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Abstract

The Large Hadron Collider (LHC) has recently delivered collisions at a center of mass energy

of 7 TeV and has therefore allowed for the first time to test the validity of the Standard Model

(SM) at TeV scale. The precise measurement of electroweak processes constitute a central part

of this program. Diboson processes, in which pairs of electroweak bosons are produced, provide

in particular a good opportunity to test SM at these energies. They also allow to seek indirectly

for new physics through the search for anomalous triple gauge couplings. This thesis presents

a measurement of the inclusive cross section of the pp→Wγ → µνγ process for phase spaces

Eγ

T > 15/60/90 GeV and ∆R(µ,γ) > 0.7 using 5.0 fb−1 of data collected with the CMS detector in

2011. A search for anomalous triple gauge boson WWγ coupling is performed, resulting in limits

on the allowed values of the parameters ∆κγ and λ γ .
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bočnim dijelovima detektora (dolje) za uzorak 2011A+2011B. Rezultati prilagodbe

prikazani su plavom linijom dok je doprinos pozadine prikazan crvenom linijom. . 171
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9.34 Dvodimenzionalne 95% C.L. očekivane i mjerene granice na parametre WWγ ve-

zanja. Kombinirani rezultati za elektronski i mionski kanal. . . . . . . . . . . . . . 200
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odgovaraju integriranom luminozitetu 1 f b−1. . . . . . . . . . . . . . . . . . . . . 204

9.38 Rezultati inkluzivnog (lijevo) i ekskluzivnog (desno) mjerenja Wγ udarnog presje-
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Chapter 1

Introduction

Particle physics is for decades trying to give an answer to several questions related to fundamental

structure of matter . What is the physics beyond Standard Model (SM) like? What is dark matter,

dark energy, nature of gravity? Is there a Higgs boson? The latest question was the one that

triggered the construction of several important experiments. At the Fermilab proton-antiproton

collider two detectors, D0 and CDF, were operating from 1985. to 2011. and provided many

important observations and discoveries at an energy of about 2 TeV. However Higgs boson was not

discovered. Several years ago the Large Hadron Collider (LHC) at CERN started colliding protons

at center of mass energy of 7 TeV. Two general purpose detectors, ATLAS and CMS, are trying to

give a long anticipated answer to the question about the Higgs boson existence.

The ability to precisely measure the outgoing particles of SM Higgs decay was one of the most

important design requirements for the ATLAS and CMS detectors. Therefore their design allows a

precise measurement of leptons and photons.

Besides the search for the Higgs boson and physics beyond SM (new physiscs) measurements of

SM processes constitute an important task at the LHC. Besides checking the validity of the SM at

high energy some of these measurements also provide the ability of indirect search for new physics.

Diboson processes like Wγ provide an opportunity to measure a cross section and search for new

physics through the measurement of triple gauge boson couplings (TGC). In presence of new (yet
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undiscovered) particles the TGC would be stronger therefore resulting in anomalous TGC (aTGC).

These couplings are the least well measured properties in the electroweak sector of the SM.
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Chapter 2

Wγ production at the LHC

2.1 The Standard Model of Particle Physics

The Standard model [5] combines all our current knowledge of physics of elementary particles and

their interactions. Thoroughly tested by measurements for decades it has been proven correct at all

energies available in the laboratory. With the start of proton-proton collisions at the Large hadron

collider (LHC) at an energy of 7 TeV, the first task was to check the SM predictions.

The electroweak theory, the combined theory of the electromagnetic and weak interactions, is the

most exciting part of the Standard Model. It includes the only massive force mediators, spontaneous

symmetry breaking with Higgs mechanism and V-A structure.

It is known that a renormalizable theory is a theory with local gauge invariance. The lagrangian of

the electroweak theory is required to be invariant under SU(2)L⊗U(1)Y transformations, where L

stands for left-handed and Y is the weak hypercharge.

The Lagrangian for a free fermion is:
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L1 = Ψ(iγµ
∂µ −m)Ψ,

= (L+R)(iγµ
∂µ −m)(L+R),

= L(iγµ
∂µ)L+R(iγµ

∂µ)R−m(LR+RL)

(2.1)

where Ψ is the fermion wave function [6] and m is the fermion mass. Ψ has left-handed (L) and

right-handed (R) components that transform differently under SU(2)L⊗U(1)Y transformation:

L→ L′ = ei−→α (x)·−→T +iβ (x)Y L,

R→ R′ = eiβ (x)Y R
(2.2)

where
−→
T and Y are generators of the SU(2)L and U(1)Y groups. L is an isospin doublet while R is

an isospin singlet, in case of leptons these are:

L =

νe

e−


L

,

νµ

µ−


L

,

ντ

τ−


L

R =
(

e−
)

R
,
(

µ−
)

R
,
(

τ−
)

R
.

(2.3)

The Lagrangian 2.1 is required to be invariant under local SU(2)L⊗U(1)Y transformations. Unlike

in quantum electrodynamics, where U(1) local invariance is required, here the fermion mass term

of the Lagrangian is not invariant and is removed for now. One achieves invariance of the remaining

Lagrangian terms with the use of the ’covariant derivative’ Dµ where four vector boson fields
−→
W µ

and Bµ are introduced:

for L: Dµ = ∂µ + ig
−→
T ·−→W µ + ig′

Y
2

Bµ , (2.4)

for R: Dµ = ∂µ + ig′
Y
2

Bµ . (2.5)

Using these derivatives the Lagrangian becomes gauge invariant:
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L1 = Lγ
µ(i∂µ −g

−→
T ·−→W µ − ig′

Y
2

Bµ)L

+Rγ
µ(i∂µ − ig′

Y
2

Bµ)R
(2.6)

The Lagragian 2.6 includes terms for the fermion kinetic energy, interaction with vector bosons

W 1, W 2,W 3 and B asociated with vector fields
−→
W µ and Bµ . Since additional vector fields are

included in the Lagrangian the invariant kinetic energy of bosons needs to be included:

L2 =−1
4
−→
W µν

−→
W µν − 1

4
BµνBµν (2.7)

where

−→
W µν = ∂µ

−→
W ν −∂ν

−→
W µ −g

−→
W µ ×

−→
W ν , (2.8)

and

Bµν = ∂µBν −∂νBµ . (2.9)

The final term in 2.8 arise from the non-Abelian character of the group.

Ferminos have non zero masses as well as the electroweak bosons W± and Z, while γ is massless.

The Higgs mechanism [7, 8, 9] is used to provide masses to both bosons and fermions, while at

the same time keeping the Lagrangian gauge invariant. In the procedure few choices are made that

result with the desired properties. Four real scalar fields Φi are introduced. The Lagrangian of the

scalar field is:

L3 = (∂µΦ)†(∂ µ
Φ)−V (Φ) (2.10)
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where V (Φ) is the potential of the field. The potential is chosen to have the form:

V (Φ) = µ
2
Φ

†
Φ+λ (Φ†

Φ)2. (2.11)

To achieve local SU(2)L ⊗U(1)Y invariance of the Lagrangian 2.10 the Φi must belong to

SU(2)L⊗U(1)Y multiplets and the ’covariant derivative’ 2.4 has to be used. The fields are chosen

to form an isospin doublet:

Φ =

φ+

φ 0

 (2.12)

where

φ
+ =

φ1 + iφ2√
2

(2.13)

φ
0 =

φ3 + iφ4√
2

(2.14)

If the constants µ and λ fulfill µ2 < 0 and λ > 0, the potential has a ’Mexican-hat’ shape, the point

Φ = 0 is unstable and there is a continuum of minimum values where:

Φ
†
Φ =−µ2

2λ
. (2.15)

Choosing one minimum point gives the vacuum a preferred direction in isospin space, and the

symmetry is spontaneously broken. A minimum (vacuum value) is chosen at this point:

φ1 = φ2 = φ4,φ
2
3 =−µ2

λ
≡ v2,

Φ0 =
1√
2

0

v

 (2.16)
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This choice of Φ0 breaks SU(2) and U(1)Y gauge symmetries while U(1)em is unbroken. This

results in massive W± and Z vector bosons and a massless photon.

Using ’covariant derivative’ the Lagrangian 2.10 takes gauge invariant form:

L3 = Φ
†(∂µ − ig

−→
T ·−→W µ − ig′

Y
2

Bµ)(∂ µ + ig
−→
T ·−→W µ + ig′

Y
2

Bµ)Φ−V (x)

=
1
2

(
0 v

)
(∂µ − ig

−→
T ·−→W µ − ig′

1
2

Bµ)(∂ µ + ig
−→
T ·−→W µ + ig′

1
2

Bµ)

0

v

−V (x)
(2.17)

where a chosen vacuum point 2.16 and a corresponding weak hypercharge value Y = 1 are used.

The relevant term for boson masses is:

L boson mass term
3 =

1
2

(
0 v

)
(−ig
−→
T ·−→W µ − ig′

1
2

Bµ)(ig
−→
T ·−→W µ + ig′

1
2

Bµ)

0

v


=

1
8

(
0 v

)gW 3
µ +g′Bµ gW 1

µ − igW 2
µ

gW 1
µ + igW 2

µ −gW 3
µ +g′Bµ


 gW µ3 +g′Bµ gW µ1− igW µ2

gW µ1 + igW µ2 −gW µ3 +g′Bµ

0

v


=

(vg)2

8
[(W 1

µ )2 +(W 2
µ )2]+

(v)2

8
[−gW 3

µ +g′Bµ ]2.

(2.18)

For a charged vector boson a term of form M2
X X2 is expected and for a neutral boson of form

1
2M2

X X2. Mixing of fields
−→
W µ and Bµ is needed to recognize the physical vector bosons W±, Z and

the photon. This is achieved using the following identities:
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W+
µ =

1√
2
(W 1

µ − iW 2
µ ),

W−µ =
1√
2
(W 1

µ + iW 2
µ ),

Zµ =
1√

g2 +g′2
(gW 3

µ −g′Bµ),

Aµ =
1√

g2 +g′2
(g′W 3

µ +gBµ).

(2.19)

The mass term can now be written as:

L boson mass term
3 =

(vg)2

4
W+

µ W µ−+
(v)2

8
(g2 +g′2)(Zµ)2 +0(Aµ)2, (2.20)

where the boson masses are recognized:

MW =
vg
2

,

MZ =
v
2

√
g2 +g′2,

MA = 0.

(2.21)

The Higgs mechanism is also used to generate fermion masses. The SU(2)L⊗U(1)Y gauge invari-

ant term in the Lagrangian representing the interaction of the Higgs field to fermions can be written

as:

L4 =−Ge(RΦ
†L+LΦR) (2.22)

The symmetry is spontaneously broken by choosing the vacuum point 2.16 and expanding around

it:

Φ(x) =
1√
2

 0

v+h(x).

 (2.23)
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To generate the electron mass equation 2.3 is used:

L4 =− Ge√
2
[v(eReL + eLeR)+h(x)(eReL + eLeR)]

=− Ge√
2
[v(ee)+h(x)(ee)].

(2.24)

To recognize the mass of electron the following is chosen:

Ge =
√

2
me

v
(2.25)

then

L4 =−meee− me

v
h(x)ee (2.26)

where the first term is the electron mass term and the second describes the coupling of the Higgs

field to electrons. Quark masses are generated in the same way.

Summing up all parts the total electroweak Lagrangian is:

Ltotal =Φ
†(∂µ − ig

−→
T ·−→W µ − ig′

Y
2

Bµ)(∂ µ + ig
−→
T ·−→W µ + ig′

Y
2

Bµ)Φ−V (x)

−G1(RΦ
†L+LΦR)−G2(RΦ

†
cL+LΦcR)

+Lγ
µ(i∂µ −g

−→
T ·−→W µ − ig′

Y
2

Bµ)L

+Rγ
µ(i∂µ − ig′

Y
2

Bµ)R

− 1
4
−→
W µν

−→
W µν − 1

4
BµνBµν

(2.27)

where Φc is the new Higgs doublet used to generate masses of upper members of L doublets:
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Φc =

−φ 0

φ−

 . (2.28)

The first therm in equation 2.27 represents W±, Z, γ and Higgs masses and couplings, the second

term lepton and quark masses and coupling to Higgs, the third and fourth terms lepton and quark

kinetic energies and their interaction with vector bosons and the final two terms represent vector

bosons kinetic energies and self-interactions. Due to the last term in 2.7 triple gauge couplings

(TGC) WWγ and WWZ are allowed. Using identities 2.19 the part in the Lagrangian describing

TGC is:

LT GC =−igWWV [V µ(W−µνW+ν −W+
µνW−ν)+W+

µ W−ν V µν ] (2.29)

where V µ is Aµ or Zµ , gWWZ = ecotθW and gWWγ = e. It can be seen that the allowed TGCs in SM

are WWγ and WWZ.

2.2 The process pp→Wγ + X → lνγ + X in proton proton col-

lisions

The production of gauge-boson pairs provide the test of the non-Abelian gauge symmetry of the

SM. Deviation from the SM predictions may come either from the presence of anomalous couplings

or the production of new heavy particles and their decays into vector boson pairs. Vector-boson pair

production also gives the most important background for a number of new physics signals.

Wγ production in proton-proton collision at leading order (LO) includes the three processes shown

in Figure 2.1. These include initial state radiation, final state radiation and the process via triple

gauge boson coupling. There is one additional process that dominates at very high energies, photon

bremstrahlung where q1g→ V q2 is followed by photon radiation from the final state quark. This

process is eliminated by requiring the photon to be isolated.
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Figure 2.1: Feynman diagrams of the Wγ production via final (a) and initial (b) state radiation and via WWγ

triple gauge coupling (c).

Table 2.1: Branching ratios for W+ decay [1].
Decay mode Fraction
l+ν 10.80 ± 0.09 %
e+ν 10.75 ± 0.13 %
µ+ν 10.57 ± 0.15 %
hadrons 67.60 ± 0.27 %

The production mechanism at LO is through quark-antiquark anihilation and at NLO mainly quark-

gluon fusion. At LHC the NLO corrections are large due to large quark-gluon parton density at high

energies.

Finally, W can decay leptonically or hadronically with the branching ratios shown in table 2.1.
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2.3 Radiation Amplitude Zero

A pronounced feature of Wγ production in hadronic collisions is the so-called radiation amplitude

zero (RAZ), the phenomena that all contributing helicity amplitudes vanish for a defined angle of

the outgoing photon in the center of mass frame.

It is known that all SM helicity amplitudes of the parton-level subprocess q1q̄2→W±γ vanish in

the centre of mass frame for cosθ ∗ = −Q1+Q2
Q1−Q2

[10, 11], where θ ∗ is the scattering angle of the

photon with respect to the quark q1 direction, and Qi (i = 1; 2) are the quark charges in units of

the proton electric charge e. In proton-proton collisions the dominant production process for W+γ

is ud̄→W+γ where amplitudes vanish for cosθ ∗ =−1
3 , and the dominant production process for

W−γ is dū→W−γ where amplitudes vanish for cosθ ∗ = 1
3 .

This zero is difficult to observe for numerous reasons. In a realistic experimental environment it is

always approximate or becomes a dip. Other contributing processes, higher order QCD corrections,

finite W width and final state radiation are filling the dip. Detector resolution effects further dilute

the RAZ signal. It is also not possible to reconstruct the center of mass frame at a hadron collider

since the longitudinal momentum of the neutrino cannot be determined without ambiguities. Since

it is not possible to perform the measurement in the center of mass frame, a sensitive variable in

the laboratory frame must be found. Since W and γ are back to back in the center of mass frame,

dip is also expected in the W rapidity distribution and the same is true for the W and γ rapidity

difference y(γ)∗− y(W )∗. 1 Since the rapidity difference is invariant under the longitudinal boost,

the rapidity difference in the laboratory frame, y(γ)− y(W ), also has a dip. Since the neutrino

longitudinal momentum is not measured in the detector we cannot reconstruct the W rapidity. In

the SM the dominant helicity in W±γ production is λW = ±1 [12]. This means that the lepton

from the W decay tends to be emitted in the direction of the parent W, reflecting thus most of the

kinematic properties of the W. Therefore the correlation of W and γ rapidities is mostly present in

lepton and γ rapidities. In the limit of massless particles the rapidity and pseudoradity are equal so

1Rapidity is defined as y = 1
2 ln E+pZ

E−pZ
. Where E is the energy of particle and pZ is the component of momentum

along the beam axis.
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it is expected that the RAZ dip is also present in the pseudorapidity difference η(γ)−η(l). 2 The

pseudorapidity is precisely measured variable at CMS detector.

At the LHC we expect to see the RAZ in Wγ production as a dip at value 0 in η(γ)−η(l) distribu-

tion as shown in Figure 2.2 [2].

Figure 2.2: The differential cross section for the photon-lepton pseudorapidity difference for pp→W+γ→
l+νγ at

√
s = 14TeV in the SM. (a) The inclusive NLO differential cross section (solid line), together with

the O(αs) 0-jet (dotted line), and the (LO) 1-jet (dashed line) exclusive differential cross sections. (b) The
NLO W+γ+0-jet exclusive differential cross section (dotted line) compared with the Born differential cross
section (dash-dotted line) [2].

The RAZ can also be expressed as the relativistic generalization of the absence of electric and

magnetic dipole radiation for nonrelativistic collisions of particles with the same charge-to-mass

ratio and g factor [13].

Additional selection on Wγ events can be imposed in order to make RAZ more visible in the data.

Higher order QCD correction contributions that tend to fill in the dip can be reduced by imposing

2Pesudorapidity is defined as η =− ln tan(θ/2) = 1
2 ln |~p|+pZ

|~p|−pZ
. Where θ is the angle between the particle momentum

~p and the beam axis, pZ is the component of momentum along the beam axis.
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the jet veto, removing events with jet above some PT threshold. Process where the γ is a result of

lepton radiation, final state radiation, also diminish the RAZ dip. These events can successfully be

removed by imposing the lower cut on transverse mass of three objects M(l,ν ,γ)
T .

RAZ is also sensitive to the presence of anomalous triple gauge couplings. If they are present they

also change the shape of η(γ)−η(l) distribution by filling the RAZ dip. However this is not the

variable most sensitive to anomalous couplings in the Wγ channel.

2.4 Triple Gauge Couplings

If the particle spectrum of the SM has to be enlarged with new particles (as in the Minimal Super-

symmetric Standard Model (MSSM) [14]) with mass values of≥ 0.5−1 TeV, their presence would

be manifested as small anomalous couplings at low energy.

Triple gauge boson couplings (TGC) are a consequence of the non-Abelian nature of the SM elec-

troweak sector SU(2)L⊗U(1)Y and are uniquely predicted. Many extensions of the SM predict

additional processes with multiple bosons in the final state. Therefore, any deviation of the ob-

served value from the SM prediction could be an early sign of new physics at high energies. A

measurement of TGCs can thus be sensitive to new phenomena at high energies which would re-

quire more energy or luminosity to be observed directly.

The most general Lorentz invariant effective Lagrangian that describes WWV coupling has 14

independent parameters [15, 16], 7 parameters for WWZ and 7 for WWγ vertex. Assuming C and

P conservation, only six independent couplings remain with a given effective Lagrangian:

LT GC

gWWV
= igV

1 (W−µνW+µV ν −W−µ VνW+µν)+ iκVW−µ W+
ν V µν +

iλV

M2
W

W−
δ µ

W+µ

ν V νδ , (2.30)

where V = γ or Z, gWWγ = −e, gWWZ = −ecotθW and θW is the weak mixing angle. Assuming

electromagnetic gauge invariance, gγ

1 = 1, the remaining parameters that describe WWV coupling

are gZ
1 , κZ , κγ , λZ and λγ . Comparison with 2.29 reveals that in the SM λZ = λγ = 0 and gZ

1 =

κZ = κγ = 1.
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These five couplings are further reduced to three independent couplings if one requires the La-

grangian to be SU(2)L⊗U(1)Y invariant:

∆κZ = ∆gZ
1 −∆κγ · tan2

θW , λ = λγ = λZ. (2.31)

In this study ∆κγ and λγ are measured from Wγ production.

All anomalous couplings violate the partial wave unitarity at high energies. Thus, all Tevatron

studies of TGC define the ŝ-dependence of the TGCs that preserve unitarity at high energies as

following:

α(ŝ) =
α0

(1+ ŝ/Λ2
NP)n . (2.32)

Here, α0 is a low-energy approximation of the coupling α(ŝ), where ŝ is the square of the invariant

mass of the diboson system, and ΛNP is the form factor scale, an energy at which new physics can-

cels divergences in the TGC vertex. In this study TGCs without form-factor scaling are measured,

as this allows to provide results without any particular bias that can arise due to the choice of the

form-factor energy dependence.

As a signature of aTGC in the Wγ final state one expects to observe a higher yield of events with

high Eγ

T as shown in Fig. 2.3.

Figure 2.3: Simulated Eγ

T distribution for the Wγ process for different values of aTGC parameters. Process
is simulated with the SHERPA generator [3] interfaced with PYTHIA [4].
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Different models of physics beyond the Standard Model result with different contributions to aTGC

parameters. Additional generation of heavy quarks and leptons would contribute with ≈ 10−3,

while the Minimal Supersymmetric Standard Model (MSSM) would result in the following upper

bounds [14]:

|∆κγ | ≤ 2×10−2,

|∆κZ| ≤ 2×10−2,

|λγ | ≤ 6×10−3,

|λZ| ≤ 6×10−3.

(2.33)
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Chapter 3

The Large Hadron collider and the

Compact Muon Solenoid detector

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [17] is the most powerful collider in the world . The LHC was

installed in the existing LEP tunnel, a 26.7 km ring consisting of eight straight sections connected

by eight arcs, housed at a depth of 45 m to 170 m near the France-Switzerland border.

The two general purpose experiments, CMS and ATLAS, study Standard Model physics processes

and perform searches for physics beyond the Standard Model.

The LHC started colliding protons in 2009 at a center of mass energy of 1.18 TeV. Collisions con-

tinued in 2010 and 2011 at a center of mass energy of 7 TeV. During 2012 the energy of collisions

was enhanced to 8 TeV.

Since protons have higher mass they loose less energy than electrons via synchrotron radiation what

allows to reach higher energies. The main production process of Higgs boson in high energy proton-

(anti)proton collisions is gluon fusion. Since gluon density functions are identical in proton and

antiproton and producing high intensity antiproton beams is much more challenging and expensive,
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proton-proton collisions were the better choice. The pp design of the LHC allows it to achieve

instantaneous luminosities beyond those seen in the Tevatron pp collisions.

The instantaneous luminosity for a symmetric colliding beam experiment such as the LHC is given

as:

L =
nN2 f
Ae f f

(3.1)

where n is the number of bunches per beam, N the number of particles per bunch, f the revolution

frequency , and Ae f f the effective cross-sectional area of the beams. The beams are focused to 16

µm in each of the transverse directions (σx and σy) which can be used to calculate the value of Ae f f

= 4πσxσy. The total integrated luminosity delivered in 2011 is shown in Figure 3.1.
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Figure 3.1: The integrated luminosity both delivered by the LHC to CMS and recorded by CMS in 2010-
2012. The difference between delivered and recorded luminosities corresponds to a downtime less than 10%
for the CMS detector.

The CERN accelerator complex includes a series of components which progressively accelerate

the proton beams to higher energies. The LEP injection chain is used to accelerate the protons to

an energy of 450 GeV before entering the main ring. The first stage uses the Linac2 to boost the

protons to 50 MeV in a series of radio frequency (RF) cavities, next the Proton Synchrotron Booster
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Figure 3.2: Overview of the CERN accelerator complex.
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(PSB) accelerates to 1.4 GeV and then the Proton Synchrotron (PS) to 24 GeV. The Super Proton

Synchrotron (SPS) accelerates protons up to a full injection energy of 450 GeV. Once they reach

the LHC, the bunched charged particles are accelerated by 400 MHz RF cavities resulting in high

energy bunches of protons with 25 ns gaps. In 2011 LHC running, every other RF bucket contains

a proton bunch, resulting in a bunch spacing of 50 ns. A schematic of accelerator stages is shown

in Figure 3.1.

The use of the existing LEP tunnel for the LHC accelerator created the design challenges for the

LHC, specifically in terms of the size and power of magnets needed to direct the LHC proton

beams. Since the same magnetic field can not be used to bend the counter circulating proton beams

in the same direction the magnets have unique twin-bore design shown in Figure 3.1 producing

oppositely-directed fields. To adequately bend the 7 TeV proton beam the dipole magnets with

magnetic field of 8 T achieved by superconductors carrying the current of 11850A are used.

Figure 3.3: A schematic view of the construction of an LHC main dipole.
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3.2 The Compact Muon Solenoid Experiment

The central feature of the Compact Muon Solenoid (CMS) apparatus is a superconducting solenoid

of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid

volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorime-

ter (ECAL), and a brass/scintillator hadron calorimeter (HCAL). Muons are measured in gas-

ionization detectors embedded in the steel return yoke outside the solenoid. Extensive forward

calorimetry complements the coverage provided by the barrel and endcap detectors.

Layered design of CMS shown in Figure 3.4 with multiple calorimeter and tracking detectors ar-

ranged to complement one another provides a nuanced view of collision events. A short descrip-

tions of the different subdetectors is given in the following subsections. A detailed description of

CMS can be found in [18].

3.2.1 Coordinate system

The CMS detector has a cylindrical shape around the beam axis of 14.6m diameter and 21.6m

length, and consists of the barrel part in the middle and two endcaps on the sides. A right handed

Cartesian coordinate system is used within the CMS detector with the origin located at the assumed

interaction point at the center of the detector. The x-axis points horizontally towards the center of

the LHC ring, the y-axis points vertically outwards from the earth’s center, and the z-axis is oriented

horizontally along the anticlockwise beam direction.

In the transverse (x-y) plane, the azimuthal angle φ is measured from the x axis and the radial

coordinate is denoted as r =
√

x2 + y2. The polar angle θ is measured from the z axis but more

often the pseudorapidity η is used.

In inelastic collision of protons two partons (one from every proton) carrying a particular fraction

of proton momentum interact. This interaction is referred to as the hard process. The parton

momentum is longitudinal with negligible transverse component. Due to momentum conservation

the total momentum of particles originating from the hard process is also longitudinal. The particle
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Figure 3.4: A perspective view of the CMS detector with the major subsystems indicated.
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trajectories are therefore often described in the transverse plane. A particle escaping the detection

creates an inbalance in the total transverse energy measurement, also called missing transverse

energy.

3.2.2 Magnet

The choice of the magnetic field configuration was an important aspect driving the detector design

and layout. One of the design requirements of CMS is unambiguous determination of the sign for

muons up to momenta of about 1 TeV. This requires a momentum resolution of ∆p/p ≈ 10% at p

= 1 TeV. Large bending power is needed to measure precisely the momentum of charged particles.

Superconducting technology is used. A 13-m-long solenoid with 5.9 m inner diameter produces a

longitudinal homogenous magnetic field of 3.8T over a volume of more than 300 m2. The return

field saturates the iron yoke, providing a consistent 2T field throughout the outer muon system,

allowing large lever arm measurement of the transverse momentum for muons. The capabilities

and geometry of the magnet have guided the design of each of the CMS subsystems.

3.2.3 Tracker

The closest subdetector to the interaction point is the tracker, which is entirely based on silicon

semiconductor technology. A very fine granularity in the innermost part is essential to identify the

different vertices in a bunch crossing. Vertices correspond to the interaction points of the proton

collisions or the displaced decay of a short-lived particles.

The sensors are constructed as reversed-biased p-n diodes, which yield a detectable current when

the bias voltage across the diode is lowered by the ionization depositions caused by passing charged

particle.

The tracker can be divided into three regions containing detectors with different characteristics for

regions with different particle fluxes.
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Closest to the interaction point where the particle flux is the highest, ≈ 107/s at r ≈ 10 cm, pixel

detectors are placed. To achieve an optimal vertex position resolution, a design with an “almost”

square pixel shape of 100×150 µm2 along the (r,φ ) and the z coordinates respectively is used. The

position resolution is ≈ 10 µm in the r-φ plane and 20 µm along z. There are 3 layers of hybrid

pixel detectors at radii of 4, 7, and 11 cm.

In the intermediate region (20 ≤ r ≤ 55 cm), the particle flux is low enough to enable the use of

silicon microstrip detectors with a minimum cell size of 10 cm × 80 µm.

In the outermost region (55 cm ≤ r ≤ 110 cm) of the inner tracker, the particle flux has dropped

sufficiently to allow use of larger-pitch silicon microstrips with a maximum cell size of 25 cm ×

180 µm.

The layout of the complete CMS tracking detector is shown in Figure 3.5.

The total area of the pixel detector is ≈ 1m2, while the area of the silicon strip detectors is 200 m2,

providing coverage up to | η |≤ 2.5.

The tracker transverse momentum resolution up to | η |≤ 1.6 is:

σPT

PT
= (15PT ⊕0.5)%(TeV ) (3.2)

while the resolution at | η |= 2.5 is equal:

σPT

PT
= (60PT ⊕0.5)%(TeV ) (3.3)

The first term corresponds to the measurement of curvature of particle track which is less precise

for high-momentum tracks since they become more straight. The second term corresponds to

interaction with the tracker material such as multiple scattering.
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Figure 3.5: Schematic cross section through the CMS tracker.

3.2.4 Electromagnetic and hadron calorimeter

The Electromagnetic Calorimeter (ECAL) is designed to detect and precisely measure the energy of

electrons and photons. Placing the ECAL inside the magnet, one avoids the significant degradation

seen is previous hadron collider experiment due to interactions with the magnet material. This

requires the ECAL to be compact, and therefore made with high transparent and dense interacting

material. These conditions fulfill lead tungstate (PbWO4). It has high density (8.28 g/cm−3),

short radiation length (0.89 cm) and small Moliere radius (2.2 cm). This enables the absorption of

electron and photon showers with reasonably short crystals. Crystals of a length of 25.8 radiation

lengths are used in the barrel and 24.7 radiation lengths in the endcaps. In 23 cm long crystals,

all but the most energetic electrons and photons deposit all of their energy via bremsstralung and

electromagnetic pair production. A good shower separation is ensured with a typical crystal cross

section 2.2cm×2.2cm. The readout electronics are collecting the scintillation light emitted in the

electromagnetic shower.

The Electromagnetic Calorimeter (ECAL) is a hermetic, homogeneous calorimeter comprising

61200 lead tungstate (PbWO4) crystals in the central barrel part in the range | η |≤ 1.4442, closed
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by 7324 crystals in each endcap in the range 1.566≤| η |≤ 3.0. Figure 3.6 is a schematic showing

various features of the CMS ECAL.

Figure 3.6: Features of the CMS ECAL.

