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Abstract

The Large Hadron Collider (LHC) has recently delivered collisions at a center of mass energy
of 7 TeV and has therefore allowed for the first time to test the validity of the Standard Model
(SM) at TeV scale. The precise measurement of electroweak processes constitute a central part
of this program. Diboson processes, in which pairs of electroweak bosons are produced, provide
in particular a good opportunity to test SM at these energies. They also allow to seek indirectly
for new physics through the search for anomalous triple gauge couplings. This thesis presents
a measurement of the inclusive cross section of the pp — Wy — uvy process for phase spaces
EY >15/60/90 GeV and AR(u,y) > 0.7 using 5.0 fb~! of data collected with the CMS detector in
2011. A search for anomalous triple gauge boson WW ¥ coupling is performed, resulting in limits

on the allowed values of the parameters Ax? and A7.
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Chapter 1

Introduction

Particle physics is for decades trying to give an answer to several questions related to fundamental
structure of matter . What is the physics beyond Standard Model (SM) like? What is dark matter,
dark energy, nature of gravity? Is there a Higgs boson? The latest question was the one that
triggered the construction of several important experiments. At the Fermilab proton-antiproton
collider two detectors, DO and CDF, were operating from 1985. to 2011. and provided many
important observations and discoveries at an energy of about 2 TeV. However Higgs boson was not
discovered. Several years ago the Large Hadron Collider (LHC) at CERN started colliding protons
at center of mass energy of 7 TeV. Two general purpose detectors, ATLAS and CMS, are trying to

give a long anticipated answer to the question about the Higgs boson existence.

The ability to precisely measure the outgoing particles of SM Higgs decay was one of the most
important design requirements for the ATLAS and CMS detectors. Therefore their design allows a

precise measurement of leptons and photons.

Besides the search for the Higgs boson and physics beyond SM (new physiscs) measurements of
SM processes constitute an important task at the LHC. Besides checking the validity of the SM at
high energy some of these measurements also provide the ability of indirect search for new physics.
Diboson processes like Wy provide an opportunity to measure a cross section and search for new

physics through the measurement of triple gauge boson couplings (TGC). In presence of new (yet

1



undiscovered) particles the TGC would be stronger therefore resulting in anomalous TGC (aTGC).

These couplings are the least well measured properties in the electroweak sector of the SM.



Chapter 2

Wy production at the LHC

2.1 The Standard Model of Particle Physics

The Standard model [5] combines all our current knowledge of physics of elementary particles and
their interactions. Thoroughly tested by measurements for decades it has been proven correct at all
energies available in the laboratory. With the start of proton-proton collisions at the Large hadron

collider (LHC) at an energy of 7 TeV, the first task was to check the SM predictions.

The electroweak theory, the combined theory of the electromagnetic and weak interactions, is the
most exciting part of the Standard Model. It includes the only massive force mediators, spontaneous

symmetry breaking with Higgs mechanism and V-A structure.

It is known that a renormalizable theory is a theory with local gauge invariance. The lagrangian of
the electroweak theory is required to be invariant under SU(2);, @ U(1)y transformations, where L

stands for left-handed and Y is the weak hypercharge.

The Lagrangian for a free fermion is:



L =B(iy* Iy —m)¥,
= (L+R)(iy* 9y —m)(L+R), @2.1)

= L(iy"9u)L+R(iy*dy)R—m(LR+RL)

where W is the fermion wave function [6] and m is the fermion mass. ¥ has left-handed (L) and

right-handed (R) components that transform differently under SU(2);, ® U(1)y transformation:

L) = @) THBY

9

| 2.2)
R— R =POYR

where T and Y are generators of the SU(2),, and U(1)y groups. L is an isospin doublet while R is

an isospin singlet, in case of leptons these are:

€ H T (2.3)

The Lagrangian [2.1|is required to be invariant under local SU (2);, ® U (1)y transformations. Unlike
in quantum electrodynamics, where U (1) local invariance is required, here the fermion mass term
of the Lagrangian is not invariant and is removed for now. One achieves invariance of the remaining
Lagrangian terms with the use of the ’covariant derivative’ D, where four vector boson fields WH

and B* are introduced:

Y
for L: Dy = dy + ig?> . V_V>u + ig/EB”, (2.4)
.Y
for R: Dy = dy +ig EB“' (2.5)

Using these derivatives the Lagrangian becomes gauge invariant:



_ . — — Y
(2.6)

_ Y
+ Ry (idy — ig’EBH)R

The Lagragian [2.6]includes terms for the fermion kinetic energy, interaction with vector bosons
H
wl, W2W?3 and B asociated with vector fields W* and B*. Since additional vector fields are

included in the Lagrangian the invariant kinetic energy of bosons needs to be included:

11— — 1

gz - _ZW‘U\/WMV - ZBM\/B“V (2.7)
where
Wuv:aMWv_aqu_gW“ XW\/, (2'8)
and
B'uv - a'qu - avB'u. (2.9)

The final term in arise from the non-Abelian character of the group.

Ferminos have non zero masses as well as the electroweak bosons W+ and Z, while Y is massless.
The Higgs mechanism [7, 8, 9] is used to provide masses to both bosons and fermions, while at
the same time keeping the Lagrangian gauge invariant. In the procedure few choices are made that
result with the desired properties. Four real scalar fields ®; are introduced. The Lagrangian of the

scalar field is:

L5 = (9y®) (9" D) — V(D) (2.10)



where V(@) is the potential of the field. The potential is chosen to have the form:

V(®) = u*d'® + A (d'D)% (2.11)

To achieve local SU(2);, ® U(1)y invariance of the Lagrangian [2.10] the ®; must belong to
SU(2);, @ U(1)y multiplets and the *covariant derivative’ [2.4] has to be used. The fields are chosen

to form an isospin doublet:

+
P — ZO (2.12)
where
ot = (Pljzi% (2.13)
¢0 — ¢3j§i¢4 (214)

If the constants u and A fulfill u> < 0 and A > 0, the potential has a "Mexican-hat’ shape, the point

& — 0 1s unstable and there is a continuum of minimum values where:

t w?

O'PD=—"—. 2.15
7 (2.15)

Choosing one minimum point gives the vacuum a preferred direction in isospin space, and the

symmetry is spontaneously broken. A minimum (vacuum value) is chosen at this point:

2 u? 2
¢1:¢2:¢47¢3:_7 Vo,

1 (0
Dy = —

V2 \y

(2.16)



This choice of ®q breaks SU(2) and U(1)y gauge symmetries while U(1),,, is unbroken. This

results in massive W* and Z vector bosons and a massless photon.

Using ’covariant derivative’ the Lagrangian [2.10]takes gauge invariant form:

Y Y
L=, —igT -W, —ig' 5 Bu) (9 TigT -WH +ig BM)® -V (x)
— — /1 - — /1 0 (2.17)
(o v) (Qu—igT -Wy—ig' 3Bu) (" +igT -WH+ig 5B") | | =V (x)
\%

| =

where a chosen vacuum point [2.16]and a corresponding weak hypercharge value ¥ = 1 are used.

The relevant term for boson masses is:

1 | 1
gsboson mass term __ = (0 V> (—ig? . Wll . ig/_B/,L)Og? ) W),u + l-g/_Bu>
2 2 27,
1 (0 > gWi+g'By  gW,;—igW;
== \%
8 gW) +igW2 —gW3+¢'By (2.18)

gWH3 4 /Bt gWHI _jgWH2\ [0
gWHI igWh2  —gWH3 4 g/BH | \y

)+ (W) + @[—gWS +8'Bu)%.

(vg)*
(W .

8 u

For a charged vector boson a term of form M}%X 2 is expected and for a neutral boson of form

%M}%X 2. Mixing of fields WH and BH is needed to recognize the physical vector bosons W+, Z and

the photon. This is achieved using the following identities:



1
+ _ 1 2
WN = ﬁ(Wu _ZWH)’
_ 1 1, a2
WIJ = E(Wﬂ +ZWIJ)’
; 1 W g (2.19)
u= g2+g,2(g i —&By),
1 3
M R (8'Wyi +8By)-
The mass term can now be written as:
gboson mass term __ (Vg>2 +yu— <v)2 2 2 2 2 (2.20)
3 =5 W +?(8 +8)(Zu)”+0(Au)7, -
where the boson masses are recognized:
V8
MW - ?7
My = g./gz g2, (2.21)
My =0.

The Higgs mechanism is also used to generate fermion masses. The SU(2);, @ U(1)y gauge invari-
ant term in the Lagrangian representing the interaction of the Higgs field to fermions can be written

as:

L4 = —G,(RO'L+LOR) (2.22)

The symmetry is spontaneously broken by choosing the vacuum point and expanding around

it:

0

1
Plx) = ﬁ v+ h(x).

(2.23)



To generate the electron mass equation [2.3]is used:

L= —%[v(ﬁ@L +ecer) +h(x)(ereL +eLer)]

Ge, _ >
=7 [v(ee) + h(x)(ee)].

To recognize the mass of electron the following is chosen:

G, =27
\%

then

Ly = —meee — @h(x)ée
%

(2.24)

(2.25)

(2.26)

where the first term is the electron mass term and the second describes the coupling of the Higgs

field to electrons. Quark masses are generated in the same way.

Summing up all parts the total electroweak Lagrangian is:

Y Y
Lroral =T (O —igT - Wy — i/ Bu) (9" + ieT - WH+ ig'5B)® —V (x)

— G (R®'L+LPR) — Go(RD!L+ LD R)
_ Y

Iy —gT Wy — ig' S Bu)L
_ Y

+Ry*(idy — ig'EBu)R
l1—- —

1
— W W — 2By B

(2.27)

where @, is the new Higgs doublet used to generate masses of upper members of L doublets:



P, = . (2.28)

The first therm in equation represents W+, Z, v and Higgs masses and couplings, the second
term lepton and quark masses and coupling to Higgs, the third and fourth terms lepton and quark
kinetic energies and their interaction with vector bosons and the final two terms represent vector
bosons kinetic energies and self-interactions. Due to the last term in triple gauge couplings
(TGC) WWy and WWZ are allowed. Using identities [2.19] the part in the Lagrangian describing
TGC is:

Lree = —igwwy [VF (W, W =W W)+ Wi w, VY| (2.29)

where V# is A" or ZH, gwwz = ecot By and gwwy = e. It can be seen that the allowed TGCs in SM

are WWy and WWZ.

2.2 The process pp — Wy+ X — [vy+ X in proton proton col-

lisions

The production of gauge-boson pairs provide the test of the non-Abelian gauge symmetry of the
SM. Deviation from the SM predictions may come either from the presence of anomalous couplings
or the production of new heavy particles and their decays into vector boson pairs. Vector-boson pair

production also gives the most important background for a number of new physics signals.

W7 production in proton-proton collision at leading order (LO) includes the three processes shown
in Figure These include initial state radiation, final state radiation and the process via triple
gauge boson coupling. There is one additional process that dominates at very high energies, photon
bremstrahlung where g1g — V¢ is followed by photon radiation from the final state quark. This

process is eliminated by requiring the photon to be isolated.
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Figure 2.1: Feynman diagrams of the Wy production via final (a) and initial (b) state radiation and via WW7y
triple gauge coupling (c).

Table 2.1: Branching ratios for W™ decay [1]].

Decay mode Fraction

ITv 10.80 £ 0.09 %
etv 10.75 £ 0.13 %
utv 10.57 £ 0.15 %
hadrons 67.60 + 0.27 %

The production mechanism at LO is through quark-antiquark anihilation and at NLO mainly quark-
gluon fusion. At LHC the NLO corrections are large due to large quark-gluon parton density at high

energies.

Finally, W can decay leptonically or hadronically with the branching ratios shown in table [2.1]
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2.3 Radiation Amplitude Zero

A pronounced feature of WYy production in hadronic collisions is the so-called radiation amplitude
zero (RAZ), the phenomena that all contributing helicity amplitudes vanish for a defined angle of

the outgoing photon in the center of mass frame.

It is known that all SM helicity amplitudes of the parton-level subprocess gi4> — W=7 vanish in
the centre of mass frame for cos 0* = —% [10, [11], where 6* is the scattering angle of the
photon with respect to the quark g direction, and Q; (i = 1; 2) are the quark charges in units of
the proton electric charge e. In proton-proton collisions the dominant production process for Wy

is ud — Wy where amplitudes vanish for cos 8* = —%, and the dominant production process for

W~y is dit — W~y where amplitudes vanish for cos 8* = %

This zero is difficult to observe for numerous reasons. In a realistic experimental environment it is
always approximate or becomes a dip. Other contributing processes, higher order QCD corrections,
finite W width and final state radiation are filling the dip. Detector resolution effects further dilute
the RAZ signal. It is also not possible to reconstruct the center of mass frame at a hadron collider
since the longitudinal momentum of the neutrino cannot be determined without ambiguities. Since
it is not possible to perform the measurement in the center of mass frame, a sensitive variable in
the laboratory frame must be found. Since W and 7 are back to back in the center of mass frame,
dip is also expected in the W rapidity distribution and the same is true for the W and 7y rapidity
difference y(y)* —y(W)*. E| Since the rapidity difference is invariant under the longitudinal boost,
the rapidity difference in the laboratory frame, y(y) — y(W), also has a dip. Since the neutrino
longitudinal momentum is not measured in the detector we cannot reconstruct the W rapidity. In
the SM the dominant helicity in W*y production is Ay = 1 [12]. This means that the lepton
from the W decay tends to be emitted in the direction of the parent W, reflecting thus most of the
kinematic properties of the W. Therefore the correlation of W and 7y rapidities is mostly present in

lepton and 7 rapidities. In the limit of massless particles the rapidity and pseudoradity are equal so

IRapidity is defined as y = %ln gi’g ; Where E is the energy of particle and pz is the component of momentum
along the beam axis.
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it is expected that the RAZ dip is also present in the pseudorapidity difference n(y) — n(l). E| The

pseudorapidity is precisely measured variable at CMS detector.

At the LHC we expect to see the RAZ in Wy production as a dip at value 0 in n(y) — n (/) distribu-
tion as shown in Figure [2.2] [2]].

0.05 ’_Y T [ L I T rrr l T 1 rr l T T 1rr l T 1’_ 0.05 i I—1 T T T I T T T | T T T T I T T T T T l_
ra) ppoWry+X-1tuy+X A - b) pp-W'y+0 jet
T i +
T Vs =14 Tev 1 i v '
0.04 — —  0.04f— —
=) I ] I
a2y
-~ 0.03 — — 003 —
2 i ] :
gﬁ‘ L J i
3 0.02 — — 002 —
N L ] i
< L i i
0.01 — 001 T -
L i i ké \ . '~\ |
r . 7 B [ \ /
- . . - ya LS N
AR T T R YO AT T T T
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Figure 2.2: The differential cross section for the photon-lepton pseudorapidity difference for pp — Wty —
ITvyat /s = 14TeV in the SM. (a) The inclusive NLO differential cross section (solid line), together with
the O(a,) O-jet (dotted line), and the (LO) 1-jet (dashed line) exclusive differential cross sections. (b) The
NLO W *y+0-jet exclusive differential cross section (dotted line) compared with the Born differential cross
section (dash-dotted line) [2].

The RAZ can also be expressed as the relativistic generalization of the absence of electric and
magnetic dipole radiation for nonrelativistic collisions of particles with the same charge-to-mass

ratio and g factor [13].

Additional selection on Wy events can be imposed in order to make RAZ more visible in the data.

Higher order QCD correction contributions that tend to fill in the dip can be reduced by imposing

2Pesudorapidity is defined as ) = —Intan(0/2) = % In E}%ﬁg. Where 6 is the angle between the particle momentum
p and the beam axis, pz is the component of momentum along the beam axis.
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the jet veto, removing events with jet above some Pr threshold. Process where the 7y is a result of
lepton radiation, final state radiation, also diminish the RAZ dip. These events can successfully be

removed by imposing the lower cut on transverse mass of three objects M¥ V),

RAZ is also sensitive to the presence of anomalous triple gauge couplings. If they are present they
also change the shape of 1n(y) — n(l) distribution by filling the RAZ dip. However this is not the

variable most sensitive to anomalous couplings in the W7 channel.

2.4 Triple Gauge Couplings

If the particle spectrum of the SM has to be enlarged with new particles (as in the Minimal Super-
symmetric Standard Model (MSSM) [14]) with mass values of > 0.5 — 1 TeV, their presence would

be manifested as small anomalous couplings at low energy.

Triple gauge boson couplings (TGC) are a consequence of the non-Abelian nature of the SM elec-
troweak sector SU(2); ® U(1)y and are uniquely predicted. Many extensions of the SM predict
additional processes with multiple bosons in the final state. Therefore, any deviation of the ob-
served value from the SM prediction could be an early sign of new physics at high energies. A
measurement of TGCs can thus be sensitive to new phenomena at high energies which would re-

quire more energy or luminosity to be observed directly.

The most general Lorentz invariant effective Lagrangian that describes WWYV coupling has 14
independent parameters [15, [16], 7 parameters for WWZ and 7 for WW y vertex. Assuming C and

P conservation, only six independent couplings remain with a given effective Lagrangian:

gTGC .V — v+ — . _ i?LV R
= igl (W, WTHVY — WV, WHHY) fii W W, VR + Zowe W, Hvve (2.30)

pr— g1 ( uv u v ) u Wy MI%V su”v
where V = yor Z, gwwy = —e, gwwz = —ecotBy and Oy is the weak mixing angle. Assuming

electromagnetic gauge invariance, g’l/ = 1, the remaining parameters that describe WWV coupling
are g7, Kz, Ky, Az and A,. Comparison with reveals that in the SM Az = 4, =0 and g% =
Kz =Ky=1.
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These five couplings are further reduced to three independent couplings if one requires the La-

grangian to be SU(2), ® U(1)y invariant:

Akz = Agf — Aky-tan® By, A =24, = Ay (2.31)

In this study Aky and A, are measured from Wy production.

All anomalous couplings violate the partial wave unitarity at high energies. Thus, all Tevatron
studies of TGC define the §-dependence of the TGCs that preserve unitarity at high energies as

following:
%

Here, oy is a low-energy approximation of the coupling a($), where § is the square of the invariant
mass of the diboson system, and Ayp is the form factor scale, an energy at which new physics can-
cels divergences in the TGC vertex. In this study TGCs without form-factor scaling are measured,
as this allows to provide results without any particular bias that can arise due to the choice of the

form-factor energy dependence.

As a signature of aTGC in the Wy final state one expects to observe a higher yield of events with

high E%/ as shown in Fig.
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Figure 2.3: Simulated E’T/ distribution for the Wy process for different values of aTGC parameters. Process
is simulated with the SHERPA generator [3]] interfaced with PYTHIA [4].
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Different models of physics beyond the Standard Model result with different contributions to aTGC
parameters. Additional generation of heavy quarks and leptons would contribute with ~ 1073,
while the Minimal Supersymmetric Standard Model (MSSM) would result in the following upper
bounds [14]:

|Aky| <2x 1072

|Akz| <2 x 1072,
(2.33)

Ay <6x 1073,

1Az] <6x 1073
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Chapter 3

The Large Hadron collider and the

Compact Muon Solenoid detector

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [17] is the most powerful collider in the world . The LHC was
installed in the existing LEP tunnel, a 26.7 km ring consisting of eight straight sections connected

by eight arcs, housed at a depth of 45 m to 170 m near the France-Switzerland border.

The two general purpose experiments, CMS and ATLAS, study Standard Model physics processes

and perform searches for physics beyond the Standard Model.

The LHC started colliding protons in 2009 at a center of mass energy of 1.18 TeV. Collisions con-
tinued in 2010 and 2011 at a center of mass energy of 7 TeV. During 2012 the energy of collisions

was enhanced to 8 TeV.

Since protons have higher mass they loose less energy than electrons via synchrotron radiation what
allows to reach higher energies. The main production process of Higgs boson in high energy proton-
(anti)proton collisions is gluon fusion. Since gluon density functions are identical in proton and

antiproton and producing high intensity antiproton beams is much more challenging and expensive,
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proton-proton collisions were the better choice. The pp design of the LHC allows it to achieve

instantaneous luminosities beyond those seen in the Tevatron pp collisions.

The instantaneous luminosity for a symmetric colliding beam experiment such as the LHC is given

as:

2
"N/ (3.1)
Acff

where n is the number of bunches per beam, N the number of particles per bunch, f the revolution
frequency , and A,y the effective cross-sectional area of the beams. The beams are focused to 16
pm in each of the transverse directions (0, and oy) which can be used to calculate the value of A, ¢ ¢

= 471 o,0y. The total integrated luminosity delivered in 2011 is shown in Figure

CMS Integrated Luminosity, pp

Data included from 2010-03-30 11:21 to 2012-12-16 20:49 UTC
T T T T T T 25
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Figure 3.1: The integrated luminosity both delivered by the LHC to CMS and recorded by CMS in 2010-
2012. The difference between delivered and recorded luminosities corresponds to a downtime less than 10%
for the CMS detector.

The CERN accelerator complex includes a series of components which progressively accelerate
the proton beams to higher energies. The LEP injection chain is used to accelerate the protons to
an energy of 450 GeV before entering the main ring. The first stage uses the Linac2 to boost the

protons to 50 MeV in a series of radio frequency (RF) cavities, next the Proton Synchrotron Booster
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Figure 3.2
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(PSB) accelerates to 1.4 GeV and then the Proton Synchrotron (PS) to 24 GeV. The Super Proton
Synchrotron (SPS) accelerates protons up to a full injection energy of 450 GeV. Once they reach
the LHC, the bunched charged particles are accelerated by 400 MHz RF cavities resulting in high
energy bunches of protons with 25 ns gaps. In 2011 LHC running, every other RF bucket contains

a proton bunch, resulting in a bunch spacing of 50 ns. A schematic of accelerator stages is shown

in Figure [3.1]

The use of the existing LEP tunnel for the LHC accelerator created the design challenges for the
LHC, specifically in terms of the size and power of magnets needed to direct the LHC proton
beams. Since the same magnetic field can not be used to bend the counter circulating proton beams
in the same direction the magnets have unique twin-bore design shown in Figure [3.1] producing
oppositely-directed fields. To adequately bend the 7 TeV proton beam the dipole magnets with

magnetic field of 8 T achieved by superconductors carrying the current of 11850A are used.
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Figure 3.3: A schematic view of the construction of an LHC main dipole.
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3.2 The Compact Muon Solenoid Experiment

The central feature of the Compact Muon Solenoid (CMS) apparatus is a superconducting solenoid
of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid
volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorime-
ter (ECAL), and a brass/scintillator hadron calorimeter (HCAL). Muons are measured in gas-
ionization detectors embedded in the steel return yoke outside the solenoid. Extensive forward

calorimetry complements the coverage provided by the barrel and endcap detectors.

Layered design of CMS shown in Figure [3.4] with multiple calorimeter and tracking detectors ar-
ranged to complement one another provides a nuanced view of collision events. A short descrip-
tions of the different subdetectors is given in the following subsections. A detailed description of

CMS can be found in [18]].

3.2.1 Coordinate system

The CMS detector has a cylindrical shape around the beam axis of 14.6m diameter and 21.6m
length, and consists of the barrel part in the middle and two endcaps on the sides. A right handed
Cartesian coordinate system is used within the CMS detector with the origin located at the assumed
interaction point at the center of the detector. The x-axis points horizontally towards the center of
the LHC ring, the y-axis points vertically outwards from the earth’s center, and the z-axis is oriented

horizontally along the anticlockwise beam direction.

In the transverse (x-y) plane, the azimuthal angle ¢ is measured from the x axis and the radial
coordinate is denoted as r = /x% +y2. The polar angle 0 is measured from the z axis but more

often the pseudorapidity 7 is used.

In inelastic collision of protons two partons (one from every proton) carrying a particular fraction
of proton momentum interact. This interaction is referred to as the hard process. The parton
momentum is longitudinal with negligible transverse component. Due to momentum conservation
the total momentum of particles originating from the hard process is also longitudinal. The particle
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Figure 3.4: A perspective view of the CMS detector with the major subsystems indicated.



trajectories are therefore often described in the transverse plane. A particle escaping the detection
creates an inbalance in the total transverse energy measurement, also called missing transverse

energy.

3.2.2 Magnet

The choice of the magnetic field configuration was an important aspect driving the detector design
and layout. One of the design requirements of CMS is unambiguous determination of the sign for
muons up to momenta of about 1 TeV. This requires a momentum resolution of Ap/p ~ 10% at p
=1 TeV. Large bending power is needed to measure precisely the momentum of charged particles.
Superconducting technology is used. A 13-m-long solenoid with 5.9 m inner diameter produces a
longitudinal homogenous magnetic field of 3.8T over a volume of more than 300 m?. The return
field saturates the iron yoke, providing a consistent 2T field throughout the outer muon system,
allowing large lever arm measurement of the transverse momentum for muons. The capabilities

and geometry of the magnet have guided the design of each of the CMS subsystems.

3.2.3 Tracker

The closest subdetector to the interaction point is the tracker, which is entirely based on silicon
semiconductor technology. A very fine granularity in the innermost part is essential to identify the
different vertices in a bunch crossing. Vertices correspond to the interaction points of the proton

collisions or the displaced decay of a short-lived particles.

The sensors are constructed as reversed-biased p-n diodes, which yield a detectable current when
the bias voltage across the diode is lowered by the ionization depositions caused by passing charged

particle.

The tracker can be divided into three regions containing detectors with different characteristics for

regions with different particle fluxes.
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Closest to the interaction point where the particle flux is the highest, =~ 107/s at r ~ 10 cm, pixel
detectors are placed. To achieve an optimal vertex position resolution, a design with an “almost”
square pixel shape of 100x 150 um? along the (r,¢) and the z coordinates respectively is used. The
position resolution is ~ 10 um in the r-¢ plane and 20 um along z. There are 3 layers of hybrid

pixel detectors at radii of 4, 7, and 11 cm.

In the intermediate region (20 < r < 55 cm), the particle flux is low enough to enable the use of

silicon microstrip detectors with a minimum cell size of 10 cm x 80 um.

In the outermost region (55 cm < r < 110 cm) of the inner tracker, the particle flux has dropped
sufficiently to allow use of larger-pitch silicon microstrips with a maximum cell size of 25 cm x

180 um.
The layout of the complete CMS tracking detector is shown in Figure [3.5

The total area of the pixel detector is ~ 1m?, while the area of the silicon strip detectors is 200 m2,

providing coverage up to | n |< 2.5.

The tracker transverse momentum resolution up to | 1 |[< 1.6 is:

O, Pr

= (15P; ©0.5)%(TeV) (3.2)
Pr

while the resolution at | 1 |= 2.5 is equal:

Opr

= (60P; ©0.5)%(TeV) (3.3)
Pr

The first term corresponds to the measurement of curvature of particle track which is less precise
for high-momentum tracks since they become more straight. The second term corresponds to

interaction with the tracker material such as multiple scattering.
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Figure 3.5: Schematic cross section through the CMS tracker.

3.2.4 Electromagnetic and hadron calorimeter

The Electromagnetic Calorimeter (ECAL) is designed to detect and precisely measure the energy of
electrons and photons. Placing the ECAL inside the magnet, one avoids the significant degradation
seen is previous hadron collider experiment due to interactions with the magnet material. This
requires the ECAL to be compact, and therefore made with high transparent and dense interacting
material. These conditions fulfill lead tungstate (PbWQy). It has high density (8.28 g/cm_3),
short radiation length (0.89 cm) and small Moliere radius (2.2 cm). This enables the absorption of
electron and photon showers with reasonably short crystals. Crystals of a length of 25.8 radiation
lengths are used in the barrel and 24.7 radiation lengths in the endcaps. In 23 cm long crystals,
all but the most energetic electrons and photons deposit all of their energy via bremsstralung and
electromagnetic pair production. A good shower separation is ensured with a typical crystal cross
section 2.2cmx2.2cm. The readout electronics are collecting the scintillation light emitted in the

electromagnetic shower.

The Electromagnetic Calorimeter (ECAL) is a hermetic, homogeneous calorimeter comprising

61200 lead tungstate (PbWO4) crystals in the central barrel part in the range | 1 |< 1.4442, closed
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by 7324 crystals in each endcap in the range 1.566<| n |< 3.0. Figureis a schematic showing
various features of the CMS ECAL.

Pb

Module

Figure 3.6: Features of the CMS ECAL.

The ECAL energy resolution is given by:
2 28% \ 0.12 \*
GE> .07 . 2
—) =— ] +|=== ] +(03% 3.4
(E (ME/GeV) (E/GeV) (0:3%) oy

where the first term corresponds to statistical fluctuations and intrinsic shower fluctuations, the
second term corresponds to electronic noise and pileup energy (energy deposition coming from
additional soft interactions) and the final term corresponds to intrinsic detector non-uniformities

and calibration uncertainties.

Radiation damage is manifested as a change in crystal transparency, resulting in non-uniform scin-
tillation light transmittance as a function of time. This is monitored and corrected for using a laser

calibration system that records the change in transparency.

