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Abstract: Consider a sequential process in which each step outputs a system Ai and
updates a side information register E . We prove that if this process satisfies a natural
“non-signalling” condition between past outputs and future side information, the min-
entropy of the outputs A1, . . . , An conditioned on the side information E at the end of the
process can be bounded from below by a sum of von Neumann entropies associated with
the individual steps. This is a generalisation of the entropy accumulation theorem (EAT)
(Dupuis et al. in Commun Math Phys 379: 867–913, 2020), which deals with a more
restrictive model of side information: there, past side information cannot be updated
in subsequent rounds, and newly generated side information has to satisfy a Markov
condition. Due to its more general model of side-information, our generalised EAT can be
applied more easily and to a broader range of cryptographic protocols. As examples, we
give the first multi-round security proof for blind randomness expansion and a simplified
analysis of the E91 QKD protocol. The proof of our generalised EAT relies on a new
variant of Uhlmann’s theorem and new chain rules for the Rényi divergence and entropy,
which might be of independent interest.
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1. Introduction

Suppose that Alice and Eve share a quantum state 𝜌An E . From her systems An :=A1 . . . An ,
Alice would like to extract bits that look uniformly random to Eve, except with some
small failure probability ε [1]. The number of such random bits that Alice can extract
is given by the smooth min-entropy H ε

min(An|E)𝜌 [2]. This quantity plays a central
role in quantum cryptography: for example, the main task in security proofs of quan-
tum key distribution (QKD) protocols is usually finding a lower bound for the smooth
min-entropy.

Unfortunately, for many cryptographic protocols deriving such a bound is challeng-
ing. Intuitively, the reason is the following: the state 𝜌An E is usually created as the
output of a multi-round protocol, where each round produces one of Alice’s systems
Ai and allows Eve to execute some attack to gain information about A1, . . . , Ai . These
attacks can depend on each other, i.e., Eve may use what she learnt in round i − 1 to
plan her attack in round i . This non-i.i.d. nature of the attacks makes it hard to find a
lower bound on H ε

min(An|E)𝜌 that holds for any possible attack that Eve can execute.
In contrast, it is typically much easier to compute a conditional von Neumann entropy
associated with a single-round of the protocol, where the non-i.i.d. nature of Eve’s attack
plays no role. Therefore, it is desirable to relate the smooth min-entropy of the output of
the multi-round protocol to the von Neumann entropies associated with the individual
rounds.

From an information-theoretic point of view, this question can be phrased as follows:
can the smooth min-entropy H ε

min(An|E)𝜌 be bounded from below in terms of von
Neumann entropies H(Ai |Ei )𝜌i

Ai Ei
for some (yet to be determined) systems Ei and

states 𝜌i
Ai Ei

related to 𝜌? While for general states 𝜌An E no useful lower bound can be
found, previous works have established such bounds under additional assumptions on
the state 𝜌An E .

The first bound of this form was proven via the asymptotic equipartition property
(AEP) [3]. It assumes that the system E is n-partite (i.e., we replace E by En =
E1 . . . En) and that the state 𝜌An En = 𝜌A1 E1 ⊗ . . . ⊗ 𝜌An En is a product of identical
states. Then, the AEP shows that1

H ε
min(An|En)𝜌 ≥

n∑

i=1

H(Ai |Ei )𝜌 − O(
√

n) .

For applications in cryptography, the assumption that 𝜌 is an i.i.d. product state is usually
too strong: it corresponds to the (unrealistic) assumption that Eve executes the same
independent attack in each round, a so-called collective attack.

1 Since 𝜌 is a product of identical states, all of the terms H(Ai |Ei )𝜌 are equal, i.e.,
∑n

i=1 H(Ai |Ei )𝜌 =
nH(Ai |Ei )𝜌 for any i . We write the sum here explicitly to highlight the analogy with the EAT presented
below.
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The entropy accumulation theorem (EAT) [1] is a generalisation of the AEP which
requires far weaker assumptions on the state 𝜌An E . Specifically, the EAT considers states
that result from a sequential process that starts with a state 𝜌0

R0 E ′ and in every step outputs
a system Ai and a piece of side information Ii . The system E ′ is not acted upon during
the process. The full side information at the end of this process is E = I1 . . . In E ′. We
can represent such a process by the following diagram, whereMi are quantum channels.

M1 M2 · · · Mn

A1 I1 A2 I2 An In

R0 R1 R2 Rn−1
𝜌0

R0 E ′

E ′

The EAT requires an additional condition on the side information: the new side informa-
tion Ii generated in round i must be independent from the past outputs Ai−1 conditioned
on the existing side information I i−1 E ′. Mathematically, this is captured by the condi-
tion that the systems Ai−1 ↔ I i−1 E ′ ↔ Ii form a Markov chain for any initial state
𝜌0

R0 E ′ . With this Markov condition, the EAT states that2

H ε
min(An|I n E ′)Mn◦···◦M1(𝜌

0
R0 E ′ ) ≥

n∑

i=1

inf
𝜔

H(Ai |Ii Ẽ)Mi (𝜔) − O(
√

n) , (1.1)

where Ẽ is a purifying system isomorphic to Ri−1 and the infimum is taken over all
states 𝜔 on systems Ri−1 Ẽ .3

Let us discuss the model of side information used by the EAT in more detail. The EAT
considers side information consisting of two parts: the initial side information E ′ (which
is not acted upon during the process) and the outputs I n = I1 . . . In . This splitting of side
information into a “static” part E ′ and a part I n which is generated in each step of the
process is particularly suited to device-independent cryptography: there, Eve prepares
a device in an initial state 𝜌0

R0 E ′ , where R0 is the device’s internal memory and E ′ is
Eve’s initial side information from preparing the device. Then, Alice (and Bob, though
we only consider Alice’s system here) executes a multi-round protocol with this device,
where each round leaks some additional piece of information Ii to Eve, so that Eve’s
side information at the end of the protocol is I n E ′. Indeed, the EAT has been used to
establish tight security proofs in the device-independent setting, see e.g., [4,5].

The Markov condition in the EAT captures the following intuition: if we want to find
a bound on H ε

min(An|I n E ′) in terms of single-round quantities, it is required that side
information about Ai is itself output in step i , as otherwise we cannot hope to estimate
the contribution to the total entropy from step i . To illustrate what could happen without
such a condition, consider a case where Ai is classical and no side information is output
in the first n − 1 rounds, but the side information In in the last round contains a copy of
the systems An (which can be passed along during the process in the systems Ri ). Then,

2 The EAT from [1] also makes an analogous statement about an upper bound on the max-entropy Hmax.
We derive a generalisation of that statement in Appendix A but only focus on Hmin in the introduction and
main text since that is the case that is typically relevant for applications.

3 In fact, the EAT is more general in that it allows taking into account observed statistics to restrict the
minimization over 𝜔Ai Bi E , but we restrict ourselves to the simpler case without statistics in this introduction.
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clearly H ε
min(An|I n E ′) = 0, but for the first n − 1 rounds, each single-round entropy

bound that only considers the systems Ai and Ii can be positive.
Main result In this work, we further relax the assumptions on how the final state 𝜌An E is
generated. Specifically, we consider sequential processes as in the EAT, but with a fully
general model of side information, i.e., the side information can be updated in each step
in the process. Diagrammatically, such a process can be represented as follows:

M1 M2 · · · Mn

A1 A2 An

E0

R0

E1

R1

E2

R2

En−1

Rn−1

En

Rn
𝜌0

R0 E0

Our generalised EAT then states the following.

Theorem 1.1. Consider quantum channels Mi : Ri−1 Ei−1 → Ai Ri Ei that satisfy the
following “non-signalling” condition (discussed in detail below): for each Mi , there
must exist a quantum channel Ri : Ei−1 → Ei such that

TrAi Ri ◦Mi = Ri ◦ TrRi−1 . (1.2)

Then, the min-entropy of the outputs An conditioned on the final side information En
can be bounded as

H ε
min(An|En)Mn◦···◦M1(𝜌

0
R0 E0

) ≥
n∑

i=1

inf
𝜔

H(Ai |Ei Ẽi−1)Mi (𝜔) − O(
√

n) , (1.3)

where Ẽi−1 ≡ Ri−1 Ei−1 is a purifying system for the input to Mi and the infimum is
taken over all states 𝜔 on systems Ri−1 Ei−1 Ẽi−1.4

We give a formal statement and proof in Sect. 4 and also show that, similarly to the
EAT, statistics collected during the process can be used to restrict the minimization over
𝜔 (see Theorem 4.3 for the formal statement). By a simple duality argument, Eq. (1.3)
also implies an upper bound on the smooth max-entropy Hmax, which we explain in
Appendix A. This generalises a similar result from [1], although in [1] one could not
make use of duality due to the Markov condition and instead had to prove the statement
about Hmax separately, again highlighting that our generalised EAT is easier to work
with.

The intuition behind the non-signalling condition in our generalised EAT is similar
to the Markov condition in the original EAT: by the same reasoning as for the Markov
condition, since the lower bound is made up of terms of the form H(Ai |Ei Ẽi−1)Mi (𝜔), it
is required that side information about Ai that is present in the final system En is already
present in Ei . This means that side information about Ai should not be passed on via
the R-systems and later be included in the E-systems. The non-signalling condition
captures this requirement: it demands that if one only considers the marginal of the new

4 As usual, the channels Mi act as identity on any additional systems that may be part of the input state,
i.e. Mi (𝜔Ri−1 Ei−1 Ẽi−1

) = (Mi ⊗ idẼi−1
)(𝜔Ri−1 Ei−1 Ẽi−1

) is a state on Ai Ri Ei Ẽi−1. In particular, the

register Ẽi−1 containing a purification of the input is also part of the output state.
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side information Ei (without the new output Ai ), it must be possible to generate this
state from the past side information Ei−1 alone, without access to the system Ri−1. This
means that any side information that Ei contains about the past outputs A1 . . . Ai−1 must
have essentially already been present in Ei−1 and could not have been stored in Ri−1.

The name “non-signalling condition” is due to the fact that Eq. (1.2) is a natural
generalisation of the standard non-signalling conditions in non-local games: if we view
the systems Ri−1 and Ri Ai as the inputs and outputs on “Alice’s side” of Mi , and Ei−1
and Ei as the inputs and outputs on “Eve’s side”, then Eq. (1.2) states that the marginal
of the output on Eve’s side cannot depend on the input on Alice’s side. This is exactly
the non-signalling condition in non-local games, except that here the inputs and outputs
are allowed to be fully quantum.

To understand the relation between the Markov and non-signalling conditions, it is
instructive to consider the setting of the original EAT as a special case of our generalised
EAT. In the original EAT, the full side information available after step i is E ′ I i , and past
side information is not updated during the process. For our generalised EAT, we therefore
set Ei = E ′ I i and consider mapsMi = M′

i⊗idEi−1 , whereM′
i : Ri−1 → Ai Ii Ri is the

map used in the original EAT. We need to check that with this choice of systems and maps,
the Markov condition of the original EAT implies the non-signalling condition of our
generalised EAT. The Markov condition requires that for any state input𝜔i−1

Ai−1 I i−1 Ri−1 E ′ ,

the output state 𝜔i
Ai I i Ri E ′ = Mi (𝜔

i−1) satisfies Ai−1 ↔ I i−1 E ′ ↔ Ii .5 It is then a
standard result on quantum Markov chains [6] that there must exist a quantum channel
Ri : I i−1 E ′ → I i E ′ such that 𝜔i

I i E ′ = Ri (𝜔
i−1
I i−1 E ′). Remembering that we defined

Ei = E ′ I i (so that Ri : Ei−1 → Ei ) and adding the systems Ai−1 (on which both Mi
and Ri act as identity), we find that Mi satisfies the non-signalling condition:

TrAi Ri ◦Mi (𝜔
i−1
Ai−1 Ri−1 Ei−1

) = 𝜔i
Ai−1 Ei

= Ri (𝜔
i−1
Ai−1 Ei−1

) = Ri ◦ TrRi−1(𝜔
i−1
Ai−1 Ri−1 Ei−1

) .

Then, noting that all conditioning systems on which Mi acts as the identity map can
collectively be replaced by a single purifying system isomorphic to the input, we see
that we recover the original EAT (Eq. (1.1)) from our generalised EAT (Eq. (1.3)).

We emphasise that while the original EAT with the Markov condition can be recovered
as a special case, our model of side information and the non-signalling condition are
much more general than the original EAT; arguably, for a sequential process they are
the most natural and general way of expressing the notion that future side information
should not contain new information about past outputs, which appears to be necessary
for an EAT-like result. To demonstrate the greater generality of our result, in Sect. 5 we
use it to give the first multi-round proof for blind randomness expansion, a task to which
the original EAT could not be applied, and a more direct proof of the E91 QKD protocol
than was possible with the original EAT. Our generalised EAT can also be used to prove
security of a much larger class of QKD protocols than the original EAT. Interestingly, for
(device-dependent) QKD protocols, no “hidden system” R is needed and therefore the
non-signalling condition is trivially satisfied, i.e., the advantage of our generalised EAT
for QKD security proofs stems entirely from the more general model of side information,
not from replacing the Markov condition by the non-signalling condition; see Sect. 5.2

5 Strictly speaking, the EAT as stated in [1] only requires that this Markov property holds for any input
state 𝜔i−1 in the image of the previous maps Mi−1 ◦ · · · ◦ M1. The same is true for the non-signalling
condition, i.e., one can check that our proof of the generalised EAT still works if the map Ri only satisfies Eq.
(1.2) on states in the image of Mi−1 ◦ · · · ◦M1. To simplify the presentation, we use the stronger condition
Eq. (1.2) throughout this paper.
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for an informal comparison of how the original and generalised EAT can be applied to
QKD, and [7] for a detailed treatment of the application of our generalised EAT to QKD,
including protocols to which the original EAT could not be applied.
Proof sketch. The generalised EAT involves both the min-entropy, which can be viewed
as a “worst-case entropy”, and the von Neumann entropy, which can be viewed as an
“average case entropy”. These two entropies are special cases of a more general family
of entropies called Rényi entropies, which are denoted by H𝛼 for a parameter 𝛼 > 1
(see Sect. 2.2 for a formal definition).6 The min-entropy can be obtained from the Rényi
entropy by taking 𝛼 → ∞, whereas the von Neumann entropy corresponds to the limit
𝛼 → 1. Hence, the Rényi entropies interpolate between the min-entropy and the von
Neumann entropy, and they will play a crucial role in our proof.

The key technical ingredient for our generalised EAT is a new chain rule for Rényi
entropies (Theorem 3.6 in the main text).

Lemma 1.2. Let 𝛼 ∈ (1, 2), 𝜌ARE a quantum state, and M : RE → A′R′E ′ a quan-
tum channel which satisfies the non-signalling condition in Eq. (1.2), i.e. there exists a
channel R : E → E ′ such that TrA′R′ ◦M = R ◦ TrR. Then

H𝛼(AA′|E ′)M(𝜌) ≥ H𝛼(A|E)𝜌 + inf
𝜔RE Ẽ

H 1
2−𝛼

(A′|E ′ Ẽ)M(𝜔) (1.4)

for a purifying system Ẽ ≡ RE, where the infinimum is over all quantum states 𝜔 on
systems RE Ẽ.

We first describe how this chain rule implies our generalised EAT, following the same
idea as in [1,8]. For this, recall that our goal is to find a lower bound on
H ε

min(An|En)Mn◦···◦M1(𝜌
0
R0 E0

) for a sequence of maps satisfying the non-signalling con-

dition TrAi Ri ◦ Mi = Ri ◦ TrRi−1 . As a first step, we use a known relation between
the smooth min-entropy and the Rényi entropy [3], which (up to a small penalty term
depending on ε and 𝛼) reduces the problem to lower-bounding

H𝛼(An|En)Mn◦···◦M1(𝜌
0
R0 E0

) = H𝛼(An An−1|En)Mn◦···◦M1(𝜌
0
R0 E0

) .

