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Preface

For millennia, mankind has looked up to the night sky in amazement and
wonder. From the ancient astronomers of Mesopotamia and until today, we have
uncovered a lot about how the Universe works. We can measure and model the
tiniest subatomic processes, as well as the largest cosmic structures. Still, it
is evident that we do not fully understand everything. Just like a child keeps
asking “but why?” when given an answer, a scientist will also ask “but why?”
when finding a new model that seems to describe the physical world. My own
curiosity for astrophysics was sparked at a young age, when looking at artist
impressions of planets, galaxies and black holes in a science book for children.
This fascination and fear of the unknown, is what inspired my thesis to be about
the nature of gravity and how it might be analysed. Finally, more than twenty
years later, I am finishing a thesis for the degree of Philosophiae Doctor in
astrophysics.

My thesis is an advance in the science of describing gravity through non-linear
astrophysical simulations. The research is conducted under the supervision of
professor David F. Mota (UiO) and Claudio Llinares (Portsmouth). The purpose
of the three introductory chapters and the conclusions of this thesis is to make
my research better understandable and to set my publications in a broader
perspective.

In chapter 1, I will present the definition and history of cosmology and
astrophysics, as well as an introduction to the theory of general relativity.
Furthermore, to motivate my work related to extensions of general relativity, I
will point to problems with the currently accepted theory.

I will introduce modified gravity and concepts related to it in chapter 2,
including some example models. A big part of studying modified gravity on a
theoretical basis is to determine whether some specific modification to gravity
can actually be detected with astronomical observations. Hence, I will also
describe some possible probes that can be used to distinguish the vast amount
of different models for gravity.

My work has relied heavily on numerical calculations, specifically computer
simulations. I will explain the history and application of such simulations in the
context of both general relativity and modified gravity in chapter 3. Most of my
time during this doctorate was spent on simulating models with a disformally
coupled scalar field. Many new phenomena found in these simulations will be
discussed in detail in chapter 3.

Following chapter 3, I will include the main work of this thesis and of my
doctorate: three scientific papers presented in chronological order. The common
theme to them is numerical simulations and understanding gravity. All three
papers were written in collaboration with David F. Mota and Claudio Llinares,
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with me being first author on two of them.
In chapter 4, after the papers, I will conclude my work by summarising the

results of the three main papers and exploring the implications of these results.
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Chapter 1

Introduction

The nature of gravity is a disputed topic within astrophysics. The concept of
gravity has been around for a long time, yet we do not understand it completely.
A way to interpret gravity is through one of the most influential scientific theories:
the theory of general relativity. Since the nature of gravity in the Universe outside
of the solar system is difficult to measure directly, astrophysicists need to run
astrophysical simulations in the pursuit of understanding its nature. Non-linear
simulations aim at resolving phenomena in regions of space that are not possible to
probe through simpler computational methods. In this dissertation, I will explore
the question of how the nature of gravity can be better understood through
non-linear astrophysical simulations. To probe alternatives to general relativity,
I will conduct simulations with theories of modified gravity and investigate some
of their signatures. Before looking at alternatives to general relativity, I will
discuss what general relativity is and how it applies to cosmology. In this chapter,
I will introduce the basic concepts which are necessary to appreciate the rest of
the thesis.

For this chapter only, I will assume that conventional general relativity fully
describe gravity and space-time.

1.1 Astronomy, Astrophysics, and Cosmology

The terms astronomy, astrophysics, and cosmology are interconnected; All of
them are research fields related to the Universe beyond the Earth.

Astronomy concerns observations and measurements of phenomena outside
of Earth. Objects studied and mapped in astronomy include our own Sun, the
planets in our solar system, the stars in our galaxy, distant galaxies, and even
exotic phenomena like supernovae and the surroundings of black holes. The
keyword here is that astronomy, in the strictest sense, only covers observations.

The common definition of astrophysics is the combination of physical laws
with astronomical observations to model and explain the underlying workings of
the Universe and objects within it. Hence, astrophysics is the more theoretical
counterpart to astronomy. Most of the mathematical models (physical laws)
used in astrophysics are discovered and tested in laboratories on Earth, or tested
with space probes in our solar system. These laws are then extrapolated out of
our solar system, assuming that they also work on the scales of galaxies and
larger.

Cosmology concerns the origin and evolution of the Cosmos as a whole,
including its early evolution, the expansion rate of space, the clustering of matter
to form large scale structures, and the evolution of the average ratios between
the components of the Universe. In the context of this thesis, I will use the
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1. Introduction

term “cosmology” when referring to the science of large scale properties of the
Universe. There is no strict definition of “large scales”, but any structures larger
than the size of a cluster of galaxies will, in general, be considered large scales.
Although astrophysics is a more general term than cosmology, I will often use
the term “astrophysics” to refer to phenomena on galaxy scales and smaller,
where the electromagnetic force starts to play a part.

1.2 History of Cosmology

Before the modern scientific method was established, most attempts at explaining
or describing the workings of the Universe were based on myths, stories, or religion.
With the lack of precise observations of objects beyond the Earth, and no direct
information about objects beyond the Solar System, the early concepts regarding
cosmology were developed by natural philosophers.

An example of a historical cosmology is old Norse cosmology, wherein there
are nine realms connected by the cosmic tree Yggdrasil. According to old Norse
mythology, in the beginning, there was a place of extreme cold called Niflheim
and a place of extreme heat, called Muspelheim. These two polarities were
separated by the gaping primordial void Ginnungagap. As these two extremes
started to come in contact, objects, creatures, and the nine realms emerged from
the resulting dynamic.

Different historical cosmologies from around the world have suggested both
finite and infinite universes in size, as well as finite and infinite in time. Many
of the concepts—for instance the idea of a cyclic universe—appear in several
different cultures. The idea of Yggdrasil, or a central tree of life, has appeared
in the ancient Indian and Babylonian cosmologies as well as in the old Norse
cosmology [Lum16]

In the 16th century, Copernicus suggested that the Earth and other planets
circle the Sun, which sparked the Copernican revolution. Soon other scholars
(most notably Galileo Galilei), influenced by the ideas of Copernicus, started to
do observations and spread ideas about this heliocentric world view. This led to
an increasing amount of people asking critical questions about the teachings of
the established cosmologies [Lev11].

The Copernican principle—the realisation that the physical laws on Earth
are not special—opened up for the possibility to apply the laws of nature on
objects on the celestial sky. Newton’s law of universal gravitation, which opened
up for discoveries by among others Einstein, allowed scientists to build testable
and increasingly precise models to understand the observed phenomena of the
night sky.

1.3 Modern Concordance Cosmology

The concordance model of cosmology is the currently accepted model for the
physics governing the evolution of the Universe. The common name for the
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Modern Concordance Cosmology

Figure 1.1: Large scale homogeneity of the observable universe. The left map
shows an artist’s impression of the distribution of galaxies on the scales of the
observable universe, several gigaparsecs across. The right map is zoomed in to
show the nearby super-clusters of galaxies within 300 megaparsecs (1 billion
light-years). Each white dot represents a single galaxy.
Figures belong to Richard Powell, licensed under a Creative Com-
mons Attribution-ShareAlike 2.5 Licence. They can be found online at
http://www.atlasoftheuniverse.com/universe.html

concordance model of today is ΛCDM1. Theories that go beyond the concordance
model can include modifications to gravity, exotic models for dark matter,
modifications to the Standard Model of particle physics, different neutrino
masses, and even new details in the implementation of known physics on galaxy
scales. In this section, I will describe the origin and reasoning behind dark
matter and dark energy, as well as explaining briefly how cosmologists work to
refine the cosmological model.

At the base of the physical cosmology of today lies an extension of the
Copernican principle, namely the cosmological principle: Our location in space
is not considered special, and when viewed at large enough scales, the Universe
is homogeneous and isotropic. In other words, the properties of the Universe
are smooth and do not depend on direction; If we draw a large enough sphere
somewhere in space, it should contain approximately the same amount and
distribution of matter and energy as if you draw it at another point in space.
The left panel of figure 1.1 shows a distribution of galaxies similar to the
distribution in the observable universe. The left-hand side resembles the largest
known scales of the Universe, where galaxies are relatively smoothly distributed.
Surveys mapping out the large scale structure of the local universe support such
homogeneity at scales larger than about 100 Mpc [Nte+17].

