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Abstract: An exact non-perturbative model of a gravitational wave with pure radiation is constructed.

It is shown that the presence of dust matter in this model contradicts Einstein’s field equations. The

exact solution to Einstein’s equations for gravitational wave and pure radiation is obtained. The

trajectories of propagation and the characteristics of radiation are found. For the considered exact

model of a gravitational wave, a retarded time equation for radiation is obtained. The obtained

results are used to construct an exact model of gravitational wave and pure radiation for the Bianchi

type IV universe.

Keywords: gravitational wave; pure radiation; light cone; retarded time of radiation; dust matter;

Hamilton–Jacobi equation; Shapovalov spacetimes; Bianchi type IV universe

1. Introduction

The opening of the era of gravitational wave astronomy (Nobel Prize in Physics,
2017) provided new tools for obtaining information about astrophysical objects and the
universe as a whole [1–3]. Studying the propagation of radiation and the motion of
particles in a gravitational wave is an important task for gravitational wave astronomy
since it can provide additional approaches and methods for recording and determining
the characteristics of the gravitational wave background [4]. Recently, this direction has
received an additional experimental base in connection with the release of a number of
publications on observational data on time delays of signals from pulsars when their
radiation passes through the stochastic gravitational wave cosmic background [5–7].

Usually, such models are considered in perturbative approximations for weak gravita-
tional perturbations against the background of basic gravitational fields and are studied
by numerical methods [8–12]. When constructing numerical models taking into account
complex gravitational wave signals, the availability of exact models of gravitational waves
is of great importance, providing an exact mathematical basis and a transparent physical
interpretation and allowing one to exactly calculate the influence of a gravitational wave
on the propagation of radiation. Such exact models allow us to clarify the behavioral
features of solutions and serve as a basis for debugging more complex numerical models of
gravitational waves.

In this paper, we will consider the most general exact model of a gravitational wave,
whose metric in a privileged coordinate system depends only on one wave variable, along
which the spacetime interval vanishes [13]. Along with the cosmological constant in
Einstein’s field equations, we will consider such sources as pure radiation and dust matter.
In this case, the pure radiation model can have a physical interpretation as both high-
frequency electromagnetic radiation and high-frequency gravitational radiation, as well as
any other massless radiation against the background of a basic gravitational wave.

Symmetry 2024, 16, 1456. https://doi.org/10.3390/sym16111456 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16111456
https://doi.org/10.3390/sym16111456
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4739-2788
https://orcid.org/0000-0002-4868-2683
https://orcid.org/0000-0003-0521-0958
https://doi.org/10.3390/sym16111456
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16111456?type=check_update&version=3


Symmetry 2024, 16, 1456 2 of 21

Exact models of gravitational waves are also of interest in the study of gravitational
waves at the early stages of the universe’s development since observational data on the mi-
crowave cosmological background indicate its anisotropy [14], and the generally accepted
interpretation of this fact as a consequence of the kinematic effect during the motion of our
galaxy also causes critical assessments [15–17]. If the universe had anisotropy at the early
stages of its development, then gravitational wave models based on Bianchi’s anisotropic
universe models and their influence on the formation of the microwave electromagnetic
background of the universe may be of interest for research. The model of gravitational
waves considered by us allows for the existence of symmetries of Bianchi spaces [18], can
have joint exact solutions with the electromagnetic field [19–26], and, thus, can also model
gravitational and electromagnetic waves in the early anisotropic universe. We have also
previously constructed a number of exact models of similar gravitational waves [27–29]
for both Einstein’s theory of gravity and modified theories of gravity [30–38], including by
taking into account nonlinear terms in curvature in the field equations [39,40].

When studying the motion of test particles and the propagation of radiation in such
exact models of gravitational waves, the Hamilton–Jacobi formalism is often used, which
allows exactly integrating the equations of motion and obtaining the trajectories of particles
and the trajectories of light propagation in a gravitational wave. The study of trajectories
allows, among other things, for obtaining the ratios of the delay of light signals during their
propagation in gravitational waves [41], which provides opportunities for experimental
assessments of the characteristics of background gravitational waves.

From a general theoretical point of view, exact models of gravitational waves pro-
vide a general basis for deriving physical laws based on them, for example, for deriving
Coulomb’s law for the electric charge in a gravitational wave. From a technical point of
view, non-perturbative exact models of gravitational waves are necessary to describe strong
gravitational wave disturbances when perturbative methods do not work, for example,
to describe gravitational waves at the early stages of the universe’s development or near
sources of strong gravitational wave disturbances. The delay of light signals in the stochas-
tic gravitational wave background is currently being directly analyzed in the works of
radio astronomers on long-term observations of pulsar signal delays.

2. The Gravitational Wave Exact Model

Let us consider the most general model of a gravitational wave, the metric of which in
a privileged coordinate system depends on only one wave variable. The spacetime interval
of the gravitational wave under consideration can be represented in the following general
form [13]:

ds2 = 2dx0dx1 + gpq(x0)
(

dxp + f p(x0)dx1
)(

dxq + f q(x0)dx1
)

. (1)

Here, s is the spacetime interval and the indices p, q, r = 2, 3. To write the metric (1), a
“privileged” coordinate system with the wave variable x0 is used (along the wave variable,
the spacetime interval vanishes). The metric (1) in the privileged coordinate system allows
for obtaining a complete integral for the Hamilton–Jacobi equation of test particles and for
the eikonal equation [42–44].

The equation for test particles in a gravitational field has the following form in the
Hamilton–Jacobi formalism [13]:

gαβ ∂S

∂xα

∂S

∂xβ
= m2c2, α, β = 0, 1, 2, 3, (2)

where m is the mass, S is the action function of the test particle (unlike the interval, the
action is denoted by a capital letter S), and c is the speed of light, which we will set equal to
unity in what follows.

As is known, the metric (1) belongs to the class of Shapovalov wave metrics [45] and
allows for the existence of the so-called complete set of spacetime symmetries (a complete
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set of Killing vector and tensor fields) that form a complete set of integrals of motion of the
Hamilton–Jacobi equation for geodesics (2), allowing one to obtain a complete integral of
this equation in a privileged coordinate system.

In a privileged coordinate system, the action function of a test particle can be repre-
sented in a separated form:

S(xα) = ϕ0(x0) + λk xk, i, j, k = 1, 2, 3. (3)

where λk are constants (integrals of motion specified by initial or boundary conditions).
From the Hamilton–Jacobi Equation (2) for the metric (1), we can note the consequences

that arise according to the method of the separation of variables when the action function
of a test particle in the considered privileged coordinate system has the form:

S = ϕ0(x0) + ∑
k

λkxk. (4)

The Hamilton–Jacobi Equation (2) then gives the relation:

2
dϕ0

dx0

(

λ1 − ∑
q

λq f q(x0)
)

= m2 − ∑
p,q

λpλq gpq(x0), (5)

where λk are independent constants of motion of the test particle.
The action function of the test particle S in the gravitational wave under consideration

takes the following form:

S = ∑
k

λkxk +
1

2

∫ m2 − ∑p,q λpλq gpq(x0)

λ1 − ∑q λq f q(x0)
dx0. (6)

The equations of the trajectory of the test particle in the Hamilton–Jacobi gravitational
field formalism are written in the following form:

∂S

∂λk
= σk, (7)

where σk are additional independent constant parameters of the particle trajectory, deter-
mined by the initial or boundary conditions of the test particle motion.

