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Abstract
We give a mathematical definition of irregular conformal blocks in the genus-zero
WZNW model for any simple Lie algebra, using coinvariants of modules for affine
Lie algebras whose parameters match up with those of moduli spaces of irregular
meromorphic connections: the open de Rham spaces. The Segal–Sugawara represen-
tation of the Virasoro algebra is used to show that the spaces of irregular conformal
blocks assemble into a flat vector bundle over the space of isomonodromy times à la
Klarès, and we provide a universal version of the resulting flat connection generalis-
ing the irregular KZ connection of Reshetikhin and the dynamical KZ connection of
Felder–Markov–Tarasov–Varchenko.

Keywords Affine Lie algebras · Conformal field theory · Irregular meromorphic
connections · Integrable quantum systems · Isomonodromic deformations

Mathematics Subject Classification 81T40 · 17B38 · 17B10

Contents

1 Introduction and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Layout of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1 Singular modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Algebricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Relation with (irregular) meromorphic connections . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Bases, gradings and filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B Gabriele Rembado
gabriele.rembado@hcm.uni-bonn.de

Giovanni Felder
giovanni.felder@math.ethz.ch

1 Department of Mathematics, ETH Zurich, Rämistrasse 101, 8092 Zurich, Switzerland

2 Hausdorff Centre for Mathematics (HCM), Endenicher Allee 60, 53115 Bonn, Germany

0123456789().: V,-vol 

http://crossmark.crossref.org/dialog/?doi=10.1007/s00029-022-00821-y&domain=pdf


   15 Page 2 of 55 G. Felder, G. Rembado

5.1 PBW-bases of singular modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Gradings for z-degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4 Weight gradings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4.1 Archetypal case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Dual modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1 Dual weight grading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 Segal–Sugawara operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1 Cyclic vector as Sugawara eigenvector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Action on finite modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 Irregular conformal blocks: first version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.1 Tame isomonodromy times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2 Action of meromorphic functions: punctual version . . . . . . . . . . . . . . . . . . . . . . .
8.3 Action of meromorphic functions: global version . . . . . . . . . . . . . . . . . . . . . . . . .
8.4 Irregular isomonodromy times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 Conformal blocks in terms of finite modules: first version . . . . . . . . . . . . . . . . . . . . . . .
9.1 Auxiliary tame module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.1.1 Archetypal case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 Irregular conformal blocks: second version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.1 On coinvariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11 Flat connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.1 Compatibility with the action of meromorphic functions . . . . . . . . . . . . . . . . . . . . .
11.2 Description on finite modules: first version . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.2.1Tame case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2.2Tame modules in the finite part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2.3Tame module at infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2.4General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.3 Description on finite modules: second version . . . . . . . . . . . . . . . . . . . . . . . . . .
12 Universal connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.1 Flatness at finite distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2 Flatness overall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.3 Connection on coinvariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 On conformal transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14 A different dynamical term at infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix A. Standard notions/notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix B. Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction andmain results

In this paper we pursue the viewpoint that a natural mathematical formulation of con-
formal field theory (CFT) lies within the geometry of moduli spaces of meromorphic
connections, and we take a step in this direction.

The prototype are the Knizhnik–Zamolodchikov equations (KZ) [38], in the genus-
zeroWess–Zumino–Novikov–Wittenmodel (WZNW) for 2-dimensional CFT [43, 54,
55]. They were originally introduced as the partial differential equations satisfied by
n-point correlators, and mathematically they amount to a flat connection on a vector
bundle over the space of configurations ofn-tuples of points in the complex plane [20].

The construction of the flat connection relies on representation-theoretic construc-
tions for affine Lie algebras, and on the Segal–Sugawara representation of the Virasoro
algebra on affine-Lie-algebra modules [39]. An alternative derivation is possible
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via deformation quantisation of the Hamiltonian system controlling isomonodromic
deformations of Fuchsian systems on the Riemann sphere [30, 46], the Schlesinger
system [48]. In particular the vector bundle where the KZ connection is defined comes
from the quantisation ofmoduli spaces ofmeromorphic connections with tame/regular
singularities (simple poles).

In this paper we develop a representation-theoretic setup for any simple finite-
dimensional complex Lie algebra g, in order to go beyond the case of regular
singularities and allow for irregular/wild ones.Wewill thus define a family of modules
for g and for the affine Lie algebra ĝ associated with g, which we call “singular” mod-
ules.1 Their parameters match up with those of symplectic moduli spaces of (possibly
irregular) meromorphic connections on the sphere, generalising Verma modules.

Indeed the regular case will correspond to “tame” modules Vλ ⊆ ̂Vλ, which are
standard Verma modules for g ⊆ ĝ, whose defining representations depend on char-
acters b+ → C and ̂b+ → C for Borel subalgebras b+ ⊆ ̂b+—corresponding to
positive roots within the root system given by a Cartan subalgebra h ⊆ b+. Such char-
acters are encoded by linear maps λ ∈ h∨, which in turn match up with local normal
forms for (germs of) meromorphic connections around a simple pole via the natural
residue-pairing Lgdz⊗Lg → C, where Lg = g⊗C((z)) is the (formal) loop algebra
of g. Moreover, if G is the connected simply-connected Lie group integrating g, then
the G-action on the coadjoint G-orbit O ⊆ g∨ of the character corresponds to the
gauge action on meromorphic connections on a trivial principal G-bundle. Repeating
this construction at n � 1 marked points on the sphere provides a finite-dimensional
description of the moduli space of isomorphism classes of logarithmic connections
with prescribed positions of the poles and residue orbits, defined on holomorphically
trivial bundles: this is the open partM∗

dR ⊆ MdR of the de Rham space, that enters into
the nonabelian Hodge correspondence on (complex) curves. The full de Rham space
MdR is obtained by removing the requirement that the bundle be holomorphically
trivial, rather just topologically trivial [8, Rem. 2.1].

Hence classically there is a complex symplectic reduction of a product of coadjoint
G-orbits Oi ⊆ g∨, the moduli space

M∗
dR =

(∏

i

Oi

)

�0 G , (1)

whose quantum counterpart is the vector space H = Hg of g-coinvariants of the
tensor product H =

⊗

i Vλi
of tame modules: the space of WZNW covacua. If the

level is integral, which we do not assume here, one would replace Verma modules by
integrable ones; then dualising yields the space of vacua, i.e. the space of WZWN
conformal blocks.

Now one very important feature are the deformations, both in the semiclassical and
quantum setting. Namely as the positions of the simple poles vary the moduli spaces

1 “Singularity modules” is also a fitting name, since they are attached to the singularity of a connection—at
a point on Riemann surface.
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assemble into a symplectic fibre bundle

˜M∗
dR −→Confn(C) ,

over the space Confn(C) ⊆ C
n of (ordered) configurations of points on the complex

affine line, equipped with a flat symplectic Ehresmann connection: it is the isomon-
odromy connection [31], defined here by the integrable (nonautonomous) Schlesinger
system [48]. The leaves of this (nonlinear) connection are isomonodromic families of
(linear) meromorphic connections, i.e. the monodromy data are kept locally constant.2

Hence classically we find a flat symplectic fibre bundle.
On the quantum side one thus looks for a (linear) flat connection on the confor-

mal block bundle, to yield identifications of different fibres up to the braiding of
the marked points, analogously to the symplectomorphisms defined by the nonlinear
isomonodromy connection. This natural flat connection is precisely the KZ connec-
tion, which is intrinsically defined via the slot-wise action of the Sugawara operator
L−1 ∈ Vir on the tensor product ̂H =

⊗

i
̂Vλi

of tame modules for the affine Lie
algebra, whereVir is theVirasoro algebra. The action is compatiblewith that of the Lie
algebra of g-valued meromorphic functions on the punctured sphere, hence induces a
well defined connection on the bundle of coinvariants.

This is the picture that we wish to generalise on the side of the representation the-
ory of affine Lie algebras. Namely to define generalisations of Verma modules we
look at the symplectic geometry of moduli spaces of irregular meromorphic con-
nections, which has been studied in much greater generality: for arbitrary genus,
complex reductive structure group, polar divisor, and for any nongeneric/twisted irreg-
ular types [8–10, 13, 16]. Intrinsic definitions allow for the construction of symplectic
local systems of wild character varieties generalising the above, also entering the wild
nonabelian Hodge correspondence on (complex) curves [5]. We concern ourselves
here with the case of genus zero, of a simple group, and untwisted irregular types;
cf. [7, 14] for terminology and motivation.

Hence the open de Rham spaces M∗
dR are still defined. Importantly one now con-

siders isomorphism classes of connections with higher-order poles, which have local
moduli at each pole parametrising the principal parts—beyond the residue term. This
may be formalised in terms of “deeper” coadjoint orbits of the dual Lie algebra g∨

p,
where

gp = g�z�
/

zpg�z� �
p−1
⊕

i=0

g ⊗ zi ,

which is a Lie algebra of truncated g-currents, holomorphic at z = 0. Indeed the
residue-pairing matches gp up with a space of meromorphic g-valued 1-forms, which

2 These data are the G-conjugacy class of the monodromy representation of the fundamental group of
the punctured sphere, with the poles removed. Indeed the isomonodromy connection is the pullback of the
(nonabelian) Gauß–Manin connection on the associated family of character varieties along the Riemann–
Hilbert correspondence, viz. the map taking monodromy data (which can thought as a “global” version of
the exponential g → G, cf. the abstract of [14]).
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we see as principal parts of (germs of) meromorphic connections on a trivial principal
G-bundle at a wild singularity. The upshot is that one still has the description (1): now
however one considers coadjoint Gp-orbit Oi ⊆ g∨

p, where

Gp = G
(

C�z�
/

zp
C�z�

)

.

This is the group of (p − 1)-jets of bundle automorphisms of the trivial principal
G-bundle on a (formal) disc, integrating gp. The diagonal G-action corresponds to a
change of global trivialisation of the bundle, as in the tame case, cf. the proof of [8,
Proposition 2.1].

Hence we will define modules W
(p)
χ ⊆ ̂W

(p)
χ (at depth p � 1) for gp and ĝ

respectively, whose defining representations depend on elements of h∨
p ⊆ g∨

p. In
turn the latter correspond to characters for Lie subalgebras generalising the positive
(affine) Borels, so that for p = 1 they reduce to the usual tame modules (else they are
“wild/irregular”). This is done in Def. 3.1, which is a variations of similar definitions
considered elsewhere, and which is the best suited to our viewpoint on the moduli
spaces (1). For example (10) has a more general scope than the “confluent Verma
modules” of [34, 42], since we allow for an arbitrary simple Lie algebra and for
arbitrary irregular singularities (of arbitrary Poincaré rank)—and we do not use the
viewpoint of confluence. Also we do not work in Liouville theory, i.e. we do not
consider modules for the Virasoro algebra as in [41]. The approach in this paper is
closer to the “level subalgebra” of [21] (cf. also Sect. 14), or rather to one of its “more
reasonable” variants (see Rem. 4 of op. cit.). The other variant is used in [22, § 2.8]:
in this setup the natural pairing (15) matches the parameter of the modules with half
of principal parts of irregular meromorphic connections, contrary to (10).3 The other
two important differences with [22] is that we work at noncritical level, and that our
gp-modules are highest-weight, leading to finite-dimensional spaces of coinvariants.

The singular modules enjoy several natural generalisations of the standard proper-
ties of tame modules, some of which we gather here. We will refer to “affine” modules
when ĝ is involved, and to “finite” modules when gp is.

Theorem 1 • The singular modules admit explicit PBW-generators (Cor. 5.1 and
Cor. 5.2).

• The singular modules are smooth (Lem. 5.2).4

• The singular modules are h-semisimple (Proposition 5.1), and the finite singular
modules have finite-dimensional h-weight spaces (Proposition 5.2).

• The finite singular modules are highest-weight gp-modules (Lem. 5.4).
• The singular modules are cyclically generated by a common eigenvector for the
Sugawara operators { Ln }n�p−1 (Proposition 7.1), which is a Gaiotto–Teschner
irregular state of order p − 1 [28].

3 The viewpoint of op. cit. on meromorphic connections is different: at critical level κ = −h∨ one
identifies quotients of the “universal Gaudin algebra” with algebras of functions on spaces of opers with
prescribed singularities for theLanglands dual groupLG ofG, with a view towards the geometric Langlands
correspondence for loop groups [25].
4 Recall a g�z�-module is smooth if every vector is annihilated by zNg�z� ⊆ g�z� for N � 0.
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We also give a formula for the (finite) dimension of h-weight spaces of finite
modules, generalising the usual Weyl characters of Verma modules, in (27). The com-
binatorial complexity still lies in the positive root lattice, so in the archetypal case of
g = sl(2,C) there is a simple solution (see (29)).

After establishing these properties we consider tensor products of singular modules
labeled bymarked points on the Riemann sphere, and study their spaceH of coinvari-
ants for the action of g-valued meromorphic functions with poles at the marked points.
Introducing generalisations of the standard filtrations/gradings of tame modules we
prove the following.

Theorem 2 • The spaceH is canonically identifiedwith the space of g-coinvariants
for the tensor product of finite modules (Props. 9.1, 9.2 and 10.1).

• The space H is finite-dimensional if one module is tame (Cor. 9.1).

To ensure nontriviality of the space of coinvariants we explore two options: either
replacing one of the modules at the marked points with its associated contragredient
representation (see Proposition 10.2), or restricting the action of rational function to
the subalgebra of those which vanish at an unmarked point (see Rem. 9.1).

Finally we consider deformations of the marked points, i.e. variations of the tame
isomonodromy times. This is not the full set of isomonodromy times, as in the most
general setup one may also vary the irregular types/classes and give nonlinear differ-
ential equations for the invariance of Stokes data along these deformation. This goes
beyond the isomonodromy times of [37], but also going the “generic” case of [33].
We briefly discuss one natural setup to introduce a space of irregular isomonodromy
times in § 6.4, and we plan to pursue its quantum version in future work, which should
be more closely related to to [21, 22] (cf. the outlook section below).5

Thus we allow for variations of marked points at finite distance on the sphere.
Then we use the Sugawara operators to define a flat connection on the trivial vector
bundle whose fibre is the tensor product of affine singular modules, and show this
is compatible with the action of rational functions on the punctured sphere. Hence
the spaces of coinvariants assemble into a flat vector bundle over the space of tame
isomonodromy times, so in particular their dimension is a deformation-invariant—
when finite.

Using the above results it is possible to give descriptions of the flat connections on
the space H of coinvariants. Considering all possible cases of our setup we recover
as expected:

(1) The KZ connection [38] (Sect. 9.2.1);
(2) A variation of the Cartan term of the dynamical KZ connection [23] (Sect. 9.2.2),

and the very same Cartan term with a slightly different setup (Sect. 14);
(3) The general case of [46] (Sect. 9.2.3), which generalises the KZ connection;
(4) A generalisation of op. cit. with nontrivial action on themodule at infinity (§ 9.2.4).

In particular the semiclassical limit of the flat connections indeed yields isomon-
odromy systems for irregular meromorphic connections on the sphere, as wanted.

5 A recent series of papers gave an intrinsic description of irregular isomonodromy times: in full generality
in the untwisted case [18, 19], and in the type-A twisted case [15].
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Note the last two items in principle descend from a more general setup, where the
point at infinity is not fixed, provided one can show how horizontal sections transform
under the pull-back diagonal PSL(2,C)-action. Going in this direction, in Sect. 13 we
prove that horizontal sections of the bundle of coinvariants are naturally equivariant
under the action of the subgroup of affine transformations of the affine line, with the
explicit transformation (67).

Finally we abstract the formulæ for the reduced connections and define a family
of universal ones: these are connections ∇p on the trivial vector bundle with fibre
U(gp)

⊗n for p � 1, over the space of tame isomonodromy times, which induce the
above connections on H by taking representations.6 Since all induced connections
are flat and well defined on g-coinvariants, it is natural to conjecture that the same
holds for the universal connections before taking representations.

Theorem 3 (Thms. 12.1 and 12.2, and Proposition 12.1) The connection ∇p is flat,
and descends to a connection on g-coinvariants of the tensor power U(gp)

⊗n.