The ECAL energy resolution is given by:

(
σE

E

)2
=

(
2.8%√
E/GeV

)2

+
(

0.12
E/GeV

)2

+(0.3%)2 (3.4)

where the first term corresponds to statistical fluctuations and intrinsic shower fluctuations, the

second term corresponds to electronic noise and pileup energy (energy deposition coming from

additional soft interactions) and the final term corresponds to intrinsic detector non-uniformities

and calibration uncertainties.

Radiation damage is manifested as a change in crystal transparency, resulting in non-uniform scin-

tillation light transmittance as a function of time. This is monitored and corrected for using a laser

calibration system that records the change in transparency.

The ECAL is surrounded by a hadron calorimeter (HCAL) which is designed to detect particles

which primarily interact with atomic nuclei via the strong force. Strongly interacting particles

typically start showering in the ECAL, so a full picture of a particle energy comes from combining

information from both calorimeters. The HCAL consists of three sub-systems, shown in Figure 3.7.
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The HCAL barrel (HB) provides coverage up to | η |≤ 1.305, the HCAL endcap (HE) in the

range 1.305 ≤| η |≤ 3.0 and the HCAL forward (HF) in the range 3.0 ≤| η |≤ 5.0. The forward

calorimeters ensure full geometric coverage and therefore play a large role in the the measurement

of the transverse energy in the event. HB and HE are made up of interleaved layers of brass

radiator and scintillating tiles while HF is made of steel plates embedded with quartz fibers to

better withstand the high radiation doses in that region.

Figure 3.7: Features of the CMS HCAL.

In the case of the HB and HE, brass acts as a non-ferromagnetic absorber with 5.82 interaction

lengths of material to encourage development of hadronic showers. The particles produced in

nuclear interactions of hadronic particles with the brass pass through the scintillating material and

produce light. The collected light is used as an estimate of the energy of the shower. In the case of

HF, Cherenkov radiation from the particles in the evolving shower traversing quartz fibers is used

as energy estimate.

The energy resolution for HB and HE can be expressed as:
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(
σE

E

)2
=

(
90%√
E/GeV

)2

+(4.5%)2 (3.5)

while for HF the resolution is:

(
σE

E

)2
=

(
172%√
E/GeV

)2

+(9.0%)2 (3.6)

The first term in equations corresponds to statistical fluctuations and intrinsic shower fluctuations

(considerably larger than that of the ECAL), and the constant term is due to uncertainties in the

calibration.

3.2.5 Muon system

A good measurement of muons was a driving factor in the overall design of CMS. Muons pro-

duced in proton collisions in the center of CMS are measured in the inner tracker and in the muon

chambers placed outside of magnet.

The muon system consist of three types of gaseous particle detectors optimized for different envi-

ronments and goals – drift tubes (DTs) in the barrel (| η |≤ 1.2), cathode strip chambers (CSCs) in

the endcaps (| η |≤ 2.4), and resistive plate chambers (RPCs) covering nearly the entire barrel and

endcap regions (| η |≤ 1.6). The muon system is shown in Figure 3.8.

RPCs provide a fast response with good time resolution but with a coarser position resolution than

the DTs or CSCs. RPCs can therefore identify unambiguously the correct bunch crossing.

The DT chambers consist of multiple drift tubes filled with a gas mixture ionized by the passage of

charged particles. Each tube contains an anode wire held at high voltage and two cathode strips on

either side. As the particles traverse the drift tube, they ionize the gas in the tube, and the ionized
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Figure 3.8: CMS muon system.

atoms are collected by the anode creating an electronic pulse. Each DT chamber consists of three

superlayers, each composed in turn of four layers of rectangular drift cells staggered by half a cell.

The two outer superlayers are oriented with the wires parallel to the beam to provide tracking in

the r-φ plane in which the muon bends due to the magnetic field. The third superlayer, present only

in the first three stations, measures the z coordinate. The spatial resolution of a DT chamber is 100

µm in the r-φ plane, and 150 µm in the z direction, the drift time is up to 386 ns and the timing

resolution is 3.8 ns.

Each CSC is trapezoidal in shape and consists of 6 gas gaps, each gap having a plane of radial

cathode strips and a plane of anode wires running almost perpendicularly to the strips. The gas

ionization and subsequent electron avalanche caused by a charged particle traversing each plane of

a chamber produces a charge on the anode wire and an image charge on a group of cathode strips.
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The spatial resolution provided by each chamber from the strips is typically about 200 µm, while

the angular resolution in φ is of order 10 mrad.

RPCs are located both in the barrel and in the endcaps Their spatial resolution is limited, but their

time resolution is excellent (≈ 1 ns) and smaller than the 25 ns LHC bunch spacing. Therefore

RPC detectors are used to identify unambiguously the bunch crossing and to provide prompt trigger

decision. An RPC consists of parallel electrode plates, yielding a constant and uniform electric field

across a gap filled with ionizing gas. The RPCs are constructed of two highly resistive electrodes

and a layer of readout strips immersed in a thin layer of inert gas. As charged particles pass the

gas is ionized and releases electrons which then, due to the electric field in the RPC, ionize more

atoms, releasing more electrons in an ‘avalanche’. These avalanches of electrons are collected on a

cathode pad and used to deduce the timing and position of the incident particle.

Measurement of the momentum of muons using only the muon system is essentially determined

by the muon bending angle at the exit of the 4T coil, taking the interaction point as the origin of

the muon. The resolution of this measurement is dominated by multiple scattering in the material

before the first muon station up to PT values of 200 GeV. For larger PT the chamber spatial reso-

lution starts to dominate. For low-momentum muons the momentum resolution is dominated by

resolution in the silicon tracker. However, the muon trajectory beyond the return yoke extrapolates

back to the beam-line due to the compensation of the bend before and after the coil when multiple

scattering and energy loss can be neglected. This fact can be used to improve the muon momentum

resolution at high momentum when combining the inner tracker and muon detector measurements.

The muon momentum resolution is shown in Figure 3.9.

3.2.6 Reconstruction of objects

Reconstruction is the operation of constructing physics quantities from the raw detector signals

collected in the experiment. The reconstruction process can be divided into 3 steps, corresponding

to local reconstruction within an individual detector module, global reconstruction within a whole

detector, and combination of these reconstructed objects to produce higher-level objects.
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Figure 3.9: Muon momentum resolution.

Different particles provide different signatures in CMS detector sub-systems as shown in Fig-

ure 3.10. A muon will be measured in the tracker and in moun system loosing very little energy

in the calorimeters. An electron (and positron) will leave a track in the tracker and loose all its en-

ergy in ECAL, while a photon will be measured only in ECAL. Accordingly, different sub-systems

participate in a reconstruction process.

Reconstruction of muons

The muons (and antimuons) are detected in the range |η | < 2.4 by spatially matching the tracks

from the inner tracker and the outer muon system resulting in a PT resolution of 1-5% for muons

with PT up to 1 TeV. The reconstruction algorithm is described in detail in [19].

Muon objects are the association of two tracks, one in the silicon tracker (or tracker track), and a

second one in the muon systems (or standalone track). Starting from standalone track as input a
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Figure 3.10: The CMS detector transverse section with simple particle topologies indicated.

matching tracker track is found and a global-muon track is fitted combining hits from the tracker

track and standalone track. Compatibility in terms of momentum, position, and direction are con-

sidered in matching stand-alone muons to tracker tracks.

The CMS solenoid subjects the tracker to a 3.8T longitudinal magnetic field, and the muon cham-

bers to a return field in the opposite direction, of value ≈ 2T. Hence the trajectory of a muon is

curved in opposite orientations in the tracker and in the muon chambers.

The degree of curvature gives the muon transverse momentum, while the orientation of the curva-

ture determines its charge. For a global muon, these parameters are mainly based on the tracker

information, because of the very precise inner tracking system. However the combination of these

two systems becomes important for muons with high momentum where the reduced bending of the

muon tracks limits the resolution of the inner tracking measurement.

Reconstruction of photons

Photon reconstruction begins with energy deposited in the ECAL. Since ECAL crystals in CMS

have a Moliere radius of 2.2 cm (the same as the physical width of their front face), a photon with
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1 GeV of energy deposits 95% of its energy into an array of 5×5 crystals. Material between the

interaction region and the ECAL cause roughly half of direct photons to convert into e+e− pairs,

resulting in a deposit of energy more spread along φ (due to the presence of the magnetic field from

the solenoid). The ECAL crystal arrays have different geometry in the barrel and endcap, and in

addition, the magnetic field is different, so energy deposits is grouped together in Super Cluster

(SC) by different algorithms: a "Hybrid Clustering Algorithm" in the barrel, and a "Multi5×5"

algorithm in the endcap [20].

For both algorithms the center of the photon shower is determined from a log-weighted energy

sum:

x = ∑xiWi

∑Wi
, where Wi = max

(
0,4.7+ log

Ei

∑E j

)
(3.7)

where Ei is the energy of the ith crystal in the SC.

The direction of the momentum of a photon candidate is determined by connecting a line from the

primary vertex to the position of the SC. Identification of photons is enhanced by the use of tracking

information as photons that do not convert leave no signal in the silicon detectors. Since there is

no alternate measurement of the particle’s momentum to compare to it is significantly harder to

identify real photons since there is a large background both from jets and from electrons.

Reconstruction of missing transverse energy (MET)

Neutrinos are not detected directly, but give rise to experimentally observed imbalance of trans-

verse energy, MET. This quantity is computed using a Particle Flow technique [21], an algorithm

designed to reconstruct a complete list of distinct particles using all the subcomponents of the CMS

detector. The MET for each event is then determined as the negative vector sum of the transverse

momenta of all reconstructed particles in each event.
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Trigger at CMS (on-line event pre-selection)

Data are selected online using a two-level trigger system. The first level (L1), consisting of cus-

tom made hardware processors, selects events in less than 1 µs, while the high-level trigger (HLT)

processor farm further decreases the event rate from around 100 kHz to about 300 Hz before data

storage. At the HLT events are accepted if they match at least one of hundreds of differet "interest-

ing" signatures in the detector. In this work the one requiring high PT muon in event is used.

3.2.7 Data and simulation

To predict the results of colliding protons involves modeling of subatomic makeup of a proton,

the calculation of scattering amplitudes, the decay of unstable particles, and the hadronization of

quarks and gluons into jets. Next the response of the detector to these final state particles must

be modeled. Knowledge of detector materials and positions of these materials is necessary for

accurate modeling of the detector response.

“Monte Carlo” techniques [22] are generally used. Here a random number generator is interfaced

with the equations governing a certain process in order to produce a large number of simulated

collision events. The simulation of proton-proton collisions happens in several steps, each being

specialized to emulate a particular aspect of particle collisions. The first stage is a matrix element

calculation which describes the differential cross section for a given hard scattering process. Next

stage takes the colored partons (quarks) and gluons produced in the hard scattering interaction

along with any radiated gluons and describes how they hadronize into colorless composite particles

in a parton showering process. Following stage describes the underlying event consisting of soft

interactions of the spectator partons which did not directly participate in the hard scattering. These

programs rely on parameterizations tuned first by input from previous colliders extrapolated to

LHC energies and later retuned based on data from initial LHC runs [23]. A detailed description of

the CMS detector and magnetic field is used as input to the GEANT4 package [24, 25], a software

toolkit for simulating the passage of particles through CMS detector.
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Chapter 4

Measurement of Wγ cross section

In this work the cross section for the process pp→Wγ→ µνγ at a center of mass energy of 7 TeV

is measured. As the Wγ cross section diverges at LO for soft photons or those that are spatially

close to the charged lepton, the measurement is restricted to the following kinematic range:

• The transverse photon energy must be larger than 15 GeV.

• The muon and the photon must be spatially separated by

∆R(µ,γ)≡
√

(∆φ(µ,γ))2 +(∆η(µ,γ))2 > 0.7.

This measurement uses data collected during 2011 by the CMS detector corresponding to an inte-

grated luminosity of 5 fb−1.

The Wγ → µνγ final state is characterized by a prompt, energetic, and isolated muon, significant

missing energy due to a neutrino, and a prompt isolated photon. Besides Wγ , there are several

other processes with identical final state particles or with different outgoing particles giving similar

signature in the detector. In order to reduce these backgrounds, the selection criteria described in

Section 4.2 are applied. The backgrounds and the methods used to derive their contribution are

described in Section 4.3.
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The cross section is extracted using the expression:

σ =
Nsig

A · ε ·L
(4.1)

where Nsig is the number of observed signal events, A is the geometric and kinematic acceptance,

ε is the selection efficiency for events in the acceptance, and L is the integrated luminosity.

The product A ·εgen is derived from the simulation. To account for differences in efficiency between

data and simulation a correction factor, ρeff = ε/εgen , is used. The correction factor is derived by

measuring the efficiency in the same way on data and simulation as described in Section 4.2.7. The

product A · ε is replaced by the product F ·ρeff, where F ≡ A · εgen:

σ =
Nsig

A ·∑i ε i
gen ·∑i

ε i

ε i
gen
·L

=
Nsig

F ·ρe f f ·L
. (4.2)

Since the efficiency depends on a particle kinematic the efficiency is derived as the sum over all

events. F is defined as Naccept
Ngen,kin

, where Naccept is the number of events passing all selection cuts, and

Ngen,kin is the number of generated events with Eγ

T > 15 GeV, ∆R(µ,γ) > 0.7.

Sources of systematic uncertainties are described in Section 4.4.

4.1 Data samples

The used data set corresponds to luminosity of 5 fb−1 collected with the CMS detector at center of

mass energy of 7 TeV during 2011. The LHC beam conditions were rather different in two runs

taken during 2011, resulting in low- and high-pile-up (PU) periods. The average number of PU

interactions for the low-PU data set is 4.9 interactions per collision, while the high-PU set has an

average of 7.8 interactions. The former data set corresponds to about 2.2 fb−1 of integrated lumi-

nosity and is referred to as 2011A in the text, the latter corresponds to 2.7 fb−1 and is referred to as

2011B. The combined data set are referred to as 2011A+2011B. The measurements are performed
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using the combined 2011A+2011B data set. To check the compatibility of results measurements

using 2011A and 2011B separately are also performed. The data set contains only certified CMS

data, which are recorded while all CMS subdetectors were operating properly.

4.2 Trigger and event selection

The selection is chosen such to minimize the background contribution while efficiently selecting

the signal. However in some cases, it is not possible to apply the most ideal selection criteria due

to trigger pre-selection applied online during data taking.

4.2.1 Trigger selection

The Wγ→ µνγ events are selected by using the unprescaled muon trigger with the lowest available

PT threshold. An isolated single muon trigger with a threshold of 30 GeV is used during 2011A

and 2011B. The restriction of the triggering region to |η | < 2.1 is used to reduce the trigger rate

from misidentified muons in the forward regions of the detector.

4.2.2 Muon selection

The muon identification scheme defined in [19] is used, with a minor alteration of cuts on the dis-

tance of closest approach of the muon track to the primary vertex. Muon candidates are required to

pass the GlobalMuon and TrackerMuon reconstruction algorithm, to have hits in the pixel system,

not more than a few missing hits in the tracking system, a good χ2 of the overall fit of the tracks

in the tracker and muon sub-detectors and more than one chamber with matched muon segments.

To ensure that the muon is produced from the primary interaction vertex in the event, the muon’s

charged track is required to have a distance of closest approach to the z-axis 0.02 cm and to have

z-coordinate within 0.1 cm from the primary vertex [26]. Cosmic ray muon contamination is sig-
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Table 4.1: Muon identification and isolation requirements.
Description criterion
Kinematical pT > 35 GeV and |η |< 2.1

Number of pixel hits > 0
Number of tracker hits > 10

χ2/n.d.f < 10
Number of muon hits > 0

Number of chambers with matched segments > 1
Vertex d0 < 0.02 cm
Vertex dz < 0.1 cm

Combined relative isolation ; ∆R = 0.3 < 0.1

nificantly reduced by these cuts. Further cross-checks of timing and cosmic tagger information

[26] indicate negligible contribution from cosmic background.

To suppress energetic pions misidentified as muons, as well as muons produced in jets, a relative

isolation requirement is used. A sum of all energies and track momenta, not associated with the

muon candidate, in a cone of ∆R = 0.3 around the muon candidate normalized to the muon pT is

required to be below 10%.

Muons are required to have transverse momentum larger than 35 GeV and to be within |η |< 2.1.

The summary of muon kinematical requirements as well as identification criteria is given in Ta-

ble 4.1.

4.2.3 Photon selection

Photon candidates are reconstructed as Super Clusters (SC) with Eγ

T > 15 GeV in the fiducial

volume of the ECAL detector. The efficiency of reconstructing a SC from a photon electromagnetic

deposit in the ECAL is measured in simulation and is found to be very close to 100%.
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A shower shape variable measures the width of the photon SC in the η direction, denoted as σiη iη

and defined as:

σ
2
iη iη = ∑(ηi− η̄)2 wi

∑wi
, η̄ = ∑ηiwi

∑wi
, wi = max(0,4.7+ log(Ei/E5×5)) , (4.3)

where the sum runs over the 5×5 crystal matrix around the most energetic crystal in the SC.

The rate of jets reconstructed as photons is greatly reduced by requiring stringent photon identifi-

cation criteria, including isolation and shower shape requirements:

• The ratio of HCAL to ECAL energies in a cone size of ∆R = 0.15 around the seed crystal

must be below 0.05.

• σiη iη must be below 0.011 in the barrel and below 0.030 in the endcap.

To reduce the background from misidentified electrons, photon candidate must have no associated

hit in the pixel detector (pixel seed veto).

High pile-up conditions during the 2011 LHC run require the photon isolation criteria to be robust

against PU modeling in simulation. The sum of all the tracks transverse momenta found in the

annulus of 0.05 < ∆R < 0.4, ITRK, around the photon candidate is required not to exceed 2 GeV+

0.001 ·Eγ

T + Aeff · ρ , where ρ is the median background energy density per unit area, computed

using the FASTJET package [27], and Aeff is an effective area correction, which ensures that the

isolation requirement does not exhibit a pile-up dependence. The photon candidate is also required

to be isolated in the ECAL by summing the transverse energy deposited in the ECAL in an annulus

0.06 < ∆R < 0.40, excluding a rectangular strip of ∆η ×∆φ = 0.04×0.40 to reduce the effect of

counting the fragments of the converted photon shower. The ECAL isolation, IECAL, is required

to be less than 4.2 GeV+0.006 ·Eγ

T +Aeff ·ρ . Finally the HCAL isolation IHCAL, has to be below

2.2 GeV + 0.0025 ·Eγ

T + Aeff · ρ . The values of Aeff are tabulated for all three isolation criteria

separately for barrel and endcap in Table 4.2.

The summary of photon identification criteria is given in Table 4.3.

39



Table 4.2: Aeff values used for PU correction for photon selected in barrel and endcap.
Isolation barrel endcap
Tracker (ITRK) 0.0167 0.032
ECAL (IECAL) 0.183 0.090
HCAL (IHCAL) 0.062 0.180

Table 4.3: Photon identification and isolation requirements.
Description criterion

Kinematical
pT > 15 GeV

|η |< 1.4442 for barrel (1.566 < |η |< 2.5 for endcap)
HCAL/ECAL energy ; ∆R < 0.15 < 0.05

σiη iη < 0.011(0.03)
Associated track Pixel seed veto
IT RK ; ∆R < 0.4 < 2.0+0.001 ·ET +0.0167(0.032) ·ρ
IECAL ; ∆R < 0.4 < 4.2+0.006 ·ET +0.183(0.090) ·ρ
IHCAL ; ∆R < 0.4 < 2.2+0.0025 ·ET +0.062(0.180) ·ρ

4.2.4 Photon energy scale and resolution

The known width and peak position of the Z boson can be exploited to measure the photon en-

ergy resolution and to determine the absolute photon energy scale using the data itself using the

Z→ µµγ decay. This process is the only source of pure energetic photons in the hadron collider

environment. Requiring the µµγ invariant mass to be within 30 GeV of the Z boson pole mass

reduces the Z+jets background to a negligible level.

The photon energy scale s is defined as the mode of the distribution of the photon energy response

x = Eγ/Eγ

true− 1, where Eγ and Eγ

true are the reconstructed and true photon energies, respectively.

The photon energy resolution r is defined as half of the shortest interval containing 68.3% of the

photon energy response distribution.

The photon energy scale and resolution are measured in the simulation and in data. In simulation

the photon energy is corrected to match the resolution in data and to have the perfect energy scale,

i.e. s=0, while in data only the energy scale is corrected. These corrections are performed by

shifting the measured value of photon energy in every event.
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Figure 4.1: Left: The invariant mass of the µµγ system for Z→ µµγ data events fit to a model. The photon
is required to be in the barrel and have transverse energy between 15 and 20 GeV. The photon energy scale
and resolution and the fraction of signal events are floated in the fit. Right: The photon energy scale as a
function of the photon transverse energy for the simulation (simulation truth) and for a fit to the simulation
(simulation fit) and to the data (data fit).

To estimate the scale and resolution in both data and simulation the model as the function of the

scale and resolution in sensitive observable, photon energy response for the simulation and Z mass

peak for the data, is build. This model is used in the fit to extract the scale and resolution.

To estimate the scale and resolution in the simulation, the energy responses from simulated Z →

µµγ events were used. The resolution and scale were varied in the simulation to build the cor-

responding model. The observed distribution was smoothed using a kernel density estimator [28]

to define the input photon energy response line shape f0(x) with scale s0 and resolution r0. The

estimates of the scale and resolution and their uncertainties are obtained from fitting the modeled

photon energy response to the analogous photon energy spectrum from the simulated event sample.

For data Etrue is not known. The invariant mass spectrum of µµγ is used therefore to estimate the

scale and resolution. The model of the invariant mass density is derived using the simulation in

the similar way as described above for the energy response. The energy scale and resolution are

derived with an unbinned maximum likelihood fit of the model on the data.
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Figure 4.1 shows an example fit to the µµγ mass in data and a comparison of the extracted photon

energy scale in data and simulation with the true energy scale in simulation as a function of photon

transverse energy.

Table 4.4: A summary of the derived photon energy scale estimates.
Eγ

T bin Simulation true % Data fit %
Barrel / Endcap

10≤ Eγ

T ≤ 12 1.35 / 2.94 -1.40 / -1.84
12≤ Eγ

T ≤ 15 0.76 / 0.75 -1.85 / -0.87
15≤ Eγ

T ≤ 20 0.65 / 1.58 -1.22 / -1.68
20≤ Eγ

T ≤ 50 0.08 / 0.15 -1.22 / -0.15

4.2.5 Neutrino selection

To identify W boson candidates the transverse mass is used, MW
T , defined as:

MW
T =

√
2× pT(µ)×MET× (1− cos∆φ(µ,MET)). (4.4)

The MW
T is computed using the transverse momentum and the azimuthal angle of a muon and a

MET.

4.2.6 Wγ event selection

Events are selected by requiring at least one muon with pT > 35 GeV that satisfies selection criteria

described in Section 4.2.2. Events that have more than one muon candidate are rejected if the

next-to-leading muon has pT > 10 GeV and |η | < 2.4. This reduces the Drell-Yan background.

Selected events are required to have MW
T > 70, due to the MW

T requirement used at trigger level for

the electron channel. The consistency between electron and muon channel was required. A photon

candidate with ET > 15 GeV within the ECAL fiducial region needs further to be present. The
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photon candidate is required to pass the photon selection described in Section 4.2.3. If more then

one photon is passing the selection the leading photon, photon with the highest Eγ

T , is chosen.

5014 events are selected in the data with 2.3 fb−1 of integrated luminosity (2011A), and 5795

events are selected in data with 2.7 fb−1 of integrated luminosity (2011B). Expected yields for the

signal and background processes from simulation are given in Table 4.5.

Table 4.5: Data and simulation yields in Wγ → µνγ channel for 2011A (2.3 fb−1), 2011B (2.7 fb−1) and
2011A+2011B combined (5.0 fb−1).

cross section(pb) Events (2011A) Events (2011B) Events (2011A+2011B)
Wγ → µνγ 137.3 2097.4±33.3 2252.5±34.0 4341.7±55.9
Wγ → τνγ 21.41 11.9±1.9 18.0±2.4 28.8±3.5

W+jets 31314 1701.4±54.0 2261.3±62.2 3945.9±95.9
Z+jets 3048 59.4±4.9 78.4±5.5 138.2±8.6

Z + γ → llγ 41.37 154.7±10.5 195.5±11.6 349.2±18.3
tt̄+jets 157.5 54.8±3.4 59.0±3.4 114.2±5.6

tt̄γ 0.444 17.2±0.6 19.4±0.6 36.7±1.0
Incl. µ QCD 84679.3 0.0±0.0 0.0±0.0 0.0±0.0

γ + jets by P̂T 0.0±0.0 0.0±0.0 0.0±0.0
WW 5.7 14.8±0.6 15.7±0.6 30.5±1.0
WZ 0.6 0.2±0.0 0.2±0.0 0.4±0.0
ZZ 0.06 0.0±0.0 0.0±0.0 0.0±0.0

simulation (Total) 4111.9±64.6 4900.0±72.2 8985.6±113.0
data 5014 5795 10809

4.2.7 Selection efficiency and acceptance

The efficiency and acceptance used to derive the Wγ cross section are not derived separatelly but

as a product, F = A · εgen, using the Wγ simulation. The efficiency represents the probability that

a genuine Wγ event with outgoing particles within detector acceptance will pass the full selection

while the acceptance represents the probability that a genuine Wγ event will not be reconstructed

in the detector due to the limited detector acceptance. In order not to rely on the simulation for the

efficiency, the efficiency is determined for both data and simulation and an efficiency correction

factor ρe f f = ∑i
ε i

ε i
gen

= ∑i
ε i

data
ε i

gen
is applied to F .
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’Tag-and-probe’ method for efficiency determination

The ’tag-and-probe’ method [19] is often used in CMS analysis to derive the efficiency of lepton

selection criteria. To ensure that the efficiency of genuine leptons is measured, the Z resonance

was used as a source of pure, energetic leptons. The events containing two opposite charge leptons

whose invariant mass is close to the Z resonance are selected. One lepton, the ’tag’ lepton, is

required to pass stringent lepton identification requirements. A second lepton, the ’probe’ lepton,

is required to pass loose identification requirements and is used to determine the efficiency of some

studied selection criteria. The ’probe’ lepton selection is such that it does not bias the efficiency of

the selection criteria that is being measured.

Some events with reconstructed di-lepton mass close to Z resonance are not events where a Z boson

is produced but are a background. The amount of background is determined by performing a fit on

the di-lepton mass spectrum using signal and background model shapes. The fit is performed on

selected events with ’tag’ and ’probe’ leptons and results in a number of signal events, Nloose
signal, and a

number of background events, Nloose
bkg . The selection criteria that is being studied is then applied on

the ’probe’ lepton and the fit is performed again on selected events resulting in a number of signal

events, Ntight
signal, and a number of background events, Ntight

bkg . The efficiency of the selection criteria

on lepton is:

εselection criteria =
Ntight

signal

Nloose
signal +Ntight

signal

. (4.5)

The efficiency of all muon selection criteria are derived applying ’tag-and-probe’ method on Z→

µµ events. For photons, Z→ ee events are used, where electrons are treated as photons.

Efficiency of muon selection

The efficiency of muon selection requirements is measured using the ‘tag-and-probe’ technique.
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The signal shape used in ’tag-and-probe’ invariant mass fit is described by a Breit-Wigner distribu-

tion convoluted with a Crystal Ball function where its width is fixed to the width of the Z boson as

determined by the PDG global average. The Breit-Wigner function is numerically convoluted with

the Crystal Ball function to account for detector resolution and final state radiation effects in the

measured distribution. The background is described by a Landau function.

The signal model is a Breit–Wigner convoluted with a Crystal Ball function in order to properly

describe resolution effects.

The overall single muon identification efficiency is factorized as a product of efficiencies of several

consecutively applied requirements:

εtot = εT RK · εSA · εID · εISO · εtrigger, (4.6)

where individual efficiencies are defined below:

• εT RK: the efficiency of reconstructing a track in the Tracker with the required number of pixel

and tracker hits,

• εSA: the efficiency of reconstructing a track in the muon system, i.e., a stand-alone (SA)

muon with at least two muon stations and one matched chamber hit,

• εID: the efficiency of passing the GlobalMuon and TrackerMuon algorithms with the required

cuts on d0, dz and χ2/n.d.f,

• εISO: the efficiency of passing the required isolation,

• εtrigger: the efficiency of satisfying the requirements of the muon trigger.

As the requirements are applied sequentially, the efficiency for both data and simulation are esti-

mated with respect to the previously applied criteria. εT RK is approximated by the efficiency of

reconstructing a track given a stand-alone muon.

The ’tag’ is defined as a muon that satisfies all muon selection criteria and is matched to a object

triggering an isolated single muon trigger with a pT threshold of 24 GeV. The ’probe’ is defined to
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estimate each of the individual efficiencies defined by Eq. 4.6 with definitions and passing criteria

summarized in Table 4.6. All ’probes’ (P) together with the ’tag’ (T) are required to have an

invariant mass 50 GeV< MT P < 150 GeV and opposite charge.

Table 4.6: Definition of selected probes and the passing criterion.
ε Probe definition Passing criteria
TRK SA muon Track in Tracker
SA Track in Tracker SA muon
ID Track in Tracker and SA muon Global/Tracker muon
ISO Global/Tracker muon Isolated Global/Tracker muon
Trigger Isolated Global/Tracker muon Isolated Global/Tracker muon matched to trigger

The results for the overall muon identification efficiency of the selected probes are given in Ta-

ble 4.7 for both data and simulation.

The same method is used to get results for the efficiencies as a function of pT and η of the probe

and as a function of the number of primary vertices in the event. The latter gives the direct estimate

of the pile-up dependence. The results are shown in Figs. 4.2 - 4.11.

The difference between efficiency derived using ’tag-and-probe’ method on the simulation and

simulation truth counting efficiency of 1.5% is assigned as systematic uncertainty.
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Figure 4.2: Muon tracking efficiency depending on Pµ

T , ηµ , and number of primary vertices together with
data-simulation ratio.
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Figure 4.3: Muon tracking efficiency depending on Pµ

T and ηµ .

Table 4.7: Summary of measured efficiencies of a muon with Wγ-selection. Simulation is adapted to the
different pile-up scenarios for Run 2011A and Run 2011B.

