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Abstract

Firstly, we review the three known chiral anomalies in four dimensions and use the
anomaly free conditions to study the uniqueness of quark and lepton representations and
charge quantizations in the standard model. We also extend our results to the theory with
an arbitrary number of color and the family problem. Secondly, we examine the neutrino
mass problem. Thirdly, we explore dark matter and dark energy. Finally, we present the
future prospectives.

1 Introduction

Although the standard model (SM) [1] of SU(3)C × SU(2)L × U(1)Y has been remarkably
successful experimentally, there are seven theoretical puzzles, which can be listed as follows:

(1) Why are there 15 states of quarks and leptons for each family?

(2) Why are the electric charges of particles quantized?

(3) Are these quantum numbers unique?

(4) Why are there three fermion generations?

(5) How to generate the fermion masses?

(6) Is there any new physics beyond the SM?

(7) What are the real natures of Dark Matter and Dark Energy?

In this talk, I would like to study these puzzles. In particular, I will answer the first three in
the viewpoint of the chiral gauge anomaly cancellations and then explore the other four.

2 Anomalies in four-dimension

It is well-known that the anomaly free conditions arising from the theoretical requirements
of renormalizability and self-consistency are the most elegant tool to test the gauge theory.
Three anomalies thus far have been identified for chiral gauge theories in four dimensions: (1)
The triangular (perturbative) chiral gauge anomaly [2], which must be canceled to avoid the
breakdown of gauge invariance and renormalizability of the theory; we call this the triangular
anomaly. (2) The global (non-perturbative) SU(2) chiral gauge anomaly [3], which must be
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absent in order to define the fermion integral in a gauge invariant way; we call this the global
anomaly. This anomaly was first pointed out by Witten [3], and is known as the Witten SU(2)
anomaly. He showed in 1982 that any SU(2) gauge theory with an odd number of left-handed
fermion (Weyl) doublets is mathematically inconsistent. (3) The mixed (perturbative) chiral
gauge-gravitational anomaly [4, 5], which must be canceled in order to ensure general covariance
of the theory; we call this the mixed anomaly. This anomaly was first discussed by Kimura in
1969 [4] and its consequences studied by Alvarez-Gaumé and Witten [5] in 1983, who concluded
that a necessary condition for consistency of the theory coupled to gravity is that the sum of
the U(1) charges of the left-handed fermions vanishes, i.e., TrQ = 0.

We now review the three chiral anomalies for the simple Lie groups.
The Triangular Anomaly: It has been shown [6] that the simple Lie groups: SU(2), SO(2k +
1)(k > 2), SO(4k)(k ≥ 2), SO(4k + 2)(k ≥ 2), Sp(2k), G2, F4, E6, E7, and E8 are safe groups.
The only simple groups with possible triangular anomaly are the unitary groups SU(n)(n ≥ 3).
Therefore, if we start with the groups which do not contain SU(n)(n ≥ 3) group, the theory
will be free of triangular anomaly.
The Global Anomaly: We classify the simple Lie groups G into the following two classes. (I)
Sp(2k)(Sp(2) ≃ SU(2)). These groups have the property of Π4(Sp(2k)) = Z2 [3, 7], where Π4

is the fourth homotopy group and Z2 is the two-valued discrete group (like parity). According
to Witten [3], the group G(I) = Sp(2k) has global anomaly if the number of fermion zero
modes (for SU(2) group, it is equal to the number of fermion doublets) is odd. (II) SU(n)(n ≥
3), SO(2k+1)(k > 2), SO(4k)(k ≥ 2), SO(4k+2)(k ≥ 2), G2, F4, E6, E7, and E8. These groups
(G(II)) have no global anomaly since their fourth homotopy groups are trivial [3, 7], i.e.,

Π4(G
(II)) = 0 . (1)

However, the interesting question arises as to how one can know at the level of G(II) whether
such a theory is global anomaly-free when G(II) breaks down to groups which contain G(I).
This question has been answered in the work [8] with a sufficient condition that for any simple
group G, containing Sp(2k) as a subgroup, and for which Π4(G) = 0, the vanishing of the
triangular perturbative anomaly for Weyl representations of G will guarantee the absence of
the global non-perturbative Sp(2k) anomaly.
The Mixed Anomaly: This anomaly is non-trivial only for the theory in which there is U(1)

symmetry with non-zero total charges [4, 5]. Obviously, all the simple Lie groups (G(I),(II)) are
safe groups. Furthermore, when these groups break down to groups which contain U(1), e.g.,

G → g ×
∏

i

U(1)i , (2)

unlike the previous case, there is no mixed anomaly since the U(1) operators are the generators
of G and must be traceless.

3 Uniqueness of fermion representations and charges in

the standard model

The triangular anomaly-free of the standard model was first noted [9] in 1972 for each quark-
lepton family. It was clear that with only the triangular anomaly-free condition [10] one could
not explain the empirically determined quark-lepton representations and their quantized hy-
percharges. We now study [11] the question of the uniqueness of quarks and leptons in the
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standard model by insisting on all three anomaly-free conditions. We begin by allowing an ar-
bitrary number of (left-handed) Weyl representations under the group of SU(3)×SU(2)×U(1),
i.e.,

SU(3) × SU(2) × U(1)

3 2 Qi , i = 1, · · · , j
3 1 Q′

i , i = 1, · · · , k
3 1 Qi , i = 1, · · · , l (3)

3 2 Q
′
i , i = 1, · · · , m

1 2 qi , i = 1, · · · , n
1 1 qi , i = 1, · · · , p
.. .. ..

where the integers j, k, l, m, n and p and the U(1) charges are all arbitrary. The triangular
anomaly free conditions then lead to the following equations:

[SU(3)]3 :
j∑

i=1

2 +
k∑

i=1

2 −
l∑

i=1

1 −
m∑

i=1

2 + · · · = 0 ,

[SU(3)]2 U(1) : 2
j∑

i=1

Qi +
k∑

i=1

Q′
i +

l∑

i=1

Q
′
i + 2

m∑

i=1

Q
′
i + · · · = 0 , (4)

[SU(2)]2 U(1) : 3
j∑

i=1

Qi + 3
m∑

i=1

Q
′
i +

n∑

i=1

qi + · · · = 0 ,

[U(1)]3 : 3
j∑

i=1

Q3
i +

N

2

k∑

i=1

Q′3
i +

3

2

l∑

i=1

Q
3
i + 3

m∑

i=1

Q
′3
i +

n∑

i=1

q3
i +

1

2

p∑

i=1

q3
i + · · · = 0 .

The global SU(2) anomaly-free condition is

3 j + 3 m + n + · · · = 0 mod 2 . (5)

Finally the mixed anomaly-free condition is

[U(1)] : 3
j∑

i=1

Qi +
3

2

k∑

i=1

Q′
i +

3

2

l∑

i=1

Qi + 3
m∑

i=1

Q
′
i +

n∑

i=1

qi +
1

2

p∑

i=1

qi + · · · = 0 . (6)

Here, the ellipses represent all other possible representations and charges.
The minimality condition with chiral fermions and the three anomaly-free conditions [Eqs.

(5)-(7)] lead to a unique solution j = 1, k = 0, l = 2, m = 0, n = 1, p = 1, and two solutions
of U(1) charges

Q1 =
1

3
, Q1 = −4

3
, Q2 =

2

3
, q1 = −2q1 = −2, , (7)

Q1 = q1 = q1 = 0 , Q1 = −Q2 , (8)

where we have chosen the normalization q1 = −1 in Eq. (9). This unique solution corresponds
to 15 states of quarks and leptons for each family, which answers the first puzzle stated early.
The charge solutions in Eqs. (9) and (10) are the “standard model” and the so called “bizarre”
ones, respectively. We note that the “inert” state (1,1,0) for the “bizarre” solution [12] is a
non-chiral representation and it must be excluded.
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Without considering the “bizarre” solution, all the U(1) charges are uniquely determined.
In this case, the resulting Weyl representations of SU(3) and SU(2) and their U(1) charges are
those in the standard model (cf. Table 1). The electric charges of quarks and leptons are given
in Table 1 where the electroweak symmetry is spontaneously broken down to U(1)EM by the
Higgs mechanism.

Table 1. The quantum numbers of quark and lepton representations under
SU(3)C × SU(2)L × U(1)Y and SU(3)C × U(1)EM (i = 1, 2, 3).

Particles SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)EM
(
u

d

)i

L

3 2
1

3

(
3

3

2
3

−1
3

)

uc
L

i 3 1 −4

3
3 −2

3

dc
L

i 3 1
2

3
3 1

3(
ν

e

)i

L

1 2 −1

(
1

1

0

−1

)

ec
L

i 1 1 2 1 1

For the standard model of SU(3)C × SU(2)L × U(1)Y , we thus find that the requirements
of minimality and freedom from all three chiral gauge anomalies lead to a unique set of Weyl
representations (and their U(1)Y charges) of the standard group that correspond to the observed
quarks and leptons of one family. Furthermore, the U(1)Y charges of these quarks and leptons
are quantized and correctly determined by adding the mixed anomaly-free condition and thus
a long-standing puzzle of the electric charge quantization of quark and lepton can be solved
within the content of the standard model. As a result, the second and third puzzles are resolved.

Our results can be extended to the theory with an arbitrary number of color, N , as shown
in Table 2.

Table 2. The quantum numbers of quark and lepton representations under
SU(N)C × SU(2)L × U(1)Y and SU(N)C × U(1)EM (i = 1, 2, 3).

Particles SU(N)C × SU(2)L × U(1)Y → SU(N)C × U(1)EM
(
u

d

)i

L

N 2
1

N

(
N

N

N+1
2N

−N−1
2N

)

uc
L

i N 1 −N + 1

N
N −N+1

2N

dc
L

i N 1
N − 1

N
N N−1

2N(
ν

e

)i

L

1 2 −1

(
1

1

0

−1

)

ec
L

i 1 1 2 1 1

We see that the “bizarre” solution for the quark sector may be viewed as the standard
one when N → ∞. It is interesting to note that the decay rate for the anomalous process of
π0 → γγ, given by

Γ(π0 → γγ) ∝ N(Q2
u − Q2

d)e
2 ≡ e2, (9)
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is independent of the color number N due to Q2
u − Q2

d = 1/N from the electric charges in
Table 2. In fact, one can show that the above statement is true for any decay rate of an
anomalous process.

In spite of the success of the standard model, it is still a mystery why the three anomaly
cancellations, especially the global and the mixed ones, should be satisfied. Naturally one hopes
that new physics beyond the standard model can provide us an explanation to this question.
From the above studies we see that the three anomaly-free conditions in the standard model may
be automatically satisfied if it comes from a large group, especially, a grand unification group.
For example, with the E6 grand unification theory, the triangular, the global, and the mixed
anomalies are trivial at the level of E6 which guarantees their freedom at the standard group
level. We thus conclude that the resolution of the question of the uniqueness of the massless
fermion representations and U(1)Y charges for the standard group – when viewed from the
standpoint of the perturbative triangular and mixed chiral gauge-gravitational anomalies and
the absence of the non-perturbative global SU(2) chiral gauge anomaly in four dimensions –
argues strongly for some new physics beyond the standard model.