1“Lambda-CDM”

3



1. Introduction

Figure 1.2: Temperature fluctuations of the CMB sky, after subtracting the
dipole (which is due to the motion with respect to the CMB rest frame). The
CMB sky has a mean value of 2.7 K, and the colors represent temperature
fluctuations in the range of ±200µK.
Image credit: NASA/WMAP Science Team. Image is freely available online at
https://map.gsfc.nasa.gov/media/121238/index.html

Another important part of the foundation of modern cosmology is the theory
of general relativity (GR). Gravitational interactions and the dynamics of space-
time itself can be described in the framework of GR. The geometry of space-time
is affected by matter and energy content of the Universe, while the resulting
curvature of space-time gives rise to what is perceived as a gravitational force.
GR can also be used to calculate the expansion of space, the overall evolution of
space-time itself.

In the 1920s, just a few years after Einstein introduced general relativity,
Edwin Hubble discovered that distant galaxies seem to have a velocity directed
radially out from us. The velocities of the receding galaxies increases with
distance, which is widely believed to be due to a cosmic expansion of space. A
universe dominated by matter is allowed to expand at any given point in time,
but will expand slower and slower, and may collapse in the future2. In the late
1990s, two separate groups discovered evidence that the Universe expands at an
accelerated rate [Pa99; Ra98]. No known form of matter or energy could explain
an accelerated expansion, which prompted the introduction of the concept of
dark energy. One way to model this dark energy is with a constant vacuum
energy of empty space, represented with a cosmological constant Λ in Einstein’s
equations. Such a cosmological constant supplies a negative pressure, sufficient
to drive an accelerated expansion.

Dark matter is a proposed matter component which only interacts through
gravity. With the law for gravity described by GR, we need five to ten times
more matter inside of any given galaxy than the sum of all visible matter in

2A future collapse would happen if the global topology of the Universe was closed, i.e. like
the surface of a sphere. I do not consider curvature in this thesis because the current Universe
is measured to be topologically flat within the errors of the measurements [Pla+18].
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that galaxy. Without this dark matter, the stars rotating around the disc of
the galaxy would not be bound to the galaxy gravitationally; Their measured
velocities are so large that most of the stars would be expected to fly away and
escape their host galaxy. It turns out that the observed orbital velocities can be
described if we assume the existence of a diffuse dark matter halo in addition to
the normal, or baryonic, matter. The case is similar when considering individual
galaxies in a galaxy cluster; The velocity dispersion of the galaxies is so high
that without several times extra matter in the cluster, the galaxies would not
stay clustered together.

In modern cosmology, charting the evolution of the Universe is often done by
applying physics in reverse. Cosmologists apply the known laws of nature on the
observed universe, but backwards in time, to infer how it was at an earlier point.
An example of this is the currently observed expansion of the Universe. If we
reverse the observed expansion, we can infer that the content of the Universe
was hotter and denser in the past. If we go 13.8 billion years back [Pla+18], the
Universe should be infinitely hot and dense, a singularity commonly known as
the Big Bang. During the first couple of thousand years of the Universe, it was
too hot to form any kinds of normal matter, all the contents of the Universe was
in the form of hot plasma. As the Universe expanded, the energy was spread over
a larger volume and hence the average temperature decreased. This continuous
expansion and cooling is still ongoing today.

The finite speed of light implies that observing photons that originated far
away from us also means observing far into the past. The oldest light reliably
measured are photons from the cosmic microwave background radiation (CMB),
commonly shown as a map of temperature fluctuations as seen in figure 1.2. CMB
photons originate from the time of last scattering, when the hot plasma-filled
Universe became cold enough to be transparent, about 380 thousand years after
the Big Bang. The temperature map (after subtracting the Doppler shift dipole)
has an average of about 2.7 K and inhomogeneities smaller than a factor of
10−4. The temperature fluctuations are related to the matter fluctuations at
the time of last scattering, supporting the claim that the universe was highly
homogeneous at this time. We can use known theories to infer physically what
happened even further back in time than the time of last scattering, but our
predictions break down at the Planck epoch, about 10−43 seconds after the Big
Bang. This is because there does not exist an accepted theory for quantum
gravity, which is needed to describe the behaviour of the Universe at the densities
and temperatures in the Planck epoch [Pen91].

When considering cosmological scales, the movement of matter is mainly
affected only by gravity. The reason why other forces can be neglected is that
they have an extremely short range compared to gravity. Gravity does not have
any charge, and to our knowledge, there does not exist negative mass. This
means that gravity is always attractive between two massive objects, and the
strength of gravity increases when the masses grow. On the other hand, it is
very difficult to increase any of the other forces of nature beyond a certain point,
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since the physical structures that are needed would grow increasingly unstable3.
The gas component of galaxies and galaxy clusters have a close to neutral electric
charge on average, and the main component of these structures is dark matter,
which does not interact with electromagnetism. Even if electromagnetic forces
can have an impact on the gas interaction within a single galaxy cluster or
when two clusters collide [Kie+17], it will not measurably affect the formation of
structures on cosmological scales, which is dominated by the dark matter. This
claim is supported by the statistical similarity between the observed large scale
structure and dark matter-only simulations [KVA12]. See also section 3.2 for a
brief discussion of implementations that include baryon physics on considerably
smaller scales than galaxy clusters, where electromagnetic effects cannot be
ignored.

To reiterate: the observed properties of the Universe on large scales can be
explained fairly well with only dark matter, dark energy, and the principles of GR.
This phenomenological model has become known as ΛCDM, after the two main
energy components: a cosmological constant Λ, and cold dark matter (CDM).
Normal matter, which I will from now on call baryons, only constitutes about
5 % of the total energy-matter content of the Universe, but their contribution to
the overall evolution of the Universe since the Big Bang is not negligible. The
resulting concordance model, ΛCDM, has had great success in explaining the
Universe on cosmological scales. In section 1.6 I will discuss issues with this
model.

In parts of this thesis and the included papers, I might use the terms GR and
ΛCDM interchangeably. Both of these terms will refer to the concordance model
with standard gravity, as opposed to alternative theories for gravity. Throughout
the thesis, I will not modify any of the other components of the concordance
model, like baryons and dark matter.

1.4 Conventions

Throughout this thesis, I will use the conventions described in this section. I
work in natural units of space and time, such that the speed of light is unity,
c = 1. The metric signature used is (−,+,+,+). I will mostly work in a
Friedmann–Lemaître–Robertson–Walker (FLRW) metric, or a perturbed version
of it, often called the Newtonian gauge. The line element in the Newtonian gauge
is

ds2 = − (1 + 2Ψ) dt2 + a2 (t) (1− 2Φ) dxidxi. (1.1)

In the absence of anisotropic stress in GR, the two metric perturbations are equal,
Ψ = Φ. In the non-relativistic limit, the metric perturbation Ψ is equivalent to
the Newtonian gravitational potential, and this is what I will call Ψ throughout
this thesis.

3For instance, to increase electrostatic force, you would need an increasing amount of
similar electric charge in a small volume. Similar electric charges repel each other, so beyond a
given charge density the energy needed to add another charged particle would be enough to
destroy the structure.
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Modelling a Universe

I employ the Einstein summation convention, where repeated indices in tensor
equations are implicitly summed over all components. Latin indices are spatial
and go from 1 to 3, while Greek indices are space-time and go from 0 to 3, 0 being
the time component. Specifically xiyi = x1y1 + x2y2 + x3y3, and furthermore
xµyµ = x0y0 + x1y1 + x2y2 + x3y3, where the raising or lowering of indices with
the metric gµ,ν often introduces an opposite sign for the zeroth component with
respect to the spatial components.

I use comma notation for partial derivatives, (i.e. A,φ = ∂A/∂φ for the scalar
φ). Comma notation with a greek index signifies partial derivatives with respect
to the corresponding space-time coordinate, and can be combined with Einstein
summation notation. A dot over a quantity means a partial derivative with
respect to cosmic time t.