Efficiency Data [%] Simulation [%] Data/Simulation [%]
Run 2011A

εT RK 99.19±0.01 99.50±0.01 99.69±0.01
εSA 97.46±0.01 97.49±0.01 99.97±0.01
εID 99.26±0.01 99.48±0.01 99.78±0.01
εISO 98.80±0.01 99.02±0.01 99.77±0.01
εT RKεSAεIDεISO 94.97±0.01 95.59±0.01 99.36±0.01
εtrigger 86.09±0.03 86.39±0.01 99.65±0.03

Run 2011B
εT RK 99.07±0.01 99.42±0.01 99.67±0.01
εSA 95.88±0.01 97.50±0.01 98.33±0.01
εID 99.33±0.01 99.51±0.01 99.82±0.01
εISO 98.74±0.01 99.03±0.01 99.71±0.01
εT RKεSAεIDεISO 93.32±0.01 95.53±0.01 97.68±0.01
εtrigger 83.56±0.01 84.49±0.01 98.90±0.01
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Figure 4.4: Efficiency of muon reconstruction in muon system depending on Pµ

T , ηµ , and number of primary
vertices together with data-simulation ratio.
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Figure 4.5: Efficiency of muon reconstruction in muon system depending on Pµ

T and ηµ .
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Figure 4.6: Muon matching efficiency depending on Pµ

T , ηµ , and number of primary vertices together with
data-simulation ratio.
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Figure 4.7: Muon matching efficiency depending on Pµ

T and ηµ .
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Figure 4.8: Isolation efficiency depending on Pµ

T , ηµ , and number of primary vertices together with data-
simulation ratio.
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Figure 4.9: Isolation efficiency depending on Pµ

T and ηµ .
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Figure 4.10: Muon trigger efficiency depending on Pµ

T , ηµ , and number of primary vertices together with
data-simulation ratio.
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Figure 4.11: Muon trigger efficiency depending on Pµ

T and ηµ .
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Efficiency of photon selection

The efficiency of photon selection is factorized as:

εtot = εselection · εpixelSeed, (4.7)

where εpixelSeed is the efficiency of photon to have no associated hitsin the pixel detector, and

εselection is the efficiency of photon requiring all other selection criteria described in Section 4.2.3.

The efficiencies εpixelSeed and εselection are derived by applying the ’tag-and-probe’ method on Z→

µµγ and Z→ ee events, respectively.

Since there exists no pure source of photons with high statistics in data, the photon selection effi-

ciency is estimated using electrons from Z decays. The ratio of efficiencies for selecting photons

to that of electrons with the same criteria obtained from simulation is shown in Figure 4.12. They

agree within 3%. It is also found that the selection criteria in data and simulation agree to bet-

ter than 3% accuracy in both transverse momentum and pseudorapidity dependence as shown in

Figure 4.13.

The invariant mass of the di-electron pair is required to be consistent with the Z boson mass, i.e.

within 50 and 150 GeV. Both ’tag’ and ’probe’ electrons must have HCAL over ECAL energy

less then 0.15, Eγ

T > 20 GeV and positioned in the ECAL fiducial region. The model for the ’tag-

and-probe’ fit is the convolution of a Breit-Wigner and a Crystal Ball function for signal and an

’exponential decay + error function’ for background.

The efficiencies in data and simulation are shown in Figs. 4.14 and 4.15 respectively. Correspond-

ing efficiency correction factors (ρe f f ) are shown in Figure 4.16

The difference between efficiency derived using ’tag-and-probe’ method on the simulation and

simulation truth counting efficiency, amounts to 0.5%, is assigned as systematic uncertainty.
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Figure 4.13: Efficiency of photon selection criteria as a function of photon transverse momentum (left) and
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The efficiency of the requirement of the pixel hit veto is calculated using a source of photons from

final state radiation Z → µµγ events. The requirement of no associated pixel hits in data is 97%

and 89% efficient in barrel and endcap, respectively.
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Figure 4.14: Efficiencies for photon selection criteria depending on Eγ

T and number of primary vertices
measured in data.

Efficiency of MW
T selection

The efficiency of MW
T selection is measured using the signal simulation. The difference between the

simulation and data is applied as correction for every simulated event. Accuracy of MW
T measure-

ment is dominated by the quality of MET measurement. We therefore need to compare the MET

measurement between data and simulation. The measurement of MET is driven by the quality of

the measurement of visible particles in the detector, which is mainly limited by the measurement of

the hadronic component of the final state. The performance of this measurement can be studied in

events where the transverse energy of the hadronic component is precisely known. This is the case

for Z + jets events, in which the momentum of the Z is precisely measured due to the excellent

measurement of leptons.

Z bosons can be selected without significant background and PZ
T can be accurately reconstructed.

All additonal contributions to event with measured Z→ ll are expected to sum into ~PT pointing in
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Figure 4.15: Efficiencies for photon selection criteria depending on Eγ

T and number of primary vertices
measured in simulation.

the opposite direction, ~PT =−~PZ
T . These additional contributions are compared in selected Z→ µµ

events in data and simulation, as the function of PZ
T , and provide the necessary correction.

The efficiency of the MW
T selection is estimated by Wγ simulation applying the hadronic recoil

correction which takes into account the difference in MET scale and resolution between data and

simulation using the method fully described in [29]. The recoil modeling is applied on Z→ µµ

events in data and simulation.

The method calibrates the recoil response and resolution with Z→ µµ events in data and simulation

as a function of PZ
T . This information is combined with Wγ simulation to derive corrections to the

METv based on PWγ

T , as well as the associated systematic uncertainties.

The transverse recoil vector (~u) for Z events is determined from the reconstructed METv and ~PZ
T :
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Figure 4.16: Efficiency correction factor for photon selection criteria depending on Eγ

T and number of
primary vertices.

~u =− ~MET −~PZ
T =− ~MET −~Pl1

T −~Pl2
T (4.8)

The reference vector is defined as ~PZ
T reconstructed by 2 leptons, ~Pl1

T +~Pl2
T , for data and simulated

true ~PZgen

T for the simulation. Axes oriented parallel (u1) and perpendicular (u2), to the reference

vector’s direction are defined. In ideal case: < u1 >= PZ
T and < u2 >= 0.

A Gaussian fit to u1 and u2 spectra is performed in different PZ
T bins in both data and simulation

to get the response (expected value) and resolution (variance). The recoil response function is

obtained by fitting a linear function, a + b ·PZ
T , to the response, and the recoil resolution function

by fitting a quadratic function, a + b ·PZ
T + c · (PZ

T )2, to the resolution. Figures 4.17 to 4.22 and

Figures 4.23 to 4.24 show the fitted distributions of u1 and u2 in Z events for data and simulation

for different values of the number of vertices in the event (NVtx).

61



(GeV/c)
T

Z p

0 20 40 60 80 100 120 140

 R
ec

oi
l 

(G
eV

/c
)

1u

-140

-120

-100

-80

-60

-40

-20

0

20
 / ndf 2χ  410.2 / 16

p0        0.039± 1.104 
p1        0.0023± -0.9114 

Data

CMS Preliminary 2011

(GeV/c)
T

Z p

0 20 40 60 80 100 120 140

 R
ec

oi
l 

(G
eV

/c
)

1u

-140

-120

-100

-80

-60

-40

-20

0

20
 / ndf 2χ  586.6 / 16

p0        0.037± 1.162 
p1        0.0020± -0.9195 

Data

CMS Preliminary 2011

(GeV/c)
T

Z p

0 20 40 60 80 100 120 140

 R
ec

oi
l 

(G
eV

/c
)

1u

-140

-120

-100

-80

-60

-40

-20

0

20
 / ndf 2χ  294.8 / 16

p0        0.046± 1.229 
p1        0.0024± -0.9178 

Data

CMS Preliminary 2011

(GeV/c)
T

Z p

0 20 40 60 80 100 120 140

 R
es

ol
ut

io
n 

(G
eV

/c
)

1u

5

10

15

20

25

30
 / ndf 2χ  55.57 / 15

p0        0.041± 7.409 

p1        0.00402± 0.05365 

p2        0.0000533± 0.0002417 

Data

CMS Preliminary 2011

(GeV/c)
T

Z p

0 20 40 60 80 100 120 140

 R
es

ol
ut

io
n 

(G
eV

/c
)

1u

5

10

15

20

25

30
 / ndf 2χ  31.91 / 15

p0        0.037± 9.049 

p1        0.00349± 0.04265 

p2        0.0000439± 0.0002392 

Data

CMS Preliminary 2011

(GeV/c)
T

Z p

0 20 40 60 80 100 120 140

 R
es

ol
ut

io
n 

(G
eV

/c
)

1u

5

10

15

20

25

30
 / ndf 2χ  33.18 / 15

p0        0.05± 10.37 

p1        0.00419± 0.03256 

p2        0.0000521± 0.0002771 

Data

CMS Preliminary 2011

Figure 4.17: The fitting results of u1 response (top) and resolution (bottom) for 2011A data set. Left column
shows the results for 1 ≤ NVtx ≤ 3. Middle column shows the results for 4 ≤ NVtx ≤ 5. Right column shows
the results for 6 ≤ NVtx ≤ 7.
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Figure 4.18: The fitting results of u1 response (top) and resolution (bottom) for 2011A data set. Left column
shows the results for 8 ≤ NVtx ≤ 9. Middle column shows the results for 10 ≤ NVtx ≤ 11. Right column
shows the results for 12 ≤ NVtx
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Figure 4.19: The fitting results of u2 response (top) and resolution (bottom) for 2011A data set. Left column
shows the results for 1 ≤ NVtx ≤ 3. Middle column shows the results for 4 ≤ NVtx ≤ 5. Right column shows
the results for 6 ≤ NVtx ≤ 7.
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Figure 4.20: The fitting results of u2 response (top) and resolution (bottom) for 2011A data set. Left column
shows the results for 8 ≤ NVtx ≤ 9. Middle column shows the results for 10 ≤ NVtx ≤ 11. Right column
shows the results for 12 ≤ NVtx.
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Figure 4.21: The fitting results of u1 response (top) and resolution (bottom) for 2011B data set. Left column
shows the results for 1 ≤ NVtx ≤ 3. Middle column shows the results for 4 ≤ NVtx ≤ 5. Right column shows
the results for 6 ≤ NVtx ≤ 7.
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Figure 4.22: The fitting results of u1 response (top) and resolution (bottom) for 2011B data set. Left column
shows the results for 8 ≤ NVtx ≤ 9. Middle column shows the results for 10 ≤ NVtx ≤ 11. Right column
shows the results for 12 ≤ NVtx.
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Figure 4.23: The fitting results of u1 response (top) and resolution (bottom) for simulated Z. Left column
shows the results for 1 ≤ NVtx ≤ 3. Middle column shows the results for 4 ≤ NVtx ≤ 5. Right column shows
the results for 6 ≤ NVtx ≤ 7.
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The transverse recoil vector for simulated Wγ events is determined from the reconstructed ~MET

and PT of the lepton and γ:

~u =− ~MET −~Pl
T −~Pγ

T (4.9)

The reference vector is ~PWγgen

T = ~Pνgen

T +~Plgen

T +~Pγgen

T , abtained from simulation truth particles.

The reason to subtract the contribution of the photon from the recoil is to isolate the purely hadronic

component. This can also avoid the miscalculation of the recoil if it is a FSR event.

The corrected function of the recoil response and resolution can be obtained by 3 fitted distributions

(Z from data, Z from simulation, and Wγ from simulation):

fdi(P
Wγ

T ) =
f Z,data
di

(PZ
T )

f Z,simulation
di

(PZ
T )
× f Wγ ,simulation

di
(PWγ

T ) (4.10)

where di = ui,σi and i = 1,2.

Using the corrected recoil response and resolution curves a corrected MET distribution in Wγ

simulation is generated by the following steps:

1. For every simulated Wγ event, look up the u1 and u2 response ( fui(P
Wγ

T )) and resolution

( fσ i(P
Wγ

T )) from the corrected curves.

2. Randomly sample Gaussian PDFs defined with these values to determine new recoil compo-

nents for each event, ui
′ = Gauss( fui(P

Wγ

T ), fσi(P
Wγ

T ))

3. Combine the new ui
′ components to reconstruct a corrected recoil vector ~ui

′. Add the lepton

(~Pl
T ) and photon vector (~Pγ

T ) back in to determine the corrected ~MET .

4. Using the corrected ~MET , the corrected MW
T is calculated.

A "closure test" is performed to show that these parameters describe the original MW
T shape well

in the same sample. The comparison between the MW
T obtained from the recoil method and the
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original MW
T shape is shown in Fig . 4.25 and 4.26. The difference in efficiency between the

original and recoil MW
T , and due to fitting errors, are assigned as systematic uncertainty.

The MW
T efficiencies are summarized in Tables 4.8 and 4.9 and in Figure 4.27.

Table 4.8: Summary of the MW
T efficiencies in using corrected recoil, simulation, and a recoil/simulation

ratio wrt NVtx for 2011A runs.
Efficiency Recoil Prediction Simulation Prediction/Simulation
0 < NVtx <= 3 56.1±0.3% 55.2±0.2% 1.016±0.006
3 < NVtx <= 5 55.8±0.3% 54.3±0.5% 1.027±0.005
5 < NVtx <= 7 55.4±0.3% 54.0±0.3% 1.026±0.006
7 < NVtx <= 9 55.6±0.5% 54.7±0.1% 1.017±0.009
9 < NVtx <= 11 55.3±0.6% 53.9±0.8% 1.026±0.012
11 < NVtx 56.5±1.1% 53.5±0.3% 1.057±0.021

Table 4.9: Summary of the MW
T efficiencies in using corrected recoil, simulation, and a recoil/simulation

ratio wrt NVtx for 2011B runs.
Efficiency Recoil Prediction Simulation Prediction/Simulation
0 < NVtx <= 3 55.8±0.5% 54.9±0.2% 1.018±0.010
3 < NVtx <= 5 56.2±0.3% 54.3±0.5% 1.036±0.006
5 < NVtx <= 7 55.4±0.4% 53.7±0.2% 1.031±0.007
7 < NVtx <= 9 55.5±0.4% 54.5±0.3% 1.017±0.008
9 < NVtx <= 11 54.8±0.6% 53.6±0.2% 1.022±0.011
11 < NVtx 54.8±0.8% 53.7±0.5% 1.020±0.015
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Figure 4.24: The fitting results of u1 response (top) and resolution (bottom) for simulated Z. Left column
shows the results for 8 ≤ NVtx ≤ 9. Middle column shows the results for 10 ≤ NVtx ≤ 11. Right column
shows the results for 12 ≤ NVtx.
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Figure 4.25: Comparison of the true Wγ → µνγ simulated MW
T distribution with the predicted simulated

distribution from the ui recoil fits. The filled histogram is the true simulated MW
T , and the dots show the MW

T
shape that is predicted by the recoil fits. Plots correspond to (top-left) 1 ≤ NVtx ≤ 3, (top-midle) 4 ≤ NVtx ≤
5, (top-right) 6 ≤ NVtx ≤ 7, (bottom-left) 8 ≤ NVtx ≤ 9, (bottom-midle) 10 ≤ NVtx ≤ 11, (bottom-right) 12
≤ NVtx, for 2011A.

72



Figure 4.26: Comparison of the true Wγ → µνγ simulated MW
T distribution with the predicted simulated

distribution from the ui recoil fits. The filled histogram is the true simulated MW
T , and the dots show the MW

T
shape that is predicted by the recoil fits. Plots correspond to (top-left) 1 ≤ NVtx ≤ 3, (top-midle) 4 ≤ NVtx ≤
5, (top-right) 6 ≤ NVtx ≤ 7, (bottom-left) 8 ≤ NVtx ≤ 9, (bottom-midle) 10 ≤ NVtx ≤ 11, (bottom-right) 12
≤ NVtx, for 2011B.
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Figure 4.27: Efficiencies and efficiency correction factors for MW
T cut. Upper (lower) plot corresponds to

2011A (2011B).
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4.3 Backgrounds

The largest background to Wγ production is from events in which a jet that has a large fraction of

electromagnetic energy is misidentified as a photon. The following background processes fall into

this category:

• W+jets where the jet is misidentified as a photon.

• Z+jets where one of the leptons from the Z boson decay is outside acceptance and a jet is

misidentified as a photon.

• tt̄+jets where one of the W bosons from the tt̄-pair decays into a lepton and a jet is misiden-

tified as a photon.

This background is estimated in data with two methods,the ’template method’ and the ’ratio

method’, as described in Sec. 4.3.1.

Multibosons processes can also be background if an electron is misidentified as a photon. For

the Wγ → µνγ channel this background source is small and is estimated in data, as described in

Sec. 4.3.2.

Other backgrounds to the Wγ process are from

• Misidentified leptons from γ+jet production,

• Wγ → τνγ where the τ decays to µνγ ,

• Zγ events,

• tt̄γ events.

All these backgrounds are estimated to be negligible compared to the W + jets contribution and are

estimated from the simulation.
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4.3.1 Background from jets misidentified as photons

The dominant background comes from events with misidentified photons, mostly originating from

the jets in W + jets events. The background from these sources is estimated in data, using two

methods described below.

’Template method’

The ’template method’ uses the σiη iη distribution as discriminating variable to determine the num-

ber of genuine photons from misidentified jets passing full selection criteria by performing a two-

component extended maximum likelihood fit of signal and background σiη iη ’templates’ to data.

The signal and background distributions, or ’templates’, are taken as input for the fit and the back-

ground yield is extracted from the fit.

Signal and background templates are obtained in bins of Eγ

T: 15− 20 GeV, 20− 25 GeV, 25−

30 GeV, 30− 35 GeV, 35− 40 GeV, 40− 60 GeV, 60− 90 GeV, and 90− 500 GeV for 2011A

and 2011B separately, and 90− 120 GeV and 120− 500 GeV for 2011A and 2011B analyzed

together. Template shapes for photons reconstructed in the barrel (|η | < 1.4442) and the endcap

(1.556 < |η |< 2.5) are made separately for each Eγ

T bin.

The signal shape is obtained from photon candidates in Wγ simulation. The simulation of elec-

tromagnetic shower is cross checked with data using Z → ee events. Events are required to have

at least two electron candidates with pT > 20 GeV and pass selection criteria but without σiη iη

requirement. Both electron candidates must be identified in the ECAL fiducial volume and have

invariant mass between 60 and 120 GeV. A ’tag’ electron candidate, is required to pass the stringent

electron trigger criteria , while no trigger requirements are applied on the other electron candidate,

a ’probe’. The purity of this selection is estimated to be 99% for both barrel and endcap regions.

The comparison of the σiη iη distributions for the ’probe’ in data and simulation is shown in Fig-

ure 4.28. The mean of the σiη iη distribution in data is smaller than that in simulation by 0.9×10−4

(0.8×10−4) and 2.1×10−4 (1.9×10−4) for barrel and endcap in 2011A (2011B), respectively.
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These effects were accounted for by shifting the σiη iη template distributions in simulation by this

difference.

The σiη iη distributions are additionaly checked using FSR photons from the Z → µµγ process

in data. The comparison of the σiη iη distributions between data FSR photons, simulated FSR

photons and simulated photons from the Wγ process is shown in Figure 4.29. As expected from

the Z → ee comparison the mean of the σiη iη distribution in data is smaller than in simulation.

The σiη iη distributions from FSR simulated photons and signal photons from Wγ simulation are in

agreement.

The background ’templates’ are made from jet-enriched data, events in data selected by a jet trig-

gers. Photon candidates in these events are required to pass the photon selection criteria described

in Sec. 4.2.3, except for the σiη iη requirement and ITRK which is required to be in the range

2 GeV < ITRK− 0.001 · Eγ

T− 0.0167(0.032) · ρ < 5(3) GeV for photons in the barrel(endcap).

This sideband requirement ensures that the contribution from genuine photons is negligible, while

keeping the isolation requirements close to those for photon selection criteria. This allows to select

jets with a large electromagnetic fraction that have properties similar to those of genuine photons.

As shown in Figures 4.30 and 4.31, in simulated jet events σiη iη is found to be largely uncorrelated

with the isolation requirement. The background shape observed for jets with the sideband tracker

isolation should therefore be the same as that for isolated jets.

The σiη iη distribution in data are fit to

f (σiη iη) = NSS(σiη iη)+NBB(σiη iη), (4.11)

where NS and NB are the expected number of signal and background candidates. S(σiη iη) and

B(σiη iη) are the signal and background component ’templates’. The ’templates’ are smoothed

using kernel density estimation [28] or direct interpolation, in the case of high template statistics.

This allows to perform unbinned fits of the σiη iη distribution of selected photons, preserving the

performance of the fit in low statistics scenarios.
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Figure 4.28: The σiη iη distributions for barrel (left) and endcap (right). The difference of mean values be-
tween simulation (filled green histograms) and data (black dots) are accounted for by shifting the simulation
signal shapes.
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Figure 4.30: The correlation between < σiη iη > and IsoT RK for each Eγ

T bin in the barrel region.
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Figure 4.31: The correlation between <σiη iη > and IsoT RK for each Eγ

T bin in the endcap region.
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The fit is performed by using an unbinned extended maximum likelihood, by minimizing:

− lnL = (NS +NB)−N ln(NSS(σiη iη)+NBB(σiη iη)). (4.12)

where N is the total number of data events in the given Eγ

T bin.

The unbinned fit results for the lowest and statisticaly most important Eγ

T bin, 15-20 GeV, are shown

in Figure 4.32 for photon candidates in the barrel and in the endcaps.

81



ηiηiσ
0.01 0.02 0.03

N
u

m
b

er
 o

f 
ev

en
ts

 / 
0.

00
07

5

0

500

1000

 < 20 GeV
γ
T15 GeV < E

Data

Fitted

Background

-1CMS Preliminary, L = 5 fb  = 7 TeVs

ECAL barrel

ηiηiσ
0.02 0.03 0.04 0.05 0.06 0.07

N
u

m
b

er
 o

f 
ev

en
ts

 / 
0.

00
07

5

0

20

40

60

80

100

120

140

160

180

200

 < 20 GeV
γ
T15 GeV < E

Data

Fitted

Background

-1CMS Preliminary, L = 5 fb  = 7 TeVs

ECAL endcap

Figure 4.32: The σiη iη distributions for the selected Wγ → µνγ events in data (black squares) with photon
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’Ratio method’

A second method refereed to as the ’ratio method’ is used to infer the jet misidentification back-

ground as a cross-check to the results of the ’template method’ at high Eγ

T > 60 GeV where the

’template method’ is subject to larger systematic uncertainties. This method takes advantage of

the relatively high statistics in the γ + jets data sample and the expected similarity between the

misidentification rate for jets in γ + jets sample and W + jets. This method can thus provide a

higher precision estimate of the misidentified jet background at large Eγ

T.

This method exploits a category of jets that have similar properties to electromagnetic objects in

the ECAL; these jets are called ’photon-like jets’ (’plJets’). ’Photon-like jets’ are selected by

identifying a reconstructed photon which fails the photon isolation or the σiη iη requirements of

the final photon selection (’tight photon’), but are more isolated and have a higher electromagnetic

fraction than most hadronic jets. The ’ratio method’ measures the ratio Rp:

Rp =
probability of a jet to pass the ’tight photon’ criteria

probability of a jet to pass the ’plJet’ criteria
. (4.13)

Once Rp is known, the number of selected Wγ events where jets satisfy the final photon selection

criteria, NW+jet, can be estimated as the product of Rp and the number of W+’plJets’ counted in

data:

NW+jet = Rp ·NW+plJet, (4.14)

where NW+plJet is the number of events in data with an identified W boson, passing W selection

requirements, and at least one ’plJet’.

The Rp value depends on the calorimeter response (different for barrel and endcap), PT of jet and jet

type. It is expected to be different for gluon and quark jets due to the difference in typical shower

width . Therefore Rp is measured for each Eγ

T bin separately for the ECAL barrel and endcaps. To

be able to measure Rp for quark-to-gluon fraction in the W + jet process, the Rp for γ + jet and
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jet + jet processes are measured in data since, as shown in Figure 4.33 using the simulation, the

Rp for W + jet is between the two.

Since there are now two objects (γ and jet) in the event, the ratio method is expanded to the two

object case. Having γ + jet and jet + jet processes, one can have two ’tight photons’ reconstructed,

or one ’tight photon’ and one ’plJet’ or two ’plJets’. There is one more process that can result with

the same signatures, γ + γ .

Summary table can be found in Table 4.10, where g is probability of a true photon to pass the ’plJet’

criteria and h probability to pass the ’tight photon’ criteria. The Rp for the γ + jet and the jet + jet

process can be written as:

Rp(γ + jet) =
f ′

e′
,Rp( jet + jet) =

f
e
. (4.15)

where f ( f ′) is the probability of a jet to pass the tight photon criteria and e(e′) is the probability of

a jet to pass the ’plJet’ criteria.

The number of events with two ’plJets’ (N′plJplJ), with one ’plJet’ and one ’tight photon’ (N′T plJ)

and with two ’tight photons’ (N′T T ) are observed. Assuming g = 0, the number of jet + jet resulting

in two ’plJets’ can be observed directly since there are no competing entries in the ’plJet’+’plJet’

column. Contributions from different processes in the ’Tight’+’plJet’ column can be separated with

a one dimensional σiη iη template fit on the ’tight’ photon. The jet σiη iη ’templates’ are constructed

out of the ’plJets’ in data and the photon ’templates’ taken are from simulation. Separating the

’Tight’+’Tight’ column into its elements can be done using a two dimensional σiη iη template fit. A

ratio that targets the fake rate from jet + jet can be constructed without using 2D template fitting:

Rp( jet + jet) =
f
e

=
1
2
· 2 f eNJJ

e2NJJ
, (4.16)

and with the 2D ’template’ fitting one can target the fake rate from γ + jet:

84



Rp(γ + jet) =
f ′

e′
=

f ′hNγJ

e′hNγJ
(4.17)
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Figure 4.33: Above: Comparison of the fake rates for W + jet, γ + jet and jet + jet in simulation. The
γ + jet and W + jet fake rates are not identical. Instead the W + jet fake rate lies between that of γ + jet
and jet + jet. Below: Correction factors to adjust the γ + jet and jet + jet fake rate curves to emulate the
W + jet fake rate.

To measure the Rp value for a given bin of Eγ

T two electromagnetic objects are required to be both

either in barrel or endcap, and to have ET in the same bin.
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’Tight’+’Tight’ ’Tight’+’plJet’ ’plJet’+’plJet’ Other
N′T T N′T plJ N′plJplJ

γ + γ Nγγ nγγ−to−T T nγγ−to−T plJ nγγ−to−plJplJ > 0
= h2Nγγ = 2gh≈ 0 = g2NJJ ≈ 0

γ+Jet NγJ nγJ−to−T T nγJ−to−T plJ (+ nγJ−to−plJT ) nγJ−to−plJplJ >> 0
= f ′hNγJ = e′h (+ f ′g≈ 0)NγJ = e′gNγJ ≈ 0

Jet+Jet NJJ nJJ−to−T T nJJ−to−T plJ nJJ−to−plJplJ >> 0
= f 2NJJ = 2 f eNJJ = e2NJJ ≈ N′plJplJ

Table 4.10: Summary of probabilities for the two particle case.

In addition a correction factor α ≈ 5−10% is applied to account for the case where genuine photons

satisfy ’plJet’ definitions. The correction is derived from simulation and checked using Z→ ee data

and simulation.

The measured Rp values for the ECAL barrel are given in Figure 4.34. Simulation is used to

compare the expected Rp values in W + jet, γ + jet and jet + jet processes. Using the compaison

shown in Figure 4.33 measured Rp values for γ + jet and jet + jet processes are corrected for the

difference to match the W + jet process.
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Figure 4.34: Rp as a function of photon candidate Eγ

T for barrel ECAL in γ + jet and multijet QCD sample
( jet + jet). The difference in Rp values between two processes is due to the fact that jets in γ + jet process
are dominated by quark fragmentation, while those in jet + jet are dominated by gluon fragmentation.
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The result of the ’ratio method’ has a greater reliance on simulation than the ’template method’. It

is found to be in agreement with the ’template method’. The ’ratio method’ is therefore used in this

study as an estimate for systematic uncertainty rather than as a direct estimation of the background.
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Results

Table 4.11: Background from jets misidentified as photons for Wγ→ µνγ estimated with ’template method’
for 2011A and 2011B.

Eγ

T , GeV Background yields (2011A) Background yields (2011B)
Barrel

15-20 834.8 ± 22.5(stat.) ± 28.7(syst.) 1006.4 ± 24.4(stat.) ± 40.7(syst.)
20-25 317 ± 15.5(stat.) ± 16.4(syst.) 348.1 ± 15.9(stat.) ± 21.2(syst.)
25-30 142.9 ± 10.4(stat.) ± 9.5(syst.) 164.8 ± 11.4(stat.) ± 12.3(syst.)
30-35 98.5 ± 8.6(stat.) ± 8.1(syst.) 120.4 ± 9.6(stat.) ± 11.9(syst.)
35-40 51.8 ± 6.5(stat.) ± 5(syst.) 66.9 ± 8.1(stat.) ± 7.4(syst.)
40-60 75.1 ± 8.4(stat.) ± 9.4(syst.) 105.4 ± 10.1(stat.) ± 13.7(syst.)
60-90 27.1 ± 5.2(stat.) ± 5.4(syst.) 41.6 ± 7.3(stat.) ± 8.6(syst.)
90-500 20.3 ± 6.8(stat.) ± 16.7(syst.) 34.5 ± 9.8(stat.) ± 28.5(syst.)
MET correlation ± 203.8(syst.) ± 245.4(syst.)
∆(ratio vs template) ± 1.6 (syst.) ± 50.3(syst.)
Total 1567.5 ± 33.4(stat.) ± 207.9(syst.) 1888.1 ± 37.2(stat.) ± 257.5(syst.)

Endcap
15-20 417 ± 12.6(stat.) ± 29(syst.) 430.7 ± 12.4(stat.) ± 40.3(syst.)
20-25 185.1 ± 9.4(stat.) ± 15.3(syst.) 236.3 ± 10.4(stat.) ± 20.8(syst.)
25-30 81.6 ± 6.6(stat.) ± 9.1(syst.) 140.5 ± 9.3(stat.) ± 14.9(syst.)
30-35 56.2 ± 5.7(stat.) ± 7.4(syst.) 51 ± 5.8(stat.) ± 9.4(syst.)
35-40 44 ± 5.1(stat.) ± 4.9(syst.) 31 ± 4.9(stat.) ± 6.3(syst.)
40-60 40.3 ± 6.4(stat.) ± 7.6(syst.) 51.9 ± 7.1(stat.) ± 11.3(syst.)
60-90 18.2 ± 4.3(stat.) ± 4.3(syst.) 22.2 ± 5.3(stat.) ± 7.1(syst.)
90-500 7.3 ± 5.3(stat.) ± 12.3(syst.) 16.5 ± 6.6(stat.) ± 20.9(syst.)
MET correlation ± 59.5(syst.) ± 68.6(syst.)
∆(ratio vs template) ± 13.4 (syst.) ± 21.3(syst.)
Total 849.7 ± 20.9(stat.) ± 72.0(syst.) 980.1 ± 23.0(stat.) ± 90.4(syst.)

