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Abstract—A new approach to describe the nuclear scattering amplitudes in Glauber theory is proposed. The
method is based on the expression for the generating function of the Glauber amplitudes. The generating
function has been explicitly found in all orders of the Glauber theory.
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1. The theory of nucleus-nucleus scattering has
recently acquired a modern impetus from the large
number of the currently available experimental data
(see e.g. [1—4]). The theoretical predictions for the
scattering at the comparatively high energies more
than several hundreds MeV per nucleon are standardly
provided by the Glauber theory [5, 6]. It proves to be
highly efficient for the hadron-nucleus collision, sup-
plying rather simple analytical expressions for the
scattering amplitudes. The case of the nucleus-
nucleus scattering is much more involved. Additional
simplifying approximations are commonly used to
obtain an analytical expression such as the optical
model or the rigid target model (see e.g. [8—10]).
Apart from these models there are only numerical cal-
culations based on Monte-Carlo method or on its
modifications [11, 12].

In the present paper we propose a novel approach
based on the analytically derived generating function
the Glauber amplitudes for nucleus-nucleus scatter-
ing. It allows to reach the same accuracy as the numer-
ical Monte-Carlo calculations but in much more sim-
ple way.

2. The amplitude of the elastic scattering of the
incident nucleus A on the fixed target nucleus B in the
Glauber theory reads [14, 15]

Fi(@) = 2% [dbe "1 = $,0)]. (1)

where ¢ is the transferred momentum and k is the
mean momentum carrying by a nucleon in nucleus A.
The two-dimensional impact momentum b lies in the
transverse plain to the vector k. The main assumption
underlying the Glauber theory is that the radius of
nucleon-nucleon interaction is much smaller than the
typical nucleus size. Then assuming the phase shifts of

the nuclear scattering to be the sum of those for each
nucleon-nucleon scattering, % yy(b), the function
S ,5(b) takes the form
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where f,f’,k, (g) is the nucleon-nucleon scattering
amplitude. The product in (2) comprises all pairwise
interactions between the nucleons from the projectile
and target nuclei 4 and B, x; and y; being the nucle-
ons’ positions in the transverse plain. The nucleon

densities in the transverse plain, pJA?, g, are determined
through three-dimensional ones integrated over longi-
tudinal coordinates,
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In what follows the three-dimensional nuclear
densities are assumed to be the product of one-
nucleon densities,

N
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and consequently

N
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Each pair {i, j} enters the product (2) only once,
meaning that each nucleon from the projectile nucleus
can scatter on each nucleon on the target one but no
more than once.

The total interaction cross section is
o = ¥im £ = 0) = a1 - Su0)1. )
while the integrated elastic cross section evaluates to

Sis = [d bl = S4BT ©)

The difference of these two values determines the
total inelastic, or reaction, cross section,

Olis = Oy — Oy = [A*B1=IS®F1. (D)

3. A main obstacle to deal with the Glauber ampli-
tude (2) is its complicated combinatorial structure. To
treat it analytically we present (2) as a functional inte-
gral. Let us consider the identity
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where C, is the normalization constant and the func-
tional integral can be thought of as an infinite product
of two dimensional integrals over the auxiliary vari-
ables ®(x) at each space point x, the inverse of the
propagator, Afl(x —y), being understood as
Id 2207 (x = DAz — y) = 8P(x — y). If this function
is chosen to obey the equation

Alx—
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the right hand side of (8) recovers the product in (2).
The function A(x — y) plays a role similar to that of
Mayer propagator (function) in statistical mechanics,
the analogy between Glauber theory and statistical
mechanics has been remarked earlier (see, e.g. [16]).
Then we get

S, p(b) = cochpDcp*
x exp{—jdzxd YO(0A ™ (x - y)O*(y)}
x[ [d*xpic - 0™ [ [d’ypye™ ] .
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This form suggests that it is natural to introduce the
generating function,

Z(u,v) = j DO DD

x *exp{- jdzxdzycb(x)A*‘(x - @) (1D)
+ uJ.d ’xp, (x — b)e®™ + vId ’xp l(x)e(w(x)} ,
so that
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The small interaction range, the property Glauber
theory is based on, makes the complex functional inte-
gral (11) feasible. The standard parametrization of the
elastic nucleon-nucleon scattering amplitude,
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where Gyy is the total nucleon-nucleon cross section.
It gives according to (3)
ot X
Ty (x) = 2% e ¥, (14)
43

the value a = /2np being of the order of the interac-
tion radius. Assuming a to be small at the nuclear scale
the nucleon-nucleon amplitude can be treated as a
point-like function,
Fyy(x) = 2 0k, (15)
If A(x —y) is point-like the integrals over ®(x)
fields in (11) are independent for different coordinate
values. It turns the functional integral into the infinite
product of finite dimension integrals, that can be sep-
arately evaluated for each x. It results into the generat-
ing function (see [7] for details)

