
J
C
A
P
1
0
(
2
0
2
4
)
0
9
9

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Received: April 24, 2024
Accepted: October 9, 2024

Published: October 30, 2024

Stage-IV cosmic shear with Modified Gravity and
model-independent screening

M. Tsedrik ,a,∗ B. Bose,a P. Carrilho,a A. Pourtsidou,a,b S. Pamuk,c S. Casasc

and J. Lesgourguesc

aInstitute for Astronomy, University of Edinburgh,
Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, U.K.

bHiggs Centre for Theoretical Physics, School of Physics and Astronomy,
Edinburgh EH9 3FD, U.K.

cInstitute for Theoretical Physics and Cosmology (TTK), RWTH Aachen University,
D-52056 Aachen, Germany

E-mail: mtsedrik@ed.ac.uk, ben.bose@ed.ac.uk, pedro.carrilho@ed.ac.uk,
alkistis.pourtsidou@ed.ac.uk, sefa.pamuk@rwth-aachen.de,
casas@physik.rwth-aachen.de, lesgourg@physik.rwth-aachen.de

Abstract: We forecast constraints on minimal model-independent parametrisations of several
Modified Gravity theories using mock Stage-IV cosmic shear data. We include nonlinear
effects and screening, which ensures recovery of General Relativity on small scales. We
introduce a power spectrum emulator to accelerate our analysis and evaluate the robustness
of the growth index parametrisation with respect to two cosmologies: ΛCDM and the normal
branch of the DGP model. We forecast the uncertainties on the growth index γ to be of the
order ∼ 10%. We find that our halo-model based screening approach demonstrates excellent
performance, meeting the precision requirements of Stage-IV surveys. However, neglecting
the screening transition results in biased predictions for cosmological parameters. We find
that the screening transition shows significant degeneracy with baryonic feedback, requiring
a much better understanding of baryonic physics for its detection. Massive neutrinos effects
are less prominent and challenging to detect solely with cosmic shear data.

Keywords: cosmological parameters from LSS, modified gravity, gravitational lensing,
cosmological neutrinos

ArXiv ePrint: 2404.11508

∗Corresponding author.

© 2024 The Author(s). Published by IOP Publishing
Ltd on behalf of Sissa Medialab. Original content from

this work may be used under the terms of the Creative Commons
Attribution 4.0 licence. Any further distribution of this work must
maintain attribution to the author(s) and the title of the work,
journal citation and DOI.

https://doi.org/10.1088/1475-7516/2024/10/099

https://orcid.org/0000-0002-0020-5343
mailto:mtsedrik@ed.ac.uk
mailto:ben.bose@ed.ac.uk
mailto:pedro.carrilho@ed.ac.uk
mailto:alkistis.pourtsidou@ed.ac.uk
mailto:sefa.pamuk@rwth-aachen.de
mailto:casas@physik.rwth-aachen.de
mailto:lesgourg@physik.rwth-aachen.de
https://doi.org/10.48550/arXiv.2404.11508
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1475-7516/2024/10/099


J
C
A
P
1
0
(
2
0
2
4
)
0
9
9

Contents

1 Introduction 1

2 Cosmic shear modelling 3
2.1 Cosmic shear 3
2.2 Nonlinear power spectrum modelling 5
2.3 Modified Gravity scenarios 6
2.4 Baryonic effects 9

3 Analysis setup 11

4 Results 13
4.1 Validation with GR 13
4.2 Screening scale with nDGP gravity 15
4.3 Screening scale versus baryons 19
4.4 Screening scale versus neutrinos 20
4.5 Combined nonlinear effects 21

5 Conclusions 22

A Connection between the growth index and nDGP 25

B Validation with GR: full posteriors and discussion 26

C Expansion rate: note on degeneracies and priors 28

D Test with nDGP: full posteriors and discussion 29

E Other full posteriors 32

1 Introduction

Stage-IV cosmological surveys, such as Euclid1 [1] and the Vera C. Rubin Observatory’s Legacy
Survey of Space and Time (LSST)2 [2], will provide us with high precision data, enabling
us to constrain deviations from General Relativity (GR). GR serves as the foundational
theory of gravity in the standard cosmological model, ΛCDM. Enhancing the robustness
of our modelling has become imperative, as statistical uncertainties will no longer be the
limiting obstacle; instead, Stage-IV data analyses will be limited by the accuracy of the
theoretical modelling of the observables.

Cosmic shear, the weak gravitational lensing effect that systematically distorts the shapes
of galaxy images, can be directly connected to the spatial distribution of all gravitating matter

1http://euclid-ec.org.
2https://www.lsst.org/.
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along the line-of-sight (for comprehensive reviews, see refs. [3–5]). For Stage-IV surveys, the
small scales of the cosmic shear measurement exhibit the highest signal-to-noise ratio [6].
Their inclusion will be of utmost importance to distinguish between competing gravity models
with distinct nonlinear behaviors. Nontrivial effects that should be taken into account include
nonlinear structure formation [7], baryonic effects on the matter distribution [8], intrinsic
alignments [9] and the impact of massive neutrinos on structure formation [10, 11]. For
beyond-ΛCDM cosmologies, which include extensions of GR, the screening mechanism [12–16]
is an additional important nonlinear effect. Screening is a key phenomenological aspect of
all viable Modified Gravity (MG) theories, allowing recovery of GR on small scales. At
small scales, notably within our Solar System, GR exhibits highly accurate observational
consistency (see ref. [17] for a review).

There is a plethora of non-standard cosmologies (for reviews, see refs. [18, 19]), and a
few of them have been tested with real photometric data (see, for example, refs. [20–23]) and
simulations [24–27], or have been subject to forecasts for Stage-IV weak lensing surveys [28–
30]. An alternative approach to studying a broader class of MG models involves Horndeski
theories [31], the corresponding α-parametrisation [32–34] or direct parametrisation of the
linear relation between matter and the gravitational potential (see, for example, ref. [35]).
Typically, in such parameterised analyses, screening has either been neglected [36, 37] or
accounted for through conservative scale-cuts [23, 38–40].

To our knowledge, attempts to take the screening effects into account have been made in
refs. [41–44]. Therein, screening was modeled as an exponential cut-off in the α-parameters
with a characteristic screening scale at which the screening mechanism becomes effective. This
scale was either varied as a free parameter or fixed to the value motivated by simulations [45].
However, the performance of this approximation across various MG scenarios remains to be
tested, in order to understand if the corresponding accuracy suffices for Stage-IV surveys.

In ref. [46], we introduced an approximate phenomenological model based on the error
function to model the screening effects within the halo-model reaction framework [47]. Various
extended scenarios were shown to be in good agreement (within a few percent) with the exact
solution for the screened regime. In the same paper, we described the minimal extension
model, where the background is assumed to be flat ΛCDM, and the deviation of linear
growth from GR is parameterised by the growth index γ [48–50]. The growth index is
defined via the growth rate, f = d ln D/d ln a, as an exponent of the time-dependent matter
density relative to critical:

f(z) = Ωγ
m(z) . (1.1)

This phenomenological parameterisation was developed with galaxy clustering probes in mind
and has been used to look for deviations from standard cosmology [51–53]. In ref. [54] it
was demonstrated that γ can be constrained with weak lensing probes as well. Constraining
the growth index is one of the main objectives of Stage-IV surveys [6, 55, 56]. We should
note that this parametrisation assumes that the linear growth factor and rate are scale-
independent which is not the case for some modified gravity models, such as the well studied
f(R) model of ref. [57]. To account for such scale dependencies one would need to extend
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this parametrisation as done in ref. [58]. We will not consider this here and restrict ourselves
to the scale-independent case.

In this paper, we investigate whether we could provide constraints on the minimal model-
independent parametrisation of MG, including nonlinear scales with forthcoming Stage-IV
cosmic shear data. We present an emulator, trained with cosmopower3 on power spectra
generated using the halo-model reaction code ReACT,4 which will be used in our analyses.
We have made a public repository for this and related emulators.5

In section 2, we introduce the modelling of cosmic shear and relevant nonlinear effects.
In section 3, we present our analysis setup. In section 4, we study how well the nonlinear
extension of the growth index performs on mock data in GR and an example MG model.
Then, we investigate the importance of including the screening scale, the degeneracy between
the screening scale and baryonic feedback, and the effects from massive neutrinos. Finally,
we summarise our results and outline the next necessary steps, paving the way to an optimal
model-independent parametrisation on all scales.

2 Cosmic shear modelling

In this section, we describe the modelling of our observable, the cosmic shear power spectrum,
detailing its main components, the MG scenarios under consideration, and their signatures
on the weak lensing power spectrum.

