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Abstract

Our work deals with developing effective Lagrangian descriptions to capture the

dynamics of excitations in magnetically ordered systems. Working in the continuum

limit of micromagnetism, where spins in ordered systems can be expressed as clas-

sical vectors, we study the nature of discrete soliton structures (domain walls and

vortices) and spin waves. In this thesis we present the field theories developed for

a planar ferromagnet and vortices, for the two sublattice antiferromagnet and the

three sublattice antiferromagnet. For the planar ferromagnet we show that the spin-

field theory is dual to a theory of electromagnetism in 2+1 dimensions with vortices

acting as centres of charge and flux. We argue that these charge-flux particles can

exhibit quantum statistics that switches between fermions and bosons. For the two

sublattice antiferromagnet we devise a method to obtain a gauge connection for the

Neel field, which does not carry spin angular momentum, and use it to generate a

Magnus force (Hall effect) on antiferromagnetic vortices. We end with a description

of the three sublattice triangular antiferromagnet in terms of normal modes of a tri-

angle. We explicitly derive the spin wave spectrum for these systems and extend it
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ABSTRACT

to more complicated stacked systems such as Mn3Ge. Our field theory reveals some

interesting connections including a mapping of the spin modes to an emergent theory

of elasticity. We end by deriving the additions made by external fields like magnetic

fields, strains and local anisotropies to the Lagrangian density.

Primary Reader and Advisor: Oleg Tchernyshyov

Secondary Reader: Collin Broholm
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Chapter 1

Introduction to micromagnetism

“If there was no spin there would be no physicists...”
- S Zhang (Suzy-speaks).

1.1 Dissertation outline

Magnetism is one of the oldest directions of scientific enquiry and was at least

pondered on in qualitative terms by the ancients in their account of lodestones and

their latter use in the science (and art) of navigation [1]. It also is perhaps one

of the most fruitful. Its study in conjunction with developments in electronic and

materials physics has been critical to the development of modern technology from the

ubiquitous electric motor to the trapping of information on plastic real estate. More

importantly, for the purpose of modern theoretical physics, electromagnetism is one

of the fundamental components of the standard model of physics and forms one of
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CHAPTER 1. INTRODUCTION TO MICROMAGNETISM

the pillars on which our constructions rest. Maxwell’s formulation of the theory in

terms of electric and magnetic fields is the prototypical field theory construction [2]

whose accuracy forms the benchmark of any new field theoretic construction.

The microscopic picture of magnetism arrived on the heels of quantum theory with

the realization that magnetism in materials is derived from the magnetic moments of

electrons and their quantum statistics (fermions). This mechanism is simple enough

to state but its details, in actual materials, are more often than not very complicated

and intricate; depending heavily on the lattice and its surrounding constituents. One

of the biggest current thrusts in the study of materials is to effectively understand

their magnetic orders, or lack therein, and the governing mechanism.

While a problem of tremendous theoretical and practical importance, we shall not

focus on this microscopic ordering in this thesis. Here our concern lies with systems

below a critical temperature Tc where they are already ordered. In the ordered regime

the individual magnetic moments can be taken to be classical angular momentum

vectors in spin/moment space. In this thesis the approach we take is to promote

these vectors to a vector field that lives on a sphere in 3 dimensions (or a circle in 2),

embedded in space-time (r, t). This forms the basis of micromagnetic field theory.

In the classical field theory that describes the dynamics of these spin vector fields

what is unique is the kinematic term. Unlike the field theory for classical angular

momentum which have a quadratic kinetic term originating from a moment of inertia,

the kinematic terms of spins are pure geometric phases [3, 4]. This has a profound

2



CHAPTER 1. INTRODUCTION TO MICROMAGNETISM

effect on the continuum field theory for spins, giving rise to theories where the particles

(charges) of the theory can interpolate between fermions and bosons.

The questions that people in the community want to address in these ordered

systems are primarily of two kinds. The first category relates to the creation and

control of magnetic textures through external electronic currents aptly categorized as

‘Spintronics’. The other question deals with the kind of magnetic order that forms

in a particular material/lattice that and its characterization through an analysis of

the spin-wave (disturbances from the ordered state) spectra. We provide instances of

both in this body of work.

1. Spintronics, where our goal is to study the energetics of ferromagnets and

antiferromagnets in terms of the vector fields, in order to identify topologically stable

distortions in the order, and develop effective ways of moving them in space. Typical

examples of such defects are domain walls and vortices. The term topological is used

here in the sense that these solitons cannot be unwound/destroyed locally by rotating

the moments.

In addition to the implications for device design and data storage [5] there are

some basic mathematical and physical motives guiding this study. Firstly, the defects

themselves are mathematically interesting solutions to the underlying field theory and

secondly their dynamics often leads to a better appreciation of the system Lagrangian

and how it can be extended to accommodate perturbations. We shall see examples

of both the features in Chapters 2 and 3.

3



CHAPTER 1. INTRODUCTION TO MICROMAGNETISM

In Chapter. 2 we study the O(2) field theory of ordered ferromagnetic moments

confined (mostly) to the xy plane. We show, in some detail, how the theory can

be mapped onto a dual theory. The dual is the theory of electromagnetism in 2+1

dimensions with vortices acting as electric charges. The spins in a vortex core cant

out of the plane endowing these charges with attached magnetic flux lines. The

geometric phase kinematic term then forces these charge-flux complexes to have a

statistics that interpolates between fermionic and bosonic. In Chapter. 3 we study

solitons in antiferromagnets. These are magnetic systems where locally the magnetic

moments cancel each other leading to a suppression of the Berry phase. However, we

show how to revive this geometric kinematic term and provide a generic recipe for

electromagnetic gauge field like couplings in antiferromagnetic systems.

2. Materials study, where we use field theoretic models to study the local fluc-

tuations of ordered spins in ferro and antiferromagnets. The fluctuations are created

by probes like neutrons which can deposit momentum and angular momentum on the

ordered spins. Our job lies in predicting the dispersions of these fluctuations through

the derivations of an effective field theory, to get a better idea of the underlying order.

We shall look into one of these analyses in detail in Chapter. 4. This chapter

features the spin wave theory for antiferromagnets with a local D3 (triangular) sym-

metric environment. The magnetic unit cell involves three sublattices with the spins

locked in a 120◦ order. In a surprising addition, our theory for the spin waves re-

veals a map to an emergent elasticity theory. We extract the parameters for the spin

4



CHAPTER 1. INTRODUCTION TO MICROMAGNETISM

Hamiltonian from our analytical theory.

To set the stage, in this chapter we shall briefly dwell on the microscopic picture

of magnetism and the dynamics of its local components, the individual spins. Our

motivation is to set up a framework to discuss various forms of magnetic order and

deviations from the order that exist in magnetic systems and analysing the associated

dynamics.

In the first part we familiarise the reader with the concepts and forms of magnetic

ordering. We discuss the nature of excitations away from the magnetic ground state.

In particular we pay special attention to a class of defects which are topologically

protected, using the opportunity to introduce the language of collective coordinates

[6].

We move on to a discussion of the equations governing dynamics of the magnetic

moments. We shall work out such an example using the opportunity to introduce

the notion of collective coordinates. We finish the chapter by setting up the methods

to study gentle undulations of spins in an ordered system– ‘spin-waves’. Spin wave

dispersions are a much used probe in studying magnetic order and a sizeable part of

this thesis will focus on their study.

5



CHAPTER 1. INTRODUCTION TO MICROMAGNETISM

1.2 A (very) brief review of microscopics

Magnetic systems that we shall look into in this thesis come in two varieties.

Systems in which the local moments point along the same direction over a broad

region in space (domains) called ferromagnets, see Fig. 1.1(a). The order is defined

through a vector order parameter, the local magnetic moment. The tendency to

order is driven by an exchange interaction whose origin lies in the combined effect

of Coulomb interactions between electrons and the Pauli exclusion principle which

forces the wave-function of the electrons to be antisymmetric.

Consider the situation: a two site - two electron system. The two electron wave-

function ψ2e has two parts: a spinor and a spatial part, ψ2e = σ2e ⊗ φ2e(r) where

σ2e is the spinor. Now ψ2e has to be antisymmetric by the Pauli principle. This can

be achieved through a symmetric spinor and an antisymmetric φ2e or vice versa. To

minimize Coulomb repulsion among themselves the electrons would like to occupy

different spatial sites and would hence energetically favour an antisymmetric φ2e.

This forces the spinor to be symmetric which is achieved through the spins aligning,

producing the required ferromagnetic unit. The exchange coefficient of typical ferro-

magnets such as Fe, Ni, and Co is of the order of 0.1 eV [7] which is the characteristic

electronic excitation in atomic systems. This can be encapsulated in the Hamiltonian:

H =
∑
i,j

JijSi · Sj (1.1)

6



CHAPTER 1. INTRODUCTION TO MICROMAGNETISM

where Jij < 0 are the exchange coefficients. Given the sign of the exchange it is

easily seen that this model would prefer alignment of neighbouring spins. This model

was derived by Heisenberg [8] and refined further by Dirac [9] in order to explain

the multiplet structure of atoms, for instance the large energy difference between the

singlet and triplet states of Helium. The exchange coefficients are representative of

an overlap integral between the electronic wavefunctions at the two sites i and j and

in general decays exponentially with |ri − rj|. The range of the interaction is thus

limited to a few neighbouring sites.

Then there are ordered spin systems where there is zero net moment inside a

domain see Fig. 1.1(b,c), called antiferromagnets. In this case one might define

another vector order parameter out of the constituent moments of a magnetic unit

cell. For instance in the case of a two sublattice system we can define the difference

of the magnetic moments in a unit cell as the Neel order parameter n = m1 −m2

where mi is the magnetic moment of the ith sublattice.

The mechanism for antiferromagnetism is more complicated than ferromagnetism,

involving an exchange pathway called a super-exchange, where the two magnetic sites

interact through an intermediary non-magnetic ion, often Oxygen [10, 11]. They too

can be in most cases modelled using the Heisenberg exchange in Eq. (1.1) with

Jij > 0. Notable exceptions occur when the local spins are spin - 1/2 and the lattice

is frustrated (triangular for instance) [12]. Such situations require a more quantum

treatment involving the singlet dimer comprising of two spin-1/2 moments.

7



CHAPTER 1. INTRODUCTION TO MICROMAGNETISM

Figure 1.1: This image shows three typical examples of ordered systems: a ferromag-
net on a square lattice (a), an antiferromagnet on a square lattice (two sublattice) (b)
and an antiferromagnet on a triangular lattice (three sublattice) (c). The red dotted
regions show how the spins add to produce a zero net moment per unit cell in the
antiferromangets

8



CHAPTER 1. INTRODUCTION TO MICROMAGNETISM

Transition-metal oxides such as MnO and FeO make a large group of antiferro-

magnetic insulators [11]. In these compounds, the d-orbitals of magnetic atoms are

so localized that hopping cannot occur between two magnetic ions which are next

nearest neighbours. Instead electrons occupying the localized d-orbitals of magnetic

ions can hop to the next-nearest neighbour magnetic atoms via the p-orbitals of the

intermediate oxygen atoms.

Besides exchange interactions there are other lattice anisotropies which affect the

local magnetic order. They are usually the result of the local electronic charge distri-

bution expressed through a crystal field. In general the anisotropies are in the form

of a tensor:

Haniso =
∑
(ab),i

SaiK
abSbi (1.2)

where (a, b) runs over spin components and (i) over lattice sites. The tensor Kab is

dictated by the symmetries of the crystal field. For instance, when the crystal field

possesses a uniaxial symmetry along the z-axis, then the interaction can be written

as:

Haxial = Kzz(Sz)2 +Kxx(Sx)2 +Kyy(Sy)2. (1.3)

The uniaxial symmetry forces Kxx = Kyy ≡ K. The easy-axis case is described by the

condition Kzz −K < 0. The opposite sign presents the other commonly encountered

9



CHAPTER 1. INTRODUCTION TO MICROMAGNETISM

situation of an easy-plane anisotropy. The plane in question here is the xy plane.

There is an additional energy term from the dipolar interactions between the

magnetic moments. It can be written using the standard magnetic dipole dipole

interaction potential in three dimensional space as [13]:

Hdipole =
γ2

2

∑
i 6=j

Si · Sj − 3(Si.r̂ij)(Sj.r̂ij)

|rij|3
, (1.4)

where γ is the gyromagnetic ratio and rij is the vector connecting the two sites (i, j).

1.3 The micromagnetic approach

The magnetic systems which we study have their spins or moments ordered at

temperatures below the ordering temperature Tc (Curie temperature). Exciting these

systems, like for instance scattering spin-full particles off of the sample, result in

deviations from this uniform order. In addition, the uniform order is broken by

competing ordered states with the same energy cost but with different patterns of

moment orientation each forming a domain with domain walls interpolating between

the differently oriented ordered states, see Fig.1.2(a) for a 1-d example. The number

of such domains depends on the local symmetries of the lattice and anisotropies. In

certain other systems, like Cr2O3 chiral terms like the Dzyaloshinski-Moriya (DM)

interaction[14, 15] can induce textures like helical spin arrangements [16].

The energetics in the ordered systems are described by a collection of lattice terms,

10



CHAPTER 1. INTRODUCTION TO MICROMAGNETISM

Figure 1.2: This image shows the three most common types of topological soltions.
We have a uniaxial domain wall on the left (a). The two images are the two possible
boundary conditions σ = ±1 refereed to in Eq.(1.17), we mark the two zero modes:
the domain wall centre Z and the wall plane Φ. The domain wall length λ is set by
material parameters. It also serves as an example of a mode that is not a zero mode
as the energy of the system depends on λ. On the right (b) we have the n = 1 vortex
at the top and n = −1 anti-vortex at the bottom. The vortex centre (X, Y ) are
the zero modes here.(c) Bottom right we have a two dimensional magnetic skyrmion.
The spins at the centre point into the plane (blue) while the spins far away point out
(red).
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CHAPTER 1. INTRODUCTION TO MICROMAGNETISM

usually dominated by the exchange interaction:

H = Hexchange +Hanisotropy +HDM + . . . (1.5)

We can take this Hamiltonian for a particular lattice and solve for stationary modes

subject to boundary conditions. It is a computationally hard problem when expressed

in terms of individual spins on a discrete lattice and solutions to defect structures

can be obtained for highly symmetric, simple situations like a one dimensional chain.

The analytical approach, at least in systems where the ordered moment size is large

(classical), is to convert the discrete spins into a magnetization field: Si = Sm(ri),

where m(ri) is a unit vector field. We then expand the energy densities in terms

of this uniform field. Using these formulation for the ferromagnet the Heisenberg

exchange, can be rewritten as follows:

Hexchange = −J
∑
〈ij〉

Si · Sj = J
∑
〈ij〉

1

2
(Si − Sj)

2 − S2. (1.6)

The energy is minimized by a uniform state with all spins Si pointing in the same

direction. In the continuum limit, the spin difference in the exchange energy is ap-

proximated by a spatial gradient,

Si − Sj ≈ (ri − rj) · ∇Sm. (1.7)

12



CHAPTER 1. INTRODUCTION TO MICROMAGNETISM

As an example of this let us look into the uniaxial ferromagnet in one dimension

along ẑ, Fig. 1.2 (a). The energy density is given by a Heisenberg exchange Hexchange

and an easy axis anisotropy Hanisotropy. Consider the situation where the strength of

the Heisenberg exchange is uniform J and the easy axis along ẑ. Since the system

extends along a single direction the magnetization density m = m(z). This implies

∇Sm→ S(∂zm) with

m(z) = (sin θ(z) cosφ(z), sin θ(z) sinφ(z), cos θ(z)) (1.8)

Now we can expand the total energy in terms of the unit vector field and its gradient.

The energy functional U [m(z)] =
∫
dz U has the energy density:

U =
J
2

(∂zm)2 +
K
2
m2
z

=
J
2

[
(∂zθ)

2 + sin2 θ(∂zφ)2
]

+
K
2

cos2 θ. (1.9)

The coupling constants of the continuum theory are related to those of the lattice

model. For the one dimensional lattice, J = JS2 and K = KS2/a. Another impor-

tant quantity is the density of angular momentum (spin) S = S/a on the 1-d lattice.

Here a is the nearest neighbour distance on the lattice.

We can see that the uniaxial anisotropy favours two ground states with m = ±êz

and the exchange interaction penalises spatial variations of the magnetic moment. In

situations where both ground states are present we have a domain wall interpolating

13



CHAPTER 1. INTRODUCTION TO MICROMAGNETISM

between them, see Fig.1.2(a). This can be easily extended to higher dimensions for a

ferromagnet but higher dimensions allow for a greater variety of topological defects

as we shall see.

1.3.1 Topological Defects - Solitons

Among variations in order, the ones that are particularly of interest to the spin-

tronics community are the topological solitons. These are defects in the moment

order which cannot be unwound/straightened by a local rearrangement of spins and

are hence protected, see Fig. (1.2). Examples of such solitons are domain walls in

uniaxial systems, vortices and skyrmions in planar systems and Bloch points in three

dimensional systems [17].

To solve for the profiles of a soliton we start with the energy density written out

in terms of the fields whose solitons we want to find. For example, if we want to find

solitons of the magnetization field m(r) we start with energy density for m. In most

cases one would include just the nearest neighbour exchange and the local anisotropy

since these are the dominant energetic terms. However, in certain situations we might

need to add terms like the Dzyaloshinski Moriya interaction [14, 15] to solve for chiral

textures. As pedagogical examples let us solve for the two most common solitons in

ferromagnets, the planar vortex and the uniaxial domain wall. Starting with the

energy density in Eq. (1.9):
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U =
J
2

[
sin2 θ(∇φ)2 + (∇θ)2

]
+
K
2

cos2 θ. (1.10)

As before J = ηJS2 and K = ηKS2 where η depends on the local lattice structure

(η = 1/a2 for the square lattice). K > 0 denotes an easy plane (xy) anisotropy and

K < 0 denotes an easy axis (ẑ) anisotropy. We shall use this functional to derive

the profiles for two of the most commonly encountered topological defects: a planar

vortex, and an uniaxial domain wall, Fig. 1.2 (b) and (a).

1.3.1.1 Planar Vortex

For the planar vortex, K > 0 and the ground state of the magnetic system prefers

θ = π/2. Deviations in the θ from this are energetically costly, penalized by the easy

plane anisotropy. This is our first encounter with a ‘hard’ mode. These modes (say

ζ) are characterized by a positive mass term aζ2 (a > 0) in the energy density. They

have dynamical timescales which are much smaller than ‘soft’ modes (soft modes are

not energetically costly, for example the φ mode here). When a system is perturbed,

the long-time dynamics is mediated through the soft modes with the hard mode

following. Gradients of hard modes, are for this reason, dropped from the energetics.

For the planar system we can then neglect ∇θ and set θ = π/2 everywhere else to

minimize the energy from the θ sector. This leaves an energy functional:
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Uplanar =
J
2

(∇φ)2. (1.11)

Minimizing this gives the Laplace equation ∇2φ = 0 with generic solutions:

φ(x, y) = n arctan

(
y − Y
x−X

)
+ φ0 (1.12)

Solutions with n = 0 are uniform ground states, while solutions with n ∈ {±1,±2 . . .}

are vortices centred at (X, Y ) with vorticities given by n. The vorticity is defined

through the equation

n =
1

2π

∮
c

(∇φ) · dl (1.13)

where the contour c encloses the vortex centre and is traversed in a counter-clockwise

direction. At the centre of the core the moment can no longer stay in plane as the

exchange energy cost is too high, hence it cants out, defining a vortex polarisation p =

±1, see Fig. 1.2(b). We shall see in Chapter.2 that the vorticity maps onto an electric

charge in a dual description of the XY ferromagnet in terms of electromagnetism.