The ECAL is surrounded by a hadron calorimeter (HCAL) which is designed to detect particles
which primarily interact with atomic nuclei via the strong force. Strongly interacting particles
typically start showering in the ECAL, so a full picture of a particle energy comes from combining

information from both calorimeters. The HCAL consists of three sub-systems, shown in Figure[3.7]
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The HCAL barrel (HB) provides coverage up to | 1 |< 1.305, the HCAL endcap (HE) in the
range 1.305 <| n |< 3.0 and the HCAL forward (HF) in the range 3.0 <| n |< 5.0. The forward
calorimeters ensure full geometric coverage and therefore play a large role in the the measurement
of the transverse energy in the event. HB and HE are made up of interleaved layers of brass
radiator and scintillating tiles while HF is made of steel plates embedded with quartz fibers to

better withstand the high radiation doses in that region.

Figure 3.7: Features of the CMS HCAL.

In the case of the HB and HE, brass acts as a non-ferromagnetic absorber with 5.82 interaction
lengths of material to encourage development of hadronic showers. The particles produced in
nuclear interactions of hadronic particles with the brass pass through the scintillating material and
produce light. The collected light is used as an estimate of the energy of the shower. In the case of
HF, Cherenkov radiation from the particles in the evolving shower traversing quartz fibers is used

as energy estimate.

The energy resolution for HB and HE can be expressed as:
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(@)zz (—90% > 4 (4.5%)? (3.5)

while for HF the resolution is:

2
Or\2 172% 2

=) = —=— 0% 3.6
(E) ( E/GeV) +(9.0%) G0

The first term in equations corresponds to statistical fluctuations and intrinsic shower fluctuations
(considerably larger than that of the ECAL), and the constant term is due to uncertainties in the

calibration.

3.2.5 Muon system

A good measurement of muons was a driving factor in the overall design of CMS. Muons pro-
duced in proton collisions in the center of CMS are measured in the inner tracker and in the muon

chambers placed outside of magnet.

The muon system consist of three types of gaseous particle detectors optimized for different envi-
ronments and goals — drift tubes (DTs) in the barrel (| 7 |[< 1.2), cathode strip chambers (CSCs) in
the endcaps (| 1 |< 2.4), and resistive plate chambers (RPCs) covering nearly the entire barrel and

endcap regions (| 1 |< 1.6). The muon system is shown in Figure

RPCs provide a fast response with good time resolution but with a coarser position resolution than

the DTs or CSCs. RPCs can therefore identify unambiguously the correct bunch crossing.

The DT chambers consist of multiple drift tubes filled with a gas mixture ionized by the passage of
charged particles. Each tube contains an anode wire held at high voltage and two cathode strips on

either side. As the particles traverse the drift tube, they ionize the gas in the tube, and the ionized
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Figure 3.8: CMS muon system.

atoms are collected by the anode creating an electronic pulse. Each DT chamber consists of three
superlayers, each composed in turn of four layers of rectangular drift cells staggered by half a cell.
The two outer superlayers are oriented with the wires parallel to the beam to provide tracking in
the r-¢ plane in which the muon bends due to the magnetic field. The third superlayer, present only
in the first three stations, measures the z coordinate. The spatial resolution of a DT chamber is 100
um in the r-¢ plane, and 150 um in the z direction, the drift time is up to 386 ns and the timing

resolution is 3.8 ns.

Each CSC is trapezoidal in shape and consists of 6 gas gaps, each gap having a plane of radial
cathode strips and a plane of anode wires running almost perpendicularly to the strips. The gas
ionization and subsequent electron avalanche caused by a charged particle traversing each plane of

a chamber produces a charge on the anode wire and an image charge on a group of cathode strips.
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The spatial resolution provided by each chamber from the strips is typically about 200 um, while

the angular resolution in ¢ is of order 10 mrad.

RPCs are located both in the barrel and in the endcaps Their spatial resolution is limited, but their
time resolution is excellent (= 1 ns) and smaller than the 25 ns LHC bunch spacing. Therefore
RPC detectors are used to identify unambiguously the bunch crossing and to provide prompt trigger
decision. An RPC consists of parallel electrode plates, yielding a constant and uniform electric field
across a gap filled with ionizing gas. The RPCs are constructed of two highly resistive electrodes
and a layer of readout strips immersed in a thin layer of inert gas. As charged particles pass the
gas is ionized and releases electrons which then, due to the electric field in the RPC, ionize more
atoms, releasing more electrons in an ‘avalanche’. These avalanches of electrons are collected on a

cathode pad and used to deduce the timing and position of the incident particle.

Measurement of the momentum of muons using only the muon system is essentially determined
by the muon bending angle at the exit of the 4T coil, taking the interaction point as the origin of
the muon. The resolution of this measurement is dominated by multiple scattering in the material
before the first muon station up to Pr values of 200 GeV. For larger Pr the chamber spatial reso-
lution starts to dominate. For low-momentum muons the momentum resolution is dominated by
resolution in the silicon tracker. However, the muon trajectory beyond the return yoke extrapolates
back to the beam-line due to the compensation of the bend before and after the coil when multiple
scattering and energy loss can be neglected. This fact can be used to improve the muon momentum
resolution at high momentum when combining the inner tracker and muon detector measurements.

The muon momentum resolution is shown in Figure[3.9]

3.2.6 Reconstruction of objects

Reconstruction is the operation of constructing physics quantities from the raw detector signals
collected in the experiment. The reconstruction process can be divided into 3 steps, corresponding
to local reconstruction within an individual detector module, global reconstruction within a whole

detector, and combination of these reconstructed objects to produce higher-level objects.
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Figure 3.9: Muon momentum resolution.

Different particles provide different signatures in CMS detector sub-systems as shown in Fig-
ure 3.10] A muon will be measured in the tracker and in moun system loosing very little energy
in the calorimeters. An electron (and positron) will leave a track in the tracker and loose all its en-
ergy in ECAL, while a photon will be measured only in ECAL. Accordingly, different sub-systems

participate in a reconstruction process.

Reconstruction of muons

The muons (and antimuons) are detected in the range |n| < 2.4 by spatially matching the tracks
from the inner tracker and the outer muon system resulting in a Pr resolution of 1-5% for muons

with Pr up to 1 TeV. The reconstruction algorithm is described in detail in [19].

Muon objects are the association of two tracks, one in the silicon tracker (or tracker track), and a

second one in the muon systems (or standalone track). Starting from standalone track as input a
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matching tracker track is found and a global-muon track is fitted combining hits from the tracker
track and standalone track. Compatibility in terms of momentum, position, and direction are con-

sidered in matching stand-alone muons to tracker tracks.

The CMS solenoid subjects the tracker to a 3.8T longitudinal magnetic field, and the muon cham-
bers to a return field in the opposite direction, of value ~ 2T. Hence the trajectory of a muon is

curved in opposite orientations in the tracker and in the muon chambers.

The degree of curvature gives the muon transverse momentum, while the orientation of the curva-
ture determines its charge. For a global muon, these parameters are mainly based on the tracker
information, because of the very precise inner tracking system. However the combination of these
two systems becomes important for muons with high momentum where the reduced bending of the

muon tracks limits the resolution of the inner tracking measurement.

Reconstruction of photons

Photon reconstruction begins with energy deposited in the ECAL. Since ECAL crystals in CMS

have a Moliere radius of 2.2 cm (the same as the physical width of their front face), a photon with
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1 GeV of energy deposits 95% of its energy into an array of 5x35 crystals. Material between the
interaction region and the ECAL cause roughly half of direct photons to convert into e*e™ pairs,
resulting in a deposit of energy more spread along ¢ (due to the presence of the magnetic field from
the solenoid). The ECAL crystal arrays have different geometry in the barrel and endcap, and in
addition, the magnetic field is different, so energy deposits is grouped together in Super Cluster
(SC) by different algorithms: a "Hybrid Clustering Algorithm" in the barrel, and a "Multi5x5"
algorithm in the endcap [20].

For both algorithms the center of the photon shower is determined from a log-weighted energy

sum:

we W e Wi = max (0,4.7 Y log—" ) 3.7)
YW LE;

where E; is the energy of the i crystal in the SC.

The direction of the momentum of a photon candidate is determined by connecting a line from the
primary vertex to the position of the SC. Identification of photons is enhanced by the use of tracking
information as photons that do not convert leave no signal in the silicon detectors. Since there is
no alternate measurement of the particle’s momentum to compare to it is significantly harder to

identify real photons since there is a large background both from jets and from electrons.

Reconstruction of missing transverse energy (MET)

Neutrinos are not detected directly, but give rise to experimentally observed imbalance of trans-
verse energy, MET. This quantity is computed using a Particle Flow technique [21], an algorithm
designed to reconstruct a complete list of distinct particles using all the subcomponents of the CMS
detector. The MET for each event is then determined as the negative vector sum of the transverse

momenta of all reconstructed particles in each event.
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Trigger at CMS (on-line event pre-selection)

Data are selected online using a two-level trigger system. The first level (L1), consisting of cus-
tom made hardware processors, selects events in less than 1 us, while the high-level trigger (HLT)
processor farm further decreases the event rate from around 100 kHz to about 300 Hz before data
storage. At the HLT events are accepted if they match at least one of hundreds of differet "interest-

ing" signatures in the detector. In this work the one requiring high Pr muon in event is used.

3.2.7 Data and simulation

To predict the results of colliding protons involves modeling of subatomic makeup of a proton,
the calculation of scattering amplitudes, the decay of unstable particles, and the hadronization of
quarks and gluons into jets. Next the response of the detector to these final state particles must
be modeled. Knowledge of detector materials and positions of these materials is necessary for

accurate modeling of the detector response.

“Monte Carlo” techniques [22] are generally used. Here a random number generator is interfaced
with the equations governing a certain process in order to produce a large number of simulated
collision events. The simulation of proton-proton collisions happens in several steps, each being
specialized to emulate a particular aspect of particle collisions. The first stage is a matrix element
calculation which describes the differential cross section for a given hard scattering process. Next
stage takes the colored partons (quarks) and gluons produced in the hard scattering interaction
along with any radiated gluons and describes how they hadronize into colorless composite particles
in a parton showering process. Following stage describes the underlying event consisting of soft
interactions of the spectator partons which did not directly participate in the hard scattering. These
programs rely on parameterizations tuned first by input from previous colliders extrapolated to
LHC energies and later retuned based on data from initial LHC runs [23]]. A detailed description of
the CMS detector and magnetic field is used as input to the GEANT4 package [24, 25]], a software

toolkit for simulating the passage of particles through CMS detector.
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Chapter 4

Measurement of Wy cross section

In this work the cross section for the process pp — Wy — uvy at a center of mass energy of 7 TeV
is measured. As the Wy cross section diverges at LO for soft photons or those that are spatially

close to the charged lepton, the measurement is restricted to the following kinematic range:

e The transverse photon energy must be larger than 15 GeV.

e The muon and the photon must be spatially separated by
AR(1,7) = v/ (A¢(1,7))2 + (An (1, 7))* > 0.7.

This measurement uses data collected during 2011 by the CMS detector corresponding to an inte-

grated luminosity of 5 fb~!.

The W7y — uvy final state is characterized by a prompt, energetic, and isolated muon, significant
missing energy due to a neutrino, and a prompt isolated photon. Besides W7, there are several
other processes with identical final state particles or with different outgoing particles giving similar
signature in the detector. In order to reduce these backgrounds, the selection criteria described in
Section .2) are applied. The backgrounds and the methods used to derive their contribution are

described in Section [4.3]
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The cross section is extracted using the expression:

c = Nsig
A-e- &

4.1)

where Ngi, is the number of observed signal events, A is the geometric and kinematic acceptance,

¢ is the selection efficiency for events in the acceptance, and .Z is the integrated luminosity.

The product A - &g, is derived from the simulation. To account for differences in efficiency between
data and simulation a correction factor, pegr = €/ €gen » 18 used. The correction factor is derived by
measuring the efficiency in the same way on data and simulation as described in Section The

product A - € is replaced by the product .7 - pegr, where . = A - €gep:

Nsig Nsig

o= _ i = :
A-Ligen Lig, % T Pefr- L

4.2)

Since the efficiency depends on a particle kinematic the efficiency is derived as the sum over all

) N, . . )
events. .% is defined as NLCC’?t, where Nyccepr 1s the number of events passing all selection cuts, and

gen,kin

Ngen kin i the number of generated events with E%/ > 15 GeV, AR(u,y) > 0.7.

Sources of systematic uncertainties are described in Section4.4]

4.1 Data samples

The used data set corresponds to luminosity of 5 fb~! collected with the CMS detector at center of
mass energy of 7 TeV during 2011. The LHC beam conditions were rather different in two runs
taken during 2011, resulting in low- and high-pile-up (PU) periods. The average number of PU
interactions for the low-PU data set is 4.9 interactions per collision, while the high-PU set has an
average of 7.8 interactions. The former data set corresponds to about 2.2 fb~! of integrated lumi-
nosity and is referred to as 201 1A in the text, the latter corresponds to 2.7 fb~! and is referred to as

2011B. The combined data set are referred to as 2011A+2011B. The measurements are performed
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using the combined 2011A+2011B data set. To check the compatibility of results measurements
using 2011A and 2011B separately are also performed. The data set contains only certified CMS

data, which are recorded while all CMS subdetectors were operating properly.

4.2 Trigger and event selection

The selection is chosen such to minimize the background contribution while efficiently selecting
the signal. However in some cases, it is not possible to apply the most ideal selection criteria due

to trigger pre-selection applied online during data taking.

4.2.1 Trigger selection

The Wy — uvyevents are selected by using the unprescaled muon trigger with the lowest available
Pr threshold. An isolated single muon trigger with a threshold of 30 GeV is used during 2011A
and 2011B. The restriction of the triggering region to || < 2.1 is used to reduce the trigger rate

from misidentified muons in the forward regions of the detector.

4.2.2 Muon selection

The muon identification scheme defined in [19] is used, with a minor alteration of cuts on the dis-
tance of closest approach of the muon track to the primary vertex. Muon candidates are required to
pass the GlobalMuon and TrackerMuon reconstruction algorithm, to have hits in the pixel system,
not more than a few missing hits in the tracking system, a good x? of the overall fit of the tracks
in the tracker and muon sub-detectors and more than one chamber with matched muon segments.
To ensure that the muon is produced from the primary interaction vertex in the event, the muon’s
charged track is required to have a distance of closest approach to the z-axis 0.02 cm and to have

z-coordinate within 0.1 cm from the primary vertex [26]. Cosmic ray muon contamination is sig-
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Table 4.1: Muon identification and isolation requirements.

Description \ criterion |
Kinematical pr >35GeV and |n| < 2.1
Number of pixel hits >0
Number of tracker hits > 10
x%/n.df <10
Number of muon hits >0
Number of chambers with matched segments > 1
Vertex dy < 0.02 cm
Vertex d, <0.1cm
Combined relative isolation ; AR = 0.3 <0.1

nificantly reduced by these cuts. Further cross-checks of timing and cosmic tagger information

[26] indicate negligible contribution from cosmic background.

To suppress energetic pions misidentified as muons, as well as muons produced in jets, a relative
isolation requirement is used. A sum of all energies and track momenta, not associated with the
muon candidate, in a cone of AR = 0.3 around the muon candidate normalized to the muon pr is

required to be below 10%.
Muons are required to have transverse momentum larger than 35 GeV and to be within || < 2.1.

The summary of muon kinematical requirements as well as identification criteria is given in Ta-

ble @11

4.2.3 Photon selection

Photon candidates are reconstructed as Super Clusters (SC) with E%/ > 15 GeV in the fiducial
volume of the ECAL detector. The efficiency of reconstructing a SC from a photon electromagnetic

deposit in the ECAL is measured in simulation and is found to be very close to 100%.
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A shower shape variable measures the width of the photon SC in the 1 direction, denoted as Ojnin

and defined as:

ol — Y(Mmi—@)wi . Lnw
min = rwi = Y wi

, wi =max (0,4.7+1og(E;/Esxs)), 4.3)

where the sum runs over the 5 x 5 crystal matrix around the most energetic crystal in the SC.

The rate of jets reconstructed as photons is greatly reduced by requiring stringent photon identifi-

cation criteria, including isolation and shower shape requirements:

e The ratio of HCAL to ECAL energies in a cone size of AR = 0.15 around the seed crystal
must be below 0.05.

® Oinin must be below 0.011 in the barrel and below 0.030 in the endcap.

To reduce the background from misidentified electrons, photon candidate must have no associated

hit in the pixel detector (pixel seed veto).

High pile-up conditions during the 2011 LHC run require the photon isolation criteria to be robust
against PU modeling in simulation. The sum of all the tracks transverse momenta found in the
annulus of 0.05 < AR < 0.4, ITrk, around the photon candidate is required not to exceed 2 GeV +
0.001 E%’ + Aegr - p, where p is the median background energy density per unit area, computed
using the FASTJET package [27], and A is an effective area correction, which ensures that the
isolation requirement does not exhibit a pile-up dependence. The photon candidate is also required
to be isolated in the ECAL by summing the transverse energy deposited in the ECAL in an annulus
0.06 < AR < 0.40, excluding a rectangular strip of A X A¢ = 0.04 x 0.40 to reduce the effect of
counting the fragments of the converted photon shower. The ECAL isolation, Igcar, is required
to be less than 4.2 GeV +0.006 - E%/ + Acfr - p. Finally the HCAL isolation Igcar, has to be below
2.2 GeV +0.0025 E%’ + Aetr - p. The values of Aggr are tabulated for all three isolation criteria
separately for barrel and endcap in Table d.2]

The summary of photon identification criteria is given in Table 4.3]
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Table 4.2: A.¢ values used for PU correction for photon selected in barrel and endcap.
| Isolation | barrel | endcap |

Tracker (ITrg) | 0.0167 | 0.032

ECAL (Igcar) | 0.183 | 0.090

HCAL (Igcar) | 0.062 | 0.180

Table 4.3: Photon identification and isolation requirements.

Description \ criterion |
. . pr > 15 GeV
Kinematical In| < 1.4442 for barrel (1.566 < |n| < 2.5 for endcap)
HCAL/ECAL energy ; AR < 0.15 < 0.05
Oinin < 0.011(0.03)
Associated track Pixel seed veto
ITrg ; AR < 0.4 <2.040.001-Er+0.0167(0.032) - p
Iecar ; AR < 0.4 <4.2+0.006-E7 +0.183(0.090) - p
Incar ; AR < 0.4 <2.240.0025-E7r +0.062(0.180) - p

4.2.4 Photon energy scale and resolution

The known width and peak position of the Z boson can be exploited to measure the photon en-
ergy resolution and to determine the absolute photon energy scale using the data itself using the
Z — upy decay. This process is the only source of pure energetic photons in the hadron collider
environment. Requiring the ppy invariant mass to be within 30 GeV of the Z boson pole mass

reduces the Z+jets background to a negligible level.

The photon energy scale s is defined as the mode of the distribution of the photon energy response

x=EY/E},.— 1, where E and E

rue are the reconstructed and true photon energies, respectively.

The photon energy resolution r is defined as half of the shortest interval containing 68.3% of the

photon energy response distribution.

The photon energy scale and resolution are measured in the simulation and in data. In simulation
the photon energy is corrected to match the resolution in data and to have the perfect energy scale,
i.e. s=0, while in data only the energy scale is corrected. These corrections are performed by

shifting the measured value of photon energy in every event.
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Figure 4.1: Left: The invariant mass of the puy system for Z — puy data events fit to a model. The photon
is required to be in the barrel and have transverse energy between 15 and 20 GeV. The photon energy scale
and resolution and the fraction of signal events are floated in the fit. Right: The photon energy scale as a
function of the photon transverse energy for the simulation (simulation truth) and for a fit to the simulation
(simulation fit) and to the data (data fit).

To estimate the scale and resolution in both data and simulation the model as the function of the
scale and resolution in sensitive observable, photon energy response for the simulation and Z mass

peak for the data, is build. This model is used in the fit to extract the scale and resolution.

To estimate the scale and resolution in the simulation, the energy responses from simulated Z —
upy events were used. The resolution and scale were varied in the simulation to build the cor-
responding model. The observed distribution was smoothed using a kernel density estimator [28]
to define the input photon energy response line shape fy(x) with scale so and resolution rg. The
estimates of the scale and resolution and their uncertainties are obtained from fitting the modeled

photon energy response to the analogous photon energy spectrum from the simulated event sample.

For data Eie is not known. The invariant mass spectrum of ity is used therefore to estimate the
scale and resolution. The model of the invariant mass density is derived using the simulation in
the similar way as described above for the energy response. The energy scale and resolution are

derived with an unbinned maximum likelihood fit of the model on the data.
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Figure [4.1]shows an example fit to the f111y mass in data and a comparison of the extracted photon
energy scale in data and simulation with the true energy scale in simulation as a function of photon

transverse energy.

Table 4.4: A summary of the derived photon energy scale estimates.

E%’ bin Simulation true % | Data fit %
Barrel / Endcap

10<ET<12 1.35/2.94 -1.40/-1.84

12<EI<15 0.76 / 0.75 -1.85/-0.87

15<EL<20 0.65/1.58 -1.22/-1.68

20 < EL <50 0.08/0.15 -1.22/-0.15

4.2.5 Neutrino selection

To identify W boson candidates the transverse mass is used, M}V , defined as:

MY = /2 x pr(u) x MET x (1 — cosA¢ (i, MET)). (4.4)

The M¥V is computed using the transverse momentum and the azimuthal angle of a muon and a

MET.

4.2.6 Wy event selection

Events are selected by requiring at least one muon with pt > 35 GeV that satisfies selection criteria
described in Section Events that have more than one muon candidate are rejected if the
next-to-leading muon has pr > 10 GeV and |n| < 2.4. This reduces the Drell-Yan background.
Selected events are required to have M) > 70, due to the M}’ requirement used at trigger level for
the electron channel. The consistency between electron and muon channel was required. A photon

candidate with Et > 15 GeV within the ECAL fiducial region needs further to be present. The
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photon candidate is required to pass the photon selection described in Section[4.2.3] If more then

one photon is passing the selection the leading photon, photon with the highest EY , is chosen.

5014 events are selected in the data with 2.3 fb~! of integrated luminosity (2011A), and 5795
events are selected in data with 2.7 fb~! of integrated luminosity (2011B). Expected yields for the

signal and background processes from simulation are given in Table 4.5]

Table 4.5: Data and simulation yields in Wy — uvy channel for 2011A (2.3 fb~'), 2011B (2.7 fb~!) and
2011A+2011B combined (5.0 fb~1).

cross section(pb) | Events (2011A) | Events (2011B) | Events (2011A+2011B)
Wy — uvy 137.3 2097.4£33.3 2252.54+34.0 4341.7+55.9
Wy— vy 21.41 11.9+1.9 18.0£24 28.8+£3.5
Wjets 31314 1701.4 £54.0 2261.3+62.2 3945.9+£959
Z+jets 3048 59.4+4.9 78.4+£5.5 138.2+8.6
Z+y—lly 41.37 154.7+£10.5 1955+11.6 349.2+18.3
ti+jets 157.5 54.8+3.4 59.0+34 114.2+5.6
try 0.444 17.2+0.6 19.4+0.6 36.7+1.0
Incl. u QCD 84679.3 0.0+0.0 0.0+0.0 0.0+0.0
Y+ jets by Pr 0.0+0.0 0.0+0.0 0.0+0.0
ww 5.7 14.8+0.6 15.7£0.6 30.5+1.0
wz 0.6 0.2+0.0 0.24+0.0 0.4+0.0
zZ 0.06 0.0+0.0 0.0+0.0 0.0+0.0
simulation (Total) 4111.94+64.6 4900.0+£72.2 8985.6£113.0
data 5014 5795 10809

4.2.7 Selection efficiency and acceptance

The efficiency and acceptance used to derive the Wy cross section are not derived separatelly but
as a product, .# = A - €, using the Wy simulation. The efficiency represents the probability that
a genuine Wy event with outgoing particles within detector acceptance will pass the full selection
while the acceptance represents the probability that a genuine W7 event will not be reconstructed
in the detector due to the limited detector acceptance. In order not to rely on the simulation for the
efficiency, the efficiency is determined for both data and simulation and an efficiency correction

€

factor p.sr =Y; EZj =Y, é‘:’: is applied to .Z.
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’Tag-and-probe’ method for efficiency determination

The ’tag-and-probe’ method [19] is often used in CMS analysis to derive the efficiency of lepton
selection criteria. To ensure that the efficiency of genuine leptons is measured, the Z resonance
was used as a source of pure, energetic leptons. The events containing two opposite charge leptons
whose invariant mass is close to the Z resonance are selected. One lepton, the ’tag’ lepton, is
required to pass stringent lepton identification requirements. A second lepton, the *probe’ lepton,
is required to pass loose identification requirements and is used to determine the efficiency of some
studied selection criteria. The “probe’ lepton selection is such that it does not bias the efficiency of

the selection criteria that is being measured.

Some events with reconstructed di-lepton mass close to Z resonance are not events where a Z boson
is produced but are a background. The amount of background is determined by performing a fit on

the di-lepton mass spectrum using signal and background model shapes. The fit is performed on

loose

signal® and a

selected events with “tag’ and probe’ leptons and results in a number of signal events,
number of background events, Nllj(l’(‘ése. The selection criteria that is being studied is then applied on

the “probe’ lepton and the fit is performed again on selected events resulting in a number of signal

ioh ich . . . .
events, Nt Nlt;kggt. The efficiency of the selection criteria

signal® and a number of background events,

on lepton is:

Nti ght

signal
Eselection criteria — ) tight * (4~5)
Nsoose +N

ignal signal

The efficiency of all muon selection criteria are derived applying ’tag-and-probe’ method on Z —
uu events. For photons, Z — ee events are used, where electrons are treated as photons.
Efficiency of muon selection

The efficiency of muon selection requirements is measured using the ‘tag-and-probe’ technique.
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The signal shape used in ’tag-and-probe’ invariant mass fit is described by a Breit-Wigner distribu-
tion convoluted with a Crystal Ball function where its width is fixed to the width of the Z boson as
determined by the PDG global average. The Breit-Wigner function is numerically convoluted with
the Crystal Ball function to account for detector resolution and final state radiation effects in the

measured distribution. The background is described by a Landau function.

The signal model is a Breit—-Wigner convoluted with a Crystal Ball function in order to properly

describe resolution effects.

The overall single muon identification efficiency is factorized as a product of efficiencies of several

consecutively applied requirements:

Erot = ETRK " €SA " €ID * €150 * Eriggers (46)

where individual efficiencies are defined below:

errk: the efficiency of reconstructing a track in the Tracker with the required number of pixel

and tracker hits,

o &s54: the efficiency of reconstructing a track in the muon system, i.e., a stand-alone (SA)

muon with at least two muon stations and one matched chamber hit,

e gjp: the efficiency of passing the GlobalMuon and TrackerMuon algorithms with the required

cuts on dy, d, and xz/n.d.f,
e &50: the efficiency of passing the required isolation,
® &igeer: the efficiency of satisfying the requirements of the muon trigger.
As the requirements are applied sequentially, the efficiency for both data and simulation are esti-

mated with respect to the previously applied criteria. €rgg is approximated by the efficiency of

reconstructing a track given a stand-alone muon.

The ’tag’ is defined as a muon that satisfies all muon selection criteria and is matched to a object

triggering an isolated single muon trigger with a pt threshold of 24 GeV. The ’probe’ is defined to
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estimate each of the individual efficiencies defined by Eq. 4.6 with definitions and passing criteria
summarized in Table 4.6} All 'probes’ (P) together with the ’tag’ (T) are required to have an

invariant mass 50 GeV< Mrp < 150 GeV and opposite charge.

Table 4.6: Definition of selected probes and the passing criterion.

£ Probe definition Passing criteria

TRK SA muon Track in Tracker

SA Track in Tracker SA muon

ID Track in Tracker and SA muon Global/Tracker muon

ISO Global/Tracker muon Isolated Global/Tracker muon

Trigger | Isolated Global/Tracker muon | Isolated Global/Tracker muon matched to trigger

The results for the overall muon identification efficiency of the selected probes are given in Ta-

ble for both data and simulation.

The same method is used to get results for the efficiencies as a function of pt and 1 of the probe
and as a function of the number of primary vertices in the event. The latter gives the direct estimate

of the pile-up dependence. The results are shown in Figs. [4.2]-[4.T1]

The difference between efficiency derived using ’tag-and-probe’ method on the simulation and

simulation truth counting efficiency of 1.5% is assigned as systematic uncertainty.
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Figure 4.2: Muon tracking efficiency depending on PX, n*, and number of primary vertices together with
data-simulation ratio.
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Figure 4.3: Muon tracking efficiency depending on P# and n*.

Table 4.7: Summary of measured efficiencies of a muon with Wy-selection. Simulation is adapted to the
different pile-up scenarios for Run 2011A and Run 2011B.

