to a possibility of massive pseudo-

Goldston boson, called axion, via a spontaneous break of a pseudo-symmetry. A pseudo-
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symmetry happens when a physical Lagrangian L can be subdivided as

L = L0 + LB (5.3)

where L0 posses a true symmetry and LB breaks the symmetry by some small parameter

m so that when m → 0 implies LB → 0. For the Peccei and Quinn axion, LB is the

light quark part of the Lagrangian. In the Majoron context there are two possibilities to

give mass to Majorons: (i) Introducing explicitly soft break U(1) terms, such as neutrino

masses or a quadratic term in the pseudo-scalar potential [136] so Majorons even reach

masses of order of ∼ 100GeV acting as Dark-matter candidate and (ii) Coupling Majorons

with another Higgs doublet or new colored quarks [137, 138, 139] providing axion/Majoron

mass of order of ∼ eV .

5.1.1.1 Corrections to Meson Decay

Many models [123, 135, 137, 138, 139, 140] provide Yukawa couplings of scalar

particles to neutrinos, so we focus on present limits based on a phenomenological point

of view by using general Yukawa couplings,

− L =
1

2
gABνAνBχ1 +

i

2
hABνAγ5νBχ2, (5.4)

plus, we assume no restriction to the Majoron mass. Further discussion on the interactions

can be found in Appendix A.2.

Such term results in a new decay channel,

P± → l± + νi + χ (5.5)

represented in �g.5.1.

P

l

ν

χ Figure 5.1 � Meson (P ) decay diagram,
into one lepton (l), one
neutrino (ν) and the scalar
(χ).
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The decay rate of this reaction was calculated in [129] and is given by

dΓ(P → lνχ) = Γlν
(x2 + ε2 + 6xε− βx− βε)λ1/2(x, ε, β)

x2(x− ε)2

|gl|2

32π2
dx (5.6)

where x is the kinematic variable of the squared four momentum of the virtual neutrino

and ranges from (
√
ε+
√
β)2 to (1−

√
α)2, λ is the kinematic function,

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2zy (5.7)

Γlν is the decay constant of the meson into lepton and neutrino of invariant square mass

x,

Γlν =
G2
Ff

2
P |Vqq′|2m3

p

8π
[x+ α− (x− α)2]λ1/2(1, x, α) (5.8)

ε = m2
ν

m2
π
,β =

m2
χ

m2
π
and α =

m2
l

m2
π
, note that for x → 0, Γlν is exactly the total decay rate at

tree level for the reaction P → lν.

Thus, using the current total decay data on different mesons, one can extract limits for

neutrino-scalar coupling by comparing it with the predicted by new interactions. A de-

tailed discussion on the calculation of important theoretical corrections to Eq. 5.1 and

how to correctly include the experimental data into the analysis can be found in Ap-

pendix A.2.1 and A.2.2.

However, one should be carefull on the validity of such bounds. Here we assumed that the

only modi�cation to the decay rate comes from Eq. 5.1. Thus, any model that contain

other interactions that may play any role on such reactions is not a�ected by it.

5.1.2 Heavy ν Analysis

Meson decay can be a probe for heavy neutrino search [141] through the anal-

ysis of the di�erential decay rate dΓ
dp

(P → lνH) of the reaction,

P → l + νH (5.9)

P is a stopped meson (i.e. its momentum is zero), l is a detected lepton with momentum

p and νH is the supposed heavy neutrino, with mass mH ≤ mP −ml. If such interaction

exists, the spectrum of the leptons produced via mesonic decay would peak at speci�c
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momentum,

ppeak =
λ1/2(m2

P ,m
2
l ,m

2
ν)

2mP

(5.10)

where λ(a, b, c) is the kinematic function. The height of the peak depends directly on the

coupling of heavy neutrino and the lepton or, in terms of neutrino oscillation parameters,

the heavy neutrino mixing matrix element, |UlH |2, that is [142],

dΓ(P → lνH) = ρΓ0|UeH |2δ(ppeak − pl)dpl, (5.11)

where ρ is a function of the ratio of the particle masses α =
m2
l

m2
P
and ε =

m2
H

m2
P
,

ρ =

√
1 + (α− β)2 − 2(α + β)(α + β − (α− β)2)

α(1− α)2
(5.12)
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Figure 5.2 � Simulated spectrum of the
leptonic Kaon decay, K →
µν(γ) [4].

This means that by measuring the spectrum of leptons from mesonic decay∗

one could look up for a peak. The usual leptonic spectrum has the form presented in

Fig. 5.2 the peak at p0 = 235.667 MeV/c comes from the standard model neutrino with

mass mν ≈ 0, the smooth curve for p < 235.667 MeV/c is due to the fact that the reaction

K− → µ−νµγ is taking place as well. The �rst experimental search for heavy ν in this

context was done in 1980 by [143], and several others took place [144, 142, 4], they found

nothing, putting some limits on mH and |UlH |2 via statistical analysis of peak search.

As seen in section 5.1.1 the existence of a light scalar particle χ add a mesonic

decay channel of the form P → lνχ. The pair νχ and its invariant mass can mimic a

continuous spectrum of heavy neutrino (note that a three body decay has a continuous

∗For example, from accelerators
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kinematic region), inspection of Eq. 5.6 leads to the relation,

|UlH |2 =
Γ(P → lνx)

ρ(α, x, β)Γ0

dR

dpl

∣∣∣∣
β→x

(5.13)

mH

|UlH|

Figure 5.3 � This plot shows three hypothetical scenarios, the red line represents the peak search, the
dashed line a signal and the dotted-dashed a negative signal, the solid line is the limiting
case.

Previous analysis on |UlH | can be translated to |gl|2 as a function of mχ. To

do that, one can compare the continuous charged lepton spectrum with that of an heavy

neutrino with varying mass mH (See Fig. 5.3). In the �gure the red line represents the

peak search, the dashed line a signal and the dotted-dashed a negative signal, the solid

line is the limiting case. Saying in other words, we can put a bound by comparing the

number of events in the peak search area (below the two-body heavy neutrino search) and

the three body search.

5.1.3 Combined Results

To obtain bounds on the Yukawa coupling constants |g2
α|2, we used a χ2

i method

devided into two experimental data: (1) i = 1 for the total decay and (2) i = 2 the heavy

neutrino search. Then,

χ2
1 =

∑
i

(
Γ

(i)
Teo − Γ

(i)
Exp

)2

σ2
i

(5.14)

where i run over the experimental total decay and,

χ2
2 =

1

n

∑
i

(
|UlH |2i
σi

)2

(5.15)
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where i = 1, 2, 3...n runs over the experimental bounds on |UlH |2 is extracted from Eq. 5.13

at the experimental point i and σi the bound value of |UlH |2.

The combined result for each bound as a function of mχ is presented in Fig. 5.4

where the green curve comes from meson total decay and the Yellow curve from heavy

neutrino search. These results were published in [5].
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Figure 5.4 � Obtained bounds for |gl|2 for each experimental source: Green: Meson total decay and
Yellow: heavy neutrino search. This plot was taken from our work [5].

In table 5.1 we summarize the previous results and the ones we obtained from

such analysis for mχ = 0.

Constants Ref. [134] Ref. [145] Our (Meson dec.) Our (Heavy ν)

|ge|2 < 4.4× 10−5 < (0.8− 1.6)× 10−5 < 4.4 (4.4)× 10−5 1.9× 10−6

|gµ|2 < 3.6× 10−4 < 4.5 (3.6)× 10−6 1.9× 10−7

|gτ |2 < 2.2× 10−1 < 40 (8) -

Table 5.1 � Comparison between previous bounds [134, 145] with our results withmχ = 0, using the rates
of the meson decay at 90% C.L. and Heavy ν search. In Black the bounds marginalizing VCKM

in Red, taking the central value of uncorrelated measurements. This result is taken from our
work [5].
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5.2 The whole of θ13 on θ23 Octant

5.2.1 The Octant Problem

The least known mixing angle in the leptonic sector is the atmospheric angle

θ23, which is almost maximal: sin2 θ23 ≈ 0.5. It was �rst precisely measured by Super-

Kamiokande experiment [45], which measured the de�ct of µ-neutrinos in the atmospheric

neutrino �ux due to the νµ → ντ transition. This transition can be approximated by a

two-neutrino oscillation,

Pµτ ≈ sin2 2θ23 sin

(
1.27

∆m2
32(eV 2)L(km)

E(GeV )

)
, (5.16)

that has an 'octant-blindness' to the atmospheric angle, due to the symmetric structure

around the maximal mixture θmax = π/4. Current experimental data still cannot disit-

nguish the octant, as it could not reach beyond the zeroth order with enough precision.
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Figure 5.5 � Left: The octant problem illustration, the central value is given by θ23 = π/4, the blue
bands are the values for sin2(π/4 + ε) and the red are for sin2(π/4 − ε). Right: Global �t
χ2 as a function of sin2 θ23 from the data of T2K, KamLAND and SK given by [6], Blue:
NH e Red: IH. This plot was prepared for this thesis.