The vorticity cannot be changed in a continuous manner; and is determined entirely

by the topology of the magnetization. In other words, a vortex is a topological object

which cannot be created or removed by continuous deformation of magnetization.
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1.3.1.2 Uniaxial domain wall

Let us now look at the uni-axial domain wall extended along ẑ:

Uuniaxial =
J
2

[
sin2 θ(∂zφ)2 + (∂zθ)

2
]
− K

2
cos2 θ. (1.14)

Since the potential depends on φ(r) only through gradients, on minimizing it with

respect to φ, δφU = 0, we find ∂z(sin
2 θ∂zφ) = 0. This is solved with φ = Φ a constant

azimuthal angle plane which the domain wall occupies.

To solve for the θ(z) profile we have to contend with a second order differential

equation. This is not ideal and we would like to reduce it to a first order equation.

There is a route to this, notice that since the energy density is not explicitly coordinate

(r, t) dependent we have a conserved quantity. This is analogous to the conserved

energy (Hamiltonian) when the corresponding Lagrangian is time independent.

H =
J
2

[
sin2 θ(∂zφ)2 + (∂zθ)

2
]

+
K
2

cos2 θ. (1.15)

To fix H we need to pick a set of boundary conditions. Consider at z → ∞, θ = 0

and ∂zθ = ∂zφ = 0. Then we have H = K/2. This also implies that to have a domain

wall we need θ = π as z → −∞. This leads to the equation:

∂zθ = ±1

λ
sin θ, (1.16)
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where λ =
√
J/K is the characteristic length scale of the domain wall. This is now

a first order differential equation in θ, which can be solve to obtain the profile:

cos θ(z) = σ tanh

(
z − Z
λ

)
, φ(z) = Φ (1.17)

where σ = ±1 depending on the boundary conditions, in our case σ = 1. Z is the

location of the domain wall centre, see Fig. 1.2(a).

1.3.2 Collective coordinates and zero modes

In both the defect profiles we solved for, we had the location (or orientation) of

the defects identified by coordinates: (X, Y ) for the vortex and (Φ, Z) for the domain

wall. Note that the energy of the system is independent of shifts in these coordinates

(qi → qi + δqi), as they can be absorbed into a shift (or rotation for Φ) of the system

coordinates which are present in U only as gradients. These are called zero modes

of the defect. They are representative of the continuous degrees of freedom that a

soliton spontaneously breaks, translation in the plane for the vortex, and translation

+ rotation (in φ) for the domain wall. The zero modes are the dynamical components

in these systems and much of spintronics is devoted to effectively manipulating them

through external controls [6, 18].

In the study of defect dynamics we restrict our analysis to a study of these coordi-

nates, referred to as collective coordinates. We can represent a generic texture m(r)
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in terms of a set of coordinates m [qi, qj, . . .] and only retain the collective coordinates

associated with the zero modes in our analysis. This does not imply that they are

the only collective coordinates, for instance in the 1-d domain wall we can take the

wall length λ as a collective coordinate. However the coordinates which are not zero

modes have dynamical time scales that are much shorter than the zero modes. The

zero modes of the defect locations say (q1, q2) for ferromagnetic solitons turn out to

be conjugate momenta of each other [19, 20], i.e Pq1,2 = nsk q2,1. Here nsk is the

Skyrmion index of the coordinates (q1, q2) which we define in the next section. This

results from the Berry phase kinematic term of the spins.

1.4 Dynamics of magnetic moments

We move on to a discussion of dynamics unique to magnetic moments. Locally

the moments behave as angular momentum vectors. They have no inertial mass and

hence no moment of inertia [4]. Hence, the local dynamics is purely precessional. In

this the local magnetic moment behaves like a gyroscope. However, as we shall see

in an example, this can lead to translation of defects that are composed out of these

local spins, like a domain wall. Let us first look at the dynamics of a single spin, S,

in a magnetic field along the ẑ axis, h. The Hamiltonian has a single term:

H = γS · h (1.18)

19



CHAPTER 1. INTRODUCTION TO MICROMAGNETISM

where γ = g|e|/2mc is the gyromagnetic ratio. The equations of motion are given by:

∂tSi = {Si, H} = γhj{Si, Sj} = γεijkhjSk = −γ(S× h)i, (1.19)

where we have used the regular angular momentum Poisson bracket relation {Si, Sj} =

εijkSk. Thus it is evident that for an individual spin (where the size of the mo-

ment/spin is fixed) the dynamics is precessional. Note the absence of a moment of

inertia for the individual spin. This phenomena also goes under the name of Larmor

precession in classical mechanics. In that case if one has a magnetic moment µ in

a magnetic field B, there is a torque on the moment τ = µ × B. This leads to a

precession of the moment about the magnetic field axis.

This equation is extended to the unit vector magnetization field (m = S/S) in

the Landau-Lifshitz-Gilbert (LLG)[21, 22] equation:

J ṁ = heff ×m + αJm× ṁ, (1.20)

where J = M/γ, and heff is an effective magnetic field derived from the energy

functional heff = −δU [m(r)]/δm(r). The second term on the RHS is a damping term

introduced by Gilbert and serves as a proxy for various losses in a material which

slowly damps the precession of the moment and aligns it with the field. It can be

explicitly added to the dynamics of a single spin through a term −αṠ, it dictates the

number of precessions needed (∼ 1/α) needed to align with the field direction. In
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most materials α� 1.

The LLG equation discretized on a lattice forms the basis for numerical simulations

of magnetization dynamics with several popular platforms like OOMMF [23]. The

programs calculate the potential energy U [m(ri)] per unit area of the lattice and

hence determine the effective field Heff through a numerical gradient. While widely

used it is most effective in cases of finite sample geometry where due to magnetic

charges at the boundaries (σ = m · n̂) an analytical determination of energy is not

feasible.

In Spintronics, since we are mostly interested in the dynamics of solitons we project

the LLG equation onto the manifold of a few collective coordinates, representing the

zero modes in the system q = [qi(t), . . .], m[r, t] = m[qi(t)]. One can express the

time derivative through ṁ = q̇i(∂m/∂qi). Taking the scalar product of Eq. 1.20 with

m× (∂m/∂qj), followed by a spatial integration gives us the equations of motion for

the collective coordinates qi: [18]

Fi +Gij q̇j −Dij q̇j = 0. (1.21)

Here Fi is a conservative force conjugate to the coordinate qi, Gij q̇j is a gyrotropic

force with an antisymmetric tensor Gij, and Dij q̇j is a viscous force with a symmetric

21



CHAPTER 1. INTRODUCTION TO MICROMAGNETISM

dissipation tensor Dij. Explicitly:

Fi = −
∫
dV

δU

δm
· ∂m

∂qi
= −∂U

∂qi
, (1.22)

Gij = J
∫
dV m ·

(
∂m

∂qi
× ∂m

∂qj

)
,

Dij = αJ
∫
dV

∂m

∂qi
· ∂m

∂qj
.

1.4.0.1 Domain wall dynamics

Let us now use these equations of motion to work out the effect of applying a

magnetic field along the long axis of a uniaxial domain wall, see Fig.1.2(a). The

domain wall has two zero modes (Z,Φ) as previously noted and a profile derived in

Eq. (1.17). This can be used to obtain the gyrotropic and disspational tensors as:

GZΦ = 2σJ = −GΦZ , (1.23)

DZZ =
2αJ
λ

,DΦΦ = 2αJ λ.

A magnetic field along z, H = h0ẑ, introduces an additional potential energy U =

−2Mh0Z. This produces a conservative force FZ = 2Mh0. Since this force is along

the Z collective coordinate we can think of it as a ‘push’ on the domain wall. The
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equations of motion:

2Mh0 + 2σJ Φ̇− 2αJ
λ

Ż = 0 (1.24)

σJ Ż + αJ λΦ̇ = 0

Note that in the absence of a dissipation Ż = 0, while Φ̇ = σMh0
J , i.e the domain wall

only has a precession. This ‘push to rotate’ dynamics is ubiquitous in ferromagnets

where the dynamics is controlled by a gyrotropic tensor [24]. This will become more

explicit when we construct the Lagrangian for this theory, directly manifest in the

type of kinematic term we write down. A finite dissipation gives a steady state

velocity to the domain wall J Ż = α
1+α2λMh0. Since α� 1 the steady state velocity

is proportional to α.

We can also see from Eq. (1.24) that to effectively move a domain wall we need

to apply a torque FΦ. This can be achieved through application of a spin transfer

torque [25, 26]. There an external electronic current carrying a spin moment which

adiabatically aligns with the local magnetization field is used to transfer angular

momentum on to the domain wall(∆L), providing the necessary torque τ = ∆L/(∆t).

The LLG equation is modified to:

J ṁ = heff ×m + αJm× ṁ− J (u ·∇)m + βJm× (u ·∇)m, (1.25)

where the adiabatic term is expressed through the gradient term (u ·∇)m and β
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characterizes the misalignment between the electron spin and the local magnetization

field. In materials β is known as the ‘field’ term and is usually small. For the

adiabatic spin transfer torque the time derivative ∂t is modified into a convective

derivative ∂t → ∂t + u ·∇, where u = ~P j/(2|e|J ). j is the electronic current and

P is the spin polarization of the carriers. We shall revisit this term in Chapter. 3

where we study the effects of the adiabatic spin transfer torque on antiferromagnetic

defects.

1.4.0.2 Vortex dynamics

For the ferromagnetic vortex the soft mode collective coordinates are the locations

of the vortex core (X, Y ). The gyrotropic tensor in Eq. (1.21) is given by GXY =

−GY X = 4πqJ ≡ G. Here q = p/2 is the skyrmion index of the vortex with p = mz

the magnetization at the vortex core [6]. The equations of motion are given by:

FX +GẎ +DXXẊ +DXY Ẏ = 0 (1.26)

FY −GẊ +DY XẊ +DY Y Ẏ = 0.

The gyrotropic force on the vortex core moving with a velocity V is given by F =

GV × ẑ. This is analogous to the Lorentz force on a particle, with electric charge

Q = q, moving in the xy plane with the magnetic field B = 4πJ ẑ.

It is also clear that a conservative force (an electric potential for the electric
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charge analogue) along any of the coordinates xi will result in a steady velocity in the

perpendicular direction. This stems from the absence of an inertial term (= mẌi)

which is present in the equation of motion for charges in electromagnetism.

1.4.1 The micromagnetic Lagrangian

In this thesis we shall not use the Landau-Lifshitz-Gilbert (LLG) equations in

the form written down in Eq. (1.20) and Eq. (1.21). We shall instead construct a

continuum Lagrangian for the magnetization fields m(r). There are two reasons why

this approach was taken. Firstly the functional energy derivative −
(
δU
δm

)
i

makes the

equation a coupled partial differential equation which is very hard to solve analyti-

cally. This problem can be circumvented in a continuum theory by the assumption

of slowly varying m and hence a non-singular slowly varying energy density U . Sec-

ondly we shall mostly deal with antiferromagnets which combine two or more magnetic

sublattices. The traditional approach forces you to write down the LLG equations

separately for each sublattice in the hope that you can combine them going forward

(a very confusing endeavour in most cases). In the field theory approach if the fields

mi (i denotes the sublattice index) are expressed through a judiciously chosen basis

drawn from the point group symmetry of the lattice the task of combining the sub-

lattices into one theory is fairly straightforward. We shall show this in Chapter. 4 for

the three sublattice antiferromagnet.

The Landau-Lifshitz equation can be obtained from a Lagrangian, with the den-
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sity:

L = J a(m) · ṁ− U [m] (1.27)

where we define a vector potential a(m) on a magnetization sphere (m - sphere)

through ∇m × a = −m [27]. In this construction the tip of the local magnetization

unit vector m(r) is an electric charge fixed to the surface of the m-sphere, which has

a magnetic monopole of strength b = −m sitting at the origin. The electric charge

responds to the monopolar magnetic field through the magnetic Lorentz force which

limits the dynamics to the surface of the sphere. Any additional energetic interaction

U forces the charge to favour regions of the sphere, as stable.

Now although our monopole field is spherically symmetric, that does not translate

to the generating vector potential a [19]. In particular to maintain the zero divergence

condition, which is necessary for the b field to be even defined through the curl of

a vector potential, we need to thread the flux emanating from the monopole out

through a point (or points) on the spherical surface. These threads are the Dirac

strings. Keeping these considerations in mind two popular choices for the vector

potential are:

aθ = 0, aφ =
cos θ ± 1

sin θ
. (1.28)

In these gauge choices, the vector potential is singular at the south and north pole,

θ = π and 0, respectively. The singularity is associated with the Dirac string which

carries the monopole flux +4π though the singular pole. Special care must be taken to
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ensure that our electric charge (magnetization vector) does not encroach upon these

regions of singularity.

Minimizing the Lagrangian with respect to the magnetization yields, J (m×ṁ) =

−(δU/δm) which can be rewritten into Eq. (1.20) since |m| = 1. The Gilbert term

has to be incorporated through a separate Rayleigh like dissipation function:

R =
αJ
2

ṁ2 (1.29)

The Lagrangian can be written out in terms of collective coordinates starting with

the definition of the vector potential:

J
∫
dV a(m) · ṁ = J

∫
dV a(m) ·

(
∂m

∂qi

)
q̇i = A · q̇, (1.30)

where we have collected the coordinates into the vector q = (q1, q2, . . .). The La-

grangian can then be written as:

L[q] = A · q̇− U [q]. (1.31)

The link between the magnetization field and an electrical charge is now explicit.

Note that the curvature of the gauge field Ai =
∫
dV a · (∂m/∂qi) in the collective

coordinate space is what we had earlier defined as the gyrotropic tensor in E.(1.22),

Gij = ∂jAi − ∂iAj. Hence a topological defect, such as a vortex or a domain wall,
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Figure 1.3: This image shows a spin wave propagating along the ordered axis in
a one-dimensional ferromagnet. Note that the oscillation takes place in the plane
perpendicular to the order direction.

behaves like a charge coupled minimally to a vector potential whose source is given

by the local curvature of the magnetization field.

This tensor is known in literature as the skyrmion density of the magnetization

when i, j = x, y. Integrating this density over the area gives the skyrmion charge of

the area [28].

It might seem that we need a finite magnetization density to have this sort of

emergent gauge theory and hence it would be absent for an antiferromagnet where

locally the magnetization density is zero. However, as we shall show in Chapter 3

this form of gauge coupling can be induced in an antiferromagnet using an external

magnetic field.

1.5 Spin-waves

A significant portion of the thesis deals with the continuum version of the magne-

tization field instead of the discrete collective coordinates of topological soltions. This

method is useful to obtain the dispersions of spin waves which are gentle deviations

of the magnetic order in space and time.
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Among the spin waves the ones we shall be most interested in are the Goldstone

modes. These are the modes which characterize the underlying order and the symme-

tries spontaneously broken by the ordered state. For instance the uniaxial ferromagnet

spontaneously breaks the azimuthal (φ) degree of freedom. Spin waves in this system

are hence rotations of the spin about the ordering vector in the azimuthal plane. For

the planar antiferromagnet there are two degenerate Goldstone modes, representing

oscillations of n in the two directions orthogonal to its ground-state orientation. In

the last chapter we shall encounter triangular antiferromagnetic systems. Here the

spins order into a coplanar 120◦ locked state forming a triangle. Any ordering of these

spin triangles then spontaneously breaks SO(3) rotations resulting in three Goldstone

modes.

We end this chapter with a very simplistic derivation of the spin wave in a one

dimensional ferromagnet from the Landau-Lifshitz equations see Fig.1.3. Let us con-

sider a chain of spins with spins aligned along ẑ. The net local magnetic field expe-

rienced by a spin at any site zi is Heff = γ (m(zi − a) + m(zi + a)) where a is the

nearest neighbour distance. On expanding the magnetizations we end up with:

Heff ×m = γ(2m + a2∂2
zm)×m = γa2(∂2

zm)×m. (1.32)

Plugging this back into the Landau-Lifshitz equation and taking the continuum limit
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we get the spin wave equation as:

ṁ = γ(∂2
zm)×m. (1.33)

As a simple situation let us consider the one shown in Fig.1.3 with θ(z) = θ0 a

constant and φ = ωt+ kzz. The L.H.S goes to ṁ = (sin θ0)φ̇êφ and the R.H.S:

∂2
zm×m = sin θ0

[
(∂2
zφ)êφ + (∂zφ)(∂zêφ)

]
× êm, (1.34)

where êθ, êφ, and êm are the spherical polar unit vectors. The first term drops out

from the choice of solutions, resulting in an equation:

φ̇ = γ cos θ0 (∂zφ)2 (1.35)

We can see from this that in this one dimensional ferromagnet the spin wave dispersion

is quadratic in kz, ω = γk2
z .
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Chapter 2

The planar ferromagnet and its

electromagnetic dual

2.1 Introduction

In this chapter we shall take a closer look at the field theory of a planar (XY)

ferromagnet. We study the Heisenberg ferromagnet in 2+1 dimensions and the soli-

tons it hosts, magnetic vortices. In the course of which we map the XY theory onto

a theory of electromagnetism in d = 2 + 1 space-time (t, x, y) where the vortices map

to sources of electric charge and magnetic flux. The work was done in collaboration

with Shu Zhang, Ibrahima Bah and Oleg. Tchernyshyov [29].

In the analogy between the XY ferromagnet and electrostatics in two spatial

dimensions d = 2, vortices behave as electric charges [30]. The definition of the
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vortex number n as the increment of the magnetization’s azimuthal angle φ along the

boundary of some region Ω,
∫
∂Ω
dr · ∇φ = 2πn, can be recast as Gauss’s law for the

electric charge Q,
∫
∂Ω
ds ·E = 2πQ, if we identify the vortex number with the electric

charge, Q = n, and the spatial gradients of the angle with components of an electric

field, Ei = εij∂jφ, see Fig.2.1. Here Roman indices i = 1, 2 refer to spatial directions

and εij is the Levi-Civita symbol in d = 2.

Let us quickly revisit this construction. Since the azimuthal field φ(r) is well

defined except at the cores of vortices we have ∂x∂yφ − ∂y∂xφ = 0. Now in the

presence of the singular regions at the vortex cores we can split the azimuthal field

up into:

φ(r) = φ̃(r) + φ′(r), (2.1)

where φ̃ is a gently varying well defined spin wave field and φ′ is a singular field

sourced from vortex cores. Let us consider the vorticity equation and expand it in

the situation where we have a square contour around a single vortex, the xy blue

contour in Fig. 2.1:

∫
∂Ω

dr · ∇φ =

∫
dxdy(∂x∂yφ

′ − ∂y∂xφ′) = 2πn (2.2)

Now we can use the map to the electric field, Ei = εij∂jφ, to convert this to a Gauss

law ∇·E = −ρ. Here ρ is the vortex number distribution, ρ(r) =
∑

i niδ(r−ri) which

gets mapped to an electric charge distribution. The solution to this is Coulombs’ law
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Figure 2.1: On the left we have the electrostatic duality in the xy plane for a vortex
antivortex pair. One can see that the rotation of the vorticity gradient into the electric
field produces the typical charge dipole pattern. On the right we have an extension
of the duality picture in time. Vorticity, like charge is conserved and adds to zero
over all space-time surfaces.
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Figure 2.2: Vortices in a thin film of permalloy. Numerical simulation in OOMMF
[23]. Color encodes m3: positive (red), zero (white), and negative (blue). At a vortex
core, magnetization leaves the easy plane and approaches the hard axis, m→ (0, 0, p),
where p = ±1 defines the polarity of the vortex.

in d = 2 with a Greens function g(r) = log(r/r0) with r0 as the size of the charge core.