1.5 Modelling a Universe

In many branches of physics, an action is considered the most fundamental
equation from which the dynamics of the system can be derived. When
studying the interaction between matter and gravity, the starting point is the
Einstein–Hilbert action, which is given by

S =
∫ [ 1

16πG (R− 2Λ) + LM
]√
−gd4x. (1.2)

Here, Λ is the cosmological constant, G is Newton’s gravitational constant, g is
the determinant of the metric (g = det (gµν)), and R is the Ricci scalar, which
describes the local curvature at each point in space-time. All matter fields are
encoded in the total matter Lagrangian LM , which includes both dark matter
LDM and the standard model particles LSM .

With the technique of variation of action, the Einstein–Hilbert action yields
the Einstein field equations,

Rµν −
1
2gµνR+ Λgµν = 8πGTµν , (1.3)

where Rµν is the Ricci curvature tensor and Tµν is the stress–energy tensor.
Equation (1.3) is a tensor equation with 10 independent components, together
constituting the Einstein field equations. These equations fully describe the
gravitational interaction; The left-hand side can be interpreted as the geometry
of space-time, and the right-hand side can be interpreted as the matter and
energy contents of the Universe. Simply put, the equation says that matter tells
space-time how to curve, and the curved space-time tells matter how to move.

1.5.1 Expansion History

The observable universe is considered to be very homogeneous on scales larger
than about 100 Mpc [Nte+17], which is illustrated in the left map of figure 1.1.
At the time of the CMB, the observable universe was highly homogeneous, with
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1. Introduction

perturbations smaller than a factor 10−4, as seen in figure 1.2. When assuming
perfect homogeneity—using only average quantities—one can solve the Einstein
field equations analytically4. This yields the Friedmann equations, which can be
used to calculate the expansion rate, as well as the relative densities of matter
and dark energy. In a spatially flat universe (k = 0), the Friedmann equations
are

(
ȧ

a

)2
= 8πGρ+ Λ

3 , (1.4)

ä

a
= −4πG

3 (ρ+ 3p) + Λ
3 . (1.5)

Where a is the scale factor. ȧ is then the expansion rate of the Universe5, and ä
is the acceleration of the expansion. Here, p is the pressure and ρ is the density
of the total matter and radiation content of the Universe. The equations can be
expanded to include several components (hot gas, dark matter, radiation).

Notice that without the cosmological constant Λ, the acceleration of a flat
universe can only be negative. Given that the content of the Cosmos has positive
pressure and density, the expansion rate of an expanding universe will eventually
slow down. Another thing to note is how the cosmological constant is equivalent
to a fluid with negative pressure in equation (1.5). At late times, the pressure of
matter and radiation can be considered negligible, but at early times, when the
Universe was hotter and contained more radiation, the pressure p is important.

With the Friedmann equations (1.4) and (1.5), the past and future expansion
history can be found, as well as the relative ratios of baryonic matter, dark
matter, and dark energy. Inserting the right numbers for the total amount of
matter and a cosmological constant, one gets an expansion history matching
the current observations very closely. When playing around with the different
possibilities for the components, one can have a universe ending in a Big Rip,
Big Crunch, Big Void, and so on [NJP15].

1.5.2 Structure Formation

The Universe is not completely homogeneous. When studying scales smaller
than a gigaparsec, structures called the cosmic web appear, as seen in the
maps of figure 1.1. Through the study of simple models for spherical collapse,
or through simulations (see chapter 3), one can predict properties of these
structures from first principles and a set of simplifying assumptions. A simple,
yet powerful technique to calculate the growth of structures on large scales is
linear perturbation theory. This technique is not part of my doctoral work, but it

4Averaging and then evolving is not equivalent to evolving and then averaging, due to the
nonlinear nature of the Einstein field equations. This backreaction effect is often considered
small, but scientists disagree if it is completely negligible [Buc+15]. Nevertheless, evolving the
averaged Universe is a useful exercise for developing an intuition for cosmology.

5The expansion rate is related to the Hubble factor such that H = ȧ/a.
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is nevertheless useful for understanding structure growth, hence I briefly describe
the approach in Appendix C.

From precise measurements of the CMB, one can infer the tiny fluctuations
of the matter/energy density over 13 billion years ago. The Universe was not
completely homogeneous at this point, and it is believed that these minuscule
inhomogeneities were sourced by quantum fluctuations that froze into real
structures during the period of inflation [Rio02]. When these fluctuations
manifested, over-densities of dark matter started to grow and form gravitational
wells, long before the Universe became transparent. After the time of last
scattering, when the Universe became transparent to photons and the CMB
was released, baryonic matter was allowed to fall into the gravitational wells
set up by dark matter. Matter continued to cluster due to gravity while the
Universe expanded, and the large scale collapse is still happening today. This
results in an increasingly complex fractal-like structure called the cosmic web.
The cosmic web can be seen when looking closely at the seemingly homogeneous
large scale galaxy distribution of figure 1.1, and also appears very clearly in
N -body simulations of the Universe on large scales.

1.5.3 Parameter Prediction from CMB

By assuming the ΛCDM concordance model, combined with numerical methods
to evolve the background expansion and linear structure formation, it is possible
to infer statistical properties of the CMB temperature map. Cosmologists that
study the CMB use Monte Carlo Markov chain methods to sample the parameter
space of the ΛCDM model, and by comparing the observed CMB sky with the
simulated CMB from linear perturbation theory, they are able to find the best-fit
parameters of the ΛCDM model. It is also possible to combine the constraints
from the CMB temperature map with other data sources, resulting in even
stricter constraints.

Under the assumption of a ΛCDM cosmology, the Planck collaboration
has inferred the cosmological parameters given in table 1.1, from CMB
TT,TE,EE+lowE+lensing [Pla+18]. I will use these parameters throughout
this thesis unless stated otherwise. This is not a full list of independent model
parameters used in their fitting process, but rather derived quantities that are
useful for modelling and simulations.

1.6 Open Questions

Even if the concordance model works remarkably well for many purposes, there
are still many questions left unanswered if we accept it as it is today. In this
section, I will discuss several of these questions, and argue why each of them is
considered a potential problem in the framework of ΛCDM.
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Table 1.1: Selected Cosmological Parameters, from Planck 2018
(TT,TE,EE+lowE+lensing) [Pla+18]

Parameter Value Notes
H0 67.39± 0.54 km/s/Mpc Expansion rate of the Universe today.
ΩΛ 0.6897± 0.0074 Fraction of dark energy density.
Ωm 0.3142± 0.0074 Fraction of total matter density, the

sum of dark and baryonic.
σ8 0.8110± 0.0089 Amplitude of mass fluctuations of the

scale of 8 Mpc/h.
ns 0.9638± 0.0058 Spectral index. The tilt of the

primordial power spectrum. ns < 1
suggests more fluctuations on large
scales than on small scales.

zre 7.49+0.83
−0.75 The redshift of re-ionisation, the time

when the first stars/galaxies ionised
neutral hydrogen.

1.6.1 Quantum Gravity

Quantum gravity is an effort to merge the macroscopic theory of general relativity
with the microscopic theory of quantum mechanics. The naive method to create a
model for quantum gravity, is to apply the same prescription as when quantising
the other fundamental forces. However, this does not give a healthy theory,
because GR is not renormalisable (see e.g. [Sho07]). It seems that there is an
incompatibility between GR and quantum mechanics that cannot be resolved
within the current framework. Quantum gravity is needed to have a precise
model that describes the force of gravity on systems where quantum effects are
important, like inside of black holes and during the first fraction of a second
after the Big Bang [Pen91]. Another reason for developing a working theory for
quantum gravity is because this can allow us to unify all the fundamental forces
into one framework, referred to as the theory of everything.