Efficiency | Data[%] | Simulation [%] | Data/Simulation [%]
Run 2011A
ETRK 99.19+0.01 | 99.50+0.01 99.69+0.01
Esa 97.46+0.01 | 97.49+0.01 99.97 +£0.01
€D 99.26+0.01 | 99.48+0.01 99.78 £0.01
€150 98.80£0.01 99.02+£0.01 99.77+0.01
ETRKESAEIDEISO | 94.97£0.01 | 95.594+0.01 99.364+0.01
Erigger 86.09+0.03 | 86.39+0.01 99.65+0.03
Run 2011B
ETRK 99.07+0.01 | 99.42+0.01 99.67+0.01
Esa 95.88+0.01 | 97.50+0.01 98.33+0.01
& 99.33+0.01 | 99.51+0.01 99.82+0.01
€150 98.74+0.01 | 99.03+0.01 99.71 £0.01
ETRKESAEIDEISO 93.32+0.01 95.53+0.01 97.68 £0.01
Errigger 83.56 +£0.01 84.491+0.01 98.90+£0.01
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Figure 4.4: Efficiency of muon reconstruction in muon system depending on PX, n#, and number of primary

vertices together with data-simulation ratio.
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Figure 4.10: Muon trigger efficiency depending on P}, n#, and number of primary vertices together with
data-simulation ratio.

55



ISOMu30 Efficiency |

90

80

0.859
+0.006

0.867
+0.005

70

60

50

Figure 4.11: Muon trigger efficiency depending on P# and N*.

56



Efficiency of photon selection

The efficiency of photon selection is factorized as:

Erot = Eselection * EpixelSeed (4~7)

where &pixelseed 15 the efficiency of photon to have no associated hitsin the pixel detector, and
Eselection 18 the efficiency of photon requiring all other selection criteria described in Section 4.2.3]
The efficiencies €yixelseed and Egelection are derived by applying the ’tag-and-probe’ method on Z —

upy and Z — ee events, respectively.

Since there exists no pure source of photons with high statistics in data, the photon selection effi-
ciency is estimated using electrons from Z decays. The ratio of efficiencies for selecting photons
to that of electrons with the same criteria obtained from simulation is shown in Figure 4.12] They
agree within 3%. It is also found that the selection criteria in data and simulation agree to bet-

ter than 3% accuracy in both transverse momentum and pseudorapidity dependence as shown in

Figure 4.13]

The invariant mass of the di-electron pair is required to be consistent with the Z boson mass, i.e.
within 50 and 150 GeV. Both ’tag’ and ’probe’ electrons must have HCAL over ECAL energy
less then 0.15, E%/ > 20 GeV and positioned in the ECAL fiducial region. The model for the ’tag-
and-probe’ fit is the convolution of a Breit-Wigner and a Crystal Ball function for signal and an

"exponential decay + error function’ for background.

The efficiencies in data and simulation are shown in Figs. #.14]and {.15|respectively. Correspond-

ing efficiency correction factors (p,yy) are shown in Figure {4.16|

The difference between efficiency derived using ’tag-and-probe’ method on the simulation and

simulation truth counting efficiency, amounts to 0.5%, is assigned as systematic uncertainty.

57



=
[N

CMS Preliminary, L=5fb* \s=7TeV

1.15

1.05

=
[
) AR RN

fiéi

1

Ratio of efficiencies

0.95
0.9
0.85

L L IR R B B

—e— Electron / Photon MC
—s— Z(ee) Data/ MC

[ T I N NS N N

0'%0 30 40 50 60 70 80 90 100

E! (GeV)

Figure 4.12: Ratio of photon selection efficiencies using electron ’tag-and-probe’ in data and simulation
(black) and the ratio of simulation truth photon efficiencies to simulation truth elecron efficiencies using
photon selection criteria (red) as a function of the photon transverse energy.

Efficiency

0.95

o
©

0.85
0.8

0.75

O.E

CMS Preliminary, L=5fb? \s=7TeV

7\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\
L e == . -
: e ——
L —1—$'—‘—+

j .++

L | ———0—

P —— Z(e€) MC

S o —e— y+jet MC

—s— Data Tag and Probe
= MC Tag and Probe

Bansdieas

0O 30 40 50 60 70 80 90 100
E! (GeV)

Efficiency

=
|

CMS Preliminary, L=5fb* \s=7TeV

1.05
1
0.95

0.9

AR A AR RN

%

.
+1

0.85
0.8
0.75
0.7
0.65
0.6l

T T[T T[T T [TTITT[TTTTI]T

—e— Z(ee) Data

—o— Z(ee) MC

e

-3 -2 -1

0 1 2

=
~<w I

Figure 4.13: Efficiency of photon selection criteria as a function of photon transverse momentum (left) and
pseudorapidity (right).

The efficiency of the requirement of the pixel hit veto is calculated using a source of photons from

final state radiation Z — upuy events. The requirement of no associated pixel hits in data is 97%

and 89% efficient in barrel and endcap, respectively.
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Figure 4.14: Efficiencies for photon selection criteria depending on E}' and number of primary vertices
measured in data.

Efficiency of M}Y selection

The efficiency of M‘TV selection is measured using the signal simulation. The difference between the
simulation and data is applied as correction for every simulated event. Accuracy of MYW measure-
ment is dominated by the quality of MET measurement. We therefore need to compare the MET
measurement between data and simulation. The measurement of MET is driven by the quality of
the measurement of visible particles in the detector, which is mainly limited by the measurement of
the hadronic component of the final state. The performance of this measurement can be studied in
events where the transverse energy of the hadronic component is precisely known. This is the case
for Z 4 jets events, in which the momentum of the Z is precisely measured due to the excellent

measurement of leptons.

Z bosons can be selected without significant background and P# can be accurately reconstructed.
All additonal contributions to event with measured Z — [[ are expected to sum into Pr pointing in

59



0910  0.897
+0.005 +0.006

0906 0906  0.898
+0.003 +0.003 =+0.004

P7[GeV]
P$ [GeV]

0.903
+0.003

#PU #PU

0910  0.897
+0.005 +0.006

P7[GeV]
P$ [GeV]

#PU #PU

Figure 4.15: Efficiencies for photon selection criteria depending on E}' and number of primary vertices
measured in simulation.

the opposite direction, Pr = —PTZ . These additional contributions are compared in selected Z — uu

events in data and simulation, as the function of P%, and provide the necessary correction.

The efficiency of the M%’ selection is estimated by Wy simulation applying the hadronic recoil
correction which takes into account the difference in MET scale and resolution between data and
simulation using the method fully described in [29]]. The recoil modeling is applied on Z — pu

events in data and simulation.

The method calibrates the recoil response and resolution with Z — pu events in data and simulation
as a function of PZ. This information is combined with Wy simulation to derive corrections to the

METYv based on P;V 7. as well as the associated systematic uncertainties.

The transverse recoil vector (i) for Z events is determined from the reconstructed METv and 13%:
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Figure 4.16: Efficiency correction factor for photon selection criteria depending on E}' and number of
primary vertices.

it = —MET — P? = —MET — P! — P? (4.8)

The reference vector is defined as ﬁ% reconstructed by 2 leptons, f’}l + f’l2, for data and simulated
true ﬁ%gm for the simulation. Axes oriented parallel (#;) and perpendicular (u2), to the reference

vector’s direction are defined. In ideal case: < u; >= P% and < up; >=0.

A Gaussian fit to u; and u; spectra is performed in different P% bins in both data and simulation
to get the response (expected value) and resolution (variance). The recoil response function is
obtained by fitting a linear function, a + b - PZ, to the response, and the recoil resolution function
by fitting a quadratic function, a +b - P% +c- (P% )2, to the resolution. Figures to and
Figures {.23] to [4.24] show the fitted distributions of u; and u; in Z events for data and simulation

for different values of the number of vertices in the event (Ny ).

61



CMS Preliminary 2011 CMS Preliminary 2011 CMS Preliminary 2011

o D o Ve R e e e A
; r X2/ ndf 410.2/16 ; r X2/ ndf 586.6/16 ; n X2/ ndf 204.8/16 ]
8 Op po 1.104+0.039 7 8 O po 1.162+0.037 8 O po 1.229+0.046
N [ 1 -0.9114%0.0023 ] N [ 1 -0.9195+0.0020 1 N [ 1 -0.9178+0.0024 ]
= 20f P * ] = 20F P * ] = oF P * ]
'§ b Daa .g b Data | 5 b Data |
a0 —~Data ] 40 ~Daa ] 40 —~Data
o 40: ] x 40: ] x 40: ]
— F B — F B — F 4
S -60p ] S -60p . S -60p .
80 ] 80" ] 80" ]
-100f- B -100F . -100F .
-120F 4 -120f -120f- S
0b L e e ] 0f L L ] qa0f L L ]

1400 20 40 60 80 100 120 140 1400 20 40 60 80 100 120 140 14GO 20 40 60 80 100 120 140
z pT(GeV/c) z pT(GeV/c) z pT(GeV/c)

CMS Preliminary 2011 CMS Preliminary 2011 CMS Preliminary 2011
& W A & P &5 P
Ny L X2/ ndf 55.57/15 Ny L X2/ ndf 31.91/15 A - - X2 I ndf 33.18/15 4
% r po 7.409£0.041 % r po 9.049+0.037 ] %) r po 1037£005 7]
9 25~ pl 0.05365 +0.00402 — g 25+ p1l 0.04265 +0.00349 — g 25+ pl 0.03256 £ 0.00419 —
[ [ p2 0.0002417 + 0.0000533 | c L p2 0.0002392 £ 0.0000439 | c [ p2 0.0002771+0.0000521 |
2 F Dat i 2 F Dat. i 2 F Dat: j
= L — a i = L —- a i = L —— a i
é 20 i % 200 A % 20 ‘

o L ] @ L ] 14 L ]
5 g ] s 15 ] 5 15 = ]
10 E 10 4 10 4
] N N N B S W N N N N AN B S ] N N N AN B W

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
z pT(GeV/c) z pT(GeV/c) z pT(GeV/c)

Figure 4.17: The fitting results of u; response (top) and resolution (bottom) for 2011A data set. Left column
shows the results for 1 < Ny, < 3. Middle column shows the results for 4 < Ny, < 5. Right column shows
the results for 6 < Ny, < 7.
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Figure 4.18: The fitting results of u; response (top) and resolution (bottom) for 2011A data set. Left column
shows the results for 8 < Ny, < 9. Middle column shows the results for 10 < Ny, < 11. Right column
shows the results for 12 < Ny,
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Figure 4.19: The fitting results of u;, response (top) and resolution (bottom) for 2011A data set. Left column
shows the results for 1 < Ny, < 3. Middle column shows the results for 4 < Ny, < 5. Right column shows
the results for 6 < Ny, < 7.
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Figure 4.20: The fitting results of u;, response (top) and resolution (bottom) for 2011A data set. Left column
shows the results for 8 < Ny, < 9. Middle column shows the results for 10 < Ny, < 11. Right column
shows the results for 12 < Ny;,.
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Figure 4.21: The fitting results of u; response (top) and resolution (bottom) for 2011B data set. Left column
shows the results for 1 < Ny, < 3. Middle column shows the results for 4 < Ny, < 5. Right column shows
the results for 6 < Ny, < 7.
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Figure 4.22: The fitting results of u; response (top) and resolution (bottom) for 2011B data set. Left column
shows the results for 8 < Ny, < 9. Middle column shows the results for 10 < Ny, < 11. Right column
shows the results for 12 < Ny;,.
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Figure 4.23: The fitting results of u; response (top) and resolution (bottom) for simulated Z. Left column
shows the results for 1 < Ny, < 3. Middle column shows the results for 4 < Ny, < 5. Right column shows
the results for 6 < Ny, < 7.
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The transverse recoil vector for simulated Wy events is determined from the reconstructed MET

and Pr of the lepton and ¥:

ii =—MET — P, — P} (4.9)

R gen —.,gen —1gen —ysen . . . .
The reference vector is P;V L P}’g + Pf + P%/ , abtained from simulation truth particles.

The reason to subtract the contribution of the photon from the recoil is to isolate the purely hadronic

component. This can also avoid the miscalculation of the recoil if it is a FSR event.

The corrected function of the recoil response and resolution can be obtained by 3 fitted distributions
(Z from data, Z from simulation, and Wy from simulation):
fZ,data ( P% )

Wyy d; W7,simulation ; , Wy
fdi (PT ) - fZ,simulation (PZ) X fd,- (PT ) (4.10)
; T

where d; = u;,0; and i = 1,2.
Using the corrected recoil response and resolution curves a corrected MET distribution in Wy
simulation is generated by the following steps:
1. For every simulated Wy event, look up the u; and u; response (fy, (P;V ")) and resolution
(foi (P;V ")) from the corrected curves.

2. Randomly sample Gaussian PDFs defined with these values to determine new recoil compo-

nents for each event, u; = Gauss(f,,(Py "), fo,(Py 1))

3. Combine the new u;/ components to reconstruct a corrected recoil vector i;/. Add the lepton

(13%) and photon vector (13}/) back in to determine the corrected MET.
4. Using the corrected MTZT, the corrected M;V 1s calculated.

A "closure test" is performed to show that these parameters describe the original M;V shape well

in the same sample. The comparison between the My obtained from the recoil method and the
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original M} shape is shown in Fig . 4.25|and |4.26| The difference in efficiency between the

original and recoil MY , and due to fitting errors, are assigned as systematic uncertainty.

The M;V efficiencies are summarized in Tables and and in Figure

Table 4.8: Summary of the M}’ efficiencies in using corrected recoil, simulation, and a recoil/simulation
ratio wrt Ny, for 2011A runs.

Efficiency Recoil Prediction | Simulation | Prediction/Simulation
0 <Ny, <=3 56.1+0.3% 55.2+£0.2% 1.016 +0.006
3< Ny <=5 55.8+0.3% 54.3£0.5% 1.027 £ 0.005
5< Ny <=T7 55.4+0.3% 54.0£0.3% 1.026 +0.006

T <Ny <=9 55.6+£0.5% 54.7£0.1% 1.017+£0.009
9 <Ny, <=11 55.3+0.6% 53.9+£0.8% 1.026 £0.012
11 < Ny 56.5+1.1% 53.5+0.3% 1.057£0.021

Table 4.9: Summary of the M}’ efficiencies in using corrected recoil, simulation, and a recoil/simulation
ratio wrt Ny, for 2011B runs.

Efficiency Recoil Prediction | Simulation | Prediction/Simulation
0< Ny <=3 55.8+£0.5% 54.9+0.2% 1.018 £0.010
3< Ny <=5 56.24+0.3% 54.3+0.5% 1.036 +0.006

S< Ny, <=T7 55.4+0.4% 53.7£0.2% 1.031£0.007
T <Ny <=9 55.5+£0.4% 54.5+0.3% 1.017£0.008
9 <Ny, <=11 54.8+0.6% 53.6£0.2% 1.022£0.011
1T < Nyix 54.8+£0.8% 53.7+£0.5% 1.020£0.015
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Figure 4.24: The fitting results of u; response (top) and resolution (bottom) for simulated Z. Left column
shows the results for 8 < Ny, < 9. Middle column shows the results for 10 < Ny, < 11. Right column
shows the results for 12 < Ny;,.
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Figure 4.25: Comparison of the true Wy — uvy simulated M}’ distribution with the predicted simulated
distribution from the u; recoil fits. The filled histogram is the true simulated MY . and the dots show the M;V
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< Nyyy, for 2011A.
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2011A (2011B).
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4.3 Backgrounds

The largest background to Wy production is from events in which a jet that has a large fraction of
electromagnetic energy is misidentified as a photon. The following background processes fall into

this category:

e Wijets where the jet is misidentified as a photon.

e Z+jets where one of the leptons from the Z boson decay is outside acceptance and a jet is

misidentified as a photon.
e tt+jets where one of the W bosons from the tt-pair decays into a lepton and a jet is misiden-

tified as a photon.

This background is estimated in data with two methods,the ’template method’ and the ’ratio

method’, as described in Sec.[d.3.1]

Multibosons processes can also be background if an electron is misidentified as a photon. For

the Wy — uvy channel this background source is small and is estimated in data, as described in

Sec.4.3.72

Other backgrounds to the Wy process are from

Misidentified leptons from y+jet production,

Wy — 7vy where the 7 decays to uvy,

Zy events,

tty events.

All these backgrounds are estimated to be negligible compared to the W + jets contribution and are

estimated from the simulation.
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4.3.1 Background from jets misidentified as photons

The dominant background comes from events with misidentified photons, mostly originating from
the jets in W + jets events. The background from these sources is estimated in data, using two

methods described below.

’Template method’

The ’template method” uses the oy, distribution as discriminating variable to determine the num-
ber of genuine photons from misidentified jets passing full selection criteria by performing a two-
component extended maximum likelihood fit of signal and background G;yiy ’templates’ to data.
The signal and background distributions, or ’templates’, are taken as input for the fit and the back-

ground yield is extracted from the fit.

Signal and background templates are obtained in bins of E%': 15 —20 GeV, 20 — 25 GeV, 25 —
30 GeV, 30 — 35 GeV, 35 —40 GeV, 40 — 60 GeV, 60 —90 GeV, and 90 — 500 GeV for 2011A
and 2011B separately, and 90 — 120 GeV and 120 — 500 GeV for 2011A and 2011B analyzed
together. Template shapes for photons reconstructed in the barrel (|1| < 1.4442) and the endcap

(1.556 < |n| < 2.5) are made separately for each ET bin.

The signal shape is obtained from photon candidates in Wy simulation. The simulation of elec-
tromagnetic shower is cross checked with data using Z — ee events. Events are required to have
at least two electron candidates with pt > 20 GeV and pass selection criteria but without Gjpip
requirement. Both electron candidates must be identified in the ECAL fiducial volume and have
invariant mass between 60 and 120 GeV. A ’tag’ electron candidate, is required to pass the stringent
electron trigger criteria , while no trigger requirements are applied on the other electron candidate,

a ’probe’. The purity of this selection is estimated to be 99% for both barrel and endcap regions.

The comparison of the iy distributions for the *probe’ in data and simulation is shown in Fig-
ure The mean of the Gy distribution in data is smaller than that in simulation by 0.9 x 1074
(0.8x10™%) and 2.1x10™* (1.9x10~%) for barrel and endcap in 2011A (2011B), respectively.
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These effects were accounted for by shifting the Ojpin template distributions in simulation by this

difference.

The ojyin distributions are additionaly checked using FSR photons from the Z — uuy process
in data. The comparison of the iy, distributions between data FSR photons, simulated FSR
photons and simulated photons from the Wy process is shown in Figure 4.29] As expected from
the Z — ee comparison the mean of the Ojyiy distribution in data is smaller than in simulation.
The 0jyin distributions from FSR simulated photons and signal photons from Wy simulation are in

agreement.

The background ’templates’ are made from jet-enriched data, events in data selected by a jet trig-
gers. Photon candidates in these events are required to pass the photon selection criteria described
in Sec. @ except for the Gjpin requirement and Itrg which is required to be in the range
2 GeV < Itgg — 0.001 - E¥ — 0.0167(0.032) - p < 5(3) GeV for photons in the barrel(endcap).
This sideband requirement ensures that the contribution from genuine photons is negligible, while
keeping the isolation requirements close to those for photon selection criteria. This allows to select
jets with a large electromagnetic fraction that have properties similar to those of genuine photons.
As shown in Figures[#.30|and [#.31] in simulated jet events Ojyiy is found to be largely uncorrelated
with the isolation requirement. The background shape observed for jets with the sideband tracker

isolation should therefore be the same as that for isolated jets.

The 0yyiy distribution in data are fit to

f(Ginin) = NsS(Oinin) +NpB(Cinin), 4.11)

where Ny and Np are the expected number of signal and background candidates. S(0jpin) and
B(0inin) are the signal and background component ’templates’. The ’templates’ are smoothed
using kernel density estimation [28]] or direct interpolation, in the case of high template statistics.
This allows to perform unbinned fits of the ojpiy distribution of selected photons, preserving the

performance of the fit in low statistics scenarios.

7



cM™ S Preliminary 2011 \s=7TeV

ﬂoooo j T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T i:‘
s 2011A dataset |
%0000? . | < 1.4442 E
gOOOO i —e— Dataelectrons ,:
§ . Mean=000884
F s RMS=000080
goooo ; MC electrons 7:
C o Mean = 0.00893 ]
-§OOOO; | RMS=000077 1
=] C ]
20000 o -
10000 S .
G: lae®® \UU\ [T \.0“- | () ‘:
0.006 0.008 0.01 O. 012 0 014 0.016
0-|r]|r]
o CMS Preliminary 2011 \s=7TeV
N : ‘ T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T {:
5000 2011B dataset |
S0000- i hi< 14442 E
S C —e— Dataelectrons ]
§5000 - Mean=000886  —|
u N RMS=000081 1
80000 } MC electrons {
o C 9 Mean = 0.00894 ]
%5000 - . RMS=000078  —|
5 F ]
40000 S =
50000 o e E
G: colne®® '\ Ly \. o, | ‘:
0.006 0.008 0.01 O. 012 0 014 g .016
inin

CMS Preliminary 2011 \s=7TeV
ﬂ4000 L L ‘ L ‘ L ‘ L ‘ L ‘ L ‘L‘
S f 2011A dataset |
32000§ . | 1566<fj<25 |
goooo [ . o —e— Dataelectrons n
4§ r Mean=002455 |

F RMS = 0.00205 1
28000 L e MC electrons B
5 L . Men=002476
g 6000 L RMS=000215
=] [ ol ]
240001 . N

20001 . . .
0\: colo®l 1 1l ’?““ lo.6 oo E

0.015 0.02 0.025 0.03 0.035 0 04 0 045
Cmm

CMS Preliminary 2011 \s=7TeV
§7000 ; L ‘ L ‘ L ‘ L ‘ L ‘ L L:
8 r 2011B dataset b
©60001 o 1566<f|<25 |
0 L ]
< r e —e— Dataelectrons i
£5000 ’ Men-oces ]

[ RMS = 0.00212 ]
24000 ; o . MC electrons 7:
5 r Mean=002483 ]
53000 - RMS=000221 ]
5 f 1
Z2000F *l . -

1000~ o . -
O i " “‘:.1 I | ‘ I | ’” | o000 J 900 d

0.015 0.02 0.025 0.03 0.035 0.04 OQ .045
inin

Figure 4.28: The 0jyi, distributions for barrel (left) and endcap (right). The difference of mean values be-
tween simulation (filled green histograms) and data (black dots) are accounted for by shifting the simulation
signal shapes.
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Figure 4.31: The correlation between <0jyip > and Isorgk for each E%/ bin in the endcap region.
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The fit is performed by using an unbinned extended maximum likelihood, by minimizing:
—InL = (NS —I—NB) — Nln(NSS<Ginin) +NBB(Ginin )) 4.12)

where N is the total number of data events in the given E%/ bin.

The unbinned fit results for the lowest and statisticaly most important E%/ bin, 15-20 GeV, are shown

in Figure [4.32|for photon candidates in the barrel and in the endcaps.
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Figure 4.32: The o;;;, distributions for the selected Wy — vy events in data (black squares) with photon
candidates identified in the barrel (upper plot) and in the endcap (lower plot) for 2011A+2011B with the
E%/ of 15-20 GeV. The unbinned fit result is shown by the blue solid line, and the background component is
shown in red.
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’Ratio method’

A second method refereed to as the ’ratio method’ is used to infer the jet misidentification back-
ground as a cross-check to the results of the ‘template method’ at high E%/ > 60 GeV where the
"template method’ is subject to larger systematic uncertainties. This method takes advantage of
the relatively high statistics in the Y+ jets data sample and the expected similarity between the
misidentification rate for jets in Y+ jets sample and W + jers. This method can thus provide a

higher precision estimate of the misidentified jet background at large E%’ .

This method exploits a category of jets that have similar properties to electromagnetic objects in
the ECAL; these jets are called ’photon-like jets’ (CplJets’). ’Photon-like jets’ are selected by
identifying a reconstructed photon which fails the photon isolation or the jyin requirements of
the final photon selection (’tight photon’), but are more isolated and have a higher electromagnetic

fraction than most hadronic jets. The 'ratio method’ measures the ratio R):

__ probability of a jet to pass the "tight photon’ criteria
p = .

4.13
probability of a jet to pass the "pllet’ criteria ( )

Once R, is known, the number of selected Wy events where jets satisfy the final photon selection
criteria, Nwqjer, can be estimated as the product of R, and the number of W+’plJets” counted in

data:

NW+jet = Rp : NW+leet> 4.14)

where Ny pije 18 the number of events in data with an identified W boson, passing W selection

requirements, and at least one "plJet’.

The R, value depends on the calorimeter response (different for barrel and endcap), Pr of jet and jet
type. It is expected to be different for gluon and quark jets due to the difference in typical shower
width . Therefore R, is measured for each E%/ bin separately for the ECAL barrel and endcaps. To

be able to measure R, for quark-to-gluon fraction in the W + jet process, the R, for Y+ jet and
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jet + jet processes are measured in data since, as shown in Figure 4.33| using the simulation, the

R, for W + jet is between the two.

Since there are now two objects (¥ and jet) in the event, the ratio method is expanded to the two
object case. Having Y+ jet and jet + jet processes, one can have two ’tight photons’ reconstructed,
or one ‘tight photon” and one ’plJet’ or two ’plJets’. There is one more process that can result with

the same signatures, Y+ 7.

Summary table can be found in Tabled.10] where g is probability of a true photon to pass the ’plJet’
criteria and & probability to pass the "tight photon’ criteria. The R), for the Y+ jer and the jet + jet

process can be written as:

/
Ry(y+ jet) = Jell,Rp(jet—l—jet) = g. (4.15)
where f(f) is the probability of a jet to pass the tight photon criteria and e(e’) is the probability of

a jet to pass the ’pllet’ criteria.

The number of events with two "pllets’ (N;,l Ipl 7), with one ’plJet’ and one ’tight photon’ (N’Tpl 7)
and with two "tight photons’ (N}.;-) are observed. Assuming g = 0, the number of jer + jet resulting
in two “pllets’ can be observed directly since there are no competing entries in the “plJet’+’ plJet’
column. Contributions from different processes in the *Tight’+’plJet’ column can be separated with
a one dimensional Oj,iy template fit on the "tight” photon. The jet Gjyiy "templates’ are constructed
out of the ’plJets’ in data and the photon ’templates’ taken are from simulation. Separating the
"Tight’+ Tight’” column into its elements can be done using a two dimensional G;p;y template fit. A

ratio that targets the fake rate from jer + jet can be constructed without using 2D template fitting:

_/

1 2feN.
R, (jet + jet) = 2 eNo

= 4.16
e 2 e2Nj;’ ( )

and with the 2D ’template’ fitting one can target the fake rate from y+ jet:
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Figure 4.33: Above: Comparison of the fake rates for W + jet, Y+ jet and jet + jet in simulation. The
Y+ jet and W + jet fake rates are not identical. Instead the W + jet fake rate lies between that of ¥+ jet
and jet + jet. Below: Correction factors to adjust the Y+ jet and jet + jet fake rate curves to emulate the

W + jet fake rate.

To measure the R), value for a given bin of E%/ two electromagnetic objects are required to be both

either in barrel or endcap, and to have Et in the same bin.
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"Tight’+ Tight’ "Tight’+ plJet’ plJet’+ pllet’ Other
Nrr N1 Noiipis
Y+v NY}’ Nyy—to—TT Nyy—to—T pl] Nyy—to—pliplJ >0
= h*Nyy =2gh~0 =g’Nj;~0
yHlet | Ny NyJ—to—TT Nyj—1o—Tpts (+ Nyj—10—plyT) NyJ—to—plipl] >>0
= f'hNy, =e'h(+ f'g = 0)Ny; =€'gNy ~0
Jet+Jet | Nyy Njj—to—TT nJjj—to—TplJ N —to—plipl] >>0
= 2Ny, =2feNyy = e*Nyy ~ Nt

Table 4.10: Summary of probabilities for the two particle case.

In addition a correction factor & ~ 5 — 10% is applied to account for the case where genuine photons

satisfy ’plJet’ definitions. The correction is derived from simulation and checked using Z— ee data

and simulation.

The measured R, values for the ECAL barrel are given in Figure Simulation is used to

compare the expected R, values in W + jer, y+ jet and jer + jet processes. Using the compaison

shown in Figure [4.33 measured R), values for y+ jet and jet + jet processes are corrected for the

difference to match the W + jet process.
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Figure 4.34: R, as a function of photon candidate E%/ for barrel ECAL in Y+ jet and multijet QCD sample
(jet + jet). The difference in R, values between two processes is due to the fact that jets in Y+ jet process
are dominated by quark fragmentation, while those in jet + jet are dominated by gluon fragmentation.
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The result of the ‘ratio method’ has a greater reliance on simulation than the ’template method’. It
is found to be in agreement with the ’template method’. The 'ratio method’ is therefore used in this

study as an estimate for systematic uncertainty rather than as a direct estimation of the background.
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Results

Table 4.11: Background from jets misidentified as photons for Wy — pvy estimated with "template method’
for 2011A and 2011B.