This leads to three possibilities (1) θ23 at First Octante: θ23 < π/4, (2) θ23 at

Second Octante: θ23 > π/4, or (3) θ23 = θmax.

The global analysis from [6] slightly indicates θ23 in the second octant, with

an indication of less than 1σ as shown in Fig. 5.5 right. Notice the two minima in the χ2

function, which summarizes the octant problem.
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5.2.2 Measuring θ13 Octant by measuring θ23

A must-do goal to long baseline experiments would be the measurement of

the correct octant of the atmospheric angle. Many papers have adressed the octant issue

within the standard 3ν scenario [146, 147, 148, 149, 150, 151, 152]. Others also included

the presence of new physics, such as non-standard interaction [153], non-unitarity [154,

117, 155], or a light sterile neutrino [156, 157], which could completely change the scenario.

We, on the other hand, focus on the relevancy of the reactor angle θ13 and on

whether an improved precision in its measurement from reactors a�ects the experimental

resolution on the measurement of θ23.

We simulated both DUNE [20] and T2HK [73]. The experimental details can

be found in Section 3.5. Also, the current and future resolution of θ13 from reactors can

be found in Table 5.2.

DC [158] RENO [159] Daya-Bay [160] Global [6]

s2
13/10−2 2.85 2.09 2.09 2.34

δθ13 16.7% 13.4% 4.9% 8.5%

δθExpe
13 10% 5% 3.6% <3%

Table 5.2 � Current and expected values of the reactor mixing angle θ13 and its sensitivity for di�erent
experiments and current global neutrino oscillation �t.

A quick look at the appearance and survival oscillation probabilities in the

presence of matter [161], shows that the θ13 parameter plays a big role on θ23 measurement.

The probability is

Pµe ≈ 4s2
13s

2
23 sin2 ∆31 + 2α∆31s13 sin 2θ12 sin 2θ23 cos(∆31 ± δCP ) = P0 + PI (5.17)

Pµµ ≈ 1− sin2 2θ23 sin2 ∆31 − 4s2
13s

2
23

sin2(A− 1)∆31

(A− 1)2
(5.18)

Here VCC is the charged current matter potential on earth, L and E are the propagation

distance and energy of the neutrinos, respectively. α =
∆m2

21

∆m2
31
, is the small parameter of

the expansion, while ∆31 =
∆m2

31L

4E
and A = 2EVCC

∆m2
31
. Only P0 is octant sensitive.

The resolution can only be achieved if there is a �nite di�erence between the probabilities
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corresponding to the two octants. That is,

∆P ≡ PHO
µe − P LO

µe 6= 0 (5.19)

which can be written as a function of ε and η de�ned as sin2 θ13 = (1 + ε) sin2 θ13 and

θ23 = π/4± η, we get,

∆P = ∆P0 + ∆PI . (5.20)

∆P0 = (4η ± ε)4s2
13s

2
23 sin2 ∆31 (5.21)

and,

∆PI = B

[
sin θHO

13 cos(∆31 ± δHO
CP )− sin θLO

13 cos(∆31 ± δLO
CP)

]
(5.22)

where, B = 4 sin θ12 cos θ12(α∆) sin ∆31.

Figure 5.6 � Precision measurement of θ23 and δCP at 3σ (∆χ2 = 9) con�dence. The symbol "star"
denotes sin2 θTRUE

23 = 0.567 and δTRUE
CP = 1.34π. Left (Right) panels correspond to DUNE

(T2HK). Di�erently shaded (colored) regions correspond to various errors associated with
sin2 θ13. This plot was taken from our work [7].

Now, notice from Eqs. 5.21 and 5.22 that the contribution from ε 6= 0 can

partially cancel the magnitude of ∆P0 and ∆PI in such a way that it might fall beyond

experimental sensitivity. Moreover, the larger the error, the less will be the resulting
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octant sensitivity. Fig. 5.6 explicitly shows that. It plots the expected measurement from

DUNE and T2HK by taking into account several assumptions on the measurement of θ13

and assuming sin2 θTRUE
23 = 0.567.

Figure 5.7 � 3σ precision measurement of θ23. The left (right) panel is for DUNE (T2HK). Di�erently
shaded regions correspond to various errors associated with sin2 θ13. The thick dashed line
represents the current best �t value from [6]. This plot was taken from our work [7].

The loss of sensitivity depends also on the value of θ23. The closer it gets

from the maximal value, the smaller is ∆P . The dependency on θ23 and the error on

θ13 is illustrated in Fig. 5.7, which presents the simulated true value of θ23 versus its test

value, there the wrong octant measurement region is bigger near the maximal mixing and

that it shrinks with the error in θ13. This �gure also shows an astonishing result, by

looking at the green region we see that if we take no prior assumption in θ13 we cannot

use long-baseline to distinguish the octant.
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Figure 5.8 � Octant discrimination potential as a function of the relative error on sin2 θ13 for the true
value of δTRUE

CP = 1.34π. The left (right) panel represents the results for DUNE (T2HK).
The red, green, blue and cyan curves delimit the θ23 �octant-blind� region corresponding to
2, 3, 4 and 5σ con�dence (1 d.o.f) for each true value of sin2 θ23. This plot was taken from
our work [7].

For completness we present the octant resolution power as a function of θ23

and error in θ13 in Fig 5.9 as well as its dependency on δCP in Fig 5.2. Those shows that

the true value of the CP phase does not play a big role on the octant sensitivity and that

the octant sensitivity is not simmetric around θ23 = π/4, this is due to matter e�ects.
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5.3 Short Baseline Program at Fermilab

The experimental neutrino physics agenda heavily relies on the success of exe-

cution of the DUNE program. The understanding of short distance e�ects is a mandatory

preparation needed in order to obtain the so long expected long-baseline physics. Most

of the experiments rely on the combination of near-far detector synergy in order to reach

the desired precision.

The recent interest in Liquid argon detectors motivated us in the study of the

physical capabilities of near detector physics. In [8] we studied what are the require-

ments necessary in order to be able to constraint Non-unitary, production/detection NSI

and possibly sterile neutrinos in two scenarios: The SBN experiment and the yet-to-be-

designed DUNE's near detector.

1. The Short Baseline Neutrino Experiment (SBNE): The SBNE was designed

to resolve the LSND/MiniBooNE anomaly. It relies on 3 di�erent detectors, in

three di�erent locations in order to be able to observe any oscillation pattern that

might arrise in the existence of light sterile neutrinos: the SBND, MiniBooNE and

ICARUS. Their characteristics are described in Table 5.3, summarizing the SBNE

proposal [162]. The neutrino �ux comes from the Booster Neutrino Beam (BND),

containing mostly muon-neutrinos with energy not much greater than 3 GeV. The

peak of the distributions is around 600 MeV.

Detector Total Size Active Size Distance Target POT

SBND 220 t 112 t 110 m Liq. Ar 6.6× 1020

MicroBooNE 170 t 89 t 470 m Liq. Ar 1.32× 1021

ICARUS 760 t 476 t 600 m Liq. Ar 6.6× 1020

Table 5.3 � Summary of the main features of the SBNE detectors [162].

2. The DUNE's Near Detector: DUNE's near detector is yet a matter of debate.

While the LBNF's far detector is located at 1300 km distant from Fermilab's main

injector it will require a very intense beam of neutrinos. This means that the near

detector, located around 1 km, will receive an astonishing 1.7× 106 more times the

�ux. Which will provide an enormous amount of neutrino events, which might lead
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to the pile-up of neutrino events. Nevertheless,this amount of data might be usefull

to search for new physics besides the ones proposed by the DUNE project. We

analised three con�gurations for possible near detectors at the DUNE's beamline.

We used an ICARUS version of SBNE and an improved version, which we called

ICARUS+ and also the protoDUNE detector, which is the prototype of the future

DUNE's far detector. Our assumptions can be found in Table 5.4.

Detector Active Size Distance E range (GeV) Target

ICARUS 476 t 600 m 0 to 3 Liq. Argon

ICARUS+ 476 t 600 m 0 to 5 Liq. Argon

protoDUNE-SP 450 t 600 m 0 to 5 Liq. Argon

Table 5.4 � Suggestions for near detectors in DUNE.