1.6.2 The Fine-Tuning Problem and the Cosmological Constant
Problem

The inferred value of Λ from cosmological data has a very specific value,
Λ = 1.1056× 10−52 m−2, which is derived from the value of ρΛ = ΩΛρc found
by the Planck collaboration [Pla+18]. The conversion can be found in the
00-component of Einstein’s field equations (1.3), where the cosmological constant
Λ on the left-hand side is equivalent to a term 8πGρΛ on the right-hand side.
Although Λ is allowed in Einstein’s field equations, there is no known mechanism
for giving it this specific value. Nothing is preventing Λ from being an independent
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constant of nature, but philosophically it would be more tractable if the value
appears naturally from a more fundamental mechanism.

The expected vacuum energy scale from particle physics varies depending
on the assumptions and your chosen cutoff scale. An illustrative example is the
Higgs condensate, which is expected to contribute with a vacuum energy density
of ρvac ∼ − (250 GeV)4, resulting in Λ = −1.7× 104 m−2 [Bas15]. Compared to
this, the measured dark energy scale of Λ is minuscule (and also has the opposite
sign). A cancellation of this many orders of magnitude, which still leaves the
measured value, is a fine-tuning which is difficult to explain without physics
beyond GR or beyond the Standard Model of particle physics. Furthermore, the
cosmological constant problem is not necessarily that the observed value is not
equal to the predicted value, but rather that we run into radiative instabilities
(the repeated need for fine-tuning) when trying to normalise the value of the
vacuum energy [Pad15].

1.6.3 Coincidence Problem

The coincidence problem comes from questioning why we live in a time where the
amount of dark matter and dark energy is of the same order of magnitude. The
concordance model, and many alternative models have the unlikely coincidence
that these two energy densities are very similar at the current time, even if the
energy scales of these two components are vastly different. If we were to check
the energy densities 10 billion years ago or 10 billion years in the future, the
values would not coincide. The probability of this coincidence in itself is hard
to gauge, but it is still worth looking into, because an alternative model that
answers this problem could be considered a more natural choice than one that
does not [AT10].

1.6.4 Small Scale Problems

When performing pure ΛCDM simulations, without including baryonic matter,
the behaviour and structure of the Universe on galaxy scales does not match
current measurements of galaxies. For instance, dark matter haloes in simulations
are significantly more dense (cuspy) in the centre than what can be inferred from
observations. With advances in the implementations of baryonic physics during
the last decade or so, it is believed that baryons can, at least partially, solve
the small scale problems. This is still an area of debate, and many alternative
theories for dark matter are still motivated by attempts to solve the small scale
problems [DL17].

1.6.5 Inflation

The period of inflation is a rapid expansion proposed to have happened shortly
after the Big Bang. Inflation lasted approximately 10−33 seconds, and during
this period the Universe is thought to have expanded by a factor of 1026. The
inflation paradigm explains many puzzling things about the Universe, for instance
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why very distant areas of the Universe seem to have been in thermal contact at
the time of recombination. Inflation also helps explain the set-up of the initial
conditions needed in ΛCDM to evolve into the Universe we see today [Rio02].
There are no measured physical mechanisms that can give rise to inflation.
Usually a theoretic inflaton field is suggested, but no traces of this field have
been observed to this date.

1.6.6 Asymmetry Between Matter and Anti-Matter

The observable universe contains almost exclusively matter, and very little
anti-matter. The current model of particle physics allows pairs of particles
and anti-particles to emerge from vacuum fluctuations. No known process
explains why there are not equal amounts of matter and anti-matter in the
observable universe. In the current framework, we need a process occurring out
of equilibrium, and breaking many known symmetries of the standard model
of particle physics. Such a process has not been observed. An alternative
framework, specifically beyond the standard model of particle physics, could
introduce mechanisms to explain this asymmetry. An example of a framework
that is claimed to allow such mechanisms is loop quantum gravity [LS03].

1.6.7 The Hubble Tension

One way to measure the expansion rate of the Universe (or the local Hubble
parameter H0), is to map the velocities of objects with a known distance, among
others type Ia supernovae [Rie+16]. This data set can be used to estimate
the amount of expansion at a given distance, but is usually limited by low
redshifts of the objects, as well as possible systematics in deriving the distances
to the measured objects. Another way to infer the expansion rate is to use
the mathematical framework of the concordance model, and tune the model
parameters to match the observed CMB [Pla+18]. The recovered expansion rate
from the best fit ΛCDM parameters is significantly lower than the value measured
with supernovae, with H0 = 68 ± 1 km/s/Mpc and H0 = 73 ± 2 km/s/Mpc
respectively [Fre17]. The difference can be due to systematic errors in the
measurements of either the supernovae or the CMB, but if it turns out that this
tension is real, it is a strong suggestion of new physics; Either the assumptions
behind the supernova calculations are wrong, or the concordance model must be
updated.

1.6.8 The Nature of Dark Energy and Dark Matter

For me personally, the most convincing argument to study alternatives to
ΛCDM is a more philosophical one. Although the two main components of the
model—dark energy and cold dark matter—help explain observations nicely,
they have never been directly detected. All the evidence for these components
that were mentioned in section 1.3 is indirect evidence, and many of the effects
can individually be described without Λ or CDM.
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Even if the dark components of the Universe exist, the question about their
nature remains. Dark energy can be due to a cosmological constant, the vacuum
energy of quantum foam, a hitherto unknown field rolling down a potential, or a
modification of gravity. Suggested candidates for dark matter include particles,
either weakly interacting massive particles or tiny non-interacting particles that
we will never measure directly. Another suggestion to explain dark matter is
through primordial black holes spread evenly around the Cosmos [Gar17].

1.6.9 The Fate of the Universe

Dark energy described with a cosmological constant is believed to result in an
accelerated expansion which continues until the heat death of the Universe, where
entropy approaches an asymptotic limit and any remaining physical processes
will occur increasingly slowly. During the expansion, galaxies themselves will
not expand, but distant groups of galaxies will expand out of each others causal
horizon. Stars will eventually die, and matter will gather into black holes, which
after a very long time will evaporate through Hawking radiation [Fra82].

If dark energy and gravity is described better with another model, the
prediction will be different. Although the inevitable heat death of the Universe is
not a problem with the ΛCDM model itself, a better understanding of the nature
of gravity and dark energy can help us model and understand the ultimate fate
of the Universe.
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Chapter 2

Modified Gravity
Modified gravity is one of the proposed solutions to the shortcomings of ΛCDM
that I discussed in section 1.6. A modification to gravity is any model that
extends or challenges the current theory of how gravitation works. Ideally, such
modifications to gravity should still be able to explain observed phenomena at
least as well as the currently accepted theory. Such modifications have been
suggested several times throughout history, both as gradual extensions to the
accepted theory, or as a complete paradigm shift in the way to think about
gravity. In this chapter, I will present a short history of gravitational theory,
before discussing modern modifications to gravity, including the disformal model.
Towards the end of the chapter, I will shift my focus to possible methods of
probing the nature of gravity, which can be used for distinguishing between
different gravitational theories.

2.1 History of Gravity

In ancient Greece the Aristotelian view of gravity was that massive bodies would
move towards the “centre of the Universe”, while the Ether (heavens) moves
circularly around the centre. Aristotle concluded that a heavy object falls faster
than a light object [Rov13]. During the 17th century, Galileo discovered that
all objects accelerate equally when falling in a vacuum. This indicated that
Aristotle’s laws of motion were just approximations to a “deeper theory”. The
Aristotelian laws are good approximations to gravity in combination with the
effect of air resistance, given that the object reaches its terminal velocity.

On the surface of the Earth, the gravitational acceleration seems uniform
as a function of the vertical direction, unless measured with extreme precision.
Upon further investigation, the force of gravity is weaker with increased distance
from the source. For instance, considering the Huascarán region in Peru, the
gravitational acceleration is 9.764 m/s2 at altitudes of 7 km above sea level and
9.775 m/s2 in a nearby valley at 1 km above sea level, a difference of 0.1 %
[Hir+13]. It was discovered that the force of gravity seemed to decrease according
to an inverse square law, F ∝ 1/r2. Robert Hooke and Isaac Newton extended
this theory to other objects in the Solar System, resulting in a theory for universal
gravity. This theory is commonly called Newtonian gravity.