In [30] an extra constraint is imposed at the boundary to cancel its contributions to

the Green function:
∫
d2rρ(r) = 0. This imposes the conservation of vorticity (charge)

in the system.

In a broader scenario the xy vector (U(1) for complex wave functions) order

parameter–electromagnetism duality has been extended to dynamical and quantum

phenomena, which take place in a spacetime with d = 2 + 1. The addition of the

time dimension promotes electrostatics to electrodynamics, vortices become quantum

particles with Bose statistics, and the planar XY ferromagnet is mapped to a super-

conductor interacting with an electromagnetic field [31, 32]. Similar dualities have

been investigated in the context of two dimensional superfluids [33, 34, 35].
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In the course of this chapter we revisit the duality between the XY ferromagnet

and electrodynamics in d = 2 + 1. In a realistic ferromagnet, the XY model with just

two spin components represents a low-energy, long-wavelength limit of the Heisenberg

ferromagnet with an easy-plane anisotropy. Although magnetization lies in the easy

plane almost everywhere, it turns toward the hard axis at vortex cores, Fig. 2.2. This

is an important feature that causes the Heisenberg ferromagnet to deviate from the

pure XY systems. We shall see in the course of events that the core of the vortex and

the angular momentum (Berry phase) it carries decides the quantum statistics of the

vortex particles.

Despite its small radius (typically a few nanometers [36, 37]), the core plays a ma-

jor role in the dynamics of a vortex. In particular, it is responsible for the gyroscopic

(Magnus) force acting on a moving vortex [38, 39, 40]. One can see this is the case by

checking that in the absence of a core the gyrotropic tensor GXY = 0 in Eq. (1.22).

Let us calculate this explicitly for a single vortex with vorticity n. We can choose a

symmetric profile for the vortex in radial coordinates (r, φ):

m = (sin θ(r) cos Φ(φ), sin θ(r) sin Φ(φ), cos θ(r)), (2.3)

where we take the azimuthal profile of the magnetization field to be Φ = nφ+constant.
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The gyrotropic tensor is then:

GXY = J
∫
dxdy m ·

(
∂m

∂x
× ∂m

∂y

)
(2.4)

= J
∫
drdφ r

(
sin θ(r)∂rθ(r)∂φΦ(φ)

r

)
= 2πJ

∫
d(cos θ(r)) = 2πnpJ ,

where p = ±1 is the polarization of the spin at the vortex core. It is evident that in

the absence of a canted centre the vortex will have no dynamics. The finite gyrotropic

tensor is also responsible for the equations of motion of a vortex core in the presence

of forces. The vortex behaves like an electrically charged massless (inertial mass)

particle. A force along x (or y) produces a displacement of the core in the y (or x)

direction, see Eq. (1.26) in Chapter 1.

It is noteable that the magnitude of the gyroscopic force is independent of the

size and detailed structure of the core and is only sensitive to its topology and the

density of angular momentum [41]. This is a rare example where high-energy physics

(here the existence of a vortex core) crucially impacts low-energy dynamics.

The newly derived duality establishes an interesting connection between quantum

statistics of vortices and the spin of the vortex core S3 along the hard axis. In the dual

description, vortices acquire not only the electric charge Q = n but also a magnetic

flux Φ = S3. Wilczek [42, 43] showed that in d = 2 + 1 the quantum statistics of

particles carrying both an electric charge Q and a magnetic flux Φ is altered by the
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Aharonov-Bohm phase. Generally, bosons turn into anyons with the braiding phase

ϑ = 2πQΦ. For magnetic vortices, this yields

ϑ = 2πnS3. (2.5)

Simple vortices with n = ±1 and half-integer spin S3 are therefore fermions. An even

more exotic, anyon statistics is expected for vortices with a non-integer 2S3.

2.2 The planar Heisenberg ferromagnet

Switching to the continuum magnetization field m(θ, φ) where θ(x, y) and φ(x, y)

are the polar and azimuthal angles of magnetization. The simplest model for the xy

Heisenberg system without long-range dipolar interactions has the Lagrangian density

L(θ, φ) = S(cos θ − p)∂tφ− U(θ, φ). (2.6)

The first term in the Lagrangian comes from the spin Berry phase and is responsible

for the precessional dynamics of magnetization; S is the spin density, S/a2 on a

square lattice with a as the nearest neighbour distance. The number p = ±1 reflects

a gauge choice and determines the location of a singularity of the spin wavefunction

at cos θ = −p = ∓1 [27]. Either choice of p would work if the spins stayed in the

easy plane. However, a vortex configuration inevitably has a location where the spin
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orientation approaches one of the poles, Fig. 2.2. To avoid the singularity, we have

to make a specific choice of parameter p [44] by equating it to the vortex polarity,

defined as the value of the out-of-plane magnetization at the center of the vortex core,

m3 = ±1 [45].

The lattice model of an easy-plane ferromagnet with nearest-neighbour Heisenberg

exchange J and local anisotropy K has the potential energy

U = −JS2
∑
<ij>

mi ·mj +
KS2

2

∑
i

m2
iz. (2.7)

Here i and j denote lattice sites and 〈ij〉 a nearest-neighbour bond. In this simple

form where we have ignored long range interactions like dipolar interactions, the

energy functional U [s(r)] =
∫
d2r U has the energy density:

U =
J
2

(∇m)2 +
K
2
m2
z

=
J
2

[
(∇θ)2 + sin2 θ(∇φ)2

]
+
K
2

cos2 θ. (2.8)

The coupling constants of the continuum theory are related to those of the lattice

model. For a square lattice, J = JS2 and K = KS2/a2. The natural unit of length

λ =
√
A/K sets the size of a vortex core; the natural unit of time is τ = |S|/K. The

Lagrangian (2.6) with the energy density (2.8) represents a full (high-energy) theory

of magnetization dynamics, in which the magnetization field has three components.

In low-energy states, the magnetization field lies in the easy plane. The out-of-
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plane magnetization m3 = cos θ � 1 is suppressed and can be viewed as a hard

mode. In the spirit of the gradient expansion, we may neglect the (∇θ)2 term in the

exchange energy. With this simplification, the Lagrangian contains no gradients of

the field θ and its (classical) equation of motion reads

K cos θ = S∂tφ. (2.9)

In static equilibrium, ∂tφ = 0 and thus cos θ = 0, the magnetization resides strictly

in the easy plane. Slow dynamics of the azimuthal angle φ is accompanied by a small

tilt of magnetization out of the easy plane. The hard polar angle is thus a slave of

the soft azimuthal angle. Integrating out θ from the action yields a low-energy theory

with just one field φ and an effective Lagrangian

L(φ) = −pS∂tφ+
ρ

2
(∂tφ)2 − A

2
(∇φ)2, (2.10)

where ρ = S2/K quantifies the inertia of the azimuthal angle.

It is convenient to write the Lagrangian in a Lorentz-covariant form with the

Minkowski metric ηµν = diag(+1,−1,−1) and in natural units,

L(φ) = σ̄µ∂µφ+
e2

2
∂µφ ∂

µφ, σ̄µ = −pe2δµ0 . (2.11)

The dimensionless coupling constant e2 ≡ |S|A/K � 1 is roughly the net out-of-plane
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spin S3 of a vortex core.

The low-energy Lagrangian (2.10) has a global symmetry of rotations in the easy

plane, φ 7→ φ+ const. The associated conserved global quantity is the hard-axis spin

component S3. The associated local conservation law, ∂µσ
µ = 0, is the continuity

equation for the spin current defined as

σµ ≡ ∂L
∂(∂µφ)

− σ̄µ = e2∂µφ. (2.12)

Here we have separated a uniform background spin current σ̄, whose only nonvan-

ishing component σ̄0 = −pS is a background spin density, from the dynamical part

σ. Although the linear term σ̄µ∂µφ in the Lagrangian (2.11) does not influence the

classical equation of motion,

∂µ∂
µφ = 0, (2.13)

it has a topological character and plays an important role in the dynamics of vortices,

as we discuss below. Eq. (2.13) describes spin waves with a linear dispersion, ω = k.

2.3 Electromagnetism in 2+1 dimensions

Before moving on to constructing the dual theory we present a brief summary of

electromagnetism in a Minkowski spacetime with d = 2+1 dimensions along the lines

of [13]. The metric tensor is ηµν = diag(+1,−1,−1).
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The electromagnetic field has three components, the scalar magnetic field B and

an in plane vector electric field E = (Ex, Ey). The gauge field has three components,

the scalar electrostatic potential φ and the vector potential A = (Ax, Ay). The vector

potential can be sourced from a charge current j or flux lines that extend into the

third spatial dimension.

In the relativistic notation, the gauge field has the following covariant and con-

travariant components:

Aµ =


φ

−Ax

−Ay

 , Aµ =


φ

Ax

Ay

 . (2.14)

The electromagnetic field is an antisymmetric tensor Fµν = ∂µAν − ∂νAµ:

Fµν =


0 Ex Ey

−Ex 0 −B

−Ey B 0

 , F µν =


0 −Ex −Ey

Ex 0 −B

Ey B 0

 . (2.15)

The field strength tensor Fµν can also be represented by its dual [46, 13], which in
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d = 2 + 1 is a 3-vector

*F µ =
1

2
εµνρFνρ =


−B

−Ey

Ex

 . (2.16)

The homogeneous Maxwell equation, ∂xEy − ∂yEx + ∂tB = 0, reads ∂µ *F µ = 0

in the relativistic notation and is resolved by expressing the dual field as a 3-curl of

the gauge field, *F µ = εµνρ∂νAρ, or Fµν = ∂µAν − ∂νAµ.

The inhomogenous Maxwell equations, ∂µF
µν = 2πjν , can be derived from the

Lagrangian:

L(A, j) = −Aµjµ −
1

8π
F µνFµν . (2.17)

The second term in the Lagrangian (2.17) represents the kinetic and potential energy

densities of the electromagnetic field, E ·E/(4π) and B2/(4π), respectively. The first

term expresses the coupling between the electromagnetic field and electric current.

For a point particle with spacetime coordinates xµ and electric charge q, it generates

the action term

S = −q
∫
Aµdx

µ = q

∫
(A · dr− φ dt). (2.18)

This action term is responsible for the 3-force fµ = qFµν ẋ
ν , where the dot means

the derivative with respect to proper time τ , dτ 2 = dxµdxµ. Its spatial components,

fx = qBẏ and fy = −qBẋ, represent the Lorentz force.
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2.4 The dual theory at low energies

Here we go through the details of the construction of the dual electromagnetic

theory for the XY ferromagnet in the low energy limit 2.11, where we are focused on

the regions away from the vortex cores. The duality can be revealed most efficiently

in the language of differential forms. The electromagnetic field is represented by a

2-form F = 1
2
Fµνdx

µ ∧ dxν and the electric current by a 1-form J = Jµdx
µ [46].

Maxwell’s equations and current conservation read

d *F = 2π *J, dF = 0, d *J = 0. (2.19a)

Here d is the exterior derivative and * is the Hodge dual. In the theory of the XY

ferromagnet, the spin and vortex currents are represented by 1-forms σ and j. The

relation between them, and the conservation of the two currents read (in the low-

energy limit)

dσ = 2πe2 *j, d *σ = 0, d *j = 0. (2.19b)

Comparing Eqs. (2.19) shows that the vortex current j maps to the electric current

J and the spin current σ to the Hodge dual of the electromagnetic field *F . We now

unpack these details in the more explicit tensor notation, beginning with a list of

ingredients that we expect to find in a theory of electrodynamics in d = 2 + 1.
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2.4.1 Gauge field

An electromagnetic field should satisfy local constraints (Bianchi identities) in

the form of the homogeneous Maxwell equations. These constraints are resolved by

expressing the electromagnetic field as the curl of a gauge field, Fµν = ∂µAν − ∂νAµ.

The Bianchi identity in d = 2 + 1 reads

∂µ *F µ = 0, *F µ ≡ 1

2
εµνρFνρ, (2.20)

where εµνρ is the Levi-Civita symbol in d = 2 + 1. Here *F is the Hodge dual of the

electromagnetic field F [46, 13]. It corresponds to a conserved current for a global

U(1)J symmetry, referred to as topological U(1), which exist for Maxwell theories in

d = 2 + 1. The theory admits monopole defect operators charged under U(1)J .

The global symmetry in the ferromagnetic model is the symmetry of spin rotations

in the xy plane. We identify the generator of this symmetry with that of the U(1)J

of the Maxwell theory, and thus the current σµ maps to *F µ as follows:

*F µ ≡ −σµ = −e2∂µφ, *F̄ µ ≡ −σ̄µ. (2.21)

Here quantities with a bar represent uniform background parts of the respective fields.

The minus signs in Eq. (2.21) reflect the convention that a positive vortex number

corresponds to a positive electric charge. This matching of the conserved currents onto
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a Bianchi identity is the critical step in construction of the electromagnetic dualities.

The symmetry group of the current decides the nature of the mapped gauge theory.

For instance in elasticity theories where the conserved current (dislocations guided by

Bergers vectors) is a tensor, the gauge theory is a tensor gauge theory characterised

by Aij [47].

With the physical units restored, the electric and magnetic fields are

Ei = Aεij∂jφ, B = ρ∂tφ, B̄ = −pS. (2.22)

As in d = 2 [30], the electric field comes from spatial gradients of φ, whereas the tem-

poral gradient gives rise to the dynamical part of the magnetic field. The background

magnetic field B̄ = −pS represents an effect well known in vortex dynamics. A parti-

cle with electric charge Q moving with velocity ẋi should experience the Lorentz force

Fi = 2πQB̄εijẋ
j. With Q = n and B̄ = −pS, this exactly reproduces the gyroscopic

force Fi = −2πnpSεijẋj acting on a moving vortex [38, 39, 44].

Electromagnetic waves. A hallmark of Maxwell’s theory is the existence of trans-

verse electromagnetic waves with a linear dispersion, ω = k. Spin waves in the XY

ferromagnet (2.13) seem like a good candidate. There is just one spin-wave mode

for each wavevector, in accordance with a single transverse polarization expected for

electromagnetic waves in d = 2 + 1. The transverse nature of the electric field in a

spin wave can be checked with the aid of Eq. (2.22): ∂iE
i = A(∂x∂y − ∂y∂x)φ = 0 in
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the absence of vortices.

2.4.2 Coupling field and current

To find a conserved matter current satisfying the continuity equation, ∂µj
µ = 0,

we turn to vortices. They are indestructible and can only be annihilated with the

conservation of the vortex number in pairs. In their presence, derivatives of φ are

singular. This was earlier used to define the vortex density ρ in d = 2, ∂x∂yφ−∂y∂xφ =

2πρ. This definition of vortex density ρ generalizes to a vortex current jµ in d = 2+1:

εµνρ∂ν∂ρφ = 2πjµ. (2.23)

With the help of the duality relation (2.21), this identity takes the form of the inho-

mogeneous Maxwell equations,

∂µF
µν = 2πe2Jν , (2.24)

with the electric current J equal to the vortex current j.

Note that the entire dual theory can be obtained from the Lagrangian of Maxwell’s

electrodynamics with a matter current J coupled to both the dynamical and back-

ground electromagnetic gauge fields represented by the gauge fields A and Ā, respec-
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tively:

L(J,A) = −2π(Aµ + Āµ)Jµ − FµνF
µν

4e2
. (2.25)

2.4.3 Duality via an auxiliary field

We now derive the dual theory (2.25) from the low-energy Lagrangian (2.11) in a

standard formal way [48], through the introduction of an auxiliary vector field with

components *F µ. The Lagrangian of the two fields φ and *F is chosen to be

L(φ, *F ) = −(*F µ + *F̄ µ)∂µφ−
*F µ *Fµ

2e2
. (2.26)

This choice assures that minimization of the action with respect to *F yields the

conjectured relation (2.21). Integrating out the auxiliary field *F would lead to our

effective theory (2.11). Instead, we will keep the auxiliary field *F and integrate out

the angle field φ.

However, prior to that, we need to separate a singular vortex part of the field

φ from the gentle spin waves along the same lines as it is done in d = 2 [30]. In

the presence of vortices, the azimuthal angle φ is not a single-valued function of the

spacetime coordinates and ∂µφ is not, strictly speaking, a gradient. We separate this

quantity into two parts, ∂µφ = aµ + ∂µϕ. The new gauge field a is defined by vortex

world-lines,

εµνρ∂νaρ = 2πjµ. (2.27)
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The single-valued field ϕ represents spin waves in the original theory and generates

gauge transformations for the vortex gauge field a. Put another way, the local con-

servation of the vortex current, ∂µj
µ = 0, can be viewed as the Bianchi identity

for another electromagnetic field f , whose dual is identified with the vortex current,

*fµ ≡ 2πjµ. The Bianchi identity is resolved by the introduction of the gauge field

a: *fµ = εµνρ∂νaρ.

Integrating out the single-valued part of the field ϕ produces the Bianchi identity

for F (2.20). Upon resolving it in the expected way, *F µ = εµνρ∂νAρ, we obtain the

Lagrangian for a gauge field A and the vortex current j parametrized by the vortex

gauge field a:

L(j, A) = −εµνρaµ∂ν(Aρ + Āρ)−
FµνF

µν

4e2
. (2.28)

Note that the first term in Eq. (2.28) is aµσ
µ, indicating that the role of the electric

charge for the gauge field a is played by the spin S3, whereas the electric charge for A is

the vortex number n. Finally, we convert the first term in Eq. (2.28) via integration by

parts and use the relation between a and j (2.27) to obtain the conjectured Lagrangian

of the dual theory (2.25).

2.5 The dual theory near the vortex core

We can readily construct the electromagnetic fields following the familiar route.

The Lagrangian (2.6) and potential energy (2.8) still have the global rotational sym-
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metry. The spin current σµ has the following components:

σ0 = S cos θ, σ̄0 = −pS, σi = −A sin2 θ ∂iφ. (2.29)

The dynamical temporal component σ0 is the density of spin along the hard axis.

Identification of the spin current with the electromagnetic field along the lines of

Eqs. (2.21) and (2.22) yields

Ei = A sin2 θ εij∂jφ, B = S cos θ, B̄ = −pS. (2.30)

where we have used the Bianchi identity to introduce the gauge fields σα = εαβγ∂βAγ.

