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During a live time of 201 days eighty events were observed in the 
Kamioka n ucleon decay experimen t ,  with event vertices contained in a 
fiducial volume of 880 ton s .  Most o f  the events can b e  well interpreted 
as due to v interactions and the limits of T /B already exceed 103 1 
years ( 90% C . L . ) for most of the possible decay mode s .  Two candidate 
events were found after a tight kinematical cut while expected back­
grounds are smal l .  
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I .  INTRODUCT ION 
A large water Cerenkov detector was constructed and in operation at 

Kamioka ,  J apan since July , 1983 . The primary aim of the experiment is 
to detect possible nucleon decay , which is naturally predicted in grand 
uni.fica tion theories .  The unprecedented photo-sensitivity of this detec-
tor is extremely powerful to study the nucleon decay modes in detail . 
Thi.s aspect is very important because the expected nucleon decay modes 
are widely different among various versions of grand unification 
schemes .  

The principal background comes from interactions of v ' s  produced in 
the atmosphere by primary cosmic ray s .  High photo-sensitivity of the 
detector also serves to reduce background thanks to excellent resolu­
tions of event topology ,  kinematic quantities ,  etc . This report des­
cribes results of the first 201 days of observation after a brief 
introduction of the detector. 

I I .  DETECTOR 
The KAMIOKANDE detector ( Fig . 1 )  is located lOOOm underground ( 2700 

mwe ) in the Kamioka metal mine , about 300km west of Tokyo, 25 . 8° N 
geomagnetic latitude . It is a large cylindrical volume of water, 15 . 6m ¢  
x l.6mh , 3000 ton s ,  viewed by 1000 photomultipliers with 20" photosensi-
tive area , covering 20% of the entire inner surface of the tank . The 
fiducial volume is defined to be at least 2m inside from the PMT planes 
and is 880 tons in m a s s .  T h e  g ain o f  each PMT i s  adjusted , using 
0 . 6  GeV/c rr - at KEK as well as a Xe flash lamp system . Its r . m . s .  
spread i s  less than 8%. The long term stability of PMTs is constantly 
monitored with an Ar flash lamp + scintillator ball system and also by 
measuring the pulse height of cosmic ray muons penetrating vertically . 
The gain has been stable within 2% from July 1983 to April 1984 . The 
water transparency is also constantly monitored and the attenuation 
length averaged over PMT photosensitive region is more than 35m . The 
absolute normalization ( i . e .  photoelectron yield per unit energy deposi­
tion ) is therefore stable and is known to be 3 . 8± 0 .  3 photoelectrons/Me V .  

T h e  trigger is essentially made by asking for at least 1 10 photo­
electrons in all PMT , which corresponds to 30MeV for electron s .  
T his trigger i s  quite general and the trigger efficiency i s  almost 100% 
for most of the nucleon decay channels . The trigger rate is 1/2sec , 
about 70% being cosmic ray muon s .  

T h e  sum signal o f  the 1000 PMTs i s  digitized a n d  recorded u p  t o  100 
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µsec by two transient digitizers . µ + e decay signals are then clearly 

identified by looking at the second pulses and the efficiency is  found 

to be 70% . The g reat sen sitivity of the detector enables us to make 

detailed analyses on an event-by-event basis , e . g .  to count multiplicity 

of Cerenkov ring s ,  and to measure their directions and energies by 

performing the space recon struction . This information is quite powerful 

to p ick up possible nucleon decay candidates a s  well as to reject cosmic 

ray v backgrounds by , for example , imposing kinematical constraint s .  

I I  I. ANAL Y515 

The KAM I OKANDE detector w a s  fully ready in J uly 1 983 and the 

data-t aking began on July 6 , 1 98 3 .  W e  have s o  f a r  accumulated and 

analysed data up to April 5 , 1 984 , corresponding to 201 days of live 

time and 485 ton • years or 2. 9 • 1 0  3 2 nucleon years . 8. 7 • 10  6 of total 

triggers are subject to the reduction p roce s s ,  wh ich rejects penetrating 

cosmic ray µ , accidentals , external 

which clip the edges of the tan k .  

electric noises a n d  cosmic ray µ 

The reduction rate is altogether 

1 . 1 % .  The remaining 8. 9 · 1 0  4 event s ,  scanned by two independent groups 

of physicists and a fter space reconstruction , finally reduce to 80 events 

with event vertices contained in the fiducial volume . Out of 80 events , 

59 events have single Cerenkov rings and 21 events two or more 

Cerenkov ring s .  T h e  ring multiplicity dis tribution i s  shown i n  Fig . 2 .  