The Newtonian model for gravity was successful in predicting the position
of the (then unknown) planet Neptune from the irregular motion of Uranus.
Neptune was discovered at the predicted position in 1846 [Ada46]. Mercury has
a perihelion precession1 which at that time was not explainable by gravitational

1In Newtonian gravity, a planet orbiting a star is expected to follow an elliptic orbit, where
the axes of the ellipse do not move. The perihelion is the point of the ellipse closest to the
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effects from the known planets, tidal forces, or other known physics. An extra
planet (Vulcan) was proposed to explain it, but never found.

Einstein introduced his special and general theories of Relativity, which
allowed the speed of light in vacuum to be universally constant and independent
of frame. The theory of general relativity (GR) introduces an equivalence between
acceleration and gravitation, where motions of objects can be explained through
the curvature of space-time around massive bodies. GR gives different predictions
compared to Newtonian gravity in some regimes (e.g. close to massive bodies).
The theory of GR is a very successful one; it neatly reduces to Newtonian gravity
in environments where Newtonian gravity gives correct answers, like what we
encounter on Earth and in most of our Solar System. With GR corrections,
Mercury’s precession is explained well without the need of an additional planet.

Contrary to in the Newtonian model, light waves in GR are expected to
follow the warped space-time and hence curve around massive bodies2. Einstein’s
prediction of this effect was confirmed exactly 100 years ago this year, through
observing how the path of light from stars was bent when passing close to the
Sun during a solar eclipse [Ken19].

The physics of gravity saw a paradigm shift 330 years ago with Newtonian
gravity, and another paradigm shift 100 years ago with the introduction of
GR. When will we see the next paradigm shift in our knowledge of gravity?
Modifications to GR appeared shortly after Einstein published his theory, but
these were mostly considered curiosities. Some important names associated to
the ground-breaking work that paved the road for modern modified gravity are
Eddington, Weyl, and the collaborative works of Kaluza–Klein and Brans–Dicke.
See [Cli+12] for details on further theories, including the theories I will mention
later in this chapter.

2.2 Why Modify Gravity?

The short answer to why we want to look for alternative theories is that the
theory we currently have is not completely perfect. In section 1.6 I showed several
problems with the concordance model, and in this section I briefly explain how
some of these problems can be solved by modifying gravity.

The next step in achieving a grand unified theory in quantum physics is
quantum gravity, but because GR is not renormalisable, we need to go beyond
GR to achieve this. Different theories have been proposed that are expected
to be renormalisable, for instance Hořava–Lifshitz gravity [Ho 09]. Due to the
difficulties in testing these theories and distinguishing them from GR, there is
still no accepted conclusion.

Modifications to gravity have been proposed to solve the coincidence problem
and the fine-tuning problem. A dark energy component which is coupled to the

Sun, and perihelion precession refers to the movement of this axis.
2If assuming that light is a particle, and applying the universality of free fall, Newtonian

gravity also predicts a deflection of light around massive bodies, but only half of the value
seen in GR.
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density of matter can exhibit a tracking behaviour, where the energy density of
dark energy converges to a value similar to the energy density of matter. This
happens even if the initial value of the dark energy is not fine-tuned [AT10].

Even if GR has been successful in predicting a wide range of observations,
we still have the metaphysical problems with the concordance model; it predicts
known observations well, but the nature of the dark matter and dark energy
are unknown, and the specific value of Λ seems arbitrary. I think that many
scientists will have a problem with accepting “this is just how it is” as an answer
to the question “but why?”.

There are myriads models of modified gravity, all with their pros and cons
[AT10; Bra12; Cli+12]. The consensus is that none of the current known models
answer all of the problems with the concordance model. Furthermore, in the
cases when the modification to gravity replaces the cosmological constant, we
still need a mechanism or symmetry to prevent vacuum energy to be as large as
the predicted value from particle physics.

Even if a specific model studied is not realistic, understanding the specific
phenomena that arise in a model opens up for new ideas, new probes, and
unknown phenomenology. Mapping out these could be part of the bigger puzzle
in order to find a good model in the future.

2.3 How to Modify Gravity

As already mentioned, there are many theories of modified gravity [Cli+12;
Joy+15]. We can introduce extra degrees of freedom through additional scalar
fields, vector fields, tensor fields, or any combination of those. Furthermore, other
phenomenological models arise from extra dimensions and braneworlds, Lorentz
violation, and a non-zero graviton mass. My work mostly focuses on adding a
single scalar field coupled to matter. However, I will introduce a modification to
gravity called f(R) first.

Any viable theory must reduce to something indistinguishable from GR on
Solar System scales, and mimic the phenomenology of ΛCDM on the largest
scales. Intermediate scales around a few Mpc have more freedom because we
do not have as high precision in our current measurements. If the modification
to gravity is approximately the strength of gravity, we need what is called a
screening mechanism to recover GR in our Solar System. I will introduce the
theory for screening mechanisms in section 2.5.

An active field of research is new probes that can distinguish the theoretical
models from each other and from GR. I will mention some of these and explain
how they can be used to distinguish different theories in section 2.7.
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2.3.1 f(R)-gravity

In the Einstein–Hilbert action, we can allow the Ricci scalar R to become a
function of R. R→ f(R).

S =
∫ [ 1

16πGf (R) + LM
]√
−gd4x. (2.1)

Einstein tried f(R) = R, which is the simplest combination of the Ricci
scalar that gives equations of motion which recover Newtonian gravity in the
weak-field regime, what we experience on Earth. There is freedom to construct
the function f(R) with additional terms and still recover both GR and Newton
predictions in the Solar System. The extra freedom allows parts of the function
f(R) to mimic a cosmological constant in the Einstein–Hilbert action at late
times. The ideas of f(R) have also been successfully applied in some theories
for inflation, most notably the Starobinsky model [Sta80].

Variation of the action (2.1) yields an equation of motion for ψf(R) ≡ ∂f/∂R.
The so-called scalaron ψf(R) acts as a propagating scalar degree of freedom,
which indicates that there is a mapping between f(R) and scalar–tensor theories
[Afo+19]. This means that through studying theories with a scalar field we can
also study and understand the corresponding f(R) theories.

2.3.2 Scalar Fields

I will now consider scalar–tensor theories, where gravity is described by a
combination of the usual GR tensor and an additional scalar. This is a common
way to modify gravity, and can range from simple to very complicated, depending
on the mathematical form of the couplings of the field. The rest of this thesis
considers scalar–tensor theories.

In single field scalar–tensor models, there is one extra propagating degree of
freedom, also known as a scalar field, which is denoted φ. The potential energy
of the field V (φ) can act as dark energy; Specifically, the field can supply a
negative pressure similar to a cosmological constant in the slow roll limit, where
the potential dominates the energy of the field, V (φ)� φ̇2.

A free (uncoupled) scalar field, which can give rise to dark energy when
rolling along a potential, is called quintessence3. The first study of a rolling
scalar field in the cosmological context is given in [RP88], and later (but before
the discovery of dark energy) by among others [FJ97]. The potential can always
be fixed to mimic ΛCDM within observational limits. Unless we observe a
significantly varying equation of state—which there is no evidence for at this
point—this model is indistinguishable from ΛCDM and can not be considered a
better choice [AT10]. If the field does not couple to any other component of the
universe, there is no way to interact with it or detect it. Even if quintessence is
not directly ruled out, ΛCDM is preferred because it contains fewer degrees of

3Strictly speaking, the uncoupled quintessence is not a modification to gravity, and usually
not considered a scalar–tensor model, because it does not change the gravitational interactions.
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freedom. This philosophy is similar to the principle of Occam’s Razor; if two
descriptions work equally well, we choose the simplest one (in this case, the
cosmological constant).

In scalar–tensor models, the scalar field is in some way coupled to other
components of the universe. I will mainly consider scalar field couplings to
non-relativistic matter, even though couplings to other species, like neutrinos,
are also possible [Bro+06]. The coupling between the matter component and
the scalar field is a two-way coupling. This means that the evolution of matter
is affected through a scalar field fifth force, and that the evolution of the scalar
field is influenced by the local matter density. Instead of a uniform roll, as
expected from uncoupled quintessence, the field now has perturbations that to
some extent correlate with the matter distribution.