These results show the singular modules provide a solid mathematical notion of
irregular conformal blocks in the genus-zero WNZW model [28, 56].

Recall irregular conformal blocks are central objects in the recent literature on
the asymptotically-free extension of the Alday–Gaiotto–Tachikawa correspondence
(AGT) [1, 26], which however is formulated in Virasoro/Liouville theory. Irregular
extensions in Liouville theory have been obtained within the formalism of Whittaker
modules, e.g. [24, 41]; in principle it should be possible to relate the latter with our
construction for g = sl(2,C), in view of the duality between Liouville theory and the
H+

3 -WZNWmodel [47] (then in turn our construction should generalise [27] beyond
sl(2,C), which is compatible with the duality [47]).

2 Layout of the paper

In Sect. 3 we consider a depth p � 1 to introduce singular Lie algebras S(p) ⊆ ĝ,

singular characters χ : S(p) → C, and affine/finite induced singular modulesW
(p)
χ ⊆

̂Wχ.
In Sect. 4 we explicitly match up the data (p,χ) with the local moduli for the

isomorphism class of (the germ of) an irregular meromorphic connection.
In Sect. 5 we introduce countable PBW-bases BW ⊆ W of the finite singular

modules, as well as gradings and filtrations on the finite and affine singular mod-
ules: notably gradings F+• and ̂F±• for the degree in the variable “z”, their associated
filtrations, and then h-weight gradings.

In Sect. 6 we introduce left-module structures on (graded/restricted) dual vector
spaces ̂W∗ � W∗.

In Sect. 7 we introduce the Sugawara operators Ln for n ∈ Z, and prove that the
cyclic vector w ∈ W ⊆ ̂W is a common eigenvector for Ln with n � p − 1. This
concludes proving the properties of Thm. 1.

6 Note the connection of [46] is given in universal terms: gp-modules and (co)invariants are not discussed,
nor are the irregular types of irregular meromorphic connections.
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In Sect. 8 we define the spaces of irregular covacuaH . They are quotients of tensor
products H ⊆ ̂H of finite/affine singular modules labeled by marked points on the
Riemann sphere with respect to the action of g-valuedmeromorphic functions (and we
globalise the action introducing suitable sheaves over the space of tame isomonodromy
times).

In Sects. 9 and 10we study coinvariants, andwe prove Theorem 2 using thematerial
of Sects. 5 and 6.

In Sect. 11 we introduce the flat connection on the bundle of coinvariants, using
the Sugawara operator L−1 and fixing the point at infinity. In § 9.2 we give explicit
formulæ for the reduced connection.

In Sect. 12 we introduce the universal connection ∇p at depth p � 1, on the trivial
vector bundle with fibre U(gp)

⊗n over the (restricted) space of tame isomonodromy
times, and we prove Theorem 3.

In Sect. 13we introduce the action ofMöbius transformations on horizontal sections
of the bundle of coinvariants, and establish equivariance under affine transformations.

Finaly in Sect. 14we slightlymodify the setup of Sect. 3 to generalise the dynamical
KZ connection, i.e. [23, Eq. 3].

Some standard notion is recalled in the appendix A, while some lengthy computa-
tions are gathered in B.

Affine spaces, vector spaces, vector bundles, associative/Lie algebras and tensor
products are defined over C—unless otherwise specified.

The end of a remark is signaled by a “�”.

3 Setup

Let g be a finite-dimensional simple Lie algebra, and h ⊆ g a Cartan subalgebra.
Let then R+ ⊆ R ⊆ h∨ be a choice of positive roots within the root system R =
R

(

g, h
)

, and R− :=−R+ the subset of negative roots. There is a triangular/Cartan
decomposition

g = n− ⊕ h ⊕ n+ ,

where n± is the maximal positive/negative nilpotent subalgebra defined by the subset
of positive/negative roots:

n± :=
⊕

α∈R±
gα , gα :=

{
X ∈ g

∣

∣

(

adH −α(H)
)

X = 0 for H ∈ h
}
.

Equip g with the minimal nondegenerate adg-invariant symmetric bilinear form
(· | ·) : g ⊗ g → C—so the highest root has length

√
2. Consider then the (formal)

loop algebra

Lg = g((z)) :=g ⊗ C((z)) ,
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and let ĝ(·|·) = ĝ � Lg⊕ CK be the associated affine Lie algebra. The Lie bracket of
ĝ is defined by K ∈ Z(ĝ) and

[

X ⊗ f,Y ⊗ g
]

ĝ
=

[

X, Y
]

g
⊗ fg + c(X ⊗ f, Y ⊗ g)K , for f,g ∈ C((z)), X,Y ∈ g ,(2)

where c : Lg ∧ Lg → C is the Lie-algebra cocycle defined by

c(X ⊗ f, Y ⊗ g) :=(X | Y) · Resz=0(gdf) , (3)

and where in turn Resz=0
(

ω
)

:= f−1 for ω =
∑

i fizidz ∈ C((z))dz.

Then there is an analogous decomposition ĝ = n̂− ⊕ ̂h ⊕ n̂+, where

n̂+ :=(n+ ⊗ 1) ⊕ zg�z� , n̂− := z−1g
[

z−1] ⊕ (n− ⊗ 1) , ̂h :=(h ⊗ 1) ⊕ CK .

Finally let b± :=h⊕n± be the positive/negative Borel subalgebras associated with
the sets of positive/negative roots, and ̂b± :=(b± ⊗ 1) ⊕ zg�z� ⊕ CK.

Hereafter we drop the “⊗1” from the notation for vector subspaces of the constant
part g ⊆ Lg, and the subscripts from the Lie brackets.

Remark The dual Coxeter number h∨ of the quadratic Lie algebra
(

g, (· | ·)) is half
of the eigenvalue for the adjoint action of the standard quadratic tensor on g [35].

More precisely let (Xk)k be a basis of g, (Xk)k the (· | ·)-dual basis, and define

Ω :=
∑

k

Xk ⊗ Xk ∈ g⊗2 ,

i.e. intrinsically the element corresponding to Idg ∈ g ⊗ g∨ in the duality g∨ � g
induced by (· | ·). The projection of Ω to the universal enveloping algebra is the
quadratic Casimir

C =
∑

K

XkXk ∈ U(g) , (4)

which is a central element—by the invariance of (· | ·). The adjoint action of C on g
is thus a homothety, and we define h∨ by

adC X =
∑

k

[

Xk, [X
k,X]

]

= 2h∨X , for X ∈ g .

We will also need a generalisation of the standard quadratic tensorΩ. Form, l ∈ Z

define

Ωml :=
∑

k

Xkzm ⊗ Xkzl ∈ Lg⊗2 , (5)
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with the shorthand notation Xzi = X ⊗ zi for X ∈ g and i ∈ Z. Then the identity
[C,X] =

∑
k

[

XkXk,X
]

= 0, valid for all X ∈ g, also implies

∑

k

Xkzm · [

Xk,X
]

zl +
[

Xk,X
]

zm · Xkzl = 0 , for m, l ∈ Z�0 . (6)

�

3.1 Singular modules

For an integer p � 1 consider the singular Lie subalgebra S(p) ⊆ ̂b+ (of depth p),
defined by

S(p) :=b+�z� + zpg�z� ⊕ CK , (7)

so that S(1) = ̂b+.

Lemma 3.1 There is an identification of abelian Lie algebras

S
(p)
ab � hp ⊕ CK . (8)

Proof We can define a linear surjection π : S(p) � hp ⊕ CK with kernel

[

S(p),S(p)
]

= n+�z� + zpg�z� , (9)

by setting

p−1∑

i=0

(Hi + Xi) ⊗ zi + zpf + aK �−→
p−1∑

i=0

Hi ⊗ zi + aK ,

where f ∈ g�z�, a ∈ C, Hi ∈ h, and Xi ∈ n+ for i ∈ { 0, . . .,p − 1 }. �


Characters of (7) are coded by linear mapsS(p)
ab → C, i.e. by elements of h∨

p plus
the choice of a level κ ∈ C for the central element—using (8). We split the notation:
for p = 1 write λ ∈ h∨ the linear map, and for p � 2 write it (λ,q) ∈ h∨

p, where

q = (a1, . . .,ap−1) ∈ (

hp

/

h
)∨ �

p−1
⊕

i=1

(

h ⊗ zi
)∨ .

We will refer to χ = χ(λ,q, κ) : S(p) → C as a singular character (of depth p),
and we denote Cχ the 1-dimensional left U

(

S(p)
)

-module defined by it. We also
refer to λ as the tame part of the singular character, and to q as the wild part.
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Remark This hints to the dictionary with irregular meromorphic connections on the
Riemann sphere: λ corresponds to a semisimple formal residue at a simple pole (a
tame/regular singularity), and q to an untwisted irregular type at a higher-order pole
(a wild/irregular singularity), see Sect. 4.

We will use the uniform notation λ = a0 when this distinction is not relevant. �
Definition 3.1 (Affine singular modules)

• The affine singular module (of depth p) for the singular character χ is

̂W = ̂W
(p)
χ := Ind

U
(

ĝ
)

U
(

S(p)
) Cχ = U

(

ĝ
) ⊗

U
(

S(p)
) Cχ . (10)

• We write ̂V = ̂Vχ := ̂W
(1)
χ , and call it the tame affine module for the character

χ = χ(λ,κ) : ̂b+ → C.

The latter item is the standard definition of an affineVermamodule, and bydefinition
these are level-κ modules.7

Now denote w = [1 ⊗ 1] ∈ ̂W the canonical cyclic vector; then using (8) and (9)
yields

zpg�z�w = (0) = n+�z�w ,

Hziw = 〈ai,Hzi〉w , for H ∈ h, i ∈ { 0, . . .,p − 1 } ,
(11)

plus Kw = κw. This generalises the relations satisfied by the highest-weight vector
in a tame module.

Consider now the subspace

̂W− :=U
(

g
[

z−1])w ⊆ ̂W .

Because of (11) it equals ̂W− = U
(

n̂−
)

w, so it is naturally a leftU
(

n̂−
)

-module with
cyclic vector w—and it is canonically isomorphic to U

(

n̂−
)

as vector space. Further

matching up cyclic vectors yields an isomorphism ̂W− � ̂V of left U
(

g
[

z−1
])

-

modules, regardless of p � 1 and q ∈ (

hp

/

h
)∨. Note we implicitly use a C-basis

of U
(

ĝ
)

as provided by the Poincaré–Birkhoff–Witt theorem (PBW) for countable-
dimensional Lie algebras.

Consider then the subspace

W :=U
(

g�z�
)

w ⊆ ̂W , (12)

which is naturally a left U
(

g�z�
)

-module, and which will play a more important
role. An inductive proof on the length of monomials—with base (11)—shows that
zpg�z�W = (0), so the g�z�-action factorises through the finite-dimensional quotient

7 Beware a “regular” Verma modules is a Verma module defined by a dominant weight λ ∈ h, so “tame”
is better terminology here.
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g�z� � gp, so (12) is naturally a left U(gp)-module. Further W = U
(

n−p
)

w since
b+p w = Cw, so in particular W � U(n−p ) as vector spaces, independently of χ.

Remark Here we use the triangular decomposition gp = n−p ⊕ hp ⊕ n+p and the
inclusion b+p = n+p ⊕ hp ⊆ gp. �

One has n+p =
[

b+p , b+p
]

and
(

b+p
)

ab � hp, so by (11) there is a canonical identi-
fication

W � Ind
U(gp)

U(b+p )
Cχ = U(gp) ⊗U(b+p ) Cχ , (13)

where we keep the notation χ : b+p → C for the character defined by (λ,q) ∈ h∨
p—the

level κ is lost.

Definition 3.2 (Finite singular modules)

• We call W = W
(p)
χ ⊆ ̂W the finite singular module (of depth p) for the singular

character χ.
• We write V = Vχ = W

(1)
χ , and call it the tame finite singular module for the

character χ = χ(λ) : b+ → C.

The latter item is the standard definition of a finite Verma module. Analogously
to the above, the finite tame module is canonically embedded as a U(g)-submodule,
namely as the subspace ̂W− ∩ W = U(g)w ⊆ W.

On the whole there is an identification of left U
(

n̂−
)

-modules

̂W � U
(

n̂−
) ⊗U(n−) U(n−p ) , (14)

independent of χ.

3.2 Algebricity

The structure of ̂W as left-module is controlled by algebraic elements, not by arbitrary
formal power series.

More precisely define

Lgalg = g
[

z±1] :=g ⊗ C
[

z±1] ,

and then ĝalg � Lgalg using the restriction of the cocycle (3). These are the algebraic
loop algebra and thealgebraic affineLie algebra ofg, respectively.Replacing “g�z�”by
“g[z]” in (10) then yields left U

(

ĝalg
)

-modules, temporarily denoted ̂Walg, generated

by a cyclic vector walg ∈ ̂Walg.

On the other hand the modules ̂W are left U
(

ĝalg
)

-modules via the inclusion
U

(

ĝalg
)

↪→ U
(

ĝ
)

, and composing with the canonical projection

U
(

ĝ
)

� ̂W � U
(

ĝ
)/

Ann
U

(

ĝ
)(w)
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yields a linear map ι : U
(

ĝalg
) → ̂W.

Lemma 3.2 The map ι induces an isomorphism ̂Walg � ̂W of left U
(

ĝalg
)

-modules.

Proof By (11) the map ι is surjective, since ̂W is generated by the cyclic vector over
U

(

Lgalg
)

. Its kernel is

Ker(ι) = Ann
U

(

ĝ
)(w) ∩ U

(

ĝalg
)

= Ann
U

(

ĝalg
)(walg) .

�


Hence the action of meromorphic g-valued functions on the singular modules is
given by Laurent polynomials only.Wewill drop the subscript “alg” from all notations.

4 Relation with (irregular) meromorphic connections

There are canonical vector space isomorphisms
(

g ⊗ zi
)∨ � g ⊗ z−(i+1)dz, for

i ∈ Z. They are induced from the nondegenerate LG-invariant residue-pairing

Lgdz × Lg −→ C, (X ⊗ ω, Y ⊗ g) �−→ (X | Y) · Resz=0(gω) , (15)

where Lgdz :=g ⊗ C((z))dz, G is a connected simply-connected (simple) Lie group
with Lie algebra g, and LG the associated loop group.

Thus after fixing a level κ ∈ C the families of singular modules (10) and (13) are
both naturally parametrised by elements

A = dQ + Λ
dz

z
∈ z−1h

[

z−1]dz . (16)

Namely the residue term Λz−1dz ∈ h ⊗ z−1dz corresponds to the tame part λ ∈ h∨

of a singular character, and the irregular type

Q =

p−1∑

i=1

Ai

zi
∈ h((z))

/

h�z� , with Ai ∈ h for all i ,

is such that d (Aiz
−i) = −iAiz

−i−1dz ∈ h⊗ z−i−1dz corresponds to the wild part
ai ∈ (

h ⊗ zi
)∨. The meromorphic 1-forms (16) should be thought of as principal

parts of germs of meromorphic connections at a point on a Riemann surface (with
semisimple formal residue and untwisted irregular type; here we are considering “very
good” orbits in the terminology of [14]).

As mentioned in the introduction, the crucial facts are:

(1) gp = Lie(Gp), where Gp :=G
(

C�z�
/

zp
C�z�

)

is the group of (p − 1)-jets of
bundle automorphisms for the trivial principal G-bundle on a (formal) disc;
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(2) The level-zero complex symplectic reduction for the diagonalG-action—on prod-
ucts of coadjoint Gp-orbits—yields a description of an open de Rham space M∗

dR,
viz. amoduli spaces of isomorphismclasses of irregularmeromorphic connections
on a holomorphically trivial principal bundle over the Riemann sphere (with pre-
scribed positions of poles and irregular types [10, § 5]; see [8] forG = GLm(C)).

Moreover the diagonal G-action will correspond to taking g-coinvariants for the
tensor product of finite singular modules, generalising the tame case (see Sects. 9
and 10).