Barrel + Endcap
15-20 1251.8 ± 25.8(stat.) ± 40.8(syst.) 1437.1 ± 27.4(stat.) ± 57.3(syst.)
20-25 502.1 ± 18.1(stat.) ± 22.4(syst.) 584.4 ± 19.0(stat.) ± 29.7(syst.)
25-30 224.5 ± 12.3(stat.) ± 13.2(syst.) 305.3 ± 14.7(stat.) ± 19.3(syst.)
30-35 154.7 ± 10.3(stat.) ± 11.0(syst.) 171.4 ± 11.2(stat.) ± 15.2(syst.)
35-40 95.8 ± 8.3(stat.) ± 7.0(syst.) 97.9 ± 9.5(stat.) ± 9.7(syst.)
40-60 115.4 ± 10.6(stat.) ± 12.1(syst.) 157.3 ± 12.3(stat.) ± 17.8(syst.)
60-90 45.3 ± 6.7(stat.) ± 6.9(syst.) 63.8 ± 9.0(stat.) ± 11.2(syst.)
90-500 27.6 ± 8.6(stat.) ± 20.7(syst.) 51 ± 11.8(stat.) ± 35.3(syst.)
MET correlation ± 212.3(syst.) ± 254.9(syst.)
∆(ratio vs template) ± 11.8 (syst.) ± 71.5(syst.)
Total 2417.3 ± 39.4(stat.) ± 219.9(syst.) 2868.2 ± 43.7(stat.) ± 276.8(syst.)

The background estimation of jets misidentified as photons using the ’template method’ and ’ratio

method’ for the µνγ final state are shown in Figure 4.35. Results using the ’template method’

are summarized in Table 4.11 and 4.12 including the systematic uncertainties described in Sec-

tion 4.4.4. The estimated background is 2417.3 ± 39.4 (stat.) ± 219.9 (syst.) events in 2011A,

2868.2 ± 43.7 (stat.) ± 276.8 (syst.) events in 2011B and 5345.9 ± 58.2 (stat.) ± 482.6 (syst.)

events in 2011A+2011B combined using the ’template method’.
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Figure 4.35: Estimated background from jets misidentified as photons for Wγ → µνγ for the barrel (left)
and endcap (right) photon candidates, for 2011A (top), 2011B (middle) and 2011A+2011B combined (bot-
tom). The ’template method’ fit results are shown in red, the ’ratio method’ results in blue, and background
prediction from simulation as filled histograms.
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Table 4.12: Background from jets misidentified as photons for Wγ→ µνγ estimated with ’template method’
for 2011A+2011B combined.

Eγ

T , GeV Background yields (2011A+2011B)
Barrel

15-20 1876.4 ± 32.4(stat.) ± 62.4(syst.)
20-25 688.2 ± 22.3(stat.) ± 37.8(syst.)
25-30 310.9 ± 15.3(stat.) ± 21.2(syst.)
30-35 217.6 ± 13(stat.) ± 17.4(syst.)
35-40 116.7 ± 10.4(stat.) ± 11.1(syst.)
40-60 177.5 ± 13.1(stat.) ± 22.1(syst.)
60-90 61.9 ± 7.8(stat.) ± 12.3(syst.)
90-120 13.3 ± 4.5(stat.) ± 4.2(syst.)
120-500 29.3 ± 10.2(stat.) ± 25.4(syst.)
MET correlation ± 453.9(syst.)
∆(ratio vs template) ± 16.2 (syst.)
Total 3491.8 ± 49.1(stat.) ± 462.4(syst.)

Endcap
15-20 886.5 ± 18(stat.) ± 36.4(syst.)
20-25 420.1 ± 14(stat.) ± 21.2(syst.)
25-30 210.7 ± 10.7(stat.) ± 16.3(syst.)
30-35 108.7 ± 8.4(stat.) ± 10.8(syst.)
35-40 78.1 ± 7.5(stat.) ± 8.8(syst.)
40-60 94.8 ± 10(stat.) ± 10.1(syst.)
60-90 38.6 ± 6.8(stat.) ± 6.3(syst.)
90-120 8.1 ± 4.7(stat.) ± 2.2(syst.)
120-500 8.8 ± 7.0(stat.) ± 5.6(syst.)
MET correlation ± 129.8(syst.)
∆(ratio vs template) ± 9.2 (syst.)
Total 1854.4 ± 31.3(stat.) ± 139.1(syst.)

Barrel + Endcap
15-20 2762.9 ± 37.1(stat.) ± 72.3(syst.)
20-25 1108.3 ± 26.3(stat.) ± 43.3(syst.)
25-30 521.6 ± 18.7(stat.) ± 26.7(syst.)
30-35 326.3 ± 15.5(stat.) ± 20.5(syst.)
35-40 194.8 ± 12.8(stat.) ± 14.2(syst.)
40-60 272.3 ± 16.5(stat.) ± 24.3(syst.)
60-90 100.5 ± 10.3(stat.) ± 13.8(syst.)
90-120 21.4 ± 6.5(stat.) ± 4.7(syst.)
120-500 38.1 ± 12.4(stat.) ± 26.0(syst.)
MET correlation ± 472.1(syst.)
∆(ratio vs template) ± 7.0 (syst.)
Total 5345.9 ± 58.2(stat.) ± 482.6(syst.)
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4.3.2 Background from electrons misidentified as photons

The criterion that allows to separate electrons from photons is the requirement of no pixel hit

associated with the photon candidate. The probability P for an electron to have no pixel hit match is

measured in a Z→ ee data sample using the ’tag-and-probe’ method. Fitting the dielectron invariant

mass distribution with a convolution of a Breit–Wigner and Crystal Ball function to describe the

signal and an ’exponential decay + error’ function for the background, the efficiency of an electron

to have associated pixel hit is obtained to be P = 0.9858± 0.002 (syst.) for barrel and P = 0.9710±

0.004 (syst.) for endcap in the 2011A data set, P = 0.9873± 0.003 (syst.) for barrel and P = 0.9727

± 0.003 (syst.) for endcap in the 2011B data set, and P = 0.014 ± 0.003 (syst.) for barrel and P =

0.028 ± 0.004 (syst.) for endcap in 2011A+2011B combined. The difference between fitting and

simple counting method results is assigned as systematic uncertainty. To estimate the background

from electron misidentification in Wγ → µνγ channel, events that pass the full selection criteria

are selected, in which the photon candidate is however required to have associated pixel hit. This

electron-like selection will yield Nµνe selected events. Then the background contribution from

genuine electrons misidentified as photons is calculated from:

Ne→γ = Nµνe×
P

1−P
, (4.18)

This background is found to be 44.0 ± 1.0 (stat.) ± 3.3 (syst.) in 2011A, 47.3 ± 1.0 (stat.) ± 3.40

(syst.) in 2011B and 91.4 ± 1.4 (stat.) ± 4.7 (syst.) in 2011A+2011B combined.
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4.3.3 Summary of backgrounds

The expected background contributions from all considered sources for the Wγ → µµγ final state

is summarized in Table 4.13 for 2011A and 2011B and in Table 4.14 for 2011A+2011B data sets

combined.

Table 4.13: Summary of background contributions in Wγ → µµγ final state for 2011A and 2011B data set.
The quoted fake photon background yield is determined by the ’template method’.

Background yield
Background source 2011A 2011B

Fake photons 2417.3 ± 39.4 (stat.)± 219.9 (syst.) 2868.2 ± 43.7 (stat.) ± 276.8 (syst.)
(misid. jets)
Fake photons 44.0 ± 1.0 (stat.) ± 3.3 (syst.) 47.3 ± 1.0 (stat.) ± 3.4 (syst.)

(misid. electrons)
Fake leptons negligible negligible

W (τν)γ 11.9 ± 1.9 (stat.) ± 1.1 (syst.) 18.0 ± 2.4 (stat.) ± 1.8 (syst.)
Zγ 149.8 ± 10.5 (stat.) ± 9.0 (syst.) 188.6 ± 11.6 (stat.) ± 11.3 (syst.)
tt̄γ 16.9 ± 0.6 (stat.) ± 8.5 (syst.) 18.9 ± 0.7 (stat.) ± 9.5 (syst.)

Table 4.14: Summary of background contributions in Wγ → µµγ final state for 2011A+2011B data sets
combined. The quoted fake photon background yield is determined by the ’template method’.

Background yield
Background source 2011A+2011B

Fake photons 5345.9 ± 58.2 (stat.) ± 482.6 (syst.)
(misid. jets)
Fake photons 91.4 ± 1.4 (stat.) ± 4.7 (syst.)

(misid. electrons)
Fake leptons negligible

W (τν)γ 28.9 ± 3.4 (stat.) ± 2.7 (syst.)
Zγ 338.0 ± 18.3 (stat.) ± 20.3 (syst.)
tt̄γ 35.9 ± 1.0 (stat.) ± 17.9 (syst.)
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4.4 Systematic uncertainties

Systematic uncertainties are grouped into five categories:

• Uncertainties that affect the signal yield.

• Uncertainties that affect the acceptance and efficiency.

• Uncertainties that affect the efficiency correction factor.

• Uncertainties that affect the background yield.

• Uncertainties that affect the luminosity.

4.4.1 Uncertainties on signal yield

Uncertainties on the signal yield include uncertainties on muon and photon energy scales. Uncer-

tainties on energy scales are determined using the Z resonance position measurements. For photons

the energy scale is varied by 1% in the barrel and 3% in the endcaps. For muons, the PT scale is

varied by 0.2%. To estimate the systematic effect on the measured cross section Nsig is re-evaluated

for variations of each source of systematic uncertainty. For the variation of the photon energy scale,

the background subtraction is performed with signal and background ’templates’ that are appropri-

ately modified. This ensures that migrations of photons and misidentified jets across the low Eγ

T

boundaries are properly accounted for when calculating this systematic uncertainty.

4.4.2 Uncertainties on acceptance and efficiency

The uncertainties that affect the product of the acceptance, reconstruction and identification effi-

ciencies of final state objects are combined and determined from simulation. These include uncer-

tainties on muon and photon energy resolution, effects from pile-up interactions, and uncertainties

in the parton distribution functions (PDFs).

93



The combined acceptance times efficiency, F ≡ A · εgen, is determined from the simulation of the

Wγ signal and is affected by the muon and photon energy resolution by way of migration of events

in and out of acceptance. It is known that the resolution in simulation is better then the actual

resolution in data. The energy in simulation is thus additionally smeared by a Gaussian function to

match the resolution in data. The photon energy resolution is determined simultaneously with the

photon energy scale in data following the method described in Sec. 4.2.4.

The number of PU interactions per event is estimated from data using a convolution procedure that

extracts the estimated PU from the per-bunch instantaneous luminosity recorded by the luminosity

monitors. This methodology uses the total inelastic pp scattering cross section, 68± 3.4 mb, to

estimate the number of PU events in a given bunch crossing. The systematic uncertainty due to

the modeling of PU interactions is estimated by varying the total inelastic cross section within its

uncertainties, and estimate its effect on F .

The uncertainties on parton distribution functions can alter the acceptance in simulation, especially

for very forward, low x, Wγ events. To estimate the systematic effect on F , LHAPDF [30] is used

to generate per-event weights using variations along the 21 sets of eigenvectors of the CTEQ6L

PDF set [31] following the procedure described in [32].

The uncertainty on signal modeling is taken from the F difference between different simulation

generators.

4.4.3 Uncertainties on efficiency correction factor

Systematic uncertainties on the efficiency correction factor ρeff include uncertainties of muon trig-

ger, muon and photon reconstruction and identification, and MW
T selection efficiencies. The muon

efficiencies are determined by the ’tag-and-probe’ method in the same way for data and simulation,

and the uncertainties are taken by varying the background modeling and fit range in the ’tag-and-

probe’ method. An additional uncertainty is added by taking into account the difference between

the measured efficiency by ’tag-and-probe’ and the true efficiency in simulation.
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4.4.4 Uncertainties on background yield

This category comprises uncertainties on the background yield. These are dominated by the uncer-

tainties on the estimations of background from jets misidentified as photons from data.

Uncertainties on the background from jets misidentified as photons

1. Signal ’template’ shape:

The signal σiη iη ’template’ in simulation needs to be corrected to match σiη iη templates

observed in data as described in Sec. 4.3.1. The difference in background estimate between

measurements with corrected and uncorrected ’template’ is used as systematic uncertainty.

2. Background ’template’ shape:
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Figure 4.36: The uncertainty on background ’template’ for barrel (left) and endcap (right). The change in
the estimated number of background events due to anti-isolation requirement (sideband bias) is given as a
function of Eγ

T as red circles, while the contamination from genuine photons are given as blue dots. The
overall effect is given as red dots.

To obtain the background σiη iη ’template’ the photon-like jets from data selected by applying

the tracker sideband requirement (anti-isolation requirement) are used. Using this ’template’
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to infer the background from photon-like jets that pass the full photon isolation requirements

can cause a bias if the σiη iη template is correlated with tracker isolation. A contribution

from genuine photons that pass anti-isolation requirement can also cause a bias in the esti-

mation of the background. The effects from these sources are estimated in simulation where

one can distinguish genuine photons from jets. The overall effect is found to be small (see

Figure 4.36). For the sideband bias, signal ’templates’ are from genuine photons from the

simulation and background ’templates’ are from genuine photon-like jets in simulation in

sideband region. Pseudo photons, photons used to perform the fit on, are from simulation

and pass photon selection without σiη iη cut. For signal contamination, signal ’templates’ are

still from genuine photons and background templates are from photons in sideband region

(contains genuine photons and genuine photon-like jets). Pseudo photons are from simula-

tion. Selected genuine photons should pass photon selection without σiη iη requirement, and

selected genuine photon-like jets should pass the sideband selection.

Since smoothing is used to determine a continuous function that describes the σiη iη distri-

bution of the background, the effect of the statistical sampling of the background probability

density function true underlying shape must be understood. To study this, a bootstrapping

technique exploiting simulation is used. Using simulated events the random sample of events

(where the number of events is the same as the number of events used in data to build the

nominal template) are used to build the ’templates’ which are then smoothed themselves and

used to fit the background fraction in data. The results of each template distribution and

fit are saved and the variance associated with the statistical fluctuation in the ’template’ is

recorded and taken as a systematic uncertainty.

It is noticed that the shape of the σiη iη background ’template’ is correlated with the presence

of MET parallel to the photon-like jet. Since the MW
T requirement is used in Wγ selection, a

presence of MET in the event can bias the background ’template’ and affect the background

estimate. To estimate this effect the background σiη iη ’templates’ for events where MET >

10 GeV and MET is parallel to the direction of the photon-like jet are derived. Different

’templates’ correspond to different ∆φ(MET,photon-like jet) requirements. The systematic

uncertainty is estimated using the lowest Eγ

T bin only (15 GeV < Eγ

T < 20 GeV), as this

bin provides the largest background yield, and also it presents the largest control sample to
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derive the background ’template’. The largest disagreement from the nominal yield are found

to be 13% for barrel and 7% for endcap (as shown on Fig 4.37) and are used as systematic

uncertainties.

3. Difference between ’ratio method’ and ’template method’ background estimates:

The difference between the background estimation given by the two methods is taken as

additional systematic uncertainty in the Eγ

T range where both methods are applicable, that is

for Eγ

T > 60 GeV.

Values of the systematic uncertainties on the estimated background from jets misidentified as pho-

tons are summarized in Tables 4.15- 4.17. The largest systematic uncertainties come from the MET

correlation. At high Eγ

T values the dominant uncertainty comes from the background ’template’

shape.

Uncertainties on the background from electrons misidentified as photons

The systematic uncertainty on the electron misidentification includes the measured systematic un-

certainty on the probability P for an electron to have no pixel hit match.

Uncertainties on other backgrounds derived from the simulation

The uncertainties on the smaller background contributions derived from the simulation include the

statistical uncertainty of the simulation samples, the systematic uncertainties on the cross section,

the photon energy resolution and the selection efficiency due to pile-up effect.

4.4.5 Uncertainties on luminosity

An additional uncertainty of 2.2% [33] due to the measurement of the integrated luminosity is

considered.
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Figure 4.37: Template method background yields using different background templates as the func-
tion of upper ∆φ(MET,γ) cut value.
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Table 4.15: Systematic uncertainties on the background from jets misidentified as photons for Wγ → µνγ

for 2011A data set.
Syst. from Syst. from sampling Syst. from Syst. from

Photon Mean Syst. from background sampling MET ∆

ET , GeV yield signal shape shape of the correlation (ratio vs
distribution template)

Barrel
15-20 834.8 7.1 23.8 14.5 108.5 -
20-25 317 5.3 13.6 7.6 41.2 -
25-30 142.9 2.0 8.2 4.5 18.6 -
30-35 98.5 1.6 7.0 3.8 12.8 -
35-40 51.8 0.3 4.4 2.3 6.7 -
40-60 75.1 0.1 9.1 2.4 9.8 1.0
60-90 27.1 0.0 5.2 1.2 3.5 0.4
90-500 20.3 0.3 16.7 0.4 2.6 0.3
Total 1567.5 9.2 35.7 17.7 203.8 1.6

Endcap
15-20 417 4.3 24.5 15.0 29.2 -
20-25 185.1 2.0 12.6 8.5 13.0 -
25-30 81.6 1.4 7.1 5.4 5.7 -
30-35 56.2 0.8 5.9 4.4 3.9 -
35-40 44 0.0 3.7 3.3 3.1 -
40-60 40.3 0.2 7.3 2.2 2.8 8.2
60-90 18.2 0.7 4.0 1.4 1.3 3.7
90-500 7.3 0.9 12.2 0.4 0.5 1.5
Total 849.7 5.2 32.8 19.1 59.5 13.4

Barrel + Endcap
15-20 1251.8 8.3 34.1 20.8 112.4 -
20-25 502.1 5.7 18.5 11.4 43.2 -
25-30 224.5 2.5 10.8 7.0 19.4 -
30-35 154.7 1.8 9.2 5.8 13.4 -
35-40 95.8 0.3 5.8 4.0 7.4 -
40-60 115.4 0.2 11.7 3.3 10.2 7.2
60-90 45.3 0.7 6.6 1.8 3.8 2.8
90-500 27.6 1.0 20.7 0.6 2.7 1.7

Total 2417.3 10.6 48.5 26.0 212.3 11.8
219.9

4.4.6 Summary of systematic uncertainties

A summary of all systematic uncertainties is given in Table 4.18. The dominant systematic un-

certainties are the uncertainty on the ’template method’ estimation and the uncertainty from signal

modeling.
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Table 4.16: Systematic uncertainties on the background from jets misidentified as photons for Wγ → µνγ

for 2011B data set.
Syst. from Syst. from sampling Syst. from Syst. from

Photon Mean Syst. from background sampling MET ∆

ET , GeV yield signal shape shape of the correlation (ratio vs
distribution template)

Barrel
15-20 1006.4 9.5 28.7 27.3 130.8 -
20-25 348.1 3.4 14.9 14.8 45.3 -
25-30 164.8 1.3 9.4 7.8 21.4 -
30-35 120.4 1.2 8.6 8.2 15.7 -
35-40 66.9 2.7 5.7 3.8 8.7 -
40-60 105.4 0.0 12.8 4.8 13.7 29.2
60-90 41.6 1.5 8.0 2.5 5.4 11.5
90-500 34.5 2.5 28.4 0.5 4.5 9.6
Total 1888.1 11.0 47.7 33.7 245.4 50.3

Endcap
15-20 430.7 4.0 29.5 27.1 30.2 -
20-25 236.3 1.1 13.8 15.6 16.5 -
25-30 140.5 2.5 8.2 12.2 9.8 -
30-35 51.0 0.2 7.3 5.9 3.6 -
35-40 31.0 1.1 4.7 4.1 2.2 -
40-60 51.9 0.4 10.2 4.8 3.6 12.2
60-90 22.2 0.3 6.2 3.5 1.6 5.2
90-500 16.5 1.6 20.8 0.7 1.2 3.9
Total 980.1 5.2 42.2 34.8 68.6 21.3

Barrel + Endcap
15-20 1437.1 10.3 41.2 38.5 134.3 -
20-25 584.4 3.5 20.3 21.4 48.2 -
25-30 305.3 2.8 12.5 14.4 23.6 -
30-35 171.4 1.2 11.3 10.1 16.1 -
35-40 97.9 2.9 7.4 5.6 9.0 -
40-60 157.3 0.4 16.4 6.8 14.2 41.4
60-90 63.8 1.5 10.1 4.3 5.6 16.8
90-500 5.0 3.0 35.2 0.9 4.6 13.4

Total 2868.2 12.2 63.7 48.4 254.9 71.5
276.8
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Table 4.17: Systematic uncertainties on the background from jets misidentified as photons for Wγ → µνγ

for 2011A+2011B combined data set.
Syst. from Syst. from sampling Syst. from Syst. from

Photon Mean Syst. from background sampling MET ∆

ET , GeV yield signal shape shape of the correlation (ratio vs
distribution template)

Barrel
15-20 1876.4 20.0 59.2 25.4 243.9 -
20-25 688.2 19.2 32.5 13.8 89.5 -
25-30 310.9 8.4 19.5 8.0 40.4 -
30-35 217.6 3.1 17.1 7.1 28.3 -
35-40 116.7 2.4 10.8 4.1 15.2 -
40-60 177.5 0.6 22.1 4.7 23.1 10.2
60-90 61.9 0.8 12.3 2.8 8.1 3.6
90-120 13.3 2.0 3.7 0.5 1.7 0.8
120-500 29.3 1.9 25.4 0.7 3.8 1.7
Total 3491.8 29.4 81.5 31.6 453.9 16.2

Endcap
15-20 886.5 4.4 36.1 25.0 62.1 -
20-25 420.1 3.0 21.0 12.8 29.4 -
25-30 210.7 4.1 15.7 11.7 14.8 -
30-35 108.7 1.1 10.8 8.5 7.6 -
35-40 78.1 1.5 8.7 6.7 5.5 -
40-60 94.8 0.5 10.1 4.2 6.6 5.8
60-90 38.6 0.2 6.3 2.6 2.7 2.4
90-120 8.1 1.2 1.9 0.7 0.6 0.5
120-500 8.8 0.8 5.6 0.3 0.6 0.5
Total 1854.4 7.1 48.5 72.5 129.8 9.2

Barrel + Endcap
15-20 2762.9 20.5 59.4 35.6 251.7 -
20-25 1108.3 19.5 33.8 18.8 94.2 -
25-30 521.6 9.4 20.7 14.2 43.0 -
30-35 326.3 3.3 16.9 11.1 29.3 -
35-40 194.8 2.8 11.4 7.9 16.1 -
40-60 272.3 0.7 23.4 6.3 24.0 4.4
60-90 100.5 0.9 13.3 3.8 8.5 1.6
90-120 21.4 2.3 4.1 0.9 1.8 0.4
120-500 38.1 2.1 25.9 0.7 3.9 0.6

Total 5345.9 30.3 83.3 45.4 472.1 7.0
482.6

101



Table 4.18: Summary of systematic uncertainties for the Wγ → µνγ cross section measurement.
2011A 2011B 2011A+2011B

Source Systematic uncertainty Effect on Nsig
Photon energy scale 1% (EB), 3% (EE) 3.7% 3.2% 2.9%
Muon PT scale 0.2% 0.7% 0.8% 0.6%
Total uncertainty on Nsig 3.8% 3.3% 3.0%
Source Systematic uncertainty Effect on F = A · εgen
Photon energy resolution 1% (EB), 3% (EE) 0.3% 0.1% 0.1%
Muon PT resolution 0.6% 0.2% 0.1% 0.1%
Pile-up Shift data PU distribution by ± 5% 0.6% 0.9% 0.8%
PDF CTEQ6L reweighting 0.9% 0.9% 0.9%
Signal modeling 5% 5.0% 5.0% 5.0%
Total uncertainty on F = A · εgen 5.1% 5.2% 5.1%
Source Systematic uncertainty Effect on ρe f f
Muon trigger 1.5% 1.5% 1.5% 1.5%
Muon reconstruction 0.9% 0.9% 0.9% 0.9%
Muon ID and isolation 0.9% 0.9% 0.9% 0.9%
MET selection 1.1% (mu) 1.1% 1.5% 1.5%
Photon ID and isolation 0.5% (EB), 1.0% (EE) 0.5% 0.5% 0.5%
Total uncertainty on ρe f f 2.3% 2.5% 2.5%
Source Systematic uncertainty Effect on background yield
Template method 9.1% 9.7% 9.0%
Electron misidentification 7.5% 7.2% 5.2%
MC prediction 6.9% 6.6% 6.8%
Total uncertainty on background 8.3% 8.8% 8.3%
Source Systematic uncertainty Effect on luminosity
Luminosity 2.2% 2.2% 2.2% 2.2%
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4.5 Results

The number of signal events Nsig in 4.2 is obtained by subtracting the estimated number of back-

ground events Nbkg from the observed number of selected events Nobs. Equation 4.2 can therefore

be rewritten as:

σ =
Nobs−Nbkg

F ·ρeff ·L
. (4.19)

This is the equation used to measure the Wγ cross sections since it is well factorized in terms of the

classes of systematic uncertainties.

The value of Nsig is obtained from the number of observed events and the estimated number of

background events using the following relation:

Nsig = Nobs−Nmisid. jets
bkg −Nmisid. electrons

bkg −Nγ+jets
bkg −NW(τν)γ

bkg −NZγ

bkg−Ntt̄γ
bkg, (4.20)

where Nobs is the number of selected events in data, Nmisid. jets
bkg is the estimated number of back-

ground events from jets misidentified as photons derived from data using the ’template method’

described in Section 4.3.1, Nmisid. electrons
bkg is the estimated number of background events from

electrons misidentified as photons derived from data using the method described in Section 4.3.2,

Nγ+jets
bkg is the estimated number of background events due to the γ + jets process, NW (τν)γ

bkg is the

estimated number of background events due to the W (τν)γ process, NZγ

bkg is the estimated number

of background events due to the Zγ process, and Ntt̄γ
bkg is the estimated number of background events

due to the tt̄γ process. The last four sources of background result in small number of background

events compared to Nmisid. jets
bkg . They are estimated using the simulation.

After the full set of selection criteria 5014(5795) events are selected in the data set 2011A(2011B).

Combining data sets 2011A+2011B, 10809 events are obtained corresponding to a luminosity of

4969.1 pb−1. The full set of parameters used for the cross section measurement is listed in Ta-

bles 4.19 and 4.20.

103



The measured cross sections are:

σ(pp→Wγ → µνγ)(2011A) = 37.4±1.3 (stat.)±4.3 (syst.)±0.8 (lumi.) pb.

σ(pp→Wγ → µνγ)(2011B) = 38.7±1.3 (stat.)±4.8 (syst.)±0.9 (lumi.) pb.

σ(pp→Wγ → µνγ)(2011A+2011B) = 37.5±0.9 (stat.)±4.4 (syst.)±0.8 (lumi.) pb.

The theoretical NLO cross section is 31.81±1.8 pb., computed with the MCFM generator [34].

A comparison of several kinematic distributions between data and simulation after the full event

selection is shown in Figures 4.38-4.40. The ratios of data to simulation for each variable are shown

in Figures 4.41- 4.43. The simulated yields of background events are scaled to match the yields

derived from data for background from jets misidentified as photons and for background from

electrons misidentified as photons. The background distributions are scaled for all distributions

except for histograms showing event yields after every selection criteria.

Figure 4.44 shows the cross section measurement results and theoretical NLO cross section.
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Figure 4.39: Muon candidate trensverse momentum (Pµ

T ), pseudorapidity (ηµ ), missing transverse energy
(MET), invariant transverse mass of W (MW

T ), photon transverse energy Eγ

T , pseudorapidity (ηγ ), ∆R(µ,γ),
number of good vertices, number of selected jets, Wγ candidate transverse momentum (PWγ

T ) , event yields
after event selection and ∆φ(leading jet,γ) overlaid distributions of the Wγ→ µνγ candidates in data, signal
simulation, and background simulation for 2011B data set.
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Figure 4.40: Muon candidate trensverse momentum (Pµ

T ), pseudorapidity (ηµ ), missing transverse energy
(MET), invariant transverse mass of W (MW

T ), photon transverse energy Eγ

T , pseudorapidity (ηγ ), ∆R(µ,γ),
number of good vertices, number of selected jets, Wγ candidate transverse momentum (PWγ

T ) , event yields
after event selection and ∆φ(leading jet,γ) overlaid distributions of the Wγ→ µνγ candidates in data, signal
simulation, and background simulation for 2011A+2011B data sets combined.
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Figure 4.41: The ratio of data shape to simulation shape for muon candidate trensverse momentum (Pµ

T ),
pseudorapidity (ηµ ), missing transverse energy (MET), invariant transverse mass of W (MW

T ), photon trans-
verse energy Eγ

T , pseudorapidity (ηγ ), ∆R(µ,γ), number of good vertices, number of selected jets, Wγ candi-
date transverse momentum (PWγ

T ) , event yields after event selection and ∆φ(leading jet,γ) of the Wγ→ µνγ

candidates for 2011A data set.
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Figure 4.42: The ratio of data shape to simulation shape for muon candidate trensverse momentum (Pµ

T ),
pseudorapidity (ηµ ), missing transverse energy (MET), invariant transverse mass of W (MW

T ), photon trans-
verse energy Eγ

T , pseudorapidity (ηγ ), ∆R(µ,γ), number of good vertices, number of selected jets, Wγ candi-
date transverse momentum (PWγ

T ) , event yields after event selection and ∆φ(leading jet,γ) of the Wγ→ µνγ

candidates for 2011B data set.
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Figure 4.43: The ratio of data shape to simulation shape for muon candidate trensverse momentum (Pµ

T ),
pseudorapidity (ηµ ), missing transverse energy (MET), invariant transverse mass of W (MW

T ), photon trans-
verse energy Eγ

T , pseudorapidity (ηγ ), ∆R(µ,γ), number of good vertices, number of selected jets, Wγ candi-
date transverse momentum (PWγ

T ) , event yields after event selection and ∆φ(leading jet,γ) of the Wγ→ µνγ

candidates for 2011A+2011B data sets combined.
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Table 4.19: Parameters used to calculate the Wγ → µνγ cross section in 2011A and 2011B data sets.
Parameter Number (2011A) Number (2011B)
Nevents 5014 5795
Nmisid. jets

bkg 2417.3 ± 39.4 (stat.) ± 219.9 (syst.) 2868.2 ± 43.7 (stat.) ± 276.8 (syst.)
Nmisid. electrons

bkg 44.0 ± 1.0 (stat.) ± 3.3 (syst.) 47.3 ± 1.0 (stat.) ± 3.4 (syst.)
Nγ+jets

bkg negligible negligible

NW(τν)γ
bkg 11.9 ± 1.9 (stat.) ± 1.1 (syst.) 18.0 ± 2.4 (stat.) ± 1.8 (syst.)

NZγ

bkg 149.8 ± 10.5 (stat.) ± 9.0 (syst.) 188.6 ± 11.6 (stat.) ± 11.3 (syst.)