The low-energy result (2.22) is recovered if we set sin θ = 1 and use the low-energy

equation of motion (2.9).In terms of the full spin current the full Lagrangian density

in Eq.2.6 can be expressed, in a dimensionless form as:

L = S(cos θ − p)∂tφ−
A
2

[
sin2 θ(∇φ)2 + (∇θ)2

]
− K

2
cos2 θ (2.31)

= σ0∂tφ+ σ̄0∂tφ− σi∂iφ−
( σ · σ

2A sin2 θ

)
− A

2
(∇θ)2 − K

2
cos2 θ

where we can integrate out the (as of now) three-vector spin current field σ to obtain

the original theory. Let us now look at the first three terms, they can be re-written
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as:

L′ = σα∂αφ+ σ̄0∂tφ (2.32)

= σα(∂αϕ+ aα) + σ̄0(∂tϕ+ a0)

where we have introduced the slowly varying spin wave field ϕ and the vortex source

field aα. Form here we can integrate out the slowly varying spin wave field in the first

term using the conservation of spin current ∂ασα = 0, and integrating by parts. Note

that as before the spin wave field ϕ is well behaved everywhere in space and vanishes

at the boundaries and that ∂tσ̄
0 = 0. This leaves us with the Lagrangian density:

L(J,A) = −2π(Aµ + Āµ)Jµ +
1

2e2

(
E · E− (∇B)2

1− (B/B̄)2
−B2

)
. (2.33)

The Lorentz-covariant form (2.25) is recovered in the limit when the dynamical mag-

netic field is weak and varies slowly in space, ∇B � B � B̄.

2.6 Quantum statistics of vortices

Up to this point, our theory of the XY ferromagnet in d = 2 + 1, recast as

electrodynamics, has faithfully reproduced what is already known. The electrostatic

analogy goes back to 1974 [30]; the dynamical similarity with electric charges in a

background magnetic field is also not new [49, 50, 51]. Can we glean something more
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Figure 2.3: Each vortex acts as a localized center of charge and flux. The charge
is given by the vorticity (Q ≡ n) and the flux by the net magnetic moment at the
vortex core (Φ ≡ S3). In a situation where we have two such identical particles
Q1 = Q2 and Φ1 = Φ2, we can imagine performing two different actions in the xy
plane: exchange (shown on the left) and a braid (shown on the right). In either case
we pick up two Berry phases one from each charge-flux winding, giving a statistical
angle ϑ = 2πQΦ = 2πnS3.

from this duality ?

One interesting feature that, as far as we know, has not been previously pointed

out is the presence of a magnetic field B = S cos θ localized at a vortex core, where

cos θ 6= 0. The net magnetic flux of a vortex,

Φ =

∫
d2xB =

∫
d2xS cos θ = S3, (2.34)

is equal to the net spin S3 of the vortex core. We thus find that a vortex behaves

like a particle with both an electric charge Q = n and a magnetic flux Φ = S3. The

attachment of a well-localized magnetic flux does not influence the classical dynam-

ics of a charged particle. However, it has important consequences at the quantum

level because of the Aharonov-Bohm phase experienced by an electric charge moving
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around a magnetic flux.

Wilczek [42, 43] pointed out that particles carrying both an electric charge q and

magnetic flux Φ in d = 2 + 1, increment their statistical angle ϑ (0 for bosons and

π for fermions) by 2πQΦ. Viewed as a quantum particle, a vortex in a ferromagnet

is ordinarily considered to be a boson [32]. The idea that a vortex carries both an

electric charge Q = n and a magnetic flux Φ = S3 means that its statistical angle is

ϑ = 2πnS3. The most frequently encountered single vortices (n = ±1) can exhibit

the fermion statistics if their spin S3 is half-integer.

Are there vortices with a half-integer spin S3? We do not know for sure. It is

relatively easy to determine the spin of a vortex in a classical model such as the one

defined by Eq. (2.8). The vortex core is well defined and its net spin is of the order

of e2 = |S|A/K � 1. However, this classical answer varies continuously with the

parameters of the model and is not quantized. More worryingly the compressibility

of the size of the core itself raises the same issue that Haldane raised in the case of

the superfluid vortices. What rescues our situation is that spins are quantized into

integers and half-integers unlike the number of bosons trapped in a superfluid vortex

core.

The problem needs to be solved at the quantum level. Aside from technical

difficulties, such an endeavour runs into a conceptual problem. The transverse spin

S3 is a conserved quantity by virtue of the global O(2) rotational symmetry in the easy

plane. However, in an ordered ferromagnet this symmetry is spontaneously broken
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(even in a uniformly magnetized state). Therefore, the ground state of an ordered

magnet is generally a superposition of (infinitely) many states with different values

of S3,

|ψ〉 =
∑
S3

CS3|S3〉, (2.35)

and S3 is not even a well-defined quantity. Fortunately, quantum statistics is de-

termined not so much by the statistical angle ϑ but by its exponential eiϑ = e2πinS3 .

Because physical states are invariant under 2π rotations, the superposition (2.35) may

only contain values of S3 differing by integers, e.g., 1/2, 3/2, 5/2, . . . or 0, 1, 2, . . . .

The number e2πinS3 is the same for all such S3, so the quantum statistics of vortices

is well defined even if S3 is not.

We speculate that vortices with a half-integer spin could be found in single-layer

ferromagnets. With two layers, the total spin would presumably double and give the

trivial bosonic statistics. For the same reason, magnetic atoms with half-integer spin

look more promising than ones with integer spin.

The attachment of fluxes to charges is absent in the naive dual theory (2.25).

One could attempt to fix this deficiency by adding a Chern-Simons (CS) term,

LCS = πk εµνρAµ∂νAρ [52, 20]. Doing so would not affect the classical dynamics

[48] and attach magnetic flux Φ = Q/k to an electric charge Q. However, this one-

to-one correspondence between the charge and flux is too restrictive for our model.

A magnetic vortex with “electric charge” Q = n can have both positive and negative

transverse “magnetic flux” Φ = S3, depending on the polarity p = ±1 of the core.
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This Z2 degree of freedom is missing in the standard scenario of flux attachment via

a CS term, thus requiring a more sophisticated approach.

Vortices in ferromagnets have been extensively studied for decades, both exper-

imentally and theoretically. In practically all of these studies, vortices have been

treated as classical objects. Only recently have theorists begun to ponder their un-

usual quantum properties. For example, Ivanov and co-workers [53, 54] considered

the quantum mechanics of a single vortex in an atomic lattice with spins of length

S. The single-vortex energy spectrum consists of 2S bands reminiscent of electron

bands in a solid. Similar results for skyrmion energy bands were obtained by [55].

Noncommutativity of momentum components for vortices and skyrmions was pointed

out by [56]; the same applies to their coordinates [57].

Thus we find that magnetic vortices, viewed as quantum particles, may exhibit

nontrivial quantum statistics: vortices with a half-integer core spin S3 are expected

to be fermions. Even more exotic anyon statistics is expected for vortices with a

non-integer 2S3. The existence of vortices with non-integer 2S3, also conjectured

independently by Ivanov, would be a tantalizing possibility. However, it has been

pointed out to us (by Prof. Feldman) that anyon statistics can probably be ruled out

for vortices on account of the spin–statistics theorem [42, 58], which sets eiϑ = e−2πiS3 .

This result is compatible with Eq. (2.5) for n = 1 only if 2S3 is an integer.
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Chapter 3

Two-sublattice antiferromagnets

3.1 Introduction

In the previous chapter we presented the Lagrangian that produces the Landau-

Lifshitz equations, for a ferromagnet on minimization with respect to the local mag-

netization field m(r, t). In this chapter we extend this construction to the case of

the antiferromagnets. In this case each magnetic unit cell comprises two or more

magnetization fields mi which are constrained by the exchange interaction to follow∑
i mi = 0. To make this explicit note that we can convert the nearest neighbour

exchange into:

Hexchange = J
∑
<i,j>

Si · Sj =
JS2

2

∑
α

(∑
i

mi

)2

α

− N

2

∑
α

S2. (3.1)
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Here
∑

i mi is a sum over all the spins that constitute the antiferromagnetic unit cell,

if there are N sublattices then the sum is over N spins. The other sum α is over the

lattice, broken down into the magnetic unit cell clusters. The second term is dropped

as it is constant and does not enter equations of motion. To get to the continuum

model we express the vector fields mi in terms of the appropriate normal modes of

the systems, dictated by the point group symmetry of the order, and expand the

exchange interaction (and the other energies) in them.

The particular construction of the field theory depends on the specific lattice geom-

etry. However, generically they all stem from labelling the sublattice magnetizations

as individual fields and then putting them together by expressing the individual mag-

netization fields in terms of collective fields. The collective fields are of two kinds:

soft modes which do not break
∑

i mi = 0, and hard modes which do break it and

hence induce a net magnetization per unit cell.

In this chapter and the next we investigate two such constructions. We begin with

more straightforward two-sublattice antiferromagnet. Here the meat of our discussion

will focus on solitons (domain walls and vortices) of the order parameter field and

induced dynamics in them. The spin wave theory will be briefly touched upon. A

more detailed discussion is presented in seminal works by Anderson[59] and Haldane

[60]. We then move on to the case of three-sublattice antiferromagnets on hexagonal

lattices typified by the triangular lattice and the kagome lattice. There we focus

on the spin wave theory, highlighting an alternate route to the magnon dispersions
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Figure 3.1: On the left we show the constituent sublattice magnetizations m1,2. These
sublattices combine to form the antiferromagnet. A typical soliton in one dimension is
a domain wall shown on the right. The domain wall is a soliton interpolating between
the two unidirectional ground states of the one dimensional antiferromagnet.

from the Holstein-Primakoff mean field theory procedure. Later, we delve into the

external perturbations that can couple to these hexagonal lattice systems and the

kind of terms in the effective field theory engendered by the perturbations.

The two chapters are primarily based on work done in three papers. The gauge

fields in antiferromagnets was done in collaboration with Se Kwon Kim and Oleg

Tchernyshyov [61]. The spin wave theory of hexagonal antiferromagnet was sparked

in a collaboration with Prof. Broholm’s neutron scattering group. The experiment

and related modelling is present in [62]. A broader theoretical perspective is presented

in [63].

Solitonic dynamics in ferromagnets is dominated by gyroscopic effects generated

by their angular momentum density. Thus, to propel a ferromagnetic vortex in the x

direction of the xy plane, one applies a force in the y direction as we showed in Chapter

1, Eq.(1.26). Similarly, applying a force to a domain wall in a uniaxial ferromagnet
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Figure 3.2: Here we show a head-to-head domain wall in an uniaxial ferromagnet. It
is clear that at the location of the domain wall the moments point in and act as a sink
for the magnetization. Now in a material we have B = H + 4πM, since ∇ ·B = 0.
A sink of magnetization M, acts as a source for H, ∇ ·H = −4π∇ ·M. This is the
origin of stray magnetic monopolar fields in ferromagnetic solitons.

primarily generates its precession. To propel it forward, one has to apply a torque

to it. This is not the situation in antiferromagnets where a net angular momentum

density is usually a secondary effect from local anisotropy and fights with a much

larger exchange interaction.

For spintronics related applications, there are some potential advantages to an-

tiferromagnets mainly an absence of long-range stray magnetic fields (see Fig. 3.2)

and associated harmful crosstalk, the suppression of gyroscopic effects, and generally

faster dynamics [64]. At the same time, there are new challenges. How does one

apply a force to an antiferromagnetic soliton? An external magnetic field couples to

the net magnetic moment, which is strongly suppressed in an antiferromagnet. Spin

torque couples to the wrong channel, generating rotational, rather than translational,

motion of an antiferromagnetic domain wall [65]. Here we attempt to resolve this

question and arrive at generic conditions which result in propulsion of antiferromag-

netic solitons.

A continuum theory of a collinear antiferromagnet with two sublattices operates
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with two slowly varying (in space) fields Sm1(r) and Sm2(r), where S is as usual the

spin size and m1, m2 are unit vector fields. In a state of equilibrium, m1(r) = −m2(r).

More generally, the two sublattice fields are expressed in terms of dominant staggered

magnetization n = (m1 −m2)/2 and small uniform magnetization m = m1 + m2.

The constraints |m1|2 = 1 and |m2|2 = 1 translate into

m · n = 0, |n|2 = 1− |m|2/4 ≈ 1; (3.2)

the last approximation is valid as long as |m|2 � 1.

3.2 The kinetic term and spin wave spec-

trum

We demonstrate the calculation of the spin wave spectrum for a two sublattice

antiferromagnet on a square lattice with squares of side length a. The only interaction

present is the nearest neighbour Heisenberg exchange J . The kinetic term for the

antiferromagnet emerges from the Berry phases of the two sublattice magnetizations

m1,2. The net phase for the unit cell can be expressed as:

L = J (a1.ṁ1 + a2.ṁ2), (3.3)

here J = S/(2a2) is the density of angular momentum in two dimensions with
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Figure 3.3: This figure shows the two dimensional two sublattice antiferromagnet.
Red sites have their spins out of plane and blue spins have spins into the plane. The
unit cell for each sublattice is marked in dashed lines. The exchanges are isotropic
and are marked.

S as the moment (spin) length. While choosing the vector potentials for the two

sublattices, a1,2, we choose different gauges, such that the Dirac string of the two

monopoles lie on opposite hemispheres of the magnetization sphere. This ensures

that neither m1/2 is near a Dirac string. The convenient choice is a1(m) = a(m) and

a2(m) = a(−m).

In the equilibrium state when m1 = −m2 the Berry phases of the two sublattices

cancel exactly. This can be seen for the standard gauge choice of the vector potential

aθ = 0 and aφ = cos θ±1
sin θ

. The Dirac string carries a ‘flux’ of +4π either through the

north or south pole. If we put the string through the south pole for m1 and through

the north pole for m2 we have in equilibrium L = J [a(n)− a(−(−n))] · ṅ = 0.

The lowest non-vanishing kinetic terms are obtained by expanding the vector
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potentials using |m| as a small parameter. Individually, a1 · ṁ1 = a1(m/2 + n) ·

(ṁ/2 + ṅ) and a2 · ṁ2 = a2(m/2− n) · (ṁ/2− ṅ) . Expanding to quadratic order in

|m| and |ṅ| the kinetic term, eq. (3.3) yields the following:

L = (a1(n) + a2(−n)) · ṁ
2

(3.4)

+ (a1(n)− a2(−n)) · ṅ

+
mi

2

(
∂a1(n)

∂ni
− ∂a2(−n)

∂ni

)
· ṁ

2

+
mi

2

(
∂a1(n)

∂ni
+
∂a2(−n)

∂ni

)
· ṅ

We have the identity ∂a1(n)
∂ni
− ∂a2(−n)

∂ni
= 0, from the definition of the vector potentials.

This cancels the second and third terms. Now in the first term we transfer the time

derivative to a using an integration by parts and combine with the corresponding

vector potential term from the last line to get:

miṅk

(
∂ak(n)

∂ni
− ∂ai(n)

∂nk

)
= ṅ · (n×m), (3.5)

where we have used ∇n × a = −n. The potential energy is obtained from the
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Heisenberg exchange:

U = JS2
∑
<i,j>

mi ·mj, (3.6)

=
JS2

2

∑
α

(m1 + m2)2
α

=

∫
dV

JS2

2

(
2m2

a2
+ (∂in)2 +

(∂im)2

2

)
,

where J is the Heisenberg exchange strength and in the second line we have dropped

the constant term. In the second line we have expressed the summation over nearest

neighbours in terms of summation over two site magnetic unit cells α. We can see

that the uniform magnetization picks up an energy contribution from the exchange

interaction at the zeroth order in gradients and is hence a hard mode. The Neel

field n only appears through gradients and is the typical example of a soft mode in

antiferromagnetic systems.

The procedure to obtain the effective field theory is similar to the planar ferro-

magnet: we integrate out the hard field and express the theory in terms of the soft

field and this process generates an inertia for the soft mode. Since m is hard we shall

drop its gradient terms. Let us carry this out explicitly:

L =
S

2a2
ṅ · (n×m)− JS2

2

(
2m2

a2
+ (∂in)2

)
. (3.7)

Now we can solve for the hard field m = (ṅ× n)/(4JS). Plugging this solution back
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into the Lagrangian we get a field theory for the soft Neel field n:

L =
ρ

2
ṅ2 − JS2

2
(∇n)2 , (3.8)

with ρ = 1/(8Ja2). Here we have used (ṅ×n)2 = ṅ2 as n · ṅ = 0 from the unit vector

constraint of n.

The ordered state spontaneously breaks the degrees of freedom associated with the

staggered magnetization vector n(θ, φ). Hence in this case there are two Goldstone

modes, one for each continuous degree of freedom, dispersing linearly according to

ω = ck, with c = ±(2
√

2JS).

3.3 Moving antiferromagnetic solitons

We shall now look into the two sublattice antiferromagnet where the only spatial

dependence of the staggered magnetization field n is at the location of defects, taking

the remaining system to be ordered at any particular instant of time. Also since we

explicitly couple to external magnetic fields we switch to magnetic moment densities

from spin densities the two are related by M = γS. The theory we work with:

L = J ṅ · (n×m)−
(
M2

2χ

)
m2 − Uext[ζ,n,m], (3.9)
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where we have absorbed the Heisenberg exchange strength into a spin susceptibility

χ and J = M/γ and γ is the gyromagnetic ratio. ζ in the theory is an external

field. Our main objective is to see how various external perturbations modify the

Lagrangian density, in particular how they couple to the soft mode n. Once we have

an understanding of these couplings we shall study their effects on solitons in the

staggered magnetization order. We shall outline the manner in which these solitons

can be effectively moved in space by coupling to the order parameter. In particular we

want to see how we can effectively displace uniaxial domain walls and planar vortices

in n.

As in the case of the ferromagnet we can study the dynamics of the antiferro-

magnet under an external magnetic field and a spin current in a perturbative regime.

These external vector fields couple either to the uniform magnetization m(r, t) or

the staggered magnetization n(r, t) in the Lagrangian. This is broadly guided by

symmetries like time reversal and mirror planes of the spin Hamiltonian.

Fields which couple to m produce a gauge coupling to ṅ, on integrating out m.

This is the case with perturbations like an external magnetic field H(r, t) or a spin

transfer torque characterized by the drift velocity u(r, t). We shall show that such

terms require a spatial or temporal variation of the external vector field to produce

solitonic motion. Additionally these terms can be applied in a combination that

generates an emergent gyrotropic effect on an antiferromagnetic soliton.

The coupling to n gives rise to terms like (ζ · n)n where n = 1, 2 in the cases
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we studied. Here ζ represents an external field sourced from a combination of terms

like the Dzyaloshinski-Moriya interaction, external magnetic fields or combinations.

This term acts like a potential energy density. Expressed in terms of the collective

coordinates, this generates a force that can change the position of the domain wall.

Note here that an antiferromagnetic soliton by virtue of Eq. (3.8) is inertial, i.e. a

push/force propels an antiferromagnetic domain wall instead of rotating it unlike the

ferromagnetic case. We show that Dzyaloshinski-Moriya interactions generate such

terms and can be exploited to move solitons.

3.3.1 Magnetic field

We start with the effect of the external magnetic field H. The external magnetic

field enters the Lagrangian as a Zeeman coupling to the uniform magnetization U =

−MH ·m [66]. This produces the Lagrangian density:

L[m,n] = J ṅ · (n×m)−
(
M2

2χ

)
|m|2 +MH ·m, (3.10)

A straightforward minimisation with respect to m gives m =
(
χJ
M2

)
ṅ × n +

(
χ
M

)
H

which violates the constraint m · n = 0. To ensure the perpendicularity we resolve

h into a component perpendicular to n, h⊥ = n× (h× n) which enters the Zeeman

coupling m · h⊥ to produce a term (n × H) · (n × m). Now on solving for m we

obtain m =
(
χJ
M2

)
(ṅ× n) +

(
χ
M

)
(n×H)× n. Substituting this into the Lagrangian
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we obtain:

L(n) =
ρ(ṅ− γh× n)2

2
− U(n). (3.11)

The Lagrangian is identical to that of a particle in a rotating frame with an

angular velocity γ|h|. It is clear that an external magnetic field will cause a texture

in n to precess. There is an additional contribution to the energy in the form of

UH = −M2

2a
(n×H)2 which adds to the crystal anisotropy term in the energy functional.