To this, we can apply Lemma 1.2 by choosing A = An−1, A′ = An , E = En−1,
E ′ = En , R = Rn−1, R′ = Rn , and 𝜌 = Mn−1 ◦ · · · ◦ M1(𝜌

0
R0 E0

). Then, since the
map Mn satisfies the non-signalling condition, Lemma 1.2 implies that

H𝛼(An
1|En)Mn◦···◦M1(𝜌R0 E0 ) ≥ H𝛼(An−1

1 |En−1)Mn−1◦···◦M1(𝜌R0 E0 )

+ inf
𝜔∈S(Rn−1 En−1 Ẽn−1)

H 1
2−𝛼

(An|En Ẽn−1)Mn(𝜔) .

We can now repeat this argument for the term H𝛼(An−1
1 |En−1)Mn−1◦···◦M1(𝜌R0 E0 ). After

n applications of Lemma 1.2, we find that

H𝛼(An
1|En)Mn◦···◦M1(𝜌R0 E0 ) ≥

n∑

i=1

inf
𝜔∈S(Ri−1 Ei−1 Ẽi−1)

H 1
2−𝛼

(Ai |Ei Ẽi−1)Mi (𝜔) .

6 We note that the definition of Rényi entropies can be extended to 𝛼 < 1, but we will only need the case
𝛼 > 1.
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To conclude, we use a continuity bound from [8] to relate H 1
2−𝛼

(Ai |Ei Ẽi−1)Mi (𝜔)

to H(Ai |Ei Ẽi−1)Mi (𝜔). It can be shown that for a suitable choice of 𝛼, the penalty
terms we incur by switching from the min-entropy to the Rényi entropy and then to
the von Neumann entropy scale as O(

√
n). Therefore, we obtain Eq. (1.3). We also

provide a version that allows for “testing” (which is crucial for application in quantum
cryptography and explained in detail in Sect. 4.2) and features explicit second-order
terms similar to those in [8].

We now turn our attention to the proof of Lemma 1.2. For this, we need to introduce
the (sandwiched) Rényi divergence of order 𝛼 between two (possibly unnormalised)
quantum states 𝜌 and 𝜎, denoted by D𝛼

(
𝜌

∥∥𝜎
)
. We refer to Sect. 2.2 for a formal

definition; for this overview, it suffices to know that D𝛼

(
𝜌

∥∥𝜎
)

is a measure of how
different 𝜌 is from 𝜎, and that the conditional Rényi entropy is related to the Rényi
divergence by

H𝛼(A|B)𝜌 = −D𝛼

(
𝜌AB

∥∥1A ⊗ 𝜌B
)

.

Our starting point for proving Lemma 1.2 is the following chain rule for the Rényi
divergence from [9]:

D𝛼
(M(𝜌)

∥∥F(𝜎)
) ≤ D𝛼

(
𝜌ARE

∥∥𝜎ARE
)

+ lim
n→∞

1

n
sup

𝜔Rn En Ẽn

D𝛼
(M⊗n(𝜔)

∥∥F⊗n(𝜔)
)

,

(1.5)

where M and F are (not necessarily trace preserving) quantum channels from RE to
A′R′E ′, and 𝜌 and 𝜎 are any quantum states on ARE . The optimization is over all
quantum states 𝜔 on n copies of the systems RE Ẽ (with Ẽ ≡ RE as before).

Making a suitable choice of F (which depends on M) and 𝜎 (which depends on 𝜌),
one can turn Eq. (1.5) into the following chain rule for the conditional Rényi entropy:

H𝛼(AA′|E ′)M(𝜌) ≥ H𝛼(A|RE)𝜌 + lim
n→∞

1

n
inf

𝜔Rn En Ẽn
H𝛼((A′)n|(E ′)n Ẽn)M⊗n(𝜔) .

(1.6)

This chain rule resembles Lemma 1.2, but is significantly weaker and cannot be used to
prove a useful entropy accumulation theorem. The reason for this is twofold:

(i) Equation (1.6) provides a lower bound in terms of H𝛼(A|RE), not H𝛼(A|E). The
additional conditioning on the R-system can drastically lower the entropy: for exam-
ple, in a device-independent scenario, R would describe the internal memory of the
device. Then, Alice’s output A contains no entropy when conditioned on the internal
memory of the device that produced the output, i.e. H𝛼(A|RE) = 0. On the other
hand, Alice’s output conditioned only on Eve’s side information E may be quite large
(and can usually be certified by playing a non-local game), i.e. H𝛼(A|E) > 0.

(ii) Equation (1.6) contains the regularised quantity limn→∞ 1
n inf𝜔Rn En Ẽn H𝛼((A′)n|

(E ′)n Ẽn)M⊗n(𝜔). Due to the limit n → ∞, this quantity cannot be computed nu-
merically and therefore the bound in Eq. (1.6) cannot be evaluated for concrete
examples.

We now describe how we overcome each of these issues in turn.
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(i) We prove a new variant of Uhlmann’s theorem [10], a foundational result in quantum
information theory. The original version of Uhlmann’s theorem deals with the case
of 𝛼 = 1/2; we show that for 𝛼 > 1, a similar result holds, but an additional
regularisation is required. Concretely, we prove that for any states 𝜌ARE and 𝜎AE :

lim
k→∞

1

k
inf

𝜎̂Ak Rk Ek

s.t. 𝜎̂Ak Ek =𝜎⊗k
AE

D𝛼

(
𝜌⊗k

ARE

∥∥ 𝜎̂Ak Rk Ek

)
= D𝛼

(
𝜌AE

∥∥𝜎AE
)

. (1.7)

The proof of this result relies heavily on the spectral pinching technique [11,12] and
we refer to Lemma 3.3 for details as well as a non-asymptotic statement with explicit
error bounds. We make use of this extended Uhlmann’s theorem as follows: for the
case we are interested in, the map F in Eq. (1.5) satisfies a non-signalling condition.
We can show that this condition implies that for any state 𝜎̂Ak Rk Ek s.t. 𝜎̂Ak Ek = 𝜎⊗k

AE :

D𝛼

(
M(𝜌)

∥∥F(𝜎)
) = 1

k
D𝛼

(
M⊗k(𝜌⊗k

ARE )
∥∥F⊗k(𝜎̂Ak Rk Ek )

)
.

Applying Eq. (1.5) to the r.h.s. of this equality results in a bound that contains

D𝛼

(
𝜌⊗k

ARE

∥∥ 𝜎̂Ak Rk Ek

)
. We can now minimise over all states 𝜎̂Ak Rk Ek s.t. 𝜎̂Ak Ek =

𝜎⊗k
AE and take the limit k → ∞. Then, Eq. (1.7) allows us to drop the R-system. There-

fore, under the non-signalling condition onF , we obtain the following improved chain
rule for the sandwiched Rènyi divergence, which might be of independent interest:

D𝛼
(M(𝜌)

∥∥F(𝜎)
) ≤ D𝛼

(
𝜌AE

∥∥𝜎AE
)

+ lim
n→∞

1

n
sup

𝜔Rn En Ẽn

D𝛼
(M⊗n(𝜔)

∥∥F⊗n(𝜔)
)

.

Using this chain rule, we can show that Eq. (1.6) still holds if H𝛼(A|RE) is replaced
by H𝛼(A|E).

(ii) To remove the need for a regularisation in Eq. (1.6), we show that due to the
permutation-invariance of M⊗n and F⊗n , for 𝛼 > 1 and n → ∞ one can re-
place the optimization over 𝜔Rn En Ẽn with a fixed input state, namely the projector
onto the symmetric subspace of Rn En Ẽn . For this replacement, one incurs a small
loss in 𝛼, replacing it by 1

2−𝛼 (which is only slightly larger than 𝛼 in the typical
regime where 𝛼 is close to 1). The projector onto the symmetric subspace has a
known representation as a mixture of tensor product states [13]. Combining these
two steps, we show that the optimization over 𝜔Rn En Ẽn can be restricted to tensor
product states, which means that the regularisation in Eq. (1.6) can be removed (see
Sect. 3.2 for details):

lim
n→∞

1

n
inf

𝜔Rn En Ẽn
H𝛼((A′)n|(E ′)n Ẽn)M⊗n(𝜔) ≥ inf

𝜔RE Ẽ

H 1
2−𝛼

(A′|E ′ Ẽ)M(𝜔) .

Combining these results yields Lemma 1.2 and, as a result, our generalised EAT.
Sample application: blind randomness expansion. The main advantage of the generalised
EAT over previous results is its broader applicability. For example, as demonstrated in
[7], the generalised EAT can be used to prove the security of prepare-and-measure QKD
protocols, which is of immediate practical relevance, and can also simplify the analysis
of entanglement-based QKD protocols as discussed in Sect. 5.2. Here, we focus on the
application of our generalised EAT to mistrustful device-independent (DI) cryptography.
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In mistrustful DI cryptography, multiple parties each use a quantum device to execute
a protocol with one another. Each party trusts neither its quantum device nor the other
parties in the protocol. Hence, from the point of view of one party, say Alice, all the
remaining parties in the protocol are collectively treated as an adversary Eve, who may
also have prepared Alice’s untrusted device.

While the original EAT could be used to analyse DI protocols in which the parties trust
each other, e.g. DIQKD [14], the setting of mistrustful DI cryptography is significantly
harder to analyse because the adversary Eve actively participates in the protocol and
may update her side information during the protocol in arbitrary ways. Analysing such
protocols requires the more general model of side information we deal with in this paper.
As a concrete example for mistrustful DI cryptography, we consider blind randomness
expansion, a primitive introduced in [15]. Previous work [15,16] could only analyse
blind randomness expansion under the i.i.d. assumption. Here, we give the first proof
that blind randomness expansion is possible for general adversaries. The proof is a
straightforward application of our generalised EAT and briefly sketched below; we refer
to Sect. 5.1 for a detailed treatment.

In blind randomness expansion, Alice receives an untrusted quantum device from the
adversary Eve. Alice then plays a non-local game, e.g. the CHSH game, with this device
and Eve, and wants to extract certified randomness from her outputs of the non-local
game, i.e. we need to show that Alice’s outputs contain a certain amount of min-entropy
conditioned on Eve’s side information. Concretely, in each round of the protocol Alice
samples inputs x and y for the non-local game, inputs x into her device to receive outcome
a, and sends y to Eve to receive outcome b; Alice then checks whether (x, y, a, b)

satisfies the winning condition of the non-local game. For comparison, recall that in
standard DI randomness expansion [17–21], Alice receives two devices from Eve and
uses them to play the non-local game. This means that in standard DI randomness
expansion, Eve never learns any of the inputs and outputs of the game. In contrast, in
blind randomness expansion Eve learns one of the inputs, y, and is free to choose one of
the outputs, b, herself. Hence, Eve can choose the output b based on past side information
and update her side information in each round of the protocol using the values of y and
b.

To analyse such a protocol, we use the setting of Theorem 1.1, with Ai represent-
ing the output of Alice’s device D from the non-local game in the i-th round, Ri the
internal memory of D after the i-th round, and Ei Eve’s side information after the i-th
round, which can be generated arbitrarily from entanglement shared between Eve and
D at the start of the protocol and information Eve gathered during the first i rounds
of the protocol. The map Mi describes one round of the protocol, and because Alice’s
device and Eve cannot communicate during the protocol it is easy to show that the
non-signalling condition from Theorem 1.1 is satisfied. Therefore, we can apply Theo-
rem 1.1 to lower-bound Alice’s conditional min-entropy Hmin(An|En) in terms of the
single-round quantities inf𝜔 H(Ai |Ei Ẽi−1)Mi (𝜔).7 This single-round quantity corre-
sponds to the i.i.d. scenario, i.e. the generalised EAT has reduced the problem of showing
blind randomness expansion against general adversaries to the (much simpler) problem
of showing it against i.i.d. adversaries. The quantity inf𝜔 H(Ai |Ei Ẽi−1)Mi (𝜔) can be
computed using a general numerical technique [22], and for certain classes of non-local
games it may also be possible to find an analytical lower bound using ideas from [15,16].

7 In fact, in order for this single-round quantity to be positive one has to restrict the infimum to input states
that allow the non-local game to be won with a certain probability. This requires using the generalised EAT
with testing (Sect. 4.2), not Theorem 1.1. We refer to Sect. 5.1 for details.



  261 Page 10 of 43 T. Metger, O. Fawzi, D. Sutter, R. Renner

Inserting the single-round bound, we obtain a lower bound on Hmin(An|En) that scales
linearly with n, showing that blind randomness expansion is possible against general
adversaries. We also note that as explained in [15], this result immediately implies that
unbounded randomness expansion is possible with only three devices, whereas previous
works required four devices [21,23,24].

Future work In this work, we have developed a new information-theoretic tool, the
generalised EAT. The generalised EAT deals with a more general model of side informa-
tion than previous techniques and is therefore more broadly and easily applicable. In par-
ticular, our generalised EAT can be used to analyse mistrustful DI cryptography. We have
demonstrated this by giving the first proof of blind randomness expansion against general
adversaries. We expect that the generalised EAT could similarly be used for other proto-
cols such as two-party cryptography in the noisy storage model [25] or certified deletion
[16,26,27]. In addition to mistrustful DI cryptography, our result can also be used to give
new proofs for device-dependent QKD, as demonstrated in Sect. 5.2 and [7], and is appli-
cable to proving the security of commercial quantum random number generators, which
typically have correlations between rounds due to experimental imperfections [28].

Beyond cryptography, the generalised EAT is useful whenever one is interested in
bounding the min-entropy of a large system that can be decomposed in a sequential way.
Such problems are abundant in physics. For example, the dynamics of an open quantum
system can be described in terms of interactions that take place sequentially with different
parts of the system’s environment [29]. In quantum thermodynamics, such a description
is commonly employed to model the thermalisation of a system that is brought in contact
with a thermal bath. For a lack of techniques, the entropy flow during a thermalisation
process of this type is usually quantified in terms of von Neumann entropy rather than
the operationally more relevant smooth min- and max-entropies [30]. The generalised
EAT may be used to remedy this situation. A similar situation arises in quantum gravity,
where smooth entropies play a role in the study of black holes [31].

In a different direction, one can also try to further improve the generalised EAT itself.
Compared to the original EAT [1], our generalised EAT features a more general model
of side information and a weaker condition on the relation between different rounds,
replacing the Markov condition of [1] with our weaker non-signalling condition in Eq.
(1.2). It is natural to ask whether a further step in this direction is possible: while the
model of side information we consider is fully general, it may be possible to replace
the non-signalling condition with a weaker requirement. We have argued above that our
non-signalling condition appears to be the most general way of stating the requirement
that future side information does not reveal information about past outputs, which seems
necessary for an EAT-like theorem.8 It would be interesting to formalise this intuition
and see whether our theorem is provably “tight” in terms of the conditions placed on the
sequential process. Furthermore, it might be possible to improve the way the statistical
condition in Theorem 4.3 is dealt with in the proof, e.g. using ideas from [33,34].

8 In an EAT-like theorem, the entropy contribution from a particular round i has to be calculated conditioned
on the side information revealed in that round because we want to analyse the process round-by-round, not
globally. If a future round revealed additional side information, then the total entropy contributed by round
i would decrease, but there is no way of accounting for that in an EAT-like theorem that simply sums up
single-round contributions. As an extreme case, the last round of the process could reveal all prior outputs as
side information, so that the total amount of conditional entropy produced by the process is 0, but single-round
entropy contributions could be positive. This demonstrates the need for some condition that enforces that
future side information does not reveal information about past outputs. We note that this does not mean that
there is no way of proving an entropy lower bound in more general settings: for example, [32] do show a
bound on the entropy produced by parallel repeated non-local games, but this requires a global analysis.
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Finally, one could attempt to extend entropy accumulation from conditional entropies
to relative entropies. Such a relative entropy accumulation theorem (REAT) would be
the following statement: for two sequences of channels {E1, . . . , En} and {F1, . . . ,Fn}
(where Fi need not necessarily be trace-preserving), and ε > 0,

Dε
max

(
En ◦ · · · ◦ E1

∥∥Fn ◦ · · · ◦ F1
) ?≤

n∑

i=1

Dreg(Ei
∥∥Fi

)
+ O(

√
n) .