ET, GeV [ Background yields (2011A) [ Background yields (2011B)
Barrel

15-20 834.8 & 22.5(stat.) £ 28.7(syst.) 1006.4 £ 24.4(stat.) = 40.7(syst.)

20-25 317 + 15.5(stat.) £ 16.4(syst.) 348.1 + 15.9(stat.) £ 21.2(syst.)

25-30 142.9 + 10.4(stat.) £ 9.5(syst.) 164.8 £ 11.4(stat.) £ 12.3(syst.)

30-35 98.5 + 8.6(stat.) + 8.1(syst.) 120.4 + 9.6(stat.) £ 11.9(syst.)

35-40 51.8 £ 6.5(stat.) £ 5(syst.) 66.9 £ 8.1(stat.) £ 7.4(syst.)

40-60 75.1 & 8.4(stat.) =+ 9.4(syst.) 105.4 £ 10.1(stat.) &= 13.7(syst.)

60-90 27.1 £ 5.2(stat.) £ 5.4(syst.) 41.6 £ 7.3(stat.) £ 8.6(syst.)

90-500 20.3 £ 6.8(stat.) £ 16.7(syst.) 34.5 + 9.8(stat.) £ 28.5(syst.)

MET correlation + 203.8(syst.) =+ 245.4(syst.)

A(ratio vs template) + 1.6 (syst.) + 50.3(syst.)

Total 1567.5 £ 33.4(stat.) £+ 207.9(syst.) | 1888.1 4 37.2(stat.) £ 257.5(syst.)
Endcap

15-20
20-25
25-30
30-35
35-40
40-60
60-90
90-500

417 £ 12.6(stat.) = 29(syst.)
185.1 £ 9.4(stat.) £ 15.3(syst.)
81.6 £ 6.6(stat.) £ 9.1(syst.)
56.2 + 5.7(stat.) + 7.4(syst.)
44 £ 5.1(stat.) = 4.9(syst.)
40.3 £ 6.4(stat.) £ 7.6(syst.)
18.2 + 4.3(stat.) £ 4.3(syst.)
7.3 £ 5.3(stat.) = 12.3(syst.)

430.7 £ 12.4(stat.) &= 40.3(syst.)
236.3 £ 10.4(stat.) = 20.8(syst.)
140.5 £ 9.3(stat.) £ 14.9(syst.)
51 + 5.8(stat.) £ 9.4(syst.)
31 + 4.9(stat.) £ 6.3(syst.)
51.9 &+ 7.1(stat.) £ 11.3(syst.)
22.2 4+ 5.3(stat.) £ 7.1(syst.)
16.5 £ 6.6(stat.) £ 20.9(syst.)

MET correlation
A(ratio vs template)

=+ 59.5(syst.)
+ 13.4 (syst.)

+ 68.6(syst.)
+ 21.3(syst.)

Total

849.7 + 20.9(stat.) £ 72.0(syst.)

980.1 £ 23.0(stat.) & 90.4(syst.)

Barrel + Endcap

15-20
20-25
25-30
30-35
35-40
40-60
60-90
90-500

1251.8 £ 25.8(stat.) &= 40.8(syst.)
502.1 £ 18.1(stat.) £ 22.4(syst.)
224.5 + 12.3(stat.) £ 13.2(syst.)
154.7 £ 10.3(stat.) = 11.0(syst.)
95.8 £ 8.3(stat.) £ 7.0(syst.)
115.4 £ 10.6(stat.) £ 12.1(syst.)
45.3 £ 6.7(stat.) £ 6.9(syst.)
27.6 + 8.6(stat.) £ 20.7(syst.)

1437.1 £ 27.4(stat.) = 57.3(syst.)
584.4 + 19.0(stat.) &+ 29.7(syst.)
305.3 £ 14.7(stat.) £ 19.3(syst.)
171.4 £ 11.2(stat.) = 15.2(syst.)
97.9 & 9.5(stat.) £ 9.7(syst.)
157.3 £ 12.3(stat.) & 17.8(syst.)
63.8 £ 9.0(stat.) £ 11.2(syst.)
51 + 11.8(stat.) & 35.3(syst.)

MET correlation
A(ratio vs template)

+ 212.3(syst.)
+ 11.8 (syst.)

+ 254.9(syst.)
+ 71.5(syst.)

Total

2417.3 £ 39.4(stat.) & 219.9(syst.)

2868.2 £ 43.7(stat.) £ 276.8(syst.)

The background estimation of jets misidentified as photons using the ’template method’ and ’ratio
method’ for the pvYy final state are shown in Figure 4.35] Results using the template method’
are summarized in Table and including the systematic uncertainties described in Sec-
tion 4.4.4] The estimated background is 2417.3 & 39.4 (stat.) & 219.9 (syst.) events in 2011A,
2868.2 + 43.7 (stat.) £ 276.8 (syst.) events in 2011B and 5345.9 + 58.2 (stat.) £ 482.6 (syst.)

events in 2011A+2011B combined using the ’template method’.
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Figure 4.35: Estimated background from jets misidentified as photons for Wy — pvy for the barrel (left)
and endcap (right) photon candidates, for 2011A (top), 2011B (middle) and 2011A+2011B combined (bot-
tom). The ’template method’ fit results are shown in red, the ’ratio method’ results in blue, and background
prediction from simulation as filled histograms.
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Table 4.12: Background from jets misidentified as photons for W7y — pvy estimated with ’template method’

for 2011A+2011B combined.

E%/ , GeV Background yields (2011A+2011B)
Barrel

15-20 1876.4 + 32.4(stat.) 4= 62.4(syst.)
20-25 688.2 + 22.3(stat.) = 37.8(syst.)
25-30 310.9 + 15.3(stat.) 4= 21.2(syst.)
30-35 217.6 + 13(stat.) £ 17.4(syst.)
35-40 116.7 £ 10.4(stat.) £ 11.1(syst.)
40-60 177.5 £ 13.1(stat.) = 22.1(syst.)
60-90 61.9 £ 7.8(stat.) &= 12.3(syst.)
90-120 13.3 4 4.5(stat.) 4= 4.2(syst.)
120-500 29.3 £ 10.2(stat.) £ 25.4(syst.)

MET correlation
A(ratio vs template)

4 453.9(syst.)
4 16.2 (syst.)

Total 3491.8 4 49.1(stat.) £ 462.4(syst.)
Endcap
15-20 886.5 4 18(stat.) + 36.4(syst.)
20-25 420.1 £ 14(stat.) 4= 21.2(syst.)
25-30 210.7 £ 10.7(stat.) = 16.3(syst.)
30-35 108.7 + 8.4(stat.) £ 10.8(syst.)
35-40 78.1 £ 7.5(stat.) 4 8.8(syst.)
40-60 94.8 £+ 10(stat.) 4= 10.1(syst.)
60-90 38.6 + 6.8(stat.) £+ 6.3(syst.)
90-120 8.1 £ 4.7(stat.) £ 2.2(syst.)
120-500 8.8 £ 7.0(stat.) &= 5.6(syst.)
MET correlation + 129.8(syst.)
A(ratio vs template) + 9.2 (syst.)
Total 1854.4 4+ 31.3(stat.) &= 139.1(syst.)
Barrel + Endcap
15-20 2762.9 + 37.1(stat.) &= 72.3(syst.)
20-25 1108.3 4 26.3(stat.) £ 43.3(syst.)
25-30 521.6 + 18.7(stat.) 4= 26.7(syst.)
30-35 326.3 + 15.5(stat.) 4= 20.5(syst.)
35-40 194.8 + 12.8(stat.) + 14.2(syst.)
40-60 272.3 £ 16.5(stat.) £ 24.3(syst.)
60-90 100.5 £ 10.3(stat.) = 13.8(syst.)
90-120 21.4 £ 6.5(stat.) 4= 4.7(syst.)
120-500 38.1 £ 12.4(stat.) + 26.0(syst.)
MET correlation + 472.1(syst.)
A(ratio vs template) + 7.0 (syst.)
Total 5345.9 4 58.2(stat.) £ 482.6(syst.)

90



4.3.2 Background from electrons misidentified as photons

The criterion that allows to separate electrons from photons is the requirement of no pixel hit
associated with the photon candidate. The probability P for an electron to have no pixel hit match is
measured in a Z — ee data sample using the ’tag-and-probe’ method. Fitting the dielectron invariant
mass distribution with a convolution of a Breit—Wigner and Crystal Ball function to describe the
signal and an ’exponential decay + error’ function for the background, the efficiency of an electron
to have associated pixel hit is obtained to be P = 0.9858 £ 0.002 (syst.) for barrel and P =0.9710 +
0.004 (syst.) for endcap in the 2011A data set, P = 0.9873 £ 0.003 (syst.) for barrel and P = 0.9727
4 0.003 (syst.) for endcap in the 2011B data set, and P = 0.014 £ 0.003 (syst.) for barrel and P =
0.028 £ 0.004 (syst.) for endcap in 2011A+2011B combined. The difference between fitting and
simple counting method results is assigned as systematic uncertainty. To estimate the background
from electron misidentification in Wy — uvy channel, events that pass the full selection criteria
are selected, in which the photon candidate is however required to have associated pixel hit. This
electron-like selection will yield Ny, selected events. Then the background contribution from

genuine electrons misidentified as photons is calculated from:

P
Ne—y = Nyve X 1-p° (4.18)

This background is found to be 44.0 + 1.0 (stat.) &+ 3.3 (syst.) in 2011A, 47.3 £ 1.0 (stat.) £ 3.40
(syst.) in 2011B and 91.4 + 1.4 (stat.) £+ 4.7 (syst.) in 2011A+2011B combined.
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4.3.3 Summary of backgrounds

The expected background contributions from all considered sources for the Wy — iy final state
is summarized in Table for 2011A and 2011B and in Table 4.14] for 2011A+2011B data sets

combined.

Table 4.13: Summary of background contributions in Wy — puy final state for 2011A and 2011B data set.
The quoted fake photon background yield is determined by the "template method’.

Background yield
Background source 2011A [ 2011B
Fake photons 2417.3 £ 39.4 (stat.)£ 219.9 (syst.) | 2868.2 + 43.7 (stat.) £ 276.8 (syst.)
(misid. jets)
Fake photons 44.0 £ 1.0 (stat.) == 3.3 (syst.) 47.3 £ 1.0 (stat.) = 3.4 (syst.)
(misid. electrons)
Fake leptons negligible negligible
W(tv)y 11.9 4 1.9 (stat.) = 1.1 (syst.) 18.0 & 2.4 (stat.) + 1.8 (syst.)
Zy 149.8 £ 10.5 (stat.) + 9.0 (syst.) 188.6 £ 11.6 (stat.) = 11.3 (syst.)
1ty 16.9 & 0.6 (stat.) &= 8.5 (syst.) 18.9 + 0.7 (stat.) &= 9.5 (syst.)

Table 4.14: Summary of background contributions in Wy — uuy final state for 2011A+2011B data sets
combined. The quoted fake photon background yield is determined by the "template method’.

Background yield
Background source 2011A+2011B

Fake photons 5345.9 £ 58.2 (stat.) 4= 482.6 (syst.)
(misid. jets)

Fake photons 91.4 + 1.4 (stat.) + 4.7 (syst.)
(misid. electrons)
Fake leptons negligible
W(tv)y 28.9 + 3.4 (stat.) &+ 2.7 (syst.)
Zy 338.0 £ 18.3 (stat.) = 20.3 (syst.)
tty 35.9 + 1.0 (stat.) & 17.9 (syst.)
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4.4 Systematic uncertainties

Systematic uncertainties are grouped into five categories:

Uncertainties that affect the signal yield.

Uncertainties that affect the acceptance and efficiency.

Uncertainties that affect the efficiency correction factor.

Uncertainties that affect the background yield.

Uncertainties that affect the luminosity.

4.4.1 Uncertainties on signal yield

Uncertainties on the signal yield include uncertainties on muon and photon energy scales. Uncer-
tainties on energy scales are determined using the Z resonance position measurements. For photons
the energy scale is varied by 1% in the barrel and 3% in the endcaps. For muons, the Pr scale is
varied by 0.2%. To estimate the systematic effect on the measured cross section Ng;g is re-evaluated
for variations of each source of systematic uncertainty. For the variation of the photon energy scale,
the background subtraction is performed with signal and background "templates’ that are appropri-
ately modified. This ensures that migrations of photons and misidentified jets across the low E%/

boundaries are properly accounted for when calculating this systematic uncertainty.

4.4.2 Uncertainties on acceptance and efficiency

The uncertainties that affect the product of the acceptance, reconstruction and identification effi-
ciencies of final state objects are combined and determined from simulation. These include uncer-
tainties on muon and photon energy resolution, effects from pile-up interactions, and uncertainties

in the parton distribution functions (PDFs).
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The combined acceptance times efficiency, # = A - Egen, 18 determined from the simulation of the
Wy signal and is affected by the muon and photon energy resolution by way of migration of events
in and out of acceptance. It is known that the resolution in simulation is better then the actual
resolution in data. The energy in simulation is thus additionally smeared by a Gaussian function to
match the resolution in data. The photon energy resolution is determined simultaneously with the

photon energy scale in data following the method described in Sec. [#.2.4]

The number of PU interactions per event is estimated from data using a convolution procedure that
extracts the estimated PU from the per-bunch instantaneous luminosity recorded by the luminosity
monitors. This methodology uses the total inelastic pp scattering cross section, 68 4+ 3.4 mb, to
estimate the number of PU events in a given bunch crossing. The systematic uncertainty due to
the modeling of PU interactions is estimated by varying the total inelastic cross section within its

uncertainties, and estimate its effect on .%.

The uncertainties on parton distribution functions can alter the acceptance in simulation, especially
for very forward, low x, Wy events. To estimate the systematic effect on .%, LHAPDF [30] is used
to generate per-event weights using variations along the 21 sets of eigenvectors of the CTEQ6L

PDF set [31] following the procedure described in [32].

The uncertainty on signal modeling is taken from the .# difference between different simulation

generators.

4.4.3 Uncertainties on efficiency correction factor

Systematic uncertainties on the efficiency correction factor pegr include uncertainties of muon trig-
ger, muon and photon reconstruction and identification, and M?’ selection efficiencies. The muon
efficiencies are determined by the "tag-and-probe’ method in the same way for data and simulation,
and the uncertainties are taken by varying the background modeling and fit range in the ’tag-and-
probe’ method. An additional uncertainty is added by taking into account the difference between

the measured efficiency by ’tag-and-probe’ and the true efficiency in simulation.
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4.4.4 Uncertainties on background yield

This category comprises uncertainties on the background yield. These are dominated by the uncer-

tainties on the estimations of background from jets misidentified as photons from data.

Uncertainties on the background from jets misidentified as photons

1. Signal ’template’ shape:

The signal ojpin ’template’ in simulation needs to be corrected to match ojnin templates
observed in data as described in Sec. .3.1] The difference in background estimate between

measurements with corrected and uncorrected 'template’ is used as systematic uncertainty.

2. Background ’template’ shape:
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Figure 4.36: The uncertainty on background ’template’ for barrel (left) and endcap (right). The change in
the estimated number of background events due to anti-isolation requirement (sideband bias) is given as a
function of E%/ as red circles, while the contamination from genuine photons are given as blue dots. The
overall effect is given as red dots.

To obtain the background oiyiy template’ the photon-like jets from data selected by applying

the tracker sideband requirement (anti-isolation requirement) are used. Using this template’
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to infer the background from photon-like jets that pass the full photon isolation requirements
can cause a bias if the oi template is correlated with tracker isolation. A contribution
from genuine photons that pass anti-isolation requirement can also cause a bias in the esti-
mation of the background. The effects from these sources are estimated in simulation where
one can distinguish genuine photons from jets. The overall effect is found to be small (see
Figure §.36). For the sideband bias, signal "templates’ are from genuine photons from the
simulation and background ’templates’ are from genuine photon-like jets in simulation in
sideband region. Pseudo photons, photons used to perform the fit on, are from simulation
and pass photon selection without iy cut. For signal contamination, signal "templates’ are
still from genuine photons and background templates are from photons in sideband region
(contains genuine photons and genuine photon-like jets). Pseudo photons are from simula-
tion. Selected genuine photons should pass photon selection without G;pin requirement, and

selected genuine photon-like jets should pass the sideband selection.

Since smoothing is used to determine a continuous function that describes the Gy distri-
bution of the background, the effect of the statistical sampling of the background probability
density function true underlying shape must be understood. To study this, a bootstrapping
technique exploiting simulation is used. Using simulated events the random sample of events
(where the number of events is the same as the number of events used in data to build the
nominal template) are used to build the "templates’ which are then smoothed themselves and
used to fit the background fraction in data. The results of each template distribution and
fit are saved and the variance associated with the statistical fluctuation in the ’template’ is

recorded and taken as a systematic uncertainty.

It is noticed that the shape of the 6;5iy background "template’ is correlated with the presence
of MET parallel to the photon-like jet. Since the M¥V requirement is used in Wy selection, a
presence of MET in the event can bias the background "template’ and affect the background
estimate. To estimate this effect the background G;yin “templates’ for events where MET >
10 GeV and MET 1is parallel to the direction of the photon-like jet are derived. Different
"templates’ correspond to different A¢ (MET,photon-like jet) requirements. The systematic
uncertainty is estimated using the lowest E%/ bin only (15 GeV < E%/ < 20 GeV), as this

bin provides the largest background yield, and also it presents the largest control sample to
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derive the background "template’. The largest disagreement from the nominal yield are found
to be 13% for barrel and 7% for endcap (as shown on Fig and are used as systematic

uncertainties.

3. Difference between 'ratio method’ and ’template method’ background estimates:

The difference between the background estimation given by the two methods is taken as
additional systematic uncertainty in the E}/ range where both methods are applicable, that is

for EJ > 60 GeV.

Values of the systematic uncertainties on the estimated background from jets misidentified as pho-
tons are summarized in Tables [4.T5} The largest systematic uncertainties come from the MET
correlation. At high E}/ values the dominant uncertainty comes from the background ’template’

shape.

Uncertainties on the background from electrons misidentified as photons

The systematic uncertainty on the electron misidentification includes the measured systematic un-

certainty on the probability P for an electron to have no pixel hit match.

Uncertainties on other backgrounds derived from the simulation

The uncertainties on the smaller background contributions derived from the simulation include the
statistical uncertainty of the simulation samples, the systematic uncertainties on the cross section,

the photon energy resolution and the selection efficiency due to pile-up effect.

4.4.5 Uncertainties on luminosity

An additional uncertainty of 2.2% [33]] due to the measurement of the integrated luminosity is

considered.
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Figure 4.37: Template method background yields using different background templates as the func-
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Table 4.15: Systematic uncertainties on the background from jets misidentified as photons for Wy — uvy
for 2011A data set.

Syst. from Syst. from sampling | Syst. from | Syst. from
Photon Mean Syst. from background sampling MET A
Er, GeV yield signal shape shape of the correlation (ratio vs
distribution template)
Barrel
15-20 834.8 7.1 23.8 14.5 108.5 -
20-25 317 5.3 13.6 7.6 41.2 -
25-30 142.9 2.0 8.2 45 18.6 -
30-35 98.5 1.6 7.0 3.8 12.8 -
35-40 51.8 0.3 44 2.3 6.7 -
40-60 75.1 0.1 9.1 2.4 9.8 1.0
60-90 27.1 0.0 52 1.2 3.5 0.4
90-500 20.3 0.3 16.7 0.4 2.6 0.3
Total 1567.5 9.2 35.7 17.7 203.8 1.6
Endcap
15-20 417 43 24.5 15.0 29.2 -
20-25 185.1 2.0 12.6 8.5 13.0 -
25-30 81.6 1.4 7.1 5.4 5.7 -
30-35 56.2 0.8 59 44 39 -
35-40 44 0.0 3.7 33 3.1 -
40-60 40.3 0.2 73 22 2.8 8.2
60-90 18.2 0.7 4.0 1.4 1.3 3.7
90-500 73 0.9 12.2 0.4 0.5 1.5
Total 849.7 52 32.8 19.1 59.5 13.4
Barrel + Endcap

15-20 1251.8 8.3 34.1 20.8 112.4 -
20-25 502.1 5.7 18.5 11.4 432 -
25-30 224.5 2.5 10.8 7.0 19.4 -
30-35 154.7 1.8 9.2 5.8 13.4 -
35-40 95.8 0.3 5.8 4.0 7.4 -
40-60 115.4 0.2 11.7 33 10.2 7.2
60-90 453 0.7 6.6 1.8 3.8 2.8
90-500 27.6 1.0 20.7 0.6 2.7 1.7

10.6 48.5 26.0 212.3 11.8
Total 2417.3 3790

4.4.6 Summary of systematic uncertainties
A summary of all systematic uncertainties is given in Table 4.18] The dominant systematic un-

certainties are the uncertainty on the ’template method’ estimation and the uncertainty from signal

modeling.
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Table 4.16: Systematic uncertainties on the background from jets misidentified as photons for Wy — uvy
for 2011B data set.

Syst. from | Syst. from sampling | Syst. from | Syst. from
Photon Mean Syst. from background sampling MET A
Er, GeV yield signal shape shape of the correlation (ratio vs
distribution template)
Barrel
15-20 1006.4 9.5 28.7 27.3 130.8 -
20-25 348.1 3.4 14.9 14.8 453 -
25-30 164.8 1.3 9.4 7.8 21.4 -
30-35 120.4 1.2 8.6 8.2 15.7 -
35-40 66.9 2.7 5.7 3.8 8.7 -
40-60 105.4 0.0 12.8 4.8 13.7 29.2
60-90 41.6 1.5 8.0 2.5 5.4 11.5
90-500 34.5 2.5 28.4 0.5 4.5 9.6
Total 1888.1 11.0 47.7 33.7 2454 50.3
Endcap
15-20 430.7 4.0 29.5 27.1 30.2 -
20-25 236.3 1.1 13.8 15.6 16.5 -
25-30 140.5 2.5 8.2 12.2 9.8 -
30-35 51.0 0.2 7.3 5.9 3.6 -
35-40 31.0 1.1 4.7 4.1 22 -
40-60 51.9 0.4 10.2 4.8 3.6 12.2
60-90 222 0.3 6.2 3.5 1.6 52
90-500 16.5 1.6 20.8 0.7 1.2 39
Total 980.1 52 422 34.8 68.6 21.3
Barrel + Endcap

15-20 1437.1 10.3 412 38.5 134.3 -
20-25 584.4 35 20.3 21.4 482 -
25-30 305.3 2.8 12.5 14.4 23.6 -
30-35 171.4 1.2 11.3 10.1 16.1 -
35-40 97.9 2.9 7.4 5.6 9.0 -
40-60 157.3 0.4 16.4 6.8 14.2 41.4
60-90 63.8 1.5 10.1 43 5.6 16.8
90-500 5.0 3.0 352 0.9 4.6 13.4

12.2 63.7 48.4 254.9 71.5
Total 2868.2 776.8
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Table 4.17: Systematic uncertainties on the background from jets misidentified as photons for Wy — uvy
for 2011A+2011B combined data set.

Syst. from | Syst. from sampling | Syst. from | Syst. from
Photon Mean Syst. from background sampling MET A
Er, GeV yield signal shape shape of the correlation (ratio vs
distribution template)
Barrel
15-20 1876.4 20.0 59.2 25.4 2439 -
20-25 688.2 19.2 325 13.8 89.5 -
25-30 310.9 8.4 19.5 8.0 40.4 -
30-35 217.6 3.1 17.1 7.1 28.3 -
35-40 116.7 2.4 10.8 4.1 15.2 -
40-60 177.5 0.6 22.1 4.7 23.1 10.2
60-90 61.9 0.8 12.3 2.8 8.1 3.6
90-120 13.3 2.0 3.7 0.5 1.7 0.8
120-500 29.3 1.9 254 0.7 3.8 1.7
Total 3491.8 29.4 81.5 31.6 453.9 16.2
Endcap
15-20 886.5 4.4 36.1 25.0 62.1 -
20-25 420.1 3.0 21.0 12.8 29.4 -
25-30 210.7 4.1 15.7 11.7 14.8 -
30-35 108.7 1.1 10.8 8.5 7.6 -
35-40 78.1 L5 8.7 6.7 55 -
40-60 94.8 0.5 10.1 4.2 6.6 5.8
60-90 38.6 0.2 6.3 2.6 2.7 2.4
90-120 8.1 1.2 1.9 0.7 0.6 0.5
120-500 8.8 0.8 5.6 0.3 0.6 0.5
Total 1854.4 7.1 48.5 72.5 129.8 9.2
Barrel + Endcap

15-20 2762.9 20.5 59.4 35.6 251.7 -
20-25 1108.3 19.5 33.8 18.8 94.2 -
25-30 521.6 9.4 20.7 14.2 43.0 -
30-35 326.3 33 16.9 11.1 29.3 -
35-40 194.8 2.8 114 79 16.1 -
40-60 2723 0.7 234 6.3 24.0 4.4
60-90 100.5 0.9 133 3.8 8.5 1.6
90-120 214 2.3 4.1 0.9 1.8 0.4
120-500 38.1 2.1 259 0.7 39 0.6

30.3 83.3 45.4 472.1 7.0
Total 5345.9 1326
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Table 4.18: Summary of systematic uncertainties for the Wy — @ vy cross section measurement.

2011A [ 2011B | 2011A+2011B

Source Systematic uncertainty Effect on Nsig
Photon energy scale 1% (EB), 3% (EE) 3.7% 3.2% 2.9%
Muon Pr scale 0.2% 0.7% 0.8% 0.6%
Total uncertainty on Ng;e 3.8% 3.3% 3.0%
Source Systematic uncertainty Effecton & = A - &g,
Photon energy resolution 1% (EB), 3% (EE) 0.3% 0.1% 0.1%
Muon Py resolution 0.6% 0.2% 0.1% 0.1%
Pile-up Shift data PU distribution by + 5% 0.6% 0.9% 0.8%
PDF CTEQG6L reweighting 0.9% 0.9% 0.9%
Signal modeling 5% 5.0% 5.0% 5.0%
Total uncertainty on # = A - €, 5.1% 5.2% 5.1%
Source Systematic uncertainty Effect on p,rr
Muon trigger 1.5% 1.5% 1.5% 1.5%
Muon reconstruction 0.9% 0.9% 0.9% 0.9%
Muon ID and isolation 0.9% 0.9% 0.9% 0.9%
MET selection 1.1% (mu) 1.1% 1.5% 1.5%
Photon ID and isolation 0.5% (EB), 1.0% (EE) 0.5% 0.5% 0.5%
Total uncertainty on P,y 2.3% 2.5% 2.5%
Source Systematic uncertainty Effect on background yield
Template method 9.1% 9.7% 9.0%
Electron misidentification 7.5% 7.2% 5.2%
MC prediction 6.9% 6.6% 6.8%
Total uncertainty on background 8.3% 8.8% 8.3%
Source Systematic uncertainty Effect on luminosity
Luminosity 2.2% 22% | 22% | 2.2%
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4.5 Results

The number of signal events N, in is obtained by subtracting the estimated number of back-
ground events Ny, from the observed number of selected events Nyp,s. Equation @ can therefore

be rewritten as:
Nobs — M bkg

This is the equation used to measure the Wy cross sections since it is well factorized in terms of the

classes of systematic uncertainties.

The value of Nj;e is obtained from the number of observed events and the estimated number of

background events using the following relation:

o misid. jets misid. electrons y+jets W(tv)y Zy ty
Nsig = Nobs — Nyio — Vpkg ~Noke " Noke " Noke — Nokg (4.20)
where N, is the number of selected events in data, Ngf:;ld' J¥S i the estimated number of back-

ground events from jets misidentified as photons derived from data using the ’template method’

described in Section 4.3.1| N&?gid' electrons j¢ the estimated number of background events from

electrons misidentified as photons derived from data using the method described in Section 4.3.2}

(v)
g

estimated number of background events due to the W(7Vv)y process, szké is the estimated number

Nggets is the estimated number of background events due to the ¥+ jets process, Nka ¥ is the
of background events due to the Zy process, and N&Z/g is the estimated number of background events
due to the tty process. The last four sources of background result in small number of background

events compared to Nﬁzld' I They are estimated using the simulation.

After the full set of selection criteria 5014(5795) events are selected in the data set 2011A(2011B).
Combining data sets 2011A+2011B, 10809 events are obtained corresponding to a luminosity of

4969.1 pb~!. The full set of parameters used for the cross section measurement is listed in Ta-

bles [4.19 and 4.201
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The measured cross sections are:

o(pp— Wy— uvy)(2011A) = 37.4+ 1.3 (stat.) £ 4.3 (syst.) £ 0.8 (lumi.) pb.

o(pp— Wy— uvy)(2011B) = 38.7+ 1.3 (stat.) £ 4.8 (syst.) £ 0.9 (lumi.) pb.
o(pp — Wy— uvy)(2011A+2011B) =37.5+0.9 (stat.) = 4.4 (syst.) £ 0.8 (lumi.) pb.