Let us take a closer look at each of the terms in Eq.(3.11). The term ρṅ2/2 is

the kinetic energy of staggered magnetization and ρ = χ/γ2 is the density of inertia

[67, 68]. This term endows antiferromagnetic solitons with a mass. Suppose a soliton

is parametrized by a set of collective coordinates q = {q1, q2, . . .} such as the position

of a domain wall, the coordinates of a vortex core etc. The variation of n in time is

mediated by the change of these collective coordinates: ṅ = q̇i∂n/∂qi. The soliton’s

kinetic energy is then Mij q̇iq̇j/2, where Mij = ρ
∫
dV ∂n

∂qi
· ∂n
∂qj

is the inertia tensor [69].

The potential term ρ|γh×n|2/2 in Eq. (3.11) expresses local anisotropy favouring

the direction of n orthogonal to the effective field h. This term modifies the potential

landscape U(q) of a soliton:

U [q,h(r)] = U [q, 0]−
∫
dV

ρ|h× n|2

2
. (3.12)

It is notable that the cross term ργh · (ṅ × n) in Eq. (3.11) is linear in the time
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derivative ṅ and thus quantifies the effective geometric phase for the dynamics of

staggered magnetization. In the Lagrangian of a soliton, it turns into Aiq̇i, a coupling

to an external gauge field

Ai(q) =

∫
dV ργh ·

(
∂n

∂qi
× n

)
. (3.13)

The equations of motion for an antiferromagnetic soliton have the form of New-

ton’s second law for a particle of unit electric charge in this gauge field:

Mij q̈j = −∂U/∂qi + Ei + Fij q̇i −Mij q̇j/T. (3.14)

The “magnetic field” Fij = −Fji is the curl of the gauge potential:

Fij =
∂Aj
∂qi
− ∂Ai
∂qj

= −2

∫
dV ργh ·

(
∂n

∂qi
× ∂n

∂qj

)
. (3.15)

For the collective coordinates Xα representing rigid translations xα 7→ xα + Xα of

a magnetic soliton, the “magnetic field” Fαβ is related to the gyrovector G: Gα =

1
2
εαβγFβγ; Fα = FαβẊα = εαβγẊβGγ is the gyrotropic force [70]. The “electric field”

Ei = −
∫
dV ργḣ ·

(
∂n

∂qi
× n

)
(3.16)

arises if h depends explicitly on time.
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The “electromagnetic fields” satisfy Jacobi identities

∂Ej
∂qi
− ∂Ei
∂qj

+
∂Fij
∂t

= 0,
∂Fij
∂qk

+
∂Fjk
∂qi

+
∂Fki
∂qj

= 0. (3.17)

the analogs of Maxwell’s ∇× E + Ḃ = 0 and ∇ ·B = 0. In fact, we can define local

versions of the “electromagnetic fields” as it was previously done for a ferromagnet

[71],

Aα = ργh · (∂αn× n),

Eα = −ργḣ · (∂αn× n), (3.18)

Bα = −εαβγ ργh · (∂βn× ∂γn).

The emergent fields couple to an electric current and are, in principle, measurable as

in the ferromagnetic case [72].

The last term on the right-hand side of Eq. (3.14) is a viscous force with the

mode-independent relaxation time T = ρ/(2αJ ), where α is Gilbert’s dimensionless

damping constant [73].

Easy axis antiferromagnet and the domain wall: We shall now use the

simplest soltion at our disposal: a domain wall in a one dimensional easy axis anti-

ferromagnet, see Fig. 3.1 to illustrate the effects of an external magnetic field. The
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Heisenberg exchange for the local magnetization gives rise to the energy density:

U(n) =
A

2

∣∣∣∣∂n

∂z

∣∣∣∣2 +
K

2
|e3 × n|2. (3.19)

Here A > 0 characterizes the strength of exchange, K > 0 is the easy axis anisotropy,

and e3 = (0, 0, 1). This system has two uniform ground states n = ±e3, linear

excitations in the form of spin waves with the dispersion ω2 = (K + Ak2)/ρ, and

nonlinear solitons in the form of domain walls which interpolate between the two

ground states. Static domain walls in n = (sin θ(z) cosφ, sin θ(z) sinφ, cos θ(z)) have

width λ =
√
A/K and are parametrized in spherical angles θ(z) and φ(z) as follows:

cos θ(z) = ± tanh
z − Z
λ

, φ(z) = Φ. (3.20)

Position Z and azimuthal angle Φ represent the two zero modes of the system as-

sociated with the global symmetries of translation and rotation see Fig. 3.1. Weak

or local external perturbations do not alter the shape of the soliton significantly and

mostly induce the dynamics of Z and Φ.

The Lagrangian of a domain wall at this level contains kinetic energy: L =

MŻ2/2 + IΦ̇2/2, where M = 2ρ/λ is the mass and I = Mλ2 is the moment of

inertia. Thus a domain wall behaves like a point mass constrained to move on the

surface of a cylinder of radius λ. This link to a particle in a rotating frame was earlier

noted in Eq. (3.11).
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In the simplest case, the linear in m term in Eq. (3.10) comes from the external

magnetic field H, so that h = H. The gauge potential (3.13) for a domain wall (3.20)

is:

AZ = ±πργ(Hx sin Φ−Hy cos Φ), AΦ = −2ρλγHz. (3.21)

For a particle on the surface of a cylinder, these describe a “magnetic field” em-

bedded in three dimensions,

B =
Mγ

2
(±πHx,±πHy,−4Hz). (3.22)

When B is time-dependent, it induces an “electric field” E with the following axial

and azimuthal components on the surface of the cylinder:

E · e3 = ±πMλγ

2
Ḣ · eφ, E · eφ = MλγḢ · e3, (3.23)

where eφ = (− sin Φ, cos Φ, 0) is a unit vector in the azimuthal direction. The net

“electromagnetic” force in the axial direction is

F em
Z = EZ + FZΦΦ̇ =

d

dt

(
±πMλγ

2
H · eφ

)
. (3.24)

A sustained “electromagnetic” force can be generated if the real magnetic field

H (more precisely, its azimuthal component H · eφ) rises linearly in time. This
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is not a practical way to propel a domain wall. The “electromagnetic” force from

an oscillating external field H(t) averages out to zero over time. To overcome this

problem, Gomonay et al [74] proposed a ratchet propulsion mechanism combining

periodic field pulses with an asymmetric profile H(t) and static friction. If the field is

ramped up and down at different rates, the friction force, opposing the motion of the

domain wall, has different magnitudes during the rise and fall of the field pulse H(t).

As a result, even though the average “electromagnetic” force vanishes, the friction

force does not.

The peculiar result for the “electromagnetic” force (3.24) is not specific to the

example of a domain wall. Generally, if a soliton has a zero mode qa associated with

a global symmetry and the effective field h respects this symmetry, the corresponding

“electromagnetic” force is given by the “electric field” alone:

F em
a =

δ

δqa

∫
dtAiq̇i = −dAa

dt
+
∂Ai
∂qa

q̇i = −dAa
dt

(3.25)

(translations in qa do not change gauge potentials Ai). The long-time average of the

force is 0, unless Aa(t) keeps growing in time.

This situation is entirely equivalent to charging an LC circuit where over a cycle

the energy is transferred back and forth between the inducator (L) and capacitor

(C) without any dissipation. The only way to extract energy from the system is

to add a resistance R (friction) [75]. It would be interesting to explore whether a

71



CHAPTER 3. TWO-SUBLATTICE ANTIFERROMAGNETS

spatially nonuniform and time-dependent oscillating magnetic field H(r, t) can be

used to accelerate solitons.

3.3.2 Spin Transfer Torque

Another important external perturbation is the spin torque from an electric cur-

rent in a metallic antiferromagnet. Spins of electrons moving in an inhomogeneous

magnetic background undergo precession and thus exchange angular momentum with

the soliton. Here we focus on adiabatic spin torque that results when electron spins

follow the local direction of magnetization. We rely on a simple hopping model for the

electron in which a conduction electron couples to only one of the antiferromagnetic

sublattices [76].

For a ferromagnetic system the spin transfer torque is incorporated through the

addition of a gradient term in the Landau-Lifshitz equation:

J ṁ = heff ×m− J (u ·∇)m + αJm× ṁ, (3.26)

where u characterizes the coupling of the electron current to the local moments and

is proportional to the electron drift velocity. The adiabatic spin transfer torque can

be incorporated through a simple modification of the kinetic term in the Lagrangian:

the time derivative ∂t is replaced with the convective derivative ∂t + u · ∇ [77]. For

the antiferromagnet the effect of spin torque is computed for each sublattice inde-
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pendently. This leads to a kinetic term proportional to m · [(∂t + u · ∇)n× n]. On

integrating out m this leads to a Lagrangian for the Neel field:

L(n) =
ρ(ṅ + (u · ∇)n)2

2
− U(n). (3.27)

Here u is the drift velocity of electrons related to the electric current j = enu; n

is the concentration of electrons. In this case the theory is identical to a particle

on a uniformly translating reference frame with a velocity u. Although this does

imply that solitons will ‘translate’ in the presence of an adiabatic spin current the

net displacement will be reversed as soon as the current is switched off.

The Lagrangian density for the full system (3.10) acquires a term Jm · [(u ·∇)n×

n], from which we read off the effective magnetic field h = γ−1(u · ∇)n × n. The

induced uniform magnetization Mm = γρ(u · ∇)n × n agrees with the standard

phenomenology of adiabatic spin torque [76].

Returning to our model of an easy-axis antiferromagnet in one dimension, we

compute the gauge potential (3.13) with γh = u ∂zn× n to obtain

AZ = −Mu, AΦ = 0. (3.28)

The “magnetic field” FZΦ = ∂ZAΦ − ∂ΦAZ = 0, whereas the “electric field” EZ =

−ȦZ = Mu̇ is once again proportional to the time derivative of an external pertur-

bation. Thus adiabatic spin torque alone cannot be used to propel a domain wall
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[76].

3.3.3 Dzyaloshinski-Moriya Interaction

We will now examine the effect of adding the antisymmetric exchange or DM

interaction [14, 15] to the Lagrangian. This interaction exists in an antiferromagnet

with broken inversion symmetry intrinsically or at interfaces like sample edges and

extended domain walls. The interaction is characterized by the energy density UDMI =

D · (Si × Sj) = DM2

γ2
· (mi ×mj) where the direction of the DM vector D is dictated

by the Moriya rules[15]. Their net effect is to induce a weak ferromagnetism in the

material, which then couples to external torques and fields. The emergence of a

ferromagnetic moment also implies the existence of a non zero gyrotropic force in

these systems. In the presence of a DM interaction the theory takes the form:

L[m,n] = J ṅ · (n×m)−
(
M2

2χ

)
|m|2 −

(
M2

γ2

)
D · (n×m)− U [n], (3.29)

This adds an extra term to the solution for the staggered magnetization m =
(
χJ
M2

)
ṅ×

n− χ
γ2

(D× n). On integrating out the uniform magnetization we obtain:

L =
ρ(ṅ− (M/γ)D)2

2
− U(n, D). (3.30)
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where there is a new ‘easy-axis’ anisotropy term U [n, D] ∝ (n · D)2 from the DM

vector. The coupling with the kinetic term gives rise to a vector potential of the form

ADMI
i = J

a

∫
∂n
∂qi
·D. Just as in the previous cases of the magnetic field and the spin

current the gyrotropic force generated by this averages to zero over a full cycle, unless

we have a D that varies in time.

3.3.4 Crossed Interactions

Evidently, single perturbations are ineffective in moving antiferromagnetic solitons

over a closed cycle. The way out of this conundrum is to combine these perturbations.

The theme of these combinations is similar, one of the perturbations either a magnetic

field H(r, t) or a DM interaction D(r, t) is used to locally (at the location of the

soliton) induce a small magnetic moment (a source of Berry curvature) which the other

perturbation, say the spin current u(r, t), latches on to and generates a displacement

of the soliton.

DM interaction and external magnetic field: If these two types of terms are

simultaneously present in the system the Lagrangian density takes the form:

L =
ρ(ṅ + γ(n× h)− (M/γ)D)2

2
− U(n,D,h). (3.31)
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The cross term of interest is:

UDM-h = −ρM n · (D× h). (3.32)

This term acts as a ‘Zeeman’ term but for the staggered magnetization with an

effective magnetic field heff = (D×h). Note that in the presence of a DM interaction

the extra uniform magnetization that is induced is m ∝ (D × n). It is this extra

induced ferromagnetic moment that ‘Zeeman’ couples with the external magnetic

field.

This coupling expressed in collective coordinates acts like a potential energy for

the domain wall and will produce force on the wall itself. However, to cause a net

displacement in the position of the wall we require: (D × h)easy-axis 6= 0, such that

the force is in the correct channel. Here the easy axis points along the length of the

domain wall. This requires in particular a DM vector that is not aligned along the

easy axis. In our example domain wall this implies Dz = 0.

Crossed magnetic field and spin current: This situation is theoretically more

interesting. We shall first delve on how we can locally induce a Berry phase density

in an antiferromagnet using an external magnetic field. We follow up by using this

density in the context of an antiferromagnetic vortex to generate a Magnus force

which up till now was restricted to the realm of ferromagnetic vortices.

The interplay of adiabatic spin torque and an external magnetic field occurs
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through the potential term in the Lagrangian density ρ|γh × n|2/2 with the effec-

tive field γh = γH + (u · ∇)n× n, namely through the part ργH · (uα∂αn× n) that

is linear in the applied field H and the drift velocity u. Its contribution to the stress

tensor is

σαβ = εαµεβνuµργH · (∂νn× n) (3.33)

in 2 spatial dimensions.

This effect can be written out in terms of the collective coordinate set {q1, q2, ...}.

Generically, we require a conjugate pair for this effect to work (qα, qβ). The magnetic

field produces a gyrotropic tensor Gqαqβ locally which the adiabatic spin current cou-

ples to. For a domain wall we are limited to the choice (Z,Φ). A magnetic field along

the long axis ẑ will cause a precession in both sublattices without inducing any Berry

curvature, killing the effect.

Luckily we are rescued by the two dimensional (planar) systems where the two

conjugate collective coordinates of vortices are (X, Y ), the locations of the vortex

core. We shall use this example to detail how this set of crossed fields can be used to

generate a Magnus force for an antiferromagnetic vortex.

The Magnus force on the vortex core is obtained by integrating stress around a

contour containing the core, Fα = −
∮
σαβ dSβ, where dSβ = εβλdxλ is an “area”
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element normal to the contour segment dxλ:

Fα = −εαµuµ
∮
dxν ργH · (∂νn× n)

= εαµuµργH

∮
dxν ∂νφ = −Fαµuµ, (3.34)

as expected. In three dimensions for an antiferromagnetic vortex line, this translates

into:

F = 2πnργH

∫
u× dr, (3.35)

3.3.5 Antiferromagnetic vortices and (re)emergence

of Berry curvature

Consider a Heisenberg antiferromagnet in two spatial dimensions with easy-plane

(K < 0) anisotropy with potential energy density

U(n) =
A

2
|∇n|2 +

K

2
|e3 × n|2. (3.36)

It has uniform ground states n = (cosφ, sinφ, 0). Topological solitons are vortices

n(r − R), where R = (X, Y ) is the location of the center of the vortex. A vortex

centred at the origin, n(r), is parametrized in spherical angles as

eiφ(r) =

(
x+ iy

|x+ iy|

)n
, cos θ(r) = ±fn(r/λ). (3.37)
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Figure 3.4: A vortex in an easy-plane antiferromagnet in zero magnetic field (a) and
in a field H pointing along the hard axis normal to the plane (b). A combination of
the field and an in-plane electric current j gives rise to a Magnus force F ∝ j ×H.
Sublattice magnetizations m1 and m2 are shown in blue and red. Right panels show
portions of the unit sphere covered by the magnetization fields m1(r) and m2(r).

Here n ∈ Z is the vortex winding number (vorticity). The function f(ξ) is a profile

of the out-of-plane magnetization at the vortex core with fn(0) = 1 and fn(∞) = 0;

λ =
√
A/|K| is the radius of the core. The vortex mass M = πρ ln (Λ/λ) depends

logarithmically on the core radius λ and on a long-distance cutoff Λ, which can be

the size of the system or the screening length due to the presence of other vortices.

A magnetic field H = He3 along the hard axis breaks the time-reversal symmetry

of the antiferromagnet and allows for non-vanishing gyrotropic coefficients

GXY = −GY X =

∫
d2r (−2ργH) · (∂xn× ∂yn). (3.38)

This expression follows from Eq. (3.15) under the assumption of a rigid soliton n(r−

R), for which ∂X = −∂x and ∂Y = −∂y. To bring out the topological nature of this

quantity, we recast the integrand as a curl ∂xay−∂yax of the vector aα = ργH·(∂αn×n)

and use Stokes’ theorem to transform the area integral (3.38) into a line integral∮
dxα ργH · (∂αn×n) over the boundary. Away from the vortex core, n is in the easy
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plane, θ = π/2, and H · (∂αn × n) = −H∂αφ. Hence the gyrotropic coefficients of a

vortex,

GXY = −GY X = −ργH
∮
dxα ∂αφ = −2πnργH. (3.39)

This result was first obtained by [78].

The topological nature of the gyrotropic coefficients (3.39) clearly comes into focus

if we view a vortex in the two antiferromagnetic sublattices separately, as if they

were two independent ferromagnets. In the absence of an applied field, sublattice

magnetizations m1(r) and m2(r) point in opposite directions and cover the northern

and southern hemispheres, Fig. 3.4(a). This endows them with equal and opposite

skyrmion numbers q = ±n/2 and gyrotropic coefficients FXY = 4πqJ = ±2πnJ

[77, 79]. The net gyrotropic coefficient is zero. In an applied magnetic field, both

magnetizations tilt out of the easy plane toward the north pole by a small angle

δθ = χH
2M = ργH

2J . Now m1 covers slightly less than the northern hemisphere and m2

slightly more than the southern hemisphere, Fig. 3.4(b). The respective skyrmion

charges are q = ±n
2
− nργH

4J . The net gyrotropic coefficient is then FXY = −2πnργH.

In a two-dimensional ferromagnet, the gyrotropic tensor Fαβ quantifies not only

the Lorentz force Fα = FαβẊβ acting on a moving vortex, but also the Magnus force

Fα = −Fαβuβ exerted on the vortex core by a spin-polarized current of electrons

flowing at the drift velocity u [77]. It is reasonable to expect the same from our

antiferromagnet.