Remark 4.1 (Birkhoff groups/Lie algebras) Consider the subgroup Bp ⊆ Gp of
elements with constant term 1. Then G acts on Bp by conjugation, and there are
natural identification Gp � G � Bp and gp � g � bp, where bp = Lie(Bp).8 This
yields a vector space decomposition g∨

p � g∨ ⊕ b∨
p: in the duality (15) the former

summand corresponds to formal residues with zero irregular types, and the latter to
irregular types with zero residue (so in particular q ∈ b∨

p). �

5 Bases, gradings and filtrations

Denote Π = { θi }i ⊆ R+ the set of simple roots, and choose an order R+ =
(α1, . . .,αs) for the set of positive roots. If r := rk(g) we may assume θi = αi for
i ∈ { 1, . . ., r }. Let then (Fα)α∈R+ and (Eα)α∈R+ be bases of n− and n+ with
(Fα,Eα) ∈ g−α ⊕ gα, and such that (Fα,Hα :=[Eα, Fα],Eα) is an sl2-triple. (We
may at times write E−α := Fα for the sake of a uniform notation.)

In particular (Hθ)θ∈Π is a basis of h, and we get a (ordered) Cartan–Weyl basis of
g:

(X1, . . .,X2s+r) :=(Fα1 , . . ., Fαs ,Hθ1 , . . .,Hθr ,Eα1 , . . .,Eαs) . (17)

For a multi-index n ∈ Z
2s+r
�0 define

Xn :=X
n1
1 · · ·Xn2s+r

2s+r ∈ U(g) .

By the PBW theorem these monomials provide a C-basis of U(g).

5.1 PBW-bases of singular modules

Let β = (βi)i�0 be a sequence of non-negative integers with finite support, and
consider another sequence with values in the index set of the Cartan–Weyl basis (17),
i.e. k = (ki)i�0 ∈ { 1, . . ., r + 2s }Z�0 . Then define

Xkzβ :=
∏

i∈β−1
(

Z>0

)

Xki
zβi ∈ U

(

Lgalg
)

.

8 Beware to distinguish the positive/negative deeper Borel subalgebra b±
p from the Birkhoff subalgebra

bp.
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Lemma 5.1 (PBW-basis of algebraic affine enveloping algebras) A C-basis of
U

(

Lgalg
)

is given by

B :=
{

Xk ′z−β ′ · Xn · Xkzβ
}

k ′,β ′,n,k,β
, (18)

where β ′ is nonincreasing, β is nondecreasing, and k ′
j � k ′

j+1 (resp. kj � kj+1) if
βj = βj+1 (resp. β ′

j = β ′
j+1).

This is one statement of thePBWtheorem for the countable-dimensionalLie algebra
Lgalg = g ⊗ C

[

z±1
]

—we have monomials over a totally ordered basis.

Corollary 5.1 (PBW-basis of affine singular modules) A C-basis of the affine singular
module ̂W can be extracted from

B
̂W

:=
{

Xk ′z−β ′ · Xn · Xkzβw
}

k ′,β ′,n,k,β
, (19)

where β ′, k ′, n, k, and β are as above.

Proof The family generates over C since U
(

Lgalg
)

w = ̂W, and using Lem. 5.1. �

Remark In (19) one may take β bounded above by p − 1, as zpg�z�w = (0). �

Using this set of generators we can prove smoothness.

Lemma 5.2 The singular modules are smooth.

Proof This is clear in the finite case, as zpg�z�W = (0).
In the affine case choose X ∈ g and an element ŵ = Xk ′z−β ′

XnXkzβw of (19).
Then the vanishing XzNŵ = 0 holds for

N � p +
∑

i�0

β ′
i ∈ Z>0 ,

and the conclusion follows since (19) is a set of generators. �

Lemma 5.3 (PBW-basis of depth-p finite enveloping algebras) A C-basis of U

(

gp

)

is
given by

B :=
{

Xn · Xkzβ
}

n,k,β
, (20)

where n, k and β are as above, with the condition of Rem. 5.1. Moreover restricting
to Xi,Xkj

∈ n− for i ∈ { 1, . . ., 2s + r } and j � 0 yields a C-basis of U(n−p ).

This is one statement of the PBW theorem for the finite-dimensional Lie algebras
gp and n−p .
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Corollary 5.2 (PBW-basis of finite singular modules) A C-basis of the finite singular
module W ⊆ ̂W is given by

BW :=
{

Xn · Xkzβw
}

n,k,β
, (21)

where all conditions of Lem. 5.3 apply.

Proof The family generates since W = U(n−p )w, and using Lem. 5.3 (the generating
part). But U(n−p ) has trivial intersection with the annihilator of w, hence the family
is free by Lem. 5.3 (the linear independence part). �


In particular W is a free rank-1 left U(n−p )-module.

5.2 Gradings for z-degree

We first define two positive Z-gradings on ̂W.

Definition 5.1 Choose k ∈ Z. Then:

• the subspace ̂F−
k = ̂F−

k

(

̂W
) ⊆ ̂W is the C-span of the vectors of (19) with∑

i β ′
i = k;

• the subspace ̂F+
k = ̂F+

k

(

̂W
) ⊆ ̂W is the C-span of the vectors of (19) with∑

i βi = k.

By definition ̂F−
0 = W, ̂F+

0 = ̂W−, and

g ⊗ z−i
(

̂F−
k

)

= ̂F−
k+i , for i � 0 . (22)

In particular
(

̂W, ̂F−•
)

is a Z-graded g
[

z−1
]

-module, where g
[

z−1
]

is a Z-graded Lie
algebra with grading defined by deg(g ⊗ z−i) = i.

The other grading instead does not yield a graded module; but we can obtain one
inducing a (positive) grading on W ⊆ ̂W.

Definition 5.2 For k ∈ Z set F+
k := ̂F+

k ∩ W.

It follows that F+
0 = U(g)w ⊆ W, and

n− ⊗ zi
(

F+
k

) ⊆ F+
k+i , for k, i � 0 , (23)

so the space
(

W,F+•
)

is a Z-graded n−�z�-module, where n−�z� is a Z-graded Lie
algebra with grading defined by deg(n− ⊗ zi) = i.
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5.3 Filtrations

We consider the filtration ̂F−
�• on ̂W associated with the grading of Def. 5.1 for the

negative z-degree. It follows from (22) that

̂F−
�k+1 =

∑

m+l=k

g ⊗ z−m−1(
̂F−

l

)

, g ⊗ zi
(

̂F−
�k

) ⊆ ̂F−
�k , (24)

for k, i � 0.
Finally we consider onU(g)w = U(n−)w ⊆ W the natural filtration E�• induced

from that of U(n−), so that E�0 = Cw. Note

n−
(

E�k

)

+ E�k = E�k+1 , (25)

and further n− acts nontrivially on the associated graded of
(

U(g)w,E�•
)

:

n−
(

gr(E)k
) ⊆ gr(E)k+1 , (26)

where as customary gr(E)k :=E�k

/

E�k−1 for k ∈ Z�0—and E�−1 :=(0).

5.4 Weight gradings

For μ ∈ h∨ define

̂Fμ

(

̂W
)

= ̂Fμ :=
{

ŵ ∈ ̂W
∣

∣

∣ Hŵ = μ(H)ŵ for H ∈ h
}

⊆ ̂W ,

and analogously Fμ(W) = Fμ :=W ∩ ̂Fμ ⊆ W.

Proposition 5.1 The singular modules are h-semisimple, i.e.

̂W =
⊕

μ∈h∨

̂Fμ , W =
⊕

μ∈h∨

Fμ .

Proof This follows from the fact that all elements of (19) and (21) are h-weight vectors,
which in turn is proven recursively using the identities

H · Xαziŵ = 〈μ + α,H〉Xαziŵ , H · H ′ziŵ = 〈μ,H〉 · H ′ziŵ ,

for α ∈ R, H,H ′ ∈ h, i ∈ Z and ŵ ∈ ̂Fμ. �

Remark In the finite case one may define the hp-weight spaces, i.e. the subspaces
of vectors ŵ ∈ W such that Hziŵ = 〈μi,Hzi〉ŵ for μ = (μ0, . . .,μp−1) ∈ h∨

p.
However the very first recursion fails for p � 2: ifH ∈ h is such that 〈α,H〉 �= 0 then

Hz · X−αw = 〈a1,Hz〉X−αw − 〈α,H〉X−αz · w /∈ C(X−αw) ,



   15 Page 18 of 55 G. Felder, G. Rembado

where w is the cyclic vector, so the finite singular modules are not hp-semisimple. �
The proof of Proposition 5.1 implies all weights are contained inside λ+Q ⊆ h∨,

where Q :=ZR is the root lattice.

Remark Consider the z-linear extension of the adjoint action h → gl(g) on Lg.
Decomposing Lg =

⊕

α∈R Lgα ⊕ Lh we see Lg is naturally a h∨-graded Lie alge-
bra (with nontrivial weights still given by R ∪ { 0 }), and the proof of Proposition 5.1
shows the singular modules are h∨-graded. �

In the finite case one can go further recovering the standard notion of positiv-
ity. Namely

(

h∨,�)

is a poset by defining μ ′ � μ by μ − μ ′ ∈ Q+, where
Q+ :=Z�0R

+ ⊆ Q is the positive root lattice.

Lemma 5.4 One has Fλ = Cw and W =
⊕

μ	λ Fμ.

Proof It follows from the fact that W is generated over U(n−p ) by a hp-weight vector
annihilated by n+p : it is a highest-weight gp-module. �


In particular (21) consists of weight vectors, and the line Cw ⊆ W has the highest
weight.

In view of Lem. 5.4 the weight spaces are naturally parametrised by elements
ν ∈ Q+, via Fν :=Fλ−ν. Now for an element ν ∈ h∨ denote

MultR+(ν) :=

⎧
⎨

⎩ m = (mα)α ∈ Z
R+

�0

∣

∣

∣

∣

∣

∣

∑

α∈R+

mα · α = ν

⎫
⎬

⎭ ⊆ Z
R+

�0 ,

so that the cardinality of MultR+(ν) is the finite number of ways of expressing ν

as a Z�0-linear combination of positive roots. In particular MultR+(0) = { 0 }, and
MultR+(ν) = ∅ for ν /∈ Q+.

Finally for m ∈ Z
R+

�0 denote

WCompp(m) :=

{
ϕ = (ϕα)α

∣

∣

∣

∣

∣

ϕα : { 0, . . .,p − 1 } → Z�0 ,
p−1∑

i=0

ϕα(i) = mα

}
,

which is the finite set of weak p-compositions of the integers mα � 0.9 In particular
WComp1(m) is a singleton containing the element ϕ with ϕα(0) = mα for all
α ∈ R+.

Proposition 5.2 For ν ∈ h∨ one has

dim
(

Fν

)

=
∑

m∈MultR+(ν)

(

m + p − 1
m

)

< ∞ , (27)

where
(m+p−1

m

)

:=
∏

α∈R+

(mα+p−1
mα

)

.

9 A composition of mα is a sequence of positive integers summing to mα; it is a p-composition if the
sequence has finite length p � 1; and it is weak if zero is allowed.
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Proof Choose μ ∈ h∨ and set ν = λ − μ. Then for m ∈ MultR+(ν) and ϕ ∈
WCompp(m) consider the vector

wϕ :=
p−1∏

i=0

(

∏

α∈R+

(

X−αzi
)ϕα(i)

w

)

∈ BW . (28)

The family { wϕ }ϕ ⊆ W is free since it consists of distinct elements extracted
from (21) (beware of the ordering in the product), and by construction wϕ ∈ Fν.

Conversely the vectors (28) exhaust (21), from which one can extract a basis of Fν,
so the conclusion follows from standard combinatorial identities. �


Thus Proposition 5.2 strengthen Lem. 5.4: the given sum is empty for ν /∈ Q+,
and WCompp(0) is a singleton containing the element ϕ with ϕα(i) = 0 for i ∈
{ 0, . . .,p − 1 }.

As expected (27) generalises the standard fact that dim
(

Fν

)

= |MultR+(ν)| for
Verma modules, i.e. it generalises the character of Verma modules. The difference
in the general case is that one must also specify a z-degree for each occurrence of a
positive root.

Remark This notion of positivity is lost with the (finite) modules of Sect. 14: in partic-
ular they have infinite-dimensional weight spaces and are less suited to yield irregular
versions of conformal blocks. �

For example consider the case where ν = θ ∈ Π is a simple root. One has
MultR+(θ) =

{
mθ

}
, with mθ

α := δθ,α. Also WCompp(m
θ) =

{
ϕθ,i

}
i
, where

ϕθ,i
α (j) = δα,θδij , i, j ∈ { 0, . . .,p − 1 } .

Hence Xϕθ,i = X−θzi, so we recover

dim
(

Fθ

)

= p , Fθ = spanC
{

X−θw, . . .,X−θzp−1w
}
.

Remark It follows from the above that

U
(

n+�z�
)

Fν =
⊕

0	ν ′	ν

Fν ′ , for ν ∈ Q+ .

Hence the module W is locally n+�z�-finite, i.e. the vector spaces U
(

n+�z�
)

ŵ ⊆
W are finite-dimensional for all ŵ ∈ W.

One is tempted to say that W lies in a “Bernstein–Gelfand–Gelfand category
O�z�” [32]—of h-semisimple finitely generated left U

(

g�z�)-modules which are
locally n+�z�-finite. �
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5.4.1 Archetypal case

Onemay get to the end of this storywhen g = sl(2,C)with the standard basis (F,H,E)
and the standardA1-root systemR = { ±α }, whereα is positive and 〈α,H〉 = 2. Then
Q+ = Z�0α, so simply MultR+(ν) = { m } for elements ν = mα with m ∈ Z�0.

Thus (27) reduces to

dim
(

Fmα

)

=
∣

∣WCompp(m)
∣

∣ =

(

m + p − 1
m

)

. (29)

In the tame case one recovers the line generated by Fmv, whereas in the general case
a basis is given by

wϕ =

p−1∏

i=0

(

Fzi
)ϕ(i) · v , for ϕ ∈ WCompp(m) . (30)

6 Dual modules

In view of Proposition 5.1 we consider the restricted duals of the h∨-graded singular
modules, i.e. the h∨-graded vector spaces

̂W∗ :=
⊕

μ∈h∨

̂F∨
μ ⊆ ̂W∨ , W∗ :=

⊕

μ∈h∨

F∨
μ ⊆ W∨ . (31)

They are naturally equipped with a right U
(

ĝ
)

- and U
(

gp

)

-module structure (respec-
tively), namely

〈

̂ψXzi, ŵ
〉

=
〈

̂ψ,Xziŵ
〉

, ̂ψK = κ̂ψ , for i ∈ Z, X ∈ g, ̂ψ ∈ ̂W∗, ŵ ∈ ̂W ,

and analogously in the finite case.
Toget a left action composewith aLie algebramorphism ĝ → ĝop (resp.gp → g

op
p ),

or rather with the induced ringmorphismU
(

ĝ
) → U

(

ĝop
)

= U
(

ĝ
)op (resp.U(gp) →

U(gp)
op). In particular a Lie algebra morphism θ : g → gop has a unique Z-graded

extension ̂θ : Lg → L
(

gop
)

=
(

Lg
)op: in the finite case one can then consider the

restriction ̂θ : g�z� → g�z�op, which is compatible with the projections g�z� � gp

and g�z�op � g
op
p ; in the affine case one may further ask that θ is (· | ·)-orthogonal,

and extend the definition by ̂θ(K) :=−K.
In what follows we only consider morphisms of this type.

Definition 6.1 (Dual singular modules) The affine (resp. finite) θ-dual singular mod-
ule ̂W∗

θ (resp. W∗
θ) is the left U

(

ĝ
)

-module (resp. U(gp)-module) defined by the
morphism θ : g → gop.
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TheU
(

g�z�)-linear inclusion mapW ↪→ ̂W then dually corresponds to aU
(

g�z�)-

linear restriction map ̂W∗
θ � W∗

θ.