4 Family problem

We now discuss the family issue. It is clear that, as one can see from the above study, the
imposition of all three anomaly-free conditions for the standard model does not shed any
immediate light on the “generation problem”. In fact, the quantum numbers in Table 1 are
generation blind. Moreover, if one enlarges the standard group to include an SU(2) or SU(3)
group, one can show that the theories are precisely the one family fermion structure of the
left-right symmetric model SU(3)C × SU(2)L × SU(2)R × U(1) [11] and the chiral-color model
SU(3)CL × SU(3)CR × SU(2)L × U(1)Y [13], respectively, instead of having a family group.
Clearly, some new ideas [14] are needed to constrain on the number of families which would
be a key to the new physics. We now present a toy model which gives rise to three families of
quarks and leptons. In the standard model, in each family there are 15 Weyl spinors. With a
right handed neutrino, the number becomes 16. For three families, the total numbers are 48.
One may put all these 48 Weyl spinors into a flavor box to form a large global symmetry as
U(48) [14] We can extend the group of SU(N)×SU(2)×U(1) with both even and odd numbers
of N to a larger group of SU(N) × SU(2) × SU(2) in which N has to be an even number. For
N=4, it is just the Pati-Salam model [15], which contains a right-handed neutrino. We remark
that the representations under SU(N)×SU(2)×SU(2) are unique unlike the case with a U(1)
symmetry and there is no more “bizarre” solution like the one in Eq. (9).

We now take the global flavor symmetry U(48) and gauge its subgroup SU(12) × SU(2) ×
SU(2) so that the fermions transform according to the representations given in Table 3 with
N = 12. Thus, the model is a generalized Pati-Salam theory with the color being 12. The
symmetry breaking chains by various suitable scalars are given as follows:

SU(12)C × SU(2)L × SU(2)R
12 2 1
12 1 2

↓
SU(4)C3 × SU(4)C2 × SU(4)C1 × SU(2)L × SU(2)R × U(1) × U(1)

↓
SU(4)C × SU(2)L × SU(2)R

↓
SU(3)C × SU(2)L × U(1)Y

three quark and lepton families︸ ︷︷ ︸
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Therefore, there are three generations of quarks and leptons under the standard group of
SU(3)C × SU(2)L × U(1)Y . However, before taking this model seriously, more works have to
be done.

5 Neutrino mass generation

Neutrino oscillations observed by the solar, atmospheric, and reactor neutrino experiments [16]
have revealed that neutrinos are massive but tiny and mix with each other [17]. The neutrino
mixing matrix VPMNS [18] can be parametrized as follows [17]:

VPMNS =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13







1 0 0

0 eiα21/2 0

0 0 eiα31/2


 , (10)

where sij(cij)=sin θij (cos θij) with θij being the mixing angles, δ is the Dirac CP violation
phase, and α21 and α31 are the two Majorana CP violation phases. The recent global best-fit
(±1σ) values from the neutrino oscillation data are given by [17]

sin2 θ12 = 0.297+0.057
−0.047 , sin2 θ23 = 0.425+0.190

−0.044

(
0.589+0.047

−0.205

)
,

sin2 θ13 = 0.0215+0.0025
−0.0025

(
0.0216+0.0026

−0.0026

)
, δ/π = 1.38+0.52

−0.38

(
1.31+0.57

−0.39

)
,

∆m2
21 =

(
7.37+0.59

−0.44

)
× 10−5 eV2 ,

∆m2
32 =

(
2.56+0.15

−0.11

)
× 10−3 eV2

(
(2.54 ± 0.12) × 10−3 eV2

)
, (11)

with 3σ and 2σ ranges for the normal (inverted) neutrino mass hierarchy and the Dirac CP
violation phase δ, respectively.

From the results in Eq. (11), it is clear that at least two neutrinos carry nonzero masses.
However, the origin of these small masses is still a mystery. In the standard model, the neutrino
masses have to be all zero duo to the absence of the right-handed neutrinos (νR) and the chiral
nature of the left-handed ones (νL). For theories beyond the standard model, the simplest way
to obtain nonzero neutrino masses is to include νR so that the Yukawa interaction for neutrinos
exists, leading to Dirac neutrino masses after the electroweak symmetry breaking, just like the
charged fermions. In order to account for the neutrino data in Eq. (11), extreme small Yukawa
couplings of O(10−13 − 10−12) are inevitably required, which are commonly believed to be too
small to be natural.

Apart from the mass generation of Dirac neutrinos with νR, seesaw mechanisms with type-
I [19], type-II [20] and type-III [21] have been proposed to generate masses for Majorana
neutrinos by realizing the Weinberg operator [22] (L̄c

LH)(HTLL) at tree-level, where H and LL

are the doublets of Higgs and left-handed lepton fields, respectively. In these scenarios, either
heavy degrees of freedom or tiny coupling constants are needed in order to conceive the small
neutrino masses. On the other hand, models with the Majorana neutrino masses generated
at one-loop [23], two-loop [24, 25] and higher loop [26] diagrams have also been proposed
without introducing νR. Due to the loop suppression factors, the strong bounds on the coupling
constants and heavy states are relaxed, resulting in a somewhat natural explanation for the
smallness of neutrino masses. However, in most of the above radiative neutrino models, since
only SU(2)L singlet scalars are introduced, new physics effects are limited in the lepton sector,
whereas those involving hadrons, such as the neutrinoless double beta decay (0νββ) believed
as a benchmark of the Majorana nature of neutrinos, do not show up. On the other hand,
a special type of neutrino models has been proposed [25], in which a doubly charged singlet
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Beyond the SM

DARK MATTER

????????
?

Figure 1: What is the nature of DM?

scalar Ψ : (1, 4) and a triplet ∆ : (3, 2) under SU(2)L × U(1)Y are introduced to yield the
new Yukawa coupling Ψℓ̄c

RℓR with the right-handed charged lepton ℓR as well as the effective
gauge coupling Ψ±±W ∓W ∓ due to the mixing between Ψ±± and ∆±±, leading to the neutrino
masses through two-loop diagrams [25]. It is interesting to note that Ψ±±W ∓W ∓ can also be
induced from non-renomalizable high-order operators [27]. One of the most interesting features
of these models is that 0νββ is dominated by the short-range contribution at tree level due to
the effective coupling of Ψ±±W ∓W ∓, unlike other radiative Majorana neutrino mass models
in which 0νββ is suppressed as it arises from the traditional long-range one proportional to
neutrino masses from loops.

6 Dark matter and dark energy

Dark Matter (DM) and Dark Energy (DE) consist of about 27% and 68% of the energy densities
of the Universe, respectively. Although they are the main constituents ( 95%) of the Universe,
they are dark as we cannot see them directly though the normal ways based on electric and
magnetics interactions. Around 1930s, Zwicky used the radial velocity dispersion in the Coma
cluster to conclude that the mass of the luminous mass is only about 10% of the gravitation
mass needed to have the stable cluster. This kind of the missing gravitation mass is now
called DM. In these almost 90 years, there has been an overwhelming evidence [28] for the
existence of DM in our universe through gravitational interactions in Galactic, Galaxy cluster
and Cosmological scales, respectively. In particular, the experimental result on DM is given by

ΩDMh2 = 0.1196 ± 0.0031 , (12)

which is clearly a measurement with great precision. Despite the success, the real nature of
DM is still a mystery. It is known that DM cannot be the particle in the SM, which has
to be: (a) Massive; (b) Non baryonic; (c) No (electric or color) charge; and (d) Stable with
τDM > 1026s while τuniverse ∼ 1017s. Nowadays, from the particle physics point of view, the
most popular DM candidates are Weakly Interacting Massive Particles (WIMPs), Axions and
Sterile Neutrinos. In the SM, there are three generations of quarks and leptons along with the
Higgs boson as well as strong and electroweak interactions. What is about DM? Is it a single
particle or a bunch or a few classes of ones like those in the SM (see Fig. 1)?

How to detect DM? It is clear that it is hopeless if it only involves the gravitation inter-
action. Beyond it, there exist four types of searches: direct, indirect and collider detections
and astrophysical probes. Since DM is distributed in our galaxy and the universe, it is widely
believed that its annihilations and decays would give rise to the visible signals in terms of light
stable particles, such as positrons/electrons, (anti)protons, photons and neutrinos, which can
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be observed in the sky and around the Earth. As a result, such an indirect search for DM [29] is
regarded as one of the most promising ways to detect DM. On the other hand, One promising
way to search for WIMPs is direct DM detections [30], which try to measure the nuclear recoil
energies in detectors deposited by WIMP collisions. So far, there is still no indication in either
indirect or direct DM detections.

According to the recent cosmological observations, our universe is undergoing a late-time
accelerating expansion phase, which can be realized by introducing a time independent vacuum
energy, called DE, built in the ΛCDM model [31]. Although this standard model of cosmology
fits well with the observational data, it fails to solve the cosmological constant problem, related
to the hierarchy [32] and coincidence [33] ones. These problems have motivated people to explore
new theories beyond ΛCDM, such as those with the dynamical DE [34]. A typical model of such
theories is to modify the standard general relativity (GR) by promoting the Ricci scalar of R in
the Einstein-Hilbert action to an arbitrary function, i.e., f(R) [35]. Besides describing gravity
as the behavior of curvature, in general the torsion effect should be considered in gravity
theory. There are several torsion gravities, such as teleparallel gravity [36] and f(T ) [37].
The teleparallel gravity is the gravity, which is constructed by the curvature-free Weitzenböck
connection and forms an alternative and equivalent gravity of GR. Due to equivalent property,
one can extend the the non-minimally coupled idea from GR to teleparallel gravity, called
teleparallel dark energy [38]. Even though GR and teleparallel gravity follow the same Einstein
equation, teleparallel DE has been proved to be different from the scalar-tensor theory at the
background, and linear scalar perturbation level [39].

7 Future prospectives

To give the future prospectives, we have to understand the history of particle physics. We may
divide Modern Particle Physics into the following 7 Periods with each period being 15 years.
(1) Period before 1945: Pre-Modern Particle Physics Period;
(2) Startup Period (1945–1960): Early contributions to the basic concepts of modern par-
ticle physics;
(3) Heroic Period (1960–1975): Formulation of the standard model of strong and elec-
troweak interactions;
(4) Period of Consolidation and Speculation (1975–1990): Precision tests of the stan-
dard model and theories beyond the standard model;
(5) Frustration and Waiting Period (1990–2005): No evidence for new physics in exper-
imental searches, but three dark clouds: (i) cosmic microwave fluctuations (2006 NP), (ii) dark
energy (2011 NP) and (iii) neutrino oscillations (2015 NP) showing up;
(6) Preparation Period (2005–2020): The current period with the discovery of the Higgs
particle as well as many proposed experiments; and
(7) Super-Heroic Period (2020–2035): The upgrade LHC searches for something unex-
pected along with the future 100 TeV great collider as well as gravitational wave detections,
such as LISA.

In this talk, we have discussed the most important seven questions in particle physics, in
which some of them are still unsolved. In the Super-Heroic Period between 2020–2035, these
unsolved questions would be answered, while many Nobel Prize works would be produced just
like those during the Heroic Period (1960–1975). In sum, the party of particle physics is clearly
not over yet. In fact, its Super Party is coming.
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Flavor and modular symmetries from string
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Abstract

We review recent studies on the modular symmetry. It is shown that the modular
symmetry transforms zero-modes each other in certain compactification. That is a sort
of flavor symmetries. The modular forms for finite sub-groups of the modular symmetries
are also constructed. A new type of flavor models, which use these finite sub-groups of
the modular symmetry, is also outlined.