As discussed in Chapter 4, the presence of non-unitary or NSI contains a zero-distance

e�ect of the form,

Pµe(L = 0) = Bµe . (5.23)

where Bµe ≈ |α21|2 or |εDeµ+εPµe|2 for non-unitary and NSI respectively. Thus, measurement

of short-baseline neutrinos can be used to constrain new physics. On Fig. 5.10 we show the

expected sensitivity of each con�guration. Notice that SBNE can reach |Bµe|2 < 3×10−4,

which is a little bit better than current constraint on |α21|2. But DUNE's near detector
can reach an order of magnitude less.
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Figure 5.10 � Sensitivity of each con�guration assumed: SBN experiment (blue), ICARUS at LBNF
(black-solid), ICARUS+ at LBNF (black-dashed) and protoDUNE-SP (red). All of them
are assumed to be located at 600 m from the neutrino source and running for 3.5 years in
the neutrino and 3.5 in the anti-neutrino mode. This plot was taken from our work [8].

An important issue on these measurements is the lack of a near detector.

Since they are zero distance e�ects, you cannot calibrate your knowledge of the �ux by

the presence of a detector closer to the beam source. On the contrary, one should rely

on the measurement and prediction of the �ux by external measurements. This gives

rise to systematics that can change not only the overall normalization but also the shape

of the neutrino �ux. The DUNE collaboration might be able to predict the �ux by

measurements of the muons from pion decay and hadrons responsible for the creation of

the beam [91]. Unfortunately, such predictions tend to be much less precise than the use

of a near detector, which can reach the 0.1% level. The results on Fig. 5.10 assumes a

shape uncertainty of around 1%. In Fig. 5.11 we show the requirement in order to reach

several values of Bµe at 90% C.L. as a function of the detector distance.
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Figure 5.11 � Left: 90% C.L. sensitivity to |α21| for ICARUS (solid line) and ICARUS+ (dashed line) for
various combinations of the baseline and the spectrum error. Right: 90% C.L. protoDUNE-
SP sensitivity for various combinations of baseline and spectrum error. Lines correspond
to Bµe < 10−5 (blue), Bµe < 2× 10−5 (red), Bµe < 4× 10−5 (brown) and Bµe < 5× 10−5

(green). This plot was taken from our work [8].

For completeness, we also analyzed the possibilities of study the presence of

sterile neutrinos under the assumption that no nearer detector exists and when there are

two detectors, one near and the other not so far. An optimal baseline for the DUNE

beam and an sterile neutrino of mass around 1 eV is 2.4 km. The sensitivity curves can

be found in Fig. 5.12.
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Dashed-Green curve shows the result for the protoDUNE-only case at 2.4 km from the
LBNF. Left: sin2 θ14 versus ∆m2

41 Center: sin2 θ24 versus ∆m2
41 and Right: sin2 2θµe

versus ∆m2
41. A 1% spectrum error is assumed in all cases. This plot was taken from our

work [8].



CHAPTER 5. NEUTRINO PHENOMENOLOGY 96

Accelerator neutrinos are interesting for sterile neutrino studies, because it is

possible to desantangle the θ14 and θ24 parameter, since you can measure the νµ and νe

�ux at the same time.

5.4 Conclusion

In this Chapter we presented three di�erent analysis of neutrino e�ects related

to the phenomenology of neutrinos.

In Section 5.1 We performed a model-independent analysis on neutrino-scalar

Yukawa interactions using recent data on meson decay em search for the heavy neutrino.

We included in the calculation, for the �rst time the mass of the scalar particle. We

also found that heavy neutrino search improves the bounds on those Yukawa interactions

signi�cantly to |ge|2 < 1.9× 10−6 and |gµ|2 < 1.9× 10−7, for mχ = 0, the dependency on

the scalar mass can be found in Fig. 5.4.

Knowing if θ23 value is indeed < π/4 or > π/4 is an interesting result for

model builders. That is why future experiment's main goal is to measure this parameter

with high precision. In Section 5.2 we showed that long baseline experiments have limited

precision which is directly related to how you would account the knowledge of the value

of θ13 which is precisely measured by reactor experiments. In special, the expected 3%

precision in the θ13 angle might not be su�cient if 0.42 < sin2 2θ23 < 0.56.

The DUNE neutrino beam will contain the highest �ux of neutrinos made

by man so far. This is an incredible achievement that can be explored in several ways.

Its far detector is established and its capabilities are well understood in the literature,

nevertheless, the DUNE near detector is currently under discussion and does not have

�xed characteristics. In Section 5.3 We aim to heat the discussion by showing the physical

potential of the near detector and what are the requirements it must achieve in order to

be used independently of the far detector. since the number of events is expected to be

extremely high, we showed that the near detector can search for new physics in NSI, Non-

unitary, and Sterile neutrinos, provided that the uncertainties in the energy dependency

of neutrino �ux and cross section are known up to a few percents.
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Chapter 6
Neutrino Mass Models

�In math, you're either right or you're wrong.�

Katherine Johnson

Up until now, we treated various aspects of neutrinos oscillation in a phe-

nomenological point of view. Moreover, the existence of neutrino masses and mixing

angles were the only fundamental assumptions needed to explain the experimental data.

Nonetheless, a few particularities of neutrinos suggests that the mechanisms behind neu-

trino masses are di�erent than for other fermions.

Firstly, neutrino masses are not a prediction of the Standard Model: besides neutrino oscil-

lations, it is possible to explain all the physics without it. Secondly, neutrinos are the only

neutral fermions. This opens up a very interesting possibility of Majorana Masses [163]

which can also lead to Lepton number violation processes. Third, neutrino mixing param-

eters are a source of CP asymmetry, which can hint on the explanation of the proportion

of matter/anti-matter in the universe. Fourth, neutrino masses are inconveniently small.
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Figure 6.1 � Mass scales of known fermion particles. This picture was made for this thesis based on a
similar image in [9].
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The smallness of neutrino masses is illustrated in Fig. 6.1. Particles in the

Standard Model have masses between ∼ MeV to hundreds of GeV, while the sum of

neutrino masses lie below the eV scale. Even if there is nothing forbidden such hierarchical

mass distribution. It is at least odd that the same mechanism could explain 12 orders

of magnitude of masses. Hence, it is fundamentally important to formulate a complete

theory that can explain why neutrinos are not massless. In this Chapter we present the

two realizations of neutrino mass matrix: Dirac or Majorana. We show two complete

neutrino mass models that can explain the smallness of neutrino masses and are very

predictive and show how we can use future, low energy, neutrino experiments to contraint

the space parameter of those models.

6.1 The Simple Dirac Mass Model

It is possible to give mass to the neutrinos by the same Higgs mechanism that

acts on all the other fermions. In order to do that, it is only necessary to add three fermion

singlets (νR)i, i = 1, 2, 3 and the Higgs interaction the same way the up-type quarks gain

mass,

L = −
Y ν
αβ√
2
L̄αH̃νβR + h.c. (6.1)

Where

H̃ = iσ2H
∗, (6.2)

is the self-adjoint representation of the Higgs �eld allowed in SU(2) and σ2 is the second

Pauli Matrix. Now, when the Higgs acquires a VEV, h → v, and (Mν)αβ = vY ν
αβ and

neutrinos are of the Dirac Type. Although simple and symmetric, this mechanism does

not explain why the neutrino masses are so di�erent from the other fermions.

It is also interesting to notice that Dirac Neutrinos Conserve (Total) Lepton

Number. In the Standard Model, it is usual to introduce three family lepton numbers Lα,

α = e, µ, τ that are conserved because the whole Lagrangian is invariant under each of

the three transformations,

ναL = eiθαναL, lα = eiθαlα (6.3)
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where lα is the charged lepton. When neutrinos have mass, the free Dirac neutrino

Lagrangian becomes,

LD = iν̄αL/∂ναL + iν̄αR/∂ναR −mαβ (ν̄αLνβR + ν̄αRνβL) (6.4)

and it is not possible to diagonalize the charged fermion and neutrino mass matrix at the

same time. It is easy to see that in the �rst case Eq. (6.4) is not invariant by this three

transformations individually (if mαβ 6= diagonal), but is by a single transformation,

ναL = eiθναL, lα = eiθlα (6.5)

this means that instead of the three lepton numbers conserved, Dirac-Massive neutrinos

conserves total lepton number, L.