Here, Dε
max is the ε-smooth max-relative entropy [11] and we used the (regularised)

channel divergences defined in Definition 2.5. The key technical challenge in proving
this result is to show that the regularised channel divergence Dreg

𝛼
(
Ei

∥∥Fi
)

is continuous
in 𝛼 at 𝛼 = 1, which is an important technical open question. If one had such a continuity
statement and the maps Fi additionally satisfied a non-signalling condition (which is
not required for the statement above), one could also use our Theorem 3.1 to derive a
more general REAT, which would imply our generalised EAT.

2. Preliminaries

2.1. Notation. Throughout this paper, we restrict ourselves to finite-dimensional Hilbert
spaces. The set of positive semidefinite operators on a quantum system A (with asso-
ciated Hilbert space HA) is denoted by Pos(A). The set of quantum states is given by
S(A) = {𝜌 ∈ Pos(A) | Tr

[
𝜌
] = 1}. The set of completely positive maps from linear

operators on A to linear operators on A′ is denoted by CP(A, A′). If such a map is
additionally trace preserving, we call it a quantum channel and denote the set of such
maps by CPTP(A, A′). The identity channel on system A is denoted as idA. The spectral
norm is denoted by ‖·‖∞.

A cq-state is a quantum state 𝜌 ∈ S(X A) on a classical system X (with alphabet X )
and a quantum system A, i.e. a state that can be written as

𝜌X A =
∑

x∈X
|x〉〈x | ⊗ 𝜌A,x

for subnormalised 𝜌A,x ∈ Pos(A). For � ⊂ X , we define the conditional state

𝜌X A|� = 1

Pr𝜌[�]

∑

x∈�

|x〉〈x | ⊗ 𝜌A,x , where Pr𝜌[�] :=
∑

x∈�

Tr
[
𝜌A,x

]
.

If � = {x}, we also write 𝜌X A|x for 𝜌X A|�.

2.2. Rényi divergence and entropy. We will make extensive use of the sandwiched Rényi
divergence [35,36] and quantities associated with it, namely Rényi entropies and channel
divergences. We recall the relevant definitions here.

Definition 2.1 (Rényi divergence). For 𝜌 ∈ S(A), 𝜎 ∈ Pos(A), and 𝛼 ∈ [1/2, 1) ∪
(1,∞) the (sandwiched) Rényi divergence is defined as

D𝛼

(
𝜌

∥∥𝜎
) := 1

𝛼 − 1
log Tr

[(
𝜎

1−𝛼
2𝛼 𝜌𝜎

1−𝛼
2𝛼

)𝛼]

for supp(𝜌) ⊆ supp(𝜎), and +∞ otherwise.
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From the Rényi divergence, one can define the conditional Rényi entropies as follows
(see [11] for more details).

Definition 2.2 (Conditional Rényi entropy). For a bipartite state 𝜌AB ∈ S(AB) and
𝛼 ∈ [1/2, 1) ∪ (1,∞), we define the following two conditional Rényi entropies:

H𝛼(A|B)𝜌 = −D𝛼(𝜌AB‖1A ⊗ 𝜌B) and H�
𝛼(A|B)𝜌 = sup

𝜎B∈S(B)

−D𝛼(𝜌AB‖1A ⊗ 𝜎B) .

From the definition it is clear that H𝛼(A|B) ≤ H�
𝛼(A|B). Importantly, a relation for

the other direction also holds.

Lemma 2.3 ([11, Corollary 5.3]). For 𝜌AB ∈ S(AB) and 𝛼 ∈ (1, 2):

H𝛼(A|B)𝜌 ≥ H�
1

2−𝛼

(A|B)𝜌 .

In the limit𝛼 → 1 the sandwiched Rényi divergence converges to the relative entropy:

lim
𝛼→1

D𝛼

(
𝜌

∥∥𝜎
) = D(𝜌‖𝜎) = Tr

[
𝜌(log 𝜌 − log𝜎)

]
.

Accordingly, the conditional Rényi entropy converges to the conditional von Neumann
entropy:

lim
𝛼→1

H𝛼(A|B)𝜌 = H(A|B)𝜌 = H(AB)𝜌 − H(B)𝜌 = − Tr
[
𝜌AB log 𝜌AB

]
+ Tr

[
𝜌B log 𝜌B

]
.

Conversely, in the limit 𝛼 → ∞, the Rényi entropy H�
𝛼 converges to the min-entropy.

We will make use of a smoothed version of the min-entropy, which is defined as follows
[2].

Definition 2.4 (Smoothed min-entropy). For 𝜌AB ∈ S(AB) and ε ∈ [0, 1], the ε-
smoothed min-entropy of A conditioned on B is

H ε
min(A|B)𝜌 = − log inf

𝜌̃AB∈Bε(𝜌AB )
inf

𝜎B∈S(B)

∥∥∥∥𝜎
− 1

2
B 𝜌̃AB𝜎

− 1
2

B

∥∥∥∥∞
,

where ‖·‖∞ denotes the spectral norm and Bε(𝜌AB) is the ε-ball around 𝜌AB in term of
the purified distance [11].

Finally, we can extend the definition of the Rényi divergence from states to channels.
The resulting quantity, the channel divergence (and its regularised version), will play an
important role in the rest of the manuscript.

Definition 2.5 (Channel divergence). For E ∈ CPTP(A, A′), F ∈ CP(A, A′), and
𝛼 ∈ [1/2, 1) ∪ (1,∞), the (stabilised) channel divergence9 is defined as

D𝛼

(
E

∥∥F
) = sup

𝜔∈S(AÃ)

D𝛼

(
E(𝜔)

∥∥F(𝜔)
)

, (2.1)

where without loss of generality Ã ≡ A. The regularised channel divergence is defined as

Dreg
𝛼

(
E

∥∥F
) := lim

n→∞
1

n
D𝛼

(
E⊗n

∥∥F⊗n) = sup
n

1

n
D𝛼

(
E⊗n

∥∥F⊗n)
.

9 “Stabilised” refers to the fact that the supremum in Eq. (2.1) maximises over states in S(AÃ), not just
S(A), i.e. the maximisation includes a purifying system Ã. One can also consider non-stabilised channel
divergences, where the supremum is only over states in S(A). However, in this paper we only use the stabilised
channel divergence.
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We note that the channel divergence is in general not additive under the tensor prod-
uct [37, Proposition 3.1], so the regularised channel divergence can be strictly larger
that the non-regularised one, i.e., Dreg

𝛼
(
E

∥∥F
)

> D𝛼

(
E

∥∥F
)
. The regularised channel

divergence, however, does satisfy an additivity property:

Dreg
𝛼

(
E⊗k

∥∥F⊗k
)

= lim
n→∞

1

n
D𝛼

(
E⊗kn

∥∥F⊗kn
)
= k lim

n→∞
1

n′ D𝛼

(
E⊗n′ ∥∥F⊗n′) = k Dreg

𝛼

(
E

∥∥F
)

,

(2.2)

where we switched to the index n′ = kn for the second equality.

2.3. Spectral pinching. A key technical tool in our proof will be the use of spectral
pinching maps [38], which are defined as follows (see [12, Chapter 3] for a more de-
tailed introduction).

Definition 2.6 (Spectral pinching map). Let 𝜌 ∈ Pos(A) with spectral decomposition
𝜌 = ∑

𝜆 𝜆P𝜆, where 𝜆 ∈ Spec(𝜌) ⊂ R≥0 are the distinct eigenvalues of 𝜌 and P𝜆

are mutually orthogonal projectors. The (spectral) pinching map P𝜌 ∈ CPTP(A, A)

associated with 𝜌 is given by

P𝜌(𝜔):=
∑

𝜆∈Spec(𝜌)

P𝜆 𝜔 P𝜆 .

We will need a few basic properties of pinching maps.

Lemma 2.7 (Properties of pinching maps). For any 𝜌,𝜎 ∈ Pos(A), the following prop-
erties hold:

(i) Invariance: P𝜌(𝜌) = 𝜌 .
(ii) Commutation of pinched state: [𝜎,P𝜎(𝜌)] = 0 .

(iii) Pinching inequality: P𝜎(𝜌) ≥ 1
|Spec(𝜎)| 𝜌 .

(iv) Commutation of pinching maps: if [𝜌,𝜎] = 0, then P𝜌 ◦ P𝜎 = P𝜎 ◦ P𝜌 .
(v) Partial trace: TrB

[
P𝜌A⊗1B (𝜔AB)

] = P𝜌A(𝜔A) ∀𝜔AB ∈ Pos(AB).

Proof. Properties (i)–(iii) follow from the definition and [3, Chapter 2.6.3] or [12,
Lemma 3.5].

For the fourth statement, note that since [𝜌,𝜎] = 0, there exists a joint orthonormal
eigenbasis {|xi 〉} of 𝜌 and 𝜎. Let P𝜆 be the projector onto the eigenspace of 𝜌 with eigen-
value𝜆, and Q𝜇 the projector onto the eigenspace of𝜎 with eigenvalue 𝜇. We can expand

P𝜆 =
∑

i s.t. 𝜌|xi 〉=𝜆|xi 〉
|xi 〉〈xi | and Q𝜇 =

∑

j s.t. 𝜎|x j 〉=𝜇|x j 〉
|x j 〉〈x j | .

Since {|xi 〉} is a family of orthonormal vectors,

P𝜆Q𝜇 =
∑

i s.t. 𝜌|xi 〉=𝜆|xi 〉
and 𝜎|xi 〉=𝜇|xi 〉

|xi 〉〈xi | = Q𝜇 P𝜆 ,

which implies commutation of the pinching maps.
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For the fifth statement, note that if we write 𝜌 = ∑
𝜆 𝜆P𝜆 with eigenprojectors P𝜆,

then the set of eigenprojectors of 𝜌A ⊗ 1B is simply {P𝜆 ⊗ 1B}. Hence,

TrB
[P𝜌A⊗1B (𝜔AB)

] =
∑

𝜆

TrB [P𝜆 ⊗ 1B𝜔AB P𝜆 ⊗ 1B ]

=
∑

𝜆

P𝜆 TrB [𝜔AB ] P𝜆 = P𝜌A (𝜔A) .

��
It is often useful to use the pinching map associated with tensor power states, i.e.,

P𝜌⊗n . This is because for 𝜌 ∈ Pos(A), the factor |Spec(𝜌⊗n)| from the pinching inequal-
ity (see Lemma 2.7) only scales polynomially in n (see e.g. [12, Remark 3.9]):

|Spec(𝜌⊗n)| ≤ (n + 1)dim(A)−1 . (2.3)

In fact, we can show a similar property for all permutation-invariant states, not just tensor
product states.

Lemma 2.8. Let 𝜌 ∈ Pos(A⊗n) be permutation invariant and denote d = dim(A). Then

|Spec(𝜌)| ≤ (n + d)d(d+1)/2 .

Proof. By Schur-Weyl duality and Schur’s lemma (see e.g. [39, Lemma 0.8 and Theorem
1.10]), since 𝜌 is permutation-invariant, we have

𝜌 ∼=
⊕

𝜆∈Id,n

𝜌(𝜆)Q𝜆 ⊗ 1P𝜆 ,

where ∼= denotes equality up to unitary conjugation (which leaves the spectrum invari-
ant), Id,n is the set of Young diagrams with n boxes and at most d rows, Q𝜆 and P𝜆 are
systems whose details need not concern us, and 𝜌(𝜆) ∈ Pos(Q𝜆). From this it is clear that

|Spec(𝜌)| ≤
∑

𝜆∈Id,n

|Spec(𝜌(𝜆))| ≤
∑

𝜆∈Id,n

dim(Q𝜆) .

It is known that |Id,n| ≤ (n + 1)d and dim(Q𝜆) ≤ (n + d)d(d−1)/2 (see e.g. [40, Section
6.2]). Hence

|Spec(𝜌)| ≤ (n + 1)d(n + d)d(d−1)/2 ≤ (n + d)d(d+1)/2 .

��
Corollary 2.9. Let 𝜌,𝜎 ∈ Pos(A) and d = dim(A). Then

|Spec
(
P𝜌⊗n (𝜎⊗n)

) | ≤ (n + d)d(d+1)/2 .

Proof. Note that P𝜌⊗n (𝜎⊗n) is itself not a product state because the eigenprojectors of
𝜌⊗n do not have a product form. However, since every eigenspace of 𝜌⊗n is permutation-
invariant, P𝜌⊗n (𝜎⊗n) is permutation-invariant, too, so we can apply Lemma 2.8. ��
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3. Strengthened Chain Rules

One of the crucial properties of entropies are chain rules, which allow us to relate en-
tropies of large composite systems to sums of entropies of the individual subsystems. In
this section, we prove two new such chain rules, one for the Rényi divergence (Theorem
3.1, which is a generalisation of [9, Corollary 5.1]) and one for the conditional entropy
(Theorem 3.6). The chain rule from Theorem 3.6 is the key ingredient for our generalised
EAT, to which we will turn our attention in Sect. 4. Theorem 3.6 plays a similar role
for our generalised EAT as [1, Corollary 3.5] does for the original EAT, but while the
latter requires a Markov condition, the former does not. As a result, our generalised EAT
based on Theorem 3.6 also avoids the Markov condition.

The outline of this section is as follows: we first prove a generalised chain rule for the
Rényi divergence (Theorem 3.1). This chain rule contains a regularised channel diver-
gence. As the next step, we show that in the special case of conditional entropies, we can
drop the regularisation (Sect. 3.2). This allows us to derive a chain rule for conditional
entropies from the chain rule for channels (Sect. 3.3).

3.1. Strengthened chain rule for Rényi divergence. The main result of this section is the
following chain rule for the Rényi divergence.

Theorem 3.1. Let 𝛼 > 1, 𝜌 ∈ S(AR), 𝜎 ∈ Pos(AR), E ∈ CPTP(AR, B), and
F ∈ CP(AR, B). Suppose that there exists R ∈ CP(A, B) such that F = R◦TrR. Then

D𝛼

(
E(𝜌AR)

∥∥F(𝜎AR)
) ≤ D𝛼

(
𝜌A

∥∥𝜎A
)

+ Dreg
𝛼

(
E

∥∥F
)

. (3.1)

This is a stronger version of an existing chain rule due to [9], which we will use in
our proof of Theorem 3.1:

Lemma 3.2 ([9, Corollary 5.1]). Let 𝛼 > 1, 𝜌 ∈ S(A), 𝜎 ∈ Pos(A), E ∈ CPTP(A, B),
and F ∈ CP(A, B). Then

D𝛼

(
E(𝜌)

∥∥F(𝜎)
) ≤ D𝛼

(
𝜌

∥∥𝜎
)

+ Dreg
𝛼

(
E

∥∥F
)

. (3.2)

The difference between Theorem 3.1 and Lemma 3.2 is that on the r.h.s. of Eq. (3.1),
we only have the divergence D𝛼

(
𝜌A

∥∥𝜎A
)

between the two reduced states on system
A. In contrast, if we used Eq. (3.2) with systems AR, then we would get the divergence
D𝛼

(
𝜌AR

∥∥𝜎AR
)

between the full states. In particular, the weaker Lemma 3.2 can easily
be recovered from Theorem 3.1 by taking the system R to be trivial, in which case the
condition F = R ◦ TrR becomes trivial, too.