1 Introduction

Superstring theory is a promising candidate for the unified theory of our Nature, that is, all of
interactions including gravity and matter such as quarks and leptons as well as the Higgs field.
Superstring thoery could realize the standard model of particle physics, and solve several mys-
teries of particle physics and cosmology. Superstring theory predicts six-dimensional compact
space in addition to our four-dimensional space-time. It is expected the compactification scale
to be much higher than the weak scale. Thus, we have a huge energy scale gap between the
compactification scale and the weak scale. Symmetry would be a good tool to make a bridge
between high energy physics and low energy physics. Then, it is important to study mysteries
by both top-down and bottom-up approaches complementarily.

One of important mysteries in particle physics is the origin of the flavor structure. Why
there are three generations of quarks and leptons ? Why are quark and lepton masses so
hierarchical ? What determines mixing angles and CP phases in the quark and lepton sectors
? It is still a challenging issue to understand the origin of the flavor structure.

Non-Abelian discrete flavor symmetries are an interesting approach to derive the flavor
structure. Indeed, many studies have been done by use of various non-Abelian discrete sym-
metries such as SN , AN , ∆(3N2), ∆(6N2), etc. [1, 2, 3, 4]. A compact space has a geometrical
symmetry. Thus, such geometrical symmetries could be origins of non-Abelian discrete flavor
symmetries. In addition to such geometrical symmetries, stringy coupling selection rules can
lead to certain discrete flavor symmetries [5, 6]. (See also Refs. [7, 8, 9].)

The torus compactification as well as the orbifold compactification has the so-called modular
symmetry. The modular symmetry includes S3, A4, S4 as finite sub-groups [10], while these
symmetries have been used as flavor symmetries in many flavor models. Thus, it would be
interesting to study the modular symmetry and its finite sub-groups by both top-down and
bottom-up approaches complementarily in order to solve the flavor mystery.

In this talk, we review on recent studies on the modular symmetry. We study modular
transformation properties of zero-modes in the torus compactification with magnetic fluxes.
We also construct modular forms of weight 2 for finite sub-groups of the modular symmetry.
Moreover, we outline a new type of flavor model building using the finite sub-groups of the
modular symmetry and modular forms.

1kobayashi@particle.sci.hokudai.ac.jp
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2 Magnetic flux compactification

Here, we give a brief review on the torus compactification with magnetic fluxes [11]. The higher
dimensional super Yang-Mills theory appears as effective field theory of D-brane models. For
simplicity, let us consider the six-dimensional U(1) theory on two-dimensional torus T 2. We
use the complex coordinate z = x1 + τx2 on T 2, where τ is the complex modulus parameter,
and x1 x2 are real coordinates. The metric on T 2 is given by

gαβ =

(
gzz gzz̄
gz̄z gz̄z̄

)
= (2πR)2

(
0 1

2
1
2

0

)
. (1)

We identify z ∼ z + 1 and z ∼ z + τ on T 2.
We introduce the magnetic flux,

F = i
πM

Imτ
dz ∧ dz̄, (2)

which corresponds to the vector potential,

A(z) =
πM

Imτ
Im(z̄dz), (3)

where M must be integer.
Now, let us consider the spinor with U(1) q = 1. The spinor on T 2 has two componets, ψ±.

Its zero-mode equation with the above gauge background

i 6Dψ± = 0, (4)

has chiral solutions for either ψ+ or ψ− depending on the sign of M . When M is positive, ψ−
has no solution, but ψ+ has M degenerate zero-mode solutions, whose profiles are written by

ψj,M(z) = N eiπMz Imz
Imτ · ϑ

[
j
M

0

]
(Mz,Mτ) , (5)

with j = 0, 1, · · · , (M − 1), where ϑ denotes the Jacobi theta function,

ϑ

[
a
b

]
(ν, τ) =

∑

l∈Z
eπi(a+l)2τe2πi(a+l)(ν+b). (6)

Here, N denotes the normalization factor given by

N =

(
2ImτM

A2

)1/4

, (7)

with A = 4π2R2Imτ . This degenerate number would correspond to the family number. When
M is negative, ψ− have |M | degenerate zero-mode solutions, but ψ+ has no zero-mode solution.
Thus, we can realize a four-dimensional chiral theory. In what follows, we restrict ourselves to
models with M > 0.

Similarly, we can study the T 2/Z2 orbifold compactification with magnetic fluxes, where the
number of zero-modes is different from one on T 2 [12]. One can also introduce discrete Wilson
lines [13]. Staring with higher dimensional super U(N) Yang-Mills theory, we compactify the
extra dimensiona to orbifolds like T 2/Z2, T 4/Z2, T 6/Z2, or T 6/(Z2 × Z2). Then, we can break
the U(N) group to smaller groups such as SU(3)×SU(2)×U(1) and SU(4)×SU(2)×SU(2) by
magnetic fluxes and the Z2 orbifold projection. As results, we can construct three-generation
models, where the generation number is realized as the above degeneracy by magnetic fluxes
with and without the Z2 orbifold projection. Hence, we can construct realistic models. (See
e.g. Refs. [14, 15, 16].)
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3 Modular symmetry

Here, we study the modular transformation of zero-mode wavefunctions [11, 17, 18, 19]. Re-
cently, its anomalies were also studied [20]. Following [17], we restrict ourselves to even magnetic
fluxes M .

3.1 Modular symmetry of zero-modes

The torus T 2 is the division of two-dimensional real flat space by a lattice Λ, which is spanned
by two lattice vectors, α1 and α2. The same lattice Λ is spanned by changing the lattice basis
vectors, i.e. SL(2,Z). Such transformation is represented by the modular transformation of
the modulus parameter,

τ −→ aτ + b

cτ + d
. (8)

This group includes two important generators, S and T ,

S : τ −→ −1

τ
, (9)

T : τ −→ τ + 1. (10)

Under S, the zero-mode wavefunctions ψj,M(z) on T 2 with the magnetic flux M transform
as

ψj,M → 1√
M

∑

k

e2πijk/Mψk,M . (11)

On the other hand, the zero-mode wavefunctions ψj,M(z) transform as

ψj,M → eπij
2/Mψj,M , (12)

under T . Note that the modular symmetry transforms zero-modes each other, and that is the
flavor symmetry in a sense.

Generically, the T -transformation satisfies [17]

T 2M = IM×M , (13)

on the zero-modes, ψj,M , where IM×M denotes the (M ×M) unit matrix. Furthermore, in Ref.
[17] it is shown that

(ST )3 = eπi/4IM×M , (14)

on the zero-modes, ψj,M . Hence, on ψj,M , T and (ST )3 are represented by diagonal matrices,
and they are Z2M and Z8 symmetries, respectively.

For example, we study the model with M = 2. The S-transformation acts on the zero-
modes, (

ψ0,2

ψ1,2

)
−→ S

(
ψ0,2

ψ1,2

)
, S =

1√
2

(
1 1
1 −1

)
, (15)

and the T -transformation acts
(
ψ0,2

ψ1,2

)
−→ T

(
ψ0,2

ψ1,2

)
, T =

1√
2

(
1 0
0 i

)
. (16)

They satisfy the following algebraic relations,

S2 = I, T 4 = I, (ST )3 = eπi/4I. (17)
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Their closed algebra corresponds to (Z8 × Z4) o S3 [18].
In Ref. [6], it was shown that the model with M = 2 has the D4 flavor symmetry, and two

zero modes, ψ0,2(z) and ψ1,2(z), correspond to the D4 doublet. Indeed, the above modular
group includes

Z =

(
1 0
0 −1

)
= T 2, C =

(
0 1
1 0

)
= ST 2S. (18)

The closed algebra including Z and C correspond to D4. However, the difference between D4

and the modular symmetry is that while Yukawa couplings as well as higher order couplings
are invariant under D4, those couplings transform non-trivially under the modular symmetry.
See for details of its implication Ref. [18].

Similarly, we can study the modular transformation of zero-modes for larger M . For exam-
ple, the modular group on zero-modes for M = 4 is (Z8 × Z8) o A4 [18].

3.2 Modular form

As mentioned in the previous section, Yukawa couplings transform non-trivially under the
modular transformation. The holomorphic part of Yukawa coupling is written by

X i,M(τ) = ϑ

[
i
M

0

]
(0,Mτ) . (19)

They transform

Xj,M →
√
−iτ
M

∑

k

e2πijk/MXk,M , (20)

under S, and
Xj,M → eπij

2/MXj,M , (21)

under T .
Using the above properties, we can construct the modular forms by products of X i,M [19].

For example, the following products,

Z1 = (X0,2)4 + (X1,2)4, Z2 = 2
√

3(X0,2)2(X1,2)2, (22)

correspond to the S3 doublet modular form of weight 2. Indeed, on (Z1, Z2)T , S and T are
represented by

ρ(S) =
1

2

(
−1 −

√
3

−
√

3 1

)
, ρ(T ) =

(
1 0
0 −1

)
. (23)

They satisfy ρ(S2) = I2×2, ρ(T 2) = I2×2, and ρ((ST )3) = I2×2. That is nothing but S3. Note
that the modular forms of weight 2 are fundamental. By their products, the modular forms of
larger weights can be constructed.

Similarly, the following products,

Z3 = (X0,2)4 − (X1,2)4, Z4 = 2
√

2(X0,2)3X1,2, Z5 = 2
√

2X0,2(X1,2)3, (24)

correspond to the S4 triplet modular forms of weight 2. On (Z3, Z4, Z5)T , S and T are repre-
sented by

ρ(S) =
1

2




0 −
√

2 −
√

2

−
√

2 −1 1

−
√

2 1 −1


 , ρ(T ) =




1 0 0
0 i 0
0 0 −i


 . (25)
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They satisfy ρ(S2) = I3×3, ρ(T 4) = I3×3, and ρ((ST )3) = I3×3. That is isomorphic to S4. Thus,
(Z3, Z4, Z5) corresponds to the S4 triplet.

In Ref. [19], the modular forms of weight 2 corresponding to ∆(96) and ∆(384) triplets were
also explicitly constructed. ∆(96) and ∆(384) are finite sub-groups of the modular symmetry.

4 New flavor models

The modular symmetry on τ satisfy the following algebraic relations,

S2 = (ST )3 = 1. (26)

On top of that, when we impose TN , such subgroups are isomorphic to S3, A4, S4, A5 for
N = 2, 3, 4, 5, respectively [10]. As shown in the previous section, zero-modes transform each
other under the modular symmetry, that is, the flavor symmetry. Yukawa couplings as well as
other couplings are functions of the modulus and transform non-trivially under the modular
symmetry. Note that even couplings of non-perturbatively induced terms also depend on the
modulus and transform non-trivially under the modular symmetry. (See e.g. Ref. [21].)

Inspired by these aspects, a new type of flavor models were proposed in Ref. [22]. In this
new approach, the three families of leptons are assigned to non-trivial representations of the
A4 flavor symmetry as the conventional flavor symmetry model. However, the A4 symmetry
is assumed to be the finite sub-group of the modular symmetry. The Yukawa couplings and
right-handed Majorana masses as well as higher order couplings are required to be modular
forms. The lepton and Higgs fields also have proper modular weights such that the Lagrangian
is invariant under the A4 modular symmetry. Then, realization of lepton masses and mixing
angles was studied. Such a new approach to flavor models were extended by use of several
groups such as S3, A4, S4, A5 [23, 24, 25, 26, 27, 28, 29, 30, 31]. In these studies, experimental
values of quark and lepton masses and mixing angles as well as the CP phase were reproduced.
See for explicit models and realization of quark and lepton masses and mixing angles as well
as the CP phases [32, 33].