Substituting the obtained form of the function S from (6) into relations (7), we ob-
tain the following general form of the equations of the trajectory of test particles (i.e.,
the geodesic lines of spacetime) in the considered gravitational wave in the privileged
coordinate system:

x1 = σ1 +
1

2

∫ m2 − λpλq gpq(x0)
(

λ1 − λq f q(x0)
)2

dx0, (8)

xp = σp −
1

2

∫ f p(x0)
(

m2 − λrλq grq(x0)
)

(

λ1 − λq f q(x0)
)2

dx0 +
∫ λq gpq(x0)

λ1 − λq f q(x0)
dx0. (9)

Here the wave variable x0 plays the role of the parameter along the particle trajectories,
determining the relationship between the variables x1, x2, and x3 on the particle trajectories.

The proper time of a test particle τ can be defined via the particle action function by
the relation (see [13]):

τ = S/m = ∑
k

λ̃kxk +
1

2

∫ 1 − λ̃pλ̃q gpq(x0)

λ̃1 − λ̃q f q(x0)
dx0, λ̃k = λk/m. (10)
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Then, we obtain, from (10), via the relations for x1, x2, and x2 from trajectory Equations (8)
and (9), the connection of the wave variable x0 on the particle trajectory with the particle’s
proper time τ.

Thus, via Equations (8)–(10), we obtain the trajectories of test particles in the usual
notation xα = xα(τ), although the functions xα(τ) are generally specified not explicitly but
in parametric form.

The refinement of the form of the functions gpq(x0) and f q(x0), included in the metric
of the wave model of spacetime, arises from the field equations of the physical model and
the theory of gravity under consideration.

Note here that substituting the gravitational wave metric (1) into Einstein’s vacuum
equations

Rαβ = 0, (11)

where Rαβ is the Ricci tensor, leads to the following necessary conditions for the gravita-
tional wave model under consideration (see [13]):

f p(x0) = 0. (12)

3. Pure Radiation and Dust Matter in Gravitational Waves

Let us consider the gravitational wave model for the case of Einstein’s theory of gravity
with field equations of the following form:

Rαβ −
1

2
R gαβ = Λ gαβ + ϵ lαlβ + ρ uαuβ, (13)

where gαβ is the spacetime metric for a gravitational wave of signature (+,−,−,−), Rαβ is
the Ricci tensor, R is the scalar curvature, Λ is the cosmological constant, ϵ is the radiation
energy density function (null dust), ρ is the dust matter mass density function, lα is the
wave vector of pure radiation, and uα is the four-velocity vector field of dust matter.

In this case, it is assumed that the following normalization conditions are satisfied:

gαβlαlβ = 0, gαβuαuβ = 1. (14)

The convolution of the field Equation (13) then yields the following relation for the
mass density of dust matter:

ρ = R − 4Λ. (15)

Thus, if, for the model under consideration and Einstein’s field equations, the scalar
curvature R becomes constant, then the mass density of dust matter ρ will also be constant.

Calculating the scalar curvature R for the gravitational wave metric (1) yields:

R = −
g

2

(

g33 (b2)′
2
+ (b3)′

(

g22 (b3)′ − 2 g23 (b2)′
))

. (16)

The components of the Ricci tensor Rαβ for the gravitational wave metric (1) are
obtained in the following form:

R00 =
1

4 g2

(

g′
2
+ 2 g3

(

(g23)′
2
− (g22)′ (g33)′

)

− 2 g g′′
)

, (17)

R01 =
1

4

[

− 2g
(

g33(b2)′
2
+ b3′

(

−2g23(b2)′ + g22(b3)′
))

+ b3

(

2g
(

(b2)′(g23)′ − (b3)′(g22)′
)

+ g23
(

3g′(b2)′ + 2g(b2)′′
)

− g22
(

3g′(b3)′ + 2g(b3)′′
)

)

+ b2

(

2g
(

(b3)′(g23)′ − (b2)′(g33)′
)
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− g33
(

3g′(b2)′ + 2g(b2)′′
)

+ g23
(

3g′(b3)′ + 2g(b3)′′
)

)]

, (18)

R02 =
g

2

(

(b2)′(g33)′ − (b3)′(g23)′ + g33(b2)′′ − g23(b3)′′
)

+
3g′

4

(

g33(b2)′ − g23(b3)′
)

, (19)

R03 =
g

2

(

(b3)′(g22)′ − (b2)′(g23)′ − g23(b2)′′ + g22(b3)′′
)

+
3g′

4

(

g22(b3)′ − g23g′(b2)′
)

, (20)

R11 =
−g2

(

b3
(

g23(b2)′ − g22(b3)′
)

+ b2
(

g23(b3)′ − g33(b2)′
)

)2

2
, (21)

R12 =
g2

2

(

g33(b2)′ − g23(b3)′
)

×

×

(

b3
(

g22(b3)′ − g23(b2)′
)

+ b2
(

g33(b2)′ − g23(b3)′
)

)

, (22)

R13 =
g2

2

(

g23(b2)′ − g22(b3)′
)

×

×

(

b3
(

g23(b2)′ − g22(b3)′
)

+ b2
(

g23(b3)′ − g33(b2)′
)

)

, (23)

R22 =
−g2

(

g33(b2)′ − g23(b3)′
)2

2
, (24)

R23 =
g2
(

g23(b2)′ − g22(b3)′
)(

g33(b2)′ − g23(b3)′
)

2
, (25)

R33 =
−g2

(

g23(b2)′ − g22(b3)′
)2

2
. (26)

Here, g is the determinant of the gravitational wave metric:

g = det gαβ =
−1

g22g33 − (g23)
2

. (27)

We choose a test particle as the base one, setting its mass m equal to unity and choosing
its proper time τ as a parameter along the trajectory. Then, the components of the four-
velocity of the particles in the used privileged coordinate system, according to the equations
of trajectories (8)–(10), can be written as follows:

uα = gαβ uβ = gαβ
dxβ

dτ
=
{

u0(x0), λ1, λ2, λ3

}

. (28)

u0 =
1 − ∑p,q λpλq gpq(x0)

2
(

λ1 − ∑q λq f q(x0)
) , p, q, r = 2, 3. (29)

Using relation (15) from the field equations with the components of the Ricci tensors
R22, R23, and R33, we obtain the following form of these equations:

(b3)′
2
=

−2
(

ε l2
2 + ρ λ2

2
)

g
− (10 Λ + 3 ρ) g33, (30)
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(b2)′ (b3)′ =
2 (ε l2 l3 + ρ λ2 λ3)

g
− (10 Λ + 3 ρ) g23, (31)

(b2)′
2
=

−2
(

ε l3
2 + ρ λ3

2
)

g
− (10 Λ + 3 ρ) g22. (32)

We obtain the compatibility condition for Equations (30)–(32) in the following form:

(2 Λ + ρ) (10 Λ + 3 ρ) g + 4 ε ρ (l3λ2 − l2λ3)
2 = 0. (33)

From the field equations with components R11, R12, and R13, we obtain the following
relations:

ε l1 (l1 + lp bp) + ρ λ1 (λ1 + λp bp) = 0, (34)

ε l2 (l1 + lp bp) + ρ λ2 (λ1 + λp bp) = 0, (35)

ε l3 (l1 + lp bp) + ρ λ3 (λ1 + λp bp) = 0. (36)

Assuming that ρ ̸= 0, from Equations (34)–(36), we obtain corollaries of the form:

li λj − lj λi = 0, (2 Λ + ρ) (10 Λ + 3 ρ) = 0. (37)

Equations (34)–(36), taking into account the relation lk = κλk following from (37) (here,
κ is an arbitrary constant), lead to the following condition:

λk (λ1 + λp bp)(εκ2 + ρ) = 0. (38)

Since all λk cannot vanish simultaneously, we obtain a corollary of the form:

εκ2 + ρ = 0. (39)

Substituting condition (39) into Equations (30)–(32), we obtain:

(b3)′
2
= −(10 Λ + 3 ρ) g33, (40)

(b2)′ (b3)′ = −(10 Λ + 3 ρ) g23, (41)

(b2)′
2
= −(10 Λ + 3 ρ) g22, (42)

Then, as a result of g22g33 − g232
= det gαβ ̸= 0, we obtain equations of the form:

10 Λ + 3 ρ = 0 → (bp)′ = 0. (43)

The obtained conditions of compatibility of the field equations lead to a contradiction
with Equation (15). Thus, we have arrived at a contradiction, from which it follows that in
the gravitational wave model under consideration, dust matter in the given form cannot
exist and ρ = 0.

4. Exact Solution to Einstein’s Equations with Pure Radiation

Let us now consider the case when, in the considered model of gravitational wave,
dust matter is absent and ρ = 0, but pure radiation with the wave vector lα and energy
density ε is preserved. Then, the reduction of the field equations, taking into account the
presence of pure radiation, yields:

ρ = Λ = bp = 0, (44)

ds2 = 2 dx0dx1 + gpq(x0) dxpdxq, g = det gαβ = −det gpq, p, q = 2, 3, (45)

lα = (l0, 0, 0, 0), lα = (0, l0, 0, 0), (46)
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ε l0
2 =

g′
2 − 2gg′′ + 2g3

(

(g23)′
2
− (g22)

′
(g33)

′
)

4g2
. (47)

In this case, the scalar curvature of the spacetime of the gravitational wave R and the
cosmological constant Λ vanish.

This exact solution for the gravitational wave and pure radiation (44)–(47) can have
several variants of physical interpretation depending on the formulation of the problem.

First, pure radiation can be considered an external source of energy (for example,
external electromagnetic radiation or a flow of other massless particles). In this case, the
external pure radiation is assumed to be specified through the wave vector lα and the
radiation energy density ε. Then, its presence gives an additional constraint on the three
functions g22, g33, and g23—the remaining components of the gravitational wave metric
in the form of Equation (47). In this case, the obtained solution exists under the condition
that the external radiation has a wave vector of the form (46). Thus, the characteristics
of the external pure radiation (lα and ε) determine both the choice of the used privileged
coordinate system and the gravitational wave itself.

Secondly, pure radiation can be considered high-frequency gravitational radiation
against the background of a slowly changing basic metric of the gravitational wave, deter-
mined by the components of the metric remaining after reducing g22, g33, and g23, which,
in this formulation of the problem, are considered arbitrary functions. Equation (47) then
determines the intensity of the high-frequency part of the gravitational wave, and the wave
vector (46) determines the direction of this high-frequency gravitational radiation against
the background of the slowly changing part of the gravitational wave with the metric
functions gpq(x0).

Thirdly, pure radiation can be considered a flow of massless particles generated
by a gravitational wave due to the energy of the wave (for example, the generation of
an electromagnetic wave), i.e., the gravitational wave, in this case, will “glow”. The
direction of the radiation generated by the gravitational wave will be determined by the
wave vector (46), and the intensity of this radiation will be determined by Equation (47),
according to the metric of the gravitational wave.

5. Light Cone and Radiation Delay in Gravitational Waves

The propagation of light signals in a gravitational wave is determined by the eikonal
equation

gαβ ∂Ψ

∂xα

∂Ψ

∂xβ
= 0, (48)

where Ψ is the eikonal function that determines the propagation front of the light signal.
By analogy with the previous calculations for the trajectories of test particles, the

solution to the eikonal Equation (48), by the method of the separation of variables, leads
to the following form of equations for the trajectories of light rays in a gravitational wave
with metric (1):

x1 = γ1 −
1

2

∫

∑p,q kpkq gpq(x0)
(

k1 − ∑q kq f q(x0)
)2

dx0, p, q, r, s = 2, 3. (49)

xp = γp +
1

2

∫ f p(x0)∑r,q krkq grq(x0)
(

k1 − ∑q kq f q(x0)
)2

dx0 +
∫

∑q kq gpq(x0)

k1 − ∑q kq f q(x0)
dx0, (50)

where the independent parameters ki and γi are determined by the initial or boundary
conditions of radiation propagation in a gravitational wave and the wave variable x0 plays
the role of a parameter along the trajectory of light ray propagation.

By selecting and fixing one of the world points xα
(D)

, through which all possible

trajectories of light rays (49) and (50) pass, we obtain the equation of the light “cone” for
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this world point, along which light signals in a gravitational wave propagate, which can be
detected by an observer at this point.

If we now additionally fix another world point xα
(S)

, in which the radiation source

is located, the light signal of which is detected by an observer at the point xα
(D)

, then we

obtain light trajectories that connect the world points of the source and the signal detector.
These relations define boundary conditions that allow us to express the parameters of the
light trajectory γk and kq/k1 through the coordinates of the world points of the source and
detector of the signal xα

(S)
and xα

(D)
, and also to find the equation of the delay of the light

signal, which relates the coordinates of the world points of the source and detector. For
calculation details, see Appendix A. Such a “delay” relation in reference systems with an
explicitly distinguished time variable gives the connection between the moment of emission
and the moment of detection of the light signal during its propagation in a gravitational
wave (see [41]).

Solving the boundary condition equations for the parameters of the light signal trajec-
tory in the exact gravitational wave model with metric (45) and conditions (44)–(47), we obtain
expressions for the parameters γp of the form:

γp = ∑
q

[(

I − GDG−1
S

)−1]

pq

(

x
q
D − ∑

r

[

GDG−1
S

]

qr
xr

S

)

, (51)

Gpq(x0) =
∫

gpq(x0) dx0, GD = Gpq(x0
D), GS = Gpq(x0

S). (52)

where G(x0) is the matrix from relations (52) and I is the identity matrix (inverse matrices
and matrix products are used in expressions). The subscript D means that the quantity
refers to the detector, and the subscript S means that the quantity refers to the signal source.
The parameters of the radiation trajectory kp/k1 we obtain from the boundary conditions
can be expressed in the following form:

kp

k1
= ∑

q

[(

GD − G−1
S

)−1]

pq
x

q
D

+ ∑
q

(

[

G−1
S

]

pq
−
[(

GS − GSG−1
D G−1

S

)−1]

pq

)

x
q
S . (53)

For the light ray trajectory parameter γ1, we obtain the following expression:

γ1 = x1
S +

1

2 ∑
p,q

x
p
S

[

G−1
S

]

pq
x

q
S

−
1

2 ∑
p,q

(

x
p
S − ∑

r

[

GDG−1
S

]

pr
xr

S

)

∑
r

[

(GS − GD)
−1
]

rp
xr

S

−
1

2 ∑
p,q

x
p
S

[

(GS − GD)
−1
]

pq

(

x
q
D − ∑

r

[

GDG−1
S

]

qr
xr

S

)

−
1

2 ∑
p,q

(

x
p
S + ∑

r

[

GDG−1
S

]

pr
xr

S

)

[(

I − GDG−1
S

)−1]

pq

(

∑
r

[

(GS − GD)
−1
]

pr
xr

D

− ∑
s,r

[

(GS − GD)
−1
]

ps

[

GDG−1
S

]

sr
xr

S

)

. (54)

Note that the expressions obtained above for the parameters of the trajectory of a light
signal propagating in a gravitational wave (51)–(54) can be formally redefined using the
further obtained delay relation for a light beam. In this case, the numerical values of the
parameters will of course not change.
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For the exact model of the gravitational wave and pure radiation (44)–(47), we present,
omitting for brevity the calculations described above, the form of the resulting equation of

the delay of the light signal, connecting the coordinates of the world points of the source
xα
(S)

and the detector of the light signal xα
(D)

in the gravitational wave in the privileged

wave coordinate system:

0 = 2
(

x1
D − x1

S

)

+
3

∑
p,q=2

(

x
p
D − x

p
S

)[

(GD − GS)
−1
]

pq

(

x
q
D − x

q
S

)

. (55)

In square brackets is the inverse matrix of the difference between the matrices GD =
Gpq(x0

D) and GS = Gpq(x0
S) at the world points of the detector and the source (see (52)).

We obtained the equation in “finite differences”; in fact, it is not “local” but integral. The
obtained relation (55) for the gravitational wave under consideration is a certain analog of
the interval along the trajectory of light propagation in flat Minkowski spacetime.

The equation of the delay of radiation propagating in a gravitational wave in a simple
exact analytical form (55) has been obtained for the first time for a non-perturbative exact
model of a gravitational wave of arbitrary intensity and can be the basis for calculating
various physical phenomena occurring with the participation of gravitational waves, in-
cluding the calculation of the delay time of electromagnetic signals from pulsars during the
passage of gravitational waves between pulsars and observers [5–7].

6. Synchronous Frame of Reference

The advantage of the approach considered in the paper using the Hamilton–Jacobi
formalism also includes the possibility of analytically constructing a synchronous frame of
reference, which is associated with an observer freely falling in a gravitational field, with an
explicitly distinguished time variable (the observer’s proper time). Such a construction is
based on the fact that we can analytically construct a complete integral for the action func-
tion of test particles in a privileged wave coordinate system and construct the trajectories
of particle motion. By choosing a complete set of integrals of motion and the proper time
of a particle for new independent variables, we obtain a transformation from a privileged
wave coordinate system to a synchronous frame of reference (see [13]).

Such a synchronous frame of reference is a significant advantage for astronomical
observations and allows one to analytically represent the equation for the time delay of
radiation in a gravitational field, calculate the time delay of radiation in a gravitational
wave, and reconstruct the characteristics of a gravitational wave from the time delay of
radiation propagating against the background of a gravitational wave.

By choosing the constants λ1, λ2, and λ3 in the equations of the trajectory of the
test particles (8) and (9) as new spatial variables, and the proper time of the particle τ
in (10) as the time variable of the new reference frame, we will construct a synchronous
reference frame.

For the gravitational wave metric (45), the transformation from the privileged wave
coordinate system {xα} to the synchronous reference frame {yα} =

{

t, y1, y2, y3
}

can be
written from (8)–(10) in the following form:

x0 → ty1, (56)

x1 →
t

2y1
−

ypyq

2(y1)
2

Gpq
(

ty1
)

, (57)

xp →
yq

2y1
Gpq

(

ty1
)

, p, q = 2, 3, (58)

Gpq(x0) =
∫

gpq(x0) dx0, Gpq
(

ty1
)

= Gqp(x0)
∣

∣

∣

x0→ty1
. (59)
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The gravitational wave metric g̃αβ in the synchronous reference frame yα takes the
following form:

ds2 = dt2 − dl2 = dt2 + g̃ik

(

t, y1, y2, y3
)

dyidyk, i, j, k = 1, 2, 3, (60)

where t is the time variable and yk are the spatial variables of the synchronous reference frame.
For the equation of radiation delay in a gravitational wave (55), we can obtain, in

a synchronous reference system, an analytical relationship between the time of signal
emission at the point of the source and its detection at the point of the observer during the
propagation of the signal in a gravitational wave (see, e.g., [41]).

7. Exact Model of Gravitational Waves and Pure Radiation for Bianchi Type IV Universe

As an example of using the approach proposed in this paper, we will consider the
application of the results obtained above to a specific model of a gravitational wave with
pure radiation in a cosmological problem.

The metric for a gravitational wave (45) with symmetries of the Bianchi type IV space
can be represented as follows

ds2 = 2 dx0 dx1 +
(

x0
)(1−ν)

[

γ2(sin ϕ)2
(

dx2
)2

+
(

(

log x0 − γ cos ϕ
)

dx2 + dx3
)2
]

, (61)

g = det gαβ = −γ2 sin2(ϕ)
(

x0
)2(1−ν)

, γ ̸= 0, 0 < ϕ < π, (62)

where x0 is the wave variable along which the spacetime interval vanishes and ν, γ, and ϕ
are constant parameters of the gravitational wave model for the Bianchi type IV universe.

This model was obtained [18,27] by imposing symmetries of Bianchi type IV space
on the general gravitational wave model (45). Depending on the value of the parameter
ν, we obtain an expanding or collapsing model of the Bianchi type IV universe with a
gravitational wave.

This gravitational wave model of spacetime (61) admits a three-parameter subgroup
of motions, forming a homogeneity group with Killing vectors X(1), X(2), and X(3) with a
positive-definite metric on the orbits of the group:

Xk
(1) =

(

0, 0, 1, 0
)

, Xk
(2) =

(

0, 0, 0, 1
)

, Xk
(3) =

(

−x0, x1, ωx2, ωx3 − x2
)

, (63)

where the following notation is used ω = (1 − ν)/2.
The commutation relations for the homogeneity group Killing vectors X(1), X(2), and

X(3) correspond to type IV according to the Bianchi classification:

[

X(1), X(2)

]

= 0,
[

X(1), X(3)

]

= ωX(1) − X(2),
[

X(2), X(3)

]

= ωX(2). (64)

Solutions (46) and (47) to Einstein’s equations for pure radiation, with the energy
density ε and wave vector lα for the metric (61), have the form:

lα =
{

l0, 0, 0, 0
}

, lα =
{

0, l0, 0, 0
}

, (65)

ε l0
2 =

E

(x0)
2

, E =
−1 + (1 − ν2)γ2 sin2ϕ

2γ2 sin2ϕ
= const. (66)

For cases of positive energy density of pure radiation ε ≥ 0, it is convenient to
introduce the angular parameter ψ instead of the parameter ν:

ν = cos ψ, 0 < ψ < π, −1 < ν < 1. (67)
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Then, we obtain

E =
(γ sin ϕ sin ψ)2 − 1

2(γ sin ϕ)2
, γ ̸= 0, 0 < ϕ < π, 0 < ψ < π. (68)

The maximum value of the constant E is achieved at values of angular parameters
ϕ = ψ = π/2 (at ν = 0) and equal

Emax =
γ2 − 1

2 γ2
=

1

2

(

1 −
1

γ2

)

, Emax <
1

2
. (69)

From Einstein’s equations with pure radiation and the sign of the radiation energy
density ε, we obtain restrictions on the gravitational wave parameters ν and γ.