6.2 Majorana Neutrinos

The Dirac mass term is not the only one available to construct a theory of

neutral fermions. The other possibility is try to write a non-vanishing quadratic term

with only the L (or R) part of the fermion �eld. This is possible because one don't need

to use the full four component spinor to describe fermions. It is possible to construct a

right-handed term starting from νL, let's denote it ψR,

ψR = ζCν̄TL (6.6)

where ζ is a phase and C is the charged conjugation operator. To see that it is indeed a

right neutrino, note �rst that the operator PL = 1−γ5

2
selects the left part of the fermion,

so if PLψ = 0, then, ψ = ψR (is only right-handed). Indeed,

PLCν̄
T
L = CP T

L ν̄
T
L = C (ν̄LPL)T = C

(
[PRνL]† γ0

)T
(6.7)

Where PR = 1+γ5

2
= P †L. Since, PRνL = 1+γ5

2
1−γ5

2
ν = 0, and

PLψR = 0 (6.8)
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and the subscribed R on ψ is justi�ed. If a spinor obeys

ψ = Cψ̄T (6.9)

or equivalently,

ψR = ζCψ̄L
T (6.10)

which is just imposing in Eq. (6.6), νR = ψR, then ψ = ψL + Cψ̄TL and,

ψ̄ψ = −ψTLC†ψL + h.c 6= 0 (6.11)

And the Majorana Lagrangian can be written as,

L = ψ̄Li/∂ψL −
m

2

(
−ψTLC†ψL + ψ̄LCψ̄

T
L

)
. (6.12)

Note from Eq. (6.12) that, unlike the Dirac case, the Majorana neutrino does not conserves

lepton number: the transformation ν ′ = eiθν does not make the Lagrangian invariant.

This also implies that no U(1) charge can be assigned to the massive Majorana Fermions.

Another way to see this is by looking at a possible fermion current, jµ = ψ̄γµψ. If ψ = ψC ,

then,

ψ̄γµψ = ψ̄Cγµψ
C = −ψTC†γµCψ̄T = ψ̄CγTµC

†ψ = −ψ̄γµψ (6.13)

So, jµ = −jµ = 0 and no U(1) gauge symmetry is possible. This discussion also implies

that Majorana Fermions cannot absorb phases. While in the Dirac case in a 3× 3 Dirac

Matrix scenario there is only one physical CP-violation phase δ, the Majorana Neutrinos

has three, δ, δ2 and δ3. Also, every model that generates Majorana masses has to have a

total lepton number violating term.

6.2.1 The See-Saw Model

The idea behind the seesaw mechanism consists on a high energy mass scaleM

that is hidden for low energy physics except by an e�ective Lagrangian term suppressed

by M−1, so that for large M , M−1 is small, just like the playground toy see-saw. The

simplest conception of this mechanism is taking only one extra particle, a right-handed
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fermion, NR ∼ (1, 1, 0)+1 and a Lagrangian of the form (omitting kinetic terms),

L = − Yν√
2
LH̃NR −

M

2
N c

RNR + h.c. (6.14)

where only one �avor was considered for simplicity. In this model, one have corrections

to the neutrino propagator of the form,

LTCH̃

(ˆ
dq
−(Yν)

2(/q +M)

2(q2 −M2)

)
H̃†L =

(6.15)

L(p1)

H(p2)

H(p4)

L(p3)

NR

with q = p1 + p2 − (p3 + p4). For low q (q2 << M2), the term inside parenthesis can be

approximate by − (yν)2

2M
and the interaction becomes the usual Weinberg operator [164].

This approximation is better understood observing the full Lagrangian,

L = L /DL+NR /DNR −
yν√

2
LH̃NR −

M

2
N c

RNR +H.C (6.16)

the classical equation of motion reads,

( /D −M)N clas
R +

Yν√
2
H̃†L = 0 (6.17)

so the classical solution N clas
R is,

N clas
R = ( /D −M)−1 y

ν

√
2
H̃†L (6.18)

By expanding the action around the classical solution, NR = N clas
R +N

(1)
R ,

S =

ˆ
dxL /DL+

Y 2
ν

2

ˆ
dyLc(x)H̃(x)( /D −M)−1H̃†(y)L(y) +

Things not dependent on H,L +O(N
(1)
R ). (6.19)

Therefore, if M is much bigger them the usual energy scale of the reaction, ( /D−M)−1 ≈
−M−1δ(x − y) and O(N

(1)
R ) ∼ M−2 and one can integrate out all the NR dependency

obtaining the Weinberg dimension �ve operator,

Lmass = −(yν)2

2M
LTCH̃H̃†L = −(yν)2

2M

(
LTCiσ2~σL

) (
HTCiσ2~σH

)
(6.20)



CHAPTER 6. NEUTRINO MASS MODELS 102

�nally, when the Higgs acquires a VEV, v, the following neutrino mass term appears,

L = −(yν)2v2

2M

(
νLCν

T
L +H.C.

)
(6.21)

and one can see that it generates Majorana masses. For the usual Higgs VEV, v ≈
246 GeV and usual couplings Yν ∼ 0.1, masses M of the order of M ∼ 1013 GeV are

necessary to reproduce the sub-eV scale of neutrino masses, these energies are much

higher than any particle accelerator dreams of reaching.

6.3 Neutrino Oscillations Constraints on HEP

The experimental physics has relied on particle colliders for decades in order to

search and test High Energy Physics (HEP). On the other side, many of the high energy

models try to explain not only the smallness of neutrino masses but also predict the value

of the mixing angles. This is possible because a given model A may contain a set of nA

free parameters {xi} in the leptonic section, which might be smaller than the number of

parameters in the S3νO, nSM3ν = 3 masses+3 angles+1 (or 3) phases=7 (or 9). Thus, if

na < nSM3ν , when one tries to write the mixing angles as a function of the nA parameters,

that is,

θij ≡θij({xk})

∆m2
ij ≡∆m2

ij({xk})

δCP ≡δCP({xk}),

correlations are naturally introduced among them. This is very common for models that

introduce discrete �avor symmetries in order to accommodate the lepton families. As

we argued in [10], any model containing sharp correlations between θ23 and δCP can be

probed using future long-baseline experiments, since their main goals are to measure both

parameters with amazing precision. In the next sections, we will show two case studies

of this situation for UV complete models that generates Dirac or Majorana masses for

neutrinos.
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6.3.1 Warped Flavor Symmetry Model

Our �rst example is the Warped Flavor Symmetry Model (WFSM) presented

in [165]. It is constructed in a �ve-dimensional AdS5 space, whose metric is described by,

ds2 = e−2kyηµνdx
µdxν − dy2, (6.22)

k is the curvature scale of the space. The �fth simension should be compacti�ed since it

was not detected. The minimal version uses a S1/Z1 symmetry attaching the orbtifold to

y = 0 (UV brane) and y = L (IR brane). The SM Charged Lepton masses are generated

by interactions in UV brane of the form ∼ (φΨl)Hψli , with Ψl a ∆(27) tripplet formed

by the ψli SM fermions, while Dirac neutrino masses are generated by interactions in the

IR brane of the form ∼ (ξσaΨl)H̃Ψνi , a = 1, 2. ξ, σa and φ are all localized scalars that

acquire a Vaccum expectation Value (VeV). Since ξσa lives in the IR brae, the smallness

of neutrino masses are naturally explained as the neutrino-mass term is exponentially

suppresed by a function of the curvature k. Notice that this does not happen for the

charged leptons, since φ is localized in the UV brane.

An interesting feature of this model is that the �avour symmetry constraints the form

of the Lepton and Neutrino mass matrix which imposes correlations between all the 4

neutrino oscillation. They are predicted by only two angles: θν and φν ,

sin2 θ12 =
1

2− sin 2θν cosφν
(6.23)

sin2 θ13 =
1

3
(1 + sin 2θν cosφν) (6.24)

sin2 θ12 =
1− sin 2θν sin(π/6− φν)

2− sin2 θν cosφν
(6.25)

JCP =− 1

6
√

3
cos 2θν , (6.26)

where JCP is the Jarlskog invariant, JCP = Im[U∗e1U
∗
µ3Uµ1Ue3] [166]. This means that,

by comparing the predicted relation given by the two free parameters and the measured

mixing angles, one can probe the model using low energy neutrino oscillation experiments.
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Figure 6.2 � Illustration of the correlation between θ23 and δCP (left) or JCP (right) in the WFSM. The
bands correspond to 3 (green) and 4 (yellow) σ of the parameter space available. The blue
region is the current constraint on the mixing parameter without correlation. In the left plot,
we choose to present only the 4σ contour for better visualization. This �gure was taken from
our work [10].

This can be seen in Fig.6.2. There we illustrate the correlation between θ23

and δCP (left) or JCP (right). The bands correspond to 3 (green) and 4 (yellow) σ of the

parameter space available using current constraints on the mixing parameter. If nature

chooses δCP = π and sin2 θ23 = 0.5 the model should be excluded as it cannot produce

such a solution. Notice the model has a 2σ tension, however, the central values of the

mixing angles are generated by minimization of all the mixing parameters at the same

time, while the model has only 2 parameters. The most stringent limit comes from the

solar angle of θ12.