They are of course not all nucleon decay candidates b ut mostly from v 

interaction s .  A detailed Monte Carlo p rogram was developed to simulate 

v i nteraction s ,  taking into accound the cosmic ray v flux1 ) , v -cross 

sections2 )  and nuclear effects in 0 1  6 nuclei
3 )

. The comparison is  then 

made and shown in the same figure . Agreement is good . The total 

p hotoelectron distribution of all events is displayed in Fig . 3 .  The 

single ring events are divided into 5hower-type ( 5-type ) and Meson-type 

( M--type ) events . This  is possible by measuring diffuseness of Cerenkov 

ring s ,  namely electromagnetic showers have more multiple scattering 

than muons or charged pions , thus producing more diffuse ring s . Fig . 4 

shows how well  the 5/M-type can be identifi e d .  F ig . 5  shows momentum 

distributions of the M- and 5-type s ingle ring events . A s  seen in 

Fig .3 and 5, the distributions are also compared with expectations and 

the ag reement is  good . Therefore the general feature of the data is 

well explained by v interactions .  

I n  order to further reduce the v backgrounds and to p ick up 

pos sible nucleon dec ay candidates , the following selections are perform­

ed : 
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( A )  For 1-ring events , which might contain P +v k
+

( vµ + ) or 

p+v11 
+ 

candidates , we require M-type , µ +  e signal and 

226 <P µ < 246 MeV /c for p+vk 
+ 

( vµ 
+ 

) . Similary we require M-type 

and 400 <N ( rrng l < 700 for p +v11
+ 

N ( ring ) is the number 
pe pe 

of photoelectrons in the Cerenkov ring . A wide reg in of N
pe 

( ring ) must be used , since 11 
+ 

momenta a re distorted 

due to nuclear interactions of 11 + with water . 

( B )  For 2-ring events , which might contain N + l',
+

X ,  X � 11 , . . .  , 

We con sider rings with more than 50 photoelectrons only . Then the 

opening angle between 2 ring s ,  e > 120 ° , and µ+ e signals must op 
exist for N +µ 

+
x .  This simple criteria is , at present , sufficient to 

kill all the 2-ring event s .  

( C )  For 3 o r  more ring event s ,  which m ight contain N + lC 
+

x ,  X 11 ° , 
p , . . .  , we can impose tighter kinematic constraints , 

n amely , by a s signing p article species ( e/ y ,  iJ or 11 ) to each ring we 

calculate the total invariant m a s s  Mtot 
a n d  t h e  �otal residual 

momentum 6 p ,  and then impose 800 <Mto{ 1 100 MeV/c and 6 p < 400 

MeV/c . The p article assignment which satisfies these criteria must 

then be consistent with M/S-type if the M/S-type can be identified . 

We further require that the invariant masses of the mesons be 

600 < M  p < 900 , 600< M w ' K
''< 1000 , 400< MK < 600 , 1)00 < Mn< 650 , lOO< M 110< 200 

MeV/c
2

. µ+ e signals are required for N +µ+
X .  I n  Fig . 6  w e  plot 6 p 

vs Mtot , one point for each event , of a p articular p a rticle 

a s s ignment which gives minimum 

events satisfy the {', p-M
tot 

cut.  

below . 

M
tot - Mp l +['., P · 

T hese events will be 

One sees 2 

discussed 

( D )  for N +\I X other than P+ v k 
+

, v11 +, we do ;che similar analyses but 

will not describe them here . 

Exactly the same analyses are applied to the a rtificial data simulat­

ing v -interaction s so as to estimate v backgrounds . 

The detection efficiencies are obtained by doing the same analyses to 

the simulated nucleon decay data . The results for various decay modes 

a re listed in T ables and 2,  in which lower limits on T /B , nucleon 

lifetime/branching ratio , are calculated without subtracting the estimat-

ed b ackground s .  

c .  L . ) .  
One sees most of T /B already exceed 1 0  3 1 years ( 90% 
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IV. T WO CANDIDATE EVENTS 

We see from T able 2 that the number of events a fter selection is 

quite consi stent with v 
hand the tight selection 

backgrounds for N +v X modes . On the othe r  

c u t s  eliminate most of · v backgounds from N + .Q,  
+ 

Xmodes . Two events nevertheless survive the cut s .  We show these two 

e vents here . F ig . 7 shows the exploded view of the first event in which 

PMT w alls a re opened top and bottom and also at the side . The are a  

o f  e a c h  circle is p roportional t o  the number of photoelectrons observed 

by PMT . T hree well separated Cerenkov rings are clearly seen . The 

transient digitizer records a small second pulse b ut it is  j ust on the 

boundary b etween noise a,_nd a µ+ e signal . Existence of µ in the event 

is  therefore a mbiguous . The curves in Fig . 7 are the results of the fit 

a s suming a common vertex for the ring s .  Ring 2 and Ring 3 are 

consistent with M-type and S-type respectively . This event can be 

interp reted a s  a n ucleon dec ay in the following mode s :  

( a )  p +µ
+

n ( +yy) 

T he p a rticle a s s i g nments a re Ring 1 = y , Ring 2 = µ and 

Ring 3 = y . Then M yy = 590 ± 100 MeV , M
tot 

960 ± 150 MeV,  6 p 

360 ± 150 MeV/c . 

( b )  P+µ
+

K o ( +Ti o Ti o ) 

( c )  

Ring = TI 0 ( one of Y ' s  unobserve d ) ,  Ring 2 = ].J and 

Ring 3 = TI0(one of y ' s  unobserved ) .  M Ti o Ti o = 600 ±100 MeV,  Mtot 
960 ± 150 MeV , 6 p = 330 ± 150 MeV/c . 