2.1 Cosmic shear

For a generic theory of gravity, the cosmic shear power spectrum can be derived from the
lensing potential, also known as the Weyl potential. The Weyl potential is intricately linked to
the underlying matter density fluctuations via a corresponding Poisson equation. Therefore,
we can obtain the cosmic shear power spectrum by integrating the nonlinear matter power
spectrum along the line-of-sight under the Limber approximation [42]:

Cγγ
ij (ℓ) =

∫ zmax

zmin=0
dz

W γ
i (z)W γ

j (z)
H(z)χ2(z) Σ2[kℓ(z), z]PNL[kℓ(z), z] , (2.1)

where we set the speed of light to c = 1, kℓ = (ℓ+1/2)/χ(z), χ(z) signifies the radial comoving
distance from an observer at z = 0 to an object at redshift z, H(a) represents the Hubble
function, Σ(k, z) denotes the modification to the Poisson equation for the Weyl potential
in MG theories, and zmax stands for the maximum redshift of the source distribution in a
survey. The weighting functions W γ

i are defined as:

W γ
i (z) = 3

2H2
0 Ωmχ(z)(1 + z)

∫ zmax

zmin=0
dz′ni(z′)

[
1 − χ(z)

χ(z′)

]
, (2.2)

where Ωm = Ωm(z = 0) denotes the total matter density fraction today, H0 represents the
Hubble constant in Mpc−1, and ni is the redshift distribution for bin i. The observed lensing
signal CWL

ij (ℓ) is contaminated by the intrinsic alignment contribution (IA, see ref. [59] for a
3github.com/alessiospuriomancini/cosmopower.
4github.com/nebblu/ACTio-ReACTio.
5github.com/nebblu/ReACT-emus/emulators.
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recent review). IA represent correlations in the orientation between galaxies which are not
caused by lensing but rather by the same gravitational field in which these galaxies evolve.
We model this using the redshift-dependent nonlinear alignment (zNLA) model [60, 61].
Additionally, we account for the shape-noise contribution due to the intrinsic ellipticity field
(unlensed). These effects introduce the following additional contribution to the signal:

CWL
ij (ℓ) = Cγγ

ij (ℓ) + CIγ
ij (ℓ) + CII

ij (ℓ) + σ2
ϵ

n̄
δK

ij , (2.3)

where δK
ij is the Kronecker’s delta, σϵ stands for the variance of the intrinsic ellipticity

distribution, n̄ = n/Nbins with n being number of galaxies per radians squared, and the
superscript I denotes the contribution from the IA with the following kernel:

W I
i (k, z) = −AIACIA(1 + z)ηIA

Ωm
D(k, z)/D(k, 0)ni(z)H(z) , (2.4)

where D(k, z) denotes the growth factor6 — the general definition for MG theories includes
a scale dependence, but in this work we only study models with scale-independent linear
growth. We set CIA = 0.0134 (its conventional value, as it is degenerate with AIA), while AIA
and ηIA are additional nuisance parameters in our modelling. AIA is called the alignment
amplitude. It quantifies the strength of the IA signal given the underlying matter density
distribution. The IA signal evolves with redshift and depends on galaxy type [62, 63]. The
redshift evolution of the IA amplitude is controlled by the redshift scaling parameter ηIA. We
also assume that the redshift at which we observe the IA signal is lower than the redshift at
which the alignment was initiated. In this framework, the ellipticity of a galaxy is linearly
related to the gravitational potential at the time when the IA signal is set. Therefore, it
is related to the density perturbations and the matter power spectrum via the Poisson
equation. In zNLA, we extend this connection into the nonlinear regime by using the full
nonlinear matter power spectrum. It has been widely applied to Stage-III galaxy survey
measurements (see, for instance, refs. [9, 64–66]) that seem to prefer simpler IA models. The
zNLA model allows for amplitude and redshift dependence of the IA signal from any MG
model through D(k, z) in eq. (2.4) and PNL in eq. (2.1). Unlike other IA models where
tidal physics is taken into account and perturbatively re-derived for MG scenarios, this does
not affect NLA [23]. While there is still debate on whether or not zNLA captures all IA
effects sufficiently well for Stage-IV surveys [67, 68], we leave a detailed exploration of more
complex models for future work. In general, IA occurs on small astrophysical scales, where
we assume that all modifications of gravity are screened [34]. However, a more complex
IA model may introduce degeneracies with cosmological and MG parameters, and, hence,
degrade the inferred constraints. We note that by choosing a simpler IA model, our forecasts
may underestimate uncertainties of the inferred parameters.

The main component from eq. (2.1) that we model and modify in our analysis is the
nonlinear power spectrum:

PNL(k, z) = P MG+ν
NL (k, z) × Bbaryons(k, z) = BMG+ν × Bbaryons × P ΛCDM

NL , (2.5)
6This is found by solving the linearised growth equation in the cosmological scenario of interest, which we

compute using MGrowth: github.com/MariaTsedrik/MGrowth.
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where the nonlinear ΛCDM power spectrum without neutrinos, P ΛCDM
NL , is combined with

the emulated boosts due to effects from baryonic feedback, Bbaryons, and MG with mas-
sive neutrinos, BMG+ν = P MG+ν

NL /P ΛCDM
NL . This prescription is described in detail in the

following subsections.

2.2 Nonlinear power spectrum modelling

In the halo-model reaction framework7 [47], based on the halo-model approach (see ref. [74]
for a recent review), we can compute the nonlinear power spectrum in a modified theory
of gravity including massive neutrinos as:

P MG+ν
NL (k, z) = R(k, z)P pseudo

NL (k, z) , (2.6)

where P pseudo
NL (k, z) is called the pseudo power spectrum. This is defined as a nonlinear

power spectrum, evolved in a ΛCDM universe with adjusted initial conditions in order
to match the linear clustering of the MG model of interest at the target redshifts, i.e.,
P pseudo

L (k, zj) = P MG
L (k, zj). In the context of N-body simulations it can be understood as

follows: initial conditions are generated from a power spectrum computed as P pseudo
L (k, zini) =

D2
ΛCDM(zini)/D2

ΛCDM(zj) P MG
L (k, zj) while the evolution up to zj is done with standard

gravity and ΛCDM expansion. In the context of HMcode it can be understood as using
D2

ΛCDM(z = 0)/D2
ΛCDM(zj) P MG(k, zj) as input linear power spectrum at redshift z = 0.

Since in our case the re-scaling of the initial conditions is scale-independent (as we are dealing
with MG theories with scale-independent linear growth), one can also compute a pseudo
power spectrum at the target redshift simply by re-scaling the primordial amplitude as
Apseudo

s = D2
MG(zj)/D2

ΛCDM(zj)As. Instead of utilising a ΛCDM nonlinear power spectrum
with the same cosmological parameters and modelling the reaction as an expected ratio
P MG+ν

NL /P ΛCDM
NL with halo-model, we opt for the pseudo cosmology, which implies the halo

mass functions of both MG and pseudo cosmologies are similar. As a consequence, the
transition between 2- and 1-halo terms becomes smoother. For example, in figure 5 and 7
of ref. [47], when comparing P MG

NL /P ΛCDM
NL and P MG

NL /P pseudo
NL , the latter clearly appears as

a smoother function.
We compute the pseudo power spectrum using HMCode [75–78], in particular its 2020-

version. Alternatively, the pseudo power spectrum can be computed with HaloFit [79]
or for MG theories with scale-independent linear growth, ΛCDM-based emulators such as
EuclidEmulator2 [80, 81] or BACCOemu [82] can be used by adjusting the spectrum amplitude
parameter, As or σ8, to match the modified cosmology.

The reaction function R(k, z) contains all nonlinear corrections to the pseudo spectrum
coming from modifications of gravity and massive neutrinos. We refer the reader to refs. [47, 71]
for more details on how to model the reaction function. In a nutshell, similar to the halo-model
approach, there are three distinct regimes in scale: linear (2-halo term), quasi-nonlinear

7The series of papers “On the road to percent accuracy” covers the developments of the framework including
the basic foundation [47], an emulator for the pseudo power spectrum [69], inclusion of massive neutrinos [70],
the first forecasts for an LSST-like survey and the ReACT code release [71], a comparison with simulations and
simulation-based emulators including baryonic contribution in [72], and interactions between dark matter and
dark energy [73].
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(1-loop corrections and smoothing), and nonlinear (1-halo term). For each we need to
follow a certain prescription within our framework. These three regimes are demonstrated
clearly in the Poisson equations that connect the gravitational potential, Φ, to the matter
density fluctuations, δ:

−
(

k

aH(a)

)2
ΦQNL(k, a) = 3Ωm(a)

2 µL(k, a) δQNL(k, a) + S(k, a) , (2.7)

−
(

k

aH(a)

)2
ΦNL(k, a) = 3Ωm(a)

2 µNL(k, a) δNL(k, a) , (2.8)

where Ωm(a) = Ωma−3H2
0 /H2(a). The subscripts QNL and NL denote “quasi-nonlinear”

and “nonlinear”, respectively.
In the linear regime, the enhancement or suppression of structure formation relative to

ΛCDM is controlled by µL(k, a). In the quasi-nonlinear regime, the modifications at second
and third orders are captured by a source term S(k, a) (see eq. 2.8 in ref. [83]). Within the
reaction function, two parameters guarantee a smooth transition between the 2- and 1-halo
terms in the quasi-nonlinear regime: E and k⋆. The first parameter corresponds to the 1-halo
power spectrum ratio in the modified and pseudo cosmologies at very large scales, tuning
the similarities in their halo mass functions. The second parameter controls the rate of the
transition, and for that parameter the one-loop corrections given by S(k, a) are essential.

In the nonlinear regime, the modification to gravity is governed by µNL(k, a), which should
recover GR at very nonlinear scales (k ≫ 10 h/Mpc) in the screened MG theories µNL → 1 or
µNL = µL in the unscreened MG theories. This function is then considered when solving the
gravitational collapse equation for the top-hat radius. From the solution of the gravitational
collapse equation and Virial theorem, we derive the density at the collapse, virial scale factor
and virial density, which are then used for computing the halo-mass function [84, 85] and
halo density profile [86] — two essential properties of the 1-halo term power spectrum.

All in all, to fully describe P MG+ν we require the following information: the total
neutrino mass Mν (or equivalently the neutrino density parameter, related to the mass by
Mν ≈ 93.14 Ωνh2 eV), and 5 functions — the expansion history H(a), the modification
of gravity on linear scales µL(k, a), two functions γ2 and γ3 included in the source term
S(k, a) that modifies quasi-nonlinear scales, and the modification of gravity in the nonlinear
regime µNL(k, a). In the subsequent subsection, we discuss these functions for the MG
theories of interest.