Remark 6.1 (Dual/contragredient modules) Basic examples of morphisms θ : g →
gop preserving (· | ·) are the tautological θ0 = − Idg, and the transposition θ1, defined
by

θ1(Eα) = E−α , θ1
∣

∣

h
= Idh , for α ∈ R .

We refer to θ0-duals simply as dual modules, and to θ1-duals as contragredient mod-
ules. �

Consider then the element ψ ∈ W∗ dual to the cyclic vector in the basis (21), i.e.
〈ψ,w〉 = 1 and ψ vanishes on all other vectors of (21)—whence F∨

λ = Cψ.
Assume hereafter that θ(h) = hop (up to conjugating θ by an inner automorphism

of g), and canonically identify h � hop and their duals. Then we have a well defined
pull-back map θ∗ ∈ GL(h∨), which we extend z-linearly to

(

h ⊗ zi
)∨ � h∨ ⊗ zi.

Moreover by orthogonality the subspace n+ ⊕ n− ⊆ g is θ-stable.

Lemma 6.1 The vector ψ ∈ W∗ satifies the relations

zpg�z�ψ = (0) = θ−1(n−)�z�ψ ,

Hziψ = 〈θ∗ai,Hzi〉ψ , for H ∈ h, i ∈ { 0, . . .,p − 1 } .
(32)

Proof Use (11), (23), zpg�z�W = (0), and the fact that ̂θ : g�z� → g�z�op preserves
the z-grading of Def. 5.2. �


In particular n−�z�ψ = (0) in the dual case, and n+�z�ψ = (0) in the contragre-
dient case.

6.1 Dual weight grading

Denote θ∗ :=
(

θ∗)−1
=

(

θ−1
)∗, and introduce the notation ̂F∗

μ ⊆ ̂W∗
θ andF∗

μ ⊆ W∗
θ

for the h-weight spaces.

Lemma 6.2 One has ̂F∨
μ = ̂F∗

θ∗μ and EαzîF∨
μ ⊆ ̂F∨

μ+θ∗α, for μ ∈ h∨, α ∈ R,
i ∈ Z, and analogously in the finite case—restricting to i ∈ Z�0.

Proof Let ̂Iν : ̂W → ̂W be the idempotent for the direct summand ̂Fμ ⊆ ̂W, viz.
the endomorphism such that ̂I

μ
∣

∣

̂W(μ ′)
= δμ,μ ′ Id

̂W(μ ′). Then by definition ̂ψ ∈ ̂F∨
μ

means ̂ψ = ̂ψ ◦̂Iμ, and by construction

θ(H)̂Iμ = ̂Iμθ(H) = 〈θ∗μ,H〉̂Iμ ∈ End
(

̂W
)

, for μ ∈ h∨, H ∈ h .
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Hence for ŵ ∈ ̂W one has
〈

Ĥψ, ŵ
〉

=
〈

̂ψ,̂Iμ
(

θ(H)ŵ
)

〉

= 〈θ∗μ,H〉
〈

̂ψ, ŵ
〉

,

whence the inclusion ̂F∨
μ ⊆ ̂F∗

θ∗μ, and the equality follows from (31).

The latter inclusion follows from θ(Eα)z
îFμ ⊆ ̂Fμ−θ∗α for α ∈ R, which is a

straightforward computation using (2).
The same pair of arguments applies verbatim to the finite case. �

Hence (31) is the h-weight decomposition of θ-dual singular modules, and the

weights are contained inside θ∗(λ+Q) ⊆ h∨ (resp. θ∗(λ+Q+)) in the affine (resp.
finite) case. By Lem. 5.4 we conclude that ψ ∈ W∗

θ0
is a lowest-weight vector of

lowest weight θ∗
0λ = −λ, whereas ψ ∈ W∗

θ1
is a highest-weight vector of highest

weight θ∗
1λ = λ.

In particular in the contragredient casematching the cyclic vectorwith its dual yields
a canonical morphismΦ : W → W∗

θ1
, hence a generalisation of the Shapovalov form

S : W ⊗ W −→ C , ŵ ⊗ ŵ ′ �−→ 〈Φ(

ŵ
)

, ŵ ′〉 .

This may be degenerate, particularly since the image of the canonical morphism is the
submodule

W ′
θ :=U

(

g�z�
)

ψ ⊆ W∗
θ ,

which in general is a proper submodule. Nonetheless we can recursively find the
obstruction forψ to generate theθ-dualmodule. To give a necessary condition consider
the vector

ŵ = E−αzp−1w ∈ Fλ−α , α ∈ R+ .

By Lem. 6.2 a linear form ̂ψ ∈ W ′
θ that vanishes on BW \ { ŵ } must lie in the span

of
{

θ−1(Eα)ψ, . . ., θ−1(Eα)z
p−1ψ

} ⊆ F∨
λ−α, so consider a generic element

̂ψ = ̂ψ(b0, . . .,bp−1) =

p−1∑

j=0

bjθ
−1(Eα)z

jψ , bj ∈ C .

Using zpg�z�W = (0) = n+�z�w and 〈ψ,w〉 = 1 yields

〈

̂ψ, ŵ
〉

= bp−1〈ap−1,Hαzp−1〉,

so we need the highest irregular part to be regular (cf. Sect. 8).
Conversely we have the following.

Proposition 6.1 One has W ′
θ = W∗

θ for parameters (λ,q) in a dense subspace of the
affine space h∨

p—with respect to the strong/classical topology.
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Proof Clearly F∨
λ ⊆ W ′

θ, and then we reason recursively on the h∨-weight space
decomposition of W.

Choose ŵ ∈ BW ∩ Fμ, and consider the vectors ŵα(k) :=E−αzkŵ ∈ Fμ−α,
for α ∈ R+ and k ∈ { 0, . . .,p − 1 }. As ŵ, α and k vary, the vectors ŵα(k) exhaust

BW ∩Fμ−α, so wemust find coefficients bij ∈ C such that
〈

̂ψα(i), ŵα(k)
〉

= δik,

where

̂ψα(i) =

p−1∑

j=0

bijθ
−1(Eα)z

j
̂ψ ∈ F∨

μ−α , for i ∈ { 0, . . .,p − 1 } ,

and where ̂ψ ∈ F∨
μ is the dual of ŵ—lying in W ′

θ by the recursive hypothesis.
Now one has

〈

̂ψα(i), ŵα(k)
〉

=

p−1∑

j=0

bij

〈

̂ψ,EαzjE−αzkŵ
〉

,

hence the given conditionmeansBM = IdCp , whereB andM are the p-by-pmatrices

with coefficients Bij = bij and Mjk =
〈

̂ψ,EαzjE−αzkŵ
〉

, respectively (the latter

selects the component of EαzjE−αzkŵ ∈ Fμ along the line Cŵ, in the basis (21)).
A solution exists if and only if det(M) �= 0.

Now the determinant ofM = M(ŵ,α) is a degree-p polynomialwhose coefficients
depend polynomially on (λ,q), hence it amounts to a polynomial function h∨

p → C.
Thus W ′

θ = W∗
θ by taking (λ,q) in a countable intersection of open dense subsets. �


Finally we can choose a complementary subspace to W inside ̂W, and extend
ψ : W → C by zero to the whole of ̂W—e.g. extract a PBW-basis from (19). Then
one can consider the module ̂W ′

θ ⊆ ̂W∗
θ generated by this extension over Lg, and

define gradings/filtrations on ̂W ′
θ � W ′

θ analogously to §§ 3.2 and 3.3, using the
generating set (18), the basis (20), and the standard filtration of U

(

θ−1(n+)
)

. These
satisfy the analogous identities of (22)–(25).

7 Segal–Sugawara operators

For n ∈ Z define

Ln :=
1

2
(

κ + h∨
)

∑

j∈Z

(

∑

k

: Xkz−j · Xkzn+j :

)

, (33)

where (Xk)k and (Xk)k are (· | ·)-dual bases of g, κ �= −h∨ is a noncritical level,
and in the normal-ordered product one puts elements of g�z� ⊆ Lg to the right.

The Sugawara operators (33) (due to Segal in this particular form) are well-defined
elements of the level-κ completion of U

(

ĝ
)

with respect to the system of left ideals
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U
(

ĝ
)

z•g�z�⊆U
(

ĝ
)

. If follows from Lem. 5.2 that there are well-defined actions

of (33) on the modules W ⊆ ̂W.

7.1 Cyclic vector as Sugawara eigenvector

The cyclic vector w ∈ ̂W is a common eigenvector for the Sugawara operators when
n � 0. To get explicit formulæ for the eigenvalues we recall further euclidean prop-
erties of the Cartan–Weyl basis (17).

Remark 7.1 (On bases and dualities) Recall that (Hα | Hα)E
±α = 2E∓α. Using

the pairing (· | ·) : h∨ ⊗ h∨ → C induced by the minimal-form duality h � h∨ this
can be written 2E±α = (α | α)E∓α.

Then we replace the simple-root basis of hwith a (· | ·)-orthonormal basis, denoted
(Hk)k—i.e. we “divide” by the Cartan matrix—, and for i ∈ Z we transfer the basis
and the pairings to g⊗ zi and

(

g⊗ zi
)∨ � g∨ ⊗ zi using the canonical vector space

isomorphism g � g ⊗ zi. Then one has the tautological basis-independent identity

(μ | μ ′) =
r∑

k=1

〈μ,Hkzi〉〈μ ′,Hkzj〉 for μ ∈ h∨ ⊗ zi,μ ′ ∈ h∨ ⊗ zj .

�
Denote as customary ρ := 1

2

∑
α∈R+ α ∈ h∨ the half-sum of positive roots.

Proposition 7.1 The cyclic vector w is a common eigenvector for the operators (33)
with n � p − 1. If n > 2(p − 1) then Lnw = 0, else Lnw = lnw with

ln :=
1

2
(

κ + h∨
)

p−1∑

j=1−p+n

(aj | an−j) , for n ∈ { p, . . ., 2(p − 1) } , (34)

and

lp−1 :=
1

2
(

κ + h∨
)

(

p−1∑

j=0

(aj | ap−1−j) + 2p(ρ | ap−1)

)

. (35)

Proof Postponed to § B.1. �

Hence the cyclic vector is a Gaiotto–Teschner irregular state of order p − 1 [28]

arising from affine Lie algebras.

Remark 7.2 This generalises the standard fact that Lnv = 0 for n > 0, and that v is
an L0-eigenvector, with nonzero eigenvalue for generic values of λ ∈ h∨. Namely if
p = 1 then (35) reduces to

L0v = Δλv , Δλ =
(λ | λ + 2ρ)
2(κ + h∨)

,
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reverting to the notation λ = a0, which recovers the conformal weight corresponding
to the action of the quadratic Casimir (4). �

7.2 Action on finite modules

Later we will use the action of the operator L−1 on the finite module W ⊆ ̂W.
Using zpg�z�W = (0) we see nonvanishing terms arise for 1− p � j � p in (33),

and resolving the ordered product yields

L−1ŵ =
1

κ + h∨

p∑

j=1

(

∑

k

Xkz−jXkzj−1

)

ŵ , ŵ ∈ W . (36)

As expected L−1ŵ /∈ W, but it can be put back into the finite module via the
loop-algebra action (see Sect. 9).

Remark We see (36) generalises the usual formula from the tame case:

L−1v̂ =
1

κ + h∨

∑

k

Xkz−1Xkv̂ , v̂ ∈ V . (37)

�

8 Irregular conformal blocks: first version

Consider the Riemann sphere Σ :=CP1, choose an integer n � 1 and mark points
p1, . . .,pn ∈ Σ. Denote J = { 1, . . .,n } the ordered set of labels for the points and
p = (p1, . . .,pn) the ordered set of points.

LetOΣ be the structure sheaf of regular functions onΣ, seen as a (smooth) complex
projective curve. Then consider the stalks Oj = OΣ,pj

at the marked points, their
(unique) maximal idealsMj = Mpj

⊆ Oj of germs of functions vanishing at pj, the

completions ̂Oj := lim←−n
Oj

/

Mn
j , and their field of fractions ̂Oj ↪→ ̂Kj.

Remark If zj is a local coordinate on Σ vanishing at pj then

Oj � C[zj] , Mj = zjC[zj] , ̂Oj � C�zj� , ̂Kj � C((zj)) .

More generally this follows by choosing a uniformiser, i.e. a generator of the maximal
ideal(s). �

Then consider the loop algebras (Lg)j :=g ⊗ ̂Kj and the associated affine Lie
algebras ĝj � (Lg)j. There are canonical isomorphisms ĝi � ĝj for i, j ∈ J, and the
subscripts distinguish the local picture at the marked points.

Now for j ∈ J further choose an integer rj � 1, and set up singular modules as in
Sect. 3. Hence consider the Lie subalgebras S(rj) ⊆ ĝj, a common level κ ∈ C for
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the central elements, and singular characters χj = χ(λj,qj,κ), where λj ∈ h∨ and

qj =
(

(aj)1, . . ., (aj)rj−1
)

, (aj)i ∈ (

h ⊗ zi
)∨ .

This yields singular modulesW
(rj)
χj

=:Wj ⊆ ̂Wj := ̂W
(rj)
χj

, and we consider the vector
spaces

̂H = ̂Hp,χ :=
⊗

j∈J

̂Wj , H = Hp,χ :=
⊗

j∈J

Wj , (38)

where χ = (χj)j∈J. Clearly H ⊆ ̂H, and the dependence on the choice of marked
points is void (it becomes relevant after considering the action of g-valued meromor-
phic functions in Sect. 6.2).

The spaces (38) are endowed with natural structures of left modules for the asso-
ciative algebras U

(

ĝ
)⊗n � ⊗

j∈J U
(

ĝj

)

and
⊗

j∈J U
(

grj

)

, respectively.

Moreover for indices i �= j ∈ J denote ι(ij) : U(Lg)⊗2 → U(Lg)⊗n the natural
inclusion on the i-th and j-th slot, defined on pure tensors by

X ⊗ Y �−→ 1⊗i−1 ⊗ X ⊗ 1⊗j−i−1 ⊗ Y ⊗ 1⊗n−j , (39)

for i < j, and analogously for i > j. Finally define ι(ii) : U(Lg)⊗2 → U(Lg)⊗n

by X ⊗ Y �→ 1⊗i−1 ⊗ XY ⊗ 1⊗n−i. This yields an action of quadratic loop-algebra
tensors on (38).

8.1 Tame isomonodromy times

Wenowvary part of the parameters defining the spaces (38), namely themarked points.
An admissible deformation is one where they do not coalesce, so marked points vary
inside the configuration space

Cn :=Confn(Σ) ⊆ Σn ,

of ordered n-tuples of (labeled) points on Σ.
The space Cn is the space of tame isomonodromy times. It is a complex manifold

of dimension n.

Remark The terminology points again to meromorphic connections on the sphere, cf.
introduction.

Let us repeat that the positions of the poles and the irregular types together control
Stokes data of irregular meromorphic G-connections over the sphere. In turn Stokes
data generalise the conjugacy class of the monodromy representation ν : π1

(

Σ◦,b
) →

G, where Σ◦ :=Σ \
{

pj

}
j∈J

is the punctured sphere with the poles removed and
b ∈ Σ◦ a base point [9].
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Then one may consider admissible deformations of the connections along which
Stokes data (locally) do not vary, which yields by definition isomonodromic defor-
mations. This can be set up as a system of nonlinear differential equations where the
positions of the poles and the irregular types are precisely the independent variables,
hence they become the “times” of isomonodromic deformations: the positions of the
poles are the tame/regular times, and the rest are the wild/irregular ones.