6.3.2 Longbaseline Constraints on WFSM

To quantify the future long baseline sensitivity of testing our benchmark os-

cillation model, in [11] we used GLoBES software [167] to simulate current and future

longbaseline experiments, T2(H)K, NOνA and DUNE. The sensitivity is obtained by a

χ2 analyzis in which we minimized over the free oscillation parameters: θν and φν .
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Figure 6.3 � Expected future allowed regions of the two model parameters θν and φν for ∆χ2 < 4 (left)
and 9 (right) in four cases: T2K (dark green), NOνA (blue), DUNE(Red) and T2HK (cyan).
The plots assume Normal Hierachy (NH) as true. This �gure was taken from our work [11].

The regions are calculated by de�ning the equation,

∆χ2 ≡ χ2(θν , φν)− χ2
min(θij, δCP) (6.27)

The resulting region is plotted in Fig. 6.3 for ∆χ2 < 4 (left) and 9 (right). Notice that in

special, DUNE and T2HK greatly reduces the allowed region of Fig. 6.2.
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Figure 6.4 � Exclusion capabilities of future long-baseline experiments DUNE (left) and T2HK (right) to
exclude the WFSM as a function of the true values of the neutrino mixing angles, sin2 θtrue23

and δtrueCP for normal neutrino mass ordering (NH). The shaded regions denote ∆χ2 < 2.71
(red), 4 (blue) and 9 (darker green), The star denotes the current unconstrained minimum
value. This �gure was taken from our work [11].
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An interesting analysis to perform is the capability of future experiments to

be able to exclude the model. To do that, we performed the the same calculation for

each possible value of the values θtrue
23 and δtrue

CP . The regions are plotted in Fig. 6.4. The

bands correspond the points in parameter space where the model cannot be excluded at

90% C.L., 2σ and 3σ. Thus, although future measurements might tightly constraint the

parameter space, only a small region of the parameter space can e�ectively be used to

fully exclude the model.

6.3.3 Babu-Ma-Valle Model

A Majorana-mass type model that presents such correlation is the famous

Babu-Ma-Valle A4 model (BMV) [168]. The model is a speci�c version of the Minimal

Supersymmetric Standard Model (MSSM) that postulate a A4 �avor symmetry that cor-

relates the families of leptons and quarks. The main idea is to break A4 on a high scale

(much higher than the electroweak breaking). The charged lepton mass is generated by

the combination of symmetry breaking from the extra scalars of the model and a Higgs

like scalar φ1. In the neutrino sector, the mass matrix is generated by another Higgs-like

scalar φ2 that relates two Majorana �elds (νi, N
c
i ). Which results in a traditional See-

saw mechanism. Unfortunately, the neutrino mass matrix produces degenerate neutrino

masses. Non-degenerate masses are created by loop corrections and lead to a speci�c form

for the PMNS matrix∗ that depends on only one parameter, θ,

Uν(θ) =


cos θ − sin θ 0

sin θ
√

2 cos θ
√

2 −1/
√

2

sin θ
√

2 cos θ
√

2 1/
√

2

 . (6.28)

This clearly does not �t the current neutrino parameters, as it predicts sin2 θ13 = 0. But

the model is not dead. In [169] it was shown that it is possible to revamp the A4 model

in order to accommodate the neutrino masses and mixing. It is done by the introduction

of a A4 singlet scalar that couples to the charged leptons and changes their mass matrix.

∗see [168] for the discussion.
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This implies that the new mixing matrix is now of the form

UPMNS = Ul(β)†.Uν(θ). (6.29)

Now, the two parameters β (β is complex) and θ can explain current neutrino parameters.

But correlations between δCP and θ23 are introduced, as can be seen in Fig. 6.5.
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Figure 6.5 � Illustration of the correlation between θ23 and δCP (left) or JCP (right) in the BMV model.
The band corresponds to 90% (green) C.L. of the parameter space available. The blue region
is the current constraint on the mixing parameter without correlation. In the δCP phase we
choose to present only the 4σ contour for better visualization. This �gure was taken from
our work [12].

Notice that this model has a di�erent pattern correlation between the mixing

parameters, in special, large deviations from the maximality of θ23 cannot be �tted. A

similar procedure to the previous section can be done in order to obtain future DUNE and

T2HK sensitivity. The result is presented in Fig. 6.6. The bands correspond to 1, 2, 3 and

4 and σ intervals while the black curve is currently allowed 90% C.L. interval assuming

non-correlated parameters.
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Figure 6.6 � Exclusion capabilities of future long-baseline experiments DUNE (left) and T2HK (right)
to exclude the BMV model as a function of the true values of the neutrino mixing angles,
sin2 θtrue23 and δtrueCP for normal neutrino mass ordering (NH). The shaded regions denote
∆χ2 < 2.71 (cyan), 4 (blue) and 9 (green) and 16 (Orange), The red dot denotes the current
unconstrained minimum value and the black curve the current allowed 90% C.L. interval
assuming non-correlated parameters. This �gure was taken from our work [12].

6.4 Flavour Symmetry Models in Long-Baseline Exper-

iments

Last sections described how it is possible to use long-baseline experiments to

probe the models that correlate θ23 and δCP. However, this is not the only type of relation

between mixing parameters that can be exploited to probe Hight Energy Physics. The

current value of the neutrino parameters shows that there are two 'small' quantities: the

value of the reactor angle, θ13, and the deviation of the atmospheric angle, θ23, from its

maximal value π/4. It is suggestive to think that maybe both deviations are reminiscent

consequences of a symmetry breaking, which can relate both values by a generic function

described by,

θ13 = f(π/4) + f ′(π/4)
∣∣∣π
4
− θ23

∣∣∣+ ... ≈ θ0
13 + f

∣∣∣π
4
− θ23

∣∣∣ . (6.30)

Hence, it is not uncommon for a model to start with an antaz matrix U ′ν that predicts

sin2 θ13 = 0 and sin2 θ23 = 1/2 and make small deviations in order to explain the observed

value of such parameters, thus U ′ν → UPMNS. In fact, there are a lot of models that rely
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on this methodology. A compendium of such models and references to their construction

are presented in Table 6.1.

Model f θ0
13[rad]

[13]
√

2 0

[170, 171] 0.35 [0,0.35]

[172] 0.1 or 10 0.62

[173] 1/θ0 [-1,1]

U13.UTBM 6.3 0

U12.UTBM 6.3 0

UTBM .U23 1/
√

3 0

Model f θ0
13[rad]

UBM .U23U13 1/2 0

UTBM .U23U12 2 0.157

UTBM .U23U13 1/
√

2 0

UTBM .U13U12 2/
√

2 0

UBM .U13U12

√
3/2 0

UBM .U23U12

√
3/2 0

UBM .U23U13 1/2 0

Table 6.1 � Compendium of models that starts with an ansatz matrix that predicts sin2 θ13 = 0 and
sin2 θ23 = 1/2 that results in correlations among such parameters. All the possible com-
binations of corrections from Tri-Bi-MAximal (TBM), Bi-Maximal (BM) were considered
in [174].

In [14] we showed that it is possible to probe a model independent, but phe-

nomenolocaly motivated correlation between the atmospheric mixing and the reactor an-

gle. As an example, we used the DUNE experiment as a case study. However, it is

important to point out that the octant degeneracy may interfere in the sensitivity of such

relation, as was shown in [70]. This can be bypassed by a combination of long-baseline

and reactor measurements.
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Figure 6.7 � DUNE expected sensitivity to the θ13 mixing parameer assuming a correlation of Eq. 6.30
taking θ013 = 0 and f =

√
2 (Tetrahedral Symmetry model [13]). The shaded regions describe

1 to 5 sigma con�dence intervals. This �gure was taken from our work [14]
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We showed in [7] that a synergy between both types of experiment can partly

lift the octant problem. If we take the expected sensitivity of Daya-Bay to reach 3% of

the value of sin2 θ13 [175], it is possible to constraint the values of θ0
13 and f using the

relation in Eq. 6.30. In Fig. 6.7 we show the special case of θ0
13 = 0 and f =

√
2 from the

Tetrahedral Symmetry model [13]. We plotted the correlation between sin2 θ13 (test) and

sin2 θ13 (true). We see that for true values of θ13 there is a small band that the model can

explain the result inside the 1σ.
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Figure 6.8 � Allowed regions of θ013 and f for three di�erent values of sin2 θ23: 0.42 (green), 0.5 (red) and
0.6 (cyan). The gray region represents the 1σ allowed parameter region of θ13This �gure
was taken from our work [15]

Notice that most of the parameter space will be probed by the DUNE experi-

ment in conjunction with reactor measurements. For completeness, in Fig. 6.8, we present

the allowed regions of θ0
13 and f for three di�erent values of sin2 θ23: 0.42 (green), 0.5 (red)

and 0.6 (cyan). The gray region represents the 1σ allowed parameter region of θ13.