2.3 Modified Gravity scenarios

In our previous work [46], we studied Horndeski theories employing the Effective Field Theory
of Dark Energy (EFTofDE). Horndeski theories [87] encompass the most general class of
scalar-tensor theories of gravity in 4 dimensions that are Lorentz-covariant, ghost-free and
have second-order equations of motion. However, in this work, we specifically focus on a
popular example of scalar-tensor theories with Vainshtein screening [88] — the normal branch
of DGP theories (nDGP, [89]). We aim to recover its main features with the phenomenological
growth index parameterisation [48–50] extended to the nonlinear regime (see the “minimal
parametrisation” in ref. [46]).

– 6 –
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Considering linear scalar perturbations on a Friedmann-Robertson-Walker metric, one can
write the line element in the conformal Newtonian gauge and a spatially flat background as:

ds2 = −(1 + 2Φ)dt2 + a2(1 − 2Ψ)dx2 , (2.9)

with the Newtonian potential Φ and the intrinsic spatial curvature potential Ψ. We can then
modify the linear Poisson equations neglecting the anisotropic shear as

−
(

k

aH(a)

)2
ΦL(k, a) = 3Ωm(a)

2 µL(k, a) δL(k, a) , (2.10)

ΨL = ηL(k, a)ΦL , (2.11)

where ηL is the slip parameter, and which simplifies to the standard GR case for µL = ηL = 1.
We now obtain a Poisson equation for the Weyl potential, ΨW = (ΦL + ΨL)/2 as

−
(

k

aH(a)

)2
ΨW(k, a) = 3Ωm(a)

2 ΣL(k, a) δL(k, a) , (2.12)

with ΣL(k, a) = µL(1 + ηL)/2, which equals unity in the GR case. Generally, most MG
theories exhibit a strong preference to the no-slip condition so that ΦL ≈ ΨL (see figure 2–4
in ref. [90]), hence ΣL = µL. We can further extend the equality of the potentials into the
nonlinear regime, which implies Σ(k, z) = µNL(k, z) in eq. (2.1): forcing not only PNL but
also Σ to converge to a GR-limit on small scales. However, for our theories of interest we
have ΣL = 1, i.e., lensing is not affected: for nDGP this is derived in refs. [91, 92] and
for the γ-parametrisation we set it by hand. Therefore, in this work, in eq. (2.1) we set
Σ(k, z) = 1 and modify PNL only.

Below is a summary of the functions required for the reaction calculations and our
assumptions:

1. The background expansion is set to be equal the standard cosmology: H(a) =
H0
√

Ωma−3 + (1 − Ωm).

2. Modifications in the linear regime:

µL(a) =


1 + 1

3β(a) for nDGP
2
3Ωγ−1

m (a) [Ωγ
m(a) + 2 − 3γ + 3(γ − 1/2)Ωm(a)] for γ = const

2
3Ωγ−1

m (a)γ1(a − 1/a) log Ωm(a) + µγ=const
L (a) for γ(a)

(2.13)

with β(a) defined as

β(a) = 1 + H(a)
H0

1√
Ωrc

(
1 + Ḣ(a)

3H2(a)

)
, (2.14)

where dot denotes a derivative with respect to the time coordinate and Ωrc corresponds
to the strength of modification in the nDGP cosmology (Ωrc = 0 in GR). The derivation
of µL for nDGP can be found in ref. [91], while for the growth index parametrisations
one inserts the growth rate, f(a) = [Ωm(a)]γ(a), into the linearised growth equation

f ′(a) + f2(a) +
(

2 + H ′(a)
H(a)

)
f(a) = 3

2µL(a)Ωm(a) (2.15)

– 7 –
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Figure 1. Upper panel: left — linear modification to the Poisson equation for nDGP gravity with
strong modification of Ωrc = 0.25 (red solid line), GR (black line) and different growth index values
specified in the colour-bar; right — nonlinear modification to the Poisson equation for the same nDGP
scenario, and growth index with γ = 0.4 and various values of the screening scale q1 at z = 1.25 as
a function of the normalised halo radius yh, defined in eq. (2.19). Lower panel: ratio between the
growth factors computed for various values of γ; left — with respect to the growth in GR, middle and
right — with respect to nDGP for time-independent and time-dependent growth index respectively.
Dashed black lines denote the 1% range.

with ′ = d/d ln a, to find the expression for µL. In addition to the standard (constant)
growth index parameter, we consider a time-dependent version of the form γ(a) = γ0 +
γ1(a + 1/a − 2) from the recent work of ref. [93]. We add this model to MGCAMB.8 The
latter parametrisation was recently proposed because it captures the time-evolution of
growth in Horndeski theories better than the constant growth index. We demonstrate
this in the lower right panel of figure 1. Additionally, in the same figure, we illustrate
the impact different choices of µL have on the growth factor D for the time-independent
growth index. Indeed, for nDGP the time-dependent parametrisation of the growth
index provides a better fit than the constant one. However, for the standard cosmology,
the growth index parametrisation remains excellent, whereas, for a scalar-tensor theory
like nDGP, it does not. Further discussion on the correspondence between the constant
growth index and DGP theories is provided in appendix A. In all models, we ensure
a match with General Relativity at high redshifts. In other words, we introduce
modifications of the standard cosmology only in the late universe, while the early
universe remains ΛCDM.

3. In the quasi-nonlinear regime for nDGP γ2- and γ3-functions9 within S(k, a) are
specified in ref. [83], while for the scale-independent growth index parametrisation we
set them to zero. In ref. [46] it was demonstrated that the 1-loop corrections impact

8github.com/MariaTsedrik/MGCAMB.
9Note that the γ2- and γ3-functions are not related with the growth index parametrisation despite having

similar notation. These functions, γ2(k1, k2, a) and γ3(k1, k2, k3, a), characterise quasi-nonlinear modifications
to the Poisson equation.
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the reaction function very weakly for nDGP, less than 1%. However, this might become
a consideration when scale-dependency in the linear growth is present.

4. Modifications in the fully nonlinear regime:

µNL(a) =


2

3β(a)

√
1+s3−1

s3 + 1 for nDGP
(µL(a) − 1)erf(a yh10q1) + 1 for γ parametrisations .

(2.16)

The expression for nDGP is derived in ref. [94] following the solution of a spherically
symmetrical overdensity with

s =
[ 2Ωm(δ + 1)

9a3β(a)2Ωrc

] 1
3

, (2.17)

and δ being the nonlinear over-density given by

δ = y−3
h (1 + δini) − 1 , (2.18)

with δini being the initial over-density and

yh ≡ RTH/a

Ri/aini
, (2.19)

RTH and Ri being the physical halo top-hat radius at the target scale factor a and at
the initial scale factor aini, respectively. The second expression is phenomenological and
was demonstrated in ref. [46] to reproduce the Vainshtein screening behaviour within 1%
up to k = 5 h/Mpc when compared against the exact solution. By the exact solution
we mean the halo-based reaction computation for the exact expression of µNL in nDGP
from eq. (2.16). This exact ReACT solution, in turn, shows percent-level agreement
when tested against numerical simulations in ref. [47]. The error-function form in µNL
guarantees a smooth transition from the modified into the screened regime: on large
scales in the linear regime µNL → µL, while on small scales µNL → 1. The parameter q1
corresponds to the screening scale, and its impact is demonstrated in the right upper
panel of figure 1 (for a case of γ = 0.4 that matches the linear modification of nDGP
with Ωrc = 0.25 at redshift z = 1.25). From this figure, we see that the higher q1 the
deeper into the halo the transition from modification to no modification happens. The
opposite is also true, the lower q1 the farther outside the halo µNL ∼ 1. The GR-limit is
fully recovered at all scales when q1 → −∞. Values of q1 ≳ 2 correspond to a screening
scale deep within a halo, indicating that we will observe no effect of screening in the
nonlinear power spectrum at the scales of our interest.

2.4 Baryonic effects

The last missing component from eq. (2.5) is the boost from the baryonic feedback, Bbaryons.
It is well-known that astrophysical processes significantly impact the matter power spectrum
in the nonlinear regime. For instance, active galactic nuclei (AGN), supernovae, and stellar
winds repulse matter from clustered centralised clumps into intergalactic medium, causing
a suppression of the observed structures on small scales. On even smaller astrophysical
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scales, the observed structures get boosted by gas cooling and star formation. The effects
of baryonic processes have been extensively studied in various hydrodynamical simulations,
including BAHAMAS [95], Illustris-TNG [96], and more recent FLAMINGO [97], among
others. However, these effects are sensitive to the sub-grid physics and can vary significantly
between different simulations (as depicted in figure 9 of ref. [98]).

Instead of running computationally expensive hydro-simulations and fine-tuning them to
match observations, the impact of baryons can be modelled using a baryonification model [98,
99]. In this approach, halo profiles, the outputs of a dark-matter-only simulations, are modified
by slightly displacing particles around halo centres in a spherically symmetric way. This
displacement is characterised by 7 baryonic parameters: {log10 Mc, θej, µbar, γbar, δbar, ηδbar,
ηbar} (the first five describe the gas distribution, while the last two are related to the stellar
abundances),10 along with one cosmological parameter, the baryonic fraction fb = Ωb/Ωcdm+b.
In our analysis we use the baryonic emulator BCEMU [100], which accurately reproduces the
power spectra of state-of-the art hydrodynamical simulations even with a reduced number
of parameters. This emulator has been employed to analyse cosmic shear data in ref. [101],
and provides a robust and flexible tool for incorporating baryonic effects into our analyses.
In section 4.3 we discuss the cosmology dependence in the context of MG theories for the
baryonification approach.