1. The energy density of pure radiation ε becomes zero at the following values of the
gravitational wave parameters:

|γ | =
1

sin (ϕ) sin (ψ)
, ν = cos ψ, 0 < ϕ < π, 0 < ψ < π. (70)

This is the case of an expanding Bianchi IV universe.
2. The energy density of pure radiation ε is greater than zero and is given by rela-

tions (68) for the following values of the gravitational wave parameters:

|γ | >
1

sin (ϕ) sin (ψ)
, ν = cos ψ, 0 < ϕ < π, 0 < ψ < π. (71)

This is the case of an expanding Bianchi IV universe.
3. The energy density of pure radiation ε is negative (interpreted as radiation genera-

tion due to gravitational wave energy) for the following two ranges of parameter values:
3.A. The value of the constant E is negative and is given by relations (68) and

0 < |γ | <
1

sin (ϕ) sin (ψ)
, ν = cos ψ, 0 < ϕ < π, 0 < ψ < π. (72)

This is the case of an expanding Bianchi IV universe.
3.B. The value of the constant E is negative and is given by the following relations

E =
1

2

(

1 − ν2 −
1

γ2(sin ϕ)2

)

< 0, |ν| ≥ 1, γ ̸= 0, 0 < ϕ < π. (73)

For ν > 1, this is the case of a collapsing Bianchi type IV universe, and for ν ≤ 1, this
is the case of an expanding universe.

The integration of the Hamilton–Jacobi Equation (2) for the gravitational wave met-
ric (61) has a special case for the parameter value ν = 0, so we will consider two separate
cases: when ν ̸= 0 and when ν = 0.

7.1. Exact Solution for Gravitational Waves and Radiation in Bianchi Type IV Universe (ν ̸= 0)

In this subsection, we will use auxiliary notations:

A = 1 + γ2ν2 cos2ϕ > 1, L
(

y0y1
)

= 1 + ν
(

γ cos ϕ − log
(

y0y1
)

)

. (74)

In a privileged wave coordinate system, the equation of radiation signal delay for a
gravitational wave with metric (61) takes the following form
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∆1 =
−γ2ν3 cos2ϕ

2

(

A
(

(

x0
D

)ν
−
(

x0
S

)ν
)2

− ν2
(

log(x0
D)− log(x0

S)
)2
(

x0
D

)ν(
x0

S

)ν
)−1

×

×

{

−2

[

log(x0
D)
(

x0
D

)ν
− log(x0

S)
(

x0
S

)ν
+
(1

ν
+ γ cos ϕ

) (

(

x0
S

)ν
−
(

x0
D

)ν
)

]

∆2 ∆3

−

[(

log(x0
D)− 2

(1

ν
+ γ cos ϕ

)

)

(

x0
D

)ν
log(x0

D)−

(

log(x0
S)− 2

(1

ν
+ γ cos ϕ

)

)

(

x0
S

)ν
log(x0

S)

+

(

2

ν2
+

2 γ cos ϕ

ν
+ γ2

)

(
(

x0
D

)ν
−
(

x0
S

)ν
)

]

∆2
2 +

(

(

x0
S

)ν
−
(

x0
D

)ν
)

∆3
2

}

, (75)

where ∆k denotes the difference between the coordinates of the detector and the source

∆k = xk
D − xk

S . (76)

The law for the transformation of variables from a privileged wave coordinate system
{xα} to a synchronous reference system {yα} takes the form:

x0 → y0 y1, (77)

x1 →
y0

2y1
−

(

y0y1
)ν

2γ2ν3
(

y1
)2

cos2ϕ

(

(

νy2 + Ly3
)2

+ A
(

y3
)2
)

, (78)

x2 →

(

y0y1
)ν

γ2ν2y1 cos2ϕ

(

νy2 + Ly3
)

, (79)

x3 →

(

y0y1
)ν

γ2ν3y1 cos2ϕ

(

L
(

νy2 + Ly3
)

+ Ay3
)

. (80)

The metric of the gravitational wave (61) in the synchronous reference system
{yα} =

{

t, y1, y2, y3
}

takes the following form:

g̃00 = 1, g̃01 = g̃02 = g̃03 = 0, (81)

g̃11 = −
t2

(

y1
)2

+
A
(

ty1
)ν

t

(γ2 cos2ϕ)
2
ν6
(

y1
)3

(

(

νy2 + (1 + L)y3
)2

+ γ2ν2
(

y3
)2

cos2ϕ

)

, (82)

g̃12 =
A t
(

ty1
)ν

(γ2 cos2ϕ)
2
ν5
(

y1
)2

(

νy2 + (1 + L)y3
)

, (83)

g̃13 =
A t
(

ty1
)ν

(γ2 cos2ϕ)
2
ν6
(

y1
)2

(

(1 + L) ν y2 +
(

(1 + L)2 + γ2ν2 cos2ϕ
)

y3
)

, (84)

g̃22 = −
A t

(

t y1
)ν

(γ2 cos2ϕ)
2

ν4 y1
, (85)

g̃23 = −
A (1 + L) t

(

t y1
)ν

(γ2 cos2ϕ)
2

ν5 y1
, (86)

g̃33 = −
A t
(

t y1
)ν

(γ2 cos2ϕ)
2

ν6 y1

(

(1 + L)2 + γ2 ν2 cos2ϕ
)

, (87)
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where the constants γ, ν, ϕ, and A are parameters of the gravitational wave, variables yk

are spatial coordinates of the synchronous reference system, t is a time variable, and the
function L is defined by the relation

L(t, y1) = 1 + ν
(

γ cos ϕ − log
(

y1
)

− log t
)

. (88)

The determinant of the metric in a synchronous reference system g̃ takes the follow-
ing form:

g̃ = det g̃αβ = −
A2 t4

(

t y1
)2 ν

(γ2 cos2ϕ)
3

ν8
(

y1
)4

. (89)

The equation of radiation delay in a gravitational wave (55), which relates the coor-
dinates of the world points of the source and the detector of the signal, in a synchronous
frame of reference, acquires a direct physical representation of the connection by separating
a single time variable t. For a gravitational wave (61), the equation of radiation delay in a
synchronous frame of reference can be reduced to the following form:

[

(ν∆12 + LD∆13)
2 + A∆13

2
](

t′y1
S

)ν
−
[

(ν∆12 + LS∆13)
2 + A∆13

2
](

ty1
D

)ν

+ γ2ν3 cos2ϕ

[

(

(

ty1
D

)−ν
−
(

t′y1
S

)−ν
)2

−
ν2

A

(

log
(

ty1
D

)

− log
(

t′y1
S

)

)2
]

y1
Dy1

S ∆01 = 0, (90)

where
∆12 = y2

Dy1
S − y1

Dy2
S , ∆13 = y3

Dy1
S − y1

Dy3
S , ∆01 = y1

D t′ − y1
S t, (91)

LD = 1 + ν
(

γ cos ϕ − log
(

y1
D

)

− log t
)

, LS = 1 + ν
(

γ cos ϕ − log
(

y1
S

)

− log t′
)

. (92)

Here, t′ is the time of signal emission by the source and t is the time of signal detection
by the observer. The constants γ, ν, ϕ, and A are the parameters of the gravitational wave.
The spatial coordinates yi

S specify the position of the radiation source at the moment of
emission t′, and the coordinates yi

D specify the position of the observer detecting the signal
coming from the source.