2.3.3 Horndeski Lagrangian, and the Choice of Frame

The Horndeski Lagrangian [Hor74] is believed to be the most general structure
a scalar–tensor theory can have which allows second-order equations of motion
without introducing Ostrogradsky instabilities, or unphysical states called ghosts.
I will not state the general Horndeski Lagrangian here as it is beyond the scope of
this thesis. Theories beyond Horndeski are also possible by allowing higher-order
equations of motion, which will not always lead to instabilities [Gle+15].

The Einstein frame has gravity described by Einstein space-time with an
additional fifth force. The Jordan frame has all motions explained by the
curvature of space-time without a fifth force, but the curvature is affected in
a modified way. Generally, the physics described in the Einstein and Jordan
frames are thought to be equivalent; The resulting measurable quantities are
independent of the frame chosen when doing the calculations (in section 2.6.2 I
discuss this further for the disformal case). Throughout this thesis, I will use
the Einstein frame, where the scalar field adds a fifth force in addition to GR.

2.4 Equation of Motion and the Fifth Force

In this section I will give a more technical description of scalar–tensor
theories, mentioned in the previous sections. In these theories, the modified
Einstein–Hilbert action can be written

S =
∫ √

−g
[

R

16πG + Lφ
]

+
√
−g̃L̃Md4x, (2.2)

where Lφ is the Lagrangian of the scalar field. For the case of a canonical scalar
field, the Lagrangian is given by the difference in kinetic and potential energy,
Lφ = X − V (φ), where the kinetic energy is given by X ≡ − 1

2φ
,µφ,µ. Here we

can see how a small kinetic term and an approximately constant potential with
value V (φ) ≈ Λ/(8πG) can mimic the cosmological constant in (1.2).

The modification to gravity is introduced through a transformation of the
metric in the matter section (the last term of equation 2.2), which results in
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matter following modified geodesics. The modified gravity metric g̃ is related
to the gravitational metric g through a transformation. A typical conformal
transformation is given by

g̃µν = A (φ) gµν . (2.3)

The scalar function A in conformal transformations rescale the metric in all
space-time dimensions with the same factor.

Variation of the action (2.2) with respect to the metric—just like in the GR
case—yields a modified set of Einstein’s field equations, which can be used to
calculate the modified geodesic equations. The difference between the modified
geodesics and the GR geodesics defines the extra fifth force, which a test particle
is subjected to in addition to GR gravity. For conformal theories, the fifth force
is expected to be proportional to the gradient of the scalar field, specifically

Fφ ∝ −
A,φ
A
∇φ. (2.4)

For more detailed mathematical descriptions of the variation of the action in
scalar–tensor theories, see for instance [Wat06; ZKM13]. A simple conformal
theory defined by A = 1 + a1φ (where a1 is a constant model parameter) has a
fifth force on the form Fφ ∝ −∇φ when assuming a1φ� 1.

A point worth noting here is that when applying scalar–tensor theories
to explain dark energy, it is not the intention that the fifth force should be
responsible for the accelerated cosmic expansion. For a canonical scalar field, the
potential energy V is typically the source of dark energy in the Einstein–Hilbert
action (2.2). However, the fifth forces can in some case mimic the extra force
commonly associated with dark matter [Bur+19].

Varying the action with respect to φ gives the scalar field equation of motion
(EOM), also called the Klein–Gordon equation, which can be used to calculate
the behaviour of the scalar field. The conformal EOM in an expanding FLRW
metric is given by

φ̈+ 3Hφ̇− 1
a2∇

2φ = −∂Veff

∂φ
, (2.5)

where the effective potential, Veff , typically is a function of the scalar field φ and
the local matter density ρ. Veff can also include the gravitational potential Ψ
and derivatives of both φ and Ψ.

For all scalar–tensor theories, the EOM (2.5) is a wave equation with an
additional—and often non-trivial—source term. The field stretches when it
is perturbed, and restores towards the equilibrium value as waves spread out
from the source of the perturbation, similar to ripples on the surface of water.
Compared to gravitational waves in the tensor sector, which can only arise from
quadrupole perturbations, waves in the scalar can be monopole. This means
that a spherically symmetric but pulsating mass distribution can generate scalar
field waves. In section 3.5.3 and in Paper I, I study these waves in more detail.

Fifth forces arising from a scalar field are expected to be attractive. Results
from field theory state that a scalar boson with a standard kinetic term mediates
an attractive force, like the force of gravity. Paper II explores, among other
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things, the possibility for a disformally coupled scalar field mediating a repulsive
fifth force. A fifth force acting opposite of gravity, even for a short period of time,
is not expected from a field with a canonical kinetic term in the Lagrangian. I
will discuss the kinetic term of the disformal model in section 2.6.2.

2.5 Screening Mechanisms

A problem we encounter when trying to modify gravity by introducing a coupled
scalar field is that the fifth force, which works in addition to GR, affects normal
matter too much. We need to recover GR in systems where it has been tested
rigorously, like on earth, in the Solar System, for pulsars timings, and for merging
black holes that generate gravitational waves [Fer19]. This does mostly mean
that we need to recover GR on small scales or in regions of high density (the
average density in the Solar System is many orders of magnitude higher than
the average of the known Universe). Modifications to gravity are allowed in
low-density regions and at large scales. See section 2.7 for a description of some
common tests of gravity.

We could hypothetically tune the coupling between the field and matter to
be arbitrarily small, such that the modifications become negligible. However,
this fine-tuning is not any better than the fine-tuning problem of ΛCDM. A
preferred solution is a coupling of similar strength to gravity, but which is hidden
through what is called a screening mechanism.

There are many available mechanisms that screen the fifth forces through
different means (see e.g. [Bra12] for an introduction or [Joy+15] for a thorough
review). Examples of screening mechanisms are the symmetry restoration in
the symmetron model, the chameleon mechanism, k-mouflage, and Vainshtein
screening. I will introduce them briefly here.

2.5.1 The Chameleon Model

The screening mechanism in the chameleon model relies on the field acquiring
a deep effective potential in high densities [KW04]. Such a deep potential is
equivalent to a very high effective mass for the field, which means that the fifth
force becomes short range, and is effectively turned off.

For a n = 1 chameleon, the effective potential is given by

Veff = ρ

(
1 + β

MPl
φ

)
+ M5

φ
, (2.6)

where M and β are parameters of the model. MPl is the Planck mass. See figure
2.1 for a sketch of the shape of the effective potential in high and low densities.
The slope of the potential becomes very steep in high-density environments,
or close to a massive body. In low-density environments, however, the field is
approximately free and allowed to mediate a long-range fifth force.
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Figure 2.1: Sketch of the effective potential in the chameleon model. The two
lines represent the effective potential in high densities (blue solid) and in low
densities (orange dashed).

2.5.2 The Symmetron Model

The symmetron model also has an effective potential that changes shape in higher
densities. Unlike the chameleon, the fifth force is not screened by increasing the
effective mass. The symmetron screening relies on restoring a φ→ −φ symmetry
in high densities [HK10]. This symmetry restoration forces the expectation value
of φ to be close to zero, effectively reducing the coupling of the field to zero.

In the case of the symmetron model, the effective potential is

Veff = 1
2

( ρ

M2 − µ
2
)
φ2 + 1

4λφ
4, (2.7)

where M , µ, and λ are (positive valued) parameters of the model. The effective
potential is illustrated in figure 2.2. In high densities and in the early universe,
the symmetron effective potential has a single minimum at φ = 0. When the
density goes down, there is a spontaneous symmetry breaking which results
in the effective potential acquiring two non-zero minima. The coupling is
defined through a conformal transformation of the metric, g̃µν = A (φ) gµν , with
A (φ) = 1 + (φ/M)2. In high-density areas, φ ≈ 0, which in turn moves the value
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Figure 2.2: Sketch of the effective potential in the symmetron model. The two
lines represent the effective potential in high densities (blue solid) and in low
densities (orange dashed).

of the conformal factor A close to unity. This essentially hides the modifications
to gravity by recovering g̃µν = gµν .