The importance of baryonic feedback becomes evident on scales comparable to the size
of a halo, which coincides with the scales where screening is crucial for MG theories. In
this work, we aim to investigate whether an independent parametrisation of the screening
scale can be decoupled from the effects of baryons. To achieve this, when exploring the
generalised parametrisation in sections 4.3 and 4.5, we only vary log10 Mc (similarly to the
DES Y3 shear analysis in ref. [102]), while keeping the others fixed at their fiducial values.
Exploring degeneracies with the full set of baryonic parameters will be explored in future
work. The log10 Mc parameter controls the slope of the gas density distribution: smaller
haloes with masses less than Mc have shallower profiles. Both the screening and baryonic
feedback effects display weak cosmological dependence and result in the suppression of growth
on approximately the same scales. Already from this fact alone we can highlight the urgency
of accurately measuring baryonic parameters.

Fortunately, there exists a well-established connection between the baryonic effects on the
power spectrum and the gas and stellar fractions in haloes [99]. This suggests that additional
secondary CMB observables and/or X-ray measurements of galaxy groups and clusters can
help constrain these parameters or impose physically motivated priors. For instance, in
ref. [103] authors measured log10 Mc = 14.53±0.20 with a compilation of Bayesian population
studies of galaxy groups and clusters and with cluster gas density profiles derived from
deep, high-resolution X-ray observations. While ref. [101] found log10 Mc ≈ 13.2 ± 0.4 from

10log10 Mc defines the characteristic mass scale where the slope of the gas profile becomes shallower than
−3 (i.e., shallower than the Navarro-Frenk-White profile) for small halos with Mvir ≪ M ′

c. The critical mass
Mc is given in the solar mass units Mc := M ′

c/
(
M⊙ h−1). µbar defines how fast the slope of the gas profile

becomes shallower towards small halo masses. θej specifies the maximum radius of gas ejection relative to the
virial radius. γbar and δbar control the slope of the gas profile falling beyond the virial radius. ηbar specifies
the total stellar fraction within a halo (including central galaxy, satellites, and halo stars). ηδbar defines the
difference between the total stellar fraction and the one of the central galaxy.

– 10 –
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the combination of the KiDS-1000 cosmic shear data with the gas profiles from kinematic
Sunyaev-Zeldovich (kSZ) observations and X-ray data. Recently, ref. [104] found a significantly
stronger baryonic feedback suppression than in previous studies with log10 Mc = 13.22+0.42

−0.29
using the DES Y3 cosmic shear and CMASS + ACT DR5 kSZ observations. In these three
works all 7 parameters of the model were varied. Interestingly, it has been demonstrated
in ref. [8] that with the addition of mock gas fractions from eROSITA a Euclid-like setup
finds σlog10 Mc/ log10 Mc ∼ O(0.001) when log10 Mc is varied together with µbar and θej. This
implies that future surveys can decrease baryonification model errors by more than an
order of magnitude. However, whether or not the model with only 3 baryonic parameters,
{log10 Mc, µbar, θej}, qualifies for Stage-IV surveys without introducing biases is still under
investigation. Additionally, the percent and sub-percent level of precision assumes that the
baryonification model is correct and complete. This as well requires further exploration,
especially for the newest generation of surveys.

Alternative approaches to mitigate the baryonic effects include a) a slightly different model
of baryonification called Baryon Correction Model [105, 106] that was applied to DES Y3
data [9, 102], b) halo-model [78, 107], and c) Principal Component Analysis (PCA) [108–110].

3 Analysis setup

The survey specifications in our pipeline are chosen to mimic Stage-IV specifications: sky
fraction fsky = 0.4, number density of galaxies per arcminute squared n = 30 arcmin−2,
and per-component dispersion in the intrinsic galaxy ellipticities σϵ = 0.3. We take 10
equipopulated tomographic bins between redshifts z ∈ [0.001, 2.5]. The photometric redshift
distribution of galaxies is following ni(z) ∝ (z/z0)2 exp − (z/z0)3/2 with z0 = 0.9/

√
2 [111].

The uncertainty on the photometric redshift is modeled as the sum of two Gaussian distri-
butions: one for the well determined photometric redshifts and another for the outliers (we
follow the prescription in section 3.3.1 of ref. [6]).

As input we use synthetic data, namely angular power spectra, Cℓ, computed according
to eq. (2.3), with the fiducial cosmology in three scenarios:

1. ΛCDM scenario in section 4.1: nonlinear power spectrum is calculated with HMcode2020
in which linear input is computed with BACCOemu;

2. nDGP scenario in sections 4.2 and 4.5 with strong deviation from the standard cosmology
Ωrc = 0.25: nonlinear power spectrum computed with reaction from ReACT and pseudo-
power spectrum from HMcode2020;

3. minimal parametrisation in sections 4.3 and 4.4 with γ = 0.4, q1 = 0.76: nonlinear
power spectrum computed with reaction from ReACT and pseudo-power spectrum from
HMcode2020.

We use these scenarios to validate the pipeline and then test the performance of the growth
index parametrisation. We model the angular power spectra from eq. (2.3), where the
background remains unaffected and the MG modification impacts the linear growth parameter
and the nonlinear power spectrum. In total, we emulate 3 models for BMG+ν from eq. (2.5)

– 11 –
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Effect Parameter Prior Fiducial

Cosmological

ωc U(0.11, 0.13) 0.12
ωb N (0.02268, 0.00038) 0.02268
h U(0.63755, 0.7305) 0.68
log

(
1010 As

)
U(2.7081, 3.2958) 3.044

ns N (0.97, 0.004) 0.97

Intrinsic Alignments AIA U(0, 12.1) 1.72
ηIA U(−7, 6.17) −0.41

Modified Gravity

log10 Ωrc U(−3, 2) 0.25
γ, γ0 U(0, 1) —
γ1 U(−0.7, 0.7) —
q1 U(−2, 2) —

Baryonic log10 Mc U(11.4, 14.6) 13.32
Massive Neutrinos Mν U(0, 0.1576) 0.06

Table 1. Sampling parameters, prior ranges and fiducial values in the model and mock data
respectively. The spectral index ns has tight Planck prior and the baryonic density component has a
BBN-prior, both motivated by weak constraints on these parameters from cosmic shear data [114].

using cosmopower [44]: nDGP,11 γ + q1 and γ(z) + q1 in the ranges specified in table 2 and
the accuracy of emulators provided in the corresponding code repository.12 We compute
our models for the nonlinear matter power spectrum boost in the wavenumber range of
k ∈ [0.01, 5] h/Mpc. For smaller k-values we extrapolate the boost to be constant and equal
to its value at k = 0.01 h/Mpc, while for larger k-values we extrapolate the boost as a power
law. For the ΛCDM nonlinear power spectrum from eq. (2.5) we use HMcode2020. Finally,
the baryonic boost, Bbaryons, in eq. (2.5) is computed with BCEMU.

The likelihood is computed as (see appendix B.2 of ref. [11]):

L = −1
2

ℓmax∑
ℓ=10

(2ℓ + 1)fsky

(
dmix

ℓ

dmodel
ℓ

+ ln dmodel
ℓ

ddata
ℓ

− Nbins

)
(3.1)

where Nbins is the number of photometric bins and dℓ denote the determinants of Cij
ℓ : the

mock data and model are both computed with eq. (2.3), and dmix
ℓ is defined as

dmix
ℓ =

Nbins∑
k=1

det

Cmodel
ij (ℓ) if j ̸= k

Cdata
ij (ℓ) if j = k

 . (3.2)

The modelling and likelihood function we use were validated in ref. [113]. The priors are
given in table 1, and the fiducial values for the fixed baryonic parameters are: θej = 4.235,
µbar = 0.93, γbar = 2.25, δbar = 6.4, ηδbar = 0.14, ηbar = 0.15.

11Alternative emulators for nDGP trained on numerical simulations:
github.com/BartolomeoF/nDGPemu [112] and BRIDGE [27].

12github.com/nebblu/ReACT-emus/emulators/Accuracy Plots.
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Ωm Ωb Ων h ns As γ, γ0 γ1 q1 log10 Ωrc z

lower 0.2899 0.04044 0. 0.629 0.9432 1.5 ×10−9 0. −0.7 −2 −3 0.
upper 0.3392 0.05686 0.00317 0.731 0.9862 2.7 ×10−9 1. 0.7 3 2. 2.4

Table 2. Prior ranges for the emulators.

The posterior distribution is sampled with Nautilus [115] for 3 × 103 live points. This
sampler is based on the importance nested sampling (INS) technique combined with deep
learning via neural network regression. Nested sampling-based samplers tend to under-predict
the size of the posterior contours when compared to much slower but more accurate samplers
(see, for example, appendix D of ref. [66]). However, Nautilus does not demonstrate this
tendency (see appendix H of ref. [116]). We varied the number of live points to guarantee
the convergence and to control the differences in posterior-volumes when comparing between
models with different number of parameters.

4 Results

We first validate our models on synthetic data in ΛCDM, i.e., data with GR as the model of
gravity. Then we test how the index growth models — with and without screening — perform
when the true cosmology is nDGP, i.e., with enhancement of structure on large scales and
recovering of GR on small-scales via Vainshtein screening. After that, we produce synthetic
data with the screened γ + q1 model, and study degeneracies between the screening scale
and baryonic feedback, and massive neutrinos. Finally, we compare the performance of the
exact nDGP model versus the model-independent growth index approach on a mock data
vector assuming nDGP gravity, baryonic feedback and massive neutrinos.