The theoretical NLO cross section is 31.81 £ 1.8 pb., computed with the MCFM generator [34].

A comparison of several kinematic distributions between data and simulation after the full event
selection is shown in Figures4.38{4.40] The ratios of data to simulation for each variable are shown
in Figures .41} B.43] The simulated yields of background events are scaled to match the yields
derived from data for background from jets misidentified as photons and for background from
electrons misidentified as photons. The background distributions are scaled for all distributions

except for histograms showing event yields after every selection criteria.

Figure [4.44] shows the cross section measurement results and theoretical NLO cross section.
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Figure 4.38: Muon candidate trensverse momentum (P# ), pseudorapidity (n*), missing transverse energy
(MET), invariant transverse mass of W (M}’ ), photon transverse energy E 7 pseudorapidity (n7), AR(u,7),
number of good vertices, number of selected jets, W7y candidate transverse momentum (P;V "), event yields
after event selection and A¢ (leading jet,y) overlaid distributions of the Wy — puvy candidates in data, signal
simulation, and background simulation for 2011A data set.
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Figure 4.39: Muon candidate trensverse momentum (P# ), pseudorapidity (n*), missing transverse energy
(MET), invariant transverse mass of W (M}’ ), photon transverse energy E 7 pseudorapidity (n7), AR(U,7),
number of good vertices, number of selected jets, W7y candidate transverse momentum (P;V 7y, event yields
after event selection and A¢ (leading jet,y) overlaid distributions of the Wy — pvy candidates in data, signal
simulation, and background simulation for 2011B data set.
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Figure 4.40: Muon candidate trensverse momentum (P# ), pseudorapidity (n*), missing transverse energy
(MET), invariant transverse mass of W (M}’ ), photon transverse energy E 7 pseudorapidity (n7), AR(U,7),
number of good vertices, number of selected jets, W7y candidate transverse momentum (P;V 7y, event yields
after event selection and A¢ (leading jet,y) overlaid distributions of the Wy — pvy candidates in data, signal
simulation, and background simulation for 2011A+2011B data sets combined.
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Figure 4.41: The ratio of data shape to simulation shape for muon candidate trensverse momentum (P# ),
pseudorapidity (n*), missing transverse energy (MET), invariant transverse mass of W (M} ), photon trans-
verse energy E., pseudorapidity (17), AR(u,7y), number of good vertices, number of selected jets, Wy candi-
date transverse momentum (P;V "), event yields after event selection and A¢ (leading jet,y) of the Wy — uvy
candidates for 2011A data set.
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Figure 4.42: The ratio of data shape to simulation shape for muon candidate trensverse momentum (P# ),
pseudorapidity (n*), missing transverse energy (MET), invariant transverse mass of W (M} ), photon trans-
verse energy E., pseudorapidity (17), AR(u,7y), number of good vertices, number of selected jets, Wy candi-
date transverse momentum (P;V "), event yields after event selection and A¢ (leading jet,y) of the Wy — uvy
candidates for 2011B data set.
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Figure 4.43: The ratio of data shape to simulation shape for muon candidate trensverse momentum (P# ),
pseudorapidity (n*), missing transverse energy (MET), invariant transverse mass of W (M} ), photon trans-
verse energy E., pseudorapidity (17), AR(u,7y), number of good vertices, number of selected jets, Wy candi-
date transverse momentum (P;V "), event yields after event selection and A¢ (leading jet,y) of the Wy — uvy
candidates for 2011A+2011B data sets combined.
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Table 4.19: Parameters used to calculate the Wy — uvy cross section in 2011A and 2011B data sets.

Parameter [ Number (2011A) [ Number (2011B)

Nevent.i 50] 4 5795

NS Jets 2417.3 +39.4 (stat.) & 219.9 (syst.) | 2868.2 & 43.7 (stat.) & 276.8 (syst.)
Njpisid. electrons 44.0 4 1.0 (stat.) £ 3.3 (syst.) 473 4 1.0 (stat.) + 3.4 (syst.)
NJEe negligible negligible

N 11.9 4 1.9 (stat.) = 1.1 (syst.) 18.0 4 2.4 (stat.) = 1.8 (syst.)
kaﬁ 149.8 + 10.5 (stat.) & 9.0 (syst.) 188.6 + 11.6 (stat.) + 11.3 (syst.)
Nyl 16.9 4 0.6 (stat.) + 8.5 (syst.) 18.9 4 0.7 (stat.) £ 9.5 (syst.)
Nikg 2639.9 £ 40.8 (stat.) £ 220.2 (syst.) | 3141.0 £ 45.3 (stat.) £ 277.2 (syst.)
Nsig 2374.1 £ 81.7 (stat.) £ 238.0 (syst.) | 2654.0 £ 88.6 (stat.) &= 290.7 (syst.)
A €gen 0.0286 + 0.0015 (syst.) 0.0257 =+ 0.0013 (syst.)

Perf 0.9806 = 0.0226 (syst.) 0.9865 = 0.0247 (syst.)

[ dt 2262.6 + 49.8 (syst.) 2706.5 -+ 59.5 (syst.)

Table 4.20: Parameters used to calculate the Wy — vy cross section in 2011A+2011B data sets combined.

Parameter [ Number (2011A+2011B)
Nevents 10809
NS jets 5345.9 £ 58.2 (stat.) = 482.6 (syst.)

bk el
misid. electrons
N, bk

91.4 + 1.4 (stat.) == 4.7 (syst.)

NZ;;“S negligible

Ny 28.9 + 3.4 (stat.) & 2.7 (syst.)
N,f[g 338.0 + 18.3 (stat.) & 20.3 (syst.)
Nyt 35.9 £ 1.0 (stat.) £ 17.9 (syst.)
Nokg 5840.1 & 61.1 (stat.) £ 483.4 (syst.)
Nsig 4968.9 + 120.6 (stat.) & 505.8 (syst.)
A Egen 0.0270 =+ 0.0014 (syst.)

Peff 0.9898 £ 0.0247 (syst.)

[ di 4969.1 & 109.3 (syst.)

Besides measurement of cross section in the phase space E}/ > 15 GeV and AR(u,y) > 0.7 the

measurements of the cross section is also performed for phase space regions restricted by higher E’T/

thresholds, E). > 60 GeV and EY. > 90 GeV. The AR(L, y) requirement is the same, AR(u, ) > 0.7.

The estimated cross section for photon E7 > 60 GeV is:

o(pp — Wy — uvy)(2011A +2011B) = 0.76 £ 0.06 (stat.) +0.08 (syst.) &= 0.02 (lumi.) pb.

The theoretical NLO cross section for photon E7 > 60 GeV is 0.58 =0.08 pb.

The estimated cross section for photon E7 > 90 GeV is:

o(pp — Wy — uvy)(2011A +2011B) = 0.248 £ 0.035 (stat.) £ 0.048 (syst.) £ 0.005 (lumi.) pb.
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Table 4.21: Summary of systematic uncertainties for the Wy cross section measurement (E7(y) > 60. GeV
and E7(y) > 90. GeV) for 2011A+2011B data set.

Er(y) > 60.GeV [ Er(y) >90. GeV
Source Systematic uncertainty Effect on Ngio
Photon energy scale 1% (EB), 3% (EE) 5.5% 3.9%
Muon Pr scale 0.2% 0.2% 0.1%
Total uncertainty on Ng;g 5.5% 3.9%
Source Systematic uncertainty Effect on % = A - gy¢
Photon energy resolution 1% (EB), 3% (EE) 0.8% 0.7%
Muon Pr resolution 0.6% 0.3% 0.1%
Pile-up Shift data PU distribution by + 5% 0.1% 1.0%
PDF CTEQ6L reweighting 0.9% 0.9%
Signal modeling 5% 5.0% 5.0%
Total uncertainty on . % = A - gy ¢ 5.2% 5.2%
Source Systematic uncertainty Effect on p, s
Muon trigger 1.5% 1.5% 1.5%
Muon reconstruction 0.9% 0.9% 0.9%
Muon ID and isolation 0.9% 0.9% 0.9%
MET selection 1.4% (ele), 1.5% (mu) 1.5% 1.5%
Photon ID and isolation 0.5% (EB), 1.0% (EE) 0.5% 0.5%
Total uncertainty on p, s 2.5% 2.5%
Source Systematic uncertainty Effect on background yield
Template method 18.8% 44.6%
Electron misidentification 5.3% 5.2%
MC prediction 15.5% 17.0%
Total uncertainty on background 14.3% 32.2%
Source Systematic uncertainty Effect on luminosity
Luminosity 2.2% 2.2% [ 2.2%

The theoretical NLO cross section for photon E7 > 90 GeV is 0.173 +-0.026 pb.

Table [.22] shows the summary of parameters for cross section measurement for photon E7 >

60 GeV and Er > 90 GeV. The corresponding systematic uncertainties are summarized in Ta-

ble @211
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Table 4.22: Summary of parameters for the Wy cross section measurement for photon E7 > 60 GeV and
E7 > 90 GeV.

Parameters E}/ > 60 GeV E%’ > 90 GeV

Nevenss 610 =+ 24.7 (stat.) 230 + 15.2 (stat.)

N,’,",;;’W” 159.9 4 17.4 (stat.) + 30.0 (syst.) | 59.4 + 14.0 (stat.) & 26.5 (syst.)

Npjiaid electrons 21.2 £ 0.6 (stat.) + 1.1 (syst.) 7.2 4+ 0.4 (stat.) £ 0.4 (syst.)

NZ;;CtS negligible negligible

N,f,gw)y 3.2 4 1.2 (stat.) + 0.3 (syst.) .0 4 0.0 (stat.) + 0.0 (syst.)

szké 19.4 + 4.4 (stat.) £ 1.2 (syst.) 10.9 + 3.2 (stat.) £ 0.7 (syst.)

N, 9.7 + 0.5 (stat.) + 4.9 (syst.) 5.3 + 0.4 (stat.) & 2.7 (syst.)

Nig 396.7 + 30.5 (stat.) &+ 37.4 (syst.) | 147.2 & 20.9 (stat.) & 27.2 (syst.)

A EpCwy—tvy 0.105 =+ 0.005 (syst.) 0.120 =+ 0.006 (syst.)

Pefr 0.993 + 0.025 (syst.) 0.993 =+ 0.025 (syst.)

[ % dt 4969.1 4 109.3 (syst.) 4969.1 + 109.3 (syst.)

C\M\S\Pl;el‘lnl\"r\]ar\y \20‘11\- 1T ‘ L ‘ L v‘g\:Z-\I—e\\/ C,\\/IS\Prgln‘"na\ry\zoj\-l T ‘ T V7\S=\7T‘ev

Ldt=50fb" E! >15GeV,AR > 0.7 IL dt=5.0fb" lumi. uncertainty: + 2.2%
oxB(WYy - pvy): 2011A —_— e, E\; >15GeV,AR>0.7

374+ 1.3 (stat.) + 4.3 (syst.) + 0.8 (lumi.) pb \
0xB(WY - pvy): 2011A  {»—e—— 1.18+ 0.14,,,+ 0.06,,
oxB(Wy - pvy): 2011B —_——
38.7+ 1.3 (stat.) + 4.7 (syst.) + 0.9 (lumi.) pb N
(sat) (yst) (tumi.) p 0xB(Wy - pvy): 2011B | w——e—1.22+ 0.15,,+ 0.06,,
0xB(Wy - pvy): 2011A+B —_————
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31.8+ 1.6 (PDF + Scale factor + Isolation cut) pb
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Figure 4.44: Measured cross sections for Wy — uvy (left) and the ratio of measured cross section to MCFM
prediction for Wy — uvy (right).
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4.6 Combined results with electron channel

The Wy cross section has also been measured in the evy final state. The results from the two

channels are combined. The measured cross section in the electron channel is:

o(pp — Wy — evy) =36.6 £ 1.2 (stat.) £ 4.3 (syst.) £ 0.8 (lumi.) pb.

The combination of the cross sections in the muon and electron channels, performed using a Best

Linear Unbiased Estimator (BLUE) [35]], is:

o(pp — Wy — vy) = 37.040.8 (stat.) £ 4.0 (syst.) = 0.8 (lumi.) pb.

Table 4.23: The summary of the cross section measurements and predictions for E%/ >60 and 90 GeV for
Wy.

Wy
Electron Channel (pb) Muon Channel (pb)
E%' > 15 GeV 36.6 £ 1.2(stat.) =4.3(syst.) = 0.8(lumi.) 37.5£0.9(stat.) &= 4.4(syst.) == 0.8(lumi.)
Combination 37.0£0.8(stat.) = 4.0(syst.) = 0.8(lumi.) pb
Prediction 31.81+1.80 (pb)
E% > 60 GeV 0.77 £0.07(stat.) £ 0.13(syst.) = 0.02(lumi.) ‘ 0.76 £ 0.06(stat.) £ 0.08(syst.) == 0.02(lumi.)
Combination 0.76 +0.05(stat.) £ 0.08(syst.) = 0.02(lumi.) pb
Prediction 0.58 +£0.08 (pb)
E%' > 90 GeV | 0.173 +0.034(stat.) = 0.037(syst.) == 0.004(lumi.) ‘ 0.248 £ 0.035(stat.) £ 0.048(syst.) == 0.005(lumi.)
Combination 0.200 4 0.025(stat.) £ 0.038(syst.) & 0.004(lumi.) pb
Prediction 0.173£0.026 pb

Results for both electron and muon channels are shown in Figures #.45}

The estimated cross section for photon E7 > 60 GeV in the electron channel is:

o(pp — Wy — evy)(2011A +2011B) = 0.77 +£0.07 (stat.) +0.13 (syst.) = 0.02 (lumi.) pb.

The combined cross section is:

o(pp — Wy — £vy)(2011A+2011B) = 0.76 £ 0.05 (stat.) +0.08 (syst.) £ 0.02 (lumi.) pb.
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Figure 4.45: Measured cross sections for Wy — evy (left) and the ratio of measured cross section to MCFM
prediction for Wy — evy (right).
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Figure 4.46: Measured cross sections for Wy — [vy (left) and the ratio of measured cross section to MCFM
prediction for Wy — [v7y (right). Measurements in electron and muon channel are combined.
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The estimated cross section for photon E7 > 90 GeV in the electron channel is:

o(pp — Wy — evy)(2011A +2011B) = 0.173 £0.034 (stat.) = 0.037 (syst.) = 0.004 (lumi.) pb.

The combined cross section is:

o(pp — Wy — £vy)(2011A +2011B) = 0.200 & 0.025 (stat.) £ 0.038 (syst.) £ 0.004 (lumi.) pb.

The measured cross sections, predictions, and their uncertainties are summarized in Table 4.23|and

in Figure [4.48]
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Figure 4.47: A summary of the measured cross sections and their combination for the W7 analysis.
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Figure 4.48: The summary of all cross section measurements and comparisons to theory for the Wy mea-
surement.
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Chapter 5

Observation of Wy radiation amplitude zero

To observe the radiation amplitude zero additional selection requirements on top of the selection
used for the cross section measurement are needed. As discussed in Section 2.3 the additional
selection consists in a jet veto. Events with jets reconstructed with "anti-k7" algorithm [36] with
Pf’ > 30 GeV and |n/¥| < 5 are rejected. The second additional requirement consists in a trans-

verse mass of UMETy (LvYy) system, M#METY > 110 GeV.

5.1 Results

The charge-signed 1 distribution, Q; X An where Q; is the charge of the muon and An is the dif-
ference in pseudorapidity between the muon and the photon of selected W7y events for data sets
2011A+2011B combined and the corresponding ratios of data to simulation are shown in Fig-

ures [5.1]and[5.2] The dip around zero is clearly visible in data.
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5.2 Combined results with electron channel

Figure|5.3|shows the charge-signed 1 distribution of selected Wy events combined for electron and
muon channel and demonstrates the radiation amplitude zero characteristic of Wy production. The

dip around value O is clearly visible.
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Figure 5.1: Charge-signed 1 distribution in data, signal simulation, and background simulation for Wy —
uvyfor 2011A (left), 2011B (middle) and 2011A+2011B combined (right).
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Figure 5.2: The ratio of data shape to simulated shape for charge-signed n distribution, for Wy — vy for
2011A (left), 2011B (middle) and 2011A+2011B combined (right).
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Figure 5.3: Charge-signed n) distribution in data, signal simulation, and background simulation combined
for Wy — uvyand Wy — evy for 2011A+2011B data sets combined. Yield from signal simulation is scaled
to data signal yield. The right plot is background subtracted, uncertainties include statistic and systematic
uncertainties.
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Chapter 6

Triple gauge coupling measurement

To look for anomalous couplings, an observable sensitive to aTGC is studied. One effect of intro-
ducing anomalous coupling parameters in the SM Lagrangian is an enhancement of the diboson
production cross section when § is large. This results in an excess of events with high momen-
tum bosons. The photon E%/ is used as observable to measure aTGC parameters, and the study is
performed for E%’ > 40 GeV. Distribution of sensitive observable in data is compared with predic-
tions for different aTGC values. Limits on aTGC parameters are set using the formalism described

below.

6.1 Likelihood Formalism

The aTGC results are interpreted by setting bounds on the ratio of the observed signal to that of the
expected aTGC yield using the likelihood formalism described below. The probability of observing
X events in a specific bin of E%/ for a given expectation value d is given by the Poisson distribution:

dXe
X!

p(X;d) = (6.1)

Here, d is comprised of both signal and background predictions that are modeled separately:
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d=p-s(@,6,)+b(6), (6.2)

where signal s(&, 6;) and background b(§b) expectations are described in terms of the TGC param-

eter values & and nuisance parameters 6 and 6,. The parameter U is the signal strength modifier.

The nuisance parameters are resolved into three contributions: systematic uncertainty on integrated

luminosity f ¢, signal and background selection systematic uncertainties defined as Sslft and f;g;t',

respectively. Signal and background expectaions can be written as:

S(@,6,) = fe - fop NS @, (6.3)
b(6)) = fare - NPXE- (6.4)

Here, NS¢ and NBXe are the predicted signal and background event yields.

With this definition of d for each bin i of the E%/ distribution with data event yield N; a likelihood

function is constructed:

L(u,@&,6) = [ Poisson(N;,di(u, &, 6)), (6.5)
with the Poisson function defined in Eq. [6.1]and:
6 = (6y,6)). (6.6)

The uncertainties on the quoted luminosity, signal, and background are assumed to be log-normally

distributed.

The upper limits of TGCs are determined by using the following test statistics:

fig = —2InA(u,c) (6.7)

where A (u, &) is the profile likelihood []]:
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Ap,d) = LT (6.8)

being the conditional maximum-likelihood estimator of 6 and i and 6 being their

D»

with
maximum-likelihood estimators. The hypothesized values of TGCs are excluded based on whether

the ratio of p-values:

crLy= Lot (6.9)
1—pyp
is less than a given threshold. More details can be found in [37]. This formalism is implemented

in the ROOSTAT package.

6.2 Signal simulation

The aTGC signal for a grid of aTGC values is simulated using the SHERPA generator [3]] interfaced
with PYTHIA [4] for the detector simulation of the W7y+n jet (n < 1) process. Two aTGC pa-
rameters, Aky and Ay, are freely varied while g% is set to the SM value. The grid of aTGC values
contains 49 points, 7 by 7, in Aky and 4, space. The outermost points of the grid are Aky = 0.6
and Ay = £0.06. The samples for these aTGC points are fully simulated, to obtain the continuous

signal description in aTGC parameters space the quadratic fit in every E%/ bin is performed.

6.3 Results

Figure shows the photon E%/ distribution in data, background, and simulated signal overlaid as
well as the background and the aTGC simulated signal for Ak, = 0.4 and Ay = 0.0.
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Figure 6.1: Photon E%/ distribution for data (black circles), background (blue filled histogram), simulated
signal (black histogram), simulated signal with aTGC close to the excluded region Ak? = 0.4 and A, = 0.0

(red histogram). The last bin includes overflows.

No sizeable disagreement from the SM is observed, i.e. there is no signal of aTGC. Upper limits

on aTGC parameters are therefore set. The 95% C.L. two-dimensional contours are shown in

Figure[6.2] Corresponding one-dimensional limits are given in Figure[6.3]and [6.4] and in Table[6.1]

6.4 Combined results with electron channel

As for the cross section measurements, a search of aTGC is also performed in the electron channel.

The results from the two channels are combined and shown in Figures [6.5}{6.7) and in Table [6.1]
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Figure 6.3: 1D 95% confidence level expected and observed limits for Ax¥ WW y coupling.
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Figure 6.4: 1D 95% confidence level expected and observed limits for AY WW y coupling.
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Figure 6.5: 2D 95% confidence level expected and observed contours for WWy coupling. Electron and
muon channel combined.
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Figure 6.6: 1D 95% confidence level expected and observed limits for Ax¥ WWy coupling. Electron and

muon channel combined.

Table 6.1: 1D 95% confidence level observed limits for WWy coupling.

combined.

AxY AY

Wy — evy | [-0.45,0.37] | [-0.059,0.046]
Wy — uvy | [-0.46,0.34] | [-0.057,0.046]

Wy —lvy | [-0.38,0.29] | [-0.050,0.037]

Electron and muon channel
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Figure 6.7: 1D 95% confidence level expected and observed limits for AY WWy coupling. Electron and

muon channel combined.
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Chapter 7

Comparison with other results

The other general purpose detector at LHC, the ATLAS experiment, also performed a measurement
of the Wy process in proton-proton collisions at 7 TeV. The measurement was done with the lumi-
nosity of 1 fb~! [38]. The selection criteria used by the ATLAS experiment are looser resulting in
a larger number of selected events as well as signal events. Two measurements are performed, in-
clusive and exclusive (jet veto with P%et > 30 GeV imposed) within the phase space: P% > 25 GeV,
PY >25GeV, |n'| < 2.47,ELX > 15/60/100 GeV,|n?| < 2.37. Results are shown in Figure

New results using 5 fb~! [39] were recently presented. Figure shows the measured cross sec-

tions compared to theory predictions.

As for the results presented in this work, the ATLAS results indicate that MCFM generator signifi-
cantly disagrees with data for the Wy inclusive cross section at higher E}/ values. Other generators

like Sherpa [3] agree better with the data.

The measurement of TGC parameters is performed in a different way than in this work. The total
number of signal events with E%/ > 100 GeV is used rather then the E}/ distribution to set the limits.
The measurement is also performed using the exclusive sample of data, rather than inclusive. One
dimensional limits on aTGC parameters using 1fb~! of data are shown in Table and using
5fb~! of data in Figure Results from ATLAS also do not show any indication of aTGC. Upper

limits are set.
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Figure 7.1: Measurements of W cross section with ATLAS detector using 1 fb~! of data.
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Figure 7.2: Measurements of Wy cross section with ATLAS detector using 5 fb~! of data. Left plot shows
the results for inclusive and right plot for exclusive measurement.
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Table 7.1: 1D limits on aTGC parameters from ATLAS experiment measurements using 1 fb~! of data.

Measured Measured Expected
A 2 TeV oo oo
Aky | [-0.36,0.41] [-0.33, 0.37] [-0.33, 0.36]
Ay | [-0.079, 0.074] | [-0.060, 0.060] | [-0.063, -0.055]

Measurements of Wy characteristics have also been performed at the Tevatron proton-antiproton

collider at a center of mass energy /s = 1.96 TeV. The DO and CDF experiments published sev-

eral papers [40, 41,42, 43] including Wy cross section and aTGC measurements. The measured

inclusive cross section is in good agreement with the NLO expectation . At Tevatron energies the

NLO corrections are much smaller than at LHC. The paper [41] includes the RAZ observation.

The electron-positron collider at CERN, LEP, has also made di-boson measurements. At lower

center of mass energy /s < 209 GeV limits on aTGC have been set. The summary of aTGC

measurements from different experiments is shown in Table|/.2|and Figure Results from mea-

surements at different center of mass energies cannot be directly compared as well as measurements

with and without form-factor formulation.

Table 7.2: Summary of limits on aTGC parameters from different experiments.

ATLAS DO LEP (combined) CMS
(1fb~! data) (using form-factor formulation) (68% CL) (this work)
(/s =7TeV) (/s =1.96 TeV) (/s <209 GeV) | (/s=TTeV)
Axy | [-0.33,0.37] [-0.29, 0.38] [-0.072, 0.017] [-0.38, 0.29]
Ay | [-0.060, 0.060] [-0.08, 0.08] [-0.049, -0.008] | [-0.050, 0.037]
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Chapter 8

Conclusion

The inclusive cross section of Wy — pvy using the full data set of 5.0 fb~! collected in 2011
with the CMS detector has been measured. The measured cross section of 37.5 +0.9 (stat.) +
4.4 (syst.) £ 0.8 (lumi.) pb is in agreement with results in the electron channel and about one sigma
higher than the expectation from the MCFM generator. Recent measurements with the ATLAS
experiment also show higher inclusive cross section than MCFM expectations. The exclusive mea-
surement is however in agreement with expectations. These results indicate that next-to-leading

order contribution are likely to be underestimated in the MCFM calculation.

The radiation amplitude zero is visible in the charge-signed 1) distribution after applying additional

selection requiring jet veto and a high transverse mass of vy system.

The aTGC signal is not observed so one and two dimensional upper limits on the parameters Ax”
and A, are set. One dimensional 95% C.L. limits —0.46 < Akx? < 0.34 and —0.057 < A7 < 0.046

are in agreement with ATLAS measurements.

The cross section measurement of Wy process using the full data set collected in 2012 will provide
more precise measurement at high E%/ values. Besides inclusive measurement, the exclusive cross
section measurement in jet multiplicity is very important to provide. As the sensitivity to aTGC
increases with the increase of a center of mass energy, it is important to perform a search of aTGC

using the data collected at a center of mass energy of 8 TeV.
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Poglavlje 9

ProSireni saZzetak: Mjerenje zajednicke
produkcije W bozona i fotona i potraga za
anomalnim vezanjem WW foton CMS

detektorom

9.1 Uvod

Fizika elementarnih Cestica desetlje¢ima pokuSava dati odgovore na nekoliko vaznih pitanja. Kakva
je fizika izvan Standardnog modela (SM)? Sto je tamna tvar, tamna energija, kakva je priroda
gravitacije? Postoji li Higgsov bozon? Zelja za odgovorom na posljednje pitanje jedan je od
glavnih razloga izgradnje nekoliko sudarivaca i u sklopu njjih nekoliko detektorskih sustava. Na
proton-antiproton sudarivacu na Fermilab-u u Sjedinjenim Ameri¢kim Drzavama dva detektora, DO
1 CDF, mjerila su produkte sudara u periodu 1985-2011. Rezultati mjerenja bila su vazna otkri¢a na
energiji sudara od 2 TeV-a, ali Higgsov bozon nije otkriven. Prije nekoliko godina Veliki hadronski

sudariva¢ (LHC, od engl. Large Hadron Collider) na CERN-u pocinje s radom na energiji od 7 Te V-
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a u sustavu centra mase dvaju protona. Dva detektora opée namjene, ATLAS i CMS, pokuSavaju

dati odgovor na pitanje postojanja Higgsovog bozona.

Jedan od osnovnih zahtjeva ATLAS i CMS detektora u procesu dizajniranja bio je precizno mjere-

nje produkata raspada Higgsovog bozona, leptona i fotona.

Osim potrage za Higgsovim bozonom i fizikom izvan SM, mjerenje SM procesa takoder je vaZzan
zadatak na LHC-u. Mjerenja SM procesa provjera su valjanosti SM-a na visokim energijama te
takoder omogucavaju indirektnu potragu za fizikom izvan SM-a. U procesima s dva vektorska
bozona u kona¢nom stanju, kao §to je W, moZe su uz udarni presjek mjeriti i jakost trostrukih ba-
Zdarnih vezanja (TGC, od engl. triple gauge coupling). U slucaju postojanja nove (joS neotkrivene)
fizike izvan SM-a jaCina TGC-a bi bila veca Sto rezultira tzv. anomalnim doprinosima TGC-u (aT-
GC, od engl. anomalous triple gauge coupling). Jacine trostrukih baZzdarnih vezanja su najmanje

precizno mjerene veliCine elektroslabog sektora SM-a.
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9.2 WY proces na LHC-u

9.2.1 Standardni Model

Standardni model [5] sadrZi cjelokupno trenutno znanje o elementarnim Cesticama i1 njihovim in-
terakcijama. Tijekom posljednjih nekoliko desetljeca, SM temeljito je testiran na svim energijama
dostupnim u laboratoriju. S poc¢etkom rada LHC sudarivaca na energiji od 7 TeV-a u sustavu centra

mase dvaju protona jedan od prvih zadataka je bila provjera valjanosti SM-a.