In a weak magnetic field, the velocity of the vortex v is set by the balance between
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the Magnus force and the viscous force −Mv/T , so that v is orthogonal to u and

their magnitudes are related by v ≈ γHTu. In a strong field, the gyrotropic force

becomes dominant and v approaches u. The crossover field being Hcr ≈ 1/(γT ). In

an insulating antiferromagnet Cr2O3, γ = 1.76 × 1011 s−1 T−1 and T = 60 ps [80],

so Hcr ≈ 0.1 T. In metallic antiferromagnets, the relaxation time T is expected to be

shorter and the crossover field higher. The spin drift velocity u is of the order of 5

m/s for a current density j = 1011 A/m2 [81]

3.4 Discussion

Thus we see that the antiferromagnetic soliton can have a gyrotropic response

in situations where we can couple to the hard uniform magnetization field m. This

effect is relatively weak for the external magnetic field as it couples through a Zeeman

term whose energy scale is of the order of 0.1meV. This has to compete with a very

large Heisenberg exchange (J ∼ 10meV ) to induce a local skyrmion density. This

can be seen explicitly in the coefficient of the Magnus force ργ|H| = (χ/γ)|H|. Now

χ ∝ (1/J) where J is the exchange strength, so the coefficient is controlled by (|H|/J).

However, this method does provide a route to the electrical detection of these

antiferromagnetic vortices which are notoriously hard to detect due to the absence

of any induced local stray angular momentum density. There remains a largely un-

explored area of the crossed DM interaction and magnetic field, especially in cases
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where there is spatial dependence in either.
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Chapter 4

Three sublattice antiferromagnets

4.1 Introduction

In this chapter we shall develop a generic field theory for three sublattice antifer-

romagnets with a local D3 point group symmetry. In contrast to our main focus of

the previous chapter, where we studied the dynamics of antiferromagnetic solitons,

here we are interested in the theory governing the dynamics of spin waves.

Spin waves are gentle osicllations about a classical ground state. In most cases,

barring the exception of frustrated antiferromagnets with small spin lengths (spin -

1
2
) spin wave theory is remarkably accurate[82]. The ordered moments are expressed

in terms of classical vector fields:

S = S (sin θ sinφ, sin θ cosφ, cos θ) (4.1)
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where S is the local spin/magnetization-length and θ(t, r) and φ(t, r) are slowly

varying fields. Deviations are expressed as small displacements from the ground state

order θ0 → θ0 + δθ(t, r) and φ0 → φ0 + δφ(t, r).

The spin waves are conveniently expressed in the basis of normal modes of the

spin system. These modes form a symmetry governed irreducible representation for

the spin degrees of freedom (rotational) in a magnetic unit cell [83]. The normal

modes in a system where Heisenberg exchange is the dominant interaction, provide

an intuitive picture of the spin wave excitations. In addition they provide insight into

how the spin order couples to internal anisotropies and external perturbations, based

on symmetry arguments.

As noted before in antiferromagnets the exchange interaction enforces a zero net

spin per unit cell,
∑

i Si = 0, where the summation is over sublattices. Normal

modes that violate this condition induce a net spin per plaquette, recall the uniform

magnetization field m(r) in the two sublattice case.

These induced moments are penalized by the exchange interaction and are hence

energetically costly. They will be henceforth referred to as ‘hard’ modes. We will be

focused on soft modes that preserve the condition of zero net spin. They enter the

energy density U(s) in the form of gradients. The presence of materials anisotropies

such as local easy axes and DM interactions introduce finite energy corrections (at

the constant level) to the soft modes and we shall show how. However, in a vast

majority of cases the exchange strength is the dominant interaction by at least an
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order of magnitude in the energy scales. We shall study the gaps induced by the

anisotropies and substantiate this point later in the chapter.

In the ensuing chapter we shall construct the spin-wave theory for generic hexag-

onal antiferromagnets with three magnetic sublattices. A field theory for an antifer-

romagnet on the triangular lattice was developed previously by Dombre and Read

[84, 85] in search for a topological term in the quantum field theory as found in

one dimension by Haldane [86]. Our primary motivation, however, is to construct

a framework from which one can calculate the spectrum of spin waves for a broad

class of antiferromagnets with a hexagonal symmetric lattice and dominant nearest

neighbor Heisenberg exchange interactions. The triangular-lattice [87] and kagome

[88] antiferromagnets with exchange between nearest neighbors only are special cases

with accidental degeneracy of the spin-wave spectra.

Some features unique to the three-sublattice antiferromagnet emerge from this

theory. Firstly, there are now three Goldstone modes as compared to two for the

two-sublattice case. This happens because the the Néel order parameter, staggered

magnetization n, for the two-sublattice case breaks the SO(3) symmetry of the spin

vectors only partially, down to SO(2) rotations about the Néel vector. The three-

sublattice magnetic order breaks the symmetry fully, resulting in three Goldstone

modes. Secondly, from the perspective of point-group symmetry, the three Goldstone

modes can be grouped into a singlet and a doublet. The field theory for this doublet

is analogous to the continuum theory of elasticity in two dimensions.
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In addition to providing a framework we shall present a more detailed view of

the stacked kagome lattice antiferromagnets Mn3X where X = Sn, Ge. The stacked

kagome system is structurally more complicated and involves two separate kagome

layers. However, in each layer the spins order into a 120◦ pattern of the three sublat-

tice triangle. The strongest exchange is the nearest neighbor in plane interaction, this

is augmented by further neighbor interplanar couplings which rise from the metallic

character of these compounds. Our theory fares decently in this arena, we derive

analytical expressions for the spin wave velocities for small wave numbers (k → 0)

and the spectral gaps at k = 0 which we use in fitting the inelastic neutron data. We

also take a deeper look at the energetics of the spin wave bands under the influence of

external perturbations like local anisotropies, DM interactions, and magnetic fields.

Our motivation is to form a protocol with regard to how external probes can couple

to the system and effect transport and magnetic properties.

4.2 Lattice and geometry

In this section, we review the geometry of the spins and their normal modes in

three-sublattice antiferromagnets. This forms the first step towards the construction

of a general theory of spin waves for these lattices, which we shall extend to the more

complex situation of Mn3X.

The simplest examples of this class of magnets are the Heisenberg model on a tri-
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angular lattice or on a kagome network of corner sharing triangles, Fig. 4.1. Although

their spectra differ significantly—the kagome antiferromagnet with nearest-neighbor

interactions has many spin waves with zero frequency—there are features common to

many models.

Among these robust universal features are three Goldstone modes: spin waves with

a linear dispersion, ω ∼ ck, in the long-wavelength limit. Their existence is related

to the spontaneous breaking of the spin-rotation symmetry. They are affected by

the presence of anisotropic spin interactions. However, because Heisenberg exchange

is typically the dominant form of interactions for spins, this symmetry exists in at

least an approximate form and the picture of three Goldstone modes with a linear

dispersion is a good starting point. The general setting is an antiferromagnet with

Heisenberg exchange interactions on a two-dimensional lattice with a triangle as a

building block, see Fig. 4.2(a). We assume that classical ground states have a magnetic

unit cell with three coplanar spins S1, S2, and S3 such that

S1 + S2 + S3 = 0. (4.2)

This provides the triangle inequality between the three spin vectors of equal magni-

tude which will be crucial in establishing our analogy between the spin wave theory

of these magnetic states and the continuum theory of elasticity.
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Figure 4.1: The two prototype triangular lattices, the kagome lattice of corner sharing
triangles (a) and the triangular lattice (b). We show a 120◦ ordered state on both
where sites with the same spin color or orientation belong to the same spin sublattice.

4.2.1 Local geometry of the normal modes

The geometry of the ground state and the lattice is shown in Fig. 4.2(a). Spatial

rotations through the angle +2π/3 in the x − y plane produce a cyclic exchange of

the spin variables: 
S′1

S′2

S′3

 =


0 0 1

1 0 0

0 1 0




S1

S2

S3

 . (4.3)

Note that the spins Si are permuted but there is no rotation in spin space. A mirror

reflection x→ −x, y → y exchanges spins 1 and 2:
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Figure 4.2: On the left we have the geometry of a single triangular plaquette with
an example 120◦ ground state. The spins carry the same labels as the site i.e spin
Si is at site ri (a). The normal modes (b) for the spin structure with the in plane
α modes, the red arrow indicates the ground state, while the blue arrows indicate
the distorted state. The out of plane β modes are shown at the bottom. The three
soft modes, (α0,β), are indicated by a dashed box. These modes obey the condition
S1 + S2 + S3 = 0. The secondary black arrows (ξ, η, ζ) label the axes attached to the
moments induced by the hard modes (αx, αy, β0).


S′1

S′2

S′3

 =


0 1 0

1 0 0

0 0 1




S1

S2

S3

 . (4.4)

Because we are dealing with a ground state where the order itself does not have a

spatial variation and is defined within a single magnetic unit cell (the spin waves are
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variations on top of the order), it will suffice to consider the three spins on a triangle,

Si = S(sin θi cosφi, sin θi sinφi, cos θi) (4.5)

with i = 1, 2, 3 representing the three sublattices. It is convenient to express these

angles in terms of six normal modes α0, αx, αy, β0, βx, and βy, see Fig. 4.2(b):


φ1

φ2

φ3

 = q



2π
3

4π
3

0


− qR


αx

αy

α0


, (4.6)


θ1

θ2

θ3

 =



π
2

π
2

π
2


+R


βx

βy

β0


,

where R is the orthogonal matrix.

R =



1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3


. (4.7)

We measure the ground state spin angles from S3 as the reference. Here q = ±1

accounts for the chirality of the ground state: q = 1 is the chiral ground state while
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Figure 4.3: The two ground state chiralities are shown. For the q = 1 state if we
proceed in an anticlockwise sense around the triangle r1 → r2 → r3 → r1 the spins
wind in an anticlockwise sense. For the q = −1 state for the same route around the
triangle the spins wind in a clockwise sense.

q = −1 is the anti-chiral ground state, see Fig. 4.3. The ground state chosen by the

system is decided by the sign of the out of plane DM exchange. For Mn3X the DM

vector is out of plane and chooses the anti-chiral state. Note that the ground state

retains a O(2) degree of freedom in the xy plane captured by the α0 mode. Under

spatial transformations allowed by D3 symmetry group of the equilateral triangle

(rotations by ±2π/3 and mirror reflections), α0 and β0 stay unchanged. We therefore

call them scalar modes.

Modes αx and αy form a doublet transforming as 2 components of a polar vector.
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Under the +2π/3 rotation (4.3),

 α′x

α′y

 =

 −1
2
−
√

3
2

√
3

2
−1

2


 αx

αy

 . (4.8)

Under the reflection (4.4),

 α′x

α′y

 =

 −1 0

0 1


 αx

αy

 . (4.9)

The same applies to the modes (βx, βy) which also form a doublet.

Thus we can resolve the normal modes into two singlets α0 and β0 which are scalar

and two doublets α = (αx, αy) and β = (βx, βy) which transform as vectors in the xy

plane.

4.2.2 Hard and soft modes

Modes αx, αy, and β0 create a net spin on a triangle. They allow us to define

three mutually orthogonal spin axes ξ, η, and ζ, respectively, Fig. 4.2(b). The other

three modes, βx, βy, and α0, generate rotations about the spin directions −ξ, −η,

and ζ, respectively.

By creating a net spin on a triangle, modes αx, αy, and β0 increase its exchange

energy J(S1 + S2 + S3)2/2. These modes are therefore hard. The remaining modes
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βx, βy, and α0 are soft.

4.3 Field theory for the soft modes

Here we derive the spin wave field theory for the generic triangular unit antifer-

romagnet. The kinematic term originates from the local spin Berry phase for each of

the three spins Sa(m) · ṁ, which we can write using the standard gauge choice as

S(cos(θ)− 1)φ̇. Note that the spins lie in the plane with minimal canting so it does

not matter which pole we thread the Dirac string through. For a spin confined to the

xy plane θ ' π/2, this reduces to: (π/2− θi)φ̇i on each sublattice, i = 1, 2, 3. For the

triangle this leads to a Lagrangian, expressed in terms of the normal modes:

LB = S
3∑
i=1

(π/2− θi)φ̇i = S(α̇0β0 −α · β̇), (4.10)

where S is the spin density at a site. The potential energy for the triangle is calculated

by expanding the dominant nearest neighbor Heisenberg interaction

U =
JS2

2
(s1 + s2 + s3)2, (4.11)
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in terms of the normal modes. At the zeroth order in gradients, the potential energy

depends solely on the hard modes and is given by:

U =
A
2

(α2
x + α2

y + 2β2
0) + Ug(∇α0,∇βx,∇βy), (4.12)

where A is a lattice-dependent constant. The single triangle Lagrangian now reads:

L = S(α̇0β0 −α · β̇)− A
2

(α2
x + α2

y + 2β2
0)− Ug (4.13)

From this we can solve for the hard modes, using their equations of motion:

Sβ̇x = −Aαx, Sβ̇y = −Aαy, Sα̇0 = Aβ0. (4.14)

Plugging the solutions back in we get to a kinetic energy for the soft modes:

K =
ρα
2
α̇2

0 +
ρβ
2

(β̇2
x + β̇2

y), ρα =
S2

2A
, ρβ =

S2

A
. (4.15)

To complete the theory, and account for the dispersion at finite wave numbers we

need to add the contributions to the potential energy density from the soft modes

Ug(∇α0,∇βx,∇βy). This is obtained by expanding the exchange interaction in terms

of gradients (to second order) of the soft modes, after setting the hard mode am-

plitudes to zero. For the hard modes we have a contribution from the exchange
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interaction at the zeroth order in gradients. Since we are interested in long distance

behaviour, in the gradient expansion we keep terms to the lowest order in gradients

and drop the spatial variations of the hard modes. There are restrictions imposed on

the kinds of terms generated, namely the α0 transforms as a scalar and the β doublet

like a vector. We also generate six-fold terms allowed by the hexagonal symmetry D3

of the lattice.

What emerges from this at the quadratic order in soft mode gradients is a wave-

equation in 2+1 dimensions for the α0 mode (recall the φ field in the XY ferromagnet)

and a theory analogous to a continuum theory of elasticity in 2-d for the β doublet.

The gradients of the displacement fields, u(r), in elasticity (∂iuj) are replaced by

the gradients of the β doublet (∂iβj). We outline both in what follows, ending with

additions to the simple elasticity theory from higher order (in gradients) terms that

are allowed by the D3 symmetry.

4.3.1 Singlet

The singlet mode α0 has simple dynamics. Its Lagrangian density consists of a

kinetic energy with mass density ρα and a potential energy quadratic in the gradients

of α0:

L =
ρα
2
α̇2

0 −
κ

2
∂iα0 ∂iα0. (4.16)
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Here κ ∝ A , introduced in Eq. (4.12) with the constant of proportionality which de-

pends on the local lattice environment. Summation is assumed over doubly repeated

Cartesian indices i = x, y.

As often happens in highly symmetric solids, the effective Lagrangian (4.16) obeys

not just the discrete symmetries of the point group D3 but also the full rotational

symmetry SO(2). Spin waves have a linear dispersion ω = ck with the speed c =√
κ/ρα.

4.3.2 Doublet

The continuum theory for the doublet is more involved as the doublet field β

itself transforms like a vector under rotations. The Lagrangian of this field has the

following form:

L =
ρβ
2
β̇iβ̇i −

Cijkl
2

βijβkl −
C̃ijkl

2
β̃ijβ̃kl. (4.17)

Here we have introduced symmetrized and anti-symmetrized gradients,

βij ≡
1

2
(∂iβj + ∂jβi), β̃ij ≡

1

2
(∂iβj − ∂jβi). (4.18)

The inertia density ρβ is generally different from its counterpart ρα for the singlet

mode. The stiffness coefficients are fourth-rank tensors with the following symmetry

properties: Cijkl is symmetric and C̃ijkl is antisymmetric under the exchanges i ↔ j

and k ↔ l; both tensors are symmetric under the exchange (ij)↔ (kl).
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The structure of the Lagrangian (4.17) is highly reminiscent of the theory of

elasticity in two dimensions. Here βi identifies with the lattice displacement, βij with

strain, and β̃ij with rotation of the lattice. In a solid, rotations do not increase the

elastic energy, so C̃ijkl = 0 for lattice vibrations. For spin waves, C̃ijkl 6= 0 in general.

As with the elastic constants, the highly symmetric hexagonal environment dras-

tically reduces the number of independent potential coefficients. Both fourth-rank

tensors can be expressed in SO(2)-invariant forms:

Cijkl = λδijδkl + µ(δikδjl + δilδjk),

C̃ijkl = µ̃εijεkl = µ̃(δikδjl − δilδjk). (4.19)

Here δij is the Kronecker delta and εij is the antisymmetric Levi-Civita symbol,

εxy = −εyx = +1. The Lamé parameters λ and µ determine the bulk modulus λ+ µ

(in 2 dimensions) and the shear modulus µ. For the spin system these moduli are all

proportional to the Heisenberg exchange strength(s) as we shall see in our examples.

To continue the analogy with a solid, we will refer to µ̃ as the rotation modulus. The

explicit form of the Lagrangian for the β modes is

L =
ρβ
2
β̇2
i −

λ

2
∂iβi ∂jβj −

µ+ µ̃

2
∂iβj∂iβj −

µ− µ̃
2

∂iβj∂jβi. (4.20)

Spin waves for the β modes with longitudinal and transverse polarizations have
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the propagation speeds

c|| =

√
λ+ 2µ

ρβ
, c⊥ =

√
µ+ µ̄

ρβ
. (4.21)

4.3.3 Six-fold symmetric terms

The continuum spin-wave Lagrangians (4.16) and (4.20) exhibit full SO(2) rota-

tional invariance. In a hexagonal solid, this symmetry is only approximate and is

explicitly broken if we include terms of higher orders in the gradients. These higher

order terms are required to obey the local six-fold symmetry of rotations and inversion

(D3 point group).

The six-fold symmetric terms can be constructed as follows. Take three unit

vectors n1, n2, and n3 making angles of 120◦ with one another. For arbitrary vectors

a, b, and c, the sum
3∑
i=1

(a · ni)(b · ni)(c · ni) (4.22)

is invariant under 120◦ rotations. Furthermore, the square of this quantity is invariant

under 60◦ rotations.

For the α0 mode, the only vector available is the gradient ∇ (or the wave-vector

k), so we take a = b = c = ∇. A quantity invariant under 60◦ rotations is

L6 = −σα
8

[(
∂3
x − 3∂x∂

2
y

)
α0

]2
. (4.23)
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Adding this term to the Lagrangian of the α0 mode alters the magnon dispersion,

warping the cone ω = ck as follows:

ω2 = c2k2 +
σα
ρα
k6 cos2 3φ, (4.24)

where φ is the angle at which the magnon propagates in the xy plane, k = (k cosφ, k sinφ).

The warping is strongly suppressed near the center of the Brillouin zone.

For the β modes, we have two vectors to play with, ∇ and β. The relevant

invariant is

L6 = −σβ
2

[
(∂2
x − ∂2

y)βx − 2∂x∂yβy
]2
. (4.25)

For nondegenerate longitudinal and transverse modes (c|| 6= c⊥), the magnon disper-

sions are warped as follows:

ω2 = c2
||k

2 +
σβ
ρβ
k4 cos2 3φ,

ω2 = c2
⊥k

2 +
σβ
ρβ
k4 sin2 3φ. (4.26)

The warping for the β modes comes at a lower order in the gradient expansion and is

therefore more pronounced than for the α0 mode. Note that if either of the velocities

(c||, c⊥) are zero this makes the six-fold pattern very prominent.
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4.4 Testing the theory on the triangular

and kagome lattices

Let us now explicitly construct the field theory for the nearest neighbor triangular

antiferromagnet and the kagome antiferromagnet, see Fig. 4.1. The point of difference

here is the spin density per sublattice site. For the triangular lattice each site has

a coordination number of six while for the kagome the coordination number is four.