4.1 Validation with GR

In order to validate our likelihood pipeline, we perform MCMC analyses on mock data in
the standard cosmology (without massive neutrinos). For the scale-cut we take ℓmax = 3000,
which is considered a middle value between “pessimistic” (ℓmax = 1500) and “optimistic”
(ℓmax = 5000) scenarios for Stage-IV surveys [6]. We test two models — the growth index
parametrisation without screening via a pseudo-power spectrum (γ) and with screening
(γ + q1). In figure 2 we show posterior distributions for the main parameters of interest in
weak lensing as well as the expansion rate today, h. The latter is added to demonstrate its
anti-correlation with the extended parameter γ, while the h degeneracy with ωb and ns is
broken by informative priors on the latter two parameters. The full posterior distribution is
demonstrated in figure 10 of appendix B together with a detailed discussion on the various
degeneracies and the parameters controlling the amplitude.13

In figure 2, both models recover all cosmological parameters correctly, and the value of the
growth index is ∼ 0.55 as expected, with uncertainties σγ = 0.03 for γ +q1 and σγ = 0.04 for γ

13For the amplitude of the power spectrum we present both — the sampled parameter of the primordial
amplitude As, and its derived late-Universe counterpart σ8 = Dγ(z = 0)/DΛCDM(z = 0) σΛCDM

8 , with σ8 being
the r.m.s. density variation when smoothed with a tophat-filter of radius 8 Mpc/h, and S8 = σ8

√
Ωm/0.3.

We also show the derived matter density parameter Ωm = (ωc + ωb)/h2.

– 13 –



J
C
A
P
1
0
(
2
0
2
4
)
0
9
9
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0.4
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0.6

0.7

γ

0.65

0.70

h

0.80

0.82

0.84

0.86

S 8

0.82 0.86

S8

0.66 0.70

h
0.5 0.7

γ

γ + q1 + log10 Mc

γ + q1

γ + log10 Mc

γ

Figure 2. Marginalised posterior distribution for the cosmological parameters. Mock data: ΛCDM
scenario (see section 3). Models: the time-independent growth index parametrisation with screening
(green) and without screening (orange). We fit the cosmic shear power spectra with ℓmax = 3000.
Solid lines and filled contours correspond to Bbaryons = 1 from eq. (2.5) (for both — data and models),
while dashed lines and empty contours correspond to the baryonic feedback contribution with varying
Mc and fixed values of the other baryonic parameters as detailed in the main text. Grey lines mark
the true values of the synthetic data.
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Figure 3. Left panel: the variation in the ratio P MG
NL /P ΛCDM

NL at redshift zero for the screened,
γ + q1, and unscreened, γ, models drawn from the posterior distributions in figure 2 within a 1σ

deviation around the posterior maximum for γ. Right panel: marginalised posterior distribution in
Ωm − γ for the same models on the mock GR data with ℓmax = 3000 (filled contours) and ℓmax = 1000
(unfilled contours).
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Figure 4. Left panel: power spectrum ratios at redshift z = 0 for the screened (green lines) and
unscreened (orange line) models with nonlinear prescriptions described in the text. Grey line denotes
kmax = 5 h/Mpc that we compute and emulate with ReACT, for higher values we extrapolate the
MG boost as a power law. Right panel: corresponding ratios of the shear angular power spectra.
Central redshifts: for bin 1 zc = 0.21, for bin 2 zc = 0.49. We fix all cosmological parameters to the
fiducial values.

without screening. The fact that a model with more parameters results in tighter constraints
is explained by the functional form of µNL (see eq. (2.16)): any deviation from γ ∼ 0.55 or
µL = 1 opens the possibility of constraining q1, which leads to a worse fit or smaller likelihood
due to nonlinear signatures that are very different from the GR predictions. We illustrate
this in the left panel of figure 3, where we plot the power spectra ratio P MG

NL /P ΛCDM
NL at z = 0

from the posterior distribution’s 1σ γ-constraints. We see that broader uncertainty on γ in
the pseudo model manifests on linear scales, however for k > 1 h/Mpc the variation in the
power spectrum becomes larger for γ + q1 than for γ only. This also implies that for more
conservative scale-cuts we should not obtain differences in σγ , this effect is purely due to
the inclusion of nonlinear scales and high sensitivity to these scales in a Stage-IV-like setup.
As an additional proof of this conclusion we demonstrate the Ωm − γ contours for stricter
scale-cuts of ℓmax = 1000 in the right panel of figure 3. The 1σ ranges are visibly in better
agreement between the models now. The inclusion of a baryonic feedback model increases the
errors for the pseudo model to σγ = 0.04 and σγ ≈ 0.05 for the screened model. In this case
the strong degeneracy between the screening scale and baryonic parameters explains a more
significant broadening of the contours. We study this degeneracy in detail in section 4.3.

4.2 Screening scale with nDGP gravity

Next we validate our model on a theory with the Vainshtein screening mechanism on nonlinear
scales and a strong deviation from GR on linear scales (∼ 14% more structure than in GR on
linear scales at lower redshifts). In the left panel of figure 4 we show the ratio of power spectra
P MG

NL /P ΛCDM
NL at z = 0 for the nDGP model with Ωrc = 0.25 (black solid line). For the same

fiducial cosmological parameters, we show also this ratio for the screened (green line) and
pseudo (orange line) growth index models. The pseudo approach captures the bump-feature
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Figure 5. Marginalised posterior distribution for the cosmological parameters with scale-cut choices,
as detailed in the legend. Mock data: nDGP cosmology with Ωrc = 0.25 (see section 3). Models:
the time-independent growth index parametrisation with screening (green) and without screening
(orange). The baryonic boost is set to unity. Grey solid lines mark the true values of the synthetic
data, grey dashed lines mark the GR-limit. Green dashed lines denote the best-fit values from the
plotted MCMC chain for the γ + q1 model.

in the range of k ∼ 0.2 − 0.9 h/Mpc but overpredicts its amplitude. The screened model
reproduces this feature extremely well, at the percent level for k ≲ 3 h/Mpc. In the right
panel, we show ratios of the corresponding angular power spectra, Cℓ, for the three models
with respect to GR for the same set of cosmological parameters. The bump-feature in the
nonlinear regime is visible in the cross-correlated redshift-bins, while in the auto-correlated
bins we see characteristic curves that tightly converge for all models at smaller scales. However,
we notice a shift at linear scales for the γ-models. The reason for this shift is the difference
in the time evolution between nDGP and the growth index parametrisation as discussed in
section 2.3: while the growth modification is matched between different models at z = 0,
this is no longer the case for higher redshifts.

We consider the same two models: models with screening in the reaction function (γ + q1)
and without screening via a pseudo-power spectrum (γ) and repeat our analysis on the
mock nDGP data with ℓmax = 3000 and using the same setup. We show the marginalised
posterior distribution in figure 5. The full posterior distribution for the sampled cosmological
parameters is shown in figure 13 of appendix D with a more detailed description. Overall,
our model with screening (green contours and lines) correctly captures the fiducial cosmology,
detects a γ-value lower than its GR-limit as expected, namely γ = 0.38 ± 0.03, and detects
a screening transition with q1 = 0.29 ± 0.10. We notice a 1σ-bias in Ωm and a 2σ-bias in
S8. Both shifts are consequences of fitting a model, γ + q1, to data with small error-bars,
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Figure 6. Marginalised posterior distribution for the cosmological and extended parameters analysed
with ℓmax = 3000. Mock data: nDGP cosmology with Ωrc = 0.25 (see section 3). Models: the
time-dependent growth index parametrisation with screening when both γ-parameters are varied
(green) and with γ1 fixed (orange). Grey solid lines mark the true values of the synthetic data, grey
dashed lines mark the GR-limit. Orange dashed lines denote the best fit values from the plotted
MCMC chain for the second model.

while there is no accurate mapping of the time-evolution of linear growth between the growth
index parametrisation and nDGP. We check whether this can also be connected to projection
effects [53]. In other words whether the likelihood maxima (green dashed lines) are at the
true values of cosmological parameters and not at the posterior maximum values. From the
MCMC chain, we derive the best-fit value Ωbest−fit

m ≈ 0.306, which is closer to the fiducial
value of Ωfid

m ≈ 0.309 than the posterior mean of Ωmean
m ≈ 0.304. Also the best-fit values

for γbest−fit ≈ 0.42 and Sbest−fit
8 ≈ 0.898 very close to the true value of SnDGP

8 ≈ 0.895. We
use the likelihood minimiser minuit14 and obtain similar values for the best-fit parameters.
This implies a presence of projection or prior-volume effects. Lastly, we note that this bias
vanishes when more parameters are varied and the contours are broadened (see section 4.5).
Overall, the agreement within 2σ satisfies the “precision versus accuracy” test for our model.

In figure 5, we notice that even for scale-cuts below the pessimistic scenario for Stage-IV
surveys, namely for ℓmax = 1000, there is a significant bias in S8 and Ωm for the model
without screening (orange contours and lines), with S8 being closer to its GR value. Moreover,
the value of γ does not correspond to the expected behaviour on large scales but rather points
towards suppression of structure formation relative to the standard cosmology. This signals
that ignoring a correct screening implementation will result in the wrong extracted cosmology.

14github.com/jpivarski/pyminuit.
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Figure 7. Left panel: power spectrum boost at redshift zero for the MG contribution, γ = 0.4
and varying q1 (green lines), and baryonic feedback (orange lines). Right panel: marginalised
posterior distributions using cosmic shear power spectra with ℓmax = 3000 for the MG and baryonic
parameters with different priors on the latter, as detailed in the legend. Mock data and model:
minimal parametrisation with the time-independent growth index (see section 3). Grey lines mark the
true values of the synthetic data.