Geometrically these differential equations constitute a nonlinear flat/integrable
symplectic connection in the local system of moduli spaces M∗

dR of meromorphic
connections, as the marked points and the irregular types vary (i.e. as the wild Rie-
mann surface structure on the sphere varies [13]). �

Remark 8.1 Let Σ ⊇ U
z−→ C be a local affine chart on Σ—so Σ � C ∪ { ∞ }. Then

coordinates on the open subsetCn(U) :=Confn(U) ⊆ Cn are given by t : Cn(U) →
C

n, where t = (tj)j∈J and tj(p) := z(pj)—so Cn(U) � Confn(C), and Cn �
Confn(C) ∪ Confn−1(C). This yields an atlas on the configuration space. �

Now for a J-tuple χ of singular characters we consider the vector bundles ̂H =
̂H•,χ → Cn and H = H•,χ → Cn, whose fibres over p ∈ Cn are the spaces (38),
respectively. We have an inclusionH ⊆ ̂H, and global vector bundle trivialisations:

̂H �
⊗

J∈J

U
(

n̂−
) ⊗U(n−) U

(

n−rj

) × Cn −→ Cn ,

by (14), and the simpler

H �
⊗

j∈J

U
(

n−rj

) × Cn −→ Cn ,

byWj � U
(

n−rj

)

. The point here is that both vector space isomorphisms do not depend
on the choice of marked points (nor on the character, cf. 6.4).

8.2 Action of meromorphic functions: punctual version

Given marked points pj ∈ Σ consider the effective divisor D :=
∑

j∈J

[

pj

]

on Σ, and
denote as customaryO∗D(Σ) = OΣ,∗D(Σ) the vector space ofmeromorphic functions
along Σ with poles at most on (the support of) D. Then let g∗D(Σ) :=g⊗O∗D(Σ) be
the Lie algebra of g-valued such meromorphic functions, with bracket coming from
g:

[f,g](p) :=
[

f(p),g(p)
] ∈ g , for f,g ∈ g∗D(Σ) ,p ∈ Σ .

Taking Laurent expansions at pj yields a linear map τj : O∗D(Σ) → ̂Kj, and
tensoring with g a linear map g∗D(Σ) → Lgj ⊆ ĝj.
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Remark If zj is a local coordinate on Σ vanishing at pj, and f ∈ O∗D(Σ), then there
are coefficients fi ∈ C such that

τj(f) = f(zj) =
∑

i�− ordpj
(f)

fiz
i
j ∈ C((zj)) ,

where ordp(f) � 0 is the order of p ∈ Σ as a pole of f. �

Thus there is an arrow

τ : g∗D(Σ) −→ End
(

̂H
)

, τ(X ⊗ f) :=
∑

j∈J

(

X ⊗ τj(f)
)(j) . (40)

Using (2), and the fact that the sum of the residues of a meromorphic 1-form on Σ

vanishes, shows that (40) is a morphism of Lie algebras.
Then the action τ : g∗D(Σ) → gl

(

̂H
)

endows ̂H with a left g∗D(Σ)-module struc-
ture.

Definition 8.1 (Irregular covacua, first version) The space of irregular covacua at the
pair (p,χ) is the space of coinvariants of the g∗D(Σ)-module ̂H:

H := ̂Hg∗D
= ̂Hp,χ

/

g∗D(Σ) ̂Hp,χ . (41)

Remark In our terminology (41) would be better called the space of singular covacua,
and be irregular/wild when rj � 2 for some j ∈ J. �

The space of vacua is the dual of (41), and provides a mathematical construction
of an irregular version of conformal blocks:

H † := Homg∗D(Σ)(
̂Hp,χ,C)

=
{

〈ψ
∣

∣

∣ ∈ ̂H∨
p,χ| 〈ψ, τ(X ⊗ f)ŵ〉 = 0 for X ∈ g , f ∈ O∗D(Σ) , ŵ ∈ ̂Hp,χ

}
.

(42)

Note we invert the usual usage of the dagger, since in this paper we focus on the
space of coinvariants of ̂H—rather than the space of invariants of its dual (cf. [6]).

By (40), the fundamental identity inside the space of covacua is

[

(

X ⊗ τi(f)
)(i)

ŵ
]

= −
∑

j∈J\{ i }

[

(

X ⊗ τj(f)
)(j)

ŵ
]

, (43)

for i ∈ J, where square brackets denote equivalence classes modulo g∗D(Σ) ̂Hp,χ.
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8.3 Action of meromorphic functions: global version

Now we want to globalise the action (40) over the space of configurations of n-tuples
of points on the sphere, i.e. we want a map of sheaves of Lie algebras on Cn.

To define the domain sheaf consider the projection

πΣ : Σn+1 −→ Σn, (p,p1, . . .,pn) �−→ (p1, . . .,pn) .

Then set

Y :=π−1
Σ (Cn) =

{
(p,p1, . . .,pn)

∣

∣ pi �= pj for i �= j
} ⊆ Σn+1 ,

so that πΣ : Y � Cn is the universal family of n-pointed spheres.
Now for j ∈ J define the hyperplane Pj :=

{
p = pj

} ⊆ Σn+1, consider the
effective divisor D :=

∑
j∈J

[

Y ∩ Pj

]

on Y, and let O∗D = OY,∗D be the sheaf of
meromorphic functions on Y with poles at most along (the support of) D. Then we
have the push-forward sheaf (πΣ)∗O∗D on Cn, and by tensoring we obtain the sheaf
of Lie algebras g∗D :=g ⊗ (πΣ)∗O∗D.

Remark If U ′ ⊆ Cn is open then g∗D(U ′) is then the Lie algebra of g-valued mero-
morphic functions on Σ × U ′, such that the restriction to Σ × { p } � Σ has poles at
most at the set

{
pj

}
j∈J

for all p ∈ U ′, as wanted. �

Now for U ′ ⊆ Cn open we consider the Laurent expansion τj(U
′)(f) of functions

f ∈ O∗D

(

π−1
Σ (U ′)

)

along the divisor Y ∩ Pj. Then tensoring with g yields a map of
sheaves

τj : g∗D −→ OCn ⊗ Lgj ⊆ OCn ⊗ ĝj ,

where OCn is the structure sheaf on the configuration space.

Remark If zj is a local coordinate on Σ vanishing at pj, U ′ = Confn(U) for U ⊆ Σ

an open affine subset, and f ∈ (πΣ)∗O∗D(U ′), then there are suitable functions
fi : U ′ → C such that

τj(U
′)(f) = f(zj, t1, . . ., tn) =

∑

i

fi(t1, . . ., tn)z
i
j ∈ OCn(U

′) ⊗ C((zj)) ,

using the local coordinates (tj)j∈J on U ′ ⊆ Cn of Rem. 8.1. By definition the
functions fi may have poles on the hyperplanes

{
ti = tj

} ⊆ C
n. �

Finally summing the action over each slot of the tensor product we have a sheaf-
theoretic analogue of (40), acting on sections of ̂H.
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8.4 Irregular isomonodromy times

One may add the other possible deformations, e.g. with the following setup.
Recall the regular parts of the Cartan subalgebra and its dual are the complements

of (co)root hyperplanes:

hreg :=h \
⋃

α∈R

Ker(α) , h∨
reg :=h∨ \

⋃

α∈R

Ker
(

evHα

)

,

and analogously for h ⊗ zi and its dual.
Then consider irregular parts qj ∈ b∨

rj
such that the most irregular coefficient

(aj)rj−1 is regular, and define an admissible deformation of as one in which the most
irregular coefficient does not cross coroot hyperplanes.

Remark This is the analogous condition as for the marked points: the open charts
Cn(C) ⊆ C

n are regular parts for Cartan subalgebras of rank-n type-A simple Lie
algebras. �

Doing so we get to the space of isomonodromy times

B = Cn ×
∏

j∈J

(

h∨
rj

)

reg , (44)

where

(

h∨
rj

)

reg =

rj−2∏

i=1

(

h ⊗ zi
)∨ × (

h ⊗ zrj−1)∨

reg ,

and in turn (h ⊗ zi)reg :=
{

Hzi
∣

∣ H ∈ hreg
} ⊆ h ⊗ zi for i ∈ Z.

The space (44) is a complex manifold of dimension d = n+r
∑

j∈J(rj−1), where
r = rk(g). As expected it coincides with the space of tame isomonodromy times if
rj = 1 for j ∈ J.

Remark If there is just one irregular module Wj with rj = 2 then

B = Cn × (

h ⊗ z
)∨

reg ,

and one recovers the base space for the FMTV connection [23]—up to the canonical
vector space isomorphism h ⊗ z � h. If further the variations of marked points are
neglected then (44) becomes the base space for the “Casimir” connection ofDeConcini
and Millson–Toledano Laredo (DMT) [40, 52]. �

Then in (38) one can let both p ∈ Cn and χ ∈ ∏
j∈J

(

h∨
rj

)

reg vary, getting a
vector bundle over the base space (44). This also comes with a canonical vector
bundle trivialisation, reasoning in the same way as for H ⊆ ̂H (namely (14) is also
independent of χ).



Singular modules for affine Lie algebras, and applications... Page 31 of 55    15 

Finally one may extend the sheaf g∗D trivially along the Cartan directions. Namely
the projection πCn

: B � Cn is open, so one may take the naïf pullback sheaf:

π∗
Cn

g∗D(U) = g∗D

(

πCn(U)
)

, for U ⊆ B open .

9 Conformal blocks in terms of finite modules: first version

Throughout this section fix a pair (p,χ) to define the spaces H ⊆ ̂H as in (38).
Compose the inclusion H ↪→ ̂H with the canonical projection πH : ̂H � H to
obtain a map ι : H → H .

To study the image of ι consider the tensor product filtration

̂F
−
�• :=

⊗

j∈J

(

̂F−
j

)

�• , (45)

where
(

̂F−
j

)

�• is the filtration defined in § 3.3 on ̂Wj. By definition ̂F
−
�0 = H, and

we push (45) forward to a filtration ̂F−
�• onH , along the surjection πH . Note ̂F−

�•
is exhaustive, since ̂FFF

−

�• is.

Proposition 9.1 The map ι is surjective,

Proof We will show that ̂F−
�k lies in the image of ι by induction on k � 0. The base

is given by ̂F−
�0 = πH

(

H
)

.
Now we use (43) for a function fi ∈ O∗D(Σ) with a pole at pi, and only there.

Such a function is e.g. defined by fi(z) = (z− ti)
−m, with the notations of Rem. 8.1,

working in a local chart containing p.

Hence τj

(

fi

) ∈ ̂Oj for j �= i, and if ŵ ∈ ̂F
−
�k the rightmost identity of (24) shows

that the right-hand side of (43) lies in ̂F−
�k. Then by induction the image of ι contains

̂F−
�k and all the vectors on the left-hand side of (43), and the conclusion follows from

the leftmost identity of (24). �


Proposition 9.2 One has Ker(ι) = gH ⊆ H.

Proof Consider an element ŵ = τ(X ⊗ f)û with û =
⊗

j∈J ûj ∈ ̂H, f ∈ g∗D(Σ)
and X ∈ g.

If the function f is noncostant then it has a pole, say at pj ∈ Σ. It follows that

τj(f) /∈ ̂Oj, whence X ⊗ τj(f)
(j)ûj /∈ (

̂F+
j

)

�0 by (22), and ŵ /∈ H = ̂F
+
�0.

Thus to have element of the kernel we must restrict to f ∈ C. Then using (22)
again we see that X ⊗ f = X ⊗ τj(f) ∈ g preserves the grading

(

̂F−
j

)

• on ̂Wj, so

(X ⊗ f)ûj ∈ Wj =
(

̂F−
j

)

0 implies ûj ∈ Wj.

Conversely gH ⊆ g∗D(Σ) ̂H ∩ H lies in the kernel. �
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Hence there is an identification H � Hg = H
/

gH, generalising the analogous
standard fact for the tame case.

To go further one may appeal to the tensor product of the weight grading of § 3.4,

which is a
(

h∨
)J-grading on H. Namely we consider the subspaces

Fμ = Fμ(H) :=
⊗

j∈J

Fμj
(Wj) ⊆ H , for μ = (μj)j∈J ∈ (

h∨
)J . (46)

By (40) the subspaceFμ lies inside the weight space of weight |μ| :=
∑

j μj ∈ h∨ for
the tensor product h-action.

If |μ| �= 0 thenFμ ⊆ hFμ is annihilated by πH , so we still have a surjective map

H ⊇
⊕

|μ|=0

Fμ
πH−−−→ H , (47)

and by construction the h-action is trivialised on this subspace.

Remark The condition |μ| = 0 is reminiscent of meromorphic connections: it is equiv-
alent to the vanishing of the sum of the residues over Σ—in the duality (15). �

9.1 Auxiliary tamemodule

Suppose one of the modules is tame, e.g. the last one: rn = 1 and Wn = Vn. Then
we split the tensor product as

H = H ′ ⊗ Vn , H ′ :=
⊗

j∈J ′
Wj ,

where J ′ := J \ { n }, and we embed

H ′ −→ H ,
⊗

j∈J ′
ŵj �−→

⊗

j∈J ′
ŵj ⊗ vn ,

where vn ∈ Vn is the cyclic/highest-weight vector.

Proposition 9.3 One has ι(H ′) = H .

Proof DenoteE
(n)
�• the filtration onU(g)vn ⊆ Vn defined in § 3.3,which is exhaustive

in this (tame) case.Wewill prove by induction onk � 0 that ι
(

H ′) contains the classes
of all vectors insideH ′⊗E

(n)
�k , noting the base follows from the identityE

(n)
�0 = Cvn.

For the inductive step we use the constant version of (43). For X ∈ g this shows

that the class of X(n)ŵ lies in ι
(

H ′) as soon as that of ŵ ∈ H ′ ⊗ E
(n)
�k does, which

is precisely the inductive hypothesis. Hence the conclusion follows from (25). �
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Now Cvn = Fλn(Vn), so (47) yields a surjection:

H ′ ⊇
⊕

|μ|=−λn

F ′
μ

πH−−−→ H , where μ = (μj)j∈J ′ ∈ (

h∨
)J ′

, (48)

writing |μ| =
∑

j∈J ′ μj ∈ h∨ analogously to the above, and where F ′
μ ⊆ H ′ is the

tensor product of the weight-gradings over J ′ ⊆ J (analogously to (46)). Note the
direct sum is just the weight space of weight −λn ∈ h∨ for the (tensor) action of h
on H ′; let us temporarily denote this space by H ′(−λn).

Lemma 9.1 The kernel of (48) equals n+H ′ ∩ H ′(−λn) ⊆ H ′(−λn).

Proof We must show that no coinvariants can arise from the residual n−-action.
To this end recall n− has nontrivial action on the associated graded of the filtration

E�• of § 3.3: more precisely (26) yields

n−
(

H ′ ⊗ gr
(

E(n)
)

k

)

⊆
(

H ′ ⊗ gr
(

E(n)
)

k

)

⊕
(

H ′ ⊗ gr
(

E(n)
)

k+1

)

⊆ H ,

for k ∈ Z�0; but there can be no vanishing of components in the latter direct summand

sinceVn is freely generated overU(n−), and this applies in particular to vn ∈ E
(n)
�0 �

gr
(

E
(n)
0

)

. �

The punchline is the final identification

H � H ′(−λn)
/(

n+H ′ ∩ H ′(−λn)
)

. (49)

7.1.1.On dimensions. To go further we use the results of § 3.4; in particular we employ
the notation Fν(Wj) :=Fλj−ν ⊆ Wj for ν ∈ Q+—i.e. we parametrise the weights
μj = λj − ν � λj by ν ∈ Q+.

By definition the weight space of weight −λn ∈ h∨ for the h-action on H ′,
denoted H ′(−λn) above, is the direct sum of the spaces F ′

ν ⊆ H ′ such that 0 =
λn +

∑
j∈J ′(λj − νj), so only elements such that |ν| = |λ| ∈ h∨ will contribute

to coinvariants. This actually depends on the sum of the tame parts of the singular
characters, hence we ought to change notation:

H ′
|λ| :=

⊕

|ν|= |λ|

F ′
ν ⊆ H ′ . (50)

Proposition 9.4 The h-weight space H ′
|λ| ⊆ H ′ has dimension

dim
(

H ′
|λ|

)

=
∑

|ν|= |λ|

(

∏

j∈J ′

∑

m∈MultR+(νj)

(

m + rj − 1
m

)

)

< ∞ . (51)
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Proof It follows from (27), taking the products of the dimensions of the weight spaces
Fνj

⊆ Wj.
The dimension is finite since for ν ∈ Q+ there are finitely many J ′-tuples ν ∈

(

Q+
)J ′

such that |ν| = ν—analogously to |MultR+(ν)| < ∞. �

We deduce the following.