The resulting Equation (90) determines the relationship between the time of radiation
emission t′ and the time of signal detection by the observer t; it gives the retarded time of
the signal as it passes in a gravitational wave (61).

The equations that determine the trajectory of a test particle in a gravitational wave (61)
in a synchronous frame of reference make it possible to express the spatial coordinates of
the trajectory y1, y2, and y3 as functions of time t.

The equation that determines the dependence of the spatial coordinate y1 of a test
particle on the time variable t can be written in the following form:

A
(

t y1
)ν (

m2 t
(

y1
)2

+ 2 λ1 (λ1 σ1 + λ2 σ2 + λ3 σ3) y1 − λ1
2 t
)

+

+ y1γ2 cos2ϕ ν λ1
2

(

A σ2
2 +

[

σ2 − ν σ3 + νσ2

(

γ cos ϕ − log y1 − log t
)]2
)

= 0. (93)

Equation (93) defines, albeit implicitly, the spatial coordinate of the trajectory of a test
particle y1 as a function of time t. Then, the remaining spatial coordinates of the particle
trajectory y2 and y3 are determined through y1(t) by the following trajectory equations:

y2(t) = y1

(

λ2

λ1
+

γ2 ν cos2ϕ
((

A + L2
)

σ2 − L ν σ3

)

A (t y1)
ν

)

, (94)

y3(t) = y1

(

λ3

λ1
−

γ2 ν2 cos2ϕ (L σ2 − ν σ3)

A (t y1)
ν

)

. (95)
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where λi and σi are constant parameters of the trajectory of test particle, γ, ν, ϕ, A are constant
parameters of the gravitational wave, and the function L is determined by relation (88).

The trajectories of a light beam in a gravitational wave in a synchronous frame of
reference can be written in such a way as to single out the equation that relates the spatial
coordinate of the trajectory y1 to the time variable t. Then, the spatial coordinates of the
light trajectory y2 and y3 will be determined through y1(t):

A
(

t y1
)ν (

κ1 t − 2 (κ1 γ1 + κ2 γ2 + κ3 γ3) y1
)

− γ2 ν κ1 cos2ϕ
(

A γ2
2 + (L γ2 − ν γ3)

2
)

y1 = 0, (96)

y2(t) = y1

(

κ2

κ1
+

γ2 cos2ϕ ν
((

A + L2
)

γ2 − L ν γ3

)

A (t y1)
ν

)

, (97)

y3(t) = y1

(

κ3

κ1
−

γ2 cos2ϕ ν2 (L γ2 − ν γ3)

A (t y1)
ν

)

, (98)

where ki and γi are constant parameters of the trajectory of the light beam; γ, ν, ϕ, and A
are constant parameters of the gravitational wave; and the function L is determined by
relation (88).

7.2. Exact Solution for Gravitational Waves and Radiation in Bianchi Type IV Universe (ν = 0)

The peculiarity that arises when integrating the Hamilton–Jacobi equation of test par-
ticles for the gravitational wave metric in a Bianchi type IV universe when the parameter ν
becomes zero requires that this case be considered separately.

The metric of a gravitational wave in a privileged wave coordinate system in this case
takes on the following special form:

ds2 = 2 dx0 dx1 + x0

[

γ2(sin ϕ)2
(

dx2
)2

+
(

(

log x0 − γ cos ϕ
)

dx2 + dx3
)2
]

, (99)

where x0 is the wave variable and the constants γ and ϕ (0 < ϕ < π) are the parameters of
the gravitational wave.

Solutions (46) and (47) to Einstein’s equations for pure radiation, with the energy
density ε and wave vector lα for the metric (99), have the form:

lα =
{

l0, 0, 0, 0
}

, lα =
{

0, l0, 0, 0
}

, (100)

ε l0
2 =

E

(x0)
2

, E =
γ2 − csc2(ϕ)

2γ2
= const. (101)

The energy density of pure radiation ε has a positive value for the following range of
parameter values:

|γ| >
1

sin(ϕ)
, 0 < ϕ < π. (102)

The result of integrating the Hamilton–Jacobi equation for test particles in the privi-
leged wave coordinate system (8)–(10) for the considered case of the gravitational wave
will take the following form:

x0(τ) = λ1

(

τ − τ0

)

, (103)

x1(τ) = σ1 −
1

4γ2λ1
2 sin2(ϕ)

[

2 log(λ1τ)
(

γ2λ3
2 + 2γλ2λ3 cos(ϕ) + λ2

2
)

− 2γ2λ1τ sin2(ϕ)− 2λ3 log2(λ1τ)(γλ3 cos(ϕ) + λ2) +
2

3
λ3

2 log3(λ1τ)

]

, (104)
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x2(τ) = σ2 +
log(λ1τ)

2γ2λ1 sin2(ϕ)

(

2λ2 + 2γλ3 cos(ϕ)− λ3 log(λ1τ)
)

, (105)

x3(τ) = σ3 +
log(λ1τ)

6γ2λ1 sin2(ϕ)

(

6γ2λ3 + 6γ cos(ϕ)(λ2 − λ3 log(λ1τ))

−3λ2 log(λ1τ) + 2λ3 log2(λ1τ)
)

, (106)

where τ is the proper time of the particle and the constants λk, σk, and τ0 are parameters
determined by the initial or boundary conditions of the particle motion.

The delay time equation for the propagation of radiation in a gravitational wave (55),
for the case under consideration in the privileged wave coordinate system, will take the
following form:

0 = ∆1 +
6γ2 sin2(ϕ)

(

log(x0
Dx0

S)− 2γ cos(ϕ)
)

∆2∆3

log(x0
D/x0

S)
(

6γ2 − 6γ2 cos(2ϕ) + log2(x0
D/x0

S)
)

+
2γ2 sin2(ϕ)

(

3γ2 − 3γ cos(ϕ) log(x0
Dx0

S) + log(x0
D) log(x0

S) + log2(x0
D) + log2(x0

S)
)

∆2
2

log(x0
D/x0

S)
(

6γ2 − 6γ2 cos(2ϕ) + log2(x0
D/x0

S)
)

+
6γ2 sin2(ϕ)∆3

2

log(x0
D/x0

S)
(

6γ2 − 6γ2 cos(2ϕ) + log2(x0
D/x0

S)
) , (107)

where xα
D are the coordinates of the world point of the detector of signal, xα

S are the coordi-
nates of the world point of the signal source, x0 is the wave variable, the constants γ and ϕ
(0 < ϕ < π) are the parameters of the gravitational wave, and

∆k = xk
D − xk

S , i, j, k = 1, 2, 3.