While the difference between Theorem 3.1 and Lemma 3.2 may look minor at first
sight, the two chain rules can give considerably different results: in general, the data pro-
cessing inequality ensures that D𝛼

(
𝜌A

∥∥𝜎A
) ≤ D𝛼

(
𝜌AR

∥∥𝜎AR
)
, but the gap between

the two quantities can be significant, i.e., there exist states for which D𝛼

(
𝜌A

∥∥𝜎A
) �

D𝛼

(
𝜌AR

∥∥𝜎AR
)
. In such cases, Theorem 3.1 yields a significantly tighter bound. This

turns out to be crucial if we want to apply this chain rule repeatedly to get an EAT.
We also note that the statement of Theorem 3.1 is known to be correct also for

𝛼 = 1 [37, Theorem 3.5]. However, this requires a separate proof and does not follow
from Theorem 3.1 as it is currently not known whether the function 𝛼 �→ Dreg

𝛼
(
E

∥∥F
)

is continuous in the limit 𝛼 ↘ 1.10

10 It is well-known [3, Lemma 8] that lim𝛼↘1 D𝛼
(E ∥∥F) = D

(E‖F)
, but it is unclear whether the same

holds for the regularised quantity.
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We now turn to the proof of Theorem 3.1. The key question for the proof is the
following: given states 𝜌AR and 𝜎A, does there exist an extension 𝜎AR of 𝜎A such that
D𝛼

(
𝜌A

∥∥𝜎A
) = D𝛼

(
𝜌AR

∥∥𝜎AR
)
? For the special case of 𝛼 = 1/2, an affirmative an-

swer is given by Uhlmann’s theorem [10] (see also [11, Corollary 3.14]). This also holds
for 𝛼 = ∞, but not in general for 𝛼 ≥ 1 as discussed in Sect. B. The following lemma
shows that a similar property still holds for 𝛼 > 1 on a regularised level.

Lemma 3.3. Consider quantum systems A and R with d = dim(A). For n ∈ N, we de-
fine An = A1 . . . An, where Ai are copies of the system A, and likewise Rn = R1 . . . Rn.
Then for 𝜌 ∈ S(AR), 𝜎 ∈ Pos(A), and 𝛼 > 1 we have

D𝛼

(
𝜌A

∥∥𝜎A
) ≤ inf

𝜎̂An Rn s.t. 𝜎̂An =𝜎⊗n
A

1

n
D𝛼

(
𝜌⊗n

AR

∥∥ 𝜎̂An Rn
)

≤ D𝛼

(
𝜌A

∥∥𝜎A
)

+
𝛼

𝛼 − 1

d(d + 1) log(n + d)

n
.

Proof. The inequality

D𝛼

(
𝜌A

∥∥𝜎A
) ≤ inf

𝜎̂An Rn s.t. 𝜎̂An =𝜎⊗n
A

1

n
D𝛼

(
𝜌⊗n

AR

∥∥ 𝜎̂An Rn
)

follows directly from the data processing inequality for taking the partial trace over Rn ,
and additivity of D𝛼 under tensor product [11].

For the other direction, we consider n-fold tensor copies of 𝜌AR and 𝜎A, which we
denote by 𝜌An Rn = 𝜌A1 R1 ⊗ · · · ⊗ 𝜌An Rn and 𝜎An = 𝜎A1 ⊗ · · · ⊗ 𝜎An . We define the
following two pinched states

𝜌′An Rn = P𝜎An ⊗1Rn (𝜌An Rn ) and 𝜌̂An Rn = P𝜌′
An ⊗1Rn (𝜌′An Rn ) . (3.3)

By definition of 𝜌̂An Rn and using the pinching inequality (see Lemma 2.7(iii)) twice, we
have

𝜌An Rn ≤ |Spec(𝜎An )||Spec(𝜌′An )| 𝜌̂An Rn .

Using the operator monotonicity of the sandwiched Rényi divergence in the first argu-
ment [11] we find for any state 𝜎̂An Rn

1

n
D𝛼

(
𝜌⊗n

AR

∥∥ 𝜎̂An Rn
) ≤ 1

n
D𝛼

(
𝜌̂An Rn

∥∥ 𝜎̂An Rn
)

+
1

n

𝛼

𝛼 − 1
𝜂(n) , (3.4)

with the error term

𝜂(n) = log |Spec(𝜎An )| + log |Spec(𝜌′An )| .
To prove the lemma, we now need to bound the error term 𝜂(n) and construct a specific

choice for 𝜎̂An Rn for which 𝜎̂An = 𝜎⊗n
A and 1

n D𝛼

(
𝜌̂An Rn

∥∥ 𝜎̂An Rn
) ≤ D𝛼

(
𝜌A

∥∥𝜎A
)
.

We first bound 𝜂(n). Since 𝜎An = 𝜎⊗n
A , we have from Eq. (2.3) that |Spec(𝜎An )| ≤

(n + 1)d−1, where d = dim(A). To bound |Spec(𝜌′An )|, we note that by Eq. (3.3)
and Lemma 2.7(v)

𝜌′An = TrRn
[
P𝜎An ⊗1Rn (𝜌An Rn )

] = P𝜎An (𝜌An ) = P𝜎⊗n
A

(𝜌⊗n
A ) . (3.5)
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We can therefore use Lemma 2.9 to obtain |Spec(𝜌′An )| ≤ (n + d)d(d+1)/2. Hence,

𝜂(n) ≤ d(d + 1) log(n + d) . (3.6)

It thus remains to construct 𝜎̂An Rn satisfying the properties mentioned above. To do
so we first establish a number of commutation statements.

(i) From Lemma 2.7(ii) we have that [𝜌̂An Rn , 𝜌′An ⊗ 1Rn ] = 0. Recalling the definition
of 𝜌′ from Eq. (3.3), we get

𝜌̂An = TrRn

[
P𝜌′

An ⊗1Rn (𝜌′An Rn )
]
= P𝜌′

An
(𝜌′An ) = 𝜌′An , (3.7)

where the final step uses Lemma 2.7(i). As a result we find

[𝜌̂An Rn , 𝜌̂An ⊗ 1Rn ] = 0 . (3.8)

(ii) From Lemma 2.7(ii) we have that [𝜌′An Rn ,𝜎An ⊗ 1Rn ] = 0. Taking the partial trace
over Rn , this implies [𝜌′An ,𝜎An ] = 0, so by Lemma 2.7(iv) and Eq. (3.3)

𝜌̂An Rn = P𝜌′
An ⊗1Rn

(
P𝜎An ⊗1Rn (𝜌An Rn )

) = P𝜎An ⊗1Rn

(
P𝜌′

An ⊗1Rn (𝜌An Rn )
)

.

Therefore, by Lemma 2.7(ii),

[𝜌̂An Rn ,𝜎An ⊗ 1Rn ] = 0 . (3.9)

(iii) Taking the partial trace over Rn in Eq. (3.9), we get

[𝜌̂An ,𝜎An ] = 0 . (3.10)

Having established these commutation relations, we define T ∈ CPTP(An, An Rn) by11

T (𝜔An ) = 𝜌̂
1/2
An Rn 𝜌̂

−1/2
An 𝜔An 𝜌̂

−1/2
An 𝜌̂

1/2
An Rn .

By construction,

T (𝜌̂An ) = 𝜌̂An Rn . (3.11)

We define

𝜎̂An Rn = T (𝜎An ) . (3.12)

To see that this is a valid choice of 𝜎̂, i.e., that 𝜎̂An = 𝜎An = 𝜎⊗n
A , we use Eqs. (3.8),

(3.9) and (3.10) to find

𝜎̂An = TrRn

[
𝜌̂

1/2
An Rn 𝜌̂

−1/2
An 𝜎An 𝜌̂

−1/2
An 𝜌̂

1/2
An Rn

]
= TrRn

[
𝜌̂An Rn 𝜌̂−1

An 𝜎An

]
= 𝜎An .

Using Eqs. (3.11) and (3.12) followed by the data processing inequality [11], we
obtain

1

n
D𝛼

(
𝜌̂An Rn

∥∥ 𝜎̂An Rn
) = 1

n
D𝛼

(
T (𝜌̂An )

∥∥ T (𝜎An )
) ≤ 1

n
D𝛼

(
𝜌̂An

∥∥𝜎An
)

. (3.13)

11 In case 𝜌̂An does not have full support, we only take the inverse on the support of 𝜌̂An .
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By Eqs. (3.7) and (3.3) we have 𝜌̂An = 𝜌′An = P𝜎An (𝜌An ). Therefore, continuing from
Eq. (3.13) and using 𝜎An = P𝜎An (𝜎An ) followed by the data processing inequality gives

1

n
D𝛼

(
𝜌̂An Rn

∥∥ 𝜎̂An Rn
) ≤ 1

n
D𝛼

(
𝜌An

∥∥𝜎An
) = 1

n
D𝛼

(
𝜌⊗n

A

∥∥𝜎⊗n
A

) = D𝛼

(
𝜌A

∥∥𝜎A
)

.

Inserting this and our error bound from Eq. (3.6) into Eq. (3.4) proves the desired state-
ment. ��

With this, we can now prove Theorem 3.1.

Proof of Theorem 3.1. Because D𝛼 is additive under tensor products, for any n ∈ N we
have

D𝛼

(
E(𝜌AR)

∥∥F(𝜎AR)
) = 1

n
D𝛼

(
E⊗n(𝜌⊗n

AR)
∥∥F⊗n(𝜎⊗n

AR)
)

= inf
𝜎̂An Rn s.t. 𝜎̂An =𝜎⊗n

A

1

n
D𝛼

(
E⊗n(𝜌⊗n

AR)
∥∥F⊗n(𝜎̂An Rn )

)
,

(3.14)

where the second equality holds because F = R ◦ TrR , so F⊗n(𝜎⊗n
AR) = F⊗n(𝜎̂An Rn )

for any 𝜎̂An Rn that satisfies 𝜎̂An = 𝜎⊗n
A . From the chain rule in Lemma 3.2 we get that

for any 𝜎̂An Rn :

1

n
D𝛼

(
E⊗n(𝜌⊗n

AR)
∥∥F⊗n(𝜎̂An Rn )

) ≤ 1

n
D𝛼

(
𝜌⊗n

AR

∥∥ 𝜎̂An Rn
)

+
1

n
Dreg

𝛼

(
E⊗n

∥∥F⊗n)

= 1

n
D𝛼

(
𝜌⊗n

AR

∥∥ 𝜎̂An Rn
)

+ Dreg
𝛼

(
E

∥∥F
)

,

where for the second line we used additivity of the regularised channel divergence
(see Eq. (2.2)). Combining this with Eq. (3.14), we get

D𝛼

(
E(𝜌AR)

∥∥F(𝜎AR)
) ≤ inf

𝜎̂An Rn s.t. 𝜎̂An =𝜎⊗n
A

1

n
D𝛼

(
𝜌⊗n

AR

∥∥ 𝜎̂An Rn
)

+ Dreg
𝛼

(
E

∥∥F
)

.

(3.15)

Finally, using Lemma 3.3 and the fact that d:= dim(A) and 𝛼 > 1 are constants inde-
pendent of n, we have

lim
n→∞ inf

𝜎̂An Rn s.t. 𝜎̂An =𝜎⊗n
A

1

n
D𝛼

(
𝜌⊗n

AR

∥∥ 𝜎̂An Rn
)

≤ D𝛼

(
𝜌A

∥∥𝜎A
)

+ lim
n→∞

𝛼

𝛼 − 1

d(d + 1) log(n + d)

n
= D𝛼

(
𝜌A

∥∥𝜎A
)

.

Therefore, taking n → ∞ in Eq. (3.15) and inserting this yields the theorem statement. ��
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3.2. Removing the regularisation. The chain rule presented in Theorem 3.1 contains a
regularised channel divergence term, which cannot be computed easily and whose be-
haviour as 𝛼 ↘ 1 is not understood. In this section we show that in the specific case
relevant for entropy accumulation, this regularisation can be removed. From this, we
then derive a chain rule for Rényi entropies in Theorem 3.6.

Definition 3.4 (Replacer map). The replacer mapSA ∈ CP(A, A) is defined by its action
on an arbitrary state 𝜔AR :

SA(𝜔AR) = 1A ⊗ 𝜔R .

Note that as usual, when we write SA(𝜔AR), we include an implicit tensoring with the
identity channel, i.e. SA(𝜔AR) = (SA ⊗ idR)(𝜔AR).

Lemma 3.5. Let 𝛼 ∈ (1, 2), E ∈ CPTP(AR, A′R′), and F = SA′ ◦ E , where SA′ is the
replacer map. Then we have

Dreg
𝛼

(
E

∥∥F
) ≤ D 1

2−𝛼

(
E

∥∥F
)

.

Proof. Due to the choice of F , we have that for any state 𝜓n ∈ S(An Rn R̃n) (with
R̃ ≡ AR):

D𝛼

(
E⊗n(𝜓n)

∥∥F⊗n(𝜓n)
) = −H𝛼

(
(A′)n|(R′)n R̃n

)

E⊗n(𝜓n)
.

From [41, Proposition II.4] and [2, Lemma 4.2.2] we know that for every n, there exists
a symmetric pure state |𝜓̂n〉 ∈ Symn(AR R̃) such that

D𝛼

(
E⊗n

∥∥F⊗n) = D𝛼

(
E⊗n(𝜓̂n)

∥∥F⊗n(𝜓̂n)
)
= −H𝛼

(
(A′)n|(R′)n R̃n

)

E⊗n(𝜓n)
,

where 𝜓̂n = |𝜓̂n〉〈𝜓̂n| and the supremum in the definition of the channel divergence is
achieved because the conditional entropy is continuous in the state. Let d = dim(AR R̃)

and gn,d = dim(Symn(AR R̃)) ≤ (n + 1)d2−1. We define the state

𝜏n
An Rn R̃n =

∫
𝜇(𝜎AR R̃)𝜎⊗n

AR R̃
, (3.16)

where 𝜇 is the Haar measure on pure states. We now claim that in the limit n → ∞, we
can essentially replace the optimizer 𝜓̂n

An Rn R̃n by the state 𝜏n
An Rn R̃n in Eq. (3.16). More

precisely, we claim that

lim
n→∞

1

n
H𝛼((A′)n|(R′)n R̃n)E⊗n(𝜓̂n) ≥ lim

n→∞
1

n
H 1

2−𝛼
((A′)n|(R′)n R̃n)E⊗n(𝜏n) . (3.17)

To show this, we first use Lemma 2.3 to get

H𝛼((A′)n|(R′)n R̃n)E⊗n(𝜓̂n) ≥ H�
1

2−𝛼

(
(A′)n|(R′)n R̃n

)

E⊗n(𝜓̂n)
.

It is know that 𝜏n
An Rn R̃n is the maximally mixed state on Symn(AR R̃) (see e.g. [13]).

Therefore,

𝜌n
An Rn R̃n :=

gn,d𝜏
n − 𝜓̂n

gn,d − 1
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is a valid quantum state (i.e. positive and normalised). Hence, we can write

𝜏n =
(

1 − 1

gn,d

)
𝜌n +

1

gn,d
𝜓̂n .

Using [1, Lemma B.5], it follows that

1

n
H�

1
2−𝛼

(
(A′)n |(R′)n R̃n

)

E⊗n(𝜓̂n)
≥ 1

n
H�

1
2−𝛼

(
(A′)n |(R′)n R̃n

)

E⊗n(𝜏n)
− 𝛼

𝛼 − 1

log(gn,d )

n
.

Since log(gn,d )

n ≤ (d2−1)
log n

n vanishes as n → ∞, taking the limit and using H�
1

2−𝛼

(·|·) ≥
H 1

2−𝛼
(·|·) proves Eq. (3.17).

Having established Eq. (3.17), we can now conclude the proof of the lemma as follows

Dreg
𝛼

(
E

∥∥F
) = − lim

n→∞
1

n
H𝛼((A′)n|(R′)n R̃n)E⊗n(𝜓̂n)

≤ − lim
n→∞

1

n
H 1

2−𝛼
((A′)n|(R′)n R̃n)E⊗n(𝜏n)

= lim
n→∞

1

n
D 1

2−𝛼

(
E⊗n

( ∫
𝜇(𝜎AR R̃)𝜎⊗n

AR R̃

) ∥∥F⊗n
( ∫

𝜇(𝜎AR R̃)𝜎⊗n
AR R̃

))

≤ lim
n→∞ sup

𝜎AR R̃∈S(AR R̃)

1

n
D 1

2−𝛼

(
E⊗n

(
𝜎⊗n

AR R̃

) ∥∥F⊗n
(
𝜎⊗n

AR R̃

))

= D 1
2−𝛼

(
E

∥∥F
)

,

where we used joint quasi-convexity [11, Proposition 4.17] in the fourth line and addi-
tivity under tensor products in the last line. ��

3.3. Strengthened chain rule for conditional Rényi entropy. We next combine Theorem
3.1 with Lemma 3.5 to derive a new chain rule for the conditional Rényi entropy which
then allows us to prove the generalised EAT in Sect. 4.