Special topological defects called domain walls can arise in the Symmetron
model due to the two-minima shape of the effective potential. This happens after
the spontaneous symmetry breaking if one region of space falls to one minimum,
and another region falls to the other minimum. As the two regions with opposite
sign for the scalar field grow to touch each other, the wall between them contains
significant amounts of stored energy in the gradient of the scalar field. If the
domain walls collapse, the gradient energy is released in the form of waves in
the scalar field.

2.5.3 Screening Through Field Derivatives

In these theories, the Lagrangian includes derivatives of the scalar field. Common
among these theories is that the fifth force is allowed to be of gravity strength far
from a massive body, while it is suppressed at short distances from the massive
body. The fifth force is proportional to the field gradient Fφ ∝ ∇φ, and the
derivative terms suppress the field gradient in the proximity of a massive body.
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The k-mouflage model includes first-order derivatives of the field, ∂φ, in the
Lagrangian. The fifth force in these first-order derivative theories reduces to zero
(because the field gradient becomes small) when the gravitational acceleration
increases near a massive body [BDZ09].

The galileon model includes higher-order derivatives, like ∂2φ, in the
Lagrangian. The terms are tuned to avoid higher-order ghost instabilities in the
equation of motion [NRT09]. This is an example of a theory with a Vainshtein
screening. At long distances from a massive source, the non-linear derivative
terms are negligible and the equation of motion is similar to a conformal scalar
field. In this linear regime, the field is allowed to mediate a gravity strength force
with a gradient approximately following ∂φ/∂r ∝ 1/r2. Within the Vainshtein
radius, the non-linear derivative terms start dominating and the field perturbation
is suppressed. Hence, the field profile achieves a weaker gradient, ∂φ/∂r ∝ 1/

√
r.

The weaker field slope means that as we approach the massive object, the strength
of normal 1/r2 gravity will increase faster than the fifth forces, rendering the
fifth forces negligible [BD13].

2.5.4 Coupling in the Dark Sector

A possible alternative to screening is a coupling in the dark sector only. In this
paradigm, the extra degree of freedom—the scalar field—only couples to dark
matter, and not to Standard Model particles [Bol+13]. In this way, photons and
visible matter both follow the GR geodesics precisely. Other experiments we do
in the Solar System or in a laboratory, which measure normal matter, will also
give the same prediction as GR.

With a pure N -body simulation, we assume that all matter behaves like
pressureless dust. In practice, such a simulation is a dark matter-only simulation—
without baryons. Because we do not include baryons, we expect our density
distribution to accurately represent a theory with a coupling only in the dark
sector, at least on scales larger than galaxies. I will describe the technicalities of
N -body simulations further in section 3.2.

2.6 The Disformal Model

Disformal couplings were introduced by Bekenstein in 1993, who was motivated
by the idea of finding the most general physically allowed relation between the
Einstein and Jordan frame metrics [Bek93]. In typical conformal theories without
a disformal coupling, the stress–energy tensor is coupled to the scalar field in
such a way that the density of matter directly influences the value of the scalar,
and vice versa. In theories with a disformal coupling, the stress–energy tensor
is coupled to the spatial and temporal derivatives of the field, which allows for
more complex dynamics.
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2.6.1 Equations

The relation between the two metrics in the Einstein–Hilbert action (2.2) is in
the disformal case given by

g̃µν = A (φ) gµν +B (φ)φ,µφ,ν . (2.8)

Here we still allow a conformal coupling A (φ), as well as a new disformal coupling
B (φ). In the most general case, both of these couplings can also depend on the
kinetic energy of the field X, but I do not consider this case in my work. What
I will call a pure disformal coupling is when A = 1. The conformal factor A
cannot be zero because it is needed to recover GR (i.e. g̃µν = gµν). In Appendix
A, I present the derivation of the equation of motion as well as the fifth forces in
the pure disformal model.

The equation of motion for a pure disformally coupled scalar field, in an
expanding FLRW metric is

(
1 + γ2ρ

)
φ̈+ 3Hφ̇− 1

a2∇
2φ = −γ2ρ

(
B,φ
2B φ̇2

)
− V,φ, (2.9)

where the comma subscript ,φ denotes a partial derivative with respect to φ, the
combination γ2 is given by

γ2 ≡ B

1− 2BX , (2.10)

and the kinetic energy of the field is

X ≡ −1
2φ

,µφ,µ. (2.11)

The acceleration due to the fifth force in the pure disformal case is

Fφ = −
(
Bφ̈+ 1

2B,φφ̇
2)

1− 2BX ∇φ, (2.12)

which, in the low kinetic energy X and constant B limit, can be approximated
as Fφ ∝ −φ̈∇φ. In other words, the disformal fifth force is dominated by a term
proportional to the acceleration of the field (φ̈). In the conformal fifth force,
given in equation (2.4), no time derivatives are possible4.

2.6.2 Canonical or Not?

The disformal field Lagrangian in the Einstein-Hilbert action (2.2) only contains
a canonical kinetic term, Lφ = X − V (φ), when written in the Einstein frame.
However, the coupling in the matter sector is written in a way that hides several
terms involving the derivatives of the field. When performing the transformation
g̃µν = A (φ) gµν +B (φ)φ,µφ,ν in the matter sector of the Einstein-Hilbert action,
higher-order terms and kinetic mixing terms can appear. Specifically, when

4When assuming that the conformal factor A (φ) is a function of φ only.
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transforming this theory to the Jordan frame, the field Lagrangian does not
have the canonical form [SV15]. For a more technical discussion on disformal
transformations and the resulting kinetic term, see for instance [Tsu15]. There
is currently no consensus on which (if any) of the two frames is the physical one,
although they both are thought to describe the same physics. In the conformal
case, the physics described by the Jordan and Einstein frames are equivalent
[PV14], and in the disformal case, they seem to be equivalent as long as the time
coordinate is chosen carefully [DNS15]. One special case where the frames do not
necessarily describe the same physics, is when the disformal transformation is
singular and hence not invertible [Dom+15]. Such (possibly unhealthy) theories
based on singular disformal transformations are often dubbed mimetic gravity.

2.6.3 Expected Phenomena and Screening

The main disformal effects can be predicted intuitively from the EOM (equation
2.9), even with a constant disformal coupling B. After isolating the field
acceleration on the left-hand side of the EOM, assuming that the kinetic energy
X is small, and ignoring the term with the derivative of B, we find

φ̈ ≈ 1
(1 +Bρ)

[
1
a2∇

2φ− 3Hφ̇− V,φ
]
. (2.13)

The biggest difference from the conformal equation of motion is the pre-factor
1/(1 +Bρ), which effectively suppresses the field acceleration in areas with high
density ρ. This means that the disformal field is frozen in the dense early
universe, as well as in over-dense matter haloes. Another difference is that there
are no explicit terms including the matter density ρ inside the bracket on the
right-hand side, which in the conformal case gives density dependent effective
potentials. The naive approach for calculating the field perturbations is to solve
the quasi-static equation of motion (see section 3.5.1), which corresponds to
neglecting the time derivative terms and solving the resulting Poisson’s equation,

∇2φ = a2V,φ. (2.14)

Because the bare potential does not depend on density or position, the naive
solution to this equation is that the field value is uniform in space and at the
bottom of the potential. We find in Paper II that this is not the case, and
that the density dependent acceleration induced by the pre-factor 1/(1 +Bρ)
is responsible for field perturbations associated with over-dense regions. This
behaviour will be discussed further in section 3.6.3.3.

The fifth force is proportional to the field acceleration φ̈ (in addition to the
field gradient ∇φ), as seen from equation (2.12). This indicates that in areas
where the field is frozen, the fifth force is also suppressed. This gives rise to
a disformal screening mechanism, which hides the pure disformal fifth force in
the early universe and in the Solar System [KMZ12]. In mixed models, with
both a conformal and disformal coupling, the disformal coupling contributes
to screening the conformal fifth force in the early universe, because the field
gradients will not evolve due to the suppressing factor 1/(1 +Bρ).
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If there is a spatial gradient in φ, the transformation g → g̃ will stretch space
more along the direction of the gradient. This means that the disformal model
can generate anisotropies in the matter distribution if the large scale gradients
of the field are significant.