In accordance with the solutions to the equations of test particle motion in the
Hamilton–Jacobi formalism for this case (103)–(106), we obtain the following formulas
for the transition from the privileged wave coordinate system {xα} to the synchronous
reference system {yα} =

(

τ, y1, y2, y3
)

:

x0 → y1τ,

x1 → −
1

4γ2y12
sin2(ϕ)

(

2 log(y1τ)
(

γ2y32
+ 2γy2y3 cos(ϕ) + y22

)

− 2γ2y1τ sin2(ϕ)

−2y3 log2(y1τ)(γy3 cos(ϕ) + y2) +
2

3
y32

log3(y1τ)

)

, (108)

x2 →
log(y1τ)

(

2γy3 cos(ϕ)− y3 log(y1τ) + 2y2
)

2γ2y1 sin2(ϕ)
, (109)

x3 →
log(y1τ)

6γ2y1 sin2(ϕ)

(

6γ2y3 + 6γ cos(ϕ)
(

y2 − y3 log(y1τ)
)

− 3y2 log(y1τ) + 2y3 log2(y1τ)

)

. (110)

Here, τ is a time variable and the variables yk are spatial coordinates.
The components of the metric of the gravitational wave (99) in the synchronous

reference system will take the following form:

g̃00 = 1, g̃01 = 0, g̃02 = 0, g̃03 = 0,



Symmetry 2024, 16, 1456 16 of 21

g̃11 = −
y12

τ2
, g̃12 = −

y1y2

τ2
, g̃13 = −

y1y3

τ2
,

g̃22 = −
y22

τ2
+

4γ2y1 sin2(ϕ)

τ log2(y1τ)
(

6γ2
(

1 − cos(2ϕ)
)

+ log2(y1τ)
)2

(

3γ2 log2(y1τ)

+ 18γ4 − 6γ2 cos(2ϕ)
(

3γ2 − log2(y1τ)
)

− 6γ cos(ϕ) log3(y1τ) + log4(y1τ)
)

,

g̃23 = −
y2y3

τ2
+

12γ2y1sin2(ϕ)
(

3γ3cos(3ϕ)− 3γ cos(ϕ)
(

γ2 + log2(y1τ)
)

+ log3(y1τ)
)

τ log2(y1τ)
(

6γ2
(

1 − cos(2ϕ)
)

+ log2(y1τ)
)2

,

g̃33 = −
y32

τ2
+

36γ2y1 sin2(ϕ)
(

log2(y1τ)− 2γ2 cos(2ϕ) + 2γ2
)

τ log2(y1τ)
(

6γ2
(

1 − cos(2ϕ)
)

+ log2(y1τ)
)2

,

where τ is the time variable, the variables yk are spatial coordinates, and the constants γ
and ϕ (0 < ϕ < π) are the parameters of the gravitational wave.

The retarded time equation for the propagation of radiation (55) in a gravitational
wave (99) can be written in a synchronous frame of reference with a time variable τ in the
following form:

0 = csc(ϕ) log3(τ′y1
S )

[

6γ2y1
Dy1

S sin2(ϕ)(τy1
S − τ′y1

D)

− 6 log(τy1
D)
(

γ2(y3
Dy1

S − y1
Dy3

S )
2 + (y1

D)
2(y2

S )
2 − 2y1

Dy2
Dy1

S y2
S + (y2

D)
2(y1

S )
2
)

+ 2 log(τy1
D)(y

3
Dy1

S − y1
Dy3

S )

(

3γ cos(ϕ)
(

log(τy1
D)(y

3
Dy1

S − y1
Dy3

S ) + 2y1
Dy2

S − 2y2
Dy1

S

)

+ log(τy1
D)
(

log(τy1
D)(y

1
Dy3

S − y3
Dy1

S )− 3y1
Dy2

S + 3y2
Dy1

S

)

)]

+ 3 csc(ϕ) log(τy1
D) log2(τ′y1

S )

[

6γ2y1
Dy1

S sin2(ϕ)(τ′y1
D − τy1

S )

+ 2 log2(τy1
D)(y

3
Dy1

S − y1
Dy3

S )
(

γ cos(ϕ)(y3
Dy1

S − y1
Dy3

S )− y1
Dy2

S + y2
Dy1

S

)

+ 2 log(τy1
D)

(

−2γ(y3
Dy1

S − y1
Dy3

S )
(

γ cos(2ϕ)(y3
Dy1

S − y1
Dy3

S ) + cos(ϕ)(y2
Dy1

S − y1
Dy2

S )
)

+ (γy1
Dy3

S − γy3
Dy1

S + y1
Dy2

S − y2
Dy1

S )(γy1
Dy3

S − γy3
Dy1

S − y1
Dy2

S + y2
Dy1

S )

)]

+ 6γ2y1
Dy1

S log(τy1
D)(τ

′y1
D − τy1

S )
(

sin(ϕ)
(

9γ2 + log2(τy1
D)
)

− 3γ2 sin(3ϕ)
)

− 3 csc(ϕ) log(τ′y1
S )

[

24γ4y1
Dy1

S sin4(ϕ)(τ′y1
D − τy1

S )

+ 6γ2 sin2(ϕ) log(τy1
D)

(

y1
Dy1

S log(τy1
D)(τ

′y1
D − τy1

S )

+ 4
(

γ2(y3
Dy1

S − y1
Dy3

S )
2 + (y1

D)
2(y2

S )
2 − 2y1

Dy2
Dy1

S y2
S + (y2

D)
2(y1

S )
2
)

)

+ 4γ cos(ϕ) log(τy1
D)(y

2
Dy1

S − y1
Dy2

S )(y
3
Dy1

S − y1
Dy3

S )
(

12γ2 sin2(ϕ) + log2(τy1
D)
)

+ 2 log3(τy1
D)
(

γ2(y3
Dy1

S − y1
Dy3

S )
2 + (y1

D)
2(y2

S )
2 − 2y1

Dy2
Dy1

S y2
S + (y2

D)
2(y1

S )
2
)

]

. (111)

The retarded time equation for the propagation of radiation (111) gives us the relation-
ship between the signal detection time τ and the emission time of this signal τ′ when the
signal passes in a gravitational wave. The resulting equation contains the spatial coordi-
nates of the source yk

S and the spatial coordinates of the radiation detector yk
D (observer).
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8. Conclusions

This paper considers a general, exact model of a gravitational wave, with a spacetime
metric depending, in a privileged coordinate system, on one wave variable and with
sources in the form of pure radiation, dust matter, and a cosmological constant. It is shown
that the compatibility conditions of Einstein’s field equations for this model lead to a
contradiction with the presence of dust matter in the model. An exact solution to the field
equations for a gravitational wave with pure radiation is obtained. Light trajectories and
radiation propagation characteristics are found. A retarded time equation of light signals
in a gravitational wave is obtained. Based on the obtained general results, an exact model
of a gravitational wave and pure radiation for the Bianchi type IV universe is constructed.
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Appendix A. Parameters of Light Ray Trajectories in Exact Model of Gravitational Waves

This appendix presents a variant of calculating the parameters for the trajectory of
radiation propagation (49) and (50) against the background of a gravitational wave (45)
between the world point of the radiation source and the world point of signal detection by
the observer.