Lemma 3.6. Let 𝛼 ∈ (1, 2), 𝜌 ∈ S(ARE), and M ∈ CPTP(RE, A′R′E ′) such that
there exists R ∈ CPTP(E, E ′) such that TrA′R′ ◦M = R ◦ TrR. Then

H𝛼(AA′|E ′)M(𝜌) ≥ H𝛼(A|E)𝜌 + inf
𝜔∈S(RE Ẽ)

H 1
2−𝛼

(A′|E ′ Ẽ)M(𝜔) (3.18)

for a purifying system Ẽ ≡ RE.

Proof. We define the following maps12

N = SA′ ◦M ∈ CP(RE, A′R′E ′) ,

M̃ = idA ⊗ TrR′ ◦M ∈ CPTP(ARE, AA′E ′) ,

Ñ = SA′ ◦ M̃ ∈ CP(ARE, AA′E ′) .

12 The map M in the theorem statement is also implicitly tensored with an identity map on A, but for the
definition of M̃ we make this explicit to avoid confusion when applying Theorem 3.1.
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Note that in Eq. (3.18), we can replace M by M̃, as the system R′ does not appear in
Eq. (3.18). With 𝜎ARE = 1A ⊗ 𝜌RE and Ñ = SA′ ◦ M̃, we can write

−H𝛼(AA′|E ′)M(𝜌) = D𝛼

(
M̃(𝜌ARE )

∥∥ Ñ (𝜎ARE )
)

.

We now claim that there exists a map R̃ ∈ CP(AE, AA′E) such that Ñ = R̃ ◦ TrR . To
see this, observe that by assumption, TrA′ ◦M̃ = idA⊗R◦TrR for someR ∈ CP(E, E ′).
Then, we can define R̃ ∈ CP(AE, AA′E) by its action on an arbitrary state 𝜔AE :

R̃(𝜔AE ):=1A′ ⊗ (idA ⊗R)(𝜔AE ) = 1A′ ⊗ TrA′ ◦ M̃(𝜔ARE ) = Ñ (𝜔ARE )

for any extension 𝜔ARE of 𝜔AE . Therefore, we can apply Theorem 3.1 to find

D𝛼

(
M̃(𝜌ARE )

∥∥ Ñ (𝜎ARE )
)
≤ D𝛼

(
𝜌AE

∥∥𝜎AE
)

+ Dreg
𝛼

(
M̃

∥∥ Ñ
)

.

By definition of 𝜎, we have D𝛼

(
𝜌AE

∥∥𝜎AE
) = −H𝛼(A|E)𝜌. Since the channel diver-

gence is stabilised (see Footnote 9), tensoring with idA has no effect, i.e.,

Dreg
𝛼

(
M̃

∥∥ Ñ
)
= Dreg

𝛼

(
TrR′ ◦M ∥∥ TrR′ ◦N ) = Dreg

𝛼

(
TrR′ ◦M ∥∥SA′ ◦ TrR′ ◦M)

.

To this, we can apply Lemma 3.5 and obtain

D
reg
𝛼

(
M̃ ∥∥ Ñ

)
≤ D 1

2−𝛼

(
TrR′ ◦M ∥∥SA′ ◦ TrR′ ◦M) = − inf

𝜔∈S(RE Ẽ)

H 1
2−𝛼

(A′|E ′ Ẽ)M(𝜔)

with Ẽ ≡ RE . Combining all the steps yields the desired statement. ��

4. Generalised Entropy Accumulation

We are finally ready to state and prove the main result of this work which is a general-
isation of the EAT proven in [1]. We first state a simple version of this theorem, which
follows readily from the chain rule Theorem 3.6 and captures the essential feature of en-
tropy accumulation: the min-entropy of a stateMn ◦· · ·◦M1(𝜌) produced by applying a
sequence of n channels can be lower-bounded by a sum of entropy contributions of each
channel Mi . However, for practical applications, it is desirable not to consider the state
Mn ◦· · ·◦M1(𝜌), but rather that state conditioned on some classical event, for example
“success” in a key distribution protocol – a concept called “testing”. Analogously to [1],
we present an EAT adapted to that setting in Sect. 4.2.

4.1. Generalised EAT.

Theorem 4.1 (Generalised EAT). Consider a sequence of channels Mi ∈
CPTP(Ri−1 Ei−1, Ai Ri Ei ) such that for all i ∈ {1, . . . , n}, there exists
Ri ∈ CPTP(Ei−1, Ei ) such that TrAi Ri ◦ Mi = Ri ◦ TrRi−1 . Then for any ε ∈ (0, 1)

and any 𝜌R0 E0 ∈ S(R0 E0)

Hε
min(An |En)Mn◦···◦M1(𝜌R0 E0 ) ≥

n∑

i=1

inf
𝜔∈S(Ri−1 Ei−1 Ẽi−1)

H(Ai |Ei Ẽi−1)Mi (𝜔) − O(
√

n)

for a purifying system Ẽi−1 ≡ Ri−1 Ei−1. For a statement with explicit constants, see
Eq. (4.1) in the proof.
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Proof. By [1, Lemma B.10], we have for 𝛼 ∈ (1, 2)

H ε
min(An

1|En)Mn◦···◦M1(𝜌R0 E0 ) ≥ H𝛼(An
1|En)Mn◦···◦M1(𝜌R0 E0 ) − g(ε)

𝛼 − 1

with g(ε) = log(1 − √
1 − ε2). From Theorem 3.6, we have

H𝛼(An
1|En)Mn◦···◦M1(𝜌R0 E0 )

≥ H𝛼(An−1
1 |En−1)Mn−1◦···◦M1(𝜌R0 E0 )

+ inf
𝜔∈S(Rn−1 En−1 Ẽn−1)

H 1
2−𝛼

(An|En Ẽn−1)Mn(𝜔) .

Repeating this step n − 1 times, we get

H𝛼(An
1|En)Mn◦···◦M1(𝜌R0 E0 ) ≥ H𝛼(A1|E1)M1(𝜌R0 E0 )

+
n∑

i=2

inf
𝜔∈S(Ri−1 Ei−1 Ẽi−1)

H 1
2−𝛼

(Ai |Ei Ẽi−1)Mi (𝜔)

≥
n∑

i=1

inf
𝜔∈S(Ri−1 Ei−1 Ẽi−1)

H 1
2−𝛼

(Ai |Ei Ẽi−1)Mi (𝜔) ,

where the final step uses the monotonicity of the Rényi divergence in 𝛼 [11, Corol-
lary 4.3]. From [1, Lemma B.9] we have for each i ∈ {1, . . . , n} and 𝛼 sufficiently close
to 1,

inf
𝜔∈S(Ri−1 Ei−1 Ẽi−1)

H 1
2−𝛼

(Ai |Ei Ẽi−1)Mi (𝜔)

≥ inf
𝜔∈S(Ri−1 Ei−1 Ẽi−1)

H(Ai |Ei Ẽi−1)Mi (𝜔) − 𝛼 − 1

2 − 𝛼
log2 (

1 + 2 dim(Ai )
)
.

Setting dA = maxi dim(Ai ) and combining the previous steps, we obtain

Hmin(An
1 |En)Mn◦···◦M1(𝜌R0 E0 )

≥
n∑

i=1

inf
𝜔i∈S(Ri−1 Ei−1 Ẽi−1)

H(Ai |Ei Ẽi−1)Mi (𝜔i ) − n
𝛼 − 1

2 − 𝛼
log2(1 + 2dA) − g(ε)

𝛼 − 1
.

(4.1)

Using 𝛼 = 1 + O(1/
√

n) yields the result. ��

4.2. Generalised EAT with testing. In this section, we will extend Theorem 4.1 to include
the possibility of “testing”, i.e., of computing the min-entropy of a cq-state conditioned
on some classical event. This analysis is almost identical to that of [8]; we give the full
proof for completeness, but will appeal to [8] for specific tight bounds. The resulting
EAT (Theorem 4.3) has (almost) the same tight bounds as the result in [8], but replaces
the Markov condition with the more general non-signalling condition. Hence, relax-
ing the Markov condition does not result in a significant loss in parameters (including
second-order terms).
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Consider a sequence of channels Mi ∈ CPTP(Ri−1 Ei−1, Ci Ai Ri Ei ) for
i ∈ {1, . . . , n}, where Ci are classical systems with common alphabet C. We require
that these channels Mi satisfy the following condition: defining M′

i = TrCi ◦Mi , there
exist channels Ti ∈ CPTP(Ai Ei , Ci Ai Ei ) and T ∈ CPTP(An En, Cn An En) such that
Mi = Ti ◦M′

i and Mn ◦· · ·◦M1 = T ◦M′
n ◦· · ·◦M′

1, where Ti and T have the form

Ti (𝜔Ai Ei ) =
∑

y∈Yi ,z∈Zi

(�
(y)
Ai

⊗ �
(z)
Ei

)𝜔Ai Ei (�
(y)
Ai

⊗ �
(z)
Ei

) ⊗ |ri (y, z)〉〈ri (y, z)|Ci

T (𝜔An En ) =
∑

y∈Y,z∈Z
(�

(y)
An ⊗ �

(z)
En

)𝜔An En (�
(y)
An ⊗ �

(z)
En

) ⊗ |r(y, z)〉〈r(y, z)|Cn ,

(4.2)

where {�(y)
Ai

}y and {�(z)
Ei

}z are families of mutually orthogonal projectors on Ai and

Ei , and ri : Yi × Zi → C is a deterministic function Similarly, {�(y)
An }y and {�(z)

En
}z

are families of mutually orthogonal projectors on An and En , and r : Y × Z → C is
a deterministic function. (Note that even though we use the same symbol for both, in
principle there does not have to be any relationship between the single-round projectors
�Ai and the projector �An (and likewise for �Ei and �En ), although in practice the
latter will usually be the tensor product of the former.) Intuitively, this condition says
that for each round, the classical statistics can be reconstructed “in a projective way”
from the systems Ai and Ei in that round, and furthermore the full statistics information
Cn can be reconstructed in a projective way from the systems An and En at the end
of the process. The latter condition is not implied by the former because future rounds
may modify the Ei -system in such a way that Ci can no longer be reconstructed from
the side information En at the end of the protocol. To rule this out, we need to specify
the latter condition separately. In particular, this requirement is always satisfied if the
statistics Ci are computed from classical information contained in Ai and Ei and this
classical information is not deleted from Ei in future rounds. This is the scenario in all
applications that we are aware of, but we state Eq. (4.2) more generally to allow for the
possibility of protocols where the statistics are constructed in a more general way.

Let P be the set of probability distributions on the alphabet C of Ci , and let Ẽi−1 be
a system isomorphic to Ri−1 Ei−1. For any q ∈ P we define the set of states

�i (q) = {
𝜈Ci Ai Ri Ei Ẽi−1

= Mi (𝜔Ri−1 Ei−1 Ẽi−1
) |𝜔 ∈ S(Ri−1 Ei−1 Ẽi−1) and 𝜈Ci = q

}
,

(4.3)

where 𝜈Ci denotes the probability distribution over C with the probabilities given by
Pr[c] = 〈c|𝜈Ci |c〉. In other words, �i (q) is the set of states that can be produced at
the output of the channel Mi and whose reduced state on Ci is equal to the probability
distribution q.

Definition 4.2. A function f : P → R is called a min-tradeoff function for {Mi } if it
satisfies

f (q) ≤ min
𝜈∈�i (q)

H(Ai |Ei Ẽi−1)𝜈 ∀i = 1, . . . , n .

Note that if �i (q) = ∅, then f (q) can be chosen arbitrarily.
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Our result will depend on some simple properties of the tradeoff function, namely the
maximum and minimum of f , the minimum of f over valid distributions, and the max-
imum variance of f :

Max( f ):=max
q∈P f (q) ,

Min( f ):=min
q∈P f (q) ,

Min�( f ):= min
q:�(q) �=∅ f (q) ,

Var( f ):= max
q:�(q) �=∅

∑

x∈C
q(x) f (𝛿x )

2 −
(

∑

x∈C
q(x) f (𝛿x )

)2

,

where �(q) = ⋃
i �i (q) and 𝛿x is the distribution with all the weight on element x . We

write freq(Cn) for the distribution on C defined by freq(Cn)(c) = |{i∈{1,...,n}:Ci=c}|
n . We

also recall that in this context, an event � is defined by a subset of Cn , and for a state

𝜌Cn An En Rn we write Pr𝜌[�] = ∑
cn∈� Tr

[
𝜌An

1 En Rn ,cn

]
for the probability of the event

� and

𝜌Cn An En Rn |� = 1

Pr𝜌[�]

∑

cn∈�

|cn〉〈cn|Cn ⊗ 𝜌An En Rn ,cn

for the state conditioned on �.

Theorem 4.3. Consider a sequence of channels Mi ∈ CPTP(Ri−1 Ei−1, Ci Ai Ri Ei )

for i ∈ {1, . . . , n}, where Ci are classical systems with common alphabet C and the
sequence {Mi } satisfies Eq. (4.2) and the non-signalling condition: for each Mi , there
exists Ri ∈ CPTP(Ei−1, Ei ) such that TrAi Ri Ci ◦ Mi = Ri ◦ TrRi−1 . Let ε ∈ (0, 1),
𝛼 ∈ (1, 3/2), � ⊂ Cn, 𝜌R0 E0 ∈ S(R0 E0), and f be an affine13 min-tradeoff function
with h = mincn∈� f (freq(cn)). Then,

H ε
min(An |En)Mn◦···◦M1(𝜌R0 E0 )|� ≥ n h − n

𝛼 − 1

2 − 𝛼

ln(2)

2
V 2 − g(ε) + 𝛼 log(1/Pr𝜌n [�])

𝛼 − 1

−n

(
𝛼 − 1

2 − 𝛼

)2

K ′(𝛼) , (4.4)

where Pr[�] is the probability of observing event �, and

g(ε) = − log(1 −
√

1 − ε2) ,

V = log(2d2
A + 1) +

√
2 + Var( f ) ,

K ′(𝛼) = (2 − 𝛼)3

6(3 − 2 𝛼)3 ln 2
2

𝛼−1
2−𝛼 (2 log dA+Max( f )−Min�( f )) ln3

(
22 log dA+Max( f )−Min�( f ) + e2

)
,

with dA = maxi dim(Ai ).

13 A function f on the convex set P(C) is called affine if it is linear under convex combinations, i.e., for
𝜆 ∈ [0, 1] and p1, p2 ∈ P(C), 𝜆 f (p1) + (1 − 𝜆) f (p2) = f (𝜆p1 + (1 − 𝜆)p2). Such functions are also
sometimes called convex-linear.
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Remark 4.4. The parameter in 𝛼 in Theorem 4.3 can be optimized for specific problems,
which leads to tighter bounds. Alternatively, it is possible to make a generic choice for 𝛼
to recover a theorem that looks much more like Theorem 4.1, which is done in Corollary
4.6. We also remark that even tighter second order terms have been derived in [42].
To keep our theorem statement and proofs simpler, we do not carry out this additional
optimization explicitly, but note that this can be done in complete analogy to [42].

To prove Theorem 4.3, we will need the following lemma (which is already implicit
in [1, Claim 4.6], but we give a simplified proof here).

Lemma 4.5. Consider a quantum state 𝜌 ∈ S(C ADE) that has the form

𝜌C ADE =
∑

c∈�

|c〉〈c| ⊗ 𝜌AE,c ⊗ 𝜌D|c ,

where � ⊂ C is a subset of the alphabet C of the classical system C, and for each c,
𝜌AE,c ∈ Pos(AE) is subnormalised and 𝜌D|c ∈ S(D) is a quantum state. Then for𝛼 > 1,

H�
𝛼(AC D|E)𝜌 ≤ H�

𝛼(AC |E)𝜌 + max
c∈�

H𝛼(D)𝜌D|c .