Ntt̄γ
bkg 16.9 ± 0.6 (stat.) ± 8.5 (syst.) 18.9 ± 0.7 (stat.) ± 9.5 (syst.)

Nbkg 2639.9 ± 40.8 (stat.) ± 220.2 (syst.) 3141.0 ± 45.3 (stat.) ± 277.2 (syst.)
Nsig 2374.1 ± 81.7 (stat.) ± 238.0 (syst.) 2654.0 ± 88.6 (stat.) ± 290.7 (syst.)
A · εgen 0.0286 ± 0.0015 (syst.) 0.0257 ± 0.0013 (syst.)
ρe f f 0.9806 ± 0.0226 (syst.) 0.9865 ± 0.0247 (syst.)∫

L dt 2262.6 ± 49.8 (syst.) 2706.5 ± 59.5 (syst.)

Table 4.20: Parameters used to calculate the Wγ→ µνγ cross section in 2011A+2011B data sets combined.
Parameter Number (2011A+2011B)
Nevents 10809
Nmisid. jets

bkg 5345.9 ± 58.2 (stat.) ± 482.6 (syst.)
Nmisid. electrons

bkg 91.4 ± 1.4 (stat.) ± 4.7 (syst.)
Nγ+jets

bkg negligible

NW(τν)γ
bkg 28.9 ± 3.4 (stat.) ± 2.7 (syst.)

NZγ

bkg 338.0 ± 18.3 (stat.) ± 20.3 (syst.)

Ntt̄γ
bkg 35.9 ± 1.0 (stat.) ± 17.9 (syst.)

Nbkg 5840.1 ± 61.1 (stat.) ± 483.4 (syst.)
Nsig 4968.9 ± 120.6 (stat.) ± 505.8 (syst.)
A · εgen 0.0270 ± 0.0014 (syst.)
ρe f f 0.9898 ± 0.0247 (syst.)∫

L dt 4969.1 ± 109.3 (syst.)

Besides measurement of cross section in the phase space Eγ

T > 15 GeV and ∆R(µ,γ) > 0.7 the

measurements of the cross section is also performed for phase space regions restricted by higher Eγ

T

thresholds, Eγ

T > 60 GeV and Eγ

T > 90 GeV. The ∆R(µ,γ) requirement is the same, ∆R(µ,γ) > 0.7.

The estimated cross section for photon ET > 60 GeV is:

σ(pp→Wγ → µνγ)(2011A+2011B) = 0.76±0.06 (stat.)±0.08 (syst.)±0.02 (lumi.) pb.

The theoretical NLO cross section for photon ET > 60 GeV is 0.58±0.08 pb.

The estimated cross section for photon ET > 90 GeV is:

σ(pp→Wγ → µνγ)(2011A+2011B) = 0.248±0.035 (stat.)±0.048 (syst.)±0.005 (lumi.) pb.
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Table 4.21: Summary of systematic uncertainties for the Wγ cross section measurement (ET (γ) > 60. GeV
and ET (γ) > 90. GeV) for 2011A+2011B data set.

ET (γ) > 60. GeV ET (γ) > 90. GeV
Source Systematic uncertainty Effect on Nsig
Photon energy scale 1% (EB), 3% (EE) 5.5% 3.9%
Muon PT scale 0.2% 0.2% 0.1%
Total uncertainty on Nsig 5.5% 3.9%
Source Systematic uncertainty Effect on F = A · εMC
Photon energy resolution 1% (EB), 3% (EE) 0.8% 0.7%
Muon PT resolution 0.6% 0.3% 0.1%
Pile-up Shift data PU distribution by ± 5% 0.1% 1.0%
PDF CTEQ6L reweighting 0.9% 0.9%
Signal modeling 5% 5.0% 5.0%
Total uncertainty on F = A · εMC 5.2% 5.2%
Source Systematic uncertainty Effect on ρe f f
Muon trigger 1.5% 1.5% 1.5%
Muon reconstruction 0.9% 0.9% 0.9%
Muon ID and isolation 0.9% 0.9% 0.9%
MET selection 1.4% (ele), 1.5% (mu) 1.5% 1.5%
Photon ID and isolation 0.5% (EB), 1.0% (EE) 0.5% 0.5%
Total uncertainty on ρe f f 2.5% 2.5%
Source Systematic uncertainty Effect on background yield
Template method 18.8% 44.6%
Electron misidentification 5.3% 5.2%
MC prediction 15.5% 17.0%
Total uncertainty on background 14.3% 32.2%
Source Systematic uncertainty Effect on luminosity
Luminosity 2.2% 2.2% 2.2%

The theoretical NLO cross section for photon ET > 90 GeV is 0.173±0.026 pb.

Table 4.22 shows the summary of parameters for cross section measurement for photon ET >

60 GeV and ET > 90 GeV. The corresponding systematic uncertainties are summarized in Ta-

ble 4.21.

112



Table 4.22: Summary of parameters for the Wγ cross section measurement for photon ET > 60 GeV and
ET > 90 GeV.

Parameters Eγ

T > 60 GeV Eγ

T > 90 GeV
Nevents 610 ± 24.7 (stat.) 230 ± 15.2 (stat.)
Nmisid. jets

bkg 159.9 ± 17.4 (stat.) ± 30.0 (syst.) 59.4 ± 14.0 (stat.) ± 26.5 (syst.)
Nmisid.electrons

bkg 21.2 ± 0.6 (stat.) ± 1.1 (syst.) 7.2 ± 0.4 (stat.) ± 0.4 (syst.)
Nγ+jets

bkg negligible negligible

NW(τν)γ
bkg 3.2 ± 1.2 (stat.) ± 0.3 (syst.) .0 ± 0.0 (stat.) ± 0.0 (syst.)

NZγ

bkg 19.4 ± 4.4 (stat.) ± 1.2 (syst.) 10.9 ± 3.2 (stat.) ± 0.7 (syst.)

Ntt̄γ
bkg 9.7 ± 0.5 (stat.) ± 4.9 (syst.) 5.3 ± 0.4 (stat.) ± 2.7 (syst.)

Nsig 396.7 ± 30.5 (stat.) ± 37.4 (syst.) 147.2 ± 20.9 (stat.) ± 27.2 (syst.)
A · εMC,Wγ→`νγ 0.105 ± 0.005 (syst.) 0.120 ± 0.006 (syst.)
ρe f f 0.993 ± 0.025 (syst.) 0.993 ± 0.025 (syst.)∫

L dt 4969.1 ± 109.3 (syst.) 4969.1 ± 109.3 (syst.)
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Figure 4.44: Measured cross sections for Wγ→ µνγ (left) and the ratio of measured cross section to MCFM
prediction for Wγ → µνγ (right).
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4.6 Combined results with electron channel

The Wγ cross section has also been measured in the eνγ final state. The results from the two

channels are combined. The measured cross section in the electron channel is:

σ(pp→Wγ → eνγ) = 36.6±1.2 (stat.)±4.3 (syst.)±0.8 (lumi.) pb.

The combination of the cross sections in the muon and electron channels, performed using a Best

Linear Unbiased Estimator (BLUE) [35], is:

σ(pp→Wγ → `νγ) = 37.0±0.8 (stat.)±4.0 (syst.)±0.8 (lumi.) pb.

Table 4.23: The summary of the cross section measurements and predictions for Eγ

T >60 and 90 GeV for
Wγ .

Wγ

Electron Channel (pb) Muon Channel (pb)
Eγ

T > 15 GeV 36.6±1.2(stat.)±4.3(syst.)±0.8(lumi.) 37.5±0.9(stat.)±4.4(syst.)±0.8(lumi.)
Combination 37.0±0.8(stat.)±4.0(syst.)±0.8(lumi.) pb
Prediction 31.81±1.80 (pb)
Eγ

T > 60 GeV 0.77±0.07(stat.)±0.13(syst.)±0.02(lumi.) 0.76±0.06(stat.)±0.08(syst.)±0.02(lumi.)
Combination 0.76±0.05(stat.)±0.08(syst.)±0.02(lumi.) pb
Prediction 0.58±0.08 (pb)
Eγ

T > 90 GeV 0.173±0.034(stat.)±0.037(syst.)±0.004(lumi.) 0.248±0.035(stat.)±0.048(syst.)±0.005(lumi.)
Combination 0.200±0.025(stat.)±0.038(syst.)±0.004(lumi.) pb
Prediction 0.173±0.026 pb

Results for both electron and muon channels are shown in Figures 4.45- 4.47.

The estimated cross section for photon ET > 60 GeV in the electron channel is:

σ(pp→Wγ → eνγ)(2011A+2011B) = 0.77±0.07 (stat.)±0.13 (syst.)±0.02 (lumi.) pb.

The combined cross section is:

σ(pp→Wγ → `νγ)(2011A+2011B) = 0.76±0.05 (stat.)±0.08 (syst.)±0.02 (lumi.) pb.
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Figure 4.45: Measured cross sections for Wγ→ eνγ (left) and the ratio of measured cross section to MCFM
prediction for Wγ → eνγ (right).
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Figure 4.46: Measured cross sections for Wγ→ lνγ (left) and the ratio of measured cross section to MCFM
prediction for Wγ → lνγ (right). Measurements in electron and muon channel are combined.
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The estimated cross section for photon ET > 90 GeV in the electron channel is:

σ(pp→Wγ → eνγ)(2011A+2011B) = 0.173±0.034 (stat.)±0.037 (syst.)±0.004 (lumi.) pb.

The combined cross section is:

σ(pp→Wγ → `νγ)(2011A+2011B) = 0.200±0.025 (stat.)±0.038 (syst.)±0.004 (lumi.) pb.

The measured cross sections, predictions, and their uncertainties are summarized in Table 4.23 and

in Figure 4.48.
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Figure 4.47: A summary of the measured cross sections and their combination for the Wγ analysis.
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Chapter 5

Observation of Wγ radiation amplitude zero

To observe the radiation amplitude zero additional selection requirements on top of the selection

used for the cross section measurement are needed. As discussed in Section 2.3 the additional

selection consists in a jet veto. Events with jets reconstructed with "anti-kT " algorithm [36] with

P jet
T > 30 GeV and |η jet | < 5 are rejected. The second additional requirement consists in a trans-

verse mass of µMET γ (µνγ) system, MµMET γ

T > 110 GeV.

5.1 Results

The charge-signed η distribution, Ql×∆η where Ql is the charge of the muon and ∆η is the dif-

ference in pseudorapidity between the muon and the photon of selected Wγ events for data sets

2011A+2011B combined and the corresponding ratios of data to simulation are shown in Fig-

ures 5.1 and 5.2. The dip around zero is clearly visible in data.
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5.2 Combined results with electron channel

Figure 5.3 shows the charge-signed η distribution of selected Wγ events combined for electron and

muon channel and demonstrates the radiation amplitude zero characteristic of Wγ production. The

dip around value 0 is clearly visible.
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Figure 5.1: Charge-signed η distribution in data, signal simulation, and background simulation for Wγ →
µνγ for 2011A (left), 2011B (middle) and 2011A+2011B combined (right).
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Chapter 6

Triple gauge coupling measurement

To look for anomalous couplings, an observable sensitive to aTGC is studied. One effect of intro-

ducing anomalous coupling parameters in the SM Lagrangian is an enhancement of the diboson

production cross section when ŝ is large. This results in an excess of events with high momen-

tum bosons. The photon Eγ

T is used as observable to measure aTGC parameters, and the study is

performed for Eγ

T > 40 GeV. Distribution of sensitive observable in data is compared with predic-

tions for different aTGC values. Limits on aTGC parameters are set using the formalism described

below.

6.1 Likelihood Formalism

The aTGC results are interpreted by setting bounds on the ratio of the observed signal to that of the

expected aTGC yield using the likelihood formalism described below. The probability of observing

X events in a specific bin of Eγ

T for a given expectation value d is given by the Poisson distribution:

p(X;d) =
dXe−d

X!
(6.1)

Here, d is comprised of both signal and background predictions that are modeled separately:
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d = µ · s(~α,~θs)+b(~θb), (6.2)

where signal s(~α,~θs) and background b(~θb) expectations are described in terms of the TGC param-

eter values ~α and nuisance parameters ~θs and ~θb. The parameter µ is the signal strength modifier.

The nuisance parameters are resolved into three contributions: systematic uncertainty on integrated

luminosity fL , signal and background selection systematic uncertainties defined as f Syst.
Sig. and f Syst.

Bkg. ,

respectively. Signal and background expectaions can be written as:

s(~α,~θs) = fL · f Syst.
Sig. ·N

Sig.~α, (6.3)

b(~θb) = f Syst.
Bkg. ·N

Bkg.. (6.4)

Here, NSig. and NBkg. are the predicted signal and background event yields.

With this definition of d for each bin i of the Eγ

T distribution with data event yield Ni a likelihood

function is constructed:

L(µ,~α,~θ) = ∏
i

Poisson(Ni,di(µ,~α,~θ)), (6.5)

with the Poisson function defined in Eq. 6.1 and:

~θ = (~θs, ~θb). (6.6)

The uncertainties on the quoted luminosity, signal, and background are assumed to be log-normally

distributed.

The upper limits of TGCs are determined by using the following test statistics:

tµ,~α =−2lnλ (µ,~α) (6.7)

where λ (µ,~α) is the profile likelihood [1]:
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λ (µ,~α) =
L(µ,~α,

ˆ̂~θ)

L(µ̂,~α,~̂θ)
(6.8)

with
ˆ̂~θ being the conditional maximum-likelihood estimator of ~θ and µ̂ and ~̂θ being their

maximum-likelihood estimators. The hypothesized values of TGCs are excluded based on whether

the ratio of p-values:

CLs =
ps+b

1− pb
(6.9)

is less than a given threshold. More details can be found in [37]. This formalism is implemented

in the ROOSTAT package.

6.2 Signal simulation

The aTGC signal for a grid of aTGC values is simulated using the SHERPA generator [3] interfaced

with PYTHIA [4] for the detector simulation of the Wγ+n jet (n ≤ 1) process. Two aTGC pa-

rameters, ∆κγ and λγ , are freely varied while gZ
1 is set to the SM value. The grid of aTGC values

contains 49 points, 7 by 7, in ∆κγ and λγ space. The outermost points of the grid are ∆κγ = ±0.6

and λγ =±0.06. The samples for these aTGC points are fully simulated, to obtain the continuous

signal description in aTGC parameters space the quadratic fit in every Eγ

T bin is performed.

6.3 Results

Figure 6.1 shows the photon Eγ

T distribution in data, background, and simulated signal overlaid as

well as the background and the aTGC simulated signal for ∆κγ = 0.4 and λγ = 0.0.
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Figure 6.1: Photon Eγ

T distribution for data (black circles), background (blue filled histogram), simulated
signal (black histogram), simulated signal with aTGC close to the excluded region ∆κγ = 0.4 and λγ = 0.0
(red histogram). The last bin includes overflows.

No sizeable disagreement from the SM is observed, i.e. there is no signal of aTGC. Upper limits

on aTGC parameters are therefore set. The 95% C.L. two-dimensional contours are shown in

Figure 6.2. Corresponding one-dimensional limits are given in Figure 6.3 and 6.4 and in Table 6.1.

6.4 Combined results with electron channel

As for the cross section measurements, a search of aTGC is also performed in the electron channel.

The results from the two channels are combined and shown in Figures 6.5-6.7 and in Table 6.1.
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Figure 6.2: 2D 95% confidence level expected and observed contours for WWγ coupling.
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Figure 6.3: 1D 95% confidence level expected and observed limits for ∆κγ WWγ coupling.
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Figure 6.4: 1D 95% confidence level expected and observed limits for λ γ WWγ coupling.
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Figure 6.5: 2D 95% confidence level expected and observed contours for WWγ coupling. Electron and
muon channel combined.
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Figure 6.6: 1D 95% confidence level expected and observed limits for ∆κγ WWγ coupling. Electron and
muon channel combined.

Table 6.1: 1D 95% confidence level observed limits for WWγ coupling. Electron and muon channel
combined.

∆κγ λ γ

Wγ → eνγ [-0.45,0.37] [-0.059,0.046]
Wγ → µνγ [-0.46,0.34] [-0.057,0.046]
Wγ → lνγ [-0.38,0.29] [-0.050,0.037]
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Figure 6.7: 1D 95% confidence level expected and observed limits for λ γ WWγ coupling. Electron and
muon channel combined.
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Chapter 7

Comparison with other results

The other general purpose detector at LHC, the ATLAS experiment, also performed a measurement

of the Wγ process in proton-proton collisions at 7 TeV. The measurement was done with the lumi-

nosity of 1 fb−1 [38]. The selection criteria used by the ATLAS experiment are looser resulting in

a larger number of selected events as well as signal events. Two measurements are performed, in-

clusive and exclusive (jet veto with P jet
T > 30 GeV imposed) within the phase space: Pl

T > 25 GeV,

Pν
T > 25 GeV, |η l|< 2.47,Eγ

T > 15/60/100 GeV,|ηγ |< 2.37. Results are shown in Figure 7.1.

New results using 5 fb−1 [39] were recently presented. Figure 7.2 shows the measured cross sec-

tions compared to theory predictions.

As for the results presented in this work, the ATLAS results indicate that MCFM generator signifi-

cantly disagrees with data for the Wγ inclusive cross section at higher Eγ

T values. Other generators

like Sherpa [3] agree better with the data.

The measurement of TGC parameters is performed in a different way than in this work. The total

number of signal events with Eγ

T > 100 GeV is used rather then the Eγ

T distribution to set the limits.

The measurement is also performed using the exclusive sample of data, rather than inclusive. One

dimensional limits on aTGC parameters using 1fb−1 of data are shown in Table 7.1, and using

5fb−1 of data in Figure 7.3. Results from ATLAS also do not show any indication of aTGC. Upper

limits are set.
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Figure 7.1: Measurements of Wγ cross section with ATLAS detector using 1 fb−1 of data.

Figure 7.2: Measurements of Wγ cross section with ATLAS detector using 5 fb−1 of data. Left plot shows
the results for inclusive and right plot for exclusive measurement.
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Table 7.1: 1D limits on aTGC parameters from ATLAS experiment measurements using 1 fb−1 of data.

Measured Measured Expected
Λ 2 TeV ∞ ∞

∆κγ [-0.36, 0.41] [-0.33, 0.37] [-0.33, 0.36]
λγ [-0.079, 0.074] [-0.060, 0.060] [-0.063, -0.055]

Measurements of Wγ characteristics have also been performed at the Tevatron proton-antiproton

collider at a center of mass energy
√

s = 1.96 TeV. The D0 and CDF experiments published sev-

eral papers [40, 41, 42, 43] including Wγ cross section and aTGC measurements. The measured

inclusive cross section is in good agreement with the NLO expectation . At Tevatron energies the

NLO corrections are much smaller than at LHC. The paper [41] includes the RAZ observation.

The electron-positron collider at CERN, LEP, has also made di-boson measurements. At lower

center of mass energy
√

s ≤ 209 GeV limits on aTGC have been set. The summary of aTGC

measurements from different experiments is shown in Table 7.2 and Figure 7.4. Results from mea-

surements at different center of mass energies cannot be directly compared as well as measurements

with and without form-factor formulation.

Table 7.2: Summary of limits on aTGC parameters from different experiments.

ATLAS D0 LEP (combined) CMS
(1fb−1 data) (using form-factor formulation) (68% CL) (this work)

(
√

s = 7 TeV) (
√

s = 1.96 TeV) (
√

s≤ 209 GeV) (
√

s = 7 TeV)
∆κγ [-0.33, 0.37] [-0.29, 0.38] [-0.072, 0.017] [-0.38, 0.29]
λγ [-0.060, 0.060] [-0.08, 0.08] [-0.049, -0.008] [-0.050, 0.037]
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Figure 7.3: 1D limits on aTGC parameters from ATLAS experiment measurements using 5 fb−1 of data.

aTGC Limits @95% C.L.
-0.5 0 0.5 1 1.5

Feb 2013

γκ∆ γW -0.410 - 0.460 -14.6 fb
γW -0.380 - 0.290 -15.0 fb

WW -0.210 - 0.220 -14.9 fb

WV -0.110 - 0.140 -15.0 fb

D0 Combination -0.158 - 0.255 -18.6 fb

LEP Combination -0.099 - 0.066 -10.7 fb

γλ γW -0.065 - 0.061 -14.6 fb
γW -0.050 - 0.037 -15.0 fb

WW -0.048 - 0.048 -14.9 fb

WV -0.038 - 0.030 -15.0 fb

D0 Combination -0.036 - 0.044 -18.6 fb

LEP Combination -0.059 - 0.017 -10.7 fb

ATLAS Limits
CMS Limits
D0 Limit
LEP Limit

Figure 7.4: One-dimensional limits on aTGC parameters from different experiments.
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Chapter 8

Conclusion

The inclusive cross section of Wγ → µνγ using the full data set of 5.0 fb−1 collected in 2011

with the CMS detector has been measured. The measured cross section of 37.5± 0.9 (stat.)±

4.4 (syst.)±0.8 (lumi.) pb is in agreement with results in the electron channel and about one sigma

higher than the expectation from the MCFM generator. Recent measurements with the ATLAS

experiment also show higher inclusive cross section than MCFM expectations. The exclusive mea-

surement is however in agreement with expectations. These results indicate that next-to-leading

order contribution are likely to be underestimated in the MCFM calculation.

The radiation amplitude zero is visible in the charge-signed η distribution after applying additional

selection requiring jet veto and a high transverse mass of µνγ system.

The aTGC signal is not observed so one and two dimensional upper limits on the parameters ∆κγ

and λγ are set. One dimensional 95% C.L. limits −0.46 < ∆κγ < 0.34 and −0.057 < λ γ < 0.046

are in agreement with ATLAS measurements.

The cross section measurement of Wγ process using the full data set collected in 2012 will provide

more precise measurement at high Eγ

T values. Besides inclusive measurement, the exclusive cross

section measurement in jet multiplicity is very important to provide. As the sensitivity to aTGC

increases with the increase of a center of mass energy, it is important to perform a search of aTGC

using the data collected at a center of mass energy of 8 TeV.
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Poglavlje 9

Prošireni sažetak: Mjerenje zajedničke

produkcije W bozona i fotona i potraga za

anomalnim vezanjem WW foton CMS

detektorom

9.1 Uvod

Fizika elementarnih čestica desetljećima pokušava dati odgovore na nekoliko važnih pitanja. Kakva

je fizika izvan Standardnog modela (SM)? Što je tamna tvar, tamna energija, kakva je priroda

gravitacije? Postoji li Higgsov bozon? Želja za odgovorom na posljednje pitanje jedan je od

glavnih razloga izgradnje nekoliko sudarivača i u sklopu njjih nekoliko detektorskih sustava. Na

proton-antiproton sudarivaču na Fermilab-u u Sjedinjenim Američkim Državama dva detektora, D0

i CDF, mjerila su produkte sudara u periodu 1985-2011. Rezultati mjerenja bila su važna otkrića na

energiji sudara od 2 TeV-a, ali Higgsov bozon nije otkriven. Prije nekoliko godina Veliki hadronski

sudarivač (LHC, od engl. Large Hadron Collider) na CERN-u počinje s radom na energiji od 7 TeV-
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a u sustavu centra mase dvaju protona. Dva detektora opće namjene, ATLAS i CMS, pokušavaju

dati odgovor na pitanje postojanja Higgsovog bozona.

Jedan od osnovnih zahtjeva ATLAS i CMS detektora u procesu dizajniranja bio je precizno mjere-

nje produkata raspada Higgsovog bozona, leptona i fotona.

Osim potrage za Higgsovim bozonom i fizikom izvan SM, mjerenje SM procesa takod̄er je važan

zadatak na LHC-u. Mjerenja SM procesa provjera su valjanosti SM-a na visokim energijama te

takod̄er omogućavaju indirektnu potragu za fizikom izvan SM-a. U procesima s dva vektorska

bozona u konačnom stanju, kao što je Wγ , može su uz udarni presjek mjeriti i jakost trostrukih ba-

ždarnih vezanja (TGC, od engl. triple gauge coupling). U slučaju postojanja nove (još neotkrivene)

fizike izvan SM-a jačina TGC-a bi bila veća što rezultira tzv. anomalnim doprinosima TGC-u (aT-

GC, od engl. anomalous triple gauge coupling). Jačine trostrukih baždarnih vezanja su najmanje

precizno mjerene veličine elektroslabog sektora SM-a.
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9.2 Wγ proces na LHC-u

9.2.1 Standardni Model

Standardni model [5] sadrži cjelokupno trenutno znanje o elementarnim česticama i njihovim in-

terakcijama. Tijekom posljednjih nekoliko desetljeća, SM temeljito je testiran na svim energijama

dostupnim u laboratoriju. S početkom rada LHC sudarivača na energiji od 7 TeV-a u sustavu centra

mase dvaju protona jedan od prvih zadataka je bila provjera valjanosti SM-a.

Elektroslaba teorija Standardnog modela, koja obuhvaća elektromagnetsku i slabu interakciju,

uključuje jedine masivne nosioce sila u teoriji, spontano lomljenje simetrije Higgsovim me-

hanizmom te V-A strukturu med̄udjelovanja. Zahtjevi na teoriju su da je to renormalizabilna

lokalno invarijantna baždarna teorija. U elektroslaboj teoriji lagrangian je invarijantan na lokalne

SU(2)L⊗U(1)Y transformacije, gdje L označava lijevi dublet a Y slabi hipernaboj.

Lagrangian slobodnog fermiona dan je s:

L1 = Ψ(iγµ
∂µ −m)Ψ,

= (L+R)(iγµ
∂µ −m)(L+R),

= L(iγµ
∂µ)L+R(iγµ

∂µ)R−m(LR+RL)

(9.1)

gdje je Ψ valna funkcija fermiona [6] a m masa. Ψ ima lijevu (L) i desnu (R) komponentu koje se

različito transformiraju prilikom SU(2)L⊗U(1)Y transformacije:

L→ L′ = ei−→α (x)·−→T +iβ (x)Y L,

R→ R′ = eiβ (x)Y R
(9.2)

gdje su
−→
T i Y generatori SU(2)L i U(1)Y grupa. L je izospinski dublet a R izospinski singlet. U

slučaju leptona:
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L =

νe

e−


L

,

νµ

µ−


L

,

ντ

τ−


L

,

R =
(

e−
)

R
,
(

µ−
)

R
,
(

τ−
)

R
.

(9.3)

Kao što je rečeno, zahtjev na lagrangian 9.1 je invarijantnost na lokalne SU(2)L⊗U(1)Y transfor-

macije. Za razliku od kvantne elektrodinamike dio lagrangiana koji sadrži fermionske mase nije

invarijantan i zasada ćemo ga zanemariti. Invarijantnost preostalog dijela lagrangiana postiže se

uvod̄enjem kovarijantne derivacije Dµ kojom se uvode i četiri vektorska bozonska polja:

za L: Dµ = ∂µ + ig
−→
T ·−→W µ + ig′

Y
2

Bµ , (9.4)

za R: Dµ = ∂µ + ig′
Y
2

Bµ . (9.5)

Korištenjem gornjih derivacija lagrangian postaje baždarno invarijantan:

L1 = Lγ
µ(i∂µ −g

−→
T ·−→W µ − ig′

Y
2

Bµ)L

+Rγ
µ(i∂µ − ig′

Y
2

Bµ)R
(9.6)

Lagrangian 9.6 obuhvaća kinetičku energiju fermiona i njihovu interakciju s vektorskim bozonima

W 1, W 2,W 3 i B koji pripadaju poljima
−→
W µ i Bµ . Pošto su uključena dodatna polja, u lagrangian

treba uključiti i pripadajuće kinetičke energije bozona:

L2 =−1
4
−→
W µν

−→
W µν − 1

4
BµνBµν (9.7)

gdje je:

−→
W µν = ∂µ

−→
W ν −∂ν

−→
W µ −g

−→
W µ ×

−→
W ν , (9.8)
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i

Bµν = ∂µBν −∂νBµ . (9.9)

Posljednji član u 9.8 rezultat je neabelove strukture SU(2)L⊗U(1)Y grupe.

Poznato je da fermioni kao i elektroslabi bozoni W± i Z imaju masu različitu od nule dok je masa

fotona jednaka nuli. Higgsov mehanizam [7, 8, 9] koristi se za generiranje masa bozona i fermiona

a da istovremeno lagrangian ostaje baždarno invarijantan. U tu svrhu uvode se 4 dodatna realna

skalarna polja Φi. Lagrangian skalarnog polja dan je izrazom:

L3 = (∂µΦ)†(∂ µ
Φ)−V (Φ), (9.10)

gdje je V (Φ) potencijal polja. Potencijal V (Φ) ima oblik:

V (Φ) = µ
2
Φ

†
Φ+λ (Φ†

Φ)2. (9.11)

Da bi lagrangian 9.10 bio lokalno baždarno invarijantan, Φi mora biti SU(2)L⊗U(1)Y multiplet te

se mora koristiti kovarijantna derivacija 9.4.

Polja su izabrana tako da tvore izospinski dublet:

Φ =

φ+

φ 0

 (9.12)

gdje je:

φ
+ =

φ1 + iφ2√
2

, (9.13)
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φ
0 =

φ3 + iφ4√
2

. (9.14)

Ako su konstante µ i λ takve da je µ2 < 0 i λ > 0, potencijal ima oblik "Maksičkog šešira". Točka

Φ = 0 je nestabilna te postoji kontinuum točaka koje čine minimum:

Φ
†
Φ =−µ2

2λ
. (9.15)

Izborom jedne točke za minimum daje se vakuumu preferiran smjer u prostoru izospina, a simetrija

je spontano slomljena. Minimum je izabran u točci:

φ1 = φ2 = φ4,φ
2
3 =−µ2

λ
≡ v2,

Φ0 =
1√
2

0

v

 .

(9.16)

Ovaj izbor za Φ0 lomi SU(2) i U(1)Y baždarne simetrije dok U(1)em ostaje sačuvana, što rezultira

masivnim W± i Z vektorskim bozonima i bezmasenim fotonom.

Korištenjem kovarijantne derivacije lagrangian 9.10 je baždarno invarijantan:

L3 = Φ
†(∂µ − ig

−→
T ·−→W µ − ig′

Y
2

Bµ)(∂ µ + ig
−→
T ·−→W µ + ig′

Y
2

Bµ)Φ−V (x)

=
1
2

(
0 v

)
(∂µ − ig

−→
T ·−→W µ − ig′

1
2

Bµ)(∂ µ + ig
−→
T ·−→W µ + ig′

1
2

Bµ)

0

v

−V (x),
(9.17)

gdje je korištena izabrana točka vakuuma 9.16 te odgovarajuća vrijednost hipernaboja Y = 1. Re-

levantni član za masu bozona je:
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L član mase bozona
3 =

1
2

(
0 v

)
(−ig
−→
T ·−→W µ − ig′

1
2

Bµ)(ig
−→
T ·−→W µ + ig′

1
2

Bµ)

0

v


=

1
8

(
0 v

)gW 3
µ +g′Bµ gW 1

µ − igW 2
µ

gW 1
µ + igW 2

µ −gW 3
µ +g′Bµ


 gW µ3 +g′Bµ gW µ1− igW µ2

gW µ1 + igW µ2 −gW µ3 +g′Bµ

0

v


=

(vg)2

8
[(W 1

µ )2 +(W 2
µ )2]+

(v)2

8
[−gW 3

µ +g′Bµ ]2.