Corollary 9.1 If one module is tame then the space (41) is finite-dimensional for all
choices of marked points and singular characters.

In particular the weight space is trivial if |λ| /∈ Q+, and the simplest nontrivial case
is when |λ| = 0. Then |ν| = 0 implies νj = 0 for j ∈ J ′, so H ′

0 is the line generated
by the tensor product

⊗

i∈J ′ wi of the cyclic vectors wi ∈ Wi.
The next nontrivial example is when |λ| = θ ∈ Π is a simple root. Now |ν| = θ

implies ν ∈ {
νθ,i

}
i
, with νθ,i

j = δijθ for i, j ∈ J ′. Then one finds the singleton

MultR+

(

νθ,i
j

)

=
{

δijm
θ

}
, with mθ

α = δαθ. On the whole (51) reduces to

dim
(

H ′
θ

)

=
∑

i∈J ′

(

∏

j∈j ′

(

δijm
θ + rj − 1

δijm
θ

)

)

=
∑

i∈J ′

(

mθ + ri − 1
mθ

)

=
∑

i∈J ′
ri ,

independently of the choice of simple root.
A basis is given by the pure tensors

ŵ
j
i :=

i−1
⊗

k=1

wk ⊗ Fθzjwi ⊗
n−1
⊗

k=i+1

wk ,

for i ∈ J ′ and j ∈ { 0, . . ., ri − 1 }.

Remark 9.1 One way to ensure coinvariants are nontrivial is the following: for a
given configurations of points p = (pj)j∈J consider the Lie subalgebra of g-valued
meromorphic functions with poles at pj, and further with a zero elsewhere, say at
p ′ ∈ Σ \

{
pj

}
j
. Then the proof of Proposition 9.1 can easily be adapted working in

the chart where p ′ = ∞—as the function fi(z) = (z − ti)
−m vanishes at infinity.

Thus there is still a surjection of H on the space of coinvariants, and similarly to
Proposition 9.2 only constant functions lie in the kernel. Hence in this setup the kernel
is trivial and H �= (0) itself is the space of coinvariants.

Another way to ensure nontriviality is to put a θ-dual module in the tensor product
(introduced in Sect. 6). Further when it is tame then one still has a finite-dimensional
space, see Sect. 10. �

9.1.1 Archetypal case

Consider the same setup of Sect. 3.4.1 for g = sl(2,C). In this case |λ| = mα for an
integer m � 0.
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Proposition 9.5 One has

dim
(

H ′
mα

)

=

(

m + R − 1
m

)

, where R :=
∑

j∈J ′
rj . (52)

A basis is provided by the pure tensors

ŵ
Φ

=
⊗

j∈J ′

( rj−1∏

i=0

(

Fzi
)Φ(i,j)

wj

)

,

where Φ ∈ WCompR(m)—identifying { 1, . . .,R } � ∐
j∈J ′

{
0, . . ., rj − 1

}
.

Proof Fix an integer m � 0 and look for ν ∈ (Z�0α)
J ′

satisfying |ν| = mα.
Such elements are given by weak J ′-compositions of m, i.e. functions φ : J ′ → Z�0
satisfying

∑
j∈J ′ φ(j) = m, with bijection

φ �−→ νφ , ν
φ
j :=φ(j)α .

Then by definition MultR+

(

ν
φ
j

)

= { φ(j) } for j ∈ J ′, so we need only give elements

ϕj ∈ WComprj

(

φ(j)
)

to allocate the z-degrees of the occurrences of−α at each slot
of the tensor product.

The data of φ and ϕ = (ϕj)j is equivalent to that of the weak R-composition
Φ : R → Z�0 defined by Φ(i, j) = ϕj(i), and the result follows. �


Remark In the tame case (52) simplifies to

dim
(

H ′
mα

)

=
∣

∣WCompJ ′(m)
∣

∣ =

(

m + |J ′| − 1
m

)

,

and a basis is given by the pure tensors

v̂
φ
=

⊗

j∈J ′
Fφ(j)vj for φ ∈ WCompJ ′(m) .

This is somehow the opposite of (30): there we had an arbitrary singular module, here
we have a tensor product of arbitrarily many tame modules. �

10 Irregular conformal blocks: second version

We now vary the setup of Sect. 8 giving a special role to one of the marked points (e.g.
the last one): choose a (· | ·)-orthogonal morphism θ : g → gop and at the last marked
point put a θ-dual module ̂W ′

θ � W ′
θ as defined in Sect. 6.
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In this case the tensor product splits as

̂H = ̂W ′
n ⊗

⊗

j∈J ′

̂Wj , H = W ′
n ⊗

⊗

j∈J ′
Wj , (53)

where J ′ = J \ { n } as in § 7.1—and omitting the subscript θ. These are naturally
subspaces of Hom(̂Wn, ̂H ′) and Hom(Wn,H ′), respectively, where H ′ is as in
§ 7.1 and ̂H ′ :=

⊗

j∈J ′ ̂Wj. Moreover they still assemble into trivial vector bundles
̂H � H over the space Cn = Confn(Σ)—but also over the full space (44) of
isomonodromy times.

The Lie algebra of g-valuedmeromorphic functions onΣ acts on the leftmost tensor
product of (53). Thinking in terms of linear maps ̂ψ : ̂Wn → ̂H ′, and using (40) and
the dual actions of Sect. 6, one has the formula

〈

τ(X ⊗ f)̂ψ, ŵ
〉

=
∑

j∈J ′

(

X ⊗ τj(f)
)(j)

〈

̂ψ, (θ(X) ⊗ τn(f))ŵ
〉

∈ ̂H ′ ,

where X ∈ g, f ∈ O∗D(Σ) and ŵ ∈ ̂Wn. Taking coinvariants of the resulting left
module yields a second version of the space of irregular covacua, still denoted H :
again the space of vacua H † is defined as in (42), and provides a second version of
irregular conformal blocks. Moreover the material of Sect. 8 goes through, and there
is an action of the sheaf of Lie algebras g∗D on sections of ̂H and H.

10.1 On coinvariants

Consider first the natural inclusion ι : ̂W ′
n ⊗ H ′ ↪→ ̂H, which can be composed with

the canonical projection πH : ̂H → H .
Reasoning as in Proposition 9.1 (which may be thought of as the case ̂W ′

n = C)
shows this composition is surjective. Then reasoning as in Proposition 9.2 shows
the kernel is obtained from the action of meromorphic functions with no poles at
{ p1, . . .,pn−1 } ⊆ Σ, but only (at most) at the point pn. Hence there is a vector space
isomorphism

H � ̂W ′
n ⊗ H ′/g∗pn(Σ)

(

̂W ′
n ⊗ H ′) ,

thinking of pn ∈ Σ as a divisor.
Now a function with a pole at most at pn is either constant, or its Laurent expansion

at pn lies in z−1
n g

[

z−1
n

] ⊆ (Lg)n, where as usual zn is a local coordinate on Σ

vanishing at pn. Hence a coinvariant function is uniquely determined by its restriction
to Wn ⊆ ̂Wn, and since now poles are not allowed we get the following.

Proposition 10.1 There is a canonical vector space identification

H � W ′
n ⊗ H ′/g(W ′

n ⊗ H ′) .
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Thus in this case as well we can reduce the discussion to g-coinvariants for the
tensor product of finite modules.

Now suppose the dual module is tame, and adapt the discussion of § 7.1. We see
there is a surjective map H ′ → H , where again H ′ =

⊗

j∈J ′ Wj—embedded in H

via ŵ �→ ψ ⊗ ŵ, where ψ ∈ V ′
n is the cyclic vector. Reasoning as in Lem. 9.1 the

θ−1(n−)-action cannot give coinvariant elements, so we are left with the action of
h ⊕ θ−1(n+).

In the dual case where θ = θ0 = − Idg we have θ−1(n+) = n+, so we are
essentially back to § 7.1.1. The contragredient case where θ = θ1 (the transposition)
instead allows to go further. In this case θ−1(n+) = n−, whence a new identification
H � H ′

b− , and to trivialise the h-action we consider again the zero-weight subspace
inside H ′. This is again (50), whose (finite) dimension is given in Proposition 9.4.

Finally in this setup we can recover nontriviality, as follows. Recall we attach

weights λ = (λj)j∈J ∈ (

h∨
)J to the marked points, and that we consider the sum

|λ| =
∑

j∈J λj ∈ h∨. The weight space is H ′
|λ| ⊆ H ′, hence

H � H ′
|λ|

/(

n−H ′ ∩ H ′
|λ|

)

.

Compare with (49): as expected the roles of the nilpotent subalgebras n± are
exchanged—by θ.

Proposition 10.2 Suppose n � 3 and |λ| ∈ Q+: then the space of coinvariants is
nontrivial—for any choice of wild parts.

A fortiori then nontriviality holds if the n-th module is not tame.

Proof For ŵ ∈ F|λ|(W1) ⊆ W1 consider the pure tensor

ŵ := ŵ ⊗
⊗

2�i�n−1

wi ∈ H ′
|λ| .

(In brief put the cyclic in all slots except the first, and put a vector of suitable weight in
the first slot.) An argument analogous to the proof of Lem. 9.1 shows that ŵi /∈ n−H ′,
which means exactly that

[

ŵi

] �= 0 inside H .

More precisely denote E
(j)
�• the filtration on U(g)wj = U(n−)wj ⊆ Wj induced

from U(n−), as in § 3.3, with associated grading gr
(

E(j)
)

•. Then consider the tensor
product Z

J ′′
�0-grading

gr
(

E
)

• :=
⊗

j∈J ′′
gr

(

E(j)
)

• , where J ′′ := J ′ \ {1} .

Using (26) yields

n−
(

W1 ⊗ gr
(

E
)

k

)

⊆
(

W1 ⊗ gr
(

E
)

k

)

⊕
n−1
⊕

i=2

(

W1 ⊗ gr
(

E
)

k+εi

)

,
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for k ∈ Z
J ′′
�0, where εi ∈ Z

J ′′
is the i-th vector of the canonical Z-basis. Again

the vanishing of components in the latter direct summands cannot happen, since the
U(n−)-action is free on singular modules. �


Remark If n = 2 instead simply H � Fν(W)
/(

n−W ∩ Fν(W)
)

for ν ∈ Q+, and
we must further distinguish the tame/wild case.

In the tame case V = n−V ⊕Cv, so nontriviality implies v ∈ Fν: this forces ν = 0
and H � Fλ(V) = Cv.

In the wild case instead write ν =
∑

α∈R+ mαα for mα ∈ Z�0, and consider the
vector

ŵν :=
∏

α∈R+

(

X−αz
)mαw ∈ Fν(W) ,

ordering again the positive roots along the Cartan–Weyl basis (17) (note this makes
sense at all depths p � 2). Clearly ŵν /∈ n−W, since all occrrences of root vectors
have positive z-degree, hence H �= (0) always in this case. �

Remark One may also consider the tensor products of the grading of Def. 5.2, in
addition to the h-weight grading—i.e. use the fact that every finite module is a graded
n−�z�-module. Namely there is a decomposition

H ′ =
⊕

k∈ZJ ′
F+

k , where F+
k =

⊗

j∈J ′
F+

kj
(Wj) ,

which is preserved by the tensor product b−-action, so H � ⊕

k∈ZJ ′ (F+
k )b− . This

is a new feature: in the tame case the grading in positive z-degree is trivial. �

11 Flat connections

Consider a particular case of the setup of Sect. 8: mark n + 1 (ordered) points on Σ,
vary the first n � 1 of them, and fix singular characters at those points.

Thus we work on a closed subspace of Confn+1(Σ), which is naturally identified
with the local chart U ′ = Confn(U) ⊆ Cn of Rem. 8.1 where pn+1 = ∞—whence
{ p1, . . .,pn } ⊆ U � C. The label set becomes J = { 1, . . .,n,∞ }, and we write
J ′ := J \ { ∞ }.

Then we have two versions of spaces of covacua: either we put a singular module
at infinity, or a θ-dual. In any case we consider the restrictions of the vector bundles
H ⊆ ̂H over U ′ � Cn(C) :=Confn(C), as well as for the sheaves (πΣ)∗O∗D and
g∗D on U ′—and keep the same notation for them.

Then we want to define a connection ̂∇ on ̂H → Cn(C) which is compatible with
the action of the sheaf of Lie algebras g∗D. In the given trivialisation this will be of
the form ̂∇ = d− ̂�, where ̂� is a 1-form on Cn(C) with values in endomorphisms
of the fibres, and with a view towards (generalisations of) KZ [38] we set

〈̂�, ∂ti
〉 :=L

(i)
−1 , for i ∈ J ′ ,
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where we use the coordinates t : Cn(C) → C
n of Rem. 8.1 and the Sugawara opera-

tor (33). This is a translation-invariant 1-form on the parallelisable manifold Cn(C),
so in particular d̂� = 0. Further the actions of L−1 on different slots commute, so
[

̂� ∧ ̂�
]

= 0, and the connection ̂∇ is (strongly) flat.

11.1 Compatibility with the action of meromorphic functions

We now consider a natural connection D on the sheaf g∗D—a linear map D : g∗D →
Ω1

Cn(C) ⊗ g∗D satisfying Leibniz’s rule. Namely we set

D(X ⊗ f) :=X ⊗ df ,

where d : Ω0
Cn(C) → Ω1

Cn(C) is the standard de Rham differential.

Proposition 11.1 One has

̂∇(

τ(X ⊗ f)ŵ
)

= τ
(

D(X ⊗ f)
)

ŵ + τ(X ⊗ f)̂∇ŵ , (54)

where X ∈ g, and f and ŵ are local sections of (πΣ)∗O∗D and ̂H, respectively.

To prove this we use the following well-known fact.

Lemma 11.1 ([35], Lem. 12.8)One has the identity
[

L−1,Xzm
]

= −mXzm−1 inside
the level-κ completion of U

(

ĝ
)

, for X ∈ g and m ∈ Z.

Proof of Proposition 11.1 For i ∈ J ′ and for local sections ŵ and X ⊗ f of ̂H and
g∗D—respectively—we must prove that

∂ti

(

τ(X ⊗ f)ŵ
)

−
[

L
(i)
−1, τ(X ⊗ f)

]

ŵ = τ
(

X ⊗ ∂ti
f
)

ŵ + τ(X ⊗ f)∂ti
ŵ .

Now for j ∈ J ′ we have the expansions

τj(f) =
∑

k

fk(t1, . . ., tn)z
k
j ,

where fk is a regular function on an open subset of Cn(C), and we take the local
coordinate zj = z − tj on Σ—vanishing at pj. Since ∂ti

(zj) + δij = 0 one has

∂ti

(

τj(f)
)

= τj(∂ti
f) + δij

[

L−1, τj(f)
]

,

using Lem. 11.1. Hence by (40):

∂ti

(

τ(X ⊗ f)ŵ
)

= τ
(

X ⊗ ∂ti
f
)

ŵ +
[

L−1,X ⊗ τi(f)
](i)

ŵ + τ(X ⊗ f)(∂ti
ŵ) ,

and we conclude with

[

L
(i)
−1, τ(X ⊗ f)

]

=
[

L
(i)
−1,

(

X ⊗ τi(f)
)(i)]

=
[

L−1,X ⊗ τi(f)
](i).

�
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Thus a reduced connection is well defined on H → Cn(C), since ̂∇ preserves
the sheaf of sections with values in the subspaces g∗D

̂Hp,χ ⊆ ̂Hp,χ, by (54). We
conclude the sheaf of covacua has a natural structure of flat vector bundle over the
space of tame isomonodromy times, so in particular the dimension of (41) is constant
along variations of the marked points—when finite. After dualising the connection,
the same statements follow for the spaces of vacua.

11.2 Description on finite modules: first version

By the results of Sect. 9 it is possible to describe the reduction of ̂∇ as the g-reduction of
a connection ∇ living on the vector sub-bundleH ⊆ ̂H, and further as a connections
acting on H ′ ⊆ H when the module at infinity is tame.

