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Abstract. Integrated quantum photonics is a key tool towards large scale quantum technologies. In this work
we present an AlGaAs-based photonic circuit for the on-chip generation of broadband orthogonally polarized
photons and the deterministic separation of the photons into separate spatial modes, facilitating their further
use in protocols. We demonstrate that 85% of the pairs are deterministically separated by the chip over a full
60 nm bandwidth and we assess the chip operation in the quantum regime via a Hong-Ou-Mandel experiment
displaying a raw visibility of 75.5% over the same full bandwidth.

1 Introduction

Integrated quantum photonics is a key tool towards large
scale quantum technologies. In this work we present an
AlGaAs-based photonic circuit for on-chip generation and
manipulation of broadband orthogonally polarized photon
pairs [1]. Among different platforms used for the
development of quantum photonic chips AlGaAs is
extremely interesting for integrability [2]. This material
has a direct bandgap, enabling monolithic integration of
active components [3] and presents a large electro-optic
effect that can be exploited for the manipulation of
photonic states [4].

In this work, broadband orthogonally polarized photon
pairs are generated by Type-II spontaneous parametric
down conversion in AlGaAs Bragg reflection waveguides
at telecom wavelengths and room temperature [5]. We
demonstrate that 85% of the pairs are deterministically
spatially separated via their polarization over a bandwidth
of 60 nm through a birefringent directional coupler. The
performances of the device as a quantum photonic chip
are assessed by implementing a Hong-Ou-Mandel
interferometer at the chip output.

2 Sample layout

The device combines a Type-II parametric source of
orthogonally polarized photons pairs followed by a
broadband polarizing mode splitter. In this design, the
splitting is achieved through a birefringent directional

coupler which is based on evanescently coupled
waveguides; by a careful design of an induced
birefringence, photons of the pair are separated, following
their different polarizations, in two different spatial modes

(fig.1).
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Figure 1: Chip layout showing the photon-pair generation
region and the polarization splitting region.

3 Results

We demonstrate a high efficiency of the polarization
splitting region design with 85% of the pairs
deterministically separated by the chip over a 60 nm
bandwidth (fig.2). The performances of the device as a
quantum photonic circuit are assessed by implementing at
the chip output a Hong-Ou-Mandel interferometer, one of

* . . . . . .
Corresponding author: sara.ducci@u-paris.fr / maria.amanti@u-paris.fr

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).


mailto:sara.ducci@u-paris.fr

EPJ Web of Conferences 287, 06015 (2023)
EOSAM 2023

https://doi.org/10.1051/epjconf/202328706015

the most fundamental nonclassical experiments in
quantum optics lying at the heart of many quantum logic
operations; the obtained raw visibility is 75.5% for a 60
nm-broad biphoton state (fig.3). These results, obtained at
room temperature and telecom wavelength represent a
significant step towards real-world quantum photonic
integrated circuits working in the broadband regime.
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Figure 2: Measured coincidences normalized to the total
number of coincidences measured in the following four
configurations, showing the efficient on-chip generation and
polarization splitting of the biphoton state: (a) Polarizer with
transmission axis aligned along x in arm a and with transmission
axis aligned along z in arm b; (b) Arm a blocked and arm b with
a PBS; (c¢) Arm b blocked and arm a with a PBS; (d) Reversed
configuration with respect to (a).
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Figure 3: Hong-Ou-Mandel interferogram measured at the chip
output.
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