(9.18)

Za nabijene vektorske bozone očekuje se član oblika M2
X X2 dok se za neutralne bozone očekuje

član oblika 1
2M2

X X2. Miješanje polja
−→
W µ i Bµ nužno je za prepoznavanje fizikalnih vektorskih

bozona W±, Z i fotona. Koriste se slijedeći identiteti:

W+
µ =

1√
2
(W 1

µ − iW 2
µ ),

W−µ =
1√
2
(W 1

µ + iW 2
µ ),

Zµ =
1√

g2 +g′2
(gW 3

µ −g′Bµ),

Aµ =
1√

g2 +g′2
(g′W 3

µ +gBµ).

(9.19)

Sada se maseni član može pisati kao:

L član mase bozona
3 =

(vg)2

4
W+

µ W µ−+
(v)2

8
(g2 +g′2)(Zµ)2 +0(Aµ)2, (9.20)

gdje se prepoznaju mase bozona:
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MW =
vg
2

,

MZ =
v
2

√
g2 +g′2,

MA = 0.

(9.21)

Nadalje, Higgsov mehanizam koristi se za generiranje masa fermiona. Član lagrangiana koji pred-

stavlja interakciju Higgsovog polja s fermionima može se napisati u obliku:

L4 =−Ge(RΦ
†L+LΦR). (9.22)

Simetrija je spontano slomljena izborom točke vakuuma 9.16 i razvojem oko nje:

Φ(x) =
1√
2

 0

v+h(x)

 . (9.23)

U slučaju elektrona L4 poprima oblik:

L4 =− Ge√
2
[v(eReL + eLeR)+h(x)(eReL + eLeR)]

=− Ge√
2
[v(ee)+h(x)(ee)].

(9.24)

Uz jednakost:

Ge =
√

2
me

v
, (9.25)

lagrangian 9.24 možemo napisati u obliku:

L4 =−meee− me

v
h(x)ee, (9.26)
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gdje prvi član definira masu elektrona a drugi član predstavlja vezanje Higgsovog bozona s elek-

tronom. Mase kvarkova generiraju se na jednak način.

Sumiranjem svih članova dobiva se ukupni elektroslabi lagrangian:

Lukupni =Φ
†(∂µ − ig

−→
T ·−→W µ − ig′

Y
2

Bµ)(∂ µ + ig
−→
T ·−→W µ + ig′

Y
2

Bµ)Φ−V (x)

−G1(RΦ
†L+LΦR)−G2(RΦ

†
cL+LΦcR)

+Lγ
µ(i∂µ −g

−→
T ·−→W µ − ig′

Y
2

Bµ)L

+Rγ
µ(i∂µ − ig′

Y
2

Bµ)R

− 1
4
−→
W µν

−→
W µν − 1

4
BµνBµν

(9.27)

gdje je Φc novi Higgsov dublet korišten za generiranje masa gornjih članova u L dubletu:

Φc =

−φ 0

φ−

 . (9.28)

Prvi red u izrazu 9.27 predstavlja W±, Z, γ i Higgs mase i vezanja, drugi red mase leptona i

kvarkova i vezanja s Higgsovim bozonom, treći i četvrti red predstavljaju kinetičke energije leptona

i kvarkova i njihove interakcije s vektorskim bozonima dok zadnji red predstavlja kinetičke energije

vektorskih bozona i njihova med̄udjelovanja. Trostruka vezanja vektorskih bozona WWγ i WWZ

proizlaze iz zadnjeg člana u 9.8. Korištenjem identiteta 9.19 dio lagrangiana koji opisuje TGC

jednak je:

LT GC =−igWWV [V µ(W−µνW+ν −W+
µνW−ν)+W+

µ W−ν V µν ], (9.29)

gdje je V µ jednak Aµ ili Zµ , gWWZ = ecotθW , gWWγ = e, a θW je slabi kut. Proizlazi da su TGC

dozvoljena Standardnim modelom, WWγ i WWZ.
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9.2.2 Wγ proces

Produkcija para bozona omogućava proučavanje neabelove baždarne simetrije Standardnog mode-

la. Odstupanja od predvid̄anja SM-a moguća su ako postoje anomalna vezanja ili se produciraju

nove masivne čestice koje se raspadaju na parove bozona. Procesi s parovima bozona takod̄er

predstavljaju veliki dio pozadine za mnoge signale fizike izvan SM.

Produkcija para vektorskih bozona Wγ u proton-proton sudarima u vodećem redu (LO, od engl.

Leading Order) uključuje tri procesa prikazana na Slici 9.1. To su emisija fotona iz konačnog

stanja, emisija fotona iz početnog stanja te trostruko baždarno vezanje WWγ . Postoji još jedan

proces koji dominira na niskim energijama, q1g→V q2 gdje kvark u finalnom stanju emitira foton,

tzv. zakočno zračenje fotona. Ovaj proces potisnut je zahtjevom da je foton izoliran.

q

q

W

ν

l

γ

(a)

q

q

q

W
ν

l

γ

(b)

q

q

W
W

ν

l

γ(c)

Slika 9.1: Feynmanovi dijagrami koji doprinose Wγ produkciji: emisija fotona iz konačnog (a) i početnog
(b) stanja i WWγ trostruko baždarno vezanje (c).

U vodećem redu procesu produkcije doprinosi anihilacija kvarkova i antikvarkova, a u višem redu

(NLO, od engl. Next to Leading Order) fuzija gluona i kvarkova. Na LHC-u NLO korekcije su

vrlo velike zbog velike gustoće partona na visokim energijama.
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Tablica 9.1: Omjeri grananja W+ raspada [1].
Kanal raspada Udio
l+ν 10.80 ± 0.09 %
e+ν 10.75 ± 0.13 %
µ+ν 10.57 ± 0.15 %
hadrons 67.60 ± 0.27 %

Kanali raspada i pripadni omjeri grananja W+ bozona dani su u Tablici 9.1.

9.2.3 Radijacijska amplituda vrijednosti nula

Istaknuta karakteristika Wγ produkcije u hadronskim sudarima je tzv. radijacijska amplituda vri-

jednosti nula (RAZ, od engl. Radiation Amplitude Zero), fenomen kada su sve amplitude heliciteta

jednake nuli za odred̄eni izlazni kut fotona u sustavu centra mase.

Poznato je da su sve amplitude heliciteta za procese q1q̄2 →W±γ jednake nuli u sustavu centra

mase za cosθ ∗ =−Q1+Q2
Q1−Q2

[10, 11], gdje je θ ∗ kut raspršenja fotona s obzirom na smjer kvarka q1,

Qi (i = 1, 2) su naboji kvarkova u jedinicama naboja protona. U proton-proton sudarima dominantni

proces produkcije W+γ je ud̄→W+γ gdje je amplituda jednaka nuli za cosθ ∗=−1
3 , a dominantan

proces produkcije W−γ je dū→W−γ gdje je amplituda jednaka nuli za cosθ ∗ = 1
3 .

Iz više razloga ovu je pojavu potpunog poništenja amplitude teško opaziti. U realnom eksperimentu

poništenje ampitude je uvijek djelomično i umjesto nule opaža se udubina u kutnoj raspodjeli.

Dodatni procesi koji doprinose produkciji, QCD korekcije višeg reda, emisija fotona iz konačnog

stanja, te konačna širina W bozona popunjavaju udubinu u kutnoj raspodjeli. Konačna rezolucija

detektora dodatno otežava opažanje. Takod̄er nije moguće rekonstruirati sustav centra mase na

hadronskim sudarivačima kao što je LHC pošto nije moguće jednoznačno odrediti longitudinalnu

količinu gibanja neutrina. Kako nije moguće izvršiti mjerenje u sustavu centra mase potražene su

osjetljive opservable u laboratorijskom sustavu. U sustavu centra mase, W bozon i foton, gibaju se u

suprotnim smjerovima, stoga u raspodjeli rapiditeta W bozona isto kao i u razlici rapiditeta y(γ)∗−

145



y(W )∗ takod̄er postoji udubina.1 Pošto je razlika rapiditeta invarijantna na longitudinalni potisak

udubina se opaža i u razlici rapiditeta u laboratorijskom sustavu, y(γ)−y(W ). Kako longitudinalnu

količinu gibanja za neutrino nije moguće eksperimentalno odrediti nije moguće odrediti rapiditet

W bozona. U SM-u dominantan helicitet W bozona u W±γ produkciji je λW = ±1 [12]. To

znači da je lepton iz W raspada dominantno emitiran u istom smjeru kao i W , tako da lepton

odražava mnoga kinematska svojstva W bozona. Stoga je korelacija med̄u rapiditetima W bozona

i fotona prisutna i med̄u rapiditetima leptona i fotona. U granici bezmasenih čestica rapiditet i

pseudorapiditet su jednaki, stoga očekujemo da će RAZ udubina takod̄er biti prisutna u razlici

pseudorapiditeta η(γ)−η(l), što je veličina koja se može precizno mjeriti na CMS detektoru.2

Na LHC-u, RAZ učinak bi se mogao opaziti u Wγ produkciji kao udubina oko vrijednosti 0 u

η(γ)−η(l) raspodjeli, kao što je ilustrirano ns Slici 9.2 [2].

RAZ se može promatrati kao relativistička generalizacija odsutnosti električnog i magnetskog polja

kod nerelativističkih sudara čestica s jednakim omjerom naboj/masa i g faktorom [13].

U selektiranim Wγ dogad̄ajima moguće je dodatnim uvjetima postići lakše opažanje RAZ-a. Do-

prinos QCD korekcija višeg reda koje popunjavaju udubinu može se značajno smanjiti primjenom

zahtjeva da u dogad̄aju ne postoji niti jedan hadronski mlaz s količinom gibanja većom od odre-

d̄enog PT praga. Proces emisije fotona iz konačnog stanja takod̄er popunjava RAZ udubinu. Ovaj

se doprinos može smanjiti postavljanjem zahtjeva na minimalnu vrijednost transverzalne mase Wγ

sustava, M(Wγ)
T .

RAZ udubina je takod̄er osjetljiva na prisutnost anomalnih trostrukih baždarnih vezanja. aTGC će

izmjeniti oblik η(γ)−η(l) raspodjele te takod̄er popuniti RAZ udubinu, med̄utim ovo nije varijabla

koja je najosjetljivija na prisutnost anomalnih vezanja u Wγ kanalu.

1Rapiditet čestice definiran je izrazom y = 1
2 ln E+pZ

E−pZ
, gdje je E energija čestice a pZ komponenta količine gibanja

u smjeru snopa.
2Pseudorapiditet čestice definiran je izrazom kao η =− ln tan(θ/2) = 1

2 ln |~p|+pZ
|~p|−pZ

. θ je kut izmed̄u smjera količine
gibanja čestice ~p i osi snopa, a pZ je komponenta količine gibanja u smjeru osi snopa.
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Slika 9.2: Diferencijalni udarni presjek razlike pseudorapiditeta fotona i leptona za proces pp→W+γ →
l+νγ pri

√
s = 14 TeV-a u SM. Inkluzivni NLO diferencijalni udarni presjek (puna linija), ekskluzivni dife-

rencijalni udarni presjek dogad̄aja sa jednim mlazom (isprekidana linija), ekskluzivni diferencijalni udarni
presjek dogad̄aja sa nula mlazeva (točkasta linija).

9.2.4 Trostruka baždarna vezanja

Ako postoje nove, još neotkrivene, čestice izvan Standardnog modela (kao naprimjer u teoriji Su-

persimetrija) s masama većim od 0.5−1 TeV-a, tada se na nižim energijama generiraju anomalna

vezanja.

Trostruka baždarna vezanja posljedica su neabelovog karaktera baždarne grupe elektroslabog sek-

tora SM-a, a jakosti vezanja su jednoznačno odred̄ena. Mnoge teorije izvan SM-a predvid̄aju do-

datne procese produkcije para bozona, stoga svako odstupanje mjerene vrijednosti od očekivanja

SM-a može biti prvi znak fizike izvan SM-a na visokim energijama. Tako mjerenje aTGC-a može

biti osjetljivo na nove fenomene na visokim energijama za koje je potrebna viša energija ili viši

integrirani luminozitet za direktno opažanje.
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Najopćenitiji efektivni lagrangian invarijantan na Lorentzove transformacije koji opisuje WWV ve-

zanje ima 14 neovisnih parametara [15, 16], 7 parametara za WWZ i 7 parametara za WWγ vezanje.

Uz pretpostavku C i P sačuvanja u efektivnom lagrangianu ostaje samo 6 neovisnih parametara:

LT GC

gWWV
= igV

1 (W−µνW+µV ν −W−µ VνW+µν)+ iκVW−µ W+
ν V µν +

iλV

M2
W

W−
δ µ

W+µ

ν V νδ , (9.30)

gdje je V = γ ili Z, gWWγ = −e i gWWZ = −ecotθW , θW je Weinbergov kut. Pretpostavivši elek-

tromagnetsku baždarnu invarijantnost, gγ

1 = 1. Preostali parametri koji opisuju WWV vezanje su

gZ
1 , κZ , κγ , λZ i λγ . Usporedbom sa 9.29 dobivaju se vrijednosti parametara u SM-u: λZ = λγ = 0 i

gZ
1 = κZ = κγ = 1.

Preostalih pet parametara reducira se na tri neovisna parametra uz prepostavku da je lagrangian

invarijantan na SU(2)L⊗U(1)Y transformacije:

∆κZ = ∆gZ
1 −∆κγ · tan2

θW , λ = λγ = λZ. (9.31)

U ovom radu mjereni su parametri ∆κγ i λγ analizom procesa pp→Wγ .

Sva anomalna vezanja narušavaju unitarnost na visokim energijama. Iz tog razloga mjerenja aTGC-

a na Tevatronu koriste pretpostavljenu ŝ-ovisnost parametara vezanja, tzv. form-faktor, da bi saču-

vali unitarnost:

α(ŝ) =
α0

(1+ ŝ/Λ2
NP)n . (9.32)

Ovdje je α0 nisko-energijska aproksimacija vezanja α(ŝ), ŝ je kvadrat invarijantne mase dvobozon-

skog sustava, a ΛNP je skala form-faktora i energija na kojoj fizika izvan SM poništava divergencije

u aTGC vrhu. U ovom radu mjereni su aTGC parametri bez upotrebe form-faktora da se izbjegne

pretpostavka o obliku ovisnosi parametara o energiji.
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U konačnom stanju Wγ , signal postojanja anomalnih trostrukih vezanja je povećan broj dogad̄aja

koji sadrže fotone velikog transverzalnog impulsa Eγ

T kao što je prikazano na Slici 9.3. Wγ proces

koji uključuje i anomalna trostruka vezanja simuliran je generatorima SHERPA [3] i PYTHIA [4].

Slika 9.3: Simulirana raspodjela Eγ

T za Wγ proces, za različite vrijednosti aTGC parametara.

Različiti modeli fizike izvan SM-a predvid̄aju različite vrijednosti aTGC parametara. Dodatna

generacija teških kvarkova i leptona rezultirala bi s vrijednostima reda ≈ 10−3 a Minimalni Super-

simetričan SM (MSSM) [14] model s vrijednostima:

|∆κγ | ≤ 2×10−2,

|∆κZ| ≤ 2×10−2,

|λγ | ≤ 6×10−3,

|λZ| ≤ 6×10−3.

(9.33)
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9.3 LHC akcelerator i CMS detektor

9.3.1 LHC ubrzivač

Veliki hadronski sudarivač (LHC) [17] je najsnažniji ubrzivač čestica na svijetu u kojem se sudaraju

protoni a započeo je radom 2009. godine. LHC je postavljen u tunelu opsega 26.7 km u kojem se

nalazio LEP sudarivač. Tunel je smješten na dubini 45-170 m u blizini Švicarsko-Francuske granice

i sastoji se od 8 ravnih dijelova povezanih s 8 lukova.

Korištenjem dva detektora opće namjene, CMS i ATLAS na LHC-u proučavaju se procesi Stan-

dardnog modela te provodi potraga za fizikom izvan Standardnog modela.

Shematski prikaz akceleratorskih sustava dan je na Slici 9.3.1.

Korištenje postojećeg LEP tunela predstavljalo je izazov, posebno pri dizajnu magneta za usmjera-

vanje LHC snopa. Budući da se isto magnetsko polje ne može koristiti za skretanje dva protonska

snopa koji se gibaju u suprotnim smjerovima magneti imaju jedinstven dizajn prikazan na Sli-

ci 9.3.1. Magneti stvaraju suprotno usmjerena polja jakosti 8T.

9.3.2 CMS detektor

CMS je detektor opće namjene dizajniran za precizno mjerenje leptona i ostalih čestica koje se

produciraju u visoko-energijskim proton-proton (pp) sudarima. Višeslojni dizajn CMS detektora

prikazan je na Slici 9.6.

Najbliže točci sudara smješteni su silikonski piksel i trakasti detektori tragova, za identifikaciju

i mjerenje tragova nabijenih čestica. Detektori tragova se zajedno s elektromagnetskim (ECAL)

i hadronskim (HCAL) kalorimetrom nalaze u jakom magnetskom polju jakosti 3.8T. Kalorimetri

mjere energiju čestica te sudjeluju u njihovoj identifikaciji. Izvan magneta nalaze se mionske ko-

more pričvršćene na čeličnu konstrukciju koja služi za zatvaranje magnetskog polja. Detaljan opis

detektora može se pronaći u [18].
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Slika 9.4: Shematski prikaz akceleratorskog sustava LHC-a.
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Slika 9.5: Shematski prikaz dipolnog magneta u LHC-u.

Koordinatni sustav

CMS detektor je cilindričnog oblika oko osi snopa, promjera 14.6m i duljine 21.6m. Sastoji se

od centralnog i dvaju bočnih dijelova koji zatvaraju detektor. U eksperimentu se koristi desni

kartezijev koordinatni sustav. U transverzalnoj ravnini (x-y) mjeri se azimutalni kut φ od x osi te

radijalna udaljenost r =
√

x2 + y2. Polarni kut θ mjeri se od z osi, ali se za opis čestica češće koristi

pseudorapiditet.

U neelastičnom sudaru protona med̄udjeluju dva partona (po jedan iz svakog protona) s odred̄enim

dijelom količine gibanja protona. Njihova količina gibanja je longitudinalna s zanemarivim dopri-

nosom u trasnverzalnom smjeru. Zbog sačuvanja količine gibanja ukupna količina gibanja čestica

iz sudara je takod̄er longitudinalna. Stoga se trajektorije novo nastalih čestica obično opisuju u
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Slika 9.6: CMS detektor.
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transverzalnoj ravnini. Čestice koje izlaze iz sudara nedetektirane, kao npr. neutrino, uzrokuje

neravnotežu u ukupnoj transverzalnoj količini gibanja.

Detektor tragova

Detektor tragova smješten je najbliže točci sudara i sastoji se od silicijskih poluvodičkih komo-

ra. Unutarnji dio detektora odlikuje se vrlo finim piksel detektorima koji omogućuju identifikaciju

višestrukih vrhova u sudarima. Tzv. primarni vrh odgovara točci interakcije protona. U jednom

sudaru snopova protona može doći do interakcije više parova protona što rezultira s više primar-

nih vrhova (PU, od engl. pile up). U analizi se koristi zahtjev da je lepton pridružen primarnom

verteksu čija je skalarna suma transverzalnih količina gibanja svih novo nastalih čestica maksimal-

na. Osim tri sloja piksel detektora dalje od točke sudara smješteni su silicijski trakasti detektori.

Presjek detektora tragova prikazan je na Slici 9.7.

Rezolucija količine gibanja u centralnom dijelu detektora koji pokriva područje pseudorapiditeta

| η |≤ 1.6 jednaka je:

σpT

pT
= (15pT ⊕0.5)%(TeV ), (9.34)

dok je rezolucija u bočnim dijelovima za vrijednost pseudorapiditeta | η |= 2.5 jednaka:

σpT

pT
= (60pT ⊕0.5)%(TeV ). (9.35)
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Slika 9.7: Presjek detektora tragova u CMS eksperimentu.

Elektromagnetski i hadronski kalorimetar

Elektromagnetski kalorimetar (ECAL, od engl. Electromagnetic calorimeter) dizajniran je za pre-

cizno mjerenje energije elektrona i fotona. ECAL je smješten unutar magneta stoga je vrlo kom-

paktan i izgrad̄en od materijala visoke prozirnosti i velike gustoće (PbWO4). Velika gustoća (8.28

g/cm−3), kratka radijacijska duljina (0.89 cm) i mali Molierov radijus (2.2 cm) omogućavaju ap-

sorpciju elektronskog i fotonskog pljuska unutar kristala duljine samo 23 cm. Dobra separacija

pljuskova omogućena je malim dimenzijama kristala od 2.2cm×2.2cm.

Na slici 9.8 shematski je prikazan elektromagnetski kalorimetar.

Energijska rezolucija ECAL-a dana je izrazom:

(
σE

E

)2
=

(
2.8%√
E/GeV

)2

+
(

0.12
E/GeV

)2

+(0.3%)2 . (9.36)

ECAL je okružen hadronskim kalorimetrom (HCAL, od engl. Hadronic calorimeter) dizajniranim

za mjerenje energije čestica koje primarno interagiraju jakom nuklearnom silom. HCAL se sastoji
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Slika 9.8: Prikaz elektromagnetskog kalorimetra u CMS eksperimentu.

od triju podsustava prikazanih na Slici 9.9. Detektori se sastoje od slojeva apsorpcijskog materijala

(mjed/čelik) i materijala za detekciju. HCAL pokriva područje sve do | η |≤ 5.0, stoga igra važnu

ulogu pri mjerenju ukupne nedostajuće transverzalne energije (MET, od engl. Missing transverse

energy).

Slika 9.9: Shematski prikaz hadronskog kalorimetra.
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Mionski sustav

Jedna od glavnih zadaća CMS detektora je efikasno i precizno mjerenje miona. Mioni nastali u

sudaru registriraju se u detektoru tragova i u mionskim komorama smještenim izvan magneta.

Mionski sustav sastoji se od tri tipa komora koji su optimizirani za različita okruženja unutar CMS-

a. U centralnom dijelu detektora nalaze se driftne komore (DT, od engl. Drift Tubes) koje pokrivaju

područje pseudorapiditeta | η |≤ 1.2, dok se u bočnim dijelovima nalaze katodne trakaste komore

(CSC, od engl. Chatode Strip Chambers) koje pokrivaju područje | η |≤ 2.4 i komore s otpornim

pločama (RPC, od engl. Resistive Plate Chambers) koje pokrivaju područje | η |≤ 1.6. Mionski

sustav prikazan je na Slici 9.10.

Slika 9.10: Mionski sustav eksperimenta CMS.

Prostorna rezolucija DT komora je 100 µm u r-φ ravnini i 150 µm u z smjeru, dok vremenska

rezolucija iznosi 3.8 ns. Za CSC komore prostorna rezloucija je nešto slabija i iznosi 200 µm dok
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je kutna rezolucija u φ reda 10 mrad. RPC komore se odlikuju odličnom vremenskom rezolucijom

(≈ 1 ns).

Rezolucija količine gibanja miona prikazana je na Slici 9.11.

Slika 9.11: Rezolucija količine gibanja miona.

Postupak rekonstrukcije fizikalnih veličina i tragova čestica

Rekonstrukcija je proces dobivanja fizikalnih veličina i tragova čestica iz signala mjerenih u detek-

toru. Različite čestice ostavljaju rezličite signale u CMS detektoru (Slika 9.12). Mioni se mjere u

detektoru tragova i u mionskim komorama te ostavljaju vrlo malo energije u kalorimetru. Elektroni

ostavljaju trag u detektoru tragova i izazivaju elektromagnetski pljusak u ECAL-u, dok se fotoni

mjere samo u ECAL-u.

Reconstrukcija miona Mioni (i antimioni) se detektiraju u području pseudorapiditeta |η |< 2.4

te se rekonstruiraju usklad̄ivanjem traga u detektoru tragova s tragom u mionskim komorama. Ko-

načna rezolucija količine gibanja je 1-5% za mione transverzalnog impulsa pT ≤ 1 TeV-a. Algori-

tam za rekonstrukciju detaljno je opisan u [19].
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Slika 9.12: Transverzalni presjek CMS detektora s odgovarajućim potpisom različitih čestica.

Rekonstrukcija fotona Rekonstrukcija fotona bazira se na analizi energije deponirane u ECAL-

u. Foton energije 1 GeV deponira 95% energije u polju ECAL kristala veličine 5×5. Približno 50%

fotona će u interakciji s materijalom izmed̄u točke sudara i ECAL-a konvertirati u e+e− par. Pošto

se putanja nabijene čestice zakreće u magnetskom polju energija u ECAL-u pokrivat će veliko

područje kuta φ .

Kristali s pripadajućom deponiranom energijom grupiraju se u veće skupine SC (od engl. Super

Cluster) [20]. Centar elektromagnetskog pljuska odred̄uje se izrazom:

x = ∑xiWi

∑Wi
, where Wi = max

(
0,4.7+ log

Ei

∑E j

)
(9.37)

gdje je Ei energija itog kristala u SC.

Rekonstrukcija nedostajuće transverzalne energije U konačnom stanju Wγ → ł±νγ neutrino

nije detektiran što rezultira s neravnotežom u mjerenoj transverzalnoj energiji, MET. Ova se veli-

čina odred̄uje algoritmom opisanim u [21] koji rekonstruira kompletnu listu čestica proizašlih iz
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sudara koristeći sve detektorske podsustave CMS eksperimenta. Za svaki dogad̄aj MET je odred̄en

kao negativna vrijednost vektorske sume transverzalnih energija svih rekonstruiranih čestica.
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9.4 Mjerenje Wγ udarnog presjeka

U ovom radu prikazani su rezultati mjerenja udarnog presjeka procesa pp→Wγ→ µνγ na energiji

7 TeV-a u sustavu centra mase dvaju protona. Kako udarni presjek Wγ procesa u vodećem redu

divergira za fotone niske energije i fotone koji se gibaju u smjeru bliskom leptonu iz W raspada,

mjerenje je izvršeno u kinematskom području definiranom zahtjevima:

• transverzalna energija fotona mora biti veća od 15 GeV-a.

• mion i foton moraju biti prostorno udaljeni ∆R(µ,γ)≡
√

(∆φ)2 +(∆η)2 > 0.7.

U analizi su korišteni podaci prikupljeni CMS detektorom tijekom 2011 godine.

Konačno stanje Wγ → µνγ karakterizirano je izoliranim mionom visoke energije, značajnom ne-

dostajućom transverzalnom energijom zbog nedetektiranog neutrina i izoliranim fotonom. Osim

Wγ procesa postoje drugi procesi s identičnim konačnim stanjem ili procesi u kojima čestice ko-

načnog stanja ostavljaju sličan potpis u detektoru. Da bi se smanjio doprinos ovih drugih procesa

(pozadine) primjenjuju se zahtjevi (selekcija) na dogad̄aje.

Udarni presjek σ definiran je izrazom:

σ =
Nsig

A · ε ·L
(9.38)

gdje je Nsig broj dogad̄aja signala u podacima , ε je efikasnost selekcije, L integrirani luminozitet,

a A efikasnost detektora.

Produkt A · εgen odred̄en je iz simulacija. Različita efikasnost u podacima i simulaciji korigira se

faktorom ρeff = ε/εgen. Korekcijski faktor dobiva se mjerenjem efikasnosti u podacima i simulaciji

na jednak način. Uz jednakost F ≡ A · εgen izraz 9.38 može se napisati u obliku:

σ =
Nsig

A · εgen · ε

εgen
·L

=
Nsig

F ·ρe f f ·L
. (9.39)
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gdje je F definiran omjerom Naccept
Ngen,kin

. Naccept je broj dogad̄aja u simulaciji koji prolaze selekciju,

Ngen,kin je broj simuliranih dogad̄aja s Eγ

T > 15 GeV-a i ∆R(µ,γ) > 0.7.

9.4.1 Podaci

U analizi su korišteni podaci koji odgovaraju integriranom luminozitetu od 5 fb−1 na energiji od

7 TeV-a u sustavu centra mase dvaju protona, prikupljeni tijekom 2011. godine. Tijekom 2011.

godine mjerenja su izvršena u dva perioda s bitno različitim karakteristikama snopa. Prvi period

odgovara integriranom luminozitetu od 2.2 fb−1 i naziva se 2011A. Drugi period koji se odlikuje

većim brojem interakcija ("pile-up", PU), odgovara integriranom luminozitetu od 2.7 fb−1 i u radu

se naziva 2011B. Mjerenje je izvršeno na ukupnom uzorku podataka 2011A+2011B, a za provjeru

kompatibilnosti, i posebno na uzorcima 2011A i 2011B.

9.4.2 Selekcija dogad̄aja

Selekcijom dogad̄aja nastoji se minimizirati doprinos pozadina uz što manji gubitak signala.

Selekcija sustava okidača

Dogad̄aji Wγ → µνγ selektirani su korištenjem okidača koji zahtjeva prisustvo miona u dogad̄aju,

s transverzalnim impulsom Pµ

T iznad odred̄enog praga. Korišten je okidač s najnižim pragom,

pµ

T ≥ 30 GeV-a.

Selekcija miona

Postupak odabira miona opisana je u [19], s time da je u analizi postavljen stroži rez na najbližu

udaljenost izmed̄u rekonstruiranog traga miona i primarnog vrha u transverzalnoj ravnini (d0) i u

z smjeru (dz) [26]. Selektirani su mionski kandidati koji su rekonstruirani s dva algoritma, tzv.
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Tablica 9.2: Selekcija miona.
Opis selekcija

Kinematički pT > 35 GeV i |η |< 2.1
Broj točaka u piksel komorama > 0

Broj točaka u piksel i trakastim komorama > 10
χ2/n.d.f < 10

Broj točaka u mionskim komorama > 0
Broj mionskih komora s točkama > 1

Vrh d0 < 0.02 cm
Vrh dz < 0.1 cm

Relativna izolacija ∆R = 0.3 < 0.1

"GlobalMuon" i "TrackerMuon". Prilikom selekcije zahtjeva se postojanje signala u piksel de-

tektoru tragova, postojanje signala u većini slojeva trakastog detektora tragova i dobar χ2 ukupne

prilagodbe traga čestice na mjerenja u detektoru tragova i mionskim komorama.