Elektroslaba teorija Standardnog modela, koja obuhvaca elektromagnetsku i slabu interakciju,
ukljucuje jedine masivne nosioce sila u teoriji, spontano lomljenje simetrije Higgsovim me-
hanizmom te V-A strukturu medudjelovanja. Zahtjevi na teoriju su da je to renormalizabilna
lokalno invarijantna bazdarna teorija. U elektroslaboj teoriji lagrangian je invarijantan na lokalne

SU(2)L ®@U(1)y transformacije, gdje L oznacava lijevi dublet a Y slabi hipernaboj.

Lagrangian slobodnog fermiona dan je s:

A= @(i’)/“a’u —m)¥,
= (L+R)(iy*dy —m)(L+R), (9.1)

= L(iY*9u)L+R(iy*dy)R—m(LR+RL)

gdje je ¥ valna funkcija fermiona [[6] a m masa. ¥ ima lijevu (L) i desnu (R) komponentu koje se

razli¢ito transformiraju prilikom SU(2);, @ U(1)y transformacije:

L — JC0) T+BY

Y

. (9.2)
R_R = ezﬁ(x)YR

gdje su Tiy generatori SU(2)r i U(1)y grupa. L je izospinski dublet a R izospinski singlet. U

slucaju leptona:
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e u T 9.3)

Kao §to je reeno, zahtjev na lagrangian 9.1 je invarijantnost na lokalne SU(2);, @ U(1)y transfor-
macije. Za razliku od kvantne elektrodinamike dio lagrangiana koji sadrZi fermionske mase nije
invarijantan i zasada ¢emo ga zanemariti. Invarijantnost preostalog dijela lagrangiana postize se

uvodenjem kovarijantne derivacije D kojom se uvode i Cetiri vektorska bozonska polja:

Y
zaL: Dy =0y +igT W+ ig'5 By, 9.4)
Y

KoriStenjem gornjih derivacija lagrangian postaje baZzdarno invarijantan:

_ Y
L =Ty (idy —gT Wy — ig' 3 Bu)L
v 9.6)

+Ry* (idy — ig'EB#)R

Lagrangian 9.6 obuhvaca kineticku energiju fermiona i njihovu interakciju s vektorskim bozonima
W', W2,W3 i B koji pripadaju poljima WH i BH. Posto su ukljucena dodatna polja, u lagrangian

treba ukljuciti i pripadajuée kineticke energije bozona:

1 1
W uy W — 2By B (9.7)

H=— ;

gdje je:

W)’uv :auW)v—avw)u—gW)‘u XW)\/, (98)
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B”v - a'qu — avB'u_ (9'9)

Posljednji ¢lan u|9.8|rezultat je neabelove strukture SU (2);, @ U(1)y grupe.

Poznato je da fermioni kao i elektroslabi bozoni W i Z imaju masu razli¢itu od nule dok je masa
fotona jednaka nuli. Higgsov mehanizam [[7, 8, 9] koristi se za generiranje masa bozona i fermiona
a da istovremeno lagrangian ostaje bazdarno invarijantan. U tu svrhu uvode se 4 dodatna realna

skalarna polja ®;. Lagrangian skalarnog polja dan je izrazom:

Ly = (9y®) (9" D)~V (), (9.10)

gdje je V(@) potencijal polja. Potencijal V (®) ima oblik:

V(®) = u’d'd+ A(DT D)2, 9.11)

Da bi lagrangian bio lokalno bazdarno invarijantan, ®; mora biti SU (2), @ U (1)y multiplet te

se mora koristiti kovarijantna derivacija[9.4]

Polja su izabrana tako da tvore izospinski dublet:

J’_
o= ¢ (9.12)

gdje je:

_ O tign

o (9.13)
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O3 +if4
7

90 = 9.14)
Ako su konstante i A takve daje u?> < 0i A > 0, potencijal ima oblik "Maksi¢kog Sesira". Tocka

@ = 0 je nestabilna te postoji kontinuum tocaka koje ¢ine minimum:

i u?

P'P=——. 9.15
7 (9.15)

Izborom jedne tocke za minimum daje se vakuumu preferiran smjer u prostoru izospina, a simetrija

je spontano slomljena. Minimum je izabran u tocci:

¢1:¢2:¢47¢32:_ V2,
0 (9.16)
Dy =—

V2 \y

S
P

Ovaj izbor za ®( lomi SU(2) i U(1)y bazdarne simetrije dok U(1),,, ostaje saCuvana, §to rezultira

masivnim W= i Z vektorskim bozonima i bezmasenim fotonom.

KoriStenjem kovarijantne derivacije lagrangian je bazdarno invarijantan:

Y Y
L=, —igT W, —ig'5By) (9" +igT -WH +ig' 5 BH)®—V(x)
— — ,] — = /1 0 ©.17)
(0 v) (Qu—igT -Wy—ig 3Bu) (" +igT -WH+ig 3B") [~ | =V (),
1%

| =

gdje je koriStena izabrana tocka vakuuma[9.16]te odgovarajuca vrijednost hipernaboja ¥ = 1. Re-

levantni ¢lan za masu bozona je:
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. 1 1 1 0
gg)clan mase bozona __ © (() V) (—ig?-ﬁ}“ —ig/—Bu)(ig?-W)“ +ig/—B”)
2 2 270,
1 gW? +¢'B W) —igw?
_1 (O V) u po EWyu I8y
8 gWi +igW7 —gWj +¢'By 9.18)

gWH3 4 g/BR gWH! —jgwh2) [0
gWHL 4 igWHh2  —oWH3 1 g/BH | \ v

(vg)® (v)?
:T[(Wﬁ)z + (WD) + T[—gW,f +&'Bul*.
Za nabijene vektorske bozone oCekuje se ¢lan oblika M)%X 2 dok se za neutralne bozone oekuje

Clan oblika %M)Z(Xz. MijeSanje polja WH i B* nuzno je za prepoznavanje fizikalnih vektorskih

bozona W, Z i fotona. Koriste se slijedeci identiteti:

1
+ _ 1 y72
W'u = E(W’u —lW’u),
— 1 1, a2
Wu = E(Wﬂ ‘f’lW#),
| . (9.19)
Zy = W@Wu — 8 By),
_ 1 3
A,Lt = W(g W/J +gB”)
Sada se maseni ¢lan moZe pisati kao:
2 2
$3clan mase bozona __ (vi) lewuf 4+ %(gZ +gl2)(Zu)2 + O(A,u)z, (920)

gdje se prepoznaju mase bozona:
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\/gz—f—g’z, (9.21)

Nadalje, Higgsov mehanizam Koristi se za generiranje masa fermiona. Clan lagrangiana koji pred-

stavlja interakciju Higgsovog polja s fermionima moZe se napisati u obliku:

Ly = —G,(RO'L+LDR). (9.22)

Simetrija je spontano slomljena izborom tocke vakuuma[9.16i razvojem oko nje:

d(x)=— . (9.23)
U slucaju elektrona .4 poprima oblik:

S = _%[v(@elﬂ—ﬁele) +h(x)(erer +erer)]
4 (9.24)
= —E[v(ee) + h(x)(ee)].

Uz jednakost:

G, — ﬁ%, (9.25)

lagrangian [9.24) moZemo napisati u obliku:

Ly = —m,ee — %h(x)ée, (9.26)
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gdje prvi ¢lan definira masu elektrona a drugi ¢lan predstavlja vezanje Higgsovog bozona s elek-

tronom. Mase kvarkova generiraju se na jednak nacin.

Sumiranjem svih ¢lanova dobiva se ukupni elektroslabi lagrangian:

Ltaupni =@ (dy —ig T - W — ig’gBu)(a“ VigT -WH+ ig'gB“)CD —V(x)
— G{(R®'L+LPR) — Go(RP!L+ LD R)
F Ly (idy —gT Wy — iglgBu)L (9.27)
+Ry* (idy — ig’gBu)R
1—

1
- ZWWW“V — L BuvB"

gdje je . novi Higgsov dublet koristen za generiranje masa gornjih ¢lanova u L dubletu:

®d, — —9° . (9.28)
o~

Prvi red u izrazu predstavlja W+, Z, y i Higgs mase i vezanja, drugi red mase leptona i
kvarkova i vezanja s Higgsovim bozonom, tre¢i i Cetvrti red predstavljaju kineticke energije leptona
1 kvarkova i njihove interakcije s vektorskim bozonima dok zadnji red predstavlja kineticke energije
vektorskih bozona i njihova medudjelovanja. Trostruka vezanja vektorskih bozona WWyi WWZ
proizlaze iz zadnjeg ¢lana u[9.8] KoriStenjem identiteta dio lagrangiana koji opisuje TGC
jednak je:

Lroc = —igwwy [VF (W, W =W, W)+ W W, VIV, (9.29)

gdje je VH jednak AH ili ZH, gwwz = ecotOw, gwwy = e, a Oy je slabi kut. Proizlazi da su TGC
dozvoljena Standardnim modelom, WWyi WWZ.
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9.2.2 WYy proces

Produkcija para bozona omogucava proucavanje neabelove baZzdarne simetrije Standardnog mode-
la. Odstupanja od predvidanja SM-a moguca su ako postoje anomalna vezanja ili se produciraju
nove masivne Cestice koje se raspadaju na parove bozona. Procesi s parovima bozona takoder

predstavljaju veliki dio pozadine za mnoge signale fizike izvan SM.

Produkcija para vektorskih bozona Wy u proton-proton sudarima u vodeéem redu (LO, od engl.
Leading Order) ukljucuje tri procesa prikazana na Slici 0.I] To su emisija fotona iz konac¢nog
stanja, emisija fotona iz pocetnog stanja te trostruko bazdarno vezanje WWy. Postoji joS jedan
proces koji dominira na niskim energijama, g1g¢ — V¢ gdje kvark u finalnom stanju emitira foton,

tzv. zakoCno zraCenje fotona. Ovaj proces potisnut je zahtjevom da je foton izoliran.

q © Y

Slika 9.1: Feynmanovi dijagrami koji doprinose W7 produkciji: emisija fotona iz kona¢nog (a) i poCetnog
(b) stanja i WW trostruko baZdarno vezanje (c).

U vodec¢em redu procesu produkcije doprinosi anihilacija kvarkova i antikvarkova, a u viSem redu
(NLO, od engl. Next to Leading Order) fuzija gluona i kvarkova. Na LHC-u NLO korekcije su

vrlo velike zbog velike gustoCe partona na visokim energijama.
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Tablica 9.1: Omjeri grananja W raspada [1].

Kanal raspada Udio

ITv 10.80 + 0.09 %
etv 10.75+0.13 %
TR 10.57 £ 0.15 %
hadrons 67.60 + 0.27 %

Kanali raspada i pripadni omjeri grananja W bozona dani su u Tablici

9.2.3 Radijacijska amplituda vrijednosti nula

Istaknuta karakteristika Wy produkcije u hadronskim sudarima je tzv. radijacijska amplituda vri-
jednosti nula (RAZ, od engl. Radiation Amplitude Zero), fenomen kada su sve amplitude heliciteta

jednake nuli za odredeni izlazni kut fotona u sustavu centra mase.

Poznato je da su sve amplitude heliciteta za procese ¢1g> — W*7 jednake nuli u sustavu centra
mase za cos 0" = —% [10, 111, gdje je 6* kut rasprSenja fotona s obzirom na smjer kvarka ¢,
Q; (1=1,2) sunaboji kvarkova u jedinicama naboja protona. U proton-proton sudarima dominantni
proces produkcije Wy je ud — Wy gdje je amplituda jednaka nuli za cos 0* = — %, a dominantan

proces produkcije W™ 7 je diu — W~y gdje je amplituda jednaka nuli za cos 8* = %

1z viSe razloga ovu je pojavu potpunog ponistenja amplitude teSko opaziti. U realnom eksperimentu
poniStenje ampitude je uvijek djelomi¢no i umjesto nule opaza se udubina u kutnoj raspodjeli.
Dodatni procesi koji doprinose produkciji, QCD korekcije viSeg reda, emisija fotona iz konacnog
stanja, te konacna Sirina W bozona popunjavaju udubinu u kutnoj raspodjeli. Konacna rezolucija
detektora dodatno otezava opaZanje. Takoder nije moguce rekonstruirati sustav centra mase na
hadronskim sudariva¢ima kao $to je LHC posto nije moguce jednoznacno odrediti longitudinalnu
koli¢inu gibanja neutrina. Kako nije moguce izvrSiti mjerenje u sustavu centra mase potrazene su
osjetljive opservable u laboratorijskom sustavu. U sustavu centra mase, W bozon i foton, gibaju se u

suprotnim smjerovima, stoga u raspodjeli rapiditeta W bozona isto kao i u razlici rapiditeta y(y)* —
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y(W)* takoder postoji udubinaﬂ Posto je razlika rapiditeta invarijantna na longitudinalni potisak
udubina se opaza i u razlici rapiditeta u laboratorijskom sustavu, y(y) —y(W). Kako longitudinalnu
koli¢inu gibanja za neutrino nije mogudée eksperimentalno odrediti nije moguée odrediti rapiditet
W bozona. U SM-u dominantan helicitet W bozona u W*y produkciji je Aw = £1 [12]. To
znadi da je lepton iz W raspada dominantno emitiran u istom smjeru kao i W, tako da lepton
odraZzava mnoga kinematska svojstva W bozona. Stoga je korelacija medu rapiditetima W bozona
1 fotona prisutna 1 medu rapiditetima leptona i1 fotona. U granici bezmasenih Cestica rapiditet 1
pseudorapiditet su jednaki, stoga oCekujemo da ¢e RAZ udubina takoder biti prisutna u razlici

pseudorapiditeta 1(y) — 1 (1), §to je veli¢ina koja se moze precizno mjeriti na CMS detektoru

Na LHC-u, RAZ ucinak bi se mogao opaziti u Wy produkciji kao udubina oko vrijednosti 0 u
n(y) — n(l) raspodjeli, kao 3to je ilustrirano ns Slici[9.2] [2]].

RAZ se moze promatrati kao relativisticka generalizacija odsutnosti elektricnog 1 magnetskog polja

kod nerelativistickih sudara Cestica s jednakim omjerom naboj/masa i g faktorom [13]].

U selektiranim Wy dogadajima moguce je dodatnim uvjetima postiéi lakSe opazanje RAZ-a. Do-
prinos QCD korekcija viSeg reda koje popunjavaju udubinu moze se znacajno smanjiti primjenom
zahtjeva da u dogadaju ne postoji niti jedan hadronski mlaz s koli¢inom gibanja veCom od odre-
denog Pr praga. Proces emisije fotona iz konacnog stanja takoder popunjava RAZ udubinu. Ovaj
se doprinos moze smanjiti postavljanjem zahtjeva na minimalnu vrijednost transverzalne mase Wy

sustava, M;WY).

RAZ udubina je takoder osjetljiva na prisutnost anomalnih trostrukih bazdarnih vezanja. aTGC ¢e
izmjeniti oblik 1 () — n(!) raspodjele te takoder popuniti RAZ udubinu, medutim ovo nije varijabla

koja je najosjetljivija na prisutnost anomalnih vezanja u Wy kanalu.

E+pz
E-pz°

IRapiditet estice definiran je izrazom y = 1 In
u smjeru snopa.

gdje je E energija Cestice a pz komponenta koli¢ine gibanja

|P|+pz
T . e . Pl—pz
gibanja Cestice p i 0si snopa, a pz je komponenta koli¢ine gibanja u smjeru osi snopa.

2Pseudorapiditet &estice definiran je izrazom kao 7 = —Intan(6/2) = 11n

. 0 je kut izmedu smjera koli¢ine
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Slika 9.2: Diferencijalni udarni presjek razlike pseudorapiditeta fotona i leptona za proces pp — W'y —
I"vypri /s = 14 TeV-a u SM. Inkluzivni NLO diferencijalni udarni presjek (puna linija), ekskluzivni dife-
rencijalni udarni presjek dogadaja sa jednim mlazom (isprekidana linija), ekskluzivni diferencijalni udarni
presjek dogadaja sa nula mlazeva (tockasta linija).

9.2.4 Trostruka baZzdarna vezanja

Ako postoje nove, joS neotkrivene, Cestice izvan Standardnog modela (kao naprimjer u teoriji Su-
persimetrija) s masama veéim od 0.5 — 1 TeV-a, tada se na niZim energijama generiraju anomalna

vezanja.

Trostruka bazdarna vezanja posljedica su neabelovog karaktera bazdarne grupe elektroslabog sek-
tora SM-a, a jakosti vezanja su jednoznano odredena. Mnoge teorije izvan SM-a predvidaju do-
datne procese produkcije para bozona, stoga svako odstupanje mjerene vrijednosti od ocekivanja
SM-a moze biti prvi znak fizike izvan SM-a na visokim energijama. Tako mjerenje aTGC-a moze
biti osjetljivo na nove fenomene na visokim energijama za koje je potrebna visSa energija ili visi

integrirani luminozitet za direktno opazanje.
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Najopcenitiji efektivni lagrangian invarijantan na Lorentzove transformacije koji opisuje WWYV ve-
zanje ima 14 neovisnih parametara [[15,16], 7 parametara za WWZ i 7 parametara za WW y vezanje.

Uz pretpostavku C 1 P saCuvanja u efektivnom lagrangianu ostaje samo 6 neovisnih parametara:

% 2
L9C — g (W WYY = W VoW ) iy W W VY 4 2w WV (9.30)
w

SWwWvV

gdjeje V=vii Z, gwwy = —e i gwwz = —ecotBy, Oy je Weinbergov kut. Pretpostavivsi elek-
tromagnetsku bazdarnu invarijantnost, g’ll = 1. Preostali parametri koji opisuju WWV vezanje su
g%, Kz, Ky, Az i Ay. Usporedbom sa dobivaju se vrijednosti parametarau SM-u: Az =4, =01

gi=Kr=xKy=1.

Preostalih pet parametara reducira se na tri neovisna parametra uz prepostavku da je lagrangian

invarijantan na SU (2);, @ U(1)y transformacije:

Akz = Agf — Aky-tan® By, A =24y = Az (9.31)

U ovom radu mjereni su parametri Aky i A, analizom procesa pp — Wy.

Sva anomalna vezanja naruSavaju unitarnost na visokim energijama. Iz tog razloga mjerenja aTGC-
a na Tevatronu koriste pretpostavljenu §-ovisnost parametara vezanja, tzv. form-faktor, da bi sacu-

vali unitarnost:

n <0

oa§) = ———. (9.32)
O = s,y

Ovdje je o nisko-energijska aproksimacija vezanja o (), § je kvadrat invarijantne mase dvobozon-

skog sustava, a Ayp je skala form-faktora i energija na kojoj fizika izvan SM ponistava divergencije

u aTGC vrhu. U ovom radu mjereni su aTGC parametri bez upotrebe form-faktora da se izbjegne

pretpostavka o obliku ovisnosi parametara o energiji.
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U konacnom stanju Wy, signal postojanja anomalnih trostrukih vezanja je povecan broj dogadaja
koji sadrze fotone velikog transverzalnog impulsa E%/ kao Sto je prikazano na Slici Wy proces

koji ukljuCuje 1 anomalna trostruka vezanja simuliran je generatorima SHERPA [3] 1 PYTHIA [4].

=

(=)
w
Il

QHHH! L1 1 O 11| S i R A

T T
SM W(uv)y

aTGC W(uv)y: Ax'=0.6, 1'=0.06
aTGC W(uv)y: Ax'=0.4, 1'=0.0
aTGC W(uv)y: Ax'=0.0, 1'=-0.04

Lol

expected yield
3 3

-

10

000 1200 1‘400 1600 1800 2000
E; (GeV)

200 400 600 800 1
Slika 9.3: Simulirana raspodjela E’T/ za Wy proces, za razlicite vrijednosti aTGC parametara.

Razliciti modeli fizike izvan SM-a predvidaju razliCite vrijednosti aTGC parametara. Dodatna
generacija tekih kvarkova i leptona rezultirala bi s vrijednostima reda ~ 10~> a Minimalni Super-

simetrican SM (MSSM) [[14]] model s vrijednostima:

|Aky| <2x 1072

|Akz| <2 x 1072,
(9.33)

Ay <6x 1073,

1Az] <6x 1072
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9.3 LHC akcelerator i CMS detektor

9.3.1 LHC ubrzivac

Veliki hadronski sudariva¢ (LHC) [[17] je najsnazniji ubrzivac Cestica na svijetu u kojem se sudaraju
protoni a zapoceo je radom 2009. godine. LHC je postavljen u tunelu opsega 26.7 km u kojem se
nalazio LEP sudariva¢. Tunel je smjesten na dubini 45-170 m u blizini Svicarsko-Francuske granice

1 sastoji se od 8 ravnih dijelova povezanih s 8 lukova.

Koristenjem dva detektora opée namjene, CMS i ATLAS na LHC-u proucavaju se procesi Stan-

dardnog modela te provodi potraga za fizikom izvan Standardnog modela.
Shematski prikaz akceleratorskih sustava dan je na Slici[9.3.1]

Koristenje postojeceg LEP tunela predstavljalo je izazov, posebno pri dizajnu magneta za usmjera-
vanje LHC snopa. Bududi da se isto magnetsko polje ne moze koristiti za skretanje dva protonska
snopa koji se gibaju u suprotnim smjerovima magneti imaju jedinstven dizajn prikazan na Sli-

ci[9.3.1] Magneti stvaraju suprotno usmjerena polja jakosti 8T.

9.3.2 CMS detektor

CMS je detektor opée namjene dizajniran za precizno mjerenje leptona i ostalih Cestica koje se
produciraju u visoko-energijskim proton-proton (pp) sudarima. ViSeslojni dizajn CMS detektora

prikazan je na Slici[9.6]

Najblize tocci sudara smjesteni su silikonski piksel i trakasti detektori tragova, za identifikaciju
i mjerenje tragova nabijenih Cestica. Detektori tragova se zajedno s elektromagnetskim (ECAL)
1 hadronskim (HCAL) kalorimetrom nalaze u jakom magnetskom polju jakosti 3.8T. Kalorimetri
mjere energiju Cestica te sudjeluju u njihovoj identifikaciji. Izvan magneta nalaze se mionske ko-
more pricvrséene na ¢elicnu konstrukciju koja sluzi za zatvaranje magnetskog polja. Detaljan opis

detektora moZe se pronaci u [18]].
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Shematski prikaz akceleratorskog sustava LHC-a.

Slika 9.4
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Slika 9.5: Shematski prikaz dipolnog magneta u LHC-u.

Koordinatni sustav

CMS detektor je cilindricnog oblika oko osi snopa, promjera 14.6m i duljine 21.6m. Sastoji se
od centralnog i dvaju boc¢nih dijelova koji zatvaraju detektor. U eksperimentu se koristi desni
kartezijev koordinatni sustav. U transverzalnoj ravnini (x-y) mjeri se azimutalni kut ¢ od x osi te
radijalna udaljenost r = \/)ﬁy2 . Polarni kut 6 mjeri se od z osi, ali se za opis Cestica CeSce koristi

pseudorapiditet.

U neelasti¢cnom sudaru protona medudjeluju dva partona (po jedan iz svakog protona) s odredenim
dijelom koli¢ine gibanja protona. Njihova koli¢ina gibanja je longitudinalna s zanemarivim dopri-
nosom u trasnverzalnom smjeru. Zbog sacuvanja koli¢ine gibanja ukupna koli¢ina gibanja Cestica

iz sudara je takoder longitudinalna. Stoga se trajektorije novo nastalih Cestica obi¢no opisuju u
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Slika 9.6: CMS detektor.



transverzalnoj ravnini. Cestice koje izlaze iz sudara nedetektirane, kao npr. neutrino, uzrokuje

neravnotezu u ukupnoj transverzalnoj kolicini gibanja.

Detektor tragova

Detektor tragova smjeSten je najbliZe tocci sudara 1 sastoji se od silicijskih poluvodic¢kih komo-
ra. Unutarnji dio detektora odlikuje se vrlo finim piksel detektorima koji omogucuju identifikaciju
viSestrukih vrhova u sudarima. Tzv. primarni vrh odgovara tocci interakcije protona. U jednom
sudaru snopova protona moze doci do interakcije viSe parova protona Sto rezultira s viSe primar-
nih vrhova (PU, od engl. pile up). U analizi se koristi zahtjev da je lepton pridruZen primarnom
verteksu Cija je skalarna suma transverzalnih koli¢ina gibanja svih novo nastalih ¢estica maksimal-
na. Osim tri sloja piksel detektora dalje od tocke sudara smjeSteni su silicijski trakasti detektori.

Presjek detektora tragova prikazan je na Slici

Rezolucija koli¢ine gibanja u centralnom dijelu detektora koji pokriva podrucje pseudorapiditeta

| n |< 1.6 jednaka je:

O _ (15p7 ©0.5)%(TeV), (9.34)
PT

dok je rezolucija u bo¢nim dijelovima za vrijednost pseudorapiditeta | 1) |= 2.5 jednaka:

% = (60pr ©0.5)%(TeV). 9.35)
T
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Slika 9.7: Presjek detektora tragova u CMS eksperimentu.

Elektromagnetski i hadronski kalorimetar

Elektromagnetski kalorimetar (ECAL, od engl. Electromagnetic calorimeter) dizajniran je za pre-
cizno mjerenje energije elektrona i fotona. ECAL je smjeSten unutar magneta stoga je vrlo kom-
paktan i izgraden od materijala visoke prozirnosti i velike gusto¢e (PbWOy). Velika gustoca (8.28
g/cm~3), kratka radijacijska duljina (0.89 cm) i mali Molierov radijus (2.2 cm) omoguéavaju ap-
sorpciju elektronskog i1 fotonskog pljuska unutar kristala duljine samo 23 cm. Dobra separacija

pljuskova omogucena je malim dimenzijama kristala od 2.2cm x2.2cm.
Na slici[9.8] shematski je prikazan elektromagnetski kalorimetar.

Energijska rezolucija ECAL-a dana je izrazom:

2
op\2 [ 2.8% 0.12 \? 2
(&) = (Vrem) + (eraw) +osv o

ECAL je okruzen hadronskim kalorimetrom (HCAL, od engl. Hadronic calorimeter) dizajniranim

za mjerenje energije Cestica koje primarno interagiraju jakom nuklearnom silom. HCAL se sastoji
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Slika 9.8: Prikaz elektromagnetskog kalorimetra u CMS eksperimentu.

od triju podsustava prikazanih na Slici[9.9] Detektori se sastoje od slojeva apsorpcijskog materijala
(mjed/Celik) i materijala za detekciju. HCAL pokriva podrudje sve do | n |< 5.0, stoga igra vaznu

ulogu pri mjerenju ukupne nedostajuce transverzalne energije (MET, od engl. Missing transverse

energy).

Slika 9.9: Shematski prikaz hadronskog kalorimetra.
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Mionski sustav

Jedna od glavnih zadaca CMS detektora je efikasno i precizno mjerenje miona. Mioni nastali u

sudaru registriraju se u detektoru tragova i u mionskim komorama smjeStenim izvan magneta.

Mionski sustav sastoji se od tri tipa komora koji su optimizirani za razli¢ita okruZenja unutar CMS-
a. U centralnom dijelu detektora nalaze se driftne komore (DT, od engl. Drift Tubes) koje pokrivaju
podrucje pseudorapiditeta | n |< 1.2, dok se u bo¢nim dijelovima nalaze katodne trakaste komore
(CSC, od engl. Chatode Strip Chambers) koje pokrivaju podruéje | 1 |[< 2.4 i komore s otpornim
plo¢ama (RPC, od engl. Resistive Plate Chambers) koje pokrivaju podrucje | n |< 1.6. Mionski
sustav prikazan je na Slici[9.10}
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Slika 9.10: Mionski sustav eksperimenta CMS.

Prostorna rezolucija DT komora je 100 um u r-¢ ravnini i 150 ym u z smjeru, dok vremenska
rezolucija iznosi 3.8 ns. Za CSC komore prostorna rezloucija je nesto slabija i iznosi 200 um dok
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je kutna rezolucija u ¢ reda 10 mrad. RPC komore se odlikuju odli¢nom vremenskom rezolucijom

(= 1ns).

Rezolucija koli¢ine gibanja miona prikazana je na Slici[9.11]
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Slika 9.11: Rezolucija koli¢ine gibanja miona.

Postupak rekonstrukcije fizikalnih velic¢ina i tragova cestica

Rekonstrukcija je proces dobivanja fizikalnih veli¢ina i tragova Cestica iz signala mjerenih u detek-
toru. Razlicite Cestice ostavljaju rezli¢ite signale u CMS detektoru (Slika[9.12)). Mioni se mjere u
detektoru tragova i u mionskim komorama te ostavljaju vrlo malo energije u kalorimetru. Elektroni
ostavljaju trag u detektoru tragova i izazivaju elektromagnetski pljusak u ECAL-u, dok se fotoni

mjere samo u ECAL-u.

Reconstrukcija miona Mioni (i antimioni) se detektiraju u podrucju pseudorapiditeta || < 2.4
te se rekonstruiraju uskladivanjem traga u detektoru tragova s tragom u mionskim komorama. Ko-
nacna rezolucija koliCine gibanja je 1-5% za mione transverzalnog impulsa pr < 1 TeV-a. Algori-

tam za rekonstrukciju detaljno je opisan u [19].
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Slika 9.12: Transverzalni presjek CMS detektora s odgovarajuéim potpisom razliCitih Cestica.