Wy (w,v)

Z(u,v) = Ce ,

W,(uw) =L [d’x (16)
a
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with u- and v-independent constant C irrelevant
in (12) and
10wy
2 4

The sums over M and N can always be truncated
up to A and B because the higher terms obviously do
not contribute to the derivatives in (12). Put differ-
ently, the number of contributions to the generating
function does not exceed the number of various brack-
ets in the initial product (2).
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Table 1. The reaction and the total cross sections of '>C—'*C collision at the energy 950 MeV per nucleon and R = 2.49 fm.
The first two columns present the results of the optical and rigid target approximations, the second two columns are for the results
obtained with the full generating function, assuming 4 > 1 (third column) and exactly differentiating it (fourth column)

Optical approximation

Rigid target approximation

Assuming 4 > 1 Exact differentiation

952 911

1572 1470

857 867

1371 1363

5. To elaborate Eq. (16), further we expand W, (u,v)
into the series built of the densities overlaps,

tnn®) = % [ Xl = BP0l (1)

Since  1,(b) =1,,(b) =1 we have W (u,v)=
u + v + F(u,v) and the amplitude reads
A!B!
Spb) = —_—
< A—-k)\(B - ))!
k,/SA,B( )( 7 (18)
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For A, B > 1 one may assume that k, j < A, B and
AYJ(A—k)!BY(B— j)! = A" B’ that gives

S, p(b) = e"P. (19)

Really the functions 7, ,(b) decrease as the indices
m, n grow. Keeping only the lowest, m =n =1, we
arrive at the well known optical approximation [8]

F(A.B) == 0} /@' Ty (®),
T,5(b) = ABtl,l(b)-

(20)

The optical approximation is equivalent to the
requirement that each nucleon from one nucleus
interacts with another nucleus no more than once.

Another known approximation easily reproduced
here is the rigid target (or projectile) approximation
[9, 10]. It allows any nucleon from the projectile to
interact with several nucleons from the target whereas
any target nucleon can interact no more than once.
Though it seems to be rather natural when the atomic
weight of the projectile is significantly smaller than
that of the target nucleus, this approximation fairly
good works even for the equal atomic weights [15]. It

requires one density, say, pj(x), to be kept in Eq. (16)
only in the linear order, permitting at the same time

any powers of p é(x). It gives
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6. Below we present the results obtained with the

full generating function (16) for the 2c-c scattering
in the energy interval 800—1000 MeV per projectile
nucleon, where the experimental data exist [17]. The

total cross section Gy, C mb has been taken from aver-
aging over pp and pn values, the slope value has been

chosen to be =0.2 fm’. The nucleon density is
parameterized by harmonic oscillator distribution well
suited for light nuclei with the atomic weight 4 < 20,

2
I

2 2
PA(r) = Po {1 + é(A - 4)%} r, (22)

p, being the normalization, and the factor A adjusted

to match the nuclear mean square radius, R, = \/r? ,
rj = Id3rr2pA(r).

Upon evaluating W, (u,v) through all #,,(b) func-
tions (17) for m,n < A =12 in the parametrization (22)
with R = 2.49 fm fitted for this parametrization in

Tms

[12] from Monte-Carlo simulation of >C—""C colli-
sion, we have calculated the reaction cross section (7)
and the total cross section (5). The table compares
their values obtained in the optical approximation
(20), in the rigid target approximation (21) and with
the full generating function for two cases, first assum-
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ing A > 1 and using approximate formula (19) and sec-
ond by exact differentiating the generating function.

The last two numbers in the upper row of the table
are in reasonable agreement with the experimental
value 853 £ 6 mb [17]. One should bear in mind that
the experimentally measured value actually refers to
the so-called interaction cross section rather than to
the reaction one. The difference between them can be
at the several percents level [18]. At the same time the
obtained values are close to those of the Monte-Carlo
calculations with the same parameters and the density
parametrization [12].

7. Concluding, the proposed generating function
(16) is appropriate for any pairs of colliding nucleus
regardless their atomic weight. Apart from the above
considered integrated cross sections it can provide a
consistent evaluation of the differential elastic cross
section (1) as well. In this case, however, one has to
account for the Coulomb corrections at small scatter-
ing angles.