Proof. Let 𝜎E ∈ S(E) such that

H�
𝛼(AC D|E)𝜌 = −D𝛼

(
𝜌C ADE

∥∥1C AD ⊗ 𝜎E
)

.

Then
(
𝜎

1−𝛼
2𝛼

E 𝜌C ADE𝜎
1−𝛼
2𝛼

E

)𝛼

=
∑

c∈�

|c〉〈c| ⊗
(
𝜎

1−𝛼
2𝛼

E 𝜌AE,c𝜎
1−𝛼
2𝛼

E

)𝛼

⊗ 𝜌𝛼
D|c .

Hence,

Tr

[(
𝜎

1−𝛼
2𝛼

E 𝜌C ADE𝜎
1−𝛼
2𝛼

E

)𝛼]
=

∑

c∈�

Tr

[(
𝜎

1−𝛼
2𝛼

E 𝜌AE,c𝜎
1−𝛼
2𝛼

E

)𝛼]
Tr

[
𝜌𝛼

D|c
]

≤ sup
𝜎̃E∈S(E)

Tr

[
∑

c∈�

|c〉〈c| ⊗
(
𝜎̃

1−𝛼
2𝛼

E 𝜌AE,c𝜎̃
1−𝛼
2𝛼

E

)𝛼
]

× max
c∈�

Tr
[
𝜌𝛼

D|c
]

= sup
𝜎̃E∈S(E)

Tr

[(
𝜎̃

1−𝛼
2𝛼

E 𝜌C AE 𝜎̃
1−𝛼
2𝛼

E

)𝛼]
max
c∈�

Tr
[
𝜌𝛼

D|c
]

Recalling the definitions of D𝛼 (Definition 2.1) and H�
𝛼 (Definition 2.2), we see that the

lemma follows by taking the logarithm and multiplying by 1
𝛼−1 . ��

Proof of Theorem 4.3. As in the proof of Theorem 4.1, we first use [1, Lemma B.10] to
get

H ε
min(An|En)Mn◦···◦M1(𝜌R0 E0 )|� ≥ H�

𝛼(An|En)Mn◦···◦M1(𝜌R0 E0 )|� − g(ε)

𝛼 − 1
(4.5)
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for 𝛼 ∈ (1, 2] and g(ε) = log(1−√
1 − ε2). We therefore need to find a lower bound for

H�
𝛼(An|En)Mn◦···◦M1(𝜌R0 E0 )|� = H�

𝛼(AnCn|En)Mn◦···◦M1(𝜌R0 E0 )|� , (4.6)

where the equality holds because of Eq. (4.2) and [1, Lemma B.7].
Before proceeding with the formal proof, let us explain the main difficulty compared

to Theorem 4.1. The state for which we need to compute the entropy in Eq. (4.6) is
conditioned on the event � ⊂ Cn . This is a global event, in the sense that it depends
on the classical outputs C1, . . . , Cn of all rounds. We essentially seek a lower bound
that involves min𝜈∈�i (freq(cn)) H𝛼(Ai |Ei )𝜈 for some cn ∈ �, i.e., for every round we
only want to minimize over output states of the channel Mi whose distribution on Ci
matches the frequency distribution freq(cn) of the n rounds we observed. This means
that we must use the global conditioning on � to argue that in each round, we can restrict
our attention to states whose outcome distribution matches the (worst-case) frequency
distribution associated with �. The chain rule Theorem 3.1 does not directly allow us
to do this as the r.h.s. of Eq. (3.18) always minimizes over all possible input states.

To circumvent this, we follow a strategy that was introduced in [1] and optimized
in [8] (see also [16,21,43] for related ideas and [44] for follow-up work). For every
i , we introduce a quantum system Di with dim(Di ) = �2Max( f )−Min( f )� and define
Di ∈ CPTP(Ci , Ci Di ) by

Di (𝜔Ci ) =
∑

c∈C
〈c|𝜔Ci |c〉 · |c〉〈c| ⊗ 𝜏Di |c .

For every c ∈ C, the state 𝜏Di |c ∈ S(D) is defined as the mixture between a uni-
form distribution on {1, . . . ,  2Max( f )− f (𝛿c)!} and a uniform distribution on
{1, . . . , �2Max( f )− f (𝛿c)�} that satisfies

H(Di )𝜏Di |c = Max( f ) − f (𝛿c) ,

where 𝛿x stands for the distribution with all the weight on element x . This is clearly
possible if dim(Di ) = �2Max( f )−Min( f )�.

We define M̄i = Di ◦Mi and denote

𝜌n
Cn An Rn En

= Mn ◦ · · · ◦M1(𝜌R0 E0) and 𝜌̄n
Cn An Dn Rn En

= M̄n ◦ · · · ◦ M̄1(𝜌R0 E0) .

The state 𝜌̄n|� has the right form for us to apply Lemma 4.5 and get

H�
𝛼(AnCn|En)𝜌̄n|� ≥ − max

cn∈�
H𝛼(Dn)𝜌̄n

Dn |cn + H�
𝛼(AnCn Dn|En)𝜌̄n|� , (4.7)

where

𝜌̄n
Dn |cn = 𝜏D1|c1 ⊗ . . . ⊗ 𝜏Dn |cn .

We treat each term in Eq. (4.7) in turn.

(i) For the term on the l.h.s., it is easy to see that 𝜌̄n
Cn An Rn En |� = 𝜌n

Cn An Rn En |�, so

H�
𝛼(AnCn|En)𝜌̄n|� = H�

𝛼(AnCn|En)𝜌n|� . (4.8)



Generalised Entropy Accumulation Page 27 of 43   261 

(ii) For the first term on the r.h.s., we compute

H𝛼(Dn)𝜌̄n
Dn |cn

=
∑

i

H𝛼(Di )𝜏Di |ci
≤

∑

i

H(Di )𝜏Di |ci
= n Max( f ) −

∑

i

f (𝛿ci )

= n Max( f ) − n f (freq(cn)) ,

(4.9)

where the last equality holds because f is affine.
(iii) For the second term on the r.h.s., we first use [1, Lemma B.5] to remove the con-

ditioning on the event �, and then use that removing the classical system Cn and
switching from H�

𝛼 to H𝛼 can only decrease the entropy:

H�
𝛼(AnCn Dn|En)𝜌̄n|� ≥ H𝛼(An Dn|En)𝜌̄n − 𝛼

𝛼 − 1
log(1/Pr𝜌n [�]) ,

where we used Pr𝜌n [�] = Pr𝜌̄n [�]. Now noting that TrDi ◦ M̄i = Mi , we see
that the non-signalling condition TrAi Ri Ci ◦Mi = Ri ◦ TrRi−1 on Mi implies the
non-signalling condition TrAi Ri Ci Di ◦ M̄i = Ri ◦ TrRi−1 on M̄i . We can therefore
apply the chain rule in Theorem 3.6 to find

H𝛼(An Dn|En)𝜌̄n ≥
n∑

i=1

min
𝜔i−1∈S(Ri−1 Ei−1 Ẽi−1)

H𝛽(Ai Di |Ei Ẽi−1)M̄i (𝜔i−1)
,

where we introduced the shorthand 𝛽:= 1
2−𝛼 and the purifying system Ẽi−1 ≡

Ri−1 Ei−1. Noting that for 𝛼 ∈ (1, 3/2) we have 𝛽 ∈ (1, 2), we can now use [8,
Corollary IV.2] to obtain

H𝛽(Ai Di |Ei Ẽi−1)M̄i (𝜔i−1)

≥ H(Ai Di |Ei Ẽi−1)M̄i (𝜔i−1)
− (𝛽 − 1)

ln(2)

2
V 2 − (𝛽 − 1)2 K (𝛽) ,

where V 2 and K (𝛽) are quantities from [8, Proposition V.3] that satisfy

K (𝛽) ≤ 1

6(2 − 𝛽)3 ln 2

2(𝛽−1)(2 log dA+Max( f )−Min�( f )) ln3
(

22 log dA+Max( f )−Min�( f ) + e2
)

,

V 2 =
(

log(2d2
A + 1) +

√
2 + Var( f )

)2
,

where dA = maxi dim(Ai ). Note that the above expressions derived in [8, Propo-
sition V.3] also hold in our case due to the first part of Eq. (4.2). Furthermore, as in
the proof of [8, Proposition V.3], we have

H(Ai Di |Ei Ẽi−1)M̄i (𝜔i−1)
≥ Max( f ) .

Therefore, the second term on the r.h.s. of Eq. (4.7) is bounded by

H�
𝛼(AnCn Dn|En)𝜌̄n|�

≥ n Max( f ) − n (𝛽 − 1)
ln(2)

2
V 2 − n (𝛽 − 1)2 K (𝛽) − 𝛼

𝛼 − 1
log(1/Pr𝜌n [�]) .

(4.10)
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Combining our results for each of the three terms (i.e. Eqs. (4.8), (4.9) and (4.10)) and
recalling h = minxn∈� f (freq(xn)), Eq. (4.7) becomes

H�
𝛼(AnCn |En)𝜌n|� ≥ n h − n (𝛽 − 1)

ln(2)

2
V 2 − 𝛼

𝛼 − 1
log(1/Pr𝜌n [�]) − n (𝛽 − 1)2 K (𝛽) .

Inserting this into Eqs. (4.5) and (4.6), and defining K ′(𝛼) = K (𝛽) = K ( 1
2−𝛼 )we obtain

H ε
min(An |En)Mn◦···◦M1(𝜌R0 E0 )|� ≥ n h − n (𝛽 − 1)

ln(2)

2
V 2 − g(ε) + 𝛼 log(1/Pr𝜌n [�])

𝛼 − 1

−n (𝛽 − 1)2 K (𝛽) (4.11)

as desired. ��
Corollary 4.6. For the setting given in Theorem 4.3 we have

H ε
min(An|En)Mn◦···◦M1(𝜌R0 E0 )|� ≥ nh − c1

√
n − c0 ,

where the quantities c1 and c0 are given by

c1 =
√

2 ln(2)V 2

𝜂

(
g(ε) + (2 − 𝜂) log(1/Pr𝜌n [�])

)
,

c0 = (2 − 𝜂)𝜂2 log(1/Pr𝜌n [�]) + 𝜂2g(ε)

3(ln 2)2V 2(2𝜂 − 1)3

2
1−𝜂
𝜂 (2 log dA+Max( f )−Min�( f )) ln3

(
22 log dA+Max( f )−Min�( f ) + e2

)

with

𝜂 = 2 ln(2)

1 + 2 ln(2)
, g(ε) = log(1 −

√
1 − ε2) , V = log(2d2

A + 1) +
√

2 + Var( f ) .

Proof. We first note that for any � with non-zero probability, h ≤ log dA. Therefore,

if n ≤
(

c1
2 log dA

)2
, it is easy to check that nh − c1

√
n ≤ −n log dA, so the statement of

Corollary 4.6 becomes trivial. We may therefore assume that n ≥ ( c1
2 log dA

)2.

As in the proof of Theorem 4.3, we define 𝛽 = 1
2−𝛼 . The first part of the proof

works for any 𝛼 ∈ (1, 2 − 𝜂) for 𝜂 = 2 ln(2)
1+2 ln(2)

≈ 0.58; later we will make a specific

choice of 𝛼 in this interval. Then, 𝛽 − 1 = 1
2−𝛼 − 1 ≤ 𝛼−1

𝜂 and 𝛽 ∈ (1, 1/𝜂). There-
fore, using K (𝛽) as defined in the proof of Theorem 4.3 and noting that in the interval
𝛽 ∈ (1, 1/𝜂) ⊂ (1, 2) this quantity is monotonically increasing in 𝛽, we have

K (𝛽) ≤ K :=
𝜂3

6(2𝜂 − 1)3 ln 2
2

1−𝜂
𝜂 (2 log dA+Max( f )−Min�( f )) ln3

(
22 log dA+Max( f )−Min�( f ) + e2

)
,
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Hence, we can simplify the statement of Theorem 4.3 to

H ε
min(An|En)Mn◦···◦M1(𝜌R0 E0 )|�

≥ n h − n (𝛼 − 1)
ln(2)

2𝜂
V 2 − g(ε) + (2 − 𝜂) · log(1/Pr𝜌n [�])

𝛼 − 1
− n (𝛼 − 1)2 K

𝜂2 .

(4.12)

We now choose 𝛼 > 1 as a function of n and ε so that the terms proportional to 𝛼 − 1
and 1

𝛼−1 match:

𝛼 = 1 +

√
2𝜂

n ln(2)V 2

(
g(ε) + (2 − 𝜂) log(1/Pr𝜌n [�])

)
.

Inserting this choice of 𝛼 into Eq. (4.12) and combining terms yields the constants in
Corollary 4.6. The final step is to show that this choice of 𝛼 indeed satisfies 𝛼 ≤ 2 − 𝜂
for n ≥ ( c1

2 log dA
)2. For this, we note that for n ≥ ( c1

2 log dA
)2, we have

𝛼 = 1 +
𝜂

ln(2)V 2

c1√
n

≤ 1 +
2𝜂 log dA

ln(2)V 2 .

We can now use that V 2 ≥ (
log(2d2

A)
)2 ≥ 4 log dA since dA ≥ 2, so

𝛼 ≤ 1 +
2𝜂 log dA

ln(2)V 2 ≤ 1 +
𝜂

2 ln(2)
= 2 − 𝜂 ,

where the last inequality holds because 𝜂 = 2 ln(2)
1+2 ln(2)

. ��
In many applications, e.g. randomness expansion or QKD, a round can either be a

“data generation round” (e.g. to generate bits of randomness or key) or a “test round”
(e.g. to test whether a device used in the protocol behaves as intended). More formally,
in this case the maps Mi ∈ CPTP(Ri−1 Ei−1, Ci Ai Ri Ei ) can be written as

Mi = 𝛾Mtest
i,Ri−1 Ei−1→Ci Ai Ri Ei

+ (1 − 𝛾)Mdata
i,Ri−1 Ei−1→Ai Ri Ei

⊗ |⊥〉〈⊥|Ci , (4.13)

where the output ofMtest
i on system Ci is from some alphabet C′ that does not include

⊥, so the alphabet of system Ci is C = C′ ∪ {⊥}. The parameter 𝛾 is called the testing
probability, and for efficient protocols we usually want 𝛾 to be as small as possible.

For maps of the form in Eq. (4.13), there is a general way of constructing a min-
tradeoff function for the map Mi based only on the statistics generated by the map
Mtest

i . This was shown in [8] and we reproduce their result (adapted to our notation)
here for the reader’s convenience.

Lemma 4.7 ([8, Lemma V.5]). LetMi ∈ CPTP(Ri−1 Ei−1, Ci Ai Ri Ei ) be channels sat-
isfying the same conditions as in Theorem 4.3 that can furthermore be decomposed as in
Eq. (4.13). Suppose that an affine function g : P(C′) → R satisfies for any q ′ ∈ P(C′)
and any i = 1, . . . , n

g(q ′) ≤ min
𝜔∈S(Ri−1 Ei−i Ẽi−1)

{
H(Ai |Ei Ẽi−1)Mi (𝜔) :

(
Mtest

i (𝜔)
)

Ci
= q ′} (4.14)



  261 Page 30 of 43 T. Metger, O. Fawzi, D. Sutter, R. Renner

where Ẽi−1 ≡ Ri−1 Ei−1 is a purifying system. Then, the affine function f : P(C) → R
defined by

f (𝛿x ) = Max(g) +
1

𝛾
(g(𝛿x ) −Max(g)) ∀x ∈ C′

f (𝛿⊥) = Max(g)

is a min-tradeoff function for {Mi }. Moreover,

Max( f ) = Max(g)

Min( f ) =
(

1 − 1

𝛾

)
Max(g) +

1

𝛾
Min(g)

Min�( f ) ≥ Min(g)

Var( f ) ≤ 1

𝛾

(
Max(g) −Min(g)

)2
.