The goal is to find an explicit expression for ∇. For this we will use the following
elementary fact, where we further set z∞ := z−1—a local coordinate vanishing at
infinity.

Lemma 11.2 (Expansions at irregular singularities) For i ∈ J ′ and for an integer
m > 0 one has

τj

(

z−m
i

)

=

⎧
⎨

⎩

∑
l�0

(m+l−1
l

) zl
j

(ti−tj)l(tj−ti)m , j ∈ J \ { i } ,
∑

l�0

(m+l−1
l

)

tl
iz

m+l
∞ , j = ∞ .

(55)

11.2.1 Tame case

Suppose rj = 1 for j ∈ J. Then using (55) with m = 1 yields

X ⊗ τj

(

z−1
i

)

v̂j =
X

tj − ti
v̂j , X ⊗ τ∞

(

z−1
i

)

v̂∞ = 0 ,

for X ∈ g, i �= j ∈ J ′, v̂j ∈ Vj and v̂∞ ∈ V∞—since zjg�zj�Vj = (0) for j ∈ J.
Hence by (43) one has the following identity insideH —with tacit use of πH :

(

X ⊗ z−1
i

)(i)
v̂ ⊗ v̂∞ =

∑

j∈J ′\{ i }

X(j)

ti − tj
v̂ ⊗ v̂∞ ,

where v̂ =
⊗

j∈J ′ v̂j ∈ H. In particular the action is trivial at infinity.

Looking at (37) and writing L
(i)
−1(v̂ ⊗ v̂∞) = v̂i ⊗ v̂∞ we find

v̂i =
1

κ + h∨

∑

j∈J ′\{ i }

(

∑

k

(Xk)(i)X
(j)
k

ti − tj

)

v̂=
1

κ + h∨

∑

j∈J ′\{ i }

Ω(ij)

ti − tj
v̂ , (56)

whereΩ(ij) := ι(ij)(Ω) denotes the embedding (39) of the quadratic tensor (5)—with
m = l = 0.
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One recovers the KZ connection [38] on the sub-bundle H ′
|λ| ↪→ H, taking V∞ as

auxiliary tame module.

11.2.2 Tamemodules in the finite part

Now allow r∞ � 1 to be arbitrary. What changes is

X ⊗ τ∞(z−1
i )ŵ∞ =

r∞−2∑

l=0

tl
iXzl+1

∞ · ŵ∞ ,

for X ∈ g, ŵ∞ ∈ W∞ and i ∈ J ′, using the case m = 1 of (55). So the action is
nontrivial at infinity if r∞ � 2.

Then by (43) one has the following identity inside H —with tacit use of πH :

(

X ⊗ z−1
i

)(i)
v̂ ⊗ ŵ∞ =

⎛

⎝

∑

j∈J ′\{ i }

X(j)

ti − tj
−

r∞−2∑

l=0

tl
i

(

Xzl+1)(∞)

⎞

⎠ v̂ ⊗ ŵ∞ .

Thus looking at (37) one finds L
(i)
−1(v̂ ⊗ ŵ∞) = v̂i ⊗ w∞ +Di(v̂ ⊗ ŵ), where v̂i is

as in (56), and

Di(v̂ ⊗ ŵ∞) =
1

κ + h∨

r∞−2∑

l=0

tl
iΩ

(i∞)
0,l+1(v̂ ⊗ ŵ∞) ,

using again the embedding ι(i∞)(Ω0,l+1) of (5) defined by (39).

Remark E.g. if r∞ = 2 then the new operator acts by

Di(v̂ ⊗ ŵ∞) =
Ω

(i∞)
01 v̂ ⊗ ŵ∞

κ + h∨
. (57)

In this case the reduced connection is close to the dynamical KZ connection, i.e. [23,
Eq. 3]. We will recover the very same “dynamical” Cartan term in Sect. 14. �

11.2.3 Tamemodule at infinity

Suppose symmetrically r∞ = 1, but rj is arbitrary for j ∈ J ′.

Proposition 11.2 One has L
(i)
−1ŵ ⊗ v̂∞ = ŵi ⊗ v̂∞, with

ŵi = −
1

κ + h∨

∑

j∈J ′\{ i }

(

ri−1∑

m=0

rj−1∑

l=0

(

m + l

l

)

Ω
(ij)
ml ŵ

(ti − tj)l(tj − ti)m+1

)

. (58)
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Proof Postponed to § B.2. �


This is an irregular generalisation of the KZ connection, corresponding to an action
of the universal connection of [46].10

Remark The flat connection (58) is known to admit an isomonodromy system as
semiclassical limit (see op. cit.): precisely the irregular isomonodromy system on
CP1 for variations of the positions of the poles (the tame isomonodromy times, as
considered in [37]).

This generalises the same fact from the tame case: the quantisation of the
Schlesinger system [48] yields the KZ connection [30, 46]. �

11.2.4 General case

Finally take r∞ � 1 to be generic as well.

Proposition 11.3 One has L
(i)
−1ŵ ⊗ ŵ∞ = ŵi ⊗ ŵ∞ + Di(ŵ ⊗ ŵ∞), with ŵi as

in (58) and

Di(ŵ ⊗ ŵ∞) =
1

κ + h∨

ri−1∑

m=0

r∞−m−1∑

l=0

(

m + l

l

)

tl
iΩ

(i∞)
m,m+l+1(ŵ ⊗ ŵ∞). (59)

Proof This is a generalisation of Proposition 11.2 where moreover

X ⊗ τ∞(z−m
i )ŵ∞ =

r∞−m−1∑

l=0

(

m + l − 1
l

)

tl
iXzm+l

∞ · ŵ∞ ,

for X ∈ g, ŵ∞ ∈ W∞ and i ∈ J ′, using the general case of (55). Now the action is
nontrivial at infinity for r∞ � m + 1, and the result still follows from (36). �


11.3 Description on finite modules: second version

Finally one may consider the setup of Sect. 10, i.e. put a θ-dual moduleW ′
θ at infinity.

In the analogue of §§ 9.2.1 and 9.2.3—when the module at infinity is tame—the
description of the reduced connection does not change, using (32). In the remaining
cases one finds the action of the same quadratic tensors on the last slot, acting on the
θ-dual.

Hence in the next section we will introduce a universal versions of the reduced
connection, looking at (58) and (59), to treat the two versions on the same footing.

10 Compare also (58) with [27, Eqs. B.6 and B.7], where g = sl(2,C): this should be a formalisation of
fn. 6 of op. cit.
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12 Universal connections

Fix again a depth p � 1, an integer n � 1, and the finite ordered sets

{ 1, . . .,n } = J ′ ⊆ J = { 1, . . .,n,∞ } .

Consider then the nonautomous (quantum) Hamiltonian systems

̂Hi = ̂H
(p)
i : Cn(C) → U

(

gp

)⊗ |J| ,

with Hamiltonians ̂Hi = ̂H ′
i +

̂H ′′
i for i ∈ J ′, where

̂H ′
i(t) :=−

1
κ + h∨

∑

j∈J ′\{ i }

(

p−1∑

m,l=0

Ω
(ij)
ml

(

m + l

l

)

(−1)m(ti − tj)
−1−m−l

)

, (60)

and

̂H ′′
i (t) :=

1
κ + h∨

p−1∑

m,l=0

Ω
(i∞)
m,m+l+1

(

m + l

l

)

tl
i , (61)

as suggested by (58) and (59).
These Hamiltonians are equivalent to the universal connection (at depth p):

∇p=d − �p , �p = � ′
p + � ′′

p , � ′
p :=

∑

J ′

̂H ′
idti , � ′′

p :=
∑

J ′

̂H ′′
i dti , (62)

defined on the trivial vector bundle U(J,p) :=Cn(C) × U
(

gp

)⊗ |J| → Cn(C) by
means of the U(gp)

⊗ |J|-valued 1-forms � ′
p and � ′′

p on the base space. This gener-
alises [46] with a nontrivial action at infinity.

Then for every choice of singular modules labeled by J there is an action of (62) on
H for p � 0, which reproduces the most general case of § 9.2 (with θ-duals or not),
so in particular there are induced integrable quantum Hamiltonian systems. Hence
one expects (62) to be flat before taking representations, as we will show.

Remark One directly checks that

∂ ̂H ′
j

∂ti
−

∂ ̂H ′
i

∂tj
= 0 , and

∂ ̂H ′′
j

∂ti
= δij , for i, j ∈ J ′ ,

so (strong) flatness is equivalent to the commutativity of the quantum Hamiltonians.
�
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12.1 Flatness at finite distance

The 1-form defining the Hamiltonians (60) can be written

� ′
p =

1
κ + h∨

∑

i �=j∈J ′
r
(ij)
p (ti − tj)d (ti − tj) ,

where rp : C \ { 0 } → g⊗2
p is the following rational function:

rp(t) :=−

p−1∑

m,l=0

Ωml ⊗ (−1)m
(

m + l

l

)

t−1−m−l . (63)

Remark It is easy to see that rp is skew-symmetric, meaning

r
(ij)
p (t) + r

(ji)
p (−t) = 0 , for t ∈ C \ { 0 } , i, j ∈ J ′ . (64)

�
The study of the connection ∇ ′

p :=d − � ′
p is closely related to the theory of the

classical Yang–Baxter equation (CYBE) [4]. In particular flatness (for |J ′| � 3) is
equivalent to the CYBE for (63) in the Lie algebra gp, i.e. to the following identity
inside g⊗3

p :

[

r
(12)
p (t12), r

(13)
p (t13)

]

+
[

r
(13)
p (t13), r

(23)
p (t23)

]

+
[

r
(12)
p (t12), r

(23)
p (t23)

]

= 0 ,

where tij := ti − tj.

Theorem 12.1 (cf. [46]) The rational function (63) is a solution of the CYBE.

Proof We will reduce the proof to the well-known case p = 1, where gp = g. In
this case we have the classical result that the rational function r1(t) = Ωt−1 is
a skew-symmetric solution of the CYBE [4], which is an easy consequence of the
Drinfeld–Kohno relations

[

Ω(ij),Ω(ik)+Ω(jk)
]

= 0, and the Arnold relations [2]:

1
tijtjk

+
1

tjktki
+

1
tkitij

= 0 . (65)

To prove the general case consider the identification g⊗2
p � g⊗2 ⊗ A(2,p), where

A(n,p) :=C�w1, . . .,wn�
/

Ip is the quotient of the power-series ring by the ideal
Ip =

(

w
p
1 , . . .,w

p
n

)

generated by
{

w
p
1 , . . .,w

p
n

}
. In this identification Ωml =

Ω ⊗ wm
1 wl

2, and (63) can be written

rp(t) = Ω ⊗ τ
(p)
(0,0)(ft) ∈ g⊗2

p , where ft(wi,wj) :=
1

t + wi − wj
,
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and where τ
(p)
(0,0)(ft) is the class mod Ip of the Taylor expansion of ft at the origin.

Then, up to the identification g⊗3
p � g⊗3 ⊗ A(3,p), the CYBE follows again from

(65), with ti replaced by ti − wi, for i ∈ { 1, 2, 3 }. �


Hence we have an inverse system of classical r-matrices, with respect to the canon-
ical projections g�z�

/

z•+1g�z� � g�z�
/

z•g�z�, corresponding to an inverse system
of flat vector bundles

(

U(n,p),∇ ′
p

)

over the space of configurations of J ′-tuples of
points in the complex plane. The inverse limit of the vector bundles is naturally iden-

tified with the trivial vector bundle with fibreU
(

g�z�
)

̂⊗ |J|, the completion of the n-th
tensor power of the positive part of the loop algebra.

Remark The inverse limit r∞(t) = lim←−p
rp(t) ∈ g⊗2[t−1]�z1, z2� is a solution of the

CYBE in a completion of g�z�⊗3 ⊗ OC3(C)

(

C3(C)
)

.
Analogously on the representation-theoretic side one may consider characters of

the Lie subalgebra

S(∞) :=
⋂

p�1

S(p) = b+�z� ⊕ CK ⊆ ĝ ,

using (7). Then S
(∞)
ab � h�z� ⊕ CK, so the induced non-smooth modules ̂W(∞)

depend on infinitely many Cartan parameters (and a level κ), and are generated over
U(Ln−) by a cyclic vector annihilated by n+�z�. Under (15) the parameters of these
modules correspond to principal parts of connections with essential singularities. �

12.2 Flatness overall

The 1-form defining the Hamiltonians (61) can be written

� ′′
p =

1
κ + h∨

∑

i∈J ′
s
(i∞)
p (ti)dti ,

where sp : C \ { 0 } → g⊗2
p is the following rational function:

sp(t) :=
p−1∑

m,l=0

Ωm,m+l+1 ⊗
(

m + l

l

)

tl .

Theorem 12.2 The universal connection ∇p is flat for p � 1.

Proof Reasoning as in the proof of Theorem 12.1 consider the function

gt(wi,wj) :=
wj

1− wj(t + wi)
.
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Then one directly checks that the Taylor expansion of gt at the origin satisfies

sp(t) = Ω ⊗ τ
(p)
(0,0)(gt) ,

and we can conclude by proving a version of the CYBE in the Lie algebra gp.
Namely by Theorem 12.1 the commutator of two Hamiltonians becomes

[

̂Hi, ̂Hj

]

=
[

r
(ij)
p (tij), s

(i∞)
p (ti)

]

+
[

r
(ij)
p (tij), s

(j∞)
p (tj)

]

+
[

s
(i∞)
p (ti), s

(j∞)
p (tj)

]

,

using the fact that actions on disjoint pairs of slots commute, and the skew-
symmetry (64). Now we can use the standard Drinfeld–Kohno relations to reduce
flatness (for all p � 1) to a variation of the Arnold relations (65), namely to the
following identity:

gti
(wi,w∞)gtj

(wj,w∞) + ftij
(wi,wj)

(

gti
(wi,w∞) − gtj

(wj,w∞)
)

= 0 ,

where ft = ft(wi,wj) is as in the proof of Theorem 12.1. �

Remark 12.1 One can give a more symmetric expression of (62), with no special role
for the marked point at infinity.

To this end consider the generating function

ϕ(wi,wj) :=
1

wi − wj
, (66)

which is a meromorphic function on C
2 with poles along

{
wi = wj

} ⊆ C
2—and

only there. It can be extended (by zero) to a meromorphic function on the complex
surfaceΣ2 \{ (∞,∞) }, so we can take Taylor expansions τ(pi,pj)(ϕ) ofϕ at any pair

of distinct points pi,pj ∈ Σ—using the local coordinates w−1
i and w−1

j at infinity.
Then analogously to the above one checks that

τ
(p)
(pi,pj)

(ϕ) = rp(tij) , τ
(p)
(pi,∞)

(ϕ) = sp(ti) ,

for points pi,pj ∈ Σ at finite distance of coordinates ti, tj ∈ C, respectively.
Hence

�p =
1

κ + h∨

∑

i �=j∈J

τ
(p)
(pi,pj)

(ϕ)dtij ,

and all marked points are treated the same.
Then the flatness of (62) for p � 1 is equivalent to generalised Arnold relations,

relating the Taylor expansions of (66) at pairs extracted from a triple of distinct points
on the Riemann sphere. �

Hence we find again an inverse system of flat vector bundles
(

U(J,p),∇p

)

, over
the space of configurations of J ′-tuples of points in the complex plane.
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12.3 Connection on coinvariants

The universal connection (62) is well defined for sections with values in the space of
g-coinvariants of U(gp)

⊗n.
To prove this consider the canonical embedding g ↪→ gp � g � bp and the

universal embedding gp ↪→ U(gp). Composing them we let g act on U(gp) in the
regular representation, and finally the tensor product action (analogous of (40) in the
case of constant functions). Then we get a g-action on differential forms with values
in the flat vector bundle

(

U(J,p),∇p

)

.

Proposition 12.1 The g-action is flat for all p � 1.

Note this is a particular case of a compatibility such as (54), for constant sections
of the trivial bundle Cn(C) × g → Cn(C), equipped with the trivial connection.