Taking the nucleon density as the product of single
particle ones (4) we thereby neglect the nucleon-
nucleon correlations. The particular correlations can
be in principle accounted for in our approach, pro-
vided an appropriate wavefunction is known.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

OPEN ACCESS

This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, shar-
ing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were
made. The images or other third party material in this article
are included in the article’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons
license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To
view a copy of this license, visit http://creativecom-
mons.org/licenses/by/4.0/.

REFERENCES

1. I. Tanihata, H. Hamagaki, O. Hashimoto, S. Nagamiya,
Y. Shida, N. Yoshikawa, O. Yamakawa, K. Sugimoto,
T. Kobayashi, D. E. Greiner, et al. “Measurements of
interaction cross-sections and radii of He isotopes,”
Phys. Lett. B. 160, 380—384 (1985).

PHYSICS OF PARTICLES AND NUCLEI  Vol. 54

No. 4

2. 1. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida,
N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Ko-
bayashi, and N. Takahashi, “Measurements of interac-
tion cross-sections and nuclear radii in the light p-shell
region,” Phys. Rev. Lett. 55, 2676—2679 (1985).

3. M. Smith, M. Brodeur, T. Brunner, S. Ettenauer,
A. Lapierre, R. Ringle, V. L. Ryjkov, F. Ames, P. Bri-
cault, G. W. F. Drake, et al., “First Penning-trap mass
measurement of the exotic halo nucleus '"Li,” Phys.
Rev. Lett. 101, 202501 (2008). arXiv:0807.1260 nucl-ex.

4. C. A. Bertulani, “Nuclear reactions,” arXiv:0908.3275.

5. R.J. Glauber, “Cross-sections in deuterium at high en-
ergies,” Phys. Rev. 100, 242 (1955).

6. R.J. Glauber and G. Matthiae, “High-energy scatter-
ing of protons by nuclei,” Nucl. Phys. B 21, 135—157
(1970).

7. Yu. M. Shabelski and A. G. Shuvaev, “Generating
function for nucleus-nucleus scattering amplitudes in
Glauber theory,” arXiv 2104.04943 hep-ph.

8. W. Czyz and L. C. Maximon, “High-energy, small an-
gle elastic scattering of strongly interacting composite
particles,” Ann. Phys. 52, 59—121 (1969).

9. A. Bialas, M. Bleszynski, and W. Czyz, “Relation be-
tween the Glauber model and classical probability cal-
culus,” Acta Phys. Polon. B 8, 389—392 (1977).

10. G. D. Alkhazov, T. Bauer, R. Bertini, L. Bimbot,
O. Bing, A. Boudard, G. Bruge, H. Catz, A. Chau-
meaux, P. Couvert, et al., “Elastic and inelastic scatter-
ing of 1.37 GeV a-particles from 40- 42 44 48Cg > Nucl.
Phys. A 280, 365—376 (1977).

11. A. M. Zadorozhnyi, V. V. Uzhinsky, and S. Yu. Shma-
kov, “A stochastic method of calculating nucleus-nu-
cleus scattering characteristics in the eikonal ap-
proach,” Sov. J. Nucl. Phys. 39, 729 (1984).

12. C. Merino, I. S. Novikov, and Yu. M. Shabelski, “Nu-
clear radii calculations in various theoretical approach-

es for nucleus-nucleus interactions,” Phys. Rev. C 80,
064616 (2009).

13. C. Loizides, J. Nagle, and P. Steinberg, “Improved
version of the PHOBOS Glauber Monte Carlo,” Soft-
ware X 1-2, 13—18 (2015).

14. C. Pajares and A. V. Ramallo, “Effects of the multiple
scattering structure in the propagation of hadronic
properties in nucleus-nucleus collisions,” Phys. Rev. D
31, 2800 (1985).

15. V. M. Braun and Yu. M. Shabelski, “Multiple scattering
theory for inelastic processes,” Int. J. Mod. Phys. A 3,
2417—2501 (1988).

16. K. G. Boreskov and A. B. Kaidalov, “Nucleus-nucleus
scattering in the Glauber approach,” Sov. J. Nucl. Phys.
48, 367 (1988).

17. A. Ozawa, T. Suzuki, and I. Tanihata, “Nuclear size
and related topics ,” Nucl. Phys. A 32, 693 (2001).

18. 1. S. Novikov and Yu. Shabelski, “Complete Glauber
calculations of reaction and interaction cross sections
for light-ion collisions,” Phys. At. Nucl. 78, 951—955
(2015).

2023



	REFERENCES

		2023-07-24T18:12:44+0300
	Preflight Ticket Signature