5. Sample Applications

To demonstrate the utility of our generalised EAT, we provide two sample applications.
Firstly, in Sect. 5.1 we prove security of blind randomness expansion against general
attacks. The notion of blind randomness was defined in [15] and has potential applica-
tions in mistrustful cryptography (see [15,16] for a detailed motivation). Until now, no
security proof against general attacks was known. In particular, the original EAT is not
applicable because its model of side information is too restrictive. With our generalised
EAT, we can show that security against general attacks follows straightforwardly from
a single-round security statement.

Secondly, in Sect. 5.2 we give a simplified security proof for the E91 QKD protocol
[45], which was also treated with the original EAT [1]. This example is meant to help
those familiar with the original EAT understand the difference between that result and
our generalised EAT. In particular, this application highlights the utility of our more
general model of side information: in our proof, the non-signalling condition is satisfied
trivially and the advantage over the original EAT stems purely from being able to up-
date the side information register Ei . We point out that while here we focus on the E91
protocol to allow an easy comparison with the original EAT, our generalised EAT can be
used for a large class of QKD protocols for which the original EAT was not applicable
at all. A comprehensive treatment of this is given in [7].

5.1. Blind randomness expansion. We start by recalling the idea of standard (non-blind)
device-independent randomness expansion [17–21]. Alice would like to generate a uni-
formly random bit string using devices D1 and D2 prepared by an adversary Eve. To this
end, in her local lab (which Eve cannot access) she isolates the devices from one another
and plays multiple round of a non-local game with them, e.g. the CHSH game. On a
subset of the rounds of the game, she checks whether the CHSH condition is satisfied.
If this is the case on a sufficiently high proportion of rounds, she can conclude that the
devices’ outputs on the remaining rounds must contain a certain amount of entropy, con-
ditioned on the input to the devices and any quantum side information that Eve might
have kept from preparing the devices. Using a quantum-proof randomness extractor,
Alice can then produce a uniformly random string.
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Blind randomness expansion [15,16] is a significant strengthening of the above idea.
Here, Alice only receives one device D1, which she again places in her local lab isolated
from the outside world. Now, Alice plays a non-local game with her device D1 and the
adversary Eve: she samples questions for a non-local game as before, inputs one of the
questions to D1, and sends the other question to Eve. D1 and Eve both provide an output.
Alice then proceeds as in standard randomness expansion, checking whether the win-
ning condition of the non-local game is satisfied on a subset of rounds and concluding
that the output of her device D1 must contain a certain amount of entropy conditioned
on the adversary’s side information.

For the purpose of applying the EAT, the crucial difference between the two no-
tions of randomness expansion is the following: in standard randomness expansion, the
adversary’s quantum side information is not acted upon during the protocol, and ad-
ditional side information (the inputs to the devices, which we also condition on) are
generated independently in a round-by-round manner. This allows a relatively straight-
forward application of the standard EAT [4]. In contrast, in blind randomness expansion,
the adversary’s quantum side information gets updated in every round of the protocol
and is not generated independently in a round-by-round fashion. This does not fit in the
framework of the standard EAT, which requires the side information to be generated
round-by-round subject to a Markov condition. As a result, [15,16] were not able to
prove a general multi-round blind randomness expansion result.

In the rest of this section, we will show that our generalised EAT is capable of treating
multi-round blind randomness expansion, using a protocol similar to [14, Protocol 3.1].
A formal description of the protocol is given in Protocol 1.

Protocol 1. General blind randomness expansion protocol

Protocol arguments
G : two-player non-local game, specified by a question set

X ×Y , a probability distribution q on X ×Y , an answer
setA×B, and a winning condition𝜔 : X×Y×A×B →
{0, 1}

x∗ ∈ X , y∗ ∈ Y : inputs used for generation rounds
D : untrusted device capable of playing one side of G repeat-

edly
n ∈ N : number of rounds

𝛾 ∈ (0, 1] : expected fraction of test rounds
𝜔exp : expected winning probability in G

𝛿 : error tolerance
Protocol steps

For rounds i = 1, . . . , n, Alice performs the following steps:

(1) Alice chooses Ti ∈ {0, 1} with Pr[Ti = 1] = 𝛾. If Ti = 1, Alice chooses Xi , Yi ∈
X × Y according to the question distribution q. If Ti = 0, Alice chooses Xi =
x∗, Yi = y∗.

(2) Alice inputs Xi into her device D and sends Yi to Eve. She receives answers Ai
and Bi , respectively.

(3) If Ti = 0, Alice sets Ci = ⊥. If Ti = 1, Alice sets Ci = 𝜔(Xi , Yi , Ai , Bi ).
At the end of the protocol, Alice aborts if |{i s.t. Ci = 0}| > (1 − 𝜔exp + 𝛿) · 𝛾n.
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The following proposition shows a lower bound on on the amount of randomness
Alice can extract from this protocol, as specified by the min-entropy. For this, we assume
a lower-bound on the single-round von Neumann entropy. Such a single-round bound can
be found numerically using a generic method as explained after the proof of Lemma 5.1.

Proposition 5.1. Suppose Alice executes Protocol 1 with a device D that cannot commu-
nicate with Eve. We denote by Ri and E ′

i the (arbitrary) quantum systems of the device D
and the adversary Eve after the i-th round, respectively. Eve’s full side-information after
the i-th round is Ei :=T i Xi Y i Bi E ′

i . A single round of the protocol can be described by
a quantum channel Ni ∈ CPTP(Ri−1 Ei−1, Ci Ai Ri Ei ). We also define N test

i to be the
same as Ni , except that N test

i always picks Ti = 1. Let 𝜌AnCn Rn En be the state at the
end of the protocol and � the event that Alice does not abort.

Let g : P({0, 1}) → R be an affine function satisfying the conditions

g(p) ≤ inf
𝜔∈S(Ri−1 Ei−1 Ẽi−1):N test

i (𝜔)Ci =p
H(Ai |Ei Ẽi−1)Ni (𝜔) , Max(g) = g(𝛿1) ,

(5.1)

where Ẽi−1 ≡ Ri−1 Ei−1 is a purifying system. Then, for any εa, εs ∈ (0, 1), either
Pr[�] ≤ εa or

H εs
min(An|En)𝜌|� ≥ nh − c1

√
n − c0

for c1, c0 ≥ 0 independent of n and

h = min
p′∈P({0,1}):p′(0)≤1−𝜔exp+𝛿

g(p′) ,

where 𝜔exp is the expected winning probability and 𝛿 the error tolerance from Protocol
1. If we treat εs, εa, dim(Ai ), 𝛿,Max(g), and Min(g) as constants, then c1 = O(1/

√
𝛾)

and c0 = O(1).
Furthermore, if there exists a quantum strategy that wins the game G with prob-

ability 𝜔exp, there is an honest behaviour of D and Eve for which Pr[�] ≥ 1 −
exp(− 𝛿2

1−𝜔exp+𝛿 𝛾n).

Remark 5.2. The condition on g(p) in Eq. (5.1) is formulated in terms of the entropy

H(Ai |Ei Ẽi−1)Ni (𝜔) = H(Ai |T i Xi Y i Bi E ′
i Ẽi−1)Ni (𝜔)

with Ẽi−1 ≡ Ri−1 Ei−1. However, the map Ni corresponding to the i-th round does not
act on the systems T i−1 Xi−1Y i−1 Bi−1. Therefore, we can view these systems as part of
the purifying system. Since the infimum in Eq. (5.1) already includes a purifying Ẽi−1,
we can drop these additional systems and without loss of generality choose Ẽi−1 to be
isomorphic to those input systems on whichNi acts non-trivially, i.e. Ẽi−1 ≡ Ri−1 E ′

i−1.
This means that we can replace the upper bound on g in Eq. (5.1) by the equivalent con-
dition

g(p) ≤ inf
𝜔∈S(Ri−1 Ei−1 Ẽi−1):N test

i (𝜔)Ci =p
H(Ai |Bi Xi Yi Ti E ′

i Ẽi−1)Ni (𝜔) (5.2)

with Ẽi−1 ≡ Ri−1 E ′
i−1. For the proof of Lemma 5.1 we will use Eq. (5.1) since it more

closely matches the notation of Theorem 4.3, but intuitively, Eq. (5.2) is more natural
as it only involves quantities related to the i-th round of the protocol.
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Proof of Lemma 5.1. To show the min-entropy lower bound, we will make use of Corol-
lary 4.6. For this, we first check that the maps Ni satisfy the required conditions.
Since Ci is a deterministic function of the (classical) variables Xi , Yi , Ai , and Bi , it
is clear that Eq. (4.2) is satisfied. For the non-signalling condition, we define the map
Ri ∈ CPTP(Ei−1, Ei ) as follows: Ri samples Ti , Xi and Yi as Alice does in Step 5.1
of Protocol 1. R then performs Eve’s actions in the protocol (which only act on Yi and
E ′

i−1, which is part of Ei−1). It is clear that the distribution on Xi and Yi produced by
Ri is the same as for Ni . By the assumption that D and Eve cannot communicate, the
marginal of the output of Ni on Eve’s side must be independent of the device’s system
Ri−1. Hence, TrAi Ri Ci ◦Ni = Ri ◦ TrRi−1 .

To construct a min-tradeoff function, we note that we can split Ni = 𝛾N test
i + (1 −

𝛾)N data
i , with N test

i always picking Ti = 1 and N data
i always picking Ti = 0. Then,

we get from Lemma 4.7 and the condition Max(g) = g(𝛿1) that the affine function f
defined by

f (𝛿0) = g(𝛿1) +
1

𝛾
(g(𝛿0) − g(𝛿1)) , f (𝛿1) = f (𝛿⊥) = g(𝛿1)

is an affine min-tradeoff function for {Ni }.
Viewing the event � as a subset of the range {0, 1}n of the random variable Cn

and comparing with the abort condition in Protocol 1, we see that cn ∈ � implies
freq(cn)(0) ≤ (1 − 𝜔exp + 𝛿)𝛾. Therefore, for cn ∈ � and denoting p = freq(cn),

f (freq(cn)) = p(0) f (𝛿0) + (1 − p(0)) f (𝛿1) = p(0)

𝛾
g(𝛿0) +

(
1 − p(0)

𝛾

)
g(𝛿1) ≥ h ,

where the last inequality holds because g is affine and the distribution
p′(0) = p(0)/𝛾, p′(1) = 1 − p(0)/𝛾 satisfies p′(0) ≤ 1 − 𝜔exp + 𝛿. The propo-
sition now follows directly from Corollary 4.6 and the scaling of c1 and c0 is easily
obtained from the expressions in Corollary 4.6.

To show that an honest strategy succeeds in the protocol with high probability, we
define a random variable Fi by Fi = 1 if Ci = 0, and Fi = 0 otherwise. If D and Eve
execute the quantum strategy that wins the game G with probability 𝜔exp in each round,
then E[Fi ] = (1 − 𝜔exp)𝛾. Using the abort condition in the protocol, we then find

Pr[abort] = Pr

[
n∑

i=1

Fi > (1 − 𝜔exp + 𝛿) · 𝛾n

]

= Pr

[
n∑

i=1

Fi >

(
1 +

𝛿

1 − 𝜔exp

)
· E

[ n∑

i=1

Fi

]]

≤ e
− 𝛿2

1−𝜔exp+𝛿 𝛾n
,

where in the last line we used a Chernoff bound. ��
To make use of Lemma 5.1, we need to construct a function g(p) that satisfies the

condition in Eq. (5.1). For this, we will use the equivalent condition Eq. (5.2). A general
way of obtaining such a bound automatically is using the recent numerical method [22].14
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Fig. 1. Circuit diagram of N : Ri−1 E ′
i−1 → Ai Ri Ti Xi Yi Bi E ′

i . For every round of the protocol, a circuit of
this form is applied, whereA andB are the (arbitrary) channels applied by Alice’s device and Eve, respectively.
As in the protocol, Ti is a bit equal to 1 with probability 𝛾, and Xi and Yi are generated according to q whenever
Ti = 1, and are fixed to x∗, y∗ otherwise. We did not include the register Ci in the figure as it is a deterministic
function of Ti Xi Yi Ai Bi

Specifically, using the assumption that Alice’s lab is isolated, the maps Ni describing a
single round of the protocol take the form described in Fig. 1.

The method of [22] allows one to obtain lower bounds on the infimum of

H(Ai |Bi Xi Yi Ti E ′
i Ẽi−1)Ni (𝜔Ri−1 E ′

i−1 Ẽi−1
)

over all input states 𝜔Ri−1 E ′
i−1 Ẽi−1

and for any map Ni of the form depicted in Fig. 1.

Importantly, for any Ni we may also restrict the infimum to states 𝜔 that are consistent
with the observed statistics, i.e.,N test(𝜔)Ci = p for some distribution p on Ci , using the
notation of Lemma 5.1. Using this numerical method for the CHSH game, we obtain the
values shown in Fig. 2. From this, one can also construct an explicit affine min-tradeoff
function g(p) in an automatic way using the same method as in [46]. As our focus is on
illustrating the use of the generalised EAT, not the single-round bound, we do not carry
out these steps in detail here.

Combining this single-round bound and Lemma 5.1, one obtains that for Protocol
1 instantiated with the CHSH game, 𝜔exp sufficiently close to the maximal winning

probability of 1
2 + 1

2
√

2
, and 𝛾 = �(

log n
n ), one can extract �(n) bits of uniform random-

ness from A1 . . . An while using only polylog(n) bits of randomness to run the protocol.
In other words, Protocol 1 achieves exponential blind randomness expansion with the
CHSH game.

14 The main result of [15] (Theorem 14) does not appear to be sufficient for this. The reason is that the state-
ment made in [15] essentially concerns the randomness produced on average over the question distribution
q of the game G. However, choosing a question at random consumes randomness, so to achieve exponential
randomness expansion, in Protocol 1 we fix the inputs x∗, y∗ used for generation rounds. To the best of our
knowledge, the results of [15] do not give a bound on the randomness produced in the non-local game for any
fixed inputs x∗, y∗. If one could prove an analogous statement to [15, Theorem 14] that also certifies random-
ness on fixed inputs for a large class of games, our Lemma 5.1 would then imply exponential blind randomness
expansion for any such game. Alternatively, one can also assume that public (non-blind) randomness is a free
resource and use this to choose the inputs for the non-local game. Then, no special inputs x∗, y∗ are needed in
Protocol 1 to “save randomness” and the result of [15] combined with our generalised EAT implies that such
a conversion from public to blind randomness is possible for any complete-support game.
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5.2. E91 quantum key distribution protocol. The E91 protocol is one of the simplest
entanglement-based QKD protocols [45,47]. This protocol was already treated using
the original EAT in [1]. Here, we do not give a formal security definition and proof,
only an informal comparison of how the original EAT and our generalised EAT can be
applied to this problem; the remainder of the security proof is then exactly as in [1].
For a detailed treatment of the application of our generalised EAT to QKD, see [7]. To
facilitate the comparison with [1], in this section we label systems the same as in [1]
even though this differs from the system labels used earlier in this paper. The protocol
we are considering is described explicitly in Protocol 2. It is the same as in [1] except
for minor modifications to simplify the notation.

Protocol 2. E91 quantum key distribution protocol

Protocol arguments
n ∈ N : number of uses of qubit channel

𝜇 ∈ (0, 1) : probability for measurements in diagonal basis
e ∈ (0, 1

2 ) : maximum tolerated phase error ratio
𝜗EC ∈ [0, 1] : relative communication cost of error correction scheme EC

r ∈ [0, 1] : key rate
Protocol steps

(1) Distribution: For i ∈ {1, . . . , n}, Alice prepares a pair (Qi , Q̄i ) of entangled
qubits and sends Q̄i to Bob. Alice generates a random bit Bi such that PBi (1) =
𝜇 and, depending on whether Bi = 0 or Bi = 1, measures Qi in either the
computational or the diagonal basis, storing the outcome as Ai . In the same way,
Bob measures Q̄i in a basis determined by a random bit B̄i , storing the outcome
as Āi .