Da bi se smanjila pozadina koja nastaje zbog pogrešno identificiranih piona i mlazeva koristi se

zahtjev relativne izolacije, gdje suma transverzalnih količina gibanja svih rekonstruiranih čestica u

konusu ∆R = 0.3 oko miona, mora biti manja od 10% transverzalne količine gibanja miona.

Takod̄er se postavlja zahtjev na transverzalnu količinu gibanja miona, pT ≥35 GeV-a i pseudorapi-

ditet |η |< 2.1. Pregled svih selekcijskih uvijeta prikazan je u Tablici 9.2.

Selekcija fotona

Fotonski kandidati rekonstruirani su kao super-klasteri (SC, od engl. SuperClasters) transverzalne

energije Eγ

T > 15 GeV-a u ECAL-u. Da bi se smanjila pozadina, koju čine hadronski mlazevi, na

rekonstruirane kandidate postavljaju se uvjeti:

• omjer energija u HCAL-u i ECAL-u u konusu ∆R = 0.15 oko fotona mora biti manji od 0.05,

• σiη iη ≤0.011 u centralnom dijelu detektora i σiη iη ≤ 0.030 u bočnim dijelovima.

Varijabla σiη iη mjeri oblik super-klastera u smjeru pseudorapiditeta i definirana je izrazom:
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σ
2
iη iη = ∑(ηi− η̄)2 wi

∑wi
, η̄ = ∑ηiwi

∑wi
, wi = max(0,4.7+ log(Ei/E5×5)) , (9.40)

gdje se sumira energija deponirana u kristalima koji čine polje veličine 5×5 oko kristala s najvećom

energijom.

Pozadinu čine i elektroni. Njihov doprinos smanjuje se zahtjevom da fotonski kandidat nema pri-

druženu točku u piksel detektoru.

Izolacija fotona korigirana je za doprinos PU dogad̄aja [27] koristeći gustoću energije po površini,

ρ . Pregled selekcijskih uvijeta prikazan je u Tablici 9.3.

Tablica 9.3: Selekcija fotona.

Opis selekcija

Kinematički
ET > 15 GeV

|η |< 1.4442 za centralni dio (1.566 < |η |< 2.5 za bočni dio)
HCAL/ECAL energija ; ∆R < 0.15 < 0.05

σiη iη < 0.011(0.03)
Pridružena točka piksel detektora nema pridružene piksel točke

Izolaci jaT RK ; ∆R < 0.4 < 2.0+0.001 ·ET +0.0167(0.032) ·ρ
Izolaci jaECAL ; ∆R < 0.4 < 4.2+0.006 ·ET +0.183(0.090) ·ρ
Izolaci jaHCAL ; ∆R < 0.4 < 2.2+0.0025 ·ET +0.062(0.180) ·ρ

MW
T selekcija

Za identifikaciju W bozona koristi se transverzalna masa, MW
T , definirana izrazom:

MW
T =

√
2× pT(µ)×MET× (1− cos∆φ(µ,MET)). (9.41)

Zbog zahtjeva korištenog u okidaču u selekciji se koristi uvjet MW
T > 70 GeV-a.
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Wγ selekcija

U selekciji Wγ dogad̄aja zahtjeva se postojanje barem jednog mionskog kandidata transverzalnog

impulsa pT > 35 GeV-a koji zadovoljava kriterije navedene u paragrafu 9.4.2. Ako postoji do-

datni mionski kandidat transverzalne količine gibanja pT > 10 GeV-a i pseudorapiditeta |η |< 2.4

dogad̄aj se odbacuje kako bi se smanjila Drell-Yan pozadina.

Transverzalna masa W bozona mora zadovoljavati uvjet MW
T > 70 GeV-a, i u dogad̄aju mora posto-

jati barem jedan fotonski kandidat transverzalne energije ET > 15 GeV-a koji zadovoljava kriterije

navedene u paragrafu 9.4.2. Ako postoji više fotonskih kandidata izabire se kandidat s najvećom

energijom.

Wγ selekciju zadovoljava 5014(5795) dogad̄aja u uzorku podataka 2011A(2011B). Očekivani broj

dogad̄aja u signalu i pozadini odred̄en je pomoću simulacije i prikazan u Tablici 9.4.

Tablica 9.4: Broj selektiranih Wγ → µνγ dogad̄aja u podacima i simulaciji za uzorak podataka 2011A (2.3
fb−1), 2011B (2.7 fb−1) i ukupni uzorak 2011A+2011B (5.0 fb−1).

udarni presjek(pb) Broj dogad̄aja (2011A) Broj dogad̄aja (2011B) Broj dogad̄aja (2011A+2011B)
Wγ → µνγ 137.3 2097.4±33.3 2252.5±34.0 4341.7±55.9
Wγ → τνγ 21.41 11.9±1.9 18.0±2.4 28.8±3.5
W+mlazevi 31314 1701.4±54.0 2261.3±62.2 3945.9±95.9
Z+mlazevi 3048 59.4±4.9 78.4±5.5 138.2±8.6
Z + γ → llγ 41.37 154.7±10.5 195.5±11.6 349.2±18.3
tt̄+mlazevi 157.5 54.8±3.4 59.0±3.4 114.2±5.6

tt̄γ 0.444 17.2±0.6 19.4±0.6 36.7±1.0
Incl. µ QCD 84679.3 0.0±0.0 0.0±0.0 0.0±0.0

γ + jets by p̂T 0.0±0.0 0.0±0.0 0.0±0.0
WW 5.7 14.8±0.6 15.7±0.6 30.5±1.0
WZ 0.6 0.2±0.0 0.2±0.0 0.4±0.0
ZZ 0.06 0.0±0.0 0.0±0.0 0.0±0.0

simulacija (ukupno) 4111.9±64.6 4900.0±72.2 8985.6±113.0
podaci 5014 5795 10809

Efikasnost selekcije i geometrijski gubitci

Efikasnost selekcije i gubitci do kojih dolazi zbog konačne veličine detektora (F = A · εgen), odre-

d̄eni su analizom simuliranih Wγ dogad̄aja. Kako se efikasnost u podacima i simulaciji razlikuje,

uvodi se korekcijski faktor ρe f f = ε

εgen
kojom se ova razlika uzima u obzir.
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Efikasnosti selekcije fotona i miona odred̄ene su iz mjerenih podataka tzv. ’tag-and-probe’ meto-

dom, dok je efikasnost zahtjeva MW
T > 70 GeV-a odred̄ena metodom opisanom u [29].
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9.4.3 Pozadinski dogad̄aji

Pozadinskim dogad̄ajima koji zadovoljavaju Wγ → µνγ selekciju, najviše doprinose dogad̄aji u

kojima je hadronski mlaz pogrešno identificiran kao foton. Ovoj pozadini doprinose sljedeći pro-

cesi:

• W+mlazevi, gdje je mlaz pogrešno identificiran kao foton,

• Z+mlazevi, gdje jedan od leptona iz Z raspada nije detektiran, a mlaz je pogrešno identificiran

kao foton,

• tt̄+mlazevi, gdje se jedan od W bozona iz tt̄ raspada leptonski, a mlaz je pogrešno identificiran

kao foton.

Doprinos ovih hadronskih procesa procjenjen je iz podataka pomoću dvije metode, metode predlo-

žaka i metode omjera, koje su opisane u paragrafu 9.4.3.

Drugi procesi s dva bozona u konačnom stanju takod̄er mogu doprinjeti pozadini ukoliko je elektron

pogrešno identificiran kao foton. Ova pozadina nije značajna i odred̄ena je iz podataka.

Pozadini doprinose i slijedeći procesi:

• krivo identificirani lepton iz γ+mlaz procesa,

• Wγ → τνγ gdje se τ raspada na µνγ ,

• Zγ dogad̄aji,

• tt̄γ dogad̄aji.

Njihov doprinos je puno manji od doprinosa procesa W+mlazevi, te je odred̄en iz simulacije.
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Pozadina od mlazeva pogrešno identificiranih kao fotoni

Dominantan dio pozadine Wγ→ µνγ procesa čine dogad̄aji u kojima je mlaz pogrešno identificiran

kao foton. Ovoj pozadini najviše doprinosi proces W+mlazevi.

Metoda predložaka U metodi predloška koristi se σiη iη raspodjela kao diskriminirajuća varija-

bla na kojoj se provodi dvokomponentna prilagodba signala i pozadine. Oblik raspodjele signala

i pozadine odred̄en je za različite vrijednosti transverzalne energije fotona, Eγ

T: 15− 20 GeV-a,

20− 25 GeV-a, 25− 30 GeV-a, 30− 35 GeV-a, 35− 40 GeV-a, 40− 60 GeV-a, 60− 90 GeV-a,

i 90− 500 GeV-a za podatke 2011A i 2011B, te 90− 120 GeV-a i 120− 500 GeV-a za podat-

ke 2011A+2011B. Oblici raspodjela posebno su odred̄eni za fotone rekonstruirane u centralnom

dijelu detektora (|η |< 1.4442) i u bočnim dijelovima (1.556 < |η |< 2.5).

Oblik raspodjela signala, odred̄en je iz simuliranih Wγ dogad̄aja. Oblik raspodjele dobiven iz simu-

lacije uspored̄en je s oblikom σiη iη raspodjele mjerenih Z→ ee dogad̄aja. Usporedba je prikazana

na Slici 9.13, gdje se uočava pomak izmed̄u σiη iη raspodjela u podacima i simulaciji. Stoga je σiη iη

raspodjela pravih fotona dobivena iz simulacije, pomaknuta prema manjim vrijednostima za iznos

0.9×10−4 (0.8×10−4) i 2.1×10−4 (1.9×10−4) u centralnom dijelu detektora i bočnim dijelovima

u 2011A (2011B) uzorku podataka.

Oblici σiη iη raspodjela za pozadinu, koju čine pogrešno identificirani hadronski mlazevi, dobiveni

su iz podataka korištenjem dogad̄aja koji sadrže mlazeve. Fotonski kandidati selektirani su kao

rekonstruirani fotoni koji prolaze selekciju definiranu u paragrafu 9.4.2 izuzev zahtjeva na σiη iη ,

te se za razliku od zahtjeva na izolaciju zahtjeva anti-izolacija u svrhu smanjenja doprinosa pravih

fotona. Zahtjev anti-izolacije izabran je tako da nije koreliran sa σiη iη .

Na σiη iη raspodjelu dobivenu iz podataka prilagod̄ava se funkcija oblika:

f (σiη iη) = NSS(σiη iη)+NBB(σiη iη), (9.42)
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Slika 9.13: σiη iη raspodjele za centralni (lijevo) i bočne dijelove detektora (desno) za simulirane (zeleni
histogram) i mjerene dogad̄aje (točke) za uzorak 2011A (gore) i 2011B (dolje).
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gdje su NS i NB očekivani doprinosi signala i pozadine, a S(σiη iη) i B(σiη iη) raspodjele signala i

pozadine. Oblici raspodjela izglad̄eni su primjenom metode opisane u [28].

Vrijednosti parametara NS i NB dobivaju se minimiziranjem izraza:

− lnL = (NS +NB)−N ln(NSS(σiη iη)+NBB(σiη iη)). (9.43)

gdje je N ukupni broj dogad̄aja u podacima.

Rezultati prilagodbe za vrijednosti transverzalne energije fotona 15≤ Eγ

T ≤ 20 GeV-a prikazani su

na Slici 9.14.
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Metoda omjera Metoda omjera korištena je za provjeru rezultata dobivenih metodom predlo-

žaka u području Eγ

T > 60 GeV-a, u kojem je metoda predložaka podložna velikim statističkim

pogreškama. Mlazevi s velikim udjelom elektromagnetskog signala koji ostavljaju sličan potpis

u detektoru kao fotoni nazivaju se mlazevi slični fotonu (plJet, od engl. photon-like jet). Oni su

selektirani kao fotonski kandidati koji ne zadovoljavaju izolacijski ili σiη iη zahtjev a imaju veći

udio elektromagnetskog doprinosa od većine mlazeva. U metodi se odred̄uje omjer Rp:

Rp =
vjerojatnost da mlaz zadovoljava selekciju fotona
vjerojatnost da mlaz zadovoljava selekciju plJet

. (9.44)

Doprinos pozadine mlazeva koji su pogrešno identificiranih kao fotoni, NW+mlazevi, odred̄uje se

pomoću izraza:

NW+mlazevi = Rp ·NW+plJet, (9.45)

gdje je NW+plJet broj dogad̄aja u podacima s identificiranim W bozonom i barem jednim "plJet"

objektom.

Primjenom metode omjera i metode predložaka dobivaju se suglasni rezultati. Stoga je razlika

rezultata dvije metode korištena kao dodatna sistematska pogreška na rezultat dobiven metodom

predložaka.
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Tablica 9.5: Broj pozadinskih dogad̄aja koji čine pogrešno identificiranih mlazeva odred̄eni metodom pred-
ložaka za uzorke 2011A i 2011B.

Eγ

T , GeV Procjenjena pozadina (2011A) Procjenjena pozadina (2011B)
Centralni dio detektora

15-20 834.8 ± 22.5(stat.) ± 28.7(syst.) 1006.4 ± 24.4(stat.) ± 40.7(syst.)
20-25 317 ± 15.5(stat.) ± 16.4(syst.) 348.1 ± 15.9(stat.) ± 21.2(syst.)
25-30 142.9 ± 10.4(stat.) ± 9.5(syst.) 164.8 ± 11.4(stat.) ± 12.3(syst.)
30-35 98.5 ± 8.6(stat.) ± 8.1(syst.) 120.4 ± 9.6(stat.) ± 11.9(syst.)
35-40 51.8 ± 6.5(stat.) ± 5(syst.) 66.9 ± 8.1(stat.) ± 7.4(syst.)
40-60 75.1 ± 8.4(stat.) ± 9.4(syst.) 105.4 ± 10.1(stat.) ± 13.7(syst.)
60-90 27.1 ± 5.2(stat.) ± 5.4(syst.) 41.6 ± 7.3(stat.) ± 8.6(syst.)
90-500 20.3 ± 6.8(stat.) ± 16.7(syst.) 34.5 ± 9.8(stat.) ± 28.5(syst.)
MET korelacija ± 203.8(syst.) ± 245.4(syst.)
∆(metoda predložaka, metoda omjera) ± 1.6 (syst.) ± 50.3(syst.)
Ukupno 1567.5 ± 33.4(stat.) ± 207.9(syst.) 1888.1 ± 37.2(stat.) ± 257.5(syst.)

Bočni dijelovi detektora
15-20 417 ± 12.6(stat.) ± 29(syst.) 430.7 ± 12.4(stat.) ± 40.3(syst.)
20-25 185.1 ± 9.4(stat.) ± 15.3(syst.) 236.3 ± 10.4(stat.) ± 20.8(syst.)
25-30 81.6 ± 6.6(stat.) ± 9.1(syst.) 140.5 ± 9.3(stat.) ± 14.9(syst.)
30-35 56.2 ± 5.7(stat.) ± 7.4(syst.) 51 ± 5.8(stat.) ± 9.4(syst.)
35-40 44 ± 5.1(stat.) ± 4.9(syst.) 31 ± 4.9(stat.) ± 6.3(syst.)
40-60 40.3 ± 6.4(stat.) ± 7.6(syst.) 51.9 ± 7.1(stat.) ± 11.3(syst.)
60-90 18.2 ± 4.3(stat.) ± 4.3(syst.) 22.2 ± 5.3(stat.) ± 7.1(syst.)
90-500 7.3 ± 5.3(stat.) ± 12.3(syst.) 16.5 ± 6.6(stat.) ± 20.9(syst.)
MET korelacija ± 59.5(syst.) ± 68.6(syst.)
∆(metoda predložaka, metoda omjera) ± 13.4 (syst.) ± 21.3(syst.)
Ukupno 849.7 ± 20.9(stat.) ± 72.0(syst.) 980.1 ± 23.0(stat.) ± 90.4(syst.)

Centralni dio + bočni dijelovi detektora
15-20 1251.8 ± 25.8(stat.) ± 40.8(syst.) 1437.1 ± 27.4(stat.) ± 57.3(syst.)
20-25 502.1 ± 18.1(stat.) ± 22.4(syst.) 584.4 ± 19.0(stat.) ± 29.7(syst.)
25-30 224.5 ± 12.3(stat.) ± 13.2(syst.) 305.3 ± 14.7(stat.) ± 19.3(syst.)
30-35 154.7 ± 10.3(stat.) ± 11.0(syst.) 171.4 ± 11.2(stat.) ± 15.2(syst.)
35-40 95.8 ± 8.3(stat.) ± 7.0(syst.) 97.9 ± 9.5(stat.) ± 9.7(syst.)
40-60 115.4 ± 10.6(stat.) ± 12.1(syst.) 157.3 ± 12.3(stat.) ± 17.8(syst.)
60-90 45.3 ± 6.7(stat.) ± 6.9(syst.) 63.8 ± 9.0(stat.) ± 11.2(syst.)
90-500 27.6 ± 8.6(stat.) ± 20.7(syst.) 51 ± 11.8(stat.) ± 35.3(syst.)
MET korelacija ± 212.3(syst.) ± 254.9(syst.)
∆(metoda predložaka, metoda omjera) ± 11.8 (syst.) ± 71.5(syst.)
Ukupno 2417.3 ± 39.4(stat.) ± 219.9(syst.) 2868.2 ± 43.7(stat.) ± 276.8(syst.)

Rezultati Rezultati dobiveni primjenom metode predložaka i metode omjera prikazani su na Sli-

ci 9.15 i u Tablicama 9.5- 9.6. Broj pozadinskih dogad̄aja dobiven primjenom metode predložaka

iznosi 2417.3 ± 39.4 (stat.) ± 219.9 (syst.) za uzorak 2011A, 2868.2 ± 43.7 (stat.) ± 276.8 (syst.)

za uzorak 2011B i 5345.9 ± 58.2 (stat.) ± 482.6 (syst.) za uzorak 2011A+2011B.
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Slika 9.15: Broj pozadinskih dogad̄aja koje čine iz pogrešno identificirani mlazevi, za centralni (lijevo) i
bočne dijelove detektora (desno). Rezultati dobiveni metodom predložaka i metodom omjera prikazani su
crvenom odnosno plavom bojom. Zelenom bojom prikazan je broj pozadinskih dogad̄aja doiven iz simula-
cije.
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Tablica 9.6: Broj pozadinskih dogad̄aja koji dolaze iz pogrešno identificiranih mlazeva odred̄eni metodom
predložaka za uzorak 2011A+2011B.

Eγ

T , GeV Procjenjena pozadina (2011A+2011B)
Centralni dio detektora

15-20 1876.4 ± 32.4(stat.) ± 62.4(syst.)
20-25 688.2 ± 22.3(stat.) ± 37.8(syst.)
25-30 310.9 ± 15.3(stat.) ± 21.2(syst.)
30-35 217.6 ± 13(stat.) ± 17.4(syst.)
35-40 116.7 ± 10.4(stat.) ± 11.1(syst.)
40-60 177.5 ± 13.1(stat.) ± 22.1(syst.)
60-90 61.9 ± 7.8(stat.) ± 12.3(syst.)
90-120 13.3 ± 4.5(stat.) ± 4.2(syst.)
120-500 29.3 ± 10.2(stat.) ± 25.4(syst.)
MET korelacija ± 453.9(syst.)
∆(metoda predložaka, metoda omjera) ± 16.2 (syst.)
Ukupno 3491.8 ± 49.1(stat.) ± 462.4(syst.)

Bočni dijelovi detektora
15-20 886.5 ± 18(stat.) ± 36.4(syst.)
20-25 420.1 ± 14(stat.) ± 21.2(syst.)
25-30 210.7 ± 10.7(stat.) ± 16.3(syst.)
30-35 108.7 ± 8.4(stat.) ± 10.8(syst.)
35-40 78.1 ± 7.5(stat.) ± 8.8(syst.)
40-60 94.8 ± 10(stat.) ± 10.1(syst.)
60-90 38.6 ± 6.8(stat.) ± 6.3(syst.)
90-120 8.1 ± 4.7(stat.) ± 2.2(syst.)
120-500 8.8 ± 7.0(stat.) ± 5.6(syst.)
MET korelacija ± 129.8(syst.)
∆(metoda predložaka, metoda omjera) ± 9.2 (syst.)
Ukupno 1854.4 ± 31.3(stat.) ± 139.1(syst.)

Centralni + bočni dijelovi detektora
15-20 2762.9 ± 37.1(stat.) ± 72.3(syst.)
20-25 1108.3 ± 26.3(stat.) ± 43.3(syst.)
25-30 521.6 ± 18.7(stat.) ± 26.7(syst.)
30-35 326.3 ± 15.5(stat.) ± 20.5(syst.)
35-40 194.8 ± 12.8(stat.) ± 14.2(syst.)
40-60 272.3 ± 16.5(stat.) ± 24.3(syst.)
60-90 100.5 ± 10.3(stat.) ± 13.8(syst.)
90-120 21.4 ± 6.5(stat.) ± 4.7(syst.)
120-500 38.1 ± 12.4(stat.) ± 26.0(syst.)
MET korelacija ± 472.1(syst.)
∆(metoda predložaka, metoda omjera) ± 7.0 (syst.)
Ukupno 5345.9 ± 58.2(stat.) ± 482.6(syst.)
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Pregled pozadina

Sve procjenjene pozadine sumirane su u Tablici 9.7 za uzorke 2011A i 2011B te u Tablici 9.8 za

uzorak 2011A+2011B.

Tablica 9.7: Procjenjene pozadine u Wγ → µνγ konačnom stanju za uzorke 2011A i 2011B.
Procjenjena pozadina

Izvor pozadine 2011A 2011B
Lažni fotoni 2417.3 ± 39.4 (stat.)± 219.9 (syst.) 2868.2 ± 43.7 (stat.) ± 276.8 (syst.)

(mlazevi)
Lažni fotoni 44.0 ± 1.0 (stat.) ± 3.3 (syst.) 47.3 ± 1.0 (stat.) ± 3.4 (syst.)
(elektroni)

Lažni leptoni zanemarivo zanemarivo
W (τν)γ 11.9 ± 1.9 (stat.) ± 1.1 (syst.) 18.0 ± 2.4 (stat.) ± 1.8 (syst.)

Zγ 149.8 ± 10.5 (stat.) ± 9.0 (syst.) 188.6 ± 11.6 (stat.) ± 11.3 (syst.)
tt̄γ 16.9 ± 0.6 (stat.) ± 8.5 (syst.) 18.9 ± 0.7 (stat.) ± 9.5 (syst.)

Tablica 9.8: Procjenjene pozadine u Wγ → µνγ konačnom stanju za uzorak 2011A+2011B.
Procjenjena pozadina

Izvor pozadine 2011A+2011B
Lažni fotoni 5345.9 ± 58.2 (stat.) ± 482.6 (syst.)

(misid. mlazevi)
Lažni fotoni 91.4 ± 1.4 (stat.) ± 4.7 (syst.)

(misid. elektroni)
Lažni leptoni zanemarivo

W (τν)γ 28.9 ± 3.4 (stat.) ± 2.7 (syst.)
Zγ 338.0 ± 18.3 (stat.) ± 20.3 (syst.)
tt̄γ 35.9 ± 1.0 (stat.) ± 17.9 (syst.)
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9.4.4 Rezultati

Broj dogad̄aja u signalu Nsig u 9.39 odred̄uje se kao broj selektiranih Wγ → µνγ dogad̄aja u poda-

cima Nobs umanjen za očekivani broj dogad̄aja pozadine Nbkg . Time se izraz za Wγ udarni presjek

9.39 može napisati u obliku:

σ =
Nobs−Nbkg

F ·ρeff ·L
. (9.46)

Vrijednost Nsig odred̄ena je iz izraza:

Nsig = Nobs−Nmlazevi
bkg −Nelektroni

bkg −Nγ+mlazevi
bkg −NW(τν)γ

bkg −NZγ

bkg−Ntt̄γ
bkg, (9.47)

gdje je Nmlazevi
bkg pozadina koja dolazi od pogrešno identificiranih mlazeva odred̄ena metodom pred-

ložaka, Nelektroni
bkg je pozadina koja dolazi od pogrešno identificiranih elektrona, Nγ+mlazevi

bkg je poza-

dina od procesa γ + jets, NW (τν)γ
bkg pozadina od procesa W (τν)γ , NZγ

bkg pozadina od procesa Zγ , a

Ntt̄γ
bkg pozadina od procesa tt̄γ .

Wγ→ µνγ selekciju zadovoljava 5014(5795) dogad̄aja u uzorku 2011A(2011B), te ukupno 10809

dogad̄aja u uzorku 2011A+2011B, što odgovara integriranom luminozitetu 4969.1 pb−1.

Vrijednosti svih parametara korištenih pri odred̄ivanju udarnog presjeka prikazane su u Tablica-

ma 9.9 i 9.10.

Dobivene mjerene vrijednosti udarnog presjeka iznose:

σ(pp→Wγ → µνγ)(2011A) = 37.4±1.3 (stat.)±4.3 (syst.)±0.8 (lumi.) pb.

σ(pp→Wγ → µνγ)(2011B) = 38.7±1.3 (stat.)±4.8 (syst.)±0.9 (lumi.) pb.

σ(pp→Wγ → µνγ)(2011A+2011B) = 37.5±0.9 (stat.)±4.4 (syst.)±0.8 (lumi.) pb.

Teorijski NLO udarni presjek odred̄en MCFM generatorom [34] iznosi 31.81±1.8 pb.
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Usporedbe kinematičkih raspodjela u podacima i simulaciji nakon Wγ → µνγ selekcije prikazane

su na Slikama 9.16-9.18, dok su omjeri raspodjela prikazani na Slikama 9.19-9.21. Simulacija

pozadine skalirana je na vrijednost odred̄enu iz podataka.

Slika 9.22 pokazuje rezultate mjerenja udarnog presjeka u usporedbi s teorijski predvid̄enim udar-

nim presjekom u NLO redu.
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Slika 9.16: Raspodjela transverzalnog impulsa miona (Pµ

T ), pseudorapiditeta miona (ηµ ), nedostajuće tran-
sverzalne energije (MET), transverzalne mase W bozona (MW

T ), tranverzalne energije fotona (Eγ

T ), pseudo-
rapiditeta fotona (ηγ ), prostorne udaljenosti fotona i miona (dR(γ,µ)), broja primarnih vrhova u dogad̄aju
(Number of good vertices), broja mlazeva u dogad̄aju (Number of selected jets), transverzalnog impulsa Wγ

sustava (PWγ

T ), broja dogad̄aja koji prolaze niz selekcijskih zahtjeva i razlike u kutu φ izmed̄u mlaza i fo-
tona (∆φ( jet,γ)) za dogad̄aje koji zadovoljavaju Wγ → µνγ selekciju za simulirane (histogrami) i mjerene
dogad̄aje (točke) za uzorak 2011A. 179
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Slika 9.17: Raspodjela transverzalnog impulsa miona (Pµ

T ), pseudorapiditeta miona (ηµ ), nedostajuće tran-
sverzalne energije (MET), transverzalne mase W bozona (MW
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Slika 9.18: Raspodjela transverzalnog impulsa miona (Pµ

T ), pseudorapiditeta miona (ηµ ), nedostajuće tran-
sverzalne energije (MET), transverzalne mase W bozona (MW

T ), tranverzalne energije fotona (Eγ

T ), pseudo-
rapiditeta fotona (ηγ ), prostorne udaljenosti fotona i miona (dR(γ,µ)), broja primarnih vrhova u dogad̄aju
(Number of good vertices), broja mlazeva u dogad̄aju (Number of selected jets), transverzalnog impulsa Wγ

sustava (PWγ

T ), broja dogad̄aja koji prolaze niz selekcijskih zahtjeva i razlike u kutu φ izmed̄u mlaza i fo-
tona (∆φ( jet,γ)) za dogad̄aje koji zadovoljavaju Wγ → µνγ selekciju za simulirane (histogrami) i mjerene
dogad̄aje (točke) za uzorak 2011A+2011B. 181
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Slika 9.19: Omjeri raspodjela transverzalnog impulsa miona (Pµ

T ), pseudorapiditeta miona (ηµ ), nedosta-
juće transverzalne energije (MET), transverzalne mase W bozona (MW

T ), tranverzalne energije fotona (Eγ

T ),
pseudorapiditeta fotona (ηγ ), prostorne udaljenosti fotona i miona (dR(γ,µ)), broja primarnih vrhova u
dogad̄aju (Number of good vertices), broja mlazeva u dogad̄aju (Number of selected jets), transverzalnog
impulsa Wγ sustava (PWγ

T ), broja dogad̄aja koji prolaze niz selekcijskih zahtjeva i razlike u kutu φ izmed̄u
mlaza i fotona (∆φ( jet,γ)) za dogad̄aje koji zadovoljavaju Wγ → µνγ selekciju za mjerene i simulirane
dogad̄aje za uzorak 2011A. 182
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Slika 9.20: Omjeri raspodjela transverzalnog impulsa miona (Pµ

T ), pseudorapiditeta miona (ηµ ), nedosta-
juće transverzalne energije (MET), transverzalne mase W bozona (MW

T ), tranverzalne energije fotona (Eγ

T ),
pseudorapiditeta fotona (ηγ ), prostorne udaljenosti fotona i miona (dR(γ,µ)), broja primarnih vrhova u
dogad̄aju (Number of good vertices), broja mlazeva u dogad̄aju (Number of selected jets), transverzalnog
impulsa Wγ sustava (PWγ

T ), broja dogad̄aja koji prolaze niz selekcijskih zahtjeva i razlike u kutu φ izmed̄u
mlaza i fotona (∆φ( jet,γ)) za dogad̄aje koji zadovoljavaju Wγ → µνγ selekciju za mjerene i simulirane
dogad̄aje za uzorak 2011B. 183
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Slika 9.21: Omjeri raspodjela transverzalnog impulsa miona (Pµ

T ), pseudorapiditeta miona (ηµ ), nedosta-
juće transverzalne energije (MET), transverzalne mase W bozona (MW

T ), tranverzalne energije fotona (Eγ

T ),
pseudorapiditeta fotona (ηγ ), prostorne udaljenosti fotona i miona (dR(γ,µ)), broja primarnih vrhova u
dogad̄aju (Number of good vertices), broja mlazeva u dogad̄aju (Number of selected jets), transverzalnog
impulsa Wγ sustava (PWγ

T ), broja dogad̄aja koji prolaze niz selekcijskih zahtjeva i razlike u kutu φ izmed̄u
mlaza i fotona (∆φ( jet,γ)) za dogad̄aje koji zadovoljavaju Wγ → µνγ selekciju za mjerene i simulirane
dogad̄aje za uzorak 2011A+2011B. 184



Tablica 9.9: Parametri korišteni pri odred̄ivanju udarnog presjeka Wγ → µνγ za uzorke 2011A i 2011B.
Parametar Iznos (2011A) Iznos (2011B)
Nevents 5014 5795
Nmisid. jets

bkg 2417.3 ± 39.4 (stat.) ± 219.9 (syst.) 2868.2 ± 43.7 (stat.) ± 276.8 (syst.)
Nmisid. electrons

bkg 44.0 ± 1.0 (stat.) ± 3.3 (syst.) 47.3 ± 1.0 (stat.) ± 3.4 (syst.)
Nγ+jets

bkg negligible negligible

NW(τν)γ
bkg 11.9 ± 1.9 (stat.) ± 1.1 (syst.) 18.0 ± 2.4 (stat.) ± 1.8 (syst.)