Rekonstrukcija fotona Rekonstrukcija fotona bazira se na analizi energije deponirane u ECAL-
u. Foton energije 1 GeV deponira 95% energije u polju ECAL kristala veli¢ine 5 x5. Priblizno 50%
fotona ¢e u interakciji s materijalom izmedu tocke sudara i ECAL-a konvertirati u ete™ par. Posto
se putanja nabijene Cestice zakreCe u magnetskom polju energija u ECAL-u pokrivat ¢e veliko

podrucje kuta ¢.
Kristali s pripadaju¢om deponiranom energijom grupiraju se u vece skupine SC (od engl. Super

Cluster) [20]. Centar elektromagnetskog pljuska odreduje se izrazom:

Y xW;
YW

X =

E.
, where W; = max <0,4.7 + log):]; ) (9.37)
j

gdje je E; energija i'%8 kristala u SC.

Rekonstrukcija nedostajuée transverzalne energije U kona¢nom stanju Wy — vy neutrino
nije detektiran Sto rezultira s neravnoteZom u mjerenoj transverzalnoj energiji, MET. Ova se veli-

¢ina odreduje algoritmom opisanim u [21]] koji rekonstruira kompletnu listu Cestica proizaslih iz
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sudara koristeci sve detektorske podsustave CMS eksperimenta. Za svaki dogadaj MET je odreden

kao negativna vrijednost vektorske sume transverzalnih energija svih rekonstruiranih Cestica.
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9.4 Mjerenje Wy udarnog presjeka

U ovom radu prikazani su rezultati mjerenja udarnog presjeka procesa pp — Wy — U vy na energiji
7 TeV-a u sustavu centra mase dvaju protona. Kako udarni presjek Wy procesa u vodecem redu
divergira za fotone niske energije i fotone koji se gibaju u smjeru bliskom leptonu iz W raspada,

mjerenje je izvrSeno u kinematskom podrucju definiranom zahtjevima:

e transverzalna energija fotona mora biti ve¢a od 15 GeV-a.

e mion i foton moraju biti prostorno udaljeni AR(i,7) = /(A¢)2+ (A1) > 0.7.

U analizi su koriSteni podaci prikupljeni CMS detektorom tijekom 2011 godine.

Konacno stanje W7y — vy karakterizirano je izoliranim mionom visoke energije, znacajnom ne-
dostaju¢om transverzalnom energijom zbog nedetektiranog neutrina i izoliranim fotonom. Osim
Wy procesa postoje drugi procesi s identicnim konacnim stanjem ili procesi u kojima Cestice ko-
nacnog stanja ostavljaju slican potpis u detektoru. Da bi se smanjio doprinos ovih drugih procesa

(pozadine) primjenjuju se zahtjevi (selekcija) na dogadaje.

Udarni presjek o definiran je izrazom:

c = Nsig
A-e- &

(9.38)

gdje je Niig broj dogadaja signala u podacima , € je efikasnost selekcije, . integrirani luminozitet,

a A efikasnost detektora.

Produkt A - €, odreden je iz simulacija. RazliCita efikasnost u podacima i simulaciji korigira se
faktorom pesr = €/€gen. Korekcijski faktor dobiva se mjerenjem efikasnosti u podacima i simulaciji

na jednak nacin. Uz jednakost .# = A - €ge, izraz moZze se napisati u obliku:

Nsig _ Nsig
A-Sgen-i A ﬁ-peff-.,f'

Egen

o= (9.39)
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N, accept

e . .
gdje je .# definiran omjerom Ngentin

. Nyccepr je broj dogadaja u simulaciji koji prolaze selekciju,

Ngen kin j€ broj simuliranih dogadaja s E}/ > 15 GeV-ai AR(u,y) > 0.7.

94.1 Podaci

U analizi su koriteni podaci koji odgovaraju integriranom luminozitetu od 5 fb~! na energiji od
7 TeV-a u sustavu centra mase dvaju protona, prikupljeni tijekom 2011. godine. Tijekom 2011.
godine mjerenja su izvrSena u dva perioda s bitno razli¢itim karakteristikama snopa. Prvi period
odgovara integriranom luminozitetu od 2.2 fb~! i naziva se 2011A. Drugi period koji se odlikuje
veéim brojem interakcija ("pile-up", PU), odgovara integriranom luminozitetu od 2.7 fb~! i u radu
se naziva 2011B. Mjerenje je izvrSeno na ukupnom uzorku podataka 2011A+2011B, a za provjeru

kompatibilnosti, i posebno na uzorcima 2011A i 2011B.

9.4.2 Selekcija dogadaja

Selekcijom dogadaja nastoji se minimizirati doprinos pozadina uz $to manji gubitak signala.

Selekcija sustava okidaca

Dogadaji Wy — uvy selektirani su koriStenjem okidaca koji zahtjeva prisustvo miona u dogadaju,
s transverzalnim impulsom P# iznad odredenog praga. KoriSten je okida¢ s najnizim pragom,

P > 30 GeV-a.

Selekcija miona

Postupak odabira miona opisana je u [19], s time da je u analizi postavljen stroZi rez na najblizu
udaljenost izmedu rekonstruiranog traga miona i primarnog vrha u transverzalnoj ravnini (dy) i u

z smjeru (d;) [26]. Selektirani su mionski kandidati koji su rekonstruirani s dva algoritma, tzv.
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Tablica 9.2: Selekcija miona.

Opis selekcija |
Kinematicki pr>35GeVi|n| <2.1
Broj tocaka u piksel komorama >0
Broj tocaka u piksel i trakastim komorama > 10
x%/n.df <10
Broj to¢aka u mionskim komorama >0
Broj mionskih komora s tockama > 1

Vrh d < 0.02 cm

Vrh d, < 0.1 cm
Relativna izolacija AR = 0.3 <0.1

"GlobalMuon" i "TrackerMuon". Prilikom selekcije zahtjeva se postojanje signala u piksel de-
tektoru tragova, postojanje signala u veéini slojeva trakastog detektora tragova i dobar x2 ukupne

prilagodbe traga Cestice na mjerenja u detektoru tragova i mionskim komorama.

Da bi se smanjila pozadina koja nastaje zbog pogresno identificiranih piona i mlazeva koristi se
zahtjev relativne izolacije, gdje suma transverzalnih koli¢ina gibanja svih rekonstruiranih Cestica u

konusu AR = 0.3 oko miona, mora biti manja od 10% transverzalne koli¢ine gibanja miona.

Takoder se postavlja zahtjev na transverzalnu koli¢inu gibanja miona, pr >35 GeV-a i pseudorapi-

ditet |n| < 2.1. Pregled svih selekcijskih uvijeta prikazan je u Tablici

Selekcija fotona

Fotonski kandidati rekonstruirani su kao super-klasteri (SC, od engl. SuperClasters) transverzalne
energije E%/ > 15 GeV-a u ECAL-u. Da bi se smanjila pozadina, koju ¢ine hadronski mlazevi, na

rekonstruirane kandidate postavljaju se uvjeti:

e omjer energija u HCAL-u i ECAL-u u konusu AR = 0.15 oko fotona mora biti manji od 0.05,

® Oinin <0.011 u centralnom dijelu detektora i G;n;ny < 0.030 u bo¢nim dijelovima.

Varijabla 0,y mjeri oblik super-klastera u smjeru pseudorapiditeta i definirana je izrazom:
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PR— 1 2 . . .
Ginin = W n= Zznv’:_vl, w; = max (0,4.7 +1log(E;/Esxs)) , (9.40)

gdje se sumira energija deponirana u kristalima koji ¢ine polje veli€ine 5 x 5 oko kristala s najve¢om

energijom.

Pozadinu ¢ine i elektroni. Njihov doprinos smanjuje se zahtjevom da fotonski kandidat nema pri-

druZenu tocku u piksel detektoru.

Izolacija fotona korigirana je za doprinos PU dogadaja [27] koriste¢i gustoCu energije po povrsini,

p. Pregled selekcijskih uvijeta prikazan je u Tablici[9.3]

Tablica 9.3: Selekcija fotona.

Opis \ selekcija
Kinematicki Br > 15 GeV
In| < 1.4442 za centralni dio (1.566 < |n| < 2.5 za bo¢ni dio)
HCAL/ECAL energija ; AR < 0.15 < 0.05
Oinin < 0.011(0.03)
Pridruzena tocka piksel detektora nema pridruZene piksel tocke
Izolacijargrk ; AR < 0.4 <2.040.001-Er+0.0167(0.032) - p
Izolacijagcar ; AR < 0.4 <4.240.006- E7 +0.183(0.090) - p
Izolacijagcar ; AR < 0.4 < 2.240.0025-Er +0.062(0.180) - p

MY selekcija

Za identifikaciju W bozona koristi se transverzalna masa, MY, definirana izrazom:

MY = /2 x pr(u) x MET x (1 —cosA¢ (i, MET)). (9.41)

Zbog zahtjeva koriStenog u okidacu u selekciji se koristi uvjet M¥V > 70 GeV-a.
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Wy selekcija

U selekciji Wy dogadaja zahtjeva se postojanje barem jednog mionskog kandidata transverzalnog
impulsa pt > 35 GeV-a koji zadovoljava kriterije navedene u paragrafu Ako postoji do-
datni mionski kandidat transverzalne koli¢ine gibanja pt > 10 GeV-a i pseudorapiditeta || < 2.4

dogadaj se odbacuje kako bi se smanjila Drell-Yan pozadina.

Transverzalna masa W bozona mora zadovoljavati uvjet M¥/ > 70 GeV-a, 1 u dogadaju mora posto-
jati barem jedan fotonski kandidat transverzalne energije ET > 15 GeV-a koji zadovoljava kriterije
navedene u paragrafu [9.4.2] Ako postoji vise fotonskih kandidata izabire se kandidat s najvecom

energijom.

Wy selekciju zadovoljava 5014(5795) dogadaja u uzorku podataka 2011A(2011B). Ocekivani broj

dogadaja u signalu i pozadini odreden je pomocu simulacije i prikazan u Tablici[9.4]

Tablica 9.4: Broj selektiranih Wy — pvy dogadaja u podacima i simulaciji za uzorak podataka 2011A (2.3
fb~1), 2011B (2.7 fb~") i ukupni uzorak 2011A+2011B (5.0 fb~1).

udarni presjek(pb) | Broj dogadaja (2011A) | Broj dogadaja (2011B) | Broj dogadaja (2011A+2011B)
Wy — uvy 137.3 2097.4+£33.3 2252.5+£34.0 4341.7+55.9
Wy— vy 21.41 11.9+£1.9 18.0+2.4 28.8+3.5
W+mlazevi 31314 1701.4+54.0 2261.3+62.2 3945.94+95.9
Z+mlazevi 3048 59.4+£49 78.4+5.5 138.2+8.6
Z+y—lly 41.37 154.7+10.5 195.5+11.6 349.2£18.3
tf+mlazevi 157.5 548+34 59.0+3.4 1142+5.6
tfy 0.444 17.24+0.6 19.44+0.6 36.7+1.0
Incl. u QCD 84679.3 0.0+0.0 0.0+0.0 0.04+0.0
Y+ jets by pr 0.0+0.0 0.0+0.0 0.0+0.0
wWw 5.7 14.84+0.6 15.74+0.6 30.5+1.0
Wz 0.6 0.24+0.0 0.2+0.0 0.4+£0.0
zZ 0.06 0.0+0.0 0.0+0.0 0.0+0.0
simulacija (ukupno) 4111.9+64.6 4900.0+72.2 8985.6£113.0
podaci 5014 5795 10809

Efikasnost selekcije i geometrijski gubitci

Efikasnost selekcije i gubitci do kojih dolazi zbog konacne veli¢ine detektora (% = A - €, odre-
deni su analizom simuliranih W7y dogadaja. Kako se efikasnost u podacima i simulaciji razlikuje,

uvodi se korekcijski faktor pe s = EL kojom se ova razlika uzima u obzir.
E gen
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Efikasnosti selekcije fotona i miona odredene su iz mjerenih podataka tzv. ’tag-and-probe’ meto-

dom, dok je efikasnost zahtjeva M;V > 70 GeV-a odredena metodom opisanom u [29].
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9.4.3 Pozadinski dogadaji

Pozadinskim dogadajima koji zadovoljavaju Wy — uvy selekciju, najviSe doprinose dogadaji u
kojima je hadronski mlaz pogreSno identificiran kao foton. Ovoj pozadini doprinose sljedeci pro-

cesi:

e W+mlazevi, gdje je mlaz pogresno identificiran kao foton,

e Z+mlazevi, gdje jedan od leptona iz Z raspada nije detektiran, a mlaz je pogresno identificiran

kao foton,

e tt+mlazevi, gdje se jedan od W bozona iz tt raspada leptonski, a mlaz je pogresno identificiran

kao foton.
Doprinos ovih hadronskih procesa procjenjen je iz podataka pomocu dvije metode, metode predlo-
Zaka 1 metode omjera, koje su opisane u paragrafu9.4.3

Drugi procesi s dva bozona u kona¢nom stanju takoder mogu doprinjeti pozadini ukoliko je elektron

pogresno identificiran kao foton. Ova pozadina nije znacajna i odredena je iz podataka.

Pozadini doprinose i slijedeci procesi:

krivo identificirani lepton iz y+mlaz procesa,

Wy — 7vy gdje se T raspada na uvy,

7y dogadaji,

tty dogadaji.

Njihov doprinos je puno manji od doprinosa procesa W+mlazevi, te je odreden iz simulacije.
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Pozadina od mlazeva pogresno identificiranih kao fotoni

Dominantan dio pozadine Wy — uvy procesa Cine dogadaji u kojima je mlaz pogresSno identificiran

kao foton. Ovoj pozadini najviSe doprinosi proces W-+mlazevi.

Metoda predlozaka U metodi predloSka koristi se Ojpin raspodjela kao diskriminirajuca varija-
bla na kojoj se provodi dvokomponentna prilagodba signala i pozadine. Oblik raspodjele signala
i pozadine odreden je za razliCite vrijednosti transverzalne energije fotona, E%/: 15 —20 GeV-a,
20 — 25 GeV-a, 25 — 30 GeV-a, 30 — 35 GeV-a, 35 — 40 GeV-a, 40 — 60 GeV-a, 60 — 90 GeV-a,
1 90 — 500 GeV-a za podatke 2011A i 2011B, te 90 — 120 GeV-a i 120 — 500 GeV-a za podat-
ke 2011A+2011B. Oblici raspodjela posebno su odredeni za fotone rekonstruirane u centralnom

dijelu detektora (|n| < 1.4442) i u bo¢nim dijelovima (1.556 < |n| < 2.5).

Oblik raspodjela signala, odreden je iz simuliranih W7y dogadaja. Oblik raspodjele dobiven iz simu-
lacije usporeden je s oblikom Ojyiy raspodjele mjerenih Z — ee dogadaja. Usporedba je prikazana
na Slici@, gdje se uoCava pomak izmedu Gy raspodjela u podacima i simulaciji. Stoga je Oipin
raspodjela pravih fotona dobivena iz simulacije, pomaknuta prema manjim vrijednostima za iznos
0.9%107% (0.8x1074)i 2.1x10™* (1.9%x10~*) u centralnom dijelu detektora i boénim dijelovima

u2011A (2011B) uzorku podataka.

Oblici 0jpin raspodjela za pozadinu, koju Cine pogresno identificirani hadronski mlazevi, dobiveni
su iz podataka koriStenjem dogadaja koji sadrze mlazeve. Fotonski kandidati selektirani su kao
rekonstruirani fotoni koji prolaze selekciju definiranu u paragrafu izuzev zahtjeva na Oipip »
te se za razliku od zahtjeva na izolaciju zahtjeva anti-izolacija u svrhu smanjenja doprinosa pravih

fotona. Zahtjev anti-izolacije izabran je tako da nije koreliran sa Giyiy -

Na 0iyin raspodjelu dobivenu iz podataka prilagodava se funkcija oblika:

f(Ginin) = NsS(Oinin) +NpB(Cinin), (9.42)
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Slika 9.13: ©iyiy raspodjele za centralni (lijevo) i bo¢ne dijelove detektora (desno) za simulirane (zeleni
histogram) i mjerene dogadaje (tocke) za uzorak 2011A (gore) i 2011B (dolje).
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gdje su Ng i Np ocekivani doprinosi signala i pozadine, a S(Giyin) i B(Oinin) raspodjele signala i

pozadine. Oblici raspodjela izgladeni su primjenom metode opisane u [28]].

Vrijednosti parametara Ng i Np dobivaju se minimiziranjem izraza:

gdje je N ukupni broj dogadaja u podacima.

Rezultati prilagodbe za vrijednosti transverzalne energije fotona 15 < E%/ < 20 GeV-a prikazani su

na Slici[9.14]

170



CMS Preliminary, L=5fb? \s=7TeV
Lr') m T T T I T T T T I T T T T |*
N~
8 , i
O 1000 ECAL barrel —
o L i
5 I 15 GeV < E < 20 GeV
= I —e— Data |
G>') i — Fitted 1
HG_J —— Background
@) 500* ]
a - .
O L i
&
= , i
Z - i
ceos coobosl
0 0.03
0-ir]ir]
CMS Preliminary, L=5fb? \s=7TeV
Lr') 200_| L I L I L I L I L I LI
N~ C ]
S 180F 3
o B ECAL endcap ]
o 160; E
E ]_40;— 15 GeV < E\; <20 GeV f;
cC 120; % —e— Data {
C|>_) C — Fitted 7
HG_J 100; —— Background E
© 80F =
(<) C 3
Q0 60: ]
E 40F g
= - .
Z 20F -
O: 111 I 111 I 111 I 19| 5
0.02 0.03 0.04 0.05 0.06 0.07
0-ir]ir]

Slika 9.14: 0;y;, raspodjele za selektirane Wy — uvy dogadaje u podacima (crne tocke) za fotonske kandi-
date transverzalne enrgije 15 < E%/ < 20 GeV-a u centralnom (gore) i bo¢nim dijelovima detektora (dolje) za
uzorak 2011A+2011B. Rezultati prilagodbe prikazani su plavom linijom dok je doprinos pozadine prikazan
crvenom linijom.
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Metoda omjera Metoda omjera koriStena je za provjeru rezultata dobivenih metodom predlo-
Zaka u podrucju E%/ > 60 GeV-a, u kojem je metoda predlozaka podlozna velikim statistickim
pogreSkama. Mlazevi s velikim udjelom elektromagnetskog signala koji ostavljaju slican potpis
u detektoru kao fotoni nazivaju se mlazevi slicni fotonu (plJet, od engl. photon-like jet). Oni su
selektirani kao fotonski kandidati koji ne zadovoljavaju izolacijski ili iy zahtjev a imaju veci

udio elektromagnetskog doprinosa od veCine mlazeva. U metodi se odreduje omjer R):

__vjerojatnost da mlaz zadovoljava selekciju fotona

= (9.44)

vjerojatnost da mlaz zadovoljava selekciju plJet -

Doprinos pozadine mlazeva koji su pogresno identificiranih kao fotoni, Nwimlazevi,» 0dreduje se
pomodu izraza:

Nwimlazevi = Rp : NW+leet7 (945)

gdje je Nwypuer broj dogadaja u podacima s identificiranim W bozonom 1 barem jednim "plJet"

objektom.

Primjenom metode omjera i metode predloZaka dobivaju se suglasni rezultati. Stoga je razlika
rezultata dvije metode koriStena kao dodatna sistematska pogreska na rezultat dobiven metodom

predloZaka.
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Tablica 9.5: Broj pozadinskih dogadaja koji ¢ine pogresno identificiranih mlazeva odredeni metodom pred-
loZaka za uzorke 2011A 1 2011B.

E%’ , GeV [ Procjenjena pozadina (2011A) [ Procjenjena pozadina (2011B)
Centralni dio detektora
15-20 834.8 £ 22.5(stat.) £ 28.7(syst.) 1006.4 £ 24.4(stat.) £ 40.7(syst.)
20-25 317 £ 15.5(stat.) 4 16.4(syst.) 348.1 £+ 15.9(stat.) £ 21.2(syst.)
25-30 142.9 £ 10.4(stat.) £ 9.5(syst.) 164.8 £ 11.4(stat.) £ 12.3(syst.)
30-35 98.5 £ 8.6(stat.) £ 8.1(syst.) 120.4 £ 9.6(stat.) & 11.9(syst.)
35-40 51.8 & 6.5(stat.) £ 5(syst.) 66.9 £ 8.1(stat.) £ 7.4(syst.)
40-60 75.1 £ 8.4(stat.) £ 9.4(syst.) 105.4 £ 10.1(stat.) £ 13.7(syst.)
60-90 27.1 + 5.2(stat.) £ 5.4(syst.) 41.6 £ 7.3(stat.) £ 8.6(syst.)
90-500 20.3 £ 6.8(stat.) £ 16.7(syst.) 34.5 £ 9.8(stat.) £ 28.5(syst.)
MET korelacija + 203.8(syst.) + 245.4(syst.)

A(metoda predlozaka, metoda omjera)

+ 1.6 (syst.)

+ 50.3(syst.)

Ukupno

1567.5 £ 33.4(stat.) & 207.9(syst.)

1888.1 & 37.2(stat.) &= 257.5(syst.)

Bocni dijelovi detektora

15-20 417 £+ 12.6(stat.) + 29(syst.) 430.7 £+ 12.4(stat.) & 40.3(syst.)
20-25 185.1 £ 9.4(stat.) £ 15.3(syst.) 236.3 £ 10.4(stat.) &= 20.8(syst.)
25-30 81.6 £ 6.6(stat.) £ 9.1(syst.) 140.5 £ 9.3(stat.) £ 14.9(syst.)
30-35 56.2 + 5.7(stat.) £ 7.4(syst.) 51 + 5.8(stat.) £ 9.4(syst.)
35-40 44 + 5.1(stat.) £+ 4.9(syst.) 31 4+ 4.9(stat.) £ 6.3(syst.)
40-60 40.3 £ 6.4(stat.) £ 7.6(syst.) 51.9 £ 7.1(stat.) £+ 11.3(syst.)
60-90 18.2 + 4.3(stat.) £ 4.3(syst.) 22.2 + 5.3(stat.) £ 7.1(syst.)
90-500 7.3 £ 5.3(stat.) £ 12.3(syst.) 16.5 £ 6.6(stat.) £ 20.9(syst.)
MET korelacija 4 59.5(syst.) =+ 68.6(syst.)

A(metoda predlozaka, metoda omjera)

+ 13.4 (syst.)

+ 21.3(syst.)

Ukupno

849.7 £ 20.9(stat.) £ 72.0(syst.)

980.1 £ 23.0(stat.) & 90.4(syst.)

Centralni dio + boc¢ni dijelovi detektora

15-20 1251.8 4 25.8(stat.) £ 40.8(syst.) 1437.1 £ 27.4(stat.) £ 57.3(syst.)
20-25 502.1 £ 18.1(stat.) & 22.4(syst.) 584.4 £ 19.0(stat.) £ 29.7(syst.)
25-30 224.5 £ 12.3(stat.) £ 13.2(syst.) 305.3 £ 14.7(stat.) £ 19.3(syst.)
30-35 154.7 4+ 10.3(stat.) £ 11.0(syst.) 171.4 £+ 11.2(stat.) £ 15.2(syst.)
35-40 95.8 £ 8.3(stat.) £ 7.0(syst.) 97.9 £ 9.5(stat.) £ 9.7(syst.)
40-60 115.4 + 10.6(stat.) & 12.1(syst.) 157.3 £ 12.3(stat.) &= 17.8(syst.)
60-90 45.3 £ 6.7(stat.) £ 6.9(syst.) 63.8 £ 9.0(stat.) £ 11.2(syst.)
90-500 27.6 £ 8.6(stat.) £ 20.7(syst.) 51 + 11.8(stat.) & 35.3(syst.)
MET korelacija 4 212.3(syst.) =+ 254.9(syst.)

A(metoda predloZaka, metoda omjera)

+ 11.8 (syst.)

+ 71.5(syst.)

Ukupno

2417.3 £ 39.4(stat.) £ 219.9(syst.)

2868.2 £ 43.7(stat.) & 276.8(syst.)

Rezultati
ci[9.15]1 u Tablicama Broj pozadinskih dogadaja dobiven primjenom metode predloZzaka
iznosi 2417.3 £ 39.4 (stat.) 4= 219.9 (syst.) za uzorak 2011A, 2868.2 + 43.7 (stat.) £ 276.8 (syst.)
za uzorak 2011B 1 5345.9 + 58.2 (stat.) 4= 482.6 (syst.) za uzorak 2011A+2011B.

Rezultati dobiveni primjenom metode predlozaka i metode omjera prikazani su na Sli-
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Slika 9.15: Broj pozadinskih dogadaja koje Cine iz pogres$no identificirani mlazevi, za centralni (lijevo) i
bocne dijelove detektora (desno). Rezultati dobiveni metodom predlozaka i metodom omjera prikazani su
crvenom odnosno plavom bojom. Zelenom bojom prikazan je broj pozadinskih dogadaja doiven iz simula-
cije.
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Tablica 9.6: Broj pozadinskih dogadaja koji dolaze iz pogresno identificiranih mlazeva odredeni metodom

predloZzaka za uzorak 2011A+2011B.

E%/ , GeV Procjenjena pozadina (2011A+2011B)
Centralni dio detektora
15-20 1876.4 4 32.4(stat.) £ 62.4(syst.)
20-25 688.2 + 22.3(stat.) + 37.8(syst.)
25-30 310.9 + 15.3(stat.) 4= 21.2(syst.)
30-35 217.6 + 13(stat.) £ 17.4(syst.)
35-40 116.7 £ 10.4(stat.) £ 11.1(syst.)
40-60 177.5 £ 13.1(stat.) = 22.1(syst.)
60-90 61.9 £ 7.8(stat.) &= 12.3(syst.)
90-120 13.3 4 4.5(stat.) 4= 4.2(syst.)
120-500 29.3 £ 10.2(stat.) £ 25.4(syst.)
MET korelacija 4 453.9(syst.)
A(metoda predlozaka, metoda omjera) 4 16.2 (syst.)
Ukupno 3491.8 4 49.1(stat.) £ 462.4(syst.)
Bocni dijelovi detektora
15-20 886.5 4 18(stat.) + 36.4(syst.)
20-25 420.1 £ 14(stat.) 4= 21.2(syst.)
25-30 210.7 £ 10.7(stat.) £ 16.3(syst.)
30-35 108.7 + 8.4(stat.) £ 10.8(syst.)
35-40 78.1 £ 7.5(stat.) 4 8.8(syst.)
40-60 94.8 £+ 10(stat.) 4= 10.1(syst.)
60-90 38.6 + 6.8(stat.) £ 6.3(syst.)
90-120 8.1 & 4.7(stat.) £ 2.2(syst.)
120-500 8.8 £ 7.0(stat.) &= 5.6(syst.)
MET korelacija £ 129.8(syst.)
A(metoda predlozaka, metoda omjera) + 9.2 (syst.)
Ukupno 1854.4 4+ 31.3(stat.) &= 139.1(syst.)
Centralni + boc¢ni dijelovi detektora
15-20 2762.9 4+ 37.1(stat.) &= 72.3(syst.)
20-25 1108.3 4 26.3(stat.) £ 43.3(syst.)
25-30 521.6 + 18.7(stat.) 4= 26.7(syst.)
30-35 326.3 + 15.5(stat.) 4= 20.5(syst.)
35-40 194.8 + 12.8(stat.) + 14.2(syst.)
40-60 272.3 £ 16.5(stat.) £ 24.3(syst.)
60-90 100.5 + 10.3(stat.) = 13.8(syst.)
90-120 21.4 £ 6.5(stat.) 4= 4.7(syst.)
120-500 38.1 £ 12.4(stat.) + 26.0(syst.)
MET korelacija + 472.1(syst.)
A(metoda predlozaka, metoda omjera) + 7.0 (syst.)
Ukupno 5345.9 4 58.2(stat.) £ 482.6(syst.)
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Pregled pozadina

Sve procjenjene pozadine sumirane su u Tablici [9.7] za uzorke 2011A i 2011B te u Tablici [9.8] za
uzorak 2011A+2011B.

Tablica 9.7: Procjenjene pozadine u Wy — uvy konacnom stanju za uzorke 2011A i 2011B.