Let us denote the variables of the radiation source (light signal) as xα
S and the variables

of the observer (detector) as xα
D; then, we obtain a system of equations for the trajectory of

the light beam connecting these points (points xα
S and xα

D):

x1
S = γ1 −

kpkq

2(k1)
2

Gpq
(

x0
S

)

, (A1)

x
p
S = γp +

kq

k1
Gpq

(

x0
S

)

, (A2)

x1
D = γ1 −

kpkq

2(k1)
2

Gpq
(

x0
D

)

, (A3)

x
p
D = γp +

kq

k1
Gpq

(

x0
D

)

, (A4)

where

Gpq(x0) =
∫

gpq(x0) dx0, GD = Gpq(x0
D), GS = Gpq(x0

S).

To shorten the text, we will use the notation GS for the matrix Gpq
(

x0
S

)

and the notation
GD for the matrix Gpq

(

x0
D

)

:

Gpq
(

x0
S

)

= [GS]
pq, Gpq

(

x0
D

)

= [GD]
pq, (A5)

where G(x0) is a matrix constructed from the integrals of the metric components.
To obtain the “signal delay” relation, i.e., the relation linking the variables xα

D and
xα

S , it is necessary to exclude the light signal parameters γ1, γ2, γ3, k2/k1, and k3/k1 from
Equations (A1)–(A4). As a result, there remains one relation linking the coordinates of the
world points of the source and detector xα

S and xα
D.

https://rscf.ru/en/project/23-22-00343/
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Thus, from Equation (A2), we obtain an expression for kp/k1 through the parame-
ters γp:

kp

k1
= ∑

q

[

G−1
S

]

pq

(

x
q
S − γq

)

. (A6)

Then, from Equation (A1), taking into account (A6), we obtain the relation for γ1

through the parameters γp:

γ1 = x1
S +

kpkq

2(k1)
2

Gpq
(

x0
S

)

= x1
S +

1

2 ∑
p,q

[

G−1
S

]

pq

(

x
p
S − γp

)(

x
q
S − γq

)

. (A7)

Equation (A4), taking into account (A6), can be written as follows:

x
p
D = γp +

kq

k1
Gpq

(

x0
D

)

= γp + ∑
r,q

G
pq
D

[

G−1
S

]

qr
(xr

S − γr) =

= ∑
r

γr

(

δr
p − ∑

q

G
pq
D

[

G−1
S

]

qr

)

+ ∑
r,q

G
pq
D

[

G−1
S

]

qr
xr

S. (A8)

The obtained relation (A8) allows us to determine the parameters γp for the light
signal through the coordinates of the source and the detector, using matrix notations to
shorten the notation

γp = ∑
q

[(

I − GDG−1
S

)−1]

pq

(

x
q
D − ∑

r

[

GDG−1
S

]

qr
xr

S

)

, (A9)

where G(x0) is the matrix of integrals of the metric components in relations (52), I is the
identity matrix, for the designation of whose components the Kronecker symbols δ

q
p are

also used.
Using the obtained relation (A9) for γp, we can find, from relation (A7), the required

form of the parameter γ1 for the light signal from the world point xα
S of the source to the

world point xα
D of the detector. For γ1, we have:

γ1 = x1
S +

1

2 ∑
p,q

x
p
S

([

G−1
S

]

pq
x

q
S −

[

G−1
S

]

pq
γq

)

−
1

2 ∑
r,p

(

x
p
S − ∑

q

[

GDG−1
S

]

pq
x

q
S

)

(

[

(GS − GD)
−1
]

rp
xr

S −
[

(GS − GD)
−1
]

rp
γr

)

= x1
S +

1

2 ∑
p,q

x
p
S

[

G−1
S

]

pq
x

q
S −

1

2 ∑
r,p

(

x
p
S − ∑

q

[

GDG−1
S

]

pq
x

q
S

)

[

(GS − GD)
−1
]

rp
xr

S

−
1

2 ∑
p,q

x
p
S

[

G−1
S

]

pq
γq −

1

2 ∑
p

(

x
p
S + ∑

q

[

GDG−1
S

]

pq
x

q
S

)

∑
r

[

(GS − GD)
−1
]

rp
γr. (A10)

Next, we will need to use the relations:

∑
q

[

G−1
S

]

pq
γq = ∑

q

[

(GS − GD)
−1
]

pq

(

x
q
D − ∑

r

[

GDG−1
S

]

qr
xr

S

)

, (A11)

∑
q

[

(GS − GD)
−1
]

pq
γq

= ∑
q

[(

I − GDG−1
S

)−1]

pq

(

∑
q

[

(GS − GD)
−1
]

pq
x

q
D − ∑

q

[

(GS − GD)
−1
]

pq
∑

r

[

GDG−1
S

]

qr
xr

S

)

. (A12)

As a result, we obtain the following expression for the parameter of the light beam γ1:
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γ1 = x1
S +

1

2 ∑
p,q

x
p
S

[

G−1
S

]

pq
x

q
S −

1

2 ∑
p,q

(

x
p
S − ∑

r

[

GDG−1
S

]

pr
xr

S

)

∑
r

[

(GS − GD)
−1
]

rp
xr

S

−
1

2 ∑
p,q

x
p
S

[

(GS − GD)
−1
]

pq

(

x
q
D − ∑

r

[

GDG−1
S

]

qr
xr

S

)

−
1

2 ∑
p,q

(

x
p
S + ∑

r

[

GDG−1
S

]

pr
xr

S

)

[(

I − GDG−1
S

)−1]

pq

(

∑
r

[

(GS − GD)
−1
]

pr
xr

D

− ∑
s,r

[

(GS − GD)
−1
]

ps

[

GDG−1
S

]

sr
xr

S

)

. (A13)

Similarly, from relations (A6), taking into account relations (A9) for γp, we can find
the required form of parameters kp/k1:

kp

k1
= ∑

q

[

G−1
S

]

pq
x

q
S − ∑

q,s

[

G−1
S

]

pq

[(

I − GDG−1
S

)−1]

qs

(

xs
D − ∑

r

[

GDG−1
S

]

sr
xr

S

)

= ∑
q

[

G−1
S

]

pq
x

q
S + ∑

q

[(

GD − G−1
S

)−1]

pq

(

x
q
D − ∑

r

[

GDG−1
S

]

qr
xr

S

)

= ∑
q

[(

GD − G−1
S

)−1]

pq
x

q
D + ∑

q,r

xr
S

(

δ
q
r

[

G−1
S

]

pq
−
[(

GD − G−1
S

)−1]

pq

[

GDG−1
S

]

qr

)

= ∑
q

[(

GD − G−1
S

)−1]

pq
x

q
D + ∑

q

(

[

G−1
S

]

pq
−
[(

GS − GSG−1
D G−1

S

)−1]

pq

)

x
q
S . (A14)

Note that the expressions obtained above for the parameters of the light signal can
be formally redefined using the obtained retarded time equation for the light beam (55),
which gives an additional equation linking the coordinates of the source and the detector.
In this case, the numerical values of the parameters will not change.
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