In the nonlinear regime our model-independent screening scale seems to be in a good
agreement with nDGP theory which includes Vainshtein screening mechanisms. The dis-
advantage of this model is the inaccurate representation of time evolution of growth on
linear scales. We can improve this by introducing the time-dependent γ-parametrisation from
ref. [93] (also see section 2.3). The results are shown in figure 6 and figure 14 for the same
setup as before. From the green contours in figure 6 we see that while fiducial values lay
within 1σ of all parameters, the screening scale is not properly constrained with cosmic shear
information alone. Note how in general, extended parameters make the posterior distribution
non-Gaussian by bringing additional degeneracies with cosmological parameters and with
each other. Two extended parameters γ0 and γ1 are strongly anti-correlated, so we can aim
to break degeneracies by fixing γ1. We find from fitting to the boost at lower redshifts that
γ1 = −0.19 is a good fit and it breaks the degeneracy and allows us to constrain the screening
parameter q1 = 0.57+0.07

−0.12 with γ0 = 0.47 ± 0.02 (orange contours and lines). In figure 6, we
clearly see that while Ωm is still 1σ-biased towards lower values, the bias in S8 towards higher
values decreases to 1σ contrary to the time-independent growth index. We again compute
and plot best-fit values (dashed orange lines) from the MCMC chain, for fixed γ1 they are
Ωbest−fit

m ≈ 0.304 (0.306 from minuit), γbest−fit ≈ 0.49, and Sbest−fit
8 ≈ 0.894. The model

with more accurate time-evolution of growth seems to decrease the projection effects. The
necessity of tight constraints on γ1 implies that additional measurements from clustering will
improve our constraints. We aim to investigate probe combinations in future work.
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4.3 Screening scale versus baryons

Here we explore the degeneracy between the suppression due to the screening mechanism and
baryonic feedback effects. In the left panel of figure 7 we demonstrate the comparison between
MG and baryonic boosts for different parameters. The larger the value of q1, the less is the
suppression due to screening. The larger the value of log10 Mc, the stronger is the suppression
due to baryonic feedback at nonlinear scales. It is clear that both effects become noticeable at
scales k ≳ 1 h/Mpc, since they demonstrate similar scale-dependence and overall amplitude.
Already from this we can conclude that our model-independent screening scale, q1, is highly
degenerate with the baryonic suppression parameter log10 Mc.

In order to avoid biases due to different time evolution of growth structure on linear scales,
we perform an MCMC analysis on the mock data computed with the γ+q1 model directly with
γfid = 0.4 and qfid

1 = 0.76. We show the marginalised posterior distribution for γ−q1−log10 Mc

in the right panel of figure 7, while the corresponding full posterior distribution is shown in
figure 15. The unbiased determination of γ, as well as other cosmological parameters, is not
affected by the inclusion of the baryonic feedback. However, the screening scale demonstrates
a very strong positive correlation with the baryonic parameter and prefers the unscreened
regime of q1 > 1.5. The baryonic parameter absorbs the suppression due to screening and, as
a result, gets biased towards higher values with respect to the fiducial value. This degeneracy
persists, when testing variations in the fiducial values of log10 Mc within the same γ + q1
model, while also examining different fiducial values of γ + q1 while keeping log10 Mc constant.
We perform these checks to mitigate potential coincidences in the choice of fiducial parameters.
However, we find that when we impose a tight flat prior on log10 Mc, the screening scale is
recovered unbiased. This means we require a good understanding of baryonic physics for
the detection of the model-independent screening transition: for instance, tight priors on
baryonic parameters of the order σlog10 Mc = 0.1 or σlog10 Mc/ log10 Mc ≈ 1%.

Note that an incorrectly inferred prior imposed on baryonic feedback would bias MG
parameters due to their strong degeneracy. Instead of imposing priors, for example, based
on independent galaxy cluster X-ray observations, a better approach will be the cross
correlation or the joint analyses of weak lensing and X-ray/kSZ probes like in the works
mentioned in section 2.4. We also highlight the importance of non-standard hydro-dynamical
simulations. The BCEMU emulator we use in this work was trained for standard cosmologies.
Despite the flexibility of the baryonification model with 7 or 3 parameters, we still do
not know whether this is accurate enough to model nonlinear baryonic physics in beyond-
ΛCDM cosmologies. Reassuringly, refs. [76, 117] show both within the halo-model and in
hydrodynamical simulations that baryons and MG physics can be modelled independently to
a large extent. For our fiducial nDGP model with Ωrc = 0.25 or N1, ref. [118] demonstrates
with full-physics hydrodynamical simulations a percent level agreement between separate
and combined responses of the nonlinear matter power spectrum to MG and baryons. A
promising argument for this would be that the astrophysics responsible for baryonic effects
is happening on the scales in the screened regime, hence there is no reason to believe that
it is significantly different from the standard baryon feedback processes. Especially since
these are only weakly cosmology dependent (up to several percent for small variations in
cosmology) and mainly depend on the fraction of baryons to the total matter according to
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Figure 8. Left panel: power spectrum boost at redshift zero for the MG contribution with γ = 0.4,
Mν = 0 and q1 varied (green lines), and γ = 0.4, q1 = 0.76, Mν varied (orange lines). The boosts
for various neutrino masses are normalised to the value at the largest scales computed. Right panel:
marginalised posterior distributions using the cosmic shear power spectrum with ℓmax = 3000 for
models with different cosmological parameters varied, as detailed in the legend. Mock data and model:
minimal parametrisation with the time-independent growth index (see section 3). Grey lines mark the
true values of the synthetic data.

various studies (e.g., refs. [119, 120]). However, more work is needed to confirm whether
these assumptions satisfy the requirements of Stage-IV surveys [121].

4.4 Screening scale versus neutrinos

The last nonlinear effect to consider is the suppression of structure growth due to the
contribution of massive neutrinos. In the left panel of figure 8 we demonstrate the comparison
between MG boosts for different values of screening and neutrino mass parameters. The
larger the value of q1, the smaller the suppression due to screening. The larger the value of
Mν , the stronger is the suppression due to massive neutrinos. However, massive neutrinos
lead to suppression of growth already at mildly nonlinear scales k ≳ 0.1 h/Mpc. Furthermore,
the scale-dependency in the suppression due to massive neutrinos is drastically different
form the suppression due to screening: there is no clear feature in the power spectrum in a
constrained scale range. We still expect a positive correlation between q1 and Mν , but this
will be in addition to noticeable degeneracies with other cosmological parameters controlling
the amplitude and slope of the power spectrum at all scales, and not only in the nonlinear
regime. For instance, the primordial amplitude As, the expansion rate h, and the matter
density Ωm. In the right panel of figure 8, for the same fiducial γ + q1 cosmology as in the
previous section with the addition of massive neutrinos with Mfid

ν = 0.06 eV, we showcase how
the more parameters we vary the more sensitivity to the neutrino mass we are losing. For
example, the prominent and expected negative correlation between γ and Mν (pink contour)
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Figure 9. Marginalised posterior distribution for the cosmological and MG parameters with massive
neutrinos and baryonic feedback with a tight uniform prior on the baryonic parameter, using cosmic
shear power spectra up to ℓmax = 3000. Mock data: nDGP cosmology with Ωrc = 0.25 (see
section 3). Models: the time-independent growth index parametrisation with screening (green), the
time-dependent growth index parametrisation with screening and fixed γ1 (orange), nDGP (purple).
For nDGP and γ + q1 the prior on log10 Mc is U(13.12, 13.52), while for the γ(z) + q1 model it is
U(13.3, 13.34). Grey lines mark the true values of the synthetic data.

disappears even if just one additional parameter is varied (purple contour). We conclude that
Stage-IV cosmic shear measurements alone are not sufficient to put any constraints on the
neutrino mass, which is in agreement with the findings of other works, for example, ref. [30].

4.5 Combined nonlinear effects

Finally, we combine our findings in the previous sections to demonstrate how our model-
independent approach performs if the underlying cosmology is nDGP with massive neutrinos
(with Mν = 0.06 eV) and known baryonic feedback effects (within some prior). All background
properties and the growth factor in the IA terms are computed with the total matter density
including neutrinos via Ωm, while for the baryonification, since it was trained without
neutrinos and is relevant on nonlinear scales, we exclude the neutrinos contribution in
fb = Ωb/(Ωm − Ων).
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In our main result of this work, figure 9 (the full posterior distribution can be found in
appendix E), we compare our model independent approach (green colour for time-independent
γ, orange colour for time-dependent γ) against the exact MG model (purple colour). Overall,
for the fiducial value of log10 Ωrc = −0.6, we get the mean value of log10 Ωrc = −0.86+0.69

−0.36,
which corresponds to γ = 0.44+0.06

−0.05 with q1 = 0.33+0.21
−0.17 or γ0 = γ = 0.47+0.03

−0.04 with γ1 = −0.2
and q1 = 0.58+0.08

−0.14. The differences in the S8 uncertainties between models are due to
the strong γ-dependence of the growth at lower redshifts (this is discussed in appendix B).
However, the inferred value of S8 agrees between all models. This shows that the growth
index parametrisation seems to be a reasonable approximation in the late universe. It is in
the connection to the earlier universe where we see discrepancies in the primordial amplitude,
due to different growth evolution. For the time-dependent growth index we infer slightly
biased Ωm but more accurate log 1010 As. The tighter constraint on Ωm with γ(z) is due to
a tighter prior on the baryonic parameter. In general, we notice that the uncertainties on
cosmological parameters are in a good agreement between the exact and model-independent
approaches. Therefore, we advocate that our model-independent approach performs as well
as the exact modelling, but is more general.

In figure 9 we also notice that log10 Mc is biased towards higher values in all mod-
els. It is highly degenerate with the extended parameters log10 Ωrc, γ, as well as with
Ωm, h, log 1010 As. We impose an informative prior on the baryon feedback [log10 Mfid

c −
0.2, log10 Mfid

c + 0.2] for nDGP and γ + q1 based on the investigation from section 2.4. For the
γ(z) + q1 model, we require tighter priors on the baryonic feedback and screening parameters:
[log10 Mfid

c −0.02, log10 Mfid
c +0.02] and [−1, 1] respectively. Otherwise their prominent degen-

eracy is weakening the constraints of cosmological parameters, and the screening transition is
poorly constrained while preferring larger values closer to the unscreened limit. The total
neutrino mass is not constrained in the range of values that we emulated.