It is remarkable that when one fixes the vacuum expectation value of the modulus τ , the
flavor symmetry is broken. In the conventional flavor symmetry models, scalar fields, which
are the so-called flavon fields, are introduced and their vacuum expectation values break flavor
symmetries. Thus, one can construct flavor symmetry models without flavon fields in the new
type of approaches.

5 Conclusion

We have reviewed on recent studies on the modular symmetry. In the compactified theory,
the modular symmetry transforms zero-modes each other. That is, the modular symmetry is
a sort of flavor symmetries and zero-modes are their non-trivial representations. Furthermore,
Yukawa coulings as well as higher order couplings transform non-trivially under the modular
symmetry. That is different from the conventional flavor symmetry models.

Inspired by these aspects, the new type of flavor models was proposed and extensively
studied. We can realize experimental values of quark and lepton masses and mixing angles as
well as the CP phase. Hence, this approach is quite interesting. In this approach, one can
construct flavor symmetry models without flavon fields.

We have shown zero-mode modular transformation in the simple torus compactification
with magnetic fluxes. They represent not simple finite groups such as S3, A4, S4, A5, but larger
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groups including them. However, the simple groups such as S3, A4, S4, A5 have been used to
realize quark and lepton masses and mixing angles. There is still a gap between the compactified
theory and the bottom-up approach of flavor models. It is quite important to study more about
the modular symmetry from both sides, the top-down and bottom-up approaches. In the string
theoretical side, it is important to study geometrical symmetries like the modular symmetry
for other compactifications and which compactifications can lead to simple finite groups such
as S3, A4, S4, A5.
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Abstract

For D0 − D̄0 mixing parameters, the prediction of the standard model (SM) based
on the operator product expansion (OPE) gives an order of magnitude smaller than ex-
perimental data. In this study, we consider methodology in which the dispersion relation
providing strong constraints on the mixing parameters is used. By introducing a fictitious
D meson that is sufficiently heavy, one ensures that the OPE is reliable. The mixing pa-
rameters associated with the low mass scale are predicted as a solution of the constraining
equation.

1 Introduction

Theoretically, charm physics is a challenging field due to its unique mass scale; it is too heavy
to apply the chiral perturbation theory and possibly too light to rely on the heavy quark
expansion. Furthermore, perturbative QCD prediction cannot be applied since the coupling,
αs, is relatively large at the charm mass scale.

In the SM, it is known that the amplitude of D0 − D̄0 mixing is suppressed due to the
Glashow-Iliopoulos-Maiani (GIM) mechanism [1]. The only surviving contributions are from
SU(3) breaking that is characterized by the mass difference between strange and down quarks
and from CKM-suppressed diagrams with bottom quarks in the loop.

There exist two methods to calculate the mixing parameters: the exclusive analysis and
the inclusive one. The former utilizes the hadronic level calculation, which relies on the data
of D meson decays, while the latter is carried out on the basis of the quark-gluon picture.
In this sense, the inclusive method offers a purely theoretical methodology. In the exclusive
way, the topological approach [2] and the factorization-assisted topological approach [3] took
into account two-body decays, reproducing half of the y value measured in experiments. These
results indicate that the other multibody channels may need to be fully considered to describe
the observables quantitatively.

In the inclusive analysis, however, the situation is more sutle: the quark level analysis is
implemented in a languege of the OPE, relying on the quark-hadron duality. How large the
duality violation effect is in the D meson system is a non-trivial issue, while the OPE method
results in a successful descpription on the B0

d,s − B̄0
d,s mixing. The prediction of the inclusive

analysis, including next-to-leading order QCD correction, exhibits x ∼ y ' 6× 10−7 [4], much
smaller than the experimental values, x = (0.46+0.14

−0.15)% and y = (0.62± 0.08)% [5] with no CP
violation.

In this context, the D meson mixing based on the inclusive analysis requires a further
investigation for clarifying the applicability of the OPE. Specifically, novel features in this work
are:

1Speaker, Email: umeeda@gate.sinica.edu.tw
2Email: hnli@phys.sinica.edu.tw
3Email: fanrongxu@jnu.edu.cn
4Email: yufsh@lzu.edu.cn
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• We adopt the OPE only if quark is heavy enough, in which case the expansion in terms
of Λ/mh with Λ being a scale of QCD and mh being a heavy quark mass is reliable.

• Diagrams with bottom quark in the loop are taken into account since they give consider-
able contribution when a charm quark gets heavy.

• The dispersion relation defined over a wide range of mass scale is considered, providing
constrains whose form is given by an integral equation.

• Since the methodology in this work relies only on the dispersion relation, the prediction
is independent of the choice of duality violation models.

2 Method

We introduce a fictitious D0 (D̄0) meson, a pseudoscalar that consists of hū (h̄u) with h being
an up-type quark. Although the quantum numbers of h are totally identical to those of a charm
quark, their masses are not necessarily equal to one another. Likewise, the fictitious D meson
has a property similar to that of a physical D meson. When the mass of the fictitious D meson
is fixed to be mD, it should coincide a physical D meson that is observed in experiments. In
this work, we restrict ourselves to the leading order in power of 1/mc as analyzing the mixing
parameters, at which masses of h and the fictitious D meson are degenerate as demonstrated
in the heavy quark effective theory.

In the CP conserving limit, mass/width difference for the fictitious D meson system is
characterized by,

∆M(s) = 2M12, ∆Γ(s) = 2Γ12, (1)

where M12(s) (Γ12(s)) represents the dispersive (absorptive) part of the D̄0 → D0 transition
amplitude with s being a mass squared of the fictitious charm quark. The specific experssions
for M12 and Γ12 for generic mass of h are obtainable from Ref. [6], in which the box-diagrams
were calculated. Instead of Eq. (1), one can introduce the dimensionless variables,

x(s) = ∆M(s)/Γ, y = ∆Γ(s)/(2Γ). (2)

The total width for a D meson, Γ, is experimentally fixed to (1.6050± 0.0059)× 10−12GeV [7].
By exploiting properties of the D̄0 → D0 amplitude, A(s+ iε) = A∗(s− iε) along the branch

cut and A(s) = 0 for large |s|, one can derive the dispersion relation,

x(s) =
1

π

∫ R

4m2
π

y(s′)

s− s′ds, (3)

where r.h.s. is defined via the principle value integral. The conventional dispersion relation
corresponds to the case with R→∞ in Eq. (3). One can confirm that r.h.s of Eq. (3) is stable
under the variation of R if R is sufficiently large.

Equation (3) can be rewritten by the following form,

∫ Λ2

4m2
π

y(s′)

s− s′ds
′ = ω(s), (4)

ω(s) = πx(s)−
∫ R

Λ2

y(s′)

s− s′ds
′. (5)
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Here, Λ2 is a scale low enough to ensure the validity of the OPE. In Eq. (4), we split the integral
region [4m2

π, R] into [4m2
π, Λ2] and [Λ2, R]. Given that s is defined in a range [Λ2, (Λ′)2], where

Λ′ is a scale satisfying Λ < Λ′ ≤
√
R, it is evident that ω(s) contains x and y evaluated only

in the high mass region so that they are calculable by means of the OPE. On the other hand,
l.h.s. of Eq. (4) contains y only in the low mass region, which is treated as an unknown. By
solving Eq. (4), one can extract s dependence of y(s) so that the observable, y(m2

c), can be
predicted. After implementing this procedure, one can also know about x(m2

c) through Eq. (3)
by fixing s = m2

c in both sides.
One can implement the change of variables to gain dimensionless variables, t(′) = s(′)/Λ2.

By defining x̃(t) = x(s) and ỹ(t′) = y(s′), one can rewrite the dispersion relation in Eq. (4) as,

∫ 1

0

ỹ(t′)

t− t′dt
′ = ω̃(t), (6)

ω̃(t) = πx̃(t)−
∫ R/Λ2

1

ỹ(t′)

t− t′dt
′. (7)

On l.h.s. of Eq. (6), we took the limit where 4m2
π/Λ

2 → 0. We parametrize the solution of the
integral relation (6) as a rational function,

ỹ(t) = N(d,m)
t[b1 + b2(t−m) + b3(t−m)2]

[(t−m)2 + d2]n
. (8)

Hereafter, we restrict ourselves on n = 2, the simplest case. In the above equation, t is multiplied
as an overall factor in order to satisfy the boundary condtion ỹ(0) = 0. Also, N(d,m) is a factor
defined so as to normalize the first term to unity, i.e.,

N(d,m) =

[∫ 1

0

tdt

[(t−m)2 + d2]2

]−1

. (9)

The normalizations for the second (third) term is taken into account by a relative size between
b1 and b2 (b3). Moreover, if b2 6= 0 and/or b3 6= 0, the distribution can exhibit a shape with
multiple peaks. By performing integration, one can find that l.h.s. of Eq. (6) is given by,

∫ 1

0

ỹ(t′)

t− t′dt
′ = b1f1(t, d,m) + b2f2(t, d,m) + b3f3(t, d,m), (10)

fi(t, d,m) = N(d,m)
∫ 1

0

t′(t′ −m)i−1

(t− t′)[(t′ −m)2 + d2]2
dt′. (i = 1, 2, 3) (11)

The unknow constants, (b1, b2, b3, d,m), are determined so as to reproduce the input of the
OPE, which is valid for the high mass region. After implementing this fitting, s dependence of
y is fixed by Eq. (8), enabling us to identify the shape of the width difference.

To summarize, we proposed a novel method for calculating the D meson mixing by introduc-
ing a fictitious D meson that provides the constraining equation for the mixing paramers. The
width difference as a solution, exhibihiting resonance(s) for the low mass region, is parametrized
in such a way that ỹ(0) = 0 is ensured. A dedicated analysis based on this method will be
presented elsewhere.
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Abstract

Velocity distribution of dark matter is supposed to be isotropic Maxwell-Boltzmann
distribution in most cases, however, other distribution models including anisotropic one
are suggested by simulations. Directional direct detection of dark matter is expected
to be a hopeful way to discriminate isotropic distribution from anisotropic one. We
investigate the possibility to obtain the anisotropy and WIMP mass by Monte-Carlo
simulation supposing the directional detector.

1 Introduction

Cosmological and astrophysical observations have showed that dark matter consists 27% of
the energy density of the Universe, which corresponds to about 5 times as much as baryonic
matter. Weakly interacting massive particles (WIMPs) are a hopeful candidate of dark matter.
In spite of many projects to hunt dark matter such as direct, indirect detections and collider
search, we still know very little about the dark matter. Velocity distribution is one of essential
quantity of dark matter. Especially, it can affect derivation of constraints for dark matter mass
and cross section in the direct detection. Direct detection which has directional sensitivity
is hopeful experiment to reach the local velocity distribution of WIMPs [2]. Especially, it is
suitable to investigate anisotropic components of the velocity distribution suggested by N-body
simulation [3]. In the reference, the velocity distribution associated with tangential velocity vϕ

in the Galactic rest frame is indicated as

f(vϕ) =
1 − r

N(v0,iso.)
exp

[
−v2

ϕ/v
2
0,iso.

]
+

r

N(v0,ani.)
exp

[
−(vϕ − µ)2/v2

0,ani.

]
, (1)

where N(v0,iso.) and N(v0,ani.) are normalization factors, r = 0.25 is anisotropic parameter,
v0,iso. = 250 km/s, v0,ani. = 120 km/s and µ = 150 km/s. Note that the velocity distribution
is isotropic if r = 0.00. We investigate the possibility to discriminate anisotropic velocity
distribution Eq. (1) from isotropic distribution by the directional direct detections including a
solid type detector.