6.5 Conclusion

simulation of the capability of future baseline experiments to constraint or even

exclude the warped �avor model and the BMV model. We showed that those experiments

can shrink down the parameter space and that parts of the parameter space can be used

to exclude them with more than 3 σ of con�dence. Moreover, a careful analysis should

be performed by the upcoming experiment in order to disentangle the physics, as the
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assumption of which model is true can signi�cantly change the minimum value of the

parameters.

The achievements of future neutrino experiments lie beyond being able to

precisely measure neutrino oscillation parameters. It can also teste predictive high energy

models. In Section 6.3 We showed that it is possible to perform such tests without the

need of simulating each model at a time. We took a very general correlation that exists

in several models, Eq. 6.30, and were able to perform a model-independent analysis that

embraces many types of neutrino mass theoretical frameworks.
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Chapter 7
Conclusions

Recent advances in experimental high energy physics have settled one of the

most interesting scenarios in the history of physics. The standard model (SM) has passed

with �ying colors most of its tests after the latest LHC run. On the other hand, some

non-trivial theoretical issues indicate that the SM is not the �nal answer.

The search for beyond standard model e�ects expands every year due to a joint

e�ort of the community. In the neutrino sector, the long-baseline experiments (L/E ∼ 500

km/ GeV) such as T2(H)K, NOνA and DUNE will reach an incredible precision in mea-

suring neutrino-oscillation parameters. There are also short-baseline neutrino experiments

such as SBN, miniBooNE, LSND, and others, that try to look for a sign of a slippery

sterile neutrino with a mass around 1 eV. This is a proli�c era for high energy physics

indeed.

This plethora of new and interesting phenomena that can be observed using

neutrinos and the push of the academy towards the understanding of neutrinos is the

main motivation for the subject of this thesis.

The theoretical aspects of neutrino oscillation are well known in the literature,

but since it is a vast new �eld, there are just a few texts that present the general overview

of the community. This is why in Chapter 1 and 3 we presented the currents status of the

standard 3-neutrino oscillation theory, by taking a deep and careful look into the nuances

of obtaining the standard formulas. In Chapter 4 we presented relevant phenomenological



CHAPTER 7. CONCLUSIONS 113

extensions of the standard 3-neutrino oscillation theory, the Non-Standard Interactions,

the Non-unitarity of neutrino mixing matrix and sterile neutrinos.

In the rest of the thesis, we took two theoretical directions that can be used

to assist the search for new physics: Bottom-up and Top-down.

The Bottom-up approach consists of the analysis of all possible e�ective sce-

narios that may arise inside the context of the SM that was presented in Chapter 4. While

the Top-down approach is based on the realization of UV complete high energy models

that reproduces the SM in low energy but contains some non-trivial residual e�ects. Our

research was focussed on studying the neutrino oscillation and neutrino mass models, and

it has been done in both directions.

In Section 5.1 We studied how the presence of Yukawa interactions between

neutrinos and massive scalar particles, L ∼ gijνiνjφ, could change the total decay rate

and the decay spectrum of mesons into leptons. We improved the exclusion limits on

the coupling constants between neutrinos and scalars by two orders of magnitude for the

muon neutrino coupling |gµ|2 < 1.9×10−7 at 90% of C. L. This was possible by using data

from very precise measurements of the Kaon decay spectrum rather than the usual total

decay rate, this resulted in the publication in [5]. We also worked with the consequences of

non-unitary of the neutrino mixing matrix due to the existence of extra heavy neutrinos

that might not be produced in oscillation experiments. In Section 4.4.2 We analyzed

it in the context of T2K and showed how it could jeopardize the measurement of δCP.

Nevertheless, as we showed, the possibility of using the µ-Decay-at-Rest experiment in

J-park can restore T2K sensitivity. The muon decay-at-rest has a well-known decay

spectrum and a di�erent baseline/energy (15 km/ 50 MeV ∼ 300) that, when combined

with accelerator neutrinos, disentangle degeneracies in the oscillation probability induced

by the non-unitary CP phases. This resulted in the publication in [3].

Also, we explored the physical possibilities of a near detector at the DUNE

experiment in Section 5.3. We analyzed the physics potential of the near detector in

constraining non-unitary, non-standard interactions and sterile neutrinos at the eV scale.

And what the impact of systematics into those measurements would be. Such analysis

resulted in the work published in [8].
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It is important to notice that separating tiny e�ects coming from new physics

is hard. It is necessary to have a very well understanding of the standard 3 neutrino

paradigm and its parameter degeneracies. Our contribution to this topic is the analysis

in Section 5.2. We showed how well a precise measurement of the reactor angle θ13 can

contribute to the measurement of the θ23 octant and what are the limitations. In special,

the 3% expected precision in the measurement of sin2 θ13 allow the octant measurement

if the atmospheric mixing angle, θ23 is not in the range 0.42 < sin2 θ23 < 0.56. This result

was published in [7].

The phenomenological approach described above is very useful to model-independent

constraint new physics. But this comes with a price. Generally, model-independent con-

straints are looser when compared to ones coming from more speci�c scenarios. That is

why it is worth to study particular predictive models and their consequences. This can be

done by analyzing the predicted correlations between masses and mixing or by the new

particles and interactions that may arise from a particular symmetry.

As a case study, in Section 6.3, we took two models, the Warped Flavor Sym-

metry model, which predicts a sharp correlation between the atmospheric angle, θ23, and

the Dirac CP phase and presented the possible phase-space in which one could probe

such model for the long-baseline experiments. And we performed a similar analysis for

the Revamped Babu-Ma-Valle model. We presented the parameter space that can be con-

strained at 3σ by future neutrino experiments such as T2HK and DUNE. This analysis

resulted in 3 publications [10, 11, 12].

In Section 6.4 we showed that it is possible to extend this analysis by con-

sidering possible correlations between θ23 and the reactor angle. This correlation is par-

ticularly interesting because it can be generated by small changes to symmetric mixing

matrix such as the Bi-maximal, Tri-Bimaximal and Golden Ratio. Thus, one can create a

general parametrization that can be used to easily translate bonds from the experimental

data to a particular model. Such idea resulted in the publication in [14] and all those

analyses were summarized in the invited review we wrote in [15].

In summary, we took a closer look at the theory of neutrino oscillations and its

theoretical subtleties. Also, we aimed to study a diversity of phenomena that can provide

observables in neutrino experiments and how one can use them to constraint new physics.
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Appendix A
Appendix

A.1 Convenient decomposition of Non-Unitary matrix

In this Appendix we will prove the possibility of decomposition in Eq. 4.30,

that is, for an n× n unitary matrix, one can de�ne,

Un×n =

 A W

S T

 (A.1)

where A = ANP .UPMNS, with

ANP =


α11 0 0

α21 α22 0

α31 α32 α33

 . (A.2)

It is well known that a general complex n×n matrix U has n2 complex parameters. If we

impose an unitary condition, that is U.U † = I, than the number of parameters drops to

n2 real parameters, those of which, n(n− 1)/2 are angles and n(n+ 1)/2 are phases∗. It

is possible to parametrize such a matrix by a product of several rotation matrix around

∗Notice that not all phases are physical
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an axis. If we de�ne,

(ωij)αβ = δαβ

√
1− (δαi + δαj) sin2 θij + sin θije

−iφijδαiδβj − sin θije
iφijδαjδβi. (A.3)

Notice that an ωij.ω
†
ij = I. An n× n unitary matrix can be written as,

Un×n =

i,j=n∏
i<j

ωij. (A.4)

Since not all ωij commutes between each other, the order of the product is important, in

fact, it de�nes a parametrization of Un×n. If n = 3 the PDG [53] uses:

UPMNS = ω23.ω13.ω12, (A.5)

where δCP = −φ12 + φ13 − φ23.