These densities have to be calculated separately for each new lattice type.

For any individual lattice system we start with the kinetic energy derived in

Eq. (4.15). The inertia for the soft modes ρα and ρβ and the parameter A need

to be determined for each lattice type. For the soft mode contribution to the poten-

tial energy density U we do a gradient expansion of the exchange interaction in the

soft modes with the amplitudes of the hard modes set to zero. This is combined with

the kinetic energy to form the full Lagrangian density L = Lkin−Ug(∇α0,∇βx,∇βy).

4.4.1 Triangular antiferromagnet

In the nearest-neighbor Heisenberg model on the triangular lattice [85, 87], the

magnetic unit cell has the area A = (3
√

3/2)a2 where a is the nearest neighbor

distance, see Fig 4.1(b). The spin density is: S = 2S/(3
√

3a2) and the energy density
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parameter A = (
√

3JS2)/a2 This results in the inertia:

ρβ =
S2

A
=

4

27
√

3 Ja2
= 2ρα. (4.27)

In addition gradient expansion yields the energy density:

Ug =
JS2

4
√

3

[
(∇α0)2 + (∇βx)2 + (∇βy)2

]
, (4.28)

One can identify the constants κ = JS2/
√

3 for the α0 singlet and for the β doublet

λ = 0, and µ = µ̃ = JS2/(2
√

3).

The α0 mode has the speed c = 3
√

3
2
JSa. The β modes are degenerate and have

speeds c|| = c⊥ = c/
√

2, see Eq. (4.21) and Fig. 4.4(c). The degeneracy is associated

with the special values of the Lamé coefficients, λ = 0 and µ = µ̃, and reflects a

higher, SO(2)× SO(2) symmetry of the Lagrangian,

L =
1

2
ρββ̇iβ̇i − µ ∂iβj ∂iβj, (4.29)

where one SO(2) rotates spatial coordinates and the other transforms components of

the β doublet.

101



CHAPTER 4. THREE SUBLATTICE ANTIFERROMAGNETS

4.4.2 Kagome antiferromagnet

For the nearest-neighbor kagome antiferromagnet [88] the magnetic unit cell area

is A = (
√

3/2)a′2 where a′ is the lattice parameter and is equal to twice the nearest

neighbor distance. The spin density is given by S = 2S/(
√

3a′2), see Fig. 4.1(b). This

gives the energy density parameter A = (2
√

3JS2)/a′2. From this we can extract the

inertia for the two modes:

ρβ =
S2

A
=

2

3
√

3Ja′2
= 2ρα. (4.30)

The soft mode gradient expansion of the exchange interaction yields the following

energy density:

Ug =
JS2

8
√

3

[
(∇α0)2 + 2(∇ · β)2

]
. (4.31)

The constants for the kagome lattice are hence κ = JS2/4
√

3 for the α0 singlet and

for the β doublet λ = JS2/2
√

3, and µ = µ̃ = 0.

The α0 mode and the longitudinal part of the β mode have the speed cα =

c|| =
√

3
2
JSa′, whereas the transverse β mode has c⊥ = 0, see Fig. 4.4(a)[88]. The

zero transverse speed is associated with the vanishing shear and rotation moduli,

µ = µ̃ = 0 in the dual elasticity theory. In this sense, the nearest-neighbor kagome

antiferromagnet resembles a fluid.

The spin lattice has zero modes as a result of a highly degenerate ground state

manifold rising from the so called ‘weather-vane’ modes which do not cost exchange
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energy to excite (soft modes in our classification). These modes have been observed in

[89, 90]. Note in particular, that the excitation they show in Fig. 1 (a) of [89] is the βx

soft mode shown in Fig. 4.2(b). For a wave propagating along (0, ky) where the planes

of equal phase lie along x̂ as shown in [89] Fig. 1 (a), β⊥ = (βx, 0) and β|| = (0, βy).

So the kagome flat (non-dispersive) mode in this case is the βx soft mode. In [89] the

flat band lifts from zero energy due the DM interaction. This is also evident from our

energy expressions in Eq. (4.52) and [62]. Both the experiments were carried out on

powdered samples where effects of the local D3 symmetry are suppressed and hence

the six-fold quartic corrections to the dispersion are hard to discern.

This ‘fluid’ behaviour is in fact a direct analogy to the continuum elasticity theory

of nearest neighbor kagome lattice, which is critical according to the Maxwell criteria

for stability [91, 92]. The n.n kagome lattice is unstable to shear distortions with

floppy modes which are lifted by an addition of a next nearest neighbor elastic coupling

[93].

Similarly, for the spin system the addition of further neighbor exchanges, lifts

the degeneracy between the α0 and the longitudinal β mode and generates a finite

velocity for the transverse β mode [88], see Fig. 4.4(b).
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Figure 4.4: Dispersion of the three Goldstone modes (α0,β) along kx from the Γ
point for kagome lattice on the left (a,b) and the triangular lattice on the right (c),
for J = 10 meV and S = 1. For the kagome lattice, with n.n exchange (a) one of
the β modes is flat and the other one degenerate with the α0 mode. The two effects
are lost for a further neighbor ferromagnetic exchange (b) |Jnnn| = 0.5 meV. For the
triangular lattice (c) the two β modes are degenerate for n.n exchange.

4.5 Stacked Kagome

We shall now look into a layered AB stacked kagome system Mn3Ge. It is not

in direct analogy to the single layered triangular lattices we have so far elucidated

on. However, the primary magnetic unit here is the three sublattice triangle with the

magnetic sites interacting via a strong nearest neighbor antiferromagnetic Heisenberg

exchange. This ensures a nearly 120◦ spin order in the ground state in each kagome

plane.
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From the inelastic neutron data [62], we notice the absence of any non-dispersive

bands at finite energies. As seen in Sec. 4.4 this happens in the kagome with further

neighbor interactions. In our theory we show that the minimal additional interactions

required to produce this dispersion are interplanar.

In addition, the system has a fairly strong DM interaction with a D = Dẑ vector

that points out of plane. This locks the spins into an antichiral order and minimizes

canting out of the kagome planes. There is a small on-site easy axis anisotropy

which cants the spins in plane, out of the 120◦ order, characterized by δ [94, 95, 96].

This energy scale is three orders of magnitude smaller than any other energy scale

δ � (J2, J4). This is evident from our fits to spin wave dispersion data in [62], see

Table. 4.1

Thus, we have on our hands a stacked triangular unit antiferromagnet, where the

triangular ordering of spins produces the same Goldstone mode structure as we dealt

with before. We apply our theory to this system, extracting analytical expressions for

the spin-waves near the Γ point and the gaps at the Γ point. The model Hamiltonian,

with all the energy terms, we are fitting to is:

HJDδ =
∑
<i,j>

Jij Si · Sj +
∑
<i,j>

Dij · (Si × Sj)

−
∑
i

δ(n̂i · Si)2. (4.32)

Here JDδ stands for a model containing Heisenberg exchanges, collectively J , a DM
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interaction D and local anisotropy δ. The local anisotropy is six fold and at each site

is directed towards the nearest Sn or Ge site, see Fig. 4.5(d).

An effective description of the system requires two sets of modes: (α0,α, β0,β)

for the A layer and (α′0,α
′, β′0,β

′) for the B layer, see Fig. 4.6. The theory is better

expressed in terms of symmetric and antisymmetric combinations of the two sets,

ζs = ζ+ζ′√
2

and ζa = ζ−ζ′√
2

, where ζ stands for any of the α or β modes. To simplify

the expressions a bit we absorb the unit cell volume V = (
√

3a′2l)/2 into the metric

L ≡ V L. As indicated before a′ is the lattice parameter in the kagome plane.

The primary unit is the David-star motif consisting of an up triangle in the lower

(blue) layer and a down triangle of the upper (red) layer, see Fig. 4.6(a). The net

Berry phase can be expressed in terms of the symmetric and antisymmetric modes:

L = S(α̇s0β
s
0 −αs · β̇s) + S(α̇a0β

a
0 −αa · β̇a). (4.33)

To obtain the potential energy density at the Γ point we have to consider three types

of exchange interactions.

The dominant exchange is the intralayer nearest neighbor antiferromagnetic ex-

change characterized by the strength J2. To reproduce the isotropic dispersion seen

in [62] we need to add next neighbor interplanar couplings, see Fig. 4.6. The minimal

set required is J1 and J4. The index i on the exchange strength Ji represents the

actual distance between two neighbors.
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The layer separation is small and hence the first neighbor is indeed interlayer J1.

Fits to data fix the value of J1 to be � J2,4 but we retain J1 as it presents some

novel features. In particular, J1 affects the non dispersive band only at the quartic

order and that too in a distinctly six-fold manner. J3 produces the same qualitative

dispersion as J1 including the appearance of non dispersive bands. A fit to the data

resolves J3 → 0. J4 is the nearest exchange which lifts the flat band isotropically.

The interlayer exchange interactions J1 and J4 respect the D3 symmetry of the

triangle and the inversion symmetry with respect to the center of the star. J4 connects

sites with the same sublattice index, whereas J1 connects different sublattices, see

Fig. 4.6.

As before, we can convert the Berry phase into a kinetic energy by integrating out

the hard modes. In this case there are six such modes. For the examples we worked

out in Sec. 4.4, the modes we retained were the ones that were soft under exchange.

We perform the same exercise here but with a bit more scrutiny. The energy U at

the Γ point obtained from expansion of three exchange interactions:

U = C1

[
(αs)2 + 2(βs0)2

]
+ C2(αa)2 + C3(βa0 )2 (4.34)

+ C4

[
(βa)2 + (αa0)2

]
+ Ug.
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The constants Cn are:

C1 =

(
3

2
J2 +

3

2
J1

)
S2. (4.35)

C2 =

(
3

2
J2 +

J1

2
− 4J4

)
S2.

C3 = (3J2 − J1 − 4J4)S2.

C4 = 2 (J1 − 2J4)S2.

In the presence of the interlayer exchanges J1 and J4, all the antisymmetric modes pick

up zeroth order in gradient energy contributions. Three gapless modes (Goldstones)

remain: the symmetric modes (αs0,β
s).

Note that the interlayer couplings can cause instabilities (negative gap energies) in

the 120◦ order if we have a ferromagnetic (antiferromagnetic) exchange between sites

of the opposite (same) sublattice. Here, for instance, if sgn(J1) < 0 or sgn(J4) > 0.

For the experiment [62] the fits require an antiferromagnetic J1 and a ferromagnetic

J4, this provides positive constant energies to all the antisymmetric modes and there

are no instabilities leading to a theory:

L = LB − U [αa0,β
a, βs0, β

a
0 ,α

s,αa]. (4.36)

From this we integrate out six modes(βs0, β
a
0 ,α

s,αa) using their equations of motion.
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This results in a theory:

L =
ραs

2
(α̇s0)2 +

ρβs

2
(β̇s)2 +

ραa

2
(α̇a0)2 +

ρβa

2
(β̇a)2

− C4

[
(βa)2 + (αa0)2

]
. (4.37)

The inertia for the βs modes is generated by integrating out the hard αs modes and

the inertia for the αs0 mode is generated by integrating out the hard βs0 mode:

ρβs =
S2

2C1

=
1

3(J2 + J1)
= 2ραs . (4.38)

Similarly the inertias for the antisymmetric modes are:

ρaβ =
S2

2C2

, ρaα =
S2

2C3

. (4.39)

These modes are not critical to our study as they are gapped in Mn3Ge by C4, see

Eq. (4.37). This allows us the freedom to drop the space-time gradients of all the

antisymmetric modes. The resulting kinetic energy density we work with is:

Lkin '
ραs

2
(α̇s0)2 +

ρβs

2
(β̇s)2. (4.40)

In the presence of interlayer exchanges the antisymmetric modes are gapped, and we

need not retain their kinetic terms in the gradient expansion.
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We now calculate the interaction energy density generated by the gradient expan-

sion of the Heisenberg exchanges in the soft modes (αs0,β
s). We proceed one exchange

interaction at a time, highlighting the features in each case.

4.5.1 Intralayer interactions

Heisenberg antiferromagnetic exchange between nearest neighbor sites confined

to a single kagome plane, J2 (see Fig. 4.6(a)) reproduces the kagome lattice example

worked out earlier. This is the dominant exchange term in this compound. The

energy density of the soft modes is:

Ug =
J2

16
a2S2

[
(∇αs0)2 + (∇αa0)2

]
(4.41)

+
J2

8
a2S2

[
(∇ · βs)2 + (∇ · βa)2

]
.

In the absence of interlayer coupling, the symmetric and antisymmetric modes are

degenerate. This implies that the inertia for the symmetric and antisymmetric modes

is the same, ρsα = ρaα = ρα and ρsβ = ρaβ = ρβ.

We can read off the velocity of the αs,a0 mode from Eq. (4.16), identifying κ =

J2
8
a2S2, cα =

√
κ/ραaS =

√
J2/(8ρα)aS.

For the βs,a elasticity theory we can read off the elasticity moduli: λ = J2
4
a2S2,

µ = µ̃ = 0 and hence the velocities:
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c|| =

√
J2

4ρβ
aS (4.42)

c⊥ = 0.

As is evident the ‘solid’ has zero shear modulus and hence carries a flat mode in

the direction perpendicular to a propagating elastic wave. Since ρβ = 2ρα the two

dispersive modes propagate at the same speed cα = c||

4.5.2 Interlayer interactions

To reproduce the dispersion observed in the experiment [62] we need to find ex-

change interactions that endow the flat β⊥ mode with an isotropic dispersion. The

nearest interactions that do the job are J1 and J4, shown in Fig. 4.6. Note that this is

a minimal set of exchanges and in actuality represent an effective interlayer coupling

that reproduces the correct dispersion.

The interactions themselves can be either ferro or antiferromagnetic. If an inter-

action connects opposite (same) sublattices on the two layers and is ferromagnetic

(antiferromagnetic) then the interaction strength has to be smaller than the in plane

Heisenberg coupling J2 to produce the same ground state. The interlayer interaction

potential U is given as:
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Ug
S2

= (2J1 − 4J4)
[
(αa0)2 + (βa)2

]
+
a2

6

(
J1

8
− J4

)
(∇αs0)2 (4.43)

− a2J4

8
(∂xβ

s
x + ∂yβ

s
y)

2 +
a2

24
(J1 − 5J4) (∂yβ

s
x − ∂xβsy)2

− a√
3

(J1 + J4)
[
βax(∂yβ

s
x + ∂xβ

s
y) + βay (∂xβ

s
x − ∂yβsy)

]
.

where we have dropped the gradients of the massive antisymmetric modes, αa0 and

βa.

In the presence of these interlayer interactions our ‘elastic’ theory analogy seems

to fail due to terms, linear in field derivatives βai ∂jβ
s
k or βsi ∂jβ

a
k . Inversion transfor-

mations about the common triangle center (center of the David’s star motif) reduces

the form of allowed terms to : βai ∂jβ
s
k which are invariant under inversions, since

βa → −βa, βs → βs and ∇ → −∇ leaving the combination unchanged, see Fig. 4.6.

These terms do not fit directly into the mould of an elasticity theory, and the ki-

netic term K ∝ (β̇a)2, keeps us from integrating out the massive antisymmetric modes

to re-obtain an elastic theory. However, with the assumption that the antisymmetric

modes are sufficiently gapped by an ferromagnetic J4 and an antiferromagnetic J1,

we can do a perturbation theory in these linear terms for their contribution to the

velocities of the symmetric modes. In this limit we return to an elasticity theory

involving the βs modes.

The linear gradient interactions are also responsible for inducing a 6-fold pattern in
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the dispersions at the quartic level (' k4), see Eq. (4.47). This is especially apparent

for an antiferromagnetic J1 interaction. However, in the presence of a ferromagnetic

J4 this six-fold behaviour is alleviated by the more isotropic nature of J4. This is

important as the dispersion in the sample data is isotropic around the Γ point, see

Fig. 4.7.

4.5.2.1 In-plane velocities

We can now list the velocities of all the gapless modes in the presence of both

in-plane and out-of-plane interactions. In the presence of (J1, J2, J4) the velocities

are:

csα =

√
1

ραs

(
J2

8
− J4

3
+
J1

24

)
a′S (4.44)

cs|| =

√
1

ρβs

(
J2

4
− 5J4

24
− J1

12
− 3J1J4

8(J1 − 2J4)

)
a′S

cs⊥ =

√
1

ρβs

(
−3J4

8
− 3J1J4

8(J1 − 2J4)

)
a′S,

where a′ is the lattice parameter for a single kagome layer. Note that with just a J1

out of plane interaction (J4 = 0) the perpendicular mode (cs⊥) that was flat under J2

remains flat to linear order and develops flat directions in q-space at the quadratic

level, see Fig. 4.7(a). The situation with J4 as the out of plane interaction is isotropic.
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4.5.2.2 Out-of-plane velocities

For the α0 mode the dispersion is given by ραω
2
α = (J1

4
− J4

2
)(kzl)

2. For the βx,y

modes the c-dispersion is ρβω
2
β = (J1

4
− J4

2
)(kzl)

2. These lead to the out of plane

velocities:

cα =

√
J1 − 2J4

4ραs
lS (4.45)

cβ =

√
J1 − 2J4

4ρβs
lS,

where l is the separation between unit cells in the c-direction. Now since ρβs = 2ραs

the relation between the velocity of the two types of modes is cαs =
√

2cβs in the

kz-direction.

4.5.3 Symmetry features of the interplane interac-

tions

The interplane interactions expressed using the symmetric vector field βs and the

antisymmetric vector field βa contain the following terms :

1. A mass term for the field βa.

2. Direct quadratic interactions: ∂iβ
a · ∂jβa and ∂iβ

s · ∂jβs (‘elasticity’ theory).

3. Crossed interaction terms between βa and βs which are linear in derivatives
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βai ∂jβ
s
k. The cross terms have to follow the inversion symmetry criteria for the

exchanges.

The interlayer exchanges are shown in Fig. 4.6 and their gradient expanded forms are

shown in Eq. (4.43). Let us take a closer look at the linear term which is common to

both expressions:

Ulinear ∝
[
βax(∂yβ

s
x + ∂xβ

s
y) + βay (∂xβ

s
x − ∂yβsy)

]
. (4.46)

We motivated a generic construction of a six-fold term in Eq. (4.22). In that con-

struction if we take the vectors a = (−βay , βax), b = ∇, and c = (βsx, β
s
y) we generate

the cross term in Eq. (4.46).

In section 4.3, we noted that such a structure has a 120◦ symmetry. For the

case of the interlayer coupling this turns into a 60◦ symmetry. This happens because

in Eq. (4.46), a 60◦ degree rotation interchanges the three unit vectors ei with a

flipped sign and flips the primed and unprimed modes, which leads to βa → −βa and

βs → βs. The two flips of sign cancel to produce a 60◦ symmetry, see Fig. 4.8.

This 6-fold symmetry is explicit in the dispersions. Keeping only two antiferro-

magnetic interactions J1 and J2 with k = k (cosφk, sinφk) the two gapless modes

have dispersions:
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ρβω
2
β1

=

(
J1 + J2

384

)
(1 + cos(6φk)) k

4 (4.47)

ρβω
2
β2

=

(
J2

4
− J1

12

)
k2

− 1

1152
(3J2 − 5J1 + 3(J2 + J1) cos(6φk))k

4

Both the gapless β modes display a six fold feature at the quartic level, see

Fig. 4.7(a),(b). One of these dispersions (the βs2 mode) is modified by J2 at the

quadratic level making it isotropic near the Γ point. However note that as J1 →

3J2 the quadratic part goes to zero and six-fold features will become prominent,

Fig. 4.7(b).