2 Detection in Directional Detector

In Figure 1, WIMP - nucleon scattering in the directional detector is shown. The z-axis is taken
as the direction of WIMP wind towards the Solar system. Supposing the velocity distribution
of corresponding anisotropy r, a WIMP is generated following a probability of the distribution
and the recoil energy and the scattering angle are obtained in the Monte-Carlo simulation.
Most of the directional direct detector are gas detector in which fluorine (F) is adopted as a
target atom. In the solid directional detector, there are several target atoms including silver

1nagao@dap.ous.ac.jp
2This talk is based on the paper [1].
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Figure 1: WIMP-nucleon scattering in the Galactic rest frame.

0
0.

2
0.

4
0.

6
0.

8
1 tm

p
r

123456

3
10×

2 χ

=0
.3

ex
p

r

0
0.

2
0.

4
0.

6
0.

8
1 tm

p
r

123456

3
10×

2 χ

=0
.3

ex
p

r

Figure 2: (Left) The chi-squared test of the energy-angular distributions for target F. Red
dotted lines show 90% C.L. The event number of pseudo-experiment is set as 6×103, and the
energy threshold of the detector is 20 KeV. (Right) The chi-squared test for target Ag case. The
event number of pseudo-experiment is set as 6×104, and the energy threshold of the detector
is 50 KeV.

(Ag), bromine and carbon. Among them we suppose F and Ag as target atoms in the numerical
simulation.

In order to distinguish the energy-angular distribution obtained by supposing anisotropic
velocity distribution from that by supposing anisotropic one, two kinds of data is generated by
the Monte-Carlo simulation.

3 Numerical Result

3.1 Case 1 : Supposing the WIMP mass is known.

In the case that the WIMP mass is obtained by other experiment, the energy threshold can be
optimized to distinguish the anisotropy of the velocity distribution. In Figure 2, the chi-squared
test for target F and Ag are shown. If the anisotropic case is realized, the required event number
is 6×103 (target F) and 6×104 (target Ag) in order to reject the isotropic distribution by 90 %
confidence level (C.L.).

3.2 Case 2 : Constraining both WIMP mass and velocity distribu-
tion.

Even if information of WIMP mass is not provided, a constraint for both WIMP mass and
anisotropy can be obtained. In Figure 3 and 4, the probability distribution for target F and
target Ag obtained by likelihood method are shown, respectively. With only directional data
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or only the recoil energy data, indication for the parameters is unreliable compared to the case
that both data are used in the analysis.

 (
G

eV
)

χ
m

0
50

10
0

15
0

20
0

r (%)

02040608010
0

 (
G

eV
)

χ
m

0
50

10
0

15
0

20
0

r (%)

02040608010
0

 (
G

eV
)

χ
m

0
50

10
0

15
0

20
0

r (%)

02040608010
0

Figure 3: The 2D posterior probability distributions in the WIMP mass and anisotropy space
for target F. Left: Only data of recoil energy ER is used. Center: Only data of scattering angle
cos θ is used. Right: Both recoil energy and scattering angle are used.
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Figure 4: Legend is same as Figure 3 but for the target Ag.

4 Summary

Discrimination of the anisotropy of the WIMP velocity distribution in the directional detector
is investigated. Once the WIMP mass is obtained, supposing 30% of anisotropy component
of the velocity distribution, the required event numbers for discriminate the anisotropy are
O(1000) for light target and O(10000) for heavy one, respectively. Even without the WIMP
mass information, the WIMP mass and anisotropy can be obtained with less uncertainty by
using both the recoil energy and the scattering angle data, than in the analysis by using only
one of the data.
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Lorentz invariant CPT breaking in the Standard Model;
neutrino oscillation and baryogenesis
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Abstract

The CPT symmetry is the fundamental symmetry in Lorentz invariant local field
theory. It is nevertheless interesting to entertain the idea of the possible breaking of CPT
symmetry and discuss its implications. We explain the general idea of the possible Lorentz
invariant CPT breaking, since it is often erroneously stated in the literature that CPT
breaking implies the Lorentz symmetry breaking.

1 Introduction

The CPT symmetry is valid for any Lorentz invariant local theory with normal spin-statistics
and hermitian Lagrangian. The CPT theorem was introduced in the following articles:
W. Pauli, Niels Bohr and the Development of Physics, W. Pauli (ed.), Pergamon Press, New
York, 1955.
G. Lüders, On the Equivalence of Invariance under Time-Reversal and under Particle-Antiparticle
Conjugation for Relativistic Field Theories, Det. Kong. Danske Videnskabernes Selskab, Mat.-
fys. Medd. 28 (5) (1954).

The title of this second paper clearly shows what the CPT theorem means, namely, T
invarince is equivalent to C invariance if parity (P) is preserved since P was believed to be
preserved at that time.

One may seek the possible CPT violation at the Planck scale, for example, due to the fol-
lowing specific properties of the Lagrangian;
1. Non-local Lagrangian,
2. Lorentz non-invariant Lagrangian.
The conventional argument, which is attributed to O.W. Greenberg, Phys. Rev. Lett. 89,
231602 (2002), erroneously asserts that the CPT violation inevitably implies the Lorentz sym-
metry violation. An explicit counter example to the above claim, using a non-local Lorentz
invariant Lagrangian which breaks CPT symmetry, was given by M. Chaichian, K. Fujikawa
and A. Tureanu, Phys. Lett. B712 (2012) 115.

2 Non-local Lorentz invariant theory with CPT violation

The essence of the idea of the CPT breaking in non-local Lorentz invariant theory is explained
by the modified Dirac equation in momentum space

[γµpµ −m− ∆m(θ(p0) − θ(−p0))θ(p
2
µ)]ψ(p) = 0. (1)

The symmetry of positive and negative energy eigenvalues is lifted by m± ∆m for a small ∆m
and thus breaking CPT symmetry. The mass degeneracy of the particle and antiparticle is thus
lifted in a Lorentz invariant manner since the combinations

θ(±p0)θ(p
2
µ) (2)

with step functions (signature of the time-like vector) are manifestly Lorentz invariant.
1k-fujikawa@riken.jp
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3 Lorentz invariant Lagrangian with particle-antiparticle

mass splitting

We start with the hermitian Lorentz invariant combination in a space-time description

∫
d4xd4y[θ(x0 − y0) − θ(y0 − x0)]

×δ((x− y)2 − l2)[iµψ̄(x)ψ(y)]. (3)

Transformation properties of the operator part are given using spin-statistics theorem,

C : iµψ̄(x)ψ(y) → iµψ̄(y)ψ(x),

P : iµψ̄(x0, x⃗)ψ(y0, y⃗) → iµψ̄(x0,−x⃗)ψ(y0,−y⃗),
T : iµψ̄(x0, x⃗)ψ(y0, y⃗) → −iµψ̄(−x0, x⃗)ψ(−y0, y⃗), (4)

and thus the overall transformation property of (3) is C=−1, P=1, T=1. Namely, all the
discrete symmetries are broken C=CP=CPT=−1.

It is then interesting to examine a new modified Dirac action

S =
∫
d4x{ψ̄(x)iγµ∂µψ(x) −mψ̄(x)ψ(x)

−
∫
d4y[θ(x0 − y0) − θ(y0 − x0)]δ((x− y)2 − l2)[iµψ̄(x)ψ(y)]}, (5)

which is Lorentz invariant and hermitian.
The Dirac equation is then replaced by

iγµ∂µψ(x) = mψ(x)

+iµ
∫
d4y[θ(x0 − y0) − θ(y0 − x0)]δ((x− y)2 − l2)ψ(y). (6)

By inserting an ansatz for the possible solution

ψ(x) = e−ipxU(p), (7)

we have

̸pU(p) = mU(p)

+ iµ
∫
d4y[θ(x0 − y0) − θ(y0 − x0)]

× δ((x− y)2 − l2)e−ip(y−x)U(p)

= mU(p) + iµ[f+(p) − f−(p)]U(p), (8)

where

f±(p) =
∫
d4z1e

±ipz1θ(z0
1)δ((z1)

2 − l2), (9)

is the Lorentz invariant form factor.
For the space-like p, we have f+(p) = f−(p) and no mass splitting, which implies no tachyon.
For time-like p, we go to the frame where p⃗ = 0 and the eigenvalue equation becomes

p0 = γ0{m+ iµ[f+(p0) − f−(p0)]}, (10)
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namely,

p0 = γ0

[
m− 4πµ

∫ ∞

0
dz
z2 sin[p0

√
z2 + l2]√

z2 + l2

]
. (11)

This eigenvalue equation under p0 → −p0 becomes:

−p0 = γ0

[
m+ 4πµ

∫ ∞

0
dz
z2 sin[p0

√
z2 + l2]√

z2 + l2

]
. (12)

By sandwiching this equation by γ5, we have

p0 = γ0

[
m+ 4πµ

∫ ∞

0
dz
z2 sin[p0

√
z2 + l2]√

z2 + l2

]
, (13)

which is not identical to the original equation. In other words, if p0 is the solution of the original
equation, −p0 cannot be the solution of the original equation for µ ̸= 0. The last term in the
Lagrangian with C=CP=CPT=−1 splits the particle and antiparticle masses.

As a crude estimate of the mass splitting, one may assume µ ≪ m and solve these equations
iteratively. If the particle mass is chosen at

p0 ≃ m− 4πµ
∫ ∞

0
dz
z2 sin[m

√
z2 + l2]√

z2 + l2
, (14)

then the antiparticle mass is estimated at

p0 ≃ m+ 4πµ
∫ ∞

0
dz
z2 sin[m

√
z2 + l2]√

z2 + l2
. (15)

Thus CPT breaking term with µ splitts the particle and antiparticle masses.

4 Neutrino oscillation and baryogenesis

One can incorporate the above CPT breaking scheme in the neutrino mass sector of a minimal
extension of the Standard Model by maintaining
a)C, CP and CPT breaking
b)Lorentz invariance
c)SU(2)xU(1) gauge invariance
d)Non-locality within a distance scale of the Planck length.

Neutrino oscilllation is very sensitive to a small mass and mass splitting, but it is shown that
the neutrino-antineutrino mass splitting generated by the above mechanism is consistent with
experiments. It is also shown that the induced electron-positron mass splitting, for example,
is negligibly small. The possible implication of CPT breaking on the thermal equilibrium
baryogenesis has been briefly mentioned.

The details of the above analyses are found in [1, 2].

Acknowledgement

This work is supported in part by JSPS KAKENHI (Grant No.18K03633).

References

[1] 1. K. Fujikawa and A. Tureanu, Phys. Lett. B743 (2015) 39-45.

[2] 2. K. Fujikawa and A. Tureanu, Int. J. Mod. Phys. A32 (2017) 1741014.

27



Supercurvature-mode dark energy model

Yue Nana, Kazuhiro Yamamotob 1, Hajime Aokic, Satoshi Isod, Daisuke Yamauchie

aDepartment of Physics, Graduate School of Science, Hiroshima University,
Higashi-Hiroshima 739-8526, Japan,

bDepartment of Physics, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
c Department of Physics, Saga University, Saga 840-8502, Japan

dTheory Center, High Energy Accelerator Research Organization (KEK), and Graduate
University for Advanced Studies (SOKENDAI), Ibaraki 305-0801, Japan

eFaculty of Engineering, Kanagawa University, Kanagawa, 221-8686, Japan

Abstract

We investigate large-scale inhomogeneity of the supercurvature-mode dark energy
mode proposed by Aoki, Iso, Lee, Sekino, Yeh in Ref. [2]. In this scenario, the dark
energy is explained by a scalar ϕ field coupled to another scalar field ψ which gives rise
to an open inflation scenario induced by a bubble nucleation. During the bubble nucle-
ation, supercurvature modes of the scalar field ϕ can be produced, and may remain until
present epoch without decaying; thus they can play a role of the dark energy, if the mass
of the scalar field is sufficiently light in the present universe. The supercurvature modes
fluctuate at a very large spatial scale, much longer than the Hubble length in the present
universe. Thus they create large-scale inhomogeneities of the dark energy, and generate
large-scale anisotropies in the cosmic microwave background fluctuations.