For completeness we list forecasted constraints on the nDGP parameter log10 Ωrc from
the literature. In ref. [122], for a setup similar to ours and with survey area of 15, 000 deg2, the
authors get from combined cosmic shear, photometric clustering and their cross-correlation
analysis with the same fiducial value of log10 Ωrc: σlog10 Ωrc = 0.3 (pessimistic) and σlog10 Ωrc =
0.12 (optimistic). However, this study does not include baryonic feedback effects, which we
demonstrated to be degenerate with the extended parameters. In ref. [27], for a different setup
(5 redshift bins, number of galaxies per arcminute squared per tomographic bin n̄ = 6, similar
shape noise, survey area 5, 000 deg2) and for a comparably strong modification Ωrc = 0.36,
the authors find in the optimistic scenario for cosmic shear σlog10 Ωrc = 0.07, varying three
cosmological parameters (Ωm, S8, h), and omitting baryonic effects.

5 Conclusions

The growth index parametrisation is a single parameter extension of the standard cosmology
which allows for deviations in the linear growth functions. Originally developed in the
context of spectroscopic measurements, it serves as an indicator of the detection of modified
gravity (MG) theories. Previous studies have demonstrated its effectiveness for a few close-
positioned redshift bins and up to mildly nonlinear scales [53]. In this work, we presented an
analysis with this parametrisation extended to the nonlinear regime with a model-independent
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screening parametrisation, and applied this to cosmic shear forecasts. For weak lensing, most
of the information comes from the small, nonlinear scales and is integrated over a broad
range of redshifts, in our case z ∈ [0.001, 2.5]. Our theoretical model for the shear angular
power spectrum is based on the halo-based parameterisation introduced in ref. [46] and was
emulated with the cosmopower emulator. We also take advantage of the following emulators
to accelerate computation of the nonlinear matter power spectrum model: BCEMU for baryonic
contribution and BACCOemu [123] for the linear power spectrum as an input to HMcode.

To validate our model, we first tested it on noiseless mock data generated in the standard
(ΛCDM) cosmology in a Stage-IV setup with a scale-cut ℓmax = 3000. We recovered unbiased
cosmological parameters and found the expected uncertainty on the growth index, γ, to be
σγ ≈ 0.05, noting a slight asymmetry in the errors when one baryonic feedback parameter
is included. For a model without screening and employing standard structure formation
rescaled to match the modifications on large scales, the obtained constraint was σγ = 0.04.
We further compared the performance and differences between these two γ-models in the
absence of baryonic feedback. We found that the form of our screening model at nonlinear
scales results in tighter constraints on the growth index.

We then conducted a similar analysis on noiseless mock data computed in an nDGP cos-
mology. This MG theory exhibits enhanced structure growth on linear scales that transitions
to GR behaviour on nonlinear scales via a screening mechanism. The analysis was performed
on mock data with a rather strong deviation from GR (by 14% at low redshifts in the linear
regime). We aimed to demonstrate the robustness of our modelling in this relatively extreme
scenario to guarantee its validity in more realistic scenarios with a weaker deviation from
the standard cosmology. We found that our model with screening, γ + q1, performs well: it
recovers cosmological parameters within 2σ, finds γ ∼ 0.38 lower than its GR-limit γ ∼ 0.55,
and detects a screening transition with its associated parameter q1 ∼ 0.29.

We also obtained a bias towards higher values in the primordial amplitude As. This
bias arises from differences in the time evolution of the linear growth factors between the
growth index parametrisation and the nDGP model. This inaccurate representation of the
time evolution of structure growth for scalar-tensor theories via a constant growth index
parametrisation has been pointed out in ref. [93]. To address this issue, we explored a
time-dependent functional form γ(z) = γ0 + γ1z2/(1 + z). Incorporating this time-dependent
growth index, we found that the bias in the amplitude vanishes. However, the constraints on
the expansion rate and screening transition are weakened significantly when we considered
this model. By fixing γ1 = −0.19, we broke the corresponding degeneracies, and we recovered
unbiased cosmological parameters with γ0 ∼ 0.47 and q1 ∼ 0.57.

We found that ignoring the screening transition leads to biases in the expansion rate and
matter density, as well as to a false detection of γ that exceeds its GR-limit. This happens
even with scale-cuts lower than the “pessimistic” scenario in ref. [6], with ℓmax = 1500. This
demonstrates the importance of the correct inclusion of a screening scale when extended
cosmologies are considered.

We proceeded to study the degeneracies between the screening transition parameter
q1, baryonic feedback, and massive neutrinos. All three effects are nonlinear and result
in the suppression of structure formation at small scales. As before, we explored the case
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with only one free baryonic feedback parameter Mc, which controls the slope of the gas
distribution. We found a strong positive correlation between the screening and baryonic
parameters. The suppression due to the screening was absorbed by the baryonic feedback if
no priors on the latter were imposed. Both effects are prominent in the same range of scales
and are highly degenerate. For this reason, we conclude that using cosmic shear alone a
detection of the model-independent screening transition is possible only if tight priors on the
baryonic parameters are imposed. We used the uniform prior [log10 Mfid

c −0.2, log10 Mfid
c +0.2]

motivated by cluster measurements in ref. [103]. Alternatively, a cross-correlation of cosmic
shear with X-ray/kSZ observations can break this degeneracy too. With the total neutrino
mass as a free parameter, we found that it cannot be constrained with the cosmic shear data
alone. This is in agreement with findings in Stage-III surveys [124] as well as in forecasts
for Stage-IV experiments [30]. We also found no strong degeneracy between the screening
transition and neutrino mass — while they have similar impact on structure formation, their
scale-dependence and strength of impact differ.

Combining all the aforementioned nonlinear effects, we found that our model-independent
approach performs well when compared against the exact modelling, and derived the following
constraints in the full analysis on nDGP data with massive neutrinos and baryonic feedback
with a narrow flat prior: σlog10 Ωrc ≈ 0.53 (88%), σγ ≈ 0.06 (13%), σq1 ≈ 0.19 (58%).

To conclude, we outline the next necessary steps in preparation for a fully model-
independent analysis for beyond-ΛCDM cosmologies with Stage-IV cosmic shear surveys. In
order to reduce the error-bars on extended and baryonic parameters, we advocate for the
combination of cosmic shear with photometric galaxy clustering and the corresponding cross-
correlation, i.e., the 3×2-point analysis. Similarly, a combination with spectroscopic galaxy
clustering can alleviate the degeneracies and yield tighter constraints [6]. After demonstrating
the robustness of the γ(z) approach, we aim to explore a more agnostic approach, that would
not require any assumption of the time-evolution in the linear growth. For example, we can
bin µ(z) from eq. (2.13) in redshift directly [36, 39]. The goal would be to find an optimal
binning scheme. Additionally, as demonstrated in ref. [46], we can extend our modelling to
include not only MG theories but also exotic dark energy models.
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A Connection between the growth index and nDGP

For DGP models without an additional dark energy component, we have γDGP ≈ 11/16 (e.g.,
ref. [50]). Here we will derive the value for when we include a dark energy contribution.
Following the same steps as in ref. [50], one can arrive to the following expression for the
growth index by solving the linearised growth equation, taking a matter dominated era
limit of Ωw(a)/Ωm(a) ≪ 1, Ωw being the dark energy density fraction, and (µL − 1) ≪ 1
(eq. 22 in ref. [50]):

γ = 1
2 + 1

4Ωw(a)

∫ 1

0

du

u
u5/2Ωw(au) − 3

2Ωw(a)

∫ 1

0

du

u
[µL(au) − 1]u5/2 , (A.1)

with Ωw(a) = 1 − Ωm(a). For early times Ωw(a) ∝ a−3w and µL − 1 = A Ωw(a), with A being
a parameter to be determined. We can integrate the equation for γ to get

γ = 3(1 − w − A)
5 − 6w

, (A.2)

where for GR w = −1 and A = 0, so one obtains the standard result of γGR = 6/11.
Now, the Friedman equation for flat DGP models is given by (“+” for the normal branch

or nDGP, “-” for the self-accelerating branch or sDGP):

H2 ± H

rc
= 8πG

3 ρ . (A.3)

We have 2 options: assume that a) ρ = ρm, hence the additional H/rc-contribution acts like
an effective dark energy component ρw = ∓ 3

8πG
H
rc

; or b) ρ = ρm + ρDE, hence the effective
dark energy has two contributions ρw = ρDE ∓ 3

8πG
H
rc

.
For the first case without dark energy we find from the Friedman equation: Ωm(a) = 1 ±

2
√

Ωrc/E(a) or E(a) = ∓
√

Ωrc +
√

Ωrc + Ωma−3. The former implies that from E(a = 1) = 1
follows ∓2

√
Ωrc = 1 − Ωm. Hence, for all realistic Ωm < 1 only the self-accelerating branch is

relevant. From ρ̇w = −3H(1+w)ρw and a derivative of eq. (A.3) we find w = −1/(1+Ωm(a)).
From eq. (2.14) and (2.13) we compute β = −1+Ω2

m(a)
1−Ω2

m(a) and µL − 1 = −1
3

1−Ω2
m(a)

1+Ω2
m(a) = AΩw(a)

with A = −1
3

1+Ωm(a)
1+Ω2

m(a) . Combining these findings together with the limit of a → 0, i.e.,
A → −1/3 and w → −1/2, one gets γ = 11/16 from eq. (A.2) exactly like in ref. [50] (recall
eq. (A.1) is derived for early times).

Overall, for small values of Ωrc, γ = 11/16 is a good approximation at all redshifts for this
particular case of the flat DGP or sDGP model, where the value of the extended parameter
is directly related to the matter density. While for larger values of Ωrc (hence smaller values
of Ωm) as a → 1, A → −1/3 and w → −1 (mimicking a cosmological constant today). This
decreases the value of the growth index to γ → 7/11, when computed according to eq. (A.2).
Even the most extreme values of Ωrc show at most 2% deviation at lower redshifts when
compared against solutions from numerically equating µγ

L = µDGP
L at each redshift individually.