If n > 3, the Un×n matrix can be denoted as in Eq. A.1. A is a 3 × 3 matrix

that relates only the S3νO neutrinos and is the only accessible part of the mixing matrix

through oscillation experiments, hence, it is the origin of the non-unitary e�ect in the

oscillation probability. In [120] it was presented a convenient order of the product in

Eq. A.4,

Un×n =

(
i,j=n∏
i,j>3

ωij

)
(ω3n−1ω2n−1ω1n−1 · · ·ω34ω24ω14) . (ω23.ω13.ω12) . (A.6)

(∏i,j=n
i,j>3 ωij

)
is a rotation of the heavy states and commutes (and does not change) with

the 3× 3 part. (ω23.ω13.ω12) is the usual de�nition of the PMNS matrix, it couples only

the S3νO neutrinos,

ω23.ω13.ω12 =

 UPMNS 0

0 I

 (A.7)

Finaly, the product (ω3n−1ω2n−1ω1n−1 · · ·ω34ω24ω14) is the non-unitary part and has the

triangular form of Eq. 4.31 in its 3×3 part. To see that, we �rst note that the multiplica-

tion of a triangular matrix is still triangular. Then, we notice that the product ω3jω2jω1j
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has a general form,

ω3jω2jω1j =

 αj βj

γj δj

 . (A.8)

where

(βj)ab =δjb

3∑
i=1

(αj)ajδia

(γj)ab =δja

3∑
i=1

(αj)jbδib

(δj)ab =δabδja(αj)jj (A.9)

and αj is a lower-triangular matrix. The property,

βk.

(
n2∏
j>n1

δj

)
.γn1 =0

with k > n2, shows that

(ω3n−1ω2n−1ω1n−1 · · ·ω34ω24ω14) =


∏n

j=4 αj Q1

Q2 Q3

 . (A.10)

where Qi are complecated (but uninteresting) combinations of the matrices βi, γi, δi and

the 3× 3 part (
∏n

j=4 αj) is lower-triangular. This completes the proof.
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A.2 Meson Decay: Prediction versus Measurement

A.2.1 Meson Decay - SM Theoretical Prediction

At tree level, the standard model prediction for the decays are well known and

are easily calculated by Eq. (A.11),

Γlν =
G2
Ff

2
P |Vqq′ |2m3

p

4π
α2(1− α)2 (A.11)

where α =
m2
l

m2
P
. The fact that Γlν → 0 when α→ 0 is a re�ex of the fact that this reaction

is chiral suppressed, ie it can't happen when the lepton is massless due to the fact that it

does not conserves chirality. This means that the lower the lepton mass, the lower is the

branching fraction, that is why there are no experimental results on electronic branching

fraction coming from high mass mesons (one example is the Ds meson which is expected

to have the proportion of decays e : µ : τ as 10−5 : 1 : 10) and only tauonic on the B

mesons case. This di�culty of measuring the decay rates gives rise to big experimental

uncertainties (it can reach up to 27% on B decays) and no radiative corrections are needed

in almost any case. That is not true for pion and kaon that is very well measured (up to

0.44%) and radiative corrections must be taken into account.

Such corrections were calculated very precisely (up to two loop order) by [132,

39] and are of the form,

Γ (P → lν(γ)) = Γ(0)SEW

[
1 +

αel
π
F (α)

]
×
{

1− αel
π

[
3

2
log

Mρ

MP

+ c
(P )
1 − M2

P

M2
ρ

c̃
(P )
2 log

M2
ρ

m2
l

+

+
m2
l

M2
ρ

(
c

(P )
2 log

M2
ρ

ml

+ c
(P )
3 + c

(P )
4

ml

MP

)]}
(A.12)

where,

SEW =

[
1 +

2αel
π

log

(
mz

mρ

)]
(A.13)
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and is related to the �rst order correction to the Z boson propagator, also,

F (x) = 3 log(x) +
13− 19x2

8(1− x2)
− 8− 5x2

2(1− x2)2
x2 log(x)

−2

(
1 + x2

1− x2
log(x) + 1

)
log(1− x2) + 2

1 + x2

1− x2

ˆ x

0

log(1− t)
t

dt (A.14)

and αel is the electromagnetic constant, this correction is related to the universal long-

distance correction for a point-like meson to lepton and neutrinos. The coe�cients ci are

structure dependent and are presented on table A.1 taken from reference [131].

π Kaon

c1 −2.4± 0.5 −1.9± 0.5

c̃2 0 (7.84± 0.07)× 10−2

c2 5.2± 0.4± 0.01 4.3± 0.4± 0.01

c3 −10.5± 2.3± 0.53 −4.73± 2.3± 0.28

c4 1.69± 0.07 0.22± 0.01

Table A.1 � Values of the c
(P )
i constants of

the corrections for Pion and
Kaon decay rates [131].

The corrections on the curly brackets on Eq. (A.12) comes from short-distance

calculations [131, 39] that is connected to long-distance using a somewhat arbitrary [132]

mass scale Mρ ≈ 0.768GeV.

An important parameter for the prediction of the decay rate comes from the

mesonic form factor fp. Again the experimental determination of this factors rely on

precise knowledge of the CKM matrix, moreover, sometimes those matrix elements are

calculated using theoretical predictions from Lattice QCD due to the lack of enough

experiments to confront with theory. In this work, we will assume the predictions of

lattice QCD to be true within the errors and use it to obtain the CKM matrix elements

and limits on the |ge|2 constants. The data presented on table A.2 summarizes the form

factors from the reference [176]
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fP [MeV]

π 130.2(1.4)

K 156.3(0.9)

D 209(3.3)

Ds 250(7)

B 186(4)

Table A.2 � Form Factors fp from Lattice
QCD.

Using all corrections and the form factors obtained via lattice QCD it is pos-

sible to calculate the standard model predictions to each of the decays, the results con-

fronting the experimental and theoretical are presented on table A.3.

Γexp[MeV] ΓTheo[MeV]

π → eν(γ) (3.1104± 0.0010)× 10−18 (3.048± 0.066)× 10−18

π → µν(γ) (2.52851± 0.00051)× 10−14 (2.477± 0.053)× 10−14

K → eν(γ) (8.4072± 0.045)× 10−19 (8.224± 0.45)× 10−19

K → µν(γ) (3.3794± 0.0086)× 10−14 (3.391± 0.066)× 10−14

D → µν (2.35± 0.13)× 10−13 (2.49± 0.19)× 10−13

Ds → µν (6.99± 0.47)× 10−12 (7.12± 0.42)× 10−12

Ds → τν (7.5± 0.5)× 10−11 (7.0± 0.4)× 10−11

B → τν (3.9± 1.0)× 10−14 (3.0± 0.5)× 10−14

Table A.3 � Experimental versus theoretical predictions of the SM.

A.2.2 Meson Decay - Experimental Data

The decay data comes from two di�erent sources, the �rst is the low mass

mesons (π and k) decay data that is obtained from mesonic beans that come from ac-

celerators [177]. Although it has a very good resolution (∆Γ/ΓTot . 0.44%) it can't

distinguish the decays Γ(P → lν) from Γ(P → lνγ) very well [53], so both decays are

always included in the data and also into the theoretical predictions. The PDG gives the
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results [53],

Γ(Exp)(π → eν(γ)) = (3.1104± 0.0010)× 10−18MeV

Γ(Exp)(π → µν(γ)) = (2.52851± 0.00051)× 10−14MeV

Γ(Exp)(K → eν(γ)) = (8.4072± 0.045)× 10−19MeV

Γ(Exp)(K → µν(γ)) = (3.3794± 0.0086)× 10−14MeV (A.15)

There are two CKM matrix elements relevant to these decays, Vud that comes from the

super allowed 0+ → 0+ beta decay [178] Vud = 0.97425(22) and is precisely measured.

The other matrix element is not so precisely known, also, the most precise measure-

ment comes exactly from the kaon leptonic or semi-leptonic decay [53] and has a value of

Vus = 0.2253(8). The main problem with this result is that it is �tted assumed that any

possible corrections to the SM are small enough to be ignored. As we shall see, it is not

necessarily true at the precision required.

The experimental data that comes from high mass mesons are obtained mostly

from accelerator collisions. So that the resulting particles always come with their anti-

particle and the energy and momentum of the particle can be measured precisely, allowing

what is called tagging†. The tagging of the meson allows to constraint the missing energy

of the decay to be approximately zero (the neutrino mass). Actually, the energy resolution

of the detector allows only to cut missing energy greater than M2
miss & 0.2GeV2, as can

be seen from the picture took from Ref. [16], �g. A.1. In this �gure, it can be seen the

cut made on the missing energy, denoted by the red arrows.
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D +-> Μ+ Ν

Background Figure A.1 � The M2
miss distribution for selected

single µ+ candidates, the Black his-
togram is for Monte Carlo simulated
signal events of D+ → µ+νµ decays,
the Red hatched histograms represents
the total backgrounds and the Blue Ar-
rows represent the kinematic cut [16].