1 Introduction

Our Universe is in an accelerating expansion phase, which is one of the biggest mystery of
modern cosmology. A cosmological constant, which explains the accelerating expansion, is one
of the important factors of the standard model of cosmology. However, there have been proposed
many models of dark energy, which are dynamical models to explain the cosmic accelerated
expansions. Quintessence is well-known as a dark energy model. Isotropy and homogeneity of
the background universe are the fundamental assumption of the standard cosmological model.
We investigate a observational effect in a model of dark energy with spatially varying properties,
which we call supercurvature-mode dark energy model [2], which may violate the isotropy and
homogeneity of the background Universe on superhorizon scales.

Following the supercuvature-mode dark energy model, we consider a scalar field ϕ [2], which
is coupled to another field ψ that derives a false vacuum decay and an open inflation [5]. Open
inflation scenario is induced by a bubble nucleation, i.e., a tunneling process from a false vacuum
in de Sitter space, then a slow roll inflation follows inside the bubble. The tunneling process
of the bubble nucleation is described by the Coleman de Luccia bounce solution, assuming the
O(4) symmetry in the Euclidean metric. The analytic continuation of the bounce solution to
Lorentzian region describes the solution of an expanding bubble. Due to the O(4) symmetry
of the bounce solution, an open universe is realized inside the bubble [6].

We consider the quantum field theory of a massive scalar field ϕ on the background of
an expanding bubble. It has been shown that a discrete mode appears besides the continuous
modes for the expression of the quantum field in an open universe when the mass of ϕ is smaller
than the Hubble parameter [4]. The discrete mode is characterized by a negative eignevalue
p2

∗(< 0), which we write p∗ = i(1− ϵ) with ϵ = O(1)(mA/HA)2, where mA and HA are the mass
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of ϕ and the Hubble parameter of the false vacuum. Here we assume ϵ ≪ 1. As this discrete
mode has the length scale much longer than the spatial curvature scale, then the discrete mode
is called supercurvature mode.

The evolution of the supercurvature mode is different from that of the continuous modes.
The continuous modes decay after inflation, but the supercurvature mode is almost constant
as long as ϵ is small, ϵ ≪ 1. Then the supercurvature mode freezes. The amplitude of the
quantum fluctuation of the supercurvature mode is determined as ⟨ϕ2⟩ ≃ H2

A/m
2
A. If the mass

of the field is sufficiently light in the present universe, m0 ∼ H0, of the same order of the present
Hubble parameter, the potential energy density of the supercurvature mode can explain the
dark energy, although we need a further assumption for the parameters Mpl/HA ∼ HA/mA.

This dark energy model is interesting as an inhomogeneous dark energy model, and we
investigate the spatially varying property. The energy density of the dark energy is approxi-
mately expressed by ρDE = 1

2
m2

0ϕ
2, then the correlation function of the dark energy density

contrast δDE(x) = (ρDE(x) − ⟨ρDE⟩)/⟨ρDE⟩ is estimated

⟨δ(η, x⃗)δ(η, y⃗)⟩ =
2⟨ϕ(η, x⃗)ϕ(η, y⃗)⟩2

⟨ϕ2(η, x⃗)⟩2
= 2

(
sinh(1 − ϵ)R

(1 − ϵ) sinhR

)2

, (1)

with R =
√

−K|x⃗−y⃗| whereK is the spatial curvature and we used ⟨ϕ(η, x⃗)ϕ(η′, y⃗)⟩ ∝ sinh(1−ϵ)R
(1−ϵ) sinh R

for the supercurvature mode. The result means that the dark energy density contrast has the
spatial inhomogeneity of O(1) on the (comoving) scale of the supercurvature 1/ϵ

√
−K, which

is much longer than the curvature scale 1/
√

−K when ϵ ≪ 1. We note that the curvature scale
must be longer than the present Hubble scale 1/

√
−K ≫ 1/H0.

Because the supercurvature scale is much longer than the present horizon scale, then the
dark energy density is almost constant in our observable universe, but observational signature
of the inhomogeneity of dark energy may appear. We investigated the observational effect on
the cosmic microwave background (CMB) anisotropy, imprinted through the integrated Sachs-
Wolfe effect,

∆T

T
(γ⃗) =

∫ η0

η∗
dη

(
∂Ψ(η, χ, γ⃗)

∂η
− ∂Φ(η, χ, γ⃗)

∂η

)

χ=η0−η

, (2)

where Ψ and Φ are the gravitational potential and the curvature potential in the Newtonian
gauge on an open universe background.

The evolution of Ψ and Φ from the supercurvature mode is obtained by solving the perturbed
equations of the Einstein equation and the matter’s fluid equations, under the condition that
the supercurvature mode is much longer than the curvature and the horizon scale,

Φ(η, χ, γ⃗) = −Ψ(η, χ, γ⃗) ≃ 1

F (η)

∫ η

0
dη1

4πGF (η1)

B(η1)
m2

0

(
ϕ(η1, χ, γ⃗)

2 − ϕ(η1, 0)2
)
, (3)

where we defined F (a) = a5/2/
√

Ωm + (1 − Ωm)a3 and B(a) = 6H0a
−2
√

Ωm/a3 + 1 − Ωm (See

Ref.[1]). The two point function of the CMB temperature anisotropy due to the integrated
Sachs-Wolfe effect is computed using the two point function of the field, which is written in the
form of the multipole expansion

⟨
∆T

T
(γ⃗)

∆T

T
(γ⃗′)

⟩
=

1

4π

∑

ℓ

(2ℓ+ 1)CℓPℓ(cos θ), (4)

with cos θ = γ⃗ · γ⃗′. The multipole coefficients are expressed in the form Cℓ = αℓS
2
ℓ , where we

defined Sℓ =
∫ 1
0 da

(√
−K(η0 − η(a))

)ℓ
∂
∂a

(
1

F (a)

∫ a
0 da

′ 8πGρDE(a′)F (a′)
3a′H2(a′)

)
, and αℓ is α1 = 32π/9 and
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α2 = 32π/75, for ℓ = 1, 2. Numerical computation gives C1 = 0.14×ϵΩK , C2 = 0.01×ϵΩ2
K , and

Cℓ ∼ O(ϵΩℓ
K). Then, we find that the dipole and the quadrupole are the components relevant

to observational signature for ϵ ≪ 1 and ΩK ≪ 1.
Comparison with observations puts a constraint on the model parameters. Adopting the ob-

served values of the dipole and the quadrupole component of the CMB temperature anisotropies
(e.g., [7]), Cobs

1 ≃ 6.3 × 10−6 and Cobs
2

<∼ 1.0 × 10−10, we obtain these constraints on the model
parameters ϵΩK

<∼ 4.9 × 10−5 and ϵΩK
<∼ 1.0 × 10−8. Recent observation by Planck satellite

put upper bound on the spatial curvature parameter ΩK
<∼ 10−2 ∼ 10−3. When Ωk = 10−3, we

have ϵ < 10−2, but if Ωk is smaller than 10−3, the constraint on ϵ becomes weaker.

2 Conclusions

We investigated the spatially varying property of the supercurvature mode dark energy model,
induced in an open inflation scenario. This property is a notable feature of this scenario, where
quantum fluctuations of a scalar field are responsible for the dark energy. We calculate imprints
of the scenario on the CMB anisotropies through the integrated Sachs-Wolfe effect, and give
observational constraints on the curvature parameter ΩK and on an additional parameter ϵ
describing some properties of the false vacuum. We need further investigations to check the
predictions of the model. Possible deviation from a cosmological constant model may appear
in the equation of state parameter when the kinetic term of the energy density and pressure is
not negligible (See Ref.[3]), which we assumed to be small here. Also we need check constraints
from the tensor perturbations and the large scale structure.
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Abstract

We study a flavor model that the quark sector has the S3 modular symmetry, while
the lepton sector has the A4 modular symmetry. Our model reproduces the masses and
mixing angles of both quarks and leptons. We also study baryon and lepton number
violation, in particular, a proton decay. This talk is based on [1].

Many flavor models with non-Abelian discrete flavor symmetries [2–4] succeeded in repro-
ducing realistic mixing angles of quarks and leptons. In these models, the flavor symmetries are
broken by the extra gauge singlet scalars which are called flavons. Instead, the flavons produce
many unknown parameters. We try to reproduce realistic mixing angles of both quarks and
leptons without flavons.

Superstring theory requires ten-dimensional space-time, though we observe four-dimensional
space-time. The additional six-dimensional space must be compactified. The three generations
of quarks and leptons can appear from certain compact spaces, for example, the compact
space in which suitable magnetic fluxes are inserted. As a six-dimensional compact space, in
particular, we assume the six-dimensional torus T 6 which is decomposed of a product of three
two-dimensional tori T 2, i.e. T 6 = T 2

1 × T 2
2 × T 2

3 . It is because that each T 2
i has modular

symmetry which is a geometrical symmetry and the modular symmetry contains certain non-
Abelian discrete symmetries as finite subgroups [5].

First, I review the modular symmetry of T 2 and the modular finite subgroups. T 2 can be
constructed as division of the complex plane C by a tow-dimensional lattice Λ, i.e. T 2 = C/Λ.
The lattice is spanned by two-lattice vectors, α1 = 2πR and α2 = 2πRτ , where R is a real
radius parameter which decides the torus size and τ is a complex modulus parameter which
decides the torus shape. There is some ambiguity in choice of the basis vectors. The same
lattice can be spanned by the following basis vectors,

(
α′

2

α′
1

)
=

(
a b
c d

)(
α2

α1

)
, (1)

where a, b, c, d are integer with satisfying ad − bc = 1. That is the SL(2, Z) transformation.
Under the above transformation, the modulus parameter τ = α2/α1 transforms as

τ → τ ′ =
aτ + b

cτ + d
. (2)

This transformation is called modular transformation. The holomorphic function of modulus
parameter τ , which transforms as

f(τ) → (cτ + d)kf(τ) (3)
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under the modular transformation Eq. (2), is called the modular form of modular weight k.
The modular transformation Eq. (2) is generated by S and T transformations,

(
0 −1
1 0

)
∈ SL(2, Z) −→ S : τ → −1

τ
, (4)

(
1 1
0 1

)
∈ SL(2, Z) −→ T : τ → τ + 1 . (5)

They satisfy S2 = 1, (ST )3 = 1. In addition, if we impose T 2 = 1 or T 3 = 1, these algebraic
relations are the same as S3 or A4 group, respectively [5]. Therefore, in that case, the modular
form is transformed non-trivially under S3 or A4 modular transformation [6]. (See for the S3

modular forms Ref. [7].) We apply these results for the flavor symmetries of matters.
We use T 6 = T 2

1 × T 2
2 × T 2

3 as a six-dimensional compact space in the superstring theory,
then assume that three generations of quarks appear on T 2

1 which has S3 modular symmetry
while three generations of leptons appear on T 2

2 which has A4 modular symmetry. Note that
the reason of assuming the different modular flavor symmetries for quarks and leptons is that
the mixing angles of quarks and leptons are different, which means ones of quarks are small but
ones of leptons are large. Table 1 and Table 2 show the assignments for quarks and leptons,
respectively. In the quark sector, we assign S3 doublets with modular weight −2 for the first and
second families of both left-handed and right-handed quarks, and assign S3 non-trivial singlet
with modular weight 0 for the third family of both left-handed and right-handed quarks. On
the other hand, in the lepton sector, we assign A4 triplets with modular weight −1 for the three
left-handed leptons and the right-handed neutrinos, and assign the different A4 singlets with
modular weight −1 for the three right-handed charged leptons, respectively. As for the Higgs
sector, we assign S3 and A4 singlet with modular weight 0. In addition, Yukawa couplings
are obtained by integrating the six-dimensional part of the ten-dimensional space-time in the
superstring theory. Then, the couplings depend on the geometry of the compact space, that
is size and shape. Here, we assume that the couplings of quarks and leptons are written
by modular forms and transformed non-trivially under S3 and A4 modular transformations,
respectively. That is different from the models with flavons.