NZγ

bkg 149.8 ± 10.5 (stat.) ± 9.0 (syst.) 188.6 ± 11.6 (stat.) ± 11.3 (syst.)

Ntt̄γ
bkg 16.9 ± 0.6 (stat.) ± 8.5 (syst.) 18.9 ± 0.7 (stat.) ± 9.5 (syst.)

Nbkg 2639.9 ± 40.8 (stat.) ± 220.2 (syst.) 3141.0 ± 45.3 (stat.) ± 277.2 (syst.)
Nsig 2374.1 ± 81.7 (stat.) ± 238.0 (syst.) 2654.0 ± 88.6 (stat.) ± 290.7 (syst.)
A · εgen 0.0286 ± 0.0015 (syst.) 0.0257 ± 0.0013 (syst.)
ρe f f 0.9806 ± 0.0226 (syst.) 0.9865 ± 0.0247 (syst.)∫

L dt 2262.6 ± 49.8 (syst.) 2706.5 ± 59.5 (syst.)

Tablica 9.10: Parametri korišteni pri odred̄ivanju udarnog presjeka Wγ → µνγ za uzorak 2011A+2011B.
Parametar Iznos (2011A+2011B)
Nevents 10809
Nmisid. jets

bkg 5345.9 ± 58.2 (stat.) ± 482.6 (syst.)
Nmisid. electrons

bkg 91.4 ± 1.4 (stat.) ± 4.7 (syst.)
Nγ+jets

bkg negligible

NW(τν)γ
bkg 28.9 ± 3.4 (stat.) ± 2.7 (syst.)

NZγ

bkg 338.0 ± 18.3 (stat.) ± 20.3 (syst.)

Ntt̄γ
bkg 35.9 ± 1.0 (stat.) ± 17.9 (syst.)

Nbkg 5840.1 ± 61.1 (stat.) ± 483.4 (syst.)
Nsig 4968.9 ± 120.6 (stat.) ± 505.8 (syst.)
A · εgen 0.0270 ± 0.0014 (syst.)
ρe f f 0.9898 ± 0.0247 (syst.)∫

L dt 4969.1 ± 109.3 (syst.)

Osim mjerenja udarnog presjeka u kinematičkom području Eγ

T > 15 GeV-a i ∆R(µ,γ) > 0.7 analiza

je provedena i u kinematskom području Eγ

T > 60 GeV-a i Eγ

T > 90 GeV-a.

Mjereni udarni presjek za Eγ

T > 60 GeV-a iznosi:

σ(pp→Wγ → µνγ)(2011A+2011B) = 0.76±0.06 (stat.)±0.08 (syst.)±0.02 (lumi.) pb.

Teorijski NLO udarni presjek za Eγ

T > 60 GeV-a odred̄en MCFM generatorom [34] iznosi 0.58±

0.08 pb.

Mjereni udarni presjek za Eγ

T > 90 GeV-a iznosi:

σ(pp→Wγ → µνγ)(2011A+2011B) = 0.248±0.035 (stat.)±0.048 (syst.)±0.005 (lumi.) pb.
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Teorijski NLO udarni presjek za Eγ

T > 90 GeV-a odred̄en MCFM generatorom [34] iznosi 0.173±

0.026 pb.

Tablica 9.11: Parametri korišteni pri mjerenju udarnog presjeka Wγ → µνγ za Eγ

T > 60 GeV-a i Eγ

T >
90 GeV-a za uzorak 2011A+2011B.

Parametar Eγ

T > 60 GeV Eγ

T > 90 GeV
Nevents 610 ± 24.7 (stat.) 230 ± 15.2 (stat.)
Nmlazevi

bkg 159.9 ± 17.4 (stat.) ± 30.0 (syst.) 59.4 ± 14.0 (stat.) ± 26.5 (syst.)
Nelektroni

bkg 21.2 ± 0.6 (stat.) ± 1.1 (syst.) 7.2 ± 0.4 (stat.) ± 0.4 (syst.)
Nγ+mlazevi

bkg zanemarivo zanemarivo

NW(τν)γ
bkg 3.2 ± 1.2 (stat.) ± 0.3 (syst.) .0 ± 0.0 (stat.) ± 0.0 (syst.)

NZγ

bkg 19.4 ± 4.4 (stat.) ± 1.2 (syst.) 10.9 ± 3.2 (stat.) ± 0.7 (syst.)

Ntt̄γ
bkg 9.7 ± 0.5 (stat.) ± 4.9 (syst.) 5.3 ± 0.4 (stat.) ± 2.7 (syst.)

Nsig 396.7 ± 30.5 (stat.) ± 37.4 (syst.) 147.2 ± 20.9 (stat.) ± 27.2 (syst.)
A · εMC,Wγ→`νγ 0.105 ± 0.005 (syst.) 0.120 ± 0.006 (syst.)
ρe f f 0.993 ± 0.025 (syst.) 0.993 ± 0.025 (syst.)∫

L dt 4969.1 ± 109.3 (syst.) 4969.1 ± 109.3 (syst.)

Vrijednosti parametara korištenih pri mjerenju udarnog presjeka za Eγ

T > 60 GeV-a i Eγ

T > 90 GeV-

a, prikazani su u Tablici 9.11.
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Cross section (pb)
15 20 25 30 35 40 45

CMS Preliminary 2011  = 7 TeVs

R > 0.7∆ > 15 GeV, 
γ
TE

-1
L dt= 5.0 fb∫

MCFM

): 2011A+Bγνµ→γB(W×σ

): 2011Bγνµ→γB(W×σ

): 2011Aγνµ→γB(W×σ

 1.6 (PDF + Scale factor + Isolation cut) pb±31.8 

 0.8 (lumi.) pb± 4.4 (syst.) ± 0.9 (stat.) ±37.5 

 0.9 (lumi.) pb± 4.7 (syst.) ± 1.3 (stat.) ±38.7 

 0.8 (lumi.) pb± 4.3 (syst.) ± 1.3 (stat.) ±37.4 

Ratio (CMS/MCFM)
0.5 1 1.5 2

CMS Preliminary 2011  = 7 TeVs

R > 0.7∆ > 15 GeV, 
γ
TE

-1
L dt= 5.0 fb∫

): 2011A+Bγνµ→γB(W×σ

): 2011Bγνµ→γB(W×σ

): 2011Aγνµ→γB(W×σ

theo 0.06± exp 0.14±1.18 

theo 0.06± exp 0.15±1.22 

theo 0.06± exp 0.14±1.18 

 2.2%±lumi. uncertainty: 

Slika 9.22: Mjereni udarni presjek Wγ → µνγ (lijevo) te omjer mjerenog udarnog presjeka i udarnog pre-
sjeka predvid̄enog MCFM generatorom (desno).
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9.4.5 Kombinacija rezultata s elektronskim kanalom

Paralelno s mjerenjem Wγ udarnog presjeka u mionskom kanalu koje je prikazano u ovom radu,

izvršeno je i mjerenje udarnog presjeka u elektronskom kanalu. Mjereni udarni presjek u elektron-

skom kanalu iznosi:

σ(pp→Wγ → eνγ) = 36.6±1.2 (stat.)±4.3 (syst.)±0.8 (lumi.) pb.

Primjenom BLUE metode (od engl. Best Linear Unbiased Estimator) [35] odred̄en je kombinirani

udarni presjek:

σ(pp→Wγ → `νγ) = 37.0±0.8 (stat.)±4.0 (syst.)±0.8 (lumi.) pb.

Tablica 9.12: Prikaz mjerenih vrijednosti Wγ udarnog presjeka u mionskom i elektronskom kanalu.
Wγ

Electronski kanal (pb) Mionski kanal (pb)
Eγ

T > 15 GeV 36.6±1.2(stat.)±4.3(syst.)±0.8(lumi.) 37.5±0.9(stat.)±4.4(syst.)±0.8(lumi.)
Kombinacija 37.0±0.8(stat.)±4.0(syst.)±0.8(lumi.) pb
NLO predvid̄eno 31.81±1.80 (pb)
Eγ

T > 60 GeV 0.77±0.07(stat.)±0.13(syst.)±0.02(lumi.) 0.76±0.06(stat.)±0.08(syst.)±0.02(lumi.)
Kombinacija 0.76±0.05(stat.)±0.08(syst.)±0.02(lumi.) pb
NLO predvid̄eno 0.58±0.08 (pb)
Eγ

T > 90 GeV 0.173±0.034(stat.)±0.037(syst.)±0.004(lumi.) 0.248±0.035(stat.)±0.048(syst.)±0.005(lumi.)
kombinacija 0.200±0.025(stat.)±0.038(syst.)±0.004(lumi.) pb
NLO predvid̄eno 0.173±0.026 pb

Svi rezultati mjerenja udarnog presjeka u elektronskom i mionskom kanalu prikazani su na Slika-

ma 9.23- 9.25.

Mjereni udarni presjek za Eγ

T > 60 GeV-a u elektronskom kanalu iznosi:

σ(pp→Wγ → eνγ)(2011A+2011B) = 0.77±0.07 (stat.)±0.13 (syst.)±0.02 (lumi.) pb,

dok kombinirani udarni presjek elektronskog i mionskog kanala iznosi:

σ(pp→Wγ → `νγ)(2011A+2011B) = 0.76±0.05 (stat.)±0.08 (syst.)±0.02 (lumi.) pb.
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Cross section (pb)
15 20 25 30 35 40 45

CMS Preliminary 2011  = 7 TeVs

R > 0.7∆ > 15 GeV, 
γ
TE

-1
L dt= 5.0 fb∫

MCFM

): 2011A+Bγνe→γB(W×σ

): 2011Bγνe→γB(W×σ

): 2011Aγνe→γB(W×σ

 1.6 (PDF + Scale factor + Isolation cut) pb±31.8 

 0.8 (lumi.) pb± 4.3 (syst.) ± 1.2 (stat.) ±36.6 

 0.8 (lumi.) pb± 4.6 (syst.) ± 1.7 (stat.) ±34.9 

 0.8 (lumi.) pb± 4.3 (syst.) ± 1.5 (stat.) ±37.4 

Ratio (CMS/MCFM)
0.5 1 1.5 2

CMS Preliminary 2011  = 7 TeVs

R > 0.7∆ > 15 GeV, 
γ
TE

-1
L dt= 5.0 fb∫

): 2011A+Bγνe→γB(W×σ

): 2011Bγνe→γB(W×σ

): 2011Aγνe→γB(W×σ

theo 0.06± exp 0.14±1.15 

theo 0.06± exp 0.15±1.10 

theo 0.06± exp 0.14±1.18 

 2.2%±lumi. uncertainty: 

Slika 9.23: Mjereni udarni presjek Wγ → eνγ (lijevo) te omjer mjerenog udarnog presjeka i udarnog
presjeka predvid̄enog MCFM generatorom (desno).
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γ
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L dt= 5.0 fb∫

MCFM

): 2011A+Bγνl→γB(W×σ

): 2011Bγνl→γB(W×σ

): 2011Aγνl→γB(W×σ

 1.6 (PDF + Scale factor + Isolation cut) pb±31.8 

 0.8 (lumi.) pb± 4.0 (syst.) ± 0.8 (stat.) ±37.1 

 0.8 (lumi.) pb± 4.2 (syst.) ± 1.1 (stat.) ±37.0 

 0.8 (lumi.) pb± 3.8 (syst.) ± 1.0 (stat.) ±37.4 
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 2.2%±lumi. uncertainty: 

Slika 9.24: Mjereni udarni presjek Wγ → lνγ (lijevo) te omjer mjerenog udarnog presjeka i udarnog pre-
sjeka predvid̄enog MCFM generatorom (desno) za kombinirani mionski i elektronski kanal.
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Mjereni udarni presjek za Eγ

T > 90 GeV-a u elektronskom kanalu jednak je:

σ(pp→Wγ → eνγ)(2011A+2011B) = 0.173±0.034 (stat.)±0.037 (syst.)±0.004 (lumi.) pb.

Udarni presjek dobiven kombinirenjem elektronskog i mionskog kanala jednak je:

σ(pp→Wγ → `νγ)(2011A+2011B) = 0.200±0.025 (stat.)±0.038 (syst.)±0.004 (lumi.) pb.

Svi mjereni udarni presjeci s odgovarajućim pogreškama i teorijski predvid̄eni udarni presjeci pri-

kazani su u Tablici 9.12 te na Slici 9.26.
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Slika 9.25: Pregled mjerenih udarnih presjeka Wγ procesa.
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Slika 9.26: Mjereni i teorijski predvid̄eni udarni presjeci za Wγ proces.

191



9.5 Opažanje radijacijske amplitude vrijednosti nula u Wγ

procesu

Za opažanje radijacijske amplitude vrijednosti nula potrebna je, uz selekcijske uvjete korištene pri

mjerenju udarnog presjeka uvesti i dva dodatna zahtjeva. Kao što je spomenuto u paragrafu 9.2.3

korišten je zahtjev da u dogad̄aju ne postoji hadronski mlaz transverzalnog impulsa pmlaz
T > 30 GeV-

a, te zahjev da je transverzalna masa µMETγ (µνγ) sustava veća od 110 GeV-a, MµMETγ

T > 110

GeV-a.

9.5.1 Rezultati

Raspodjele Ql×∆η za dogad̄aje koji zadovoljavaju Wγ → µνγ selekciju za simulirane i mjerene

dogad̄aje, te omjeri raspodjela za mjerene i simulirane dogad̄aje za uzorak 2011A+2011B prikazani

su na Slikama 9.27 i 9.28. Ql je naboj miona a ∆η razlika pseudorapiditeta fotona i miona. Udubina

oko vrijednosti nula se jasno opaža u podacima.

9.5.2 Kombinacija rezultata s elektronskim kanalom

Raspodjele Ql ×∆η , za dogad̄aje koji zadovoljavaju Wγ → lνγ selekciju za simulirane i mjere-

ne dogad̄aje za uzorak 2011A+2011B dobivene kombiniranjem mionskog i elektronskog kanala

prikazani su na Slici 9.29. Udubina oko vrijednosti nula je jasno vidljiva.

192



η∆x
l

Q
-5 -4 -3 -2 -1 0 1 2 3 4 5

N
u

m
b

er
 o

f 
ev

en
ts

 / 
0.

4

0

50

100

150

200

250

300 DATA
+jetsγQCD and 

Di-bosons
+jetsγtt/

Z+jets
W+jets

γ)νµW(

CMS Preliminary 2011  = 7 TeVs

-1
L dt= 2262.6 pb∫

η∆x
l

Q
-5 -4 -3 -2 -1 0 1 2 3 4 5

N
u

m
b

er
 o

f 
ev

en
ts

 / 
0.

4
0

50

100

150

200

250

300

350

400
DATA

+jetsγQCD and 
Di-bosons

+jetsγtt/
Z+jets
W+jets

γ)νµW(

CMS Preliminary 2011  = 7 TeVs

-1
L dt= 2706.5 pb∫

η∆x
l

Q
-5 -4 -3 -2 -1 0 1 2 3 4 5

N
u

m
b

er
 o

f 
ev

en
ts

 / 
0.

4

0

100

200

300

400

500

600

700
DATA

+jetsγQCD and 
Di-bosons

+jetsγtt/
Z+jets
W+jets

γ)νµW(

CMS Preliminary 2011  = 7 TeVs

-1
L dt= 4969.9 pb∫

Slika 9.27: Ql ×∆η raspodjela za dogad̄aje koji zadovoljavaju Wγ → µνγ selekciju za simulirane (histo-
grami) i mjerene dogad̄aje (točke) za uzorak 2011A (lijevo), uzrak 2011B (sredina) i uzorak 2011A+2011B
(desno).
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Slika 9.28: Omjer Ql ×∆η raspodjele za dogad̄aje koji zadovoljavaju Wγ → µνγ selekciju za mjerene i
simulirane dogad̄aje za uzorak 2011A (lijevo), uzorak 2011B (sredina) i uzorak 2011A+2011B (desno).
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Slika 9.29: Ql × ∆η raspodjele dobivene kombiniranjem elektronskog i mionskog kanala za dogad̄aje
koji zadovoljavaju Wγ → lνγ selekciju za simulirane (histogrami) i mjerene dogad̄aje (točke) za uzorak
2011A+2011B. Broj simuliranih dogad̄aja u signalu skaliran je na mjereni broj dogad̄aja u signalu. Na
desnoj raspodjeli oduzet je doprinos pozadine. Pogreške uključuju statističke i sistematske pogreške.
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9.6 Trostuka baždarna vezanja

9.6.1 Statistički uvod

Jedan od efekata anomalnih trostrukih baždarnih vezanja je povećanje Wγ udarnog presjeka na

velikim vrijednostima energije partona u sudaru ŝ. Rezultat je povećan broj dogad̄aja s bozonima

s velikom količinom gibanja. Pošto je količina gibanja fotona opservabla osjetljiva na aTGC, ras-

podjela Eγ

T u području Eγ

T > 40 GeV-a korištena je za mjerenje aTGC parametara. Postavljene su

gornje granice na vrijednosti aTGC parametara uspored̄ujući mjerenu Eγ

T raspodjelu sa odgovara-

jućom Eγ

T raspodjelom simuliranom za različite vrijednosti aTGC parametara.

Vjerojatnost mjerenja N dogad̄aja uz očekivani broj dogad̄aja d dana je Poissonovom raspodjelom:

p(N;d) =
dNe−d

N!
(9.48)

d je zbroj signala i pozadine koji su neovisno modelirani:

d = µ · s(~α,~θs, ~θL )+b(~θb), (9.49)

gdje su vrijednosti signala s(~α,~θs, ~θL ) i pozadine b(~θb) odred̄ene s vrijednostima aTGC para-

metara ~α i odgovarajućim pogrešakama signala ~θs, integriranog luminoziteta ~θL , i pozadine ~θb.

Parametar µ je tzv. jačina signala. aTGC signal dobiven je iz simulacije dok je pozadina odred̄ena

iz podataka i simulacije kao što je opisano u paragrafu 9.4.3.

Vrijednosti signala i pozadine izražene su kao:

s(~α,~θs, ~θL ) = fL · f Syst
Sig ·N

Sig (~α) , (9.50)

b(~θb) = f Syst
Bkg ·N

Bkg. (9.51)
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Ovdje su NSig i NBkg očekivani srednji broj dogad̄aja signala i pozadine, fL je relativna vrijednost

pogreške na integrirani luminozitet, f Syst
Sig relativna pogreška na signal i f Syst

Bkg relativna pogreška na

pozadinu. Za pogreške je pretpostavljena log-normalna raspodjela.

Za svaki bin u Eγ

T raspodjeli s brojem mjerenja Ni funkcija vjerojatnosti definirana je kao produkt:

L(µ,~α,~θ) = ∏
i

p(Ni,di(µ,~α,~θ)), (9.52)

sa Poisson raspodjelom p definiranom u 9.48 i:

~θ = (~θs, ~θb). (9.53)

Granice na aTGC parametre postavljene su korištenjem varijable:

tµ,~α =−2lnλ (µ,~α) (9.54)

gdje je λ (µ,~α) definiran kao:

λ (µ,~α) =
L(µ,~α,

ˆ̂~θ)

L(µ̂,~α,~̂θ)
. (9.55)

ˆ̂~θ je najvjerojatniji estimator od ~θ za dani µ , a µ̂ i ~̂θ su najvjerojatnini estimatori od µ i ~θ .

Hipoteza s odred̄enom aTGC vrijednošću se isključuje ako je omjer p-vrijednosti:

CLs =
ps+b

1− pb
(9.56)

manji od unaprijed zadane vrijednosti. Više detalja nalazi se u [37].
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Tablica 9.13: Jednodimenzionalne 95% C.L. mjerene granice na parametre WWγ vezanja uključujući kom-
binirane rezultate za elektronski i mionski kanal.

∆κγ λ γ

Wγ → eνγ [-0.45,0.37] [-0.059,0.046]
Wγ → µνγ [-0.46,0.34] [-0.057,0.046]
Wγ → lνγ [-0.38,0.29] [-0.050,0.037]

9.6.2 Simulacija signala

aTGC signal simuliran je sa SHERPA [3] generatorom dok je za simulaciju Wγ+n mlazeva (n ≤ 1)

procesa u detektoru korišten PYTHIA [4] generator. Dva aTGC parametra, ∆κγ i λγ , varirana su

dok je za gZ
1 parametar korištena vrijednost predvid̄ena Standardnim modelom.

9.6.3 Rezultati

Slika 9.30 prikazuje raspodjelu transverzalne mase fotona Eγ

T u podacima i simulaciji te očekivani

izgled signala za vrijednosti aTGC parametara ∆κγ = 0.4 i λγ = 0.0.

Podaci ne pokazuju značajno odstupanje od očekivanja SM-a. Kako aTGC signal nije opažen pos-

tavljene su gornje granice na vrijednosti aTGC parametara. Dvodimenzionalne 95% C.L. granice

prikazane su na Slici 9.31. Pripadajuće jednodimenzionalne granice prikazane su na Slikama 9.32

i 9.33 te u Tablici 9.13.

9.6.4 Kombinacija rezultata s elektronskim kanalom

Kao i kod mjerenja udarnog presjeka, mjerenje aTGC parametara osim u mionskom izvršeno je

i u elektronskom kanalu. Rezultati dobiveni kombiniranjem dvaju kanala prikazani su na Slika-

ma 9.34- 9.36 i u Tablici 9.13.
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Slika 9.31: Dvodimenzionalne 95% C.L. očekivane i mjerene granice na parametre WWγ vezanja.
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Slika 9.32: Jednodimenzionalne 95% C.L. očekivane i mjerene granice na parametar ∆κγ WWγ vezanja.
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Slika 9.33: Jednodimenzionalne 95% C.L. očekivane i mjerene granice na parametar λγ WWγ vezanja.
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Slika 9.34: Dvodimenzionalne 95% C.L. očekivane i mjerene granice na parametre WWγ vezanja. Kombi-
nirani rezultati za elektronski i mionski kanal.
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Slika 9.35: Jednodimenzionalne 95% C.L. očekivane i mjerene granice na parametar ∆κγ WWγ vezanja.
Kombinirani rezultati za elektronski i mionski kanal.
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Slika 9.36: Jednodimenzionalne 95% C.L. očekivane i mjerene granice na parametar λ γ WWγ vezanja.
Kombinirani rezultati za elektronski i mionski kanal.
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9.7 Usporedba s drugim rezultatima

Drugi detektor opće namjene na LHC-u, ATLAS, takod̄er je mjerio Wγ proces u proton-proton

sudarima na 7 TeV-a. Rezultati objavljeni 2012. godine na podacima integriranog luminoziteta 1

f b−1 [38], dobiveni su za dva različita mjerenja, inkluzivno i ekskluzivno. Pri mjerenju ekskluziv-

nog udarnog presjeka iz analize su isključeni dogad̄aji koji sadrže barem jedan mlaz trnsverzalnog

impulsa pmlaz
T > 30 GeV-a. Udarni presjek mjeren je u faznom prostoru pl

T > 25 GeV-a, pν
T > 25

GeV-a, |η l| < 2.47,Eγ

T > 15/60/100 GeV-a, |ηγ | < 2.37. Rezultati mjerenja prikazani su na Sli-

ci 9.37. Nedavno objavljeni novi ATLAS rezultati s podacima od 5 f b−1 [39] prikazani su na

Slici 9.38.

Rezultati ATLAS eksperimenta, kao i rezultati dobiveni u ovom radu, pokazuju značajno odstu-

panje od teorijskih predvid̄anja MCFM generatora u slučaju inkluzivnog udarnog presjeka Wγ na

višim vrijednostima Eγ

T . Drugi generatori kao što je na primjer Sherpa [3] pokazuju bolje slaganje

s podacima.

Mjerenje aTGC parametara u ATLAS eksperimentu provedeno je na drugačiji način od mjerenja

provedenog u CMS eksperimentu. Umjesto Eγ

T raspodjele za postavljanje granica na aTGC pa-

rametre korišten je ukupan broj dogad̄aja selektiran kao signal u području transverzalne energije

Eγ

T > 100 GeV-a. Mjerenje je izvršeno koristeći inkluzivne, a ne ekskluzivne dogad̄aje. Jedno-

dimenzionalne granice na aTGC parametre koristeći podatke integriranog luminoziteta 1 f b−1 i

5 f b−1 prikazane su u Tablici 9.14 i Slici 9.39. Kao i u CMS eksperimentu nije uočen aTGC signal,

stoga su postavljene gornje granice na vrijednosti parametara.

Tablica 9.14: Jednodimenzionalne 95% C.L. granice na parametre WWγ vezanja ATLAS eksperimenta,
dobivene analizom podataka integriranog luminoziteta 1 f b−1.

Measured Measured Expected
Λ 2 TeV ∞ ∞

∆κγ [-0.36, 0.41] [-0.33, 0.37] [-0.33, 0.36]
λγ [-0.079, 0.074] [-0.060, 0.060] [-0.063, -0.055]

Mjerenja Wγ procesa provedena su takod̄er i na Tevatronu, u proton-antiproton sudarima na energiji

sustava centra mase
√

s = 1.96 TeV-a. Eksperimenti D0 i CDF objavili su više članaka [40, 41, 42,
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Slika 9.37: Rezultati mjerenja Wγ udarnog presjeka ATLAS detektorom koristeći podatke koji odgovaraju
integriranom luminozitetu 1 f b−1.

Slika 9.38: Rezultati inkluzivnog (lijevo) i ekskluzivnog (desno) mjerenja Wγ udarnog presjeka ATLAS
detektorom koristeći podatke koji odgovaraju integriranom luminozitetu 5 f b−1.
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43] koji uključuju mjerenja udarnog presjeka i aTGC parametara. Mjerenja inkluzivnog udarnog

presjeka u dobrom su slaganju s NLO očekivanjima. Na Tevatron energijama NLO korekcije su

mnogo manje nego na LHC energijama. Članak [41] uključuje i opažanje RAZ signala.

Elektron-pozitron sudarivač na CERN-u, LEP, takod̄er je mjerio produkciju parova bozona. Na

nižoj energiji u sustavu centra mase od
√

s ≤ 209 GeV-a takod̄er su postavljene granice na aT-

GC parametre. Pregled aTGC rezultata iz različitih eksperimenata nalazi se u Tablici 9.15 i na

Slici 9.40. Rezultati mjerenja na različitim enegijama kao i rezultati u kojima je korišten ili nije

korišten form-faktor ne mogu se direktno usporediti.

Tablica 9.15: Rezultati mjerenja aTGC parametara u različitim eksperimentima.

ATLAS D0 LEP (kombinirano) CMS
(1 f b−1 data) (korišten form-faktor) (68% CL) (ovaj rad)
(
√

s = 7 TeV) (
√

s = 1.96 TeV) (
√

s≤ 209 GeV) (
√

s = 7 TeV)
∆κγ [-0.33, 0.37] [-0.29, 0.38] [-0.072, 0.017] [-0.38, 0.29]
λγ [-0.060, 0.060] [-0.08, 0.08] [-0.049, -0.008] [-0.050, 0.037]
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Slika 9.39: Jednodimenzionalne 95% C.L. granice na parametre WWγ vezanja ATLAS eksperimenta. Re-
zultati su prikazani za mjerenje koristeći podatke integriranog luminoziteta 5 f b−1.

aTGC Limits @95% C.L.
-0.5 0 0.5 1 1.5

Feb 2013

γκ∆ γW -0.410 - 0.460 -14.6 fb
γW -0.380 - 0.290 -15.0 fb

WW -0.210 - 0.220 -14.9 fb

WV -0.110 - 0.140 -15.0 fb

D0 Combination -0.158 - 0.255 -18.6 fb

LEP Combination -0.099 - 0.066 -10.7 fb

γλ γW -0.065 - 0.061 -14.6 fb
γW -0.050 - 0.037 -15.0 fb

WW -0.048 - 0.048 -14.9 fb

WV -0.038 - 0.030 -15.0 fb

D0 Combination -0.036 - 0.044 -18.6 fb

LEP Combination -0.059 - 0.017 -10.7 fb

ATLAS Limits
CMS Limits
D0 Limit
LEP Limit

Slika 9.40: Rezultati mjerenja aTGC parametara u različitim eksperimentima.
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9.8 Zaključak

U ovom radu prezentirani su rezultati mjerenja inkluzivnog udarnog presjeka Wγ → µνγ koristeći

podatke prikupljene CMS detektorom integriranog luminoziteta 5.0 f b−1. Mjereni udarni presjek,

37.5± 0.9 (stat.)± 4.4 (syst.)± 0.8 (lumi.) pb, u slaganju je s mjerenjem u elektronskom kanalu

Wγ → eνγ te je za jednu standardnu devijaciju veći od predvid̄anja MCFM generatora. Nedavno

objavljeni rezultati ATLAS eksperimenta takod̄er pokazuju veći inkluzivni udarni presjek od pre-

dvid̄enog MCFM generatora dok je ekskluzivno mjerenje u sukladu s očekivanjima. Ovi rezultati

pokazuju da je NLO korekcija podcjenjena u izračunu MCFM generatora.

Efekt radijacijske amplitude vrijednosti nula uočen je u raspodjeli Ql×∆η nakon primjene dodatne

selekcije u kojoj se zahtjeva 0 hadronoskih mlazeva i visoka transverzalna masa sustava µνγ u

Wγ → µνγ dogad̄aju.

U podacima nema vidljivog signala kao posljedice anomalnih trostrukih baždarnih vezanja, sto-

ga su postavljene gornje granice na vrijednosti parametara ∆κγ i λγ . Jednodimenzionalne 95%

C.L. granice, −0.46 < ∆κγ < 0.34 i −0.057 < λ γ < 0.046, u slaganju su s mjerenjima ATLAS

eksperimenta.
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• Rector’s award (2005.) from the University of Zagreb for the best student research work for
“Coalescence model application for Θ+ and Φ−− pentaquarks production in protonproton
collisions at 17.3 GeV”.

OTHER ACTIVITIES AND RESPONSIBILITIES

• Teaching assistant at CMSDASia, CMS Data Analysis School, Taipei, Taiwan (2012.)

• Popularisation of science:

Lectures, articles and discussions to primary and high school pupils

Set up an experiment to demonstrate cosmic rays for Rud̄er Bošković Institute Open
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