Proof Postponed to § B.3. �

It follows that (62) preserves sections with values in gU(gp)

⊗ |J| ⊆ U(gp)
⊗ |J|, so

a reduced (flat) connection is well defined on the space of g-coinvariants of the tensor
product. This was to be expected, as it holds for the induced connections above.

13 On conformal transformations

Consider the action of Möbius transformations on Σ = P(C2), that is

g.
[

t1 : t2
]

=
[

at1 + bt2 : ct1 + dt2
]

,

for (t1, t2) ∈ C
2 \ { 0 }, with g = g(a,b, c,d) given by numbers a,b, c,d ∈ C such

that ad − bc = 1. In the standard affine chart U = Σ \ {[1 : 0]}
t−→ C we then have

the subgroup of affine transformation of the complex plane, with diagonal action on
Cn(C) ⊆ C

n, and with induced pull-back (right) action on sections of vector bundles
over that base.

In particular translations t �→ t + b correspond to a = d = 1 and c = 0.
This is the 1-parameter subgroup corresponding to the infinitesimal generator E ∈
Lie

(

PSL(2,C)
)

= sl(2,C), and the associated infinitesimal action reads

d
(

ŵ ◦ γ
)

(ε)

dε

∣

∣

∣

∣

ε=0
=

dŵ(t + ε)

dε

∣

∣

∣

∣

ε=0
=

∑

i∈J ′

∂ŵ

∂ti
,

considering the path γ : ε �→ g(1, ε, 0, 1).
Analogously dilations correspond to the 1-parameter subgroup generated by H ∈

sl(2,C), and the associated infinitesimal action is given by the Euler vector field

d
(

ŵ ◦ γ
)

(ε)

dε

∣

∣

∣

∣

ε=0
=

dŵ
(

(1+ ε)2t
)

dε

∣

∣

∣

∣

ε=0
= 2

∑

i∈J ′
ti

∂ŵ

∂ti
,
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considering the path γ : ε �→ g
(

1+ ε, 0, 0, (1+ ε)−1
)

.

Proposition 13.1 Suppose the module at infinity is tame. Then the action of affine
transformations on horizontal sections of the bundle of covacua reads

ŵ(t ′) =
∏

i∈J ′
exp

(

aL
(i)
0

) · ŵ(t) , (67)

where t ′ = (t ′
i)i∈J ′ with t ′

i = e2ati + b. In particular horizontal sections are
invariant under translations.

Proof Postponed to B.4. �

Remark As in the tame case, the g-coinvariance implies

∑

i �=j∈J

Ω(ij)ŵ +
∑

k∈J

Ω(kk)ŵ = 0 ,

in the space H . The action of Ω(kk) is that of the quadratic Casimir (4) on the k-th
slot, so this term acts diagonally and can be exponentiated to find the usual conformal
weight (cf. Rem. 7.2). The point is that in general the dilation action has further
nonscalar terms. �

14 A different dynamical term at infinity

In this section we generalise the dynamical KZ connection [23], varying the setup of
Sect. 3.

Namely note another natural family of Lie algebrasS(p) ⊆ S(p) ⊆ ĝ is given by

S(p) :=h�z� + zpg�z� ⊕ CK .

The derived Lie algebra ofS(1) yields the first “level subalgebra” of [21], then the two
differ forp � 2. One can then define (smooth) inducedmodules ̂W as in Sect. 3, where
̂W = ̂W

(p)

χ depends on a character χ : S(p) → C. However one does not recover the
standard affine Verma module as the starting element of the family, contrary to (10)—
which is one motivation behind Def. 3.1.

Moreover one has S(p) � h2p ⊕ CK, analogously to Lem. 3.1, so for p = 1 a
character is defined by elements λ ∈ h∨ and by the irregular Cartan term μ ∈ (h⊗z)∨

(plus the choice of a level κ). Hence for p = 1 we see (15) matches up the parameters
of ̂W with principal parts of meromorphic connections at poles of order two, but
in general only poles of even order can be obtained with this construction, contrary
to (10)—which is another motivation behind Def. 3.1.

So we can put the module ̂W = ̂W
(1)
χ at infinity in the tensor product ̂H, and

consider the spaces of coinvariants H as in Sect. 8. The proofs of Props. 9.1, 9.2
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and 9.3 can be adjusted introducing suitable filtrations on ̂W and W = U(g�z�)w,
where w ∈ ̂W is the cyclic vector, as well as the whole of § 9.1. Hence in brief one
can useW as auxiliary module at infinity, which yields a different “dynamical” Cartan
term in the reduced connection—with respect to (57).

Namely (57) simplifies to

Di(v̂ ⊗ w) =
1

κ + h∨

∑

k

μkH
(i)
k · v̂ ⊗ w ,

where (Hk)k is a (· | ·)-orthonormal basis of h, using (n+ ⊕ n−) ⊗ z∞ · w = 0,
Hkz∞ · w = μkw, and writing μk = 〈μ,Hkz∞〉.

We see the reduced connection generalises the dynamical KZ equations, i.e. [23,
Eq. 3], and it coincides with it when the modules over finite points are tame.11 So we
recover the Felder–Markov–Tarasov–Varchenko connection (FMTV) over variations
of marked points as a particular case of this construction.

Remark 14.1 Note the whole of the FMTV connection also allows for variations of
the irregular part μ ∈ (h ⊗ z)∨, in addition to the deformations à la Klarès con-
sidered here [37]. In particular when there is only one simple pole the resulting flat
connection for variations of μ is the DMT connection [40, 52], which is derived from
a representation-theoretic setup in [21, § 3.11], and [22, § 3.7] (for the latter see
also [53]). �
Remark 14.2 (On quantisation of isomonodromy connections) Just as in the case of
theKZ connection, a different derivation of these flat connections has been obtained by
(filtered) deformation quantisation of isomonodromy systems, this time importantly
for irregular meromorphic connections.

Namely [9] derived the DMT connection from the quantisation of a dual version
of the Schlesinger system. This is related to the usual Schlesinger system by the
Harnad duality [29], i.e. the Fourier–Laplace transform (cf. [50] on the quantum side).
In the same spirit, the whole of FMTV connection can be obtained by quantising
the isomonodromy system of Jimbo–Miwa–Môri–Sato [33] (see [44, § 11]; more
generally see op. cit. and [45] for a further extension to connections with poles of
order three including all the above cases). �

15 Outlook

As explained in the introduction we also wish to consider flat quantum connections
along variations of irregular types (i.e. variations of “wild” Riemann surface structures
on the sphere [7]). Two viable viewpoints to introduce them are:

(1) The quantisation of the full irregular isomonodromy connections, in the spirit
of [9, 44], generalising the simply-laced quantum connections (which quantise the
simply-laced isomonodromy systems [12]);

11 Replace κ + h∨ ∈ C with “κ” and
∑

k μkHk ∈ h with “μ” to retrieve the exact [23, Eq. 3].
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(2) Considering quantum symmetries: the quantum/Howe duality [3] was used in [52]
to relate KZ and the “Casimir” connection of De Concini and Millson–Toledano
Laredo (DMT) [40], and at the level of isomonodromy systems corresponds to the
Harnad duality [29]. An analogous quantisation of the Fourier–Laplace transform
may be taken here in order to turn the variations of marked points into variations
of irregular types, extending the viewpoint of [11, 45].

Another natural direction to pursue is the higher-genus case, noting in that case
the moduli spaces of connections on holomorphically trivial bundles have positive
codimension inside the full de Rham spaces.

Finally one may try to introduce integrality conditions, and lift this Lie-algebra
representation setup to Lie groups, with a view towards the geometric quantisation
of coadjoint Gp-orbits (along the lines of the Borel–Weyl–Bott theorem [17, 49, 51],
or more generally of the orbit method [36]). Another approach we will try in this
direction is that of the quantisation of the nilpotent Birkhoff orbits OB ⊆ b∨

p [8].
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Appendix A. Standard notions/notations

Duals The (algebraic) dual of a vector space W is written W∨ = Hom(W,C), and
the natural pairing W∨ ⊗ W → C is denoted α ⊗ w �→ 〈α,w〉. If I is a set and
W =

⊕

i Fi(W) an I-graded vector space then the restricted/graded dual of (W,F•)
is the I-graded vector space W∗ :=

⊕

i∈I Fi(W)∨ ⊆ ∏
i∈I Fi(W)∨ � W∨.

Gradings and filtrations If (I,�) is a totally ordered set and W =
⊕

i∈I Fi(W) an
I-graded vector space, the associated I-filtration on W is defined by the subspaces
F�i :=

⊕

j�i Fj(W).

If I and J are sets and Wj =
⊕

i∈I F
(j)
i (Wj) a J-family of I-graded vector spaces,

the tensor product IJ-grading on W =
⊗

j∈J Wj is defined by the subspaces

Fi :=

(

⊗

j∈J

F
(j)
i(j)

)

, for i : J → I .

http://creativecommons.org/licenses/by/4.0/
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If further (I,�) is a totally ordered Z-module then the tensor product I-filtration on
W is defined by the subspaces

F�i :=
⊕

∑
j∈J i(j)�i

Fi , for i ∈ I .

Lie-algebraic constructions Let L be a Lie algebra. The abelianisation of L is the
abelian Lie algebra Lab :=L

/[

L,L
]

, and the opposite of L is the Lie algebra Lop on
the same vector space, with bracket

[

X, Y
]

Lop :=
[

Y,X
]

L
for X,Y ∈ L.

If p � 1 is an integer and “z” a variable then the associate Lie algebra of depth p

is

Lp :=L�z�
/

zpL�z� � L ⊗ (

C�z�
/

zp
C�z�

)

,

coming with a projection Lp � L1 = L. There is then a canonical vector space
isomorphism Lp � ⊕p−1

i=0 L ⊗ zi, which can be upgraded to an isomorphism of Lie
algebras if one defines a Lie bracket on the direct sum by truncating terms of degree
greater than p − 1.

If W is a left L-module then the space of L-coinvariants is WL :=W
/

LW, where
LW :=

∑
X∈L XW ⊆ W—in particular Lab is the space of adL-coinvariants.

Appendix B. Computations

B.1. Proof of Prop. 7.1

Proof Set a
(j)
k :=〈aj,Hkzj〉 for k ∈ { 0, . . ., r } and j ∈ { 0, . . .,p − 1 }, and further

a
(j)
α :=〈aj,Hαzj〉 for α ∈ R.
By (11) we see that : Xkz−jXkzn+j : w �= 0 implies 1 − p � j � p − 1 − n, so

n � 2(p − 1) is necessary for nonvanishing terms.
Now importantly for n ∈ { p − 1, . . ., 2(p − 1) } and j ∈ { 1− p, . . .,p − 1− n }

one has

−j,n + j ∈ { 1− p + n, . . .,p − 1 } ⊆ { 0, . . .,p − 1 } ,

so the normal ordered products are void in (33). Then for α ∈ R+ and i ∈ { 1, . . ., r }

one computes

Hkz−jHkzj+nw = a
(−j)
k a

(j+n)
k w , Eαz−jEαzn+jw = 0 ,

and

(Hα | Hα)

2
Eαz−jEαzn+jw = Hαznw = δn,p−1a

(n)
α w .
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Hence

2
(

κ + h∨
)

Lnw =

p−1−n∑

j=1−p

⎛

⎝

r∑

k=1

(

Hkz−jHkzj+n
)

+
∑

α∈R+

(

Eαz−jEαzj+n
)

⎞

⎠ w

=

⎛

⎝

∑

j,k

(

a
(−j)
k a

(j+n)
k

)

+ δn,p−1(2p − n − 1)
∑

α∈R+

( (α | α)

2
a
(n)
α

)

⎞

⎠ w ,

which implies (34) and (35) using (α|α)
2 〈μ,Hαzi〉 = (α | μ), for μ ∈ h∨ ⊗ zi. �


B.2. Proof of Prop. 11.2

Proof Using the general case of (55) yields

X ⊗ τj(z
−m
i )ŵj =

rj−1∑

l=0

(

m + l − 1
l

)

Xzl
jŵj

(ti − tj)l(tj − ti)m
, X ⊗ τ∞(z−m

i )v̂∞ = 0 ,

for X ∈ g, i �= j ∈ J ′, ŵj ∈ Wj and v̂∞ ∈ V∞—since z∞g�z∞�V∞ = 0 =

z
rj

j g�zj�Vj.

Hence by (43) one has the identity
(

X ⊗ z−m
i

)(i)
ŵ ⊗ v̂∞ = ŵi,m,X ⊗ v̂∞ inside

H , where

ŵi,m,X = −
∑

j∈J ′\{ i }

(rj−1∑

l=0

(

m + l − 1
l

)
(

Xzl
)(j)

ŵ

(ti − tj)l(tj − ti)m

)

.

The result then follows from (36). �

B.3. Proof of Prop. 12.1

Proof We prove the g-action commutes with ∇p : Ω0
(

U(n,p)
) → Ω1

(

U(n,p)
)

.
Since the g-action is independent of the point on the base space, this is equivalent to
� ′

p ⊗ Xψ − X
(

� ′
p ⊗ ψ

)

= 0 = � ′′
p ⊗ Xψ − X

(

� ′′
p ⊗ ψ

)

, for X ∈ g.
Now by (60) one has

(κ + h∨)
(

� ′
p ⊗ Xψ − X

(

� ′
p ⊗ ψ

)

)

=
∑

i �=j

p−1∑

m,l=0

(−1)m
(

m + l

l

)

t−1−m−l
ij dtij ⊗

(

∑

k∈J ′

[

Ω
(ij)
ml X(k)

]

ψ

)

,

and analogously by (61)

(κ + h∨)
(

� ′′
p ⊗ Xψ − X

(

� ′′
p ⊗ ψ

)

)

=
∑

i∈J ′

p−1∑

m,l=0

(

m + l

l

)

tl
i ⊗

(

∑

k∈J ′

[

Ω
(i∞)
ml ,X(k)

]

ψ

)

.
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Hence it is enough to show that

∑

k∈J ′

[

Ω
(ij)
ml ,X

(k)
]

= 0 ∈ U(gp)
⊗n ,

for all i �= j ∈ J and for all m, l ∈ Z. Finally by (5) we have

∑

k∈J ′

[

Ω
(ij)
ml ,X

(k)
]

=
∑

r

(

[

Xr,X
]

zm
)(i)(

Xrz
l
)(j)

+
(

Xrz
m

)(i)
(

[

Xr,X
]

zl
)(j)

,

where we let (Xr)r be a (· | ·)-orthonormal basis of g, which vanishes by (6). �

B.4. Proof of Prop. 13.1

Proof Indeed if ŵ is a ∇ ′
p-horizontal section of U(J,p) → Cn(C) then

Eŵ =
∑

i∈J ′

(

∑

j∈J ′\{ i }

r
(ij)
p (tij)

)

ŵ ,

which vanishes by the skew-symmetry (64), and which implies the statement about
translations after taking gp-modules.

As for dilations, in the universal case of a ∇ ′
p-horizontal section one finds

H

2
ŵ =

∑

i∈J ′

(

∑

j∈J ′\{ i }

tir
(ij)
p (tij)

)

ŵ =
∑

i �=j∈J ′
tijr

(ij)
p (tij)ŵ ,

andwemust consider the induced actiononfinite singularmodules.Nowone computes

L0ŵ =
1

κ + h∨

p∑

j=1

(

∑

k

Xkz−jXkzj

)

ŵ, for ŵ ∈ W ,

analogously to (36), using a (· | ·)-orthonormal basis (Xk)k of g. Then reasoning as
in § 9.2.3 the induced slot-wise action on coinvariants is

L
(i)
0 ŵ = −

1
κ + h∨

∑

j∈J ′\{ i }

(

ri−1∑

m=0

rj−1∑

l=0

(

m + l

l

)

(−1)mt−m−l
ij Ω

(ij)
ml

)

ŵ ,

with tacit use of the projection πH : H ′
|λ| → H , and on the whole

H

2
ŵ =

(

L0 − L
(∞)
0

)

ŵ =
∑

i∈J ′
L
(i)
0 ŵ ,
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by (63). This is the action of an endomorphism on the finite-dimensional vector space
H , and the statement follows by integrating the resulting (linear, first-order) differ-
ential equation. �
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