However, note that in this scenario the growth index value is always larger than its GR limit.
In other words, the structure growth is suppressed relative to the standard cosmology.

For the second case with the cosmological constant, Ωrc becomes an independent param-
eter. We discuss only the case of including the cosmological constant, but the same logic can
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be applied to any other parametrisation of the dark energy component. We fix the expansion
to the ΛCDM cosmology: from eq. (A.3), we have E(a) = ∓

√
Ωrc +

√
Ωrc + Ωma−3 + ΩDE(a),

and from the equality E = EΛCDM we get ΩDE(a) = (1 − Ωm) ± 2
√

Ωrc

√
Ωma−3 + (1 − Ωm).

From eq. (2.14) and (2.13): µL − 1 = 2
√

Ωrc
3

1
2
√

Ωrc±E(a)[2−Ωm(a)] with “+” for nDGP and

“-” for sDGP. The corresponding limits are: µL − 1 → ±2
√

Ωrc

3
√

Ωm
a3/2 for early times, while

the late-time limit tends to µL − 1 → 2
√

Ωrc
3

1
2
√

Ωrc±[2−Ωm] . This means that at high redshift
the assumption of (µL − 1)/Ωw(a) ≈ const is not valid in this case as Ωw(a) ∝ a3, while
(µL − 1) ∝ a3/2. As a consequence the integration in eq. (A.2) for the early-time limit
yields a diverging value of γ = γGR ∓

√
ΩrcΩm

4(1−Ωm)a3/2 , with “-” for nDGP, “+” for sDGP. We

can repeat this calculation for a → 1 and get γ = γGR − 2
5

√
Ωrc

(2
√

Ωrc±[2−Ωm])(1−Ωm) , with “+”
for nDGP, “-” for sDGP. Therefore, the addition of the dark energy component in the
nDGP model leads to γ ≤ 0.55 for any Ωrc ≥ 0, resulting in enhanced growth at linear
scales and in agreement with our findings. We can insert our values for Ωrc and Ωm for
the late-time limit and obtain γ ≈ γGR − 0.11 ≈ 0.44, which is in excellent agreement with
our findings in sections 4.2 and 4.5.

B Validation with GR: full posteriors and discussion

In figure 10 several degeneracies are apparent due to the fact that Cℓ ∝ σ2
8Ωm: the negative

correlations of σ8 −Ωm and γ −σ8, and the positive correlation of γ −Ωm. We overlay contours
from the ΛCDM modelling to showcase the strong positive correlation between log 1010 As

and σ8, which is weakened when an additional parameter controlling the amplitude of the
power spectrum on large scales, γ, is added. However, in all scenarios log 1010 As is strongly
anti-correlated with h and ωc. We also note that the zNLA parameters AIA and ηIA are not
strongly degenerate with any other parameters but are anti-correlated with one another; their
constraints are model-independent. From the full posterior we also see that the screening scale
is not detected, which is to be expect for µγ∼0.55

L ≈ 1 (see eq. (2.16)). Additionally, the growth
index is anti-correlated with the expansion rate h, which is due to the inclusion of large scales,
10 < ℓ < 100, and tight informative priors on ωb and ns (see discussion in appendix C).

From the same full posterior distribution we also notice that the γ + q1 (solid green lines)
and ΛCDM (solid purple lines) models constrain the background cosmological parameters,
Ωm, h, to the same level of uncertainty. This is well understood since γ only impacts the
amplitude of the power spectrum and not the background. However, we notice drastically
different constraints on σ8 and S8: the contours are much broader in the γ models than in
the ΛCDM case. This difference arises due to strong sensitivity of the linear growth factor
to the deviation of the growth index from its GR value at lower redshifts (see figure 1). To
demonstrate this we fix all parameters in the model to their fiducial values and vary Ωm, S8
and γ in the first redshift bin with a re-scaled covariance by a factor of 250 (corresponding to
smaller error-bars), and using linear scales only, ℓmax = 500. In the left panel of figure 11
we show that, as expected, both models measure the same value of S8(z) = σ8(z)

√
Ωm/0.3

around the peak of the first lensing kernel at z = 0.125. Therefore, it is the variation in
γ-values that affects the inferred constraints of S8 at redshift z = 0. For the first redshift bin,
the constraints of the primordial amplitude demonstrate the same trend (see the upper middle
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Figure 10. Full posterior distribution for validation with GR mock data for a Stage-IV cosmic
shear setup with ℓmax = 3000. Different colours correspond to the growth index model with screening
(green), the growth index model with unmodified nonlinear growth (orange), and the model used
to produce the mock data (purple). The dashed lines denote models with an additional baryonic
feedback parameter.

panel of figure 11). This changes as soon as we add additional redshift bins (in the lower
middle panel). Overall, in figure 10 with 10 redshift bins the constraints on the primordial
amplitude are identical between both models since we match the growth at high redshift.
Contrary to Stage-III surveys (see, for example, ref. [125]), a Stage IV-like setup constrains
the primordial amplitude well due to its wide redshift range and large number of redshift bins.
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Figure 11. Varying only Ωm, S8, γ with re-scaled covariance and using linear scales. Left panel:
constraints from the first redshift bin. Time evolution of S8(z) in the standard cosmology (purple
crosses) and γ-parametrisation (γ-pseudo, orange crosses). Green solid line denotes the combination of
the lensing and IA kernels (re-scaled and shifted for visualisation purposes). Black solid line denotes
the maximum of the kernel and same constraints on S8(z) in both models. Middle panel: marginalised
posterior distributions for log 1010 As from the first bin (upper plot) and combined first two bins
(lower plot) in the standard cosmology (purple lines) and γ-parametrisation (orange lines). Right
panel: marginalised posterior distribution for γ and log 1010 As with the first photometric bin (orange
contour) and combined with the second photometric bin (pink contour). Dashed lines denote the
fiducial values.
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Figure 12. Left panel: parameter dependence of the shear angular power spectrum in the 3–3 redshift
bin without shape noise. Right panel: change in the orientation of degeneracies between parameters
depending on the scale-cuts and priors used.

C Expansion rate: note on degeneracies and priors

In figure 10 we see strong degeneracies between all cosmological parameters and the expansion
rate h. Figure 12 shows the derivatives of Cℓ in the 3 − 3 photo-z bin with respect to the
parameters listed in the legend. From this figure, it is clear that Cℓ is insensitive to h in
the region of 102 < ℓ < 103. We also note the change in the dependence of Cℓ on h in
the ℓ < 102 (prominent negative) and ℓ > 103 (weak positive) regimes. From eq. (2.3), we
see that the impact of h on Cℓ is coming purely from the matter power spectrum. In the
linear regime, i.e., low ℓ and k, the matter power spectrum is an approximate power law
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with its slope depending on h, ns and ωb (for more detailed discussion see ref. [114]). We
impose a Planck prior on ns and a BBN prior on ωb, which breaks this degeneracy. In the
right panel of figure 12, we demonstrate the rotation of degeneracy between σ8 and h, when
these informative priors are imposed in the analysis with GR model on GR mock data. For
ℓmax = 700, dlnCℓ/dlnh and dlnCℓ/dlnσ8 have opposite signs, hence the orange contour
demonstrates a positive correlation. The situation changes to the negative correlation for
ℓ ∈ [200, 2000] (the purple contour). When all scales are combined (the pink contour), the
orientation of the degeneracy still slightly prefers the positive correlation characteristic for
lower ℓ-values. However, this is no longer the case, when the priors are omitted (the dashed
green contour). Similar arguments are applicable to all other cosmological parameters and
their degeneracies with h. Also note that due to the choice of a diagonal Gaussian covariance,
our constraints can be considered optimistic.

D Test with nDGP: full posteriors and discussion

In figure 13 we show the two-dimensional marginalised posteriors for the full parameter space
in γ+q1 (green) and γ-pseudo (orange) models with ℓmax = 3000 and ℓmax = 1000, respectively.
The only significantly biased parameter is log 1010 As, which is explained by a different time
evolution of the linear growth factor in nDGP and the growth index parametrisation. In
figure 1 we see that for values of γ ∼ 0.3 − 0.4 we obtain an offset of Dγ/DnDGP ∼ 0.97 − 0.98.
From the posterior maxima and the input fiducial values Amean

s /Afid
s = 1.06 (∆As = 6%).

Therefore, lower (than in nDGP) values of the growth factor in the growth index model
are compensated by a higher value of the primordial amplitude. We note that while the
posterior-maxima of ωc and h are unbiased, their 2-dimensional contour demonstrates a 1σ

bias that later propagates to a 1σ lower posterior maximum for Ωm. We also found this
bias when sampling in Ωm directly.

We notice that even for ℓmax = 1000, there is a significant bias in h as well as in γ.
Surprisingly, the pseudo γ model finds a value of σ8 at its GR value (a lower than expected
value compared to nDGP), which is compensated by high values of Ωm (1σ bias towards
lower values in ωc and 3σ bias towards lower values in h).

In figure 14 we show the two-dimensional marginalised posteriors for the full parameter
space in the γ(z) + q1 model. Clearly, the bias towards higher values in log 1010 As vanishes
due to a more accurate representation of the growth evolution. However, we notice significantly
weaker constraints on h. This is expected from the degeneracy between the expansion rate
and γ (in this case γ0, γ1). We show that this degeneracy is broken when γ1 is fixed.
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E Other full posteriors

In figures 15 and 16 we show the two-dimensional marginalised posteriors for the full parameter
space in the analyses mentioned in the main text.
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