Procjenjena pozadina
Izvor pozadine 2011A [ 2011B
Lazni fotoni 2417.3 £ 39.4 (stat.)+ 219.9 (syst.) | 2868.2 £ 43.7 (stat.) = 276.8 (syst.)
(mlazevi)
Lazni fotoni 44.0 + 1.0 (stat.) £ 3.3 (syst.) 47.3 + 1.0 (stat.) £ 3.4 (syst.)
(elektroni)
Lazni leptoni zanemarivo zanemarivo
W(tv)y 11.9 & 1.9 (stat.) & 1.1 (syst.) 18.0 & 2.4 (stat.) + 1.8 (syst.)
Zy 149.8 £ 10.5 (stat.) 9.0 (syst.) 188.6 £ 11.6 (stat.) £ 11.3 (syst.)
tty 16.9 + 0.6 (stat.) = 8.5 (syst.) 18.9 + 0.7 (stat.) 9.5 (syst.)

Tablica 9.8: Procjenjene pozadine u Wy — vy kona¢nom stanju za uzorak 2011A+2011B.

Procjenjena pozadina
Izvor pozadine 2011A+2011B

Lazni fotoni 5345.9 £ 58.2 (stat.) & 482.6 (syst.)
(misid. mlazevi)

Lazni fotoni 91.4 + 1.4 (stat.) £ 4.7 (syst.)
(misid. elektroni)
Lazni leptoni zanemarivo
W(tv)y 28.9 + 3.4 (stat.) 4= 2.7 (syst.)
Zy 338.0 + 18.3 (stat.) £ 20.3 (syst.)
try 35.9 4+ 1.0 (stat.) & 17.9 (syst.)
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9.4.4 Rezultati

Broj dogadaja u signalu Ngje u odreduje se kao broj selektirantih Wy — uvy dogadaja u poda-
cima Nops umanjen za ocekivani broj dogadaja pozadine Ny, . Time se izraz za Wy udarni presjek

9.39|mozZe napisati u obliku:

Nobs — M bkg
= (9.46)
F - Pefi- L
Vrijednost N, odredena je iz izraza:
o mlazevi elektroni Y+mlazevi W(v)y 7y tty
Nsig = Nobs = Nokg — —Nokg  — Npkg ~Noke "™ Nokg — Mok (9.47)

gdje je Né?(lga‘ze"i pozadina koja dolazi od pogresno identificiranih mlazeva odredena metodom pred-

v lektroni : . . . v . P . Y+mlazevi .
lozaka, Ngkfg oM je pozadina koja dolazi od pogresno identificiranih elektrona, Noke je poza-

(v)

o 4 pozadina od procesa W(tVv)Y, szké pozadina od procesa Zv, a

dina od procesa Y+ jets, Nk‘ﬁi

Nglzlg pozadina od procesa tty.

Wy — uvy selekciju zadovoljava 5014(5795) dogadaja u uzorku 2011A(2011B), te ukupno 10809

dogadaja u uzorku 2011A+2011B, §to odgovara integriranom luminozitetu 4969.1 pb~!.

Vrijednosti svih parametara koristenih pri odredivanju udarnog presjeka prikazane su u Tablica-

mal9.9i[0.10

Dobivene mjerene vrijednosti udarnog presjeka iznose:
o(pp — Wy— uvy)(20114) = 37.4+ 1.3 (stat.) £ 4.3 (syst.) £ 0.8 (lumi.) pb.

o(pp — Wy— uvy)(2011B) = 38.7+ 1.3 (stat.) £ 4.8 (syst.) £ 0.9 (lumi.) pb.
o(pp — Wy — uvy)(20114 +2011B) = 37.5+ 0.9 (stat.) £ 4.4 (syst.) £ 0.8 (lumi.) pb.

Teorijski NLO udarni presjek odreden MCFM generatorom [34] iznosi 31.81 4 1.8 pb.
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Usporedbe kinematickih raspodjela u podacima i simulaciji nakon Wy — uvy selekcije prikazane
su na Slikama [9.16}0.18] dok su omjeri raspodjela prikazani na Slikama 9.19}0.21] Simulacija

pozadine skalirana je na vrijednost odredenu iz podataka.

Slika pokazuje rezultate mjerenja udarnog presjeka u usporedbi s teorijski predvidenim udar-

nim presjekom u NLO redu.
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Slika 9.16: Raspodjela transverzalnog impulsa miona (P# ), pseudorapiditeta miona (n*), nedostajuce tran-
sverzalne energije (MET), transverzalne mase W bozona (MTW ), tranverzalne energije fotona (E}/), pseudo-
rapiditeta fotona (n7), prostorne udaljenosti fotona i miona (dR(7, 1)), broja primarnih vrhova u dogadaju
(Number of good vertices), broja mlazeva u dogadaju (Number of selected jets), transverzalnog impulsa Wy
sustava (P;V "), broja dogadaja koji prolaze niz selekcijskih zahtjeva i razlike u kutu ¢ izmedu mlaza i fo-
tona (A¢(jet,7y)) za dogadaje koji zadovoljavaju Wy — uvy selekciju za simulirane (histogrami) i mjerene
dogadaje (tocke) za uzorak 2011A. 179
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Tablica 9.9: Parametri koriSteni pri odredivanju udarnog presjeka Wy — uvy za uzorke 2011A i 2011B.

Parametar [ Iznos (2011A) [ Iznos (2011B)

Nevent.i 50] 4 5795

NS Jets 2417.3 +39.4 (stat.) & 219.9 (syst.) | 2868.2 & 43.7 (stat.) & 276.8 (syst.)
Njpisid. electrons 44.0 4 1.0 (stat.) £ 3.3 (syst.) 473 4 1.0 (stat.) + 3.4 (syst.)
NJEe negligible negligible

N 11.9 4 1.9 (stat.) = 1.1 (syst.) 18.0 4 2.4 (stat.) = 1.8 (syst.)
kaﬁ 149.8 + 10.5 (stat.) & 9.0 (syst.) 188.6 + 11.6 (stat.) + 11.3 (syst.)
Nyl 16.9 4 0.6 (stat.) + 8.5 (syst.) 18.9 4 0.7 (stat.) £ 9.5 (syst.)
Nikg 2639.9 £ 40.8 (stat.) £ 220.2 (syst.) | 3141.0 £ 45.3 (stat.) £ 277.2 (syst.)
Nsig 2374.1 £ 81.7 (stat.) £ 238.0 (syst.) | 2654.0 £ 88.6 (stat.) &= 290.7 (syst.)
A €gen 0.0286 + 0.0015 (syst.) 0.0257 =+ 0.0013 (syst.)

Perf 0.9806 = 0.0226 (syst.) 0.9865 = 0.0247 (syst.)

[ dt 2262.6 + 49.8 (syst.) 2706.5 -+ 59.5 (syst.)

Tablica 9.10: Parametri koriSteni pri odredivanju udarnog presjeka Wy — uvy za uzorak 2011A+2011B.

Parametar [ Iznos (2011A+2011B)
Nevents 10809

N Jets 5345.9 + 58.2 (stat.) + 482.6 (syst.)
Npmisid. electrons 91.4 4 1.4 (stat.) & 4.7 (syst.)
NZ;;“S negligible

Ny 28.9 + 3.4 (stat.) & 2.7 (syst.)
N, 338.0 + 18.3 (stat.) & 20.3 (syst.)
Nyt 35.9 £ 1.0 (stat.) £ 17.9 (syst.)
Nokg 5840.1 & 61.1 (stat.) £ 483.4 (syst.)
Nsig 4968.9 + 120.6 (stat.) & 505.8 (syst.)
A Egen 0.0270 =+ 0.0014 (syst.)

Peff 0.9898 £ 0.0247 (syst.)

[ di 4969.1 & 109.3 (syst.)

Osim mjerenja udarnog presjeka u kinematickom podrucju E}/ > 15 GeV-aiAR(u,y) > 0.7 analiza

je provedena i u kinematskom podrudju E’T/ > 60 GeV-a1 E}/ > 90 GeV-a.

Mjereni udarni presjek za E}/ > 60 GeV-a iznosi:

o(pp — Wy — uvy)(20114 +2011B) = 0.76 £ 0.06 (stat.) £ 0.08 (syst.) == 0.02 (lumi.) pb.

Teorijski NLO udarni presjek za E}/ > 60 GeV-a odreden MCFM generatorom [34]] iznosi 0.58 +

0.08 pb.

Mjereni udarni presjek za E’T/ > 90 GeV-a iznosi:

o(pp — Wy — uvy)(2011A+2011B) = 0.248 £ 0.035 (stat.) £ 0.048 (syst.) &= 0.005 (lumi.) pb.
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Teorijski NLO udarni presjek za E}/ > 90 GeV-a odreden MCFM generatorom [34] iznosi 0.173 £
0.026 pb.

Tablica 9.11: Parametri koriSteni pri mjerenju udarnog presjeka Wy — uvy za E}' > 60 GeV-a i E}/ >
90 GeV-a za uzorak 2011A+2011B.

Parametar E%/ > 60 GeV E%/ > 90 GeV

Nevents 610 + 24.7 (stat.) 230 + 15.2 (stat.)

N,’)’,’CIWW 159.9 + 17.4 (stat.) 4 30.0 (syst.) | 59.4 + 14.0 (stat.) + 26.5 (syst.)

Ngektront 21.2 £ 0.6 (stat.) & 1.1 (syst.) 7.2 £ 0.4 (stat.) £ 0.4 (syst.)
Y+mlazevi . .

Ny, o zanemarivo zanemarivo

Ny 3.2 + 1.2 (stat.) & 0.3 (syst.) 04 0.0 (stat.) =+ 0.0 (syst.)

szkg 19.4 £+ 4.4 (stat.) = 1.2 (syst.) 10.9 £ 3.2 (stat.) &= 0.7 (syst.)

N;tk};, 9.7 + 0.5 (stat.) + 4.9 (syst.) 5.3 & 0.4 (stat.) 4= 2.7 (syst.)

Nsig 396.7 + 30.5 (stat.) 4= 37.4 (syst.) | 147.2 + 20.9 (stat.) 4= 27.2 (syst.)

A&y wy—ivy 0.105 £ 0.005 (syst.) 0.120 £ 0.006 (syst.)

Perf 0.993 £ 0.025 (syst.) 0.993 £ 0.025 (syst.)

[ Z dt 4969.1 + 109.3 (syst.) 4969.1 + 109.3 (syst.)

Vrijednosti parametara koriStenih pri mjerenju udarnog presjeka za E}/ > 60 GeV-ai E%/ > 90 Ge V-

a, prikazani su u Tablici[0.11]
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N Y

oxB(Wy — pvy): 2011A —_————. E; >15GeV,AR>0.7
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theo
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Slika 9.22: Mjereni udarni presjek Wy — uvy (lijevo) te omjer mjerenog udarnog presjeka i udarnog pre-
sjeka predvidenog MCFM generatorom (desno).
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9.4.5 Kombinacija rezultata s elektronskim kanalom

Paralelno s mjerenjem Wy udarnog presjeka u mionskom kanalu koje je prikazano u ovom radu,
izvrSeno je 1 mjerenje udarnog presjeka u elektronskom kanalu. Mjereni udarni presjek u elektron-

skom kanalu iznosi:

o(pp — Wy — evy) = 36.6+ 1.2 (stat.) = 4.3 (syst.) &= 0.8 (lumi.) pb.

Primjenom BLUE metode (od engl. Best Linear Unbiased Estimator) [35]] odreden je kombinirani

udarni presjek:

o(pp — Wy — Lvy) =37.01+0.8 (stat.) £ 4.0 (syst.) £ 0.8 (lumi.) pb.

Tablica 9.12: Prikaz mjerenih vrijednosti W7y udarnog presjeka u mionskom i elektronskom kanalu.

Wy

Electronski kanal (pb) Mionski kanal (pb)
E%/ > 15 GeV 36.6 £ 1.2(stat.) £4.3(syst.) = 0.8(lumi.) 37.5£0.9(stat.) £ 4.4(syst.) = 0.8(lumi.)
Kombinacija 37.0£0.8(stat.) £4.0(syst.) == 0.8(lumi.) pb
NLO predvideno 31.81+1.80 (pb)
E%’ > 60 GeV 0.77 £0.07(stat.) + 0.13(syst.) £ 0.02(lumi.) ‘ 0.76 +0.06(stat.) +0.08(syst.) + 0.02(lumi.)
Kombinacija 0.76 £ 0.05(stat.) == 0.08(syst.) £ 0.02(lumi.) pb
NLO predvideno 0.58 £0.08 (pb)
E%’ > 90 GeV 0.173 +0.034(stat.) &= 0.037(syst.) = 0.004(Iumi.) ‘ 0.248 +0.035(stat.) = 0.048(syst.) = 0.005(lumi.)
kombinacija 0.200 = 0.025(stat.) = 0.038(syst.) = 0.004(lumi.) pb
NLO predvideno 0.173£0.026 pb

Svi rezultati mjerenja udarnog presjeka u elektronskom i mionskom kanalu prikazani su na Slika-

ma[0.23-9.23]

Mjereni udarni presjek za E’T/ > 60 GeV-a u elektronskom kanalu iznosi:

o(pp — Wy — evy)(2011A+2011B) = 0.77+£0.07 (stat.) +0.13 (syst.) = 0.02 (lumi.) pb,

dok kombinirani udarni presjek elektronskog i mionskog kanala iznosi:

o(pp — Wy — €vy)(2011A +2011B) = 0.76 £ 0.05 (stat.) +0.08 (syst.) == 0.02 (lumi.) pb.
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Slika 9.23: Mjereni udarni presjek Wy — evy (lijevo) te omjer mjerenog udarnog presjeka i udarnog
presjeka predvidenog MCFM generatorom (desno).
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Slika 9.24: Mjereni udarni presjek Wy — [vy (lijevo) te omjer mjerenog udarnog presjeka i udarnog pre-
sjeka predvidenog MCFM generatorom (desno) za kombinirani mionski i elektronski kanal.
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Mjereni udarni presjek za E}/ > 90 GeV-a u elektronskom kanalu jednak je:

o(pp — Wy — evy)(2011A +2011B) = 0.173 £0.034 (stat.) = 0.037 (syst.) = 0.004 (lumi.) pb.

Udarni presjek dobiven kombinirenjem elektronskog i mionskog kanala jednak je:

o(pp — Wy — £vy)(2011A +2011B) = 0.200 & 0.025 (stat.) £ 0.038 (syst.) £ 0.004 (lumi.) pb.

Svi mjereni udarni presjeci s odgovarajuéim pogreskama i teorijski predvideni udarni presjeci pri-

kazani su u Tablici[9.12] te na Slici[9.26]
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Slika 9.25: Pregled mjerenih udarnih presjeka Wy procesa.
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Slika 9.26: Mjereni i teorijski predvideni udarni presjeci za Wy proces.
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9.5 Opazanje radijacijske amplitude vrijednosti nula u Wy

procesu

Za opazanje radijacijske amplitude vrijednosti nula potrebna je, uz selekcijske uvjete koriStene pri
mjerenju udarnog presjeka uvesti i dva dodatna zahtjeva. Kao $to je spomenuto u paragrafu [0.2.3]
koristen je zahtjev da u dogadaju ne postoji hadronski mlaz transverzalnog impulsa p’}”“z > 30 GeV-
a, te zahjev da je transverzalna masa UMETy (uv7y) sustava veéa od 110 GeV-a, M#METY > 110

GeV-a.

9.5.1 Rezultati

Raspodjele Q; x An za dogadaje koji zadovoljavaju Wy — uvy selekciju za simulirane i mjerene
dogadaje, te omjeri raspodjela za mjerene i simulirane dogadaje za uzorak 2011A+2011B prikazani
su na Slikama i Q; je naboj miona a An razlika pseudorapiditeta fotona i miona. Udubina

oko vrijednosti nula se jasno opaZza u podacima.

9.5.2 Kombinacija rezultata s elektronskim kanalom
Raspodjele Q; x An, za dogadaje koji zadovoljavaju Wy — [vy selekciju za simulirane i mjere-

ne dogadaje za uzorak 2011A+2011B dobivene kombiniranjem mionskog i elektronskog kanala

prikazani su na Slici[9.29] Udubina oko vrijednosti nula je jasno vidljiva.
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Slika 9.27: Q; x An raspodjela za dogadaje koji zadovoljavaju Wy — uv7y selekciju za simulirane (histo-
grami) i mjerene dogadaje (tocke) za uzorak 2011A (lijevo), uzrak 2011B (sredina) i uzorak 2011A+2011B

(desno).
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Slika 9.28: Omjer Q; x An raspodjele za dogadaje koji zadovoljavaju Wy — vy selekciju za mjerene i
simulirane dogadaje za uzorak 2011A (lijevo), uzorak 2011B (sredina) i uzorak 2011A+2011B (desno).
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CMS Preliminary, L =5 fb™ \s =7 TeV CMS Preliminary, L = 5 fb™ Vs =7 TeV
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Slika 9.29: (Q; x An raspodjele dobivene kombiniranjem elektronskog i mionskog kanala za dogadaje
koji zadovoljavaju Wy — [v7y selekciju za simulirane (histogrami) i mjerene dogadaje (tocke) za uzorak
2011A+2011B. Broj simuliranih dogadaja u signalu skaliran je na mjereni broj dogadaja u signalu. Na
desnoj raspodjeli oduzet je doprinos pozadine. Pogreske ukljucuju statisticke i sistematske pogreske.
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9.6 Trostuka bazdarna vezanja

9.6.1 Statisticki uvod

Jedan od efekata anomalnih trostrukih bazdarnih vezanja je povecanje Wy udarnog presjeka na
velikim vrijednostima energije partona u sudaru §. Rezultat je povecan broj dogadaja s bozonima
s velikom koli¢inom gibanja. Posto je koli¢ina gibanja fotona opservabla osjetljiva na aTGC, ras-
podjela E%/ u podrucju E%/ > 40 GeV-a koriStena je za mjerenje aTGC parametara. Postavljene su
gornje granice na vrijednosti aTGC parametara usporedujuc¢i mjerenu E%/ raspodjelu sa odgovara-

juc¢om E%/ raspodjelom simuliranom za razli¢ite vrijednosti aTGC parametara.

Vjerojatnost mjerenja N dogadaja uz ocekivani broj dogadaja d dana je Poissonovom raspodjelom:

dNe
p(N;d) = N (9.48)

d je zbroj signala i pozadine koji su neovisno modelirani:
d=p s 6,0%)+b(6), (9.49)

gdje su vrijednosti signala s(&, 6,0 ) i pozadine b(6,) odredene s vrijednostima aTGC para-
metara ¢ i odgovarajuéim pogreSakama signala 6. integriranog luminoziteta 6}, 1 pozadine 517-
Parametar 1 je tzv. jaCina signala. aTGC signal dobiven je iz simulacije dok je pozadina odredena

iz podataka i simulacije kao $to je opisano u paragrafu[9.4.3]

Vrijednosti signala i pozadine izraZene su kao:

s(6t,6,,0) = for - fo ' -NSE (@), (9.50)

b(6,) = fps - NOXe. 9.51)
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Ovdje su NS¢ i NBXE o&ekivani srednji broj dogadaja signala i pozadine, f« je relativna vrijednost

“ . . . . . Syst . . . . Sy t . v
pogreSke na integrirani luminozitet, fg; 2 relativna pogreSka na signal i fp; . relativna pogreSka na

pozadinu. Za pogreske je pretpostavljena log-normalna raspodjela.

Za svaki binu E%/ raspodjeli s brojem mjerenja N; funkcija vjerojatnosti definirana je kao produkt:

L(uvavé) :Hp(Nladl(uu’aaé))a (952)
i
sa Poisson raspodjelom p definiranom u 9.48|1
6 = (65,6)). (9.53)
Granice na aTGC parametre postavljene su koriStenjem varijable:
tha = —2mInA(u,a) (9.54)
gdje je A(u, &) definiran kao:
L(w, .8
A, a) = 20 9.55)

6 je najvjerojatniji estimator od 6 za dani W,afli 6 su najvjerojatnini estimatori od u i 6.

Hipoteza s odredenom aTGC vrijednoscu se iskljucuje ako je omjer p-vrijednosti:

cL, = sth (9.56)
1—pp

manji od unaprijed zadane vrijednosti. Vise detalja nalazi se u [37].
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Tablica 9.13: Jednodimenzionalne 95% C.L. mjerene granice na parametre WW y vezanja ukljucujuéi kom-
binirane rezultate za elektronski i mionski kanal.

AKY AY

Wy —evy | [-0.45,0.37] | [-0.059,0.046]
Wy — uvy | [-0.46,0.34] | [-0.057,0.046]
Wy —lvy | [-0.38,0.29] | [-0.050,0.037]

9.6.2 Simulacija signala

aTGC signal simuliran je sa SHERPA [3]] generatorom dok je za simulaciju W y+n mlazeva (n < 1)
procesa u detektoru koriSten PYTHIA [4] generator. Dva aTGC parametra, Aky 1 ;ty, varirana su

dok je za g{ parametar koriStena vrijednost predvidena Standardnim modelom.

9.6.3 Rezultati

Slika prikazuje raspodjelu transverzalne mase fotona E%/ u podacima i simulaciji te ocekivani

izgled signala za vrijednosti aTGC parametara Aky = 0.41 A, = 0.0.

Podaci ne pokazuju znacajno odstupanje od ocekivanja SM-a. Kako aTGC signal nije opaZen pos-
tavljene su gornje granice na vrijednosti aTGC parametara. Dvodimenzionalne 95% C.L. granice
prikazane su na Slici[9.31] Pripadajue jednodimenzionalne granice prikazane su na Slikama[9.32]

i 0.33|te u Tablici

9.6.4 Kombinacija rezultata s elektronskim kanalom

Kao 1 kod mjerenja udarnog presjeka, mjerenje aTGC parametara osim u mionskom izvrSeno je
1 u elektronskom kanalu. Rezultati dobiveni kombiniranjem dvaju kanala prikazani su na Slika-

ma[0.34} 0.36]i u Tablici
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Slika 9.30: Raspodjela transverzalne mase fotona (E%' ) za dogadaje koji zadovoljavaju Wy — uvy selekciju
za pozadinu (puni histogram), simulirane W7y dogadaje (crni isprekidani histogram), simulirani aTGC signal
za vrijednosti parametara Ak? = 0.4 i 4, = 0.0 (crveni histogram) i mjerene dogadaje (tocke) za uzorak
2011A+2011B. Posljednji bin ukljuc¢uje dogadaje s velikim E%/ vrijednostima.
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Slika 9.31: Dvodimenzionalne 95% C.L. oCekivane i mjerene granice na parametre WWy vezanja.
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Slika 9.32: Jednodimenzionalne 95% C.L. olekivane i mjerene granice na parametar Ax” WW y vezanja.
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Slika 9.33: Jednodimenzionalne 95% C.L. ocekivane i mjerene granice na parametar A, WWy vezanja.
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Slika 9.34: Dvodimenzionalne 95% C.L. oCekivane i mjerene granice na parametre WW y vezanja. Kombi-
nirani rezultati za elektronski i mionski kanal.
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Slika 9.35: Jednodimenzionalne 95% C.L. ofekivane i mjerene granice na parametar Ak WW y vezanja.
Kombinirani rezultati za elektronski i mionski kanal.
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Slika 9.36: Jednodimenzionalne 95% C.L. oCekivane i mjerene granice na parametar A¥ WWy vezanja.
Kombinirani rezultati za elektronski i mionski kanal.
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9.7 Usporedba s drugim rezultatima

Drugi detektor opée namjene na LHC-u, ATLAS, takoder je mjerio Wy proces u proton-proton
sudarima na 7 TeV-a. Rezultati objavljeni 2012. godine na podacima integriranog luminoziteta 1
fb~! [38], dobiveni su za dva razli¢ita mjerenja, inkluzivno i ekskluzivno. Pri mjerenju ekskluziv-
nog udarnog presjeka iz analize su iskljuceni dogadaji koji sadrze barem jedan mlaz trnsverzalnog
impulsa p’}d"z > 30 GeV-a. Udarni presjek mjeren je u faznom prostoru pIT > 25 GeV-a, p} > 25
GeV-a, |n| < 2.47,E} > 15/60/100 GeV-a, |n?| < 2.37. Rezultati mjerenja prikazani su na Sli-
ci Nedavno objavljeni novi ATLAS rezultati s podacima od 5 fb~! [39] prikazani su na
Slici[0.38]

Rezultati ATLAS eksperimenta, kao i rezultati dobiveni u ovom radu, pokazuju znacajno odstu-
panje od teorijskih predvidanja MCFM generatora u slucaju inkluzivnog udarnog presjeka Wy na
viSim vrijednostima E}/ . Drugi generatori kao $to je na primjer Sherpa [3] pokazuju bolje slaganje

s podacima.

Mjerenje aTGC parametara u ATLAS eksperimentu provedeno je na drugaciji naCin od mjerenja
provedenog u CMS eksperimentu. Umjesto E}/ raspodjele za postavljanje granica na aTGC pa-
rametre koriSten je ukupan broj dogadaja selektiran kao signal u podrucju transverzalne energije
E%/ > 100 GeV-a. Mjerenje je izvrSeno koristeCi inkluzivne, a ne ekskluzivne dogadaje. Jedno-
dimenzionalne granice na aTGC parametre koriste¢i podatke integriranog luminoziteta 1fb~! i
5fb~! prikazane suu Tablicii Slici Kao i u CMS eksperimentu nije uoc¢en aTGC signal,

stoga su postavljene gornje granice na vrijednosti parametara.

Tablica 9.14: Jednodimenzionalne 95% C.L. granice na parametre WWy vezanja ATLAS eksperimenta,
dobivene analizom podataka integriranog luminoziteta 1 b~

Measured Measured Expected

A 2 TeV o oo

Aky | [-0.36,0.41] [-0.33, 0.37] [-0.33, 0.36]
Ay | [-0.079, 0.074] | [-0.060, 0.060] | [-0.063, -0.055]

Mjerenja Wy procesa provedena su takoder i na Tevatronu, u proton-antiproton sudarima na energiji

sustava centra mase \/E = 1.96 TeV-a. Eksperimenti DO i CDF objavili su viSe Clanaka [40, 41}, 42,
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Slika 9.38: Rezultati inkluzivnog (lijevo) i ekskluzivnog (desno) mjerenja W7y udarnog presjeka ATLAS
detektorom koriste¢i podatke koji odgovaraju integriranom luminozitetu 5 fb~!.
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43| koji ukljucuju mjerenja udarnog presjeka i aTGC parametara. Mjerenja inkluzivnog udarnog
presjeka u dobrom su slaganju s NLO ocekivanjima. Na Tevatron energijama NLO korekcije su

mnogo manje nego na LHC energijama. Clanak [41]] ukljuuje i opaZzanje RAZ signala.

Elektron-pozitron sudarivaC na CERN-u, LEP, takoder je mjerio produkciju parova bozona. Na
niZoj energiji u sustavu centra mase od /s < 209 GeV-a takoder su postavljene granice na aT-
GC parametre. Pregled aTGC rezultata iz razli¢itih eksperimenata nalazi se u Tablici 0.15]i na
Slici [0.40] Rezultati mjerenja na razli¢itim enegijama kao i rezultati u kojima je koriSten ili nije

koriSten form-faktor ne mogu se direktno usporediti.

Tablica 9.15: Rezultati mjerenja aTGC parametara u razliCitim eksperimentima.

ATLAS DO LEP (kombinirano) CMS
(1fb—! data) | (koriSten form-faktor) (68% CL) (ovaj rad)
(/s =17 TeV) (/s =1.96 TeV) (/s <209 GeV) (/s =17 TeV)
Axy | [-0.33,0.37] [-0.29, 0.38] [-0.072, 0.017] [-0.38, 0.29]
Ay | [-0.060, 0.060] [-0.08, 0.08] [-0.049, -0.008] [-0.050, 0.037]
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9.8 Zakljucak

U ovom radu prezentirani su rezultati mjerenja inkluzivnog udarnog presjeka Wy — uvy koristeci
podatke prikupljene CMS detektorom integriranog luminoziteta 5.0 f6~!. Mjereni udarni presjek,
37.54+0.9 (stat.) £4.4 (syst.) £ 0.8 (lumi.) pb, u slaganju je s mjerenjem u elektronskom kanalu
W7y — evy te je za jednu standardnu devijaciju veci od predvidanja MCFM generatora. Nedavno
objavljeni rezultati ATLAS eksperimenta takoder pokazuju veéi inkluzivni udarni presjek od pre-
dvidenog MCFM generatora dok je ekskluzivno mjerenje u sukladu s o¢ekivanjima. Ovi rezultati

pokazuju da je NLO korekcija podcjenjena u izratunu MCFM generatora.

Efekt radijacijske amplitude vrijednosti nula uocen je u raspodjeli Q; X An nakon primjene dodatne
selekcije u kojoj se zahtjeva 0 hadronoskih mlazeva i visoka transverzalna masa sustava Uvy u

Wy — uvy dogadaju.

U podacima nema vidljivog signala kao posljedice anomalnih trostrukih bazdarnih vezanja, sto-
ga su postavljene gornje granice na vrijednosti parametara Ax? i A,. Jednodimenzionalne 95%
C.L. granice, —0.46 < Ak? < 0.34 i —0.057 < AY < 0.046, u slaganju su s mjerenjima ATLAS

eksperimenta.
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