(2) Sifting and information reconciliation: Alice and Bob announce Bi and B̄i . On
indices i where Bi �= B̄i , they set Ai = Āi =⊥. They invoke a reliable15 error
correction scheme EC, allowing Bob to compute a guess Ân for Alice’s string
An . If EC does not output a guess then the protocol is aborted.

(3) Parameter estimation: Bob counts the number of indices i ∈ S for which B̄i = 1
and Āi �= Âi . If this number is larger than e𝜇2n then the protocol is aborted.

(4) Privacy amplification: See [1, p. 894] for details.

We consider the systems Bi , B̄i , Ai , Āi , Qi , Q̄i as in Protocol 2 and additionally
define the system Xi storing the statistical information used in the parameter estimation
step:

Xi =
{

Ai ⊕ Āi if Bi = B̄i = 1,

⊥ otherwise.

Denoting by E the side information gathered by Eve during the distribution step, we can
follow the same steps as for [1, Equation (57)] to show that the security of Protocol 2
follows from a lower bound on

H ε
min(An|Bn B̄n E)𝜌|� . (5.3)

Here, 𝜌|� is the state at the end of the protocol conditioned on acceptance.
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Fig. 2. Lower bound on the conditional entropy H(Ai |Bi Xi Yi Ti E ′
i )𝜌|Ti =0 for any state generated as in Fig. 1

and such that on test rounds the obtained winning probability for the CHSH game is 𝜔. This lower bound
was obtained by using the method from [22]. For each input y ∈ Y , the channel By is modelled as By(𝜔) =
∑

b �
(b)
y 𝜔�

(b)
y , where {�(b)

y }b∈B are orthogonal projectors summing to the identity, and similarly for the
map A. It is simple to see that this is without loss of generality

We first sketch how the original EAT (whose setup was described in Sect. 1) is applied
to this problem in [1]. One cannot bound H ε

min(An|Bn B̄n E)𝜌|� directly using the EAT
because a condition similar to Eq. (4.2) has to be satisfied. Therefore, one modifies the
systems Āi from Protocol 2 by setting Āi = ⊥ if Bi = B̄i = 0 and then applies the EAT
to find a lower bound on

H ε
min(An Ān|Bn B̄n E)𝜌|� . (5.4)

For this, a round of Protocol 2 is viewed as a mapMi : Qn
i Q̄n

i → Qn
i+1 Q̄n

i+1 Ai Āi Bi B̄i Xi ,
which chooses Bi B̄i as in Protocol 2, applies Alice and Bob’s (trusted) measurements on
systems Qi Q̄i to generate Ai Āi , and generates Xi as described before. To apply the EAT,
Ri−1:=Qn

i Q̄n
i takes the role of the “hidden sytem”, and Ai Āi and Bi B̄i are the output and

side information of the i-th round, respectively. It is easy to see that with this choice of sys-
tems, the Markov condition of the EAT is satisfied, so, using a min-tradeoff function de-
rived from an entropic uncertainty relation [48], one can find a lower bound on Eq. (5.4).

However, adding the system Āi in this manner has the following disadvantage:
to relate the lower bound on H ε

min(An Ān|Bn B̄n E)𝜌|� to the desired lower bound on
H ε

min(An|Bn B̄n E)𝜌|� one needs to use a chain rule for min-entropies, incurring a penalty
term of the form H ε

max( Ān|An Bn B̄n E)𝜌|� . This penalty term is relatively easy to bound
for the case of the E91 protocol, but can cause problems in general.15

We now turn our attention to proving Eq. (5.3) using our generalised EAT. For this,
we first observe that

H ε
min(An|Bn B̄n E)𝜌|� ≥ H ε

min(An|Bn B̄n Xn E)𝜌|� ,

so it suffices to find a lower bound on the r.h.s. This step is similar to adding the Āi
systems in Eq. (5.4) in that its purpose is to satisfy Eq. (4.2). However, it has the ad-
vantage that here, Xn can be added to the conditioning system and therefore lowers the

15 An error correction scheme is reliable if, except with negligible probability, either Bob’s guess of Alice’s
string is correct or the protocol aborts.
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entropy, not raises it like going from Eqs. (5.3) to (5.4). The same step is not possible
in the original EAT due to the restrictive Markov condition.

Using the same system names as before, we define Ei :=Qn
i+1 Q̄n

i+1 Bi B̄i Xi E .16 Then,
analogously to the original EAT, we can describe a single round of Protocol 2 by a map
Mi : Ei−1 → Ai Ei Xi . (Compared to the map Mi we described above for the original
EAT, we have traced out Āi , added a copy of Xi , and added identity maps on the other
additional systems in Ei−1.) Denoting by 𝜌0

Qn Q̄n E
the joint state of Alice and Bob’s

systems Qn Q̄n before measurement and the information E that Eve gathered during the
distribution step, the state at the end of the protocol is 𝜌 = Mn ◦ · · · ◦ M1(𝜌

0). To
apply Corollary 4.6 to find a lower bound on

H ε
min(An|En)Mn◦···◦M1(𝜌0)|� ,

we first observe that the condition in Eq. (4.2) is satisfied because the system Xn is part of
En , and the non-signalling condition is trivially satisfied because there is no Ri -system.
A min-tradeoff function can be constructed in exactly the same way as in [1, Claim 5.2]
by noting that all systems in Ei on which Mi does not act can be viewed as part of the
purifying system.

This comparison highlights the advantage of the more general model of side informa-
tion in our generalised EAT: for the original EAT, one has to first bound
H ε

min(An Ān|Bn B̄n E) (rather than H ε
min(An|Bn B̄n E)) in order to be able to satisfy the

Markov condition, and then perform a separate step to remove the Ān system. In our case,
the non-signalling condition, the analogue of the Markov condition, is trivially satisfied
because we need no Ri -system. This is because we can add the quantum systems Qn Q̄n

to the side information register E0 at the start and then, since we allow side information
to be updated and Alice and Bob act on Qi Q̄i using trusted measurement devices, we
can remove the systems Qi Q̄i one by one during the rounds of the protocol.
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A. Dual Statement for Smooth Max-Entropy

In the main text we have focused on deriving a lower bound on the smooth min-entropy.
Here, we show that this also implies an upper bound on the smooth max-entropy by
applying a simple duality relation between min- and max-entropy. A similar upper bound
was also derived in [1]. However, that bound is subject to a Markov condition and cannot
be derived by a simple duality argument since the “dual version” of the Markov condition
is unwieldy. We show that the bound from [1] follows as a special case of our more
general bound even without any Markov conditions or other non-signalling constraints.
For simplicity, we restrict ourselves to an asymptotic statement without “testing”, i.e. we
derive an H ε

max-version of Theorem 4.1. By applying the same duality relation to the more
involved statement in Theorem 4.3, one can also obtain an H ε

max-bound with explicit
constants and testing.

Recall that for 𝜌AB ∈ S(AB) and ε ∈ [0, 1], the ε-smoothed max-entropy of A
conditioned on B is defined as

H ε
max(A|B)𝜌 = log inf

𝜌̃AB∈Bε(𝜌AB )
sup

𝜎B∈S(B)

∥∥∥∥𝜌̃
1
2
AB𝜎

1
2
B

∥∥∥∥
2

1
,

where ‖·‖1 denotes the trace norm and Bε(𝜌AB) is the ε-ball around 𝜌AB in terms of the
purified distance [11]. The smooth min- and max-entropy satisfy the following duality
relation [11, Proposition 6.2]: for a pure quantum state 𝜓ABC ,

H ε
min(A|B)𝜓 = −H ε

max(A|C)𝜓 .

For the setting of Theorem 4.1, let Vi : Ri−1 Ei−1 → Ai Ri Ei Fi be the Stinespring
dilation of the map Mi , and let |𝜌0〉R0 E0 F0 be a purification of the input state 𝜌0

R0 E0
.

Then, Vn · · · V1|𝜌0〉 is a purification of Mn ◦ · · · ◦ M1(𝜌
0), so by the duality of the

smooth min- and max-entropy,

H ε
min(An|En)Mn◦···◦M1(𝜌0) = −H ε

max(An|Fn Rn)Vn ···V1|𝜌0〉 .

http://creativecommons.org/licenses/by/4.0/
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Furthermore, by concavity of the conditional entropy the infimum in Theorem 4.1 can
be restricted to pure states |𝜔〉Ri−1 Ei−1 Ẽi−1

, so Vi |𝜔〉 is a purification of Mi (𝜔). Then,
by the duality relation for von Neumann entropies,

H(Ai |Ei Ẽi−1)Mi (𝜔) = −H(Ai |Ri Fi )Vi |𝜔〉 .

Therefore, we obtain the following dual statement to Theorem 4.1:

H ε
max(An|Fn Rn)Vn ···V1|𝜌0〉 ≤

n∑

i=1

max|𝜔〉 H(Ai |Ri Fi )Vi |𝜔〉 + O(
√

n) , (A.1)

where the maximisation is over pure states on Ri−1 Ei−1 Ẽi−1. This holds for any se-
quence of isometries Vi for which the maps MVi : Ri−1 Ei−1 → Ai Ri Ei given by

MVi (𝜌) = TrFi

[
Vi 𝜌V †

i

]
satisfy the non-signalling condition of Theorem 4.1: for each

i , there must exist a map Ri ∈ CPTP(Ei−1, Ei ) such that TrAi Ri ◦MVi = Ri ◦ TrRi−1 .
To gain some intuition for the above statement, consider a setting where an infor-

mation source generates systems A1, . . . , An and F1, . . . , Fn by applying isometries
Vi : Si−1 → Ai Fi Si to some pure intial state |𝜌0〉S0 . We might be interested in com-
pressing the information in An in such a way that given Fn , one can reconstruct An

except with some small failure probability ε. Then, the amount of storage needed for
the compressed information is given by H ε

max(An|Fn). To apply Eq. (A.1), for i < n we
split the systems Si into Ri Ei in such a way that the channel MVi defined above satisfies
the non-signalling condition, and set En = Sn (so that Rn is trivial). Then Eq. (A.1)
gives an upper bound on H ε

max(An|Fn). Note that this bound depends on how we split
the systems Si = Ri Ei : the non-signalling condition can always be trivially satisfied
by choosing Ri to be trivial, but Eq. (A.1) tells us that if we can describe the source in
such a way that Ei is relatively small and Ri is relatively large while still satisfying the
non-signalling condition, we obtain a tighter bound on the amount of required storage.
From Eq. (A.1) we can also recover the max-entropy version of the original EAT, but
without requiring a Markov condition. To facilitate the comparison with [1], we first
re-state their theorem with their choice of system labels, but add a bar to every system
label to avoid confusion with our notation from before. The max-entropy statement in
[1] considers a sequence of channels M̄i : R̄i−1 → Āi B̄i R̄i and asserts that under a
Markov condition, for any initial state 𝜌 R̄0 Ē with a purifying system Ē ≡ R̄0:

H ε
max( Ān|B̄n Ē)M̄n◦···◦M̄1(𝜌R̄0 Ē ) ≤

n∑

i=1

max
𝜔∈S(R̄i−1 R̄)

H( Āi |B̄i R̄)M̄i (𝜔) + O(
√

n) ,

(A.2)

where R̄ ≡ R̄i−1. We want to recover this statement from Eq. (A.1) without any Markov
condition. For this, we consider the Stinepring dilations V̄i : R̄i−1 → R̄i Āi B̄i F̄i of M̄i .
We make the following choice of systems:

Ri = B̄i Ē , Ai = Āi , Ei = R̄i F̄i ,

and choose Fi to be trivial. By tensoring with the identity, we can then extend V̄i to an
isometry Vi : Ri−1 Ei−1 → Ai Ri Ei . Then, the maps MVi satisfy the non-signalling
condition since Vi acts as identity on Ri−1. Therefore, remembering that Rn = B̄n Ē
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and Fn is trivial, we see that Eq. (A.1) implies Eq. (A.2). Note that our derivation did
not require any conditions on the channels M̄i we started with, i.e. we have shown Eq.
(A.2) holds for any sequence of channels M̄i , not just channels satisfying a Markov or
non-signalling condition.

B. Uhlmann Property for the Rényi Divergence

We establish that for the max-divergence (where 𝛼 → ∞), Uhlmann’s theorem holds.

Proposition B.1. Let 𝜎A ∈ S(A) and 𝜌AR ∈ S(AR). Then we have

Dmax(𝜌A‖𝜎A) = inf
𝜎̂AR : 𝜎̂A=𝜎A

Dmax(𝜌AR‖𝜎̂AR) . (B.1)

In addition, if 𝜌AR, 𝜌A ⊗ idR and 𝜎A ⊗ idR all commute, then for any 𝛼 ∈ [ 1
2 ,∞), we

have

D𝛼(𝜌A‖𝜎A) = inf
𝜎̂AR : 𝜎̂A=𝜎A

D𝛼(𝜌AR‖𝜎̂AR) . (B.2)

Proof. We start with Eq. (B.1). The inequality ≤ is a direct consequence of the data-
processing inequality for Dmax. For the inequality ≥, we use semidefinite programming
duality, see e.g., [50]. Observe that we can write 2Dmax(𝜌A‖𝜎A) as the following semidef-
inite program

min
𝜏A∈Pos(A),𝜆∈R{ Tr[𝜏A] subject to 𝜌A ≤ 𝜏A and 𝜏A = 𝜆𝜎A} .

Using semidefinite programming duality, this is also equal to

max
X A∈Pos(A),YA∈Herm(A)

{ Tr
[
X A𝜌A

]
subject to idA + YA = X A and Tr[YA𝜎A] = 0} .

(B.3)

We can also write a semidefinite program for inf 𝜎̂AR : 𝜎̂A=𝜎A 2Dmax(𝜌AR‖𝜎̂AR). We intro-
duce the variable 𝜃AR = 𝜆𝜎̂AR and get

min
𝜃∈Pos(A⊗R),𝜆∈R{ Tr[𝜃AR] subject to 𝜌AR ≤ 𝜃AR and 𝜃A = 𝜆𝜎A} .

Again, by semidefinite programming duality, we get that it is equal to

max
X AR∈Pos(A⊗R),YA∈Herm(A)

{ Tr
[
X AR𝜌AR

]
subject to (idA + YA) ⊗ idR

= X AR and Tr[YA𝜎A] = 0} . (B.4)

Eliminating the variable X AR , we can write this last program as

max
YA∈Herm(A)

{ Tr
[
(idA + YA)𝜌A

]
subject to idA + YA ∈ Pos(A) and Tr[YA𝜎A] = 0} ,

which is the same as Eq. (B.3). This proves Eq. (B.1). Equation (B.2) follows immediately
by choosing 𝜎̂AR = 𝜎A𝜌

−1
A 𝜌AR and using the commutation conditions. ��
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However, for 𝛼 ≥ 1 and arbitrary 𝜎A ∈ S(A), 𝜌AE ∈ S(AE), the Uhlmann property
given by Eq. (B.2) does not hold. A concrete example is 𝜌AR = |𝜓〉〈𝜓|AR with

|𝜓〉AR =
√

1

4
|00〉AR +

√
3

4
|11〉AR

and 𝜎A = 1
3 |+〉〈+| + 2

3 |−〉〈−|. In this case, D2(𝜌A‖𝜎A) < 0.476 whereas

inf
𝜎̂AR : 𝜎̂A=𝜎A

D2(𝜌AR‖𝜎̂AR) ≥ inf
𝜎̂AR : 𝜎̂A=𝜎A

D(𝜌AR‖𝜎̂AR) > 0.48 .

This computation was performed by numerically solving the semidefinite programs
via CVXQUAD [51]. Putting everything together shows that Eq. (B.2) does not hold for
𝛼 ∈ {1, 2}:

D(𝜌A‖𝜎A) ≤ D2(𝜌A‖𝜎A) < inf
𝜎̂AR : 𝜎̂A=𝜎A

D(𝜌AR‖𝜎̂AR) ≤ inf
𝜎̂AR : 𝜎̂A=𝜎A

D2(𝜌AR‖𝜎̂AR) .
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