(Q1, Q2) Q3 (q1, q2) q3 Hu Hd

SU(2) 2 2 1 1 2 2
S3 2 1′ 2 1′ 1 1

−kI −2 0 −2 0 0 0

Table 1: The assignments of S3 representa-
tions and modular weights −kI to the MSSM
fields.

L e, µ, τ ν Hu Hd

SU(2) 2 1 1 2 2
A4 3 1, 1′′, 1′ 3 1 1
−kI −1 −1 −1 0 0

Table 2: The assignments of A4 representa-
tions and modular weights −kI to the MSSM
fields.

In these conditions, we are able to reproduce observed mass hierarchies and mixing angles of
both quarks and leptons without flavons [1,8,9]. Note that the lepton sector has been already
studied in [8] and also the quark sector was studied in [1]. The details are discussed in [9].

Let us consider mixing between quarks and leptons. In particular, it could cause the proton
decay that quarks change into leptons. It occurs in the following two cases. The first case is

• the terms violating both baryon and lepton numbers: QQQL , uude ,

contribute a proton decay. The second case is both

• the term violating baryon number: udd , QQQHd ,
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• the term violating lepton number including quarks: LQd , QueHd , d†ue , L†Qu ,

contribute the proton decay. The above terms are ones allowed in the minimal supersymmetric
standard model without R-parity under mass dimension five. In our model, the terms including
odd numbers of leptons are forbidden since the weights of the modular forms as well as quarks
are even. Therefore, the proton decay cannot occur at least at the tree level. Note that the
terms allowed in our model and violating R-parity under mass dimension five are just two terms
which violate only baryon number. However, the modular symmetry can be anomalous. Then
non-perturbative effects can break the modular symmetry. Thus, the study on anomalies are
important2.

To summarize, we have studied a flavor model that the quark sector has the S3 modular
symmetry, while the lepton sector has the A4 modular symmetry. The masses and mixing
angles of both quarks and leptons are reproduced. In addition, the proton decay is forbidden
at the perturbative level. However, non-perturbative effects can break such a situation.
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Abstract

We study a flavor model that has S3 and A4 modular symmetries for the quark mixing
and lepton mixing respectively. The quark sector of our model is consistent with exper-
imental data of quark masses, mixing angles and the CP violating phase. The lepton
sector is also consistent with the latest neutrino oscillation experiments. We also study
baryon and lepton number violations in our flavor model.

1 Introduction

• There are many interests in discrete flavor symmetries [1, 2] promoted by early works of
the quark masses and mixing angles [3, 4] in touch with the latest experiments of the
neutrino oscillation.

• The modular group can have S3, A4, S4 and A5 as its subgroups ΓN [5]. An attractive
ansatz was proposed by taking Γ3 ' A4 in Ref. [6] where the Yukawa couplings and both
the left-handed leptons and right-handed neutrinos are described as A4 triplets.

• We make an alternative ansatz. We assume two different flavor symmetries: the S3 and
A4 modular symmetries for the quark and lepton sectors respectively. They originate
from the modular groups defined in two different two-dimensional compact spaces. We
use the same lepton sector as given in Ref. [7].

2 Model

We construct a modular symmetric flavor model without introducing any gauge singlet scalar
such as the flavon. The modular invariant mass terms of the leptons are given as the following
superpotentials:

We = αeHd(LY
A4)1 + βµHd(LY

A4)1′ + γτHd(LY
A4)1” , (1)

WD = g(νHuLY
A4)1 , (2)

WN = Λ(ννY A4)1 , (3)

where sums of the modular weights vanish in each term. The parameters α, β, γ, g, and Λ
are constant coefficients. The functions Y A4(τ) = (Y A4

1 (τ), Y A4
2 (τ), Y A4

3 (τ))T is an A4 triplet
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modular form of weight 2 defined as

Y A4
1 (τ) =

i

2π

(
η′(τ/3)

η(τ/3)
+
η′((τ + 1)/3)

η((τ + 1)/3)
+
η′((τ + 2)/3)

η((τ + 2)/3)
− 27η′(3τ)

η(3τ)

)
,

Y A4
2 (τ) =

−i
π

(
η′(τ/3)

η(τ/3)
+ ω2η

′((τ + 1)/3)

η((τ + 1)/3)
+ ω

η′((τ + 2)/3)

η((τ + 2)/3)

)
,

Y A4
3 (τ) =

−i
π

(
η′(τ/3)

η(τ/3)
+ ω

η′((τ + 1)/3)

η((τ + 1)/3)
+ ω2η

′((τ + 2)/3)

η((τ + 2)/3)

)
,

(4)

where ω = e2πi/3 and η(τ) is the Dedekind’s eta function of the modulus τ . The superpotential
of Eq.(1) leads to the following charged leptons mass matrix:

ME = vd diag[α, β, γ]



Y1 Y3 Y2
Y2 Y1 Y3
Y3 Y2 Y1



RL

, (5)

where vd = 〈Hd〉 and we omit the superscript A4 of Y A4
i hereafter. The superpotentials of

Eqs.(2) and (3) gives the Dirac and Majorana neutrino mass matrices as:

MD = vu




2g1Y1 (−g1 + g2)Y3 (−g1 − g2)Y2
(−g1 − g2)Y3 2g1Y2 (−g1 + g2)Y1
(−g1 + g2)Y2 (−g1 − g2)Y1 2g1Y3



RL

, MN = Λ




2Y1 −Y3 −Y2
−Y3 2Y2 −Y1
−Y2 −Y1 2Y3



RR

.

(6)

where vu = 〈Hu〉. The effective neutrino mass matrix is obtained through the type I seesaw as
Mν = −MT

DM
−1
N MD. The charge assignment of the fields is summarized in Tables 1 and 2.

We can also construct the Dirac mass matrix of quarks in accordance with the charge
assignment of Table 2 as follows:

Mu,d =




cu,d + c′u,d(Y S3
1 (τ ′)2 − Y S3

2 (τ ′)2) 2c′u,dY S3
1 (τ ′)Y S3

2 (τ ′) cu,d13 Y
S3
2 (τ ′)

2c′u,dY S3
1 (τ ′)Y S3

2 (τ ′) cu,d − c′u,d(Y S3
1 (τ ′)2 − Y S3

2 (τ ′)2) −cu,d13 Y
S3
1 (τ ′)

cu,d31 Y
S3
2 (τ ′) −cu,d31 Y

S3
1 (τ ′) cu,d33


 ,

(7)
where Y S3

1 (τ ′) and Y S3
2 (τ ′) are S3 modular forms of weight 2 defined as

Y S3
1 (τ) =

i

4π

(
η′(τ/2)

η(τ/2)
+
η′((τ + 1)/2)

η((τ + 1)/2)
− 8η′(2τ)

η(2τ)

)
,

Y S3
2 (τ) =

√
3i

4π

(
η′(τ/2)

η(τ/2)
− η′((τ + 1)/2)

η((τ + 1)/2)

)
.

(8)

L e, µ, τ ν Hu Hd

SU(2) 2 1 1 2 2
A4 3 1, 1′′, 1′ 3 1 1
−kI −1 −1 −1 0 0

Table 1: Charge and modular weight in the
lepton sector.

(Q1, Q2) Q3 (q1, q2) q3

SU(2) 2 2 1 1
S3 2 1′ 2 1′

−kI −2 0 −2 0

Table 2: Charge and modular weight in the
quark sector.
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3 Result and summary

We show our numerical results only for the quark sector because the results of the lepton sector
are same as our previous work in ref. [7]. For the quark sector, we show our prediction in Figs.1
and 2. In Fig.1, we plot the predicted correlation of θ23 and θ13, where θ23 > 2◦ is not allowed.
In Fig.2, we plot the predicted δCP versus θ13, where δCP > 80◦ is excluded. The red lines in
these figures correspond to the bounds with 3σ range at the GUT scale [8, 9].

Figure 1: The prediction of θ13 and θ23. Figure 2: The prediction of δCP and θ13.
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Abstract

We discuss relations between the CP violating phase of the quarks and leptons. In
order to clarify the relations, we investigate CP violating observables in the standpoint
of “Occam’s Razor” approach. The CP violating observables of leptons are connected to
that of quarks through Pati-Salam and SU(5) models. We find that the successful leptonic
Jarlskog invariant are obtained in the case of the non-diagonal neutrino mass matrix.

1 Texture of down-type quark mass matrix

The flavor structure of quarks and leptons are still unknown although the standard model is
well established. In order to clarify the flavor structure of quarks, the framework of “Occam’s
Razor” approach was considered [1]. In the “Occam’s Razor” approach, the model contains
minimum number of free parameters to reproduce the observed six quark masses, three CKM
mixing angles and one Dirac CP phase. We embed three real parameters into the up-type quark
mass matrix. The remaining six real parameters and one phase are included in the down-type
quark mass matrix. For instance we consider the following quark mass matrices:

MU =



mu 0 0
0 mc 0
0 0 mt



LR

, M
(1)
D =




0 aD 0
a′D bDe

−iφ cD
0 c′D dD



LR

, (1)

where aD, a
′
D, bD, cD, c

′
D and dD are real parameters and φ is a CP violating phase. We deter-

mine the values of these model parameters by observed values of the quark masses and CKM
parameters at GUT scale [2]. For M

(1)
D , we obtain central values of the model parameters as,

aD = 5.3× 10−3, a′D = 3.6× 10−3, bD = 36× 10−3,

cD = 32× 10−3, c′D = 0.75, dD = 0.93, φ = 42◦, (2)

in GeV unit except φ. In our numerical discussions, we use these values as a benchmark.

2 CP violation in lepton sector

We discuss the flavor structure of the lepton sector especially for the CP violation in the two
GUT models, Pati–Salam model and SU(5) model. The charged lepton mass matrix is related to
the down-type quark mass matrix with Clebsch–Gordan (CG) coefficients. The CG coefficients

1E-mail address: yu-shimizu@hiroshima-u.ac.jp
2E-mail address: takagi-kenta@hiroshima-u.ac.jp
3E-mail address: s-takahashi@hiroshima-u.ac.jp
4E-mail address: tanimoto@muse.sc.niigata-u.ac.jp
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are necessary to reproduce relevant mass ratios of the down-type quarks and charged leptons.
The possible CG coefficients are given by renormalizable or non-renormalizable operators [3]:

Pati–Salam→ dim.4 : (1,−3) , dim.5 : (1,−3, 9) , dim.6 : (0,
3

4
, 1, 2,−3) , (3)

SU(5)→ dim.4 : (1,−3) , dim.5 : (−1

2
, 1,±3

2
,−3,

9

2
, 6, 9,−18) . (4)

Next we discuss the charged lepton mass matrix M
(1)
E corresponding to the down-type mass

matrix M
(1)
D . In the Pati–Salam and SU(5) model, it is given as,

Pati–Salam→M
(1)
E =




0 aE 0
a′E bE e−iφ cE
0 c′E dE



LR

, SU(5)→M
(1)
E =




0 a′E 0
aE bE e−iφ c′E
0 cE dE



LR

.