The other mode is the ‘six-fold flat mode’ which results from the interlayer inter-

action J1 lifting the flat mode associated with the frustrated J2-only kagome lattice,

in a non-isotropic fashion at the quartic order in k.

In contrast and as apparent in Eq. (4.44), J4 has quadratic contributions to both

the gapless βs modes resulting in an isotropic dispersion of the former flat mode, see

Fig. 4.7(c),(d).
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4.6 Gapping the Goldstones

The Goldstone modes are gapped by three anisotropies normally present in the chi-

ral kagome compounds Mn3X. Of these three, two of them: the easy plane anisotropy,

characterized by Kz and the DM interaction, characterized by the vectors Dij keep

the U(1) symmetry in the xy plane intact. As a result they do not gap the αs0 mode

and do not split the degeneracy of the βs doublet. That is accomplished by a fairly

weak local anisotropy characterized by δ. The local anisotropy axis is directed to-

wards the nearest Sn/Ge site (at the center of the hexagon), see Fig. 4.5 (d). This

breaks the U(1) and gaps the αs0 mode and splits the βs doublet. The energetic

separation resulting from the DM (or Kz) is an important feature of the spectrum.

In its absence the local easy axis term mixes the αs0 and βs manifolds.

The interactions are given by:

Ueasy-plane = Kz

3∑
n=1

(Sn · ez)2 (4.48)

UDM =
1

2

3∑
m=1

3∑
n=1

Dmn · (Sm × Sn)

Ueasy-axis = −δ
3∑

n=1

(Sn · en)2

where the DM vectors Dmn = −Dnm = ±Dez are normal to the easy plane and

favour one of the two possible “vorticities” of spins on a triangle. In both Mn3Sn

and Mn3Ge, “antivortex” states are preferred: as we move counterclockwise around
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a triangle, the spins rotate clockwise.

In “antivortex” states, the local anisotropy Ueasy-axis is frustrated: the three mag-

netization Si cannot all point along the respective easy directions. As a compromise,

only one of the three sublattices is fully happy, resulting in six possible ground states

for each compound.

We can express the interactions in Eq. (4.48) in terms of the symmetric normal

modes (αs0,α
s, βs0,β

s). The antisymmetric modes are gapped by a strong J4.

Ueasy-plane =
kz
2
S2
[
(βs0)2 + (βs)2

]
, (4.49)

UDM =
D

2
S2
[
3
√

3(αs)2 + 2
√

3(βs)2
]
,

Ueasy-axis = δ
√

3S2

[
αsx cos

(
2√
3
αs0

)
− αsy sin

(
2√
3
αs0

)]
− δ

4
S2
[
2(αsx)

2 − 2(αsy)
2 + (βsx)

2 − (βsy)
2 + 2

√
2βs0β

s
y

]
cos

(
2√
3
αs0

)
− δ

2
S2
[
2αsxα

s
y + βsxβ

s
y +
√

2βs0β
s
y

]
sin

(
2√
3
αs0

)
.

The full energy density at the Γ point:

Ufull = Uexchange + UDM + Ueasy-axis + Ueasy-plane (4.50)

From here we proceed to calculate the gaps at the Γ point. We shall treat all the

energies barring the exchange as perturbations on top of exchange. The first step is

to minimize Ufull and solve for the modes which are hard under exchange in terms of
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the soft modes: αsx = αsx(β
s, αs0) and same for αsy, and βs0. Then consider the theory:

L = Lkin − (UDM + Ueasy-axis + Ueasy-plane), (4.51)

L = Lskin − Uperturbation(βs, αs0),

where we only retain the symmetric part of Lkin shown in Eq. (4.40 as Lskin. This

theory can be now used to solve for the Γ point gaps in the Goldstone modes.

Eα =

√√√√ 1

ραs

(
3δ3

J2
eff

)
S, (4.52)

Eβy =

√
1

ρβs

(
2

(√
3D +

δ

2

)
+

δ

6Jeff
(4
√

3D − δ)
)
S,

Eβx =

√
1

ρβs

(
2

(√
3D +

δ

2

)
− δ

6Jeff
(4
√

3D − δ)
)
S,

where Jeff = J2 + J1. We have also dropped the easy plane anisotropy Kz as the

DM interaction itself provides an easy plane anisotropy which suffices to fit the ex-

perimental data.

We can fit the three gaps, Eq.(4.52) and the three velocities and Eq.(4.44),

Eq.(4.45) using six parameters (J1, J2, J4, DM, δ, ραs), see Fig. 4.5 (a,b,c). The fit

values are reported in Table. 4.1.
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J1S
2 J2S

2 J4S
2 DS2 δS2

refined value
(meV)

0(6) 34(7) −17(5) 0.02(1) ≤0.01

Table 4.1: Microscopic parameters of the spin Hamiltonian refined for Mn3Ge. A
positive (negative) sign for the exchange parameters corresponds to AFM (FM) in-
teractions. Note that J1 and J4 are inter-plane interactions (see Fig.4.6), while J2, D
and δ are intra-plane interactions.

4.7 Coupling to external fields

The study of the normal modes and their natures reveal effective ways of coupling

to the magnetic order. External probes like magnetic fields couple to the spins locally,

or the net spin of the plaquette and engender terms which are D3 symmetric. These

couplings are expressed in the basis of the normal modes, which represent the spin

degrees of freedom. Given that the normal modes are D3 symmetric by construction

and decouple into a pair of singlets and a pair of doublets we can limit the terms that

can be produced based on symmetry properties alone.

For instance, for an external magnetic field the Zeeman coupling is between two

time reversal odd vectors: the magnetic field Bext and a net spin per plaquette. The

only vectors available at the linear order in fields, which are also time reversal odd

are, Bext, and α. Hence the Zeeman term will be of the form Bext · (Rα) where R is

a 2-d rotation matrix, which accounts for the global O(2) freedom of the spins in the

xy plane.
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4.7.1 Net spin in the ground state

As an explicit example of this let us look into the origin of the small ferromagnetic

moment in the ground state of these compounds. We derive a Landau functional from

which the size of the ferromagnetic moment resulting from spin canting due to δ can

be obtained. Consider a single kagome layer with coplanar spins arranged in 120◦

order in an anticlockwise sense, and an in plane magnetic field. The energy terms

we have to consider are: nearest neighbor exchange J , easy-axis anisotropy δ, and a

Zeeman term.

In each of the six allowed ‘antivortex’ ground states the two spins that are not

along the local easy axis try to align along the easy axis giving rise to a small ferro-

magnetic moment. This can be expressed in terms of the hard modes α.

mx = −
√

3

2
S [αx cos(φ0)− αy sin(φ0)] (4.53)

my =

√
3

2
S [αx sin(φ0) + αy cos(φ0)] ,

where
√

3φ0 = α0. Note that in [62] the ground state is at α0 → 0 in each triangle.

Now the size of the moment depends on the values of the doublet α in the ground

state. To get that we start by writing down the energy density in terms of all six
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modes:

Uexchange =
3J

2
S2(α)2 (4.54)

UZeeman =

√
3

2
hgS [αx cos(φ0 + ψh)− αy sin(φ0 + ψh)]

Ueasy-axis =

√
3

2
S2δ [αx cos(2φ0)− αy sin(2φ0)] .

Here we have used the magnetic field H = h(cos(ψh), sin(ψh)) and g is the gyromag-

netic ratio. We can minimize the total energy Utotal = Uexchange + UZeeman + Ueasy-axis

and solve for α. Plugging this back into Eq. (4.53) we obtain the induced moments

as:

mx = S
δ cos(φ0)

2J
+ g

h cos(ψh)

2J
(4.55)

my = S
δ sin(φ0)

2J
+ g

h sin(ψh)

2J
.

Note the extra induced ferromagnetic moment from the anisotropy δ, above the para-

magnetic component. Fro φ0 = 0 we have mfm = (S δ
2J
, 0) as the ground state in [62]

suggests.

4.8 Discussion

We have presented a field theory for spin waves in a hexagonal antiferromagnet

with three magnetic sublattices in terms of normal modes of a spin triangle. The zero
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net spin condition imposed on each triangular plaquette leads to a spin wave theory

which has three Goldstone modes each with a different velocity, in the generic case.

The theory decomposes into a field theory for a singlet α0 and a doublet β. The

theory for the doublet maps to a continuum theory for elasticity with the spin wave

velocities as ‘sound’ velocities.

We use the familiar settings of the Heisenberg antiferromagnet on the triangular

and kagome lattice to demonstrate the features of the field theory. In this case, the

two examples are slight outliers because of their highly symmetric lattice environment.

The triangular lattice has the β modes as degenerate, and in the kagome we have

a degeneracy between the α0 singlet and one of the β modes while the other one

is zero throughout the Brillouin Zone, see Fig. 4.4. We show that the flat mode of

the kagome can be anticipated from the elasticity analogy: the mechanical kagome

lattice (phonons) with nearest neighbor interaction has zero shear and this property

is manifest in our spin wave analog as the flat mode.

Although the spin wave analyses around the 120◦ ground state of both the triangu-

lar Heisenberg antiferromagnet and the kagome antiferromagnet are well documented

[85, 87] their description in terms of three sub lattice field theory is absent from the

literature to the best of our knowledge.

Additionally, in the case of a local D3 symmetric environment we provide a generic

construction scheme for six fold symmetric terms. This is particularly useful in pres-

ence of local anisotropies which break the O(2) symmetry in the plane but keep the
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six fold symmetry intact. We use this theory to describe the spin wave spectrum of

Mn3Ge, extending it to the bi-layer situation with interlayer couplings. The analyti-

cal expressions for the spin waves and the gaps are used to extract the parameters of

the Mn3Ge Hamiltonian.

The study of the normal modes and their natures reveal effective ways of coupling

to the magnetic order. External probes like magnetic fields couple to the spins locally,

or the net spin of the plaquette and engender terms which are D3 symmetric. These

couplings are expressed in the basis of the normal modes, which represent the spin

degrees of freedom. Given that the normal modes are D3 symmetric by construction

and decouple into a pair of singlets and a pair of doublets we can limit the terms that

can be produced based on symmetry properties alone.

For instance, for an external magnetic field the Zeeman coupling is between two

time reversal odd vectors: the magnetic field Bext and a net spin per plaquette. The

only vectors available at the linear order in fields, which are also time reversal odd

are, Bext, and α. Hence the Zeeman term will be of the form Bext · (Rα) where R is

a 2-d rotation matrix, which accounts for the global O(2) freedom of the spins in the

xy plane.

Since the magnetism in these materials is intricately linked to the conduction

bands of the electrons, through an s-d coupling [97], certain features like the location

of the Weyl points and, the magnitude of the anomalous Hall response [97, 96] can be

manipulated through the local magnetic order. This is a promising avenue of future
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work in these materials.

The emergent elasticity theory is also interesting from a more general point of

view than just the present scenario, allowing a comparison of this case with other

emergent elasticity theories like in Skyrmion crystals[98]. It also leaves open avenues

of investigation along the lines of the duality theory developed in [47] and [99], espe-

cially since in Mn3Ge the non collinear ground state allows a spin-phonon coupling,

which might make a melting transition particularly interesting.

A detailed study of the soft modes, as provided here, is of use in spintronics where

they can couple to external perturbations [100]. In the effective theory for a two

sublattice antiferromagnet presented in [61], it was noted that space-time dependent

external perturbations introduce gauge fields which can be used to interact with and

drive solitons. A similar construction can be envisioned for the three-sublattice case

where the solitons in question can be domain walls between the six-fold ground states

[101].
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Figure 4.5: Panels (a), (b) and (c) refer to the inelastic neutron scattering experiment
in Mn3Ge [62]. In panel (a) we show the fit to the data using two sets of parameters
(J1, J2, J4, D, δ,Kz). Of the two models, model 1 assumes that the two smaller peaks
at 15 and 18 meV are the βs manifold peaks. This requires fairly large values of DM
and easy axis anisotropy (δ). The second model interprets the peaks at 15-18meV
as optical phonons hybridizing with the magnons. Here it turns out that the local
anisotropy is very small and the βs manifold is nearly degenerate and is almost pushed
onto the αs0 mode. The second model is better supported by the intensity of the peaks
and by the data from panel (b) which indicates a high phonon contribution to the
intensity around 15-18 meV. Panel (d) shows the local environment of the kagome
layer in Mn3X. The easy axes are marked in black dashed lines. For Mn3Sn the spins
want to align with the easy axes while for Mn3Ge they want to align perpendicular to
the easy axes. As is evident with the antichiral state only one in three sublattices can
satisfy this requirement this gives rise to six equivalent ground states: each sublattice
and its time reversed partner contributing once.
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Figure 4.6: Heisenberg exchange interactions in Mn3Ge, shown as dashed lines: in-
tralayer exchange J2 (a) and interlayer exchanges J1 (b), J3 (c), and J4 (d).
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Figure 4.7: Color plots for the dispersions of the β doublet with an antiferromagnetic
(J2, J1) and ferromagnetic J4. Upper panels: show the dispersions for the βs modes
with J1 = 2.5 J2, and J4 = 0. We can clearly see the six fold pattern in both cases.
Left : The dispersion for the cS⊥ mode the flat lines represent directions in the k-space
for which cS⊥ = 0. Right : The dispersion for the cS|| mode. There are no flat directions
but a six fold pattern is prominent. Lower panels: show the dispersions for βs

modes with J2 = 4|J4|, and J1 = 0 with cS⊥ mode on the left and cS|| mode on the

right. Both modes are isotropic and there are no flat directions.
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Figure 4.8: This figure shows how a 120◦ symmetric term converts to a 60◦ term for
the central David’s star motif in Mn3X. Here we choose the three unit vectors e1, e2,
e3 along highly symmetric directions for purposes of illustration. It is clear that after
a π

3
rotation the blue and red (up and down) modes are interchanged and the unit

vector axes are reversed. Note that the cyclic permutation of labels caused by the
rotation is absorbed into the summation over the labels in Eq. (4.22).
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Discussion

In this thesis we have discussed the field theories of magnetically ordered systems.

We started with the planar ferromagnet defined on the xy plane. We showed that

this system can be mapped to a theory of electromagnetism in two spatial and one

time dimension. We also show how the magnetic vortices under the same mapping

become electric charges with a magnetic flux attached to their cores. This charge-flux

mapping leads to the notion of a modified quantum statistics of these dual particles

where they can interpolate between a boson and a fermion depending on the spin-

length (integer or half-integer) of the magnetic lattice.

We then moved onto a discussion of the two sublattice antiferromagnetic system.

Here we showed that the a gauge like addition to the Lagrangian can be made by

introducing an external magnetic field or a finite DM interaction. This creates a local

magnetization density in the antiferromagnet producing a gyrotropic tensor density.
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We also show how using this induced gyrotropic term we can produce a Magnus force

on an antiferromagnetic vortex using a spin current. This, as far as we know, is the

first example of this phenomena.

Lastly we discuss in detail the three sublattice antiferromagnet. Here we construct

the spin wave theory for the general three sublattice antiferromagnet with 120◦ or-

dered spins. The theory contains three Goldstone modes which are grouped into a

scalar mode and a vector (in xy space) mode. Intriguingly we notice that the theory

for the vector mode maps to an emergent theory of elasticity in (t, x, y). We use our

theory to obtain the analytical expressions for the spin wave velocities in Mn3Ge.

This was used in conjunction with inelastic neutron scattering data to fit the spin

Hamiltonian for Mn3Ge. We end by proving a general outlook of how external probes

can couple to the system and distort the order.
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cher, J. Grollier, J. P. Heremans, T. Jungwirth, A. V. Kimel, B. Koopmans,

I. N. Krivorotov, S. J. May, A. K. Petford-Long, J. M. Rondinelli, N. Samarth,

137

https://link.aps.org/doi/10.1103/PhysRevLett.30.230
https://link.aps.org/doi/10.1103/PhysRevLett.30.230


BIBLIOGRAPHY

I. K. Schuller, A. N. Slavin, M. D. Stiles, O. Tchernyshyov, A. Thiaville, and

B. L. Zink, “Interface-induced phenomena in magnetism,” Rev. Mod. Phys.,

vol. 89, p. 025006, Jun 2017.

[46] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. New York:

Freeman, 1973.

[47] M. Pretko and L. Radzihovsky, “Fracton-elasticity duality,” Phys. Rev.

Lett., vol. 120, p. 195301, May 2018. [Online]. Available: https:

//link.aps.org/doi/10.1103/PhysRevLett.120.195301

[48] D. Tong, “Lectures on gauge theory,” lecture notes, 2018. [Online]. Available:

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

[49] N. Papanicolaou and T. N. Tomaras, “Dynamics of magnetic vortices,” Nucl.

Phys. B, vol. 360, no. 2-3, pp. 425–462, 1991.

[50] V. G. Bar’yakhtar, M. V. Chetkin, B. A. Ivanov, and S. N. Gadetskii, Dynam-

ics of Topological Magnetic Solitons, ser. Springer Tracts in Modern Physics.

Berlin: Springer, 1994, vol. 129.

[51] B. A. Ivanov, H. J. Schnitzer, F. G. Mertens, and G. M. Wysin, “Magnon

modes and magnon-vortex scattering in two-dimensional easy-plane ferromag-

nets,” Phys. Rev. B, vol. 58, pp. 8464–8474, Oct 1998.

[52] We owe this idea to one of the referees of this paper.

138

https://link.aps.org/doi/10.1103/PhysRevLett.120.195301
https://link.aps.org/doi/10.1103/PhysRevLett.120.195301
http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html


BIBLIOGRAPHY

[53] A. Y. Galkin and B. A. Ivanov, “Semiclassical dynamics of vortices in 2D easy-

plane ferromagnets,” J. Exp. Theor. Phys., vol. 104, no. 5, pp. 775–791, May

2007.

[54] B. A. Ivanov, E. G. Galkina, and A. Y. Galkin, “Quantum dynamics of vortices

in small magnetic particles,” Low Temp. Phys., vol. 36, no. 8, pp. 747–751, Aug.

2010.

[55] R. Takashima, H. Ishizuka, and L. Balents, “Quantum skyrmions in two-

dimensional chiral magnets,” Phys. Rev. B, vol. 94, p. 134415, Oct 2016.

[56] H. Watanabe and H. Murayama, “Noncommuting momenta of topological soli-

tons,” Phys. Rev. Lett., vol. 112, p. 191804, May 2014.

[57] O. Tchernyshyov, “Conserved momenta of a ferromagnetic soliton,” Ann. Phys.,

vol. 363, pp. 98–113, Oct. 2015.

[58] J. Preskill, “Quantum computation,” lecture notes, 2004. [Online]. Available:

http://theory.caltech.edu/∼preskill/ph219/

[59] P. W. Anderson, “An approximate quantum theory of the antiferromagnetic

ground state,” Phys. Rev., vol. 86, pp. 694–701, Jun 1952.

[60] F. D. M. Haldane, “Nonlinear field theory of large-spin heisenberg antiferro-

magnets: Semiclassically quantized solitons of the one-dimensional easy-axis
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