†See for example [16].
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This implies that any corrections of possible three body decay mimicking a

twobody decay can only be made up to a Mmiss . 350MeV. The experimental data is of

the form [179, 180, 181, 182, 183]

Γ(Exp)(D → µν) = (2.35± 0.13)× 10−13MeV

Γ(Exp)(Ds → µν) = (6.99± 0.47)× 10−12MeV

Γ(Exp)(Ds → τν) = (7.5± 0.5)× 10−11MeV

Γ(Exp)(B → τν) = (3.9± 1.0)× 10−14MeV (A.16)

The three corresponding CKM elements have the same di�culty as the ones from kaon,

the measurement are always related to decays, and the uncertainties to the form factors

gives rise to theoretical errors as well [53] The PDG values are |Vcd| = 0.225(8), |Vus| =

0.986(16). In this analysis we will assume unitarity of the CKM matrix and use |Vub|2 =

1− |Vud|2 − |Vus|2 so that we will have fewer free parameters.
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Appendix B
Attachments

B.1 Scienti�c Publication

In this attachment, we present a summary of all the scienti�c production re-

sulted from all the work done during the Ph.D. of the student. We will divide it into three

sections, the Published Papers in scienti�c journals (9). The submitted manuscripts to

scienti�c journals (3) and ongoing works. Notice that this thesis contains a description of

works that were already published. In Fig. B.1 we show a �uxogram that organizes the

published papers by subject area.
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Flavor Physics

Theory Phenomenology

Oscillations

[3,
8]

θ23 and θ13

[7
]

[14, 15]

Meson
Decay

[5]

θ23 and δCP

[1
0,
11
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2]

Figure B.1 � Fluxogram representing each of the areas for the published papers as a result of the work
done during this thesis.

B.1.1 Published Papers

Below we present in chronological order the published papers in scienti�c jour-

nals and a small description of the content of each one.

1 Title: Bounds on Neutrino-Scalar Yukawa Coupling

Authors: Pedro Pasquini and O. L. G. Peres.

Published at Physical Review D [5].

We constrained neutrino-scalar couplings by the use of leptonic decay of mesons and

from a heavy neutrino search. Our analysis improves the present limits to |ge|2 and
|gµ|2 and includes for the �rst time the mass of the scalar particle as a variable.

Keywords:

Neutrino Physics,New Interactions,Beyond Standard Model

2 Title: Measuring the leptonic CP phase in neutrino oscillations with nonunitary

mixing

Authors: Shao-Feng Ge, Pedro Pasquini, M. Tortola, and J. W. F. Valle.
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Published at Physical Review D [3].

We take T2K and T2HK as examples to demonstrate a non-unitary mixing matrix

contains a complex phase that can spoil the sensitivity of those experiments to the

δCP. We show that this can be �xed by an experimental proposal called TNT2K

proposal which supplements T2(H)K with a µDAR source.

Keywords

Neutrino Oscillation,Non-unitarity,CP phase.

3 Title: Neutrino oscillations from warped �avor symmetry: predictions for long

baseline experiments T2K, NOvA and DUNE.

Authors: Pedro Pasquini, S. C. Chulliá and J. W. F. Valle

Published at Physical Review D [10].

We proposed a novel method for testing high energy models: Using neutrino os-

cillation and the neutrino mixing parameters measurements. As a case study, we

took the Warped Flavor Symmetry Model to show that correlations between the

atmospheric angle and the CP phase can be used to probe such theories.

Keywords

Neutrino Oscillation,Flavor Symmetry,CP phase.

4 Title: Probing atmospheric mixing and leptonic CP violation in current and fu-

ture long baseline oscillation experiments Authors: Sabya Sachi Chatterjee, Pedro

Pasquini, and J. W. F. Valle

Published at Physical Letters B [11].

We took the propose of using long-baseline experiments to constrain high energy

models and simulated the DUNE and T2HK experiments in order to show what are

the regions of the parameter space that can be used to constrain the WFSM.

Keywords

Neutrino Oscillation,Flavor Symmetry,CP phase.

5 Title: Resolving the atmospheric octant by an improved measurement of the reactor

angle

Authors: Sabya Sachi Chatterjee, Pedro Pasquini, and J. W. F. Valle

Published as Rapid Communication in Physical Review D [7]. We show that in order

to be able to measure the correct octant of θ23 it is necessary to know precisely the

value of θ13. We quantify the desired level of accuracy for each of the future long-
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baseline experiments, T2(H), NOνA and DUNE, that is needed to resolve the octant

problem.

Keywords

Neutrino Oscillation,Octant Problem,Neutrino Experiments.

6 Title: Cornering the revamped BMV model with neutrino oscillation data.

Authors: Sabya Sachi Chatterjee, Mehedi Masud, Pedro Pasquini, and J. W. F.

Valle

Published at Physical Letter B [12].

We took the propose of using long-baseline experiments to constrain high energy

models and simulated the DUNE and T2HK experiments in order to show what

are the regions of the parameter space that can be used to constrain the revamped

BMV model.

Keywords

Neutrino Oscillation,A4 Symmetry,CP phase.

7 Title: Reactor and atmospheric neutrino mixing angles' correlation as a probe for

new physics.

Authors: Pedro Pasquini

Published at Physical Review D [14].

We showed that it is possible to use a very special (but general) θ23 correlation with

θ13 that appears in many models too, model independently use the combination

of long-baseline experiments and reactor measurements to constraint high energy

models of neutrino masses.

Keywords

Neutrino Oscillation,Symmetry Models,Neutrino Experiments.

8 Title: Long-Baseline Oscillation Experiments as a Tool to Probe High Energy

Flavor Symmetry Models.

Authors: Pedro Pasquini.

Invited Review published at Advances in High Energy Physics [15].

This is an invited review to describe the possibilities of use neutrino physics to

probe symmetry based high energy models. It goes through neutrino experiments

sensitivity and analyses various models and methods that can be used to constrain

new physics.
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Keywords

Neutrino Oscillation,Symmetry Models,Long-Baseline Experiments.

9 Title: Exploring the Potential of Short-Baseline Physics at Fermilab.

Authors: O. G. Miranda, Pedro Pasquini, M. Tortola, and J. W. F. Valle.

Published in Physical Review D [8].

We explore the physical potential of liquid argon-based near detectors to search for

new physics. In special, we analyzed the ability of SBN experiment to probe non-

unitarity and Non-standard Interaction as a function of their systematic errors. We

also present benchmark designs for the DUNE's near detector to be able to improve

such bounds.

Keywords

Neutrino Oscillation,Short-Baseline,Beyond Standard Model.

We would like to thanks the support by the FAPESP-CAPES funding grant

2014/05133-1, 2014/19164-6 and 2015/16809-9. We also Thanks the partial support from

FAEPEX funding grant No 2391/17, Fermilab NPC student grant and by the Coordenação

de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Which were essential for perform all those works.

B.1.2 Submitted Manuscripts

Below we present in chronological order the papers submitted to scienti�c

journals and a small description of the content of each one.

1 Title: Analytical solution for the Zee mechanism.

Authors: A. C. B. Machado, J. Montaño, Pedro Pasquini and V. Pleitez

We took the well known Zee mechanisms and show that it is possible to write down

a simple analytical solution of the parameters of the model in terms of the neutrino

mixing parameters and masses. We also show that a set of the parameters of the

model do not contribute to the �nal value and can be taken as free parameters [184].

Neutrino Oscillation,Zee Mechanism,Beyond Standard Model.
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2 Title: Shadowing Neutrino Mass Hierarchy with Lorentz Invariance Violation.

Authors: H. Jurkovich, C. P. Ferreira, and Pedro Pasquini

We show that it is possible to use long-baseline experiments to probe Lorentz in-

variance violation. We showed the capabilities of DUNE and T2HK to constrain

parameters that change the neutrino mass matrix with an energy dependency of the

form adE
d−3. Also, we showed that if d = 4, the sensitivity to the mass hierarchy is

partially lost [185].

Keywords

Neutrino Oscillation,Lorentz Invariance,Beyond Standard Model.

3 Title: Zee and Zee-Babu mechanisms in the minimal 331 model.

Authors: A. C. B. Machado, Pedro Pasquini, and V. Pleitez

We studied the possibilities of incorporating neutrino masses in the minimal variant

of the well known SU(3) × SU(3) × U(1) (m331). The neutrino masses can be

incorporated at tree level or via loop diagrams resulting in a Zee mechanism or a

Zee-Babu mechanism. We searched for solutions of the neutrino masses and mixings

in this context [186].

Keywords

Neutrino Oscillation,331 Model,Beyond Standard Model.
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