+ -
n+e p 
Ring 

Ring 3 

TI 0 ( one of y ' s  unobserved ) ,  Ring 2 = TI and 
+ 

e 

M Ti o Ti o = 600 ± 150 MeV,  M
tot = 1090 ±150 MeV,  6 p = 360 ± 150 MeV/c . 

l n  order to e stimate v backgrounds we g e nerate V interactions of 2 

years equivalent and let them p ass through the selection cut s .  No 

events satisfy t he cuts . 

Fig . 8  shows the second candidate event . T his event h a s  5 rings and 

no µ+ e sig nal . M/S-type separation is not possible . When one assigns 

R ing 1 = e ,  Ring 2 = TI  , Ring 3 = y ,  ring 4 = y and Ring 5 = y , then 

M = 630 ± 150 MeV, M
t t = 890 ± 150 M eV , 6 p  = 270 ± 150 MeV/c . T hus Tiyyy o 

this event is consistent with p + e
+

w o or e
+ p -

. We do not take the 

incon sistency of TIYYY with w 0 or p seriously due to a high probability 

of TI -water interactions .  Expected v backgrounds are estimated again by 

g enerating v interactions of 2 years equivalent and letting them pass  
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through the analysis program . No event s atisfies the cuts for 

while two events remain a fter the cuts for e + w 0 • 

V .  CONCLUSION 
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The KAM I OKANDE detector h a s  been operated succes sfuly since July 

6,  1983 a n d  the data upto April  5 ,  1984 were analysed , corresponding to 

485 ton • years  or 2.  9 .  1 0  3 2 nucleon . years . T heir g eneral ch aracteristics 

can be well explained by v interactions . Lower limit s  on T /B were 

obtained for a n umber of possible decay modes and T /B > l0 3 1 years ( 90% 

C .  L . ) for most of them . Two events survived tighter kinem atical cuts 

while expected \! backgounds a re smal l .  T hey are con sistent with N-+µ + n 
( yy ) , µ  +K0 ( 1T 0 1T 0) ,  e+ p - a n d  N -+e+ w ,  e+p - respectively . 
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T able 1 .  T/B Lower Limit ( 90%CL ) 

- N -+ 9- +x - P reliminary 

T =20 1 . 3days 

Decay Mode s 

P-+e + 1T 0 
e o n  
e+ w 
+ 0 

e p 
e +K 0 0 ( 21T )  

* d 1T+ 1T- ) 
e+K 

p + µ+ 1T  � 
µ+n 0( 2  Y) 
µ+ po o 
µ+K ( 2  1l ) 

( 1T+ 1T- ) 
+ -n-+e TI 
+ -e P 

n+µ +TI 
µ +p -

c . B m  

0 . 4 5 
0 . 3 8 
0 . 2 9 
0 . 3 0 
0 . 1 6 
0 . 2 3 
0 . 2 0 
0 . 3 9 
0 . 2 7 
0 . 3 1 
0 . 1 1 
0 . 1 6 
0 . 2 5 
0 . 2 0 
0 . 2 8 
0 . 1 4 

WT=485 ton · y e a r s  

v -B . G . Candidate s T/B ( 90%C L )  

x10
3 1  

years 

0 0 3 . 2  
0 0 2 . 7  

0 . 6  1 1 .  2 
0 .  3 0 2 . 1  

0 0 
0 . 3  0 2 . 8  

0 0 1 .  4 
0 0 2 . 8  
0 1 1 . 1  
0 0 2 . 2  
0 1 
0 0 1 . 1  

0 . 1  0 1 .  4 
0 2 0 .  4 
0 0 1 .  6 

0 . 3  0 0 . 8  
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Table 2 .  /B Lower Limit ( 90%CL ) 

- N-+ vx - P reli minary 

T=201 . 3days WT=485 ton · years 

Decay Modes 

p-+ v 11+ 
v p+ 
VK+ ( µ+v ) 

( 11+ 11°) 
VK 

n+ Vrr 0 
v n ° ( 2 y ) 
vw 0 

( a )  - 0 v p - 0 
vK ( 11 

( 11+ 
\iK* 0 

0 11 0) 

11- ) 

E . Bm 

0 . 2 2 
0 . 4 5 
0 . 2 8 
0 . 16 
0 . 6 2 
0 .  3 4  
0 . 2 7 
0 . 3 6 
0 . 2 4 
0 . 1 2 
0 . 1 0 
0 . 5 4 

( a )  also for p � µ+ w
0 

v -B . G .  Candidates 1 / B ( 90%C L ) 

x 1 0
3 1 

years 

9 . 9  8 0 .  3 
1 .  8 2 1 .  4 
1 . 1  2 
0 . 2  1 1 . 1  
2 . 5  3 1 .  5 
0 .  2 0 1 .  9 

0 0 1 .  5 
0 . 6  1 1 .  2 
1 .  0 0 1 .  4 

0 0 
0 . 1  0 1 .  2 
2 . 5  3 1 .  0 