(5)

We assume that one single operator dominates each matrix element. Then the elements of the
charged lepton mass matrix are given in terms of the down-type quark mass matrix elements
and CG coefficients as,

aE = CaaD, a′E = Ca′a
′
D, bE = CbbD, cE = CccD, c′E = Cc′c

′
D, dE = CddD, (6)

where Ca, Ca′ , Cb, Cc, Cc′ and Cd are possible CG coefficients in Eq.(3) for the Pati–Salam model
or in Eq.(4) for the SU(5) model. The phase φ is common between the down-type quark mass
matrix and the charged lepton mass matrix. Thus the CP violating observable of leptons is
correlated with that of quarks.

Finally, the Jarlskog invariant for leptons J lCP can be computed from [4–7]

Tr([Hν , HE]3) = −6iJ lCP ∆ν ∆e , (7)

where HX = MXM
†
X with X = ν, E. The matrix Mν denotes neutrino mass matrix and

∆ν ≡ (m2
1 −m2

3)(m
2
1 −m2

2)(m
2
2 −m2

3) , ∆e ≡ (m2
e −m2

τ )(m
2
e −m2

µ)(m2
µ −m2

τ ) , (8)

where m1,m2 and m3 denote the neutrino masses. The present best fit value of J lCP in the
global analysis [8] is J lCP ' −2× 10−2 at EW scale.

We calculate J lCP as well as the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing angles
and Dirac CP phase δlCP in two cases for the neutrino mass matrix: (1) The neutrino mass
matrix is diagonal. (2) The neutrino mass matrix is non-diagonal which leads to tri-bimaximal
mixing [9,10]. In the case (2), no additional CP violating phases are introduced apart from the
Majorana phases. The numerical results of the PMNS mixing angles, the Jarlskog invariant
J lCP and Dirac CP phase δlCP are given in Tables.1 and 2. We also show the CG coefficients
used in our numerical analysis.

For the case (1) where the neutrino mass matrix is diagonal, the wrong prediction of the
PMNS mixing angles leads to the failure of the prediction for the magnitude of J lCP . As shown
in the Table.2 of [11], the relative sign among the Jarlskog invariant for quarks and leptons
do not depends on the texture of the down-type quark mass matrix in the case of Pati–Salam
model. On the other hand, the Jarlskog invariant of leptons vanishes for several textures in the
case of SU(5) model.

For the case (2) where the neutrino mass matrix is non-diagonal, the magnitude of the
leptonic Jarlskog invariant is consistent with the experimental expected value in order-of-
magnitude estimate. As shown in the Table.3 of [11], the J lCP and JqCP for all textures have
same sign as far as the sign of CG coefficients are positive in the case of Pati–Salam model.
Therefore one negative CG coefficient −3 should be taken at least.
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J lCP sin2 θl12 sin2 θl23 sin θl13 δlCP (Ca, Ca′ , Cb, Cc, Cc′ , Cd)
Pati–Salam −8.1× 10−5 0.021 0.012 0.015 −20.4◦ (2, 1,−3,−3, 1, 1)
SU(5) −2.5× 10−5 0.0022 0.39 0.038 −1.7◦ (1, 3

2
, 9
2
, 6, 1, 1)

Table 1: Predicted values in the case of diagonal neutrino mass matrix. We also show the CG
coefficients used in the numerical computations.

J lCP sin2 θl12 sin2 θl23 sin θl13 δlCP (Ca, Ca′ , Cb, Cc, Cc′ , Cd)
Pati–Salam −0.76× 10−2 0.38 0.47 0.06 −30◦ (2, 1,−3, 3

4
, 1, 1)

SU(5) −1.13× 10−2 0.28 0.85 0.153 −113◦ (1, 9
2
,±9

2
, 9
2
,−3

2
,−1

2
)

Table 2: Predicted values in the case of non-diagonal neutrino mass matrix which leads to
tri-bimaximal mixing. We also show the CG coefficients used in the numerical computations.

3 Conclusion

We investigate the correlations between CP violating observables of the quarks and leptons in
the Pati–Salam and SU(5) models with the standpoint of “Occam’s Razor” approach. In the
case where the neutrino mass matrix is diagonal, the wrong prediction of the PMNS mixing
angles leads to the failure of the prediction for the magnitude of J lCP . For the case where the
neutrino mass matrix leads to tri-bimaximal mixing, the magnitude of the leptonic Jarlskog
invariant is consistent with the experimental expected value in order-of-magnitude estimate.
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In the left-right symmetric model neutral gauge fields are characterized by three mixing angles
θ12, θ23, θ13 between three gauge fields Bµ,W

3
Lµ,W

3
Rµ, which produce mass eigenstates Aµ, Zµ, Z

′
µ.

The mass matrix can be diagonal if tan θ23 = −s12s13/c12 + O(δ), where s12 = sin θ12 etc. and
δ is an infinitesimally small parameter associated with the spontaneously broken left-right gauge
symmetry. By neglecting the δ term this is equivalent to c′2 + s′2 = 1,with c′ = c12/c23 = cos θ′ and
s′ = s12c13 = sinθ′. We find a new mixing angle θ′, which corresponds to the Weinberg angle θW in
the SU(2)L×U(1)Y gauge model, and any mixing angle is expressed in terms of θ′ and ε = gL/gR a
ratio of left-right gauge coupling constants. Our general observation is that the light gauge bosons
W and Z are described by θ′ only, whereas heavy gauge bosons W ′ and Z′ are described by two
parameters θ′ and ε. Finally we discuss the Higgs mass formulas in this model.

PACS numbers:

I. A NEW MIXING ANGLE

Let us first summarize the LRSM proposed by Mohapatra-Senjanovic[1, 2], which is invariant
under the gauge group G = SU(2)L × SU(2)×U(1)(B−L). We introduce three kinds of Higgs fields
with representations as

φ =

(
φ01 φ+1
φ−2 φ02

)
, φ̃ =

(
φ̄02 −φ+2
−φ−1 φ̄01

)
, (1.1)

∆L =

(
δ+L /
√

2 δ++
L

δ0L −δ+L /
√

2

)
, ∆R =

(
δ+R/
√

2 δ++
R

δ0R −δ+R/
√

2

)
.

The Lagrangian is given by L = LF + LY + LB

LF = iψ̄jLγ
µ
(
∂µ − i

1

2
g1YFBµ − igLWL

µ

)
ψjL (1.2)

+ iψ̄jRγ
µ
(
∂µ − i

1

2
g1YFBµ − igRWR

µ

)
ψjR , WL,R

µ ≡ 1

2
ταW

α
µ,L,R ,

LY = −ψ̄iL
(
fijφ+ f̃ij φ̃

)
ψjR + H. c. (1.3)

− iψTiL ChLijτ2∆Lψ
j
L + H. c.

− iψTiR ChRijτ2∆Rψ
j
R + H. c. ,
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40



LB = tr|Dµ∆L|2 + tr|Dµ∆R|2 + tr|Dµφ|2 (1.4)

+ Yang-Mills terms of Bµ,W
L
µ ,W

R
µ

− V (Higgs potential of φ,∆L,∆R) ,

The spontaneously broken gauge symmetry of G is realized by non-zero vacuum expectation values
of Higgs fields

〈 φ 〉 =
1√
2

(
κ1 0
0 κ2

)
, 〈 ∆L,R 〉 =

1√
2

(
0 0

VL,R 0

)
, (1.5)

with assumptions
∣∣VL
∣∣ <<

∣∣κ1,2
∣∣ <<

∣∣VR
∣∣. Let us introduce new variables (Aµ, Zµ, Z

′
µ), which

are mass eigenstates of three gauge fields (Bµ,W
3
Lµ,W

3
Rµ)




B
W 3
L

W 3
R


 = T




A
Z
Z ′


 , (1.6)

where T is a 3× 3 unitary matrix with three mixing angles

T =



c12c13 −s12c23 − c12s23s13 s12s23 − c12c23s13
s12c13 c12c23 − s12s23s13 −c12s23 − s12c23s13
s13 s23c13 c23c13


 , (1.7)

where cij = cos θij , sij = sin θij , In order that A should be the electric field, we have constraints to
the electric charge e0

g1T11 = g1c12c13 = e0 , (1.8)

gLT21 = gLs12c13 = e0 ,

gRT31 = gRs13 = e0 ,

Gauge boson mass matrices are given by the trace parts in (1.4). We find the condition that the
mass matrix of neutral gauge bosons be diagonal is tan θ23 = −s12s13/c12 +O(δ), δ = (κ21 +κ22)/V 2

R.
By neglecting the δ term this is equivalent to

c′2 + s′2 = 1 ,with c′ =
c12
c23

= cos θ′ , s′ = s12c13 = sin θ′ . (1.9)

where by θ′ we define a new mixing angle.

II. CONCLUDING REMARKS

We see that the light gauge bosons W and Z are described by the angle θ′ only as below

MW =
37.3

s′
GeV ,

MZ

MW
=

1

c′
, (2.1)

gνZ = − e0
2c′s′

,

g(pZ)L =
e0(c′2 − s′2)

2s′c′
, g(pZ)R = −e0s

′

c′
,
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together with

gL =
e0

s12c13
=
e0
s′

= g =
e0

sin θW
=

e0
0.48

= 0.63 ,

g′ ≡ g1c13c23 =
e0
c12

c23 =
e0
c′

= 0.34 , (2.2)

where θ′, g and g′ are regarded as the Weinberg angle θW and gauge coupling constants in the
SU(2)L × U(1)Y gauge theory. As for the heavy gauge bosons W ′ and Z ′, they are described by
two parameters θ′ and ε = gL/gR.

Any mixing angles are expressed in terms of θ′ and ε

θ′ = θW ,

θ12 = sin−1
( sin θW√

1− ε2 sin2 θW

)
, (2.3)

θ13 = sin−1
(
ε sin θW

)
,

θ23 = cos−1

√
1− ε2 tan2 θW

1− ε2 sin2 θW

and

M2
W ′

M2
Z′

=
1

2

(
1− ε2 tan2 θ′

)
. (2.4)

Note that we have 4 constraints (1.8) and (1.9) among 6 parameters g1, gL, gR, θ12, θ13, θ23, hence
leaving two independent quantities θ′ and ε.

Finally we have Higgs mass formulas

mφ = 2bκ2 = (125GeV ) , mL =
√
ρ′ − ρVR ,

mR = 2ρVR ,
mL

mR
=

√
ρ′ − ρ

2ρ
, (2.5)

from the Mohapatra-Senjanovic potential

V0 = −µ2(V 2
L + V 2

R) +
ρ

4
(V 4
L + V 4

R) +
ρ′

2
V 2
LV

2
R

+
α

2
(V 4
L + V 4

R)κ2 + βVLVRκ
2 + f(κ) , (2.6)

where VLVR = βκ2/(ρ− ρ′) with VL << VR, and f(κ) = −ak2 + bκ4/4.
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