2.7 Probes for Modified Gravity

In this section I describe some methods that have been proposed to distinguish
gravitational theories from each other. A significant deviation from the
predictions of the concordance model in any of these probes could challenge GR
and imply new physics, like modified gravity.

2.7.1 Parametrized Post-Newtonian Formalism

The parametrized Post-Newtonian (PPN) framework aims to quantify possible
gravitational effects beyond Newtonian gravity, including effects related to a
preferred frame, a preferred location, and the possible violation of conservation
of momentum. The full Will–Nordtvedt PPN formalism has 10 post-Newtonian
parameters entering the line element. The two most common of these parameters
in the context of testing gravity are γPPN and βPPN, also known as the Eddington–
Robertson–Schiff parameters. Both of these are exactly 1 in GR [Wil06]. In a
redshift-zero system with Newtonian potential Ψ, the line element when including
the post-Newtonian γPPN and βPPN is given by

ds2 = −
(
1 + 2Ψ + 2βPPNΨ2)dt2 + (t) (1− 2γPPNΨ) dxidxi. (2.15)

The PPN parameter γPPN is interpreted as the amount of spatial curvature
produced by a mass at rest. It can be written as the ratio of the lensing and
gravitational potentials, γPPN = Φ/Ψ, when assuming Ψ2 ≈ 0. In GR it is
expected that γPPN = 1, while in theories of modified gravity, the deviation from
1 is closely related to the amplitude of the fifth force. Experimentally measuring
the values of |γPPN − 1| and |βPPN − 1| are ways of quantifying the difference
between modified gravity and GR. The parameter γPPN can be measured through
the gravitational time delay or the deflection of light, while βPPN can for instance
be measured through the perihelion shift of Mercury.

2.7.2 Solar System Tests

The Cassini probe is part of an experiment to determine the γPPN parameter
with high accuracy by measuring the amount of delay and deflection of photons
passing close to the Sun [BIT03]. I explain how this constraint applies to some
conformal theories in section 2.7.2.1. The perihelion shift of Mercury can be used
to constrain the βPPN parameter, as described in [Sha90]. Lunar laser ranging
also help constraining gravity by placing limits on the forces between the Earth
and the Moon, as well as on Lorentz symmetry [Bou+17]. See [ZNZ19] for a
study that combines the Cassini constraints with lunar laser ranging as well as
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pulsar timing for constraining parameters of the Brans–Dicke and chameleon
models.

2.7.2.1 Cassini Bounds on Conformal Theories

The Cassini radio link experiment achieved a one-σ constraint [BIT03]

|γPPN − 1| . 10−5. (2.16)

Conformally coupled theories predict |γPPN − 1| ∝ A (φ)−1. The chameleon and
symmetron models have conformal factors approximated as A (φ) = 1 + (φ/M)n
for n = 1 and n = 2 respectively, where M is a mass scale. These theories
therefore predict |γPPN − 1| ∝ φn, which requires a certain strength of the
screening mechanism to keep the field expectation value sufficiently close to zero
in the Solar System [Zha+16].

Using the cameleon model as an example, the amplitude of the deviation of
γPPN is given by

|γPPN − 1| = 2βφ
MPlΨ

, (2.17)

where Ψ is the Newtonian potential. At the surface of the Sun, Ψ ≈ 2× 10−6 in
natural units where c = ~ = 1. From the effective potential in equation (2.6),
one can find that the expectation value (minimum of Veff) for the field is

φ0 (ρ) =

√
M5MPl

βρ
. (2.18)

A lower estimate for the density ρ, is the local dark matter density in the Milky
Way halo, ρgal ≈ 10−118M4

Pl. Inserting these estimates into equation (2.17) gives

|γPPN − 1| =
2β
√

M5MPl
β×10−118M4

Pl

2× 10−6MPl
. (2.19)

Simplifying this equation, and applying the constraint (2.16), gives

1065

√
β
M5

M5
Pl

. 10−5, (2.20)

which reduces to the following parameter combination constraint,

β

(
M

MPl

)5
. 10−140. (2.21)

The coupling β is expected to be O (1) for a gravitational strength force in the
unscreened region. When assuming β ≈ 1, the resulting constraint on the mass
scale M is

M . 10−28MPl ≈ 1eV. (2.22)
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2.7.3 Laboratory Tests

Atom interferometry can test models with a density sensitive fifth force. In this
experiment, a beam of neutral particles—typically atoms or neutrons—are sent
falling through a vacuum chamber close to a massive source mass. A laser pulse
can be used to split and manipulate the beam of the particles, such that the
wave function travels along two different paths before it is recombined. The
fifth force in screened theories (like the chameleon model) is expected to be
more screened close to the source mass, so a particle accelerates towards Earth
with a different rate depending on the distance from the source mass. The
interference pattern when combining the wave function can be used to constrain
the difference in the fifth force along the two paths [BCH15; Ham+15a]. Other
laboratory experiments, such as a torsion pendulum, can also be used to constrain
some specific models [Upa13]. Furthermore, there are studies on how to detect
alternative models of dark matter in particle colliders like the LHC [Har+15], as
well as studies on which signatures can be expected from scalar field dark energy
in particle colliders [BBE15; Bra+16].

2.7.4 Pulsar Timing and Stellar Properties

Pulsars have a very stable rotation rate, and can thus be used as precisely
ticking clocks. The strong equivalence principle of GR can be tested to very
high precision through pulsar timing of binary and triple systems [Ren19]. Stars
situated in unscreened regions can evolve differently than in GR. Modifications
that enhance gravity—like the chameleon model—are expected to increase the
temperature and brightness of affected stars, and hence reduce their life-span
[SJV14].

2.7.5 Background Evolution and CMB

On the largest scales, measurements of the expansion history of the Universe can
reveal details about the underlying theory of gravity. The dark energy component
of ΛCDM is expected to have a constant equation of state w ≡ p/ρ = −1. Some
theories of modified gravity predict deviations from w = −1. A time-varying
equation of state is considered a smoking gun of quintessence and of many
scalar–tensor theories [AT10].

With linear perturbation theory and numerical methods, it is possible to
do parameter fitting with modified gravity. In Appendix C, I compare the
linearised Einstein equations in GR to a conformally coupled scalar–tensor
theory. In conformal scalar–tensor theories, the growth of perturbations is in
general enhanced when compared to GR, which can be seen from the fact that
the scalar field perturbation δφ appears in a term similar to the gravitational
potential Ψ in the Euler equation for velocity divergence. In other words: the
fifth force enhances gravity. See section C.2.1 of Appendix C for more details.

The Planck collaboration did extensive work in constraining some extensions
to ΛCDM which modify the CMB [Pla+16]. They worked in the effective field
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theory framework, which allows to probe a wider, but less specific, set of modified
gravity theories. The CMB, in combination with late time probes, can be used
to very precisely estimate the allowed deviations from ΛCDM over a large span
of time and scales. In the following subsection, I briefly introduce the most
important measurable effects on the CMB from modified gravity. I then proceed
to introduce the Integrated Sachs–Wolfe effect and the slingshot effect in detail,
because they are important for the understanding of my work in Paper III.

2.7.5.1 Modified Gravity Effects on the CMB

In most theories of modified gravity, dark energy is not exactly a cosmological
constant. The varying equation of state and the varying ratio of dark energy
to matter, can all modify the expansion history. This results in a potentially
measurable change in the distance to the surface of last scattering.

Changes in the gravitational potentials, and enhanced growth of structure,
can be measured through a change in the integrated Sachs–Wolfe (ISW) effect
compared to the GR case. The ISW effect is a result of CMB photons changing
energy when passing through an evolving gravitational potential; I will explain
the ISW in more detail in section 2.7.5.2. An increased growth of structure
can also lead to a measured amplitude of perturbations σ8 at late times which
disagrees with the σ8 predicted from evolving ΛCDM with the parameters
inferred from the CMB.

Modified gravity can change the effect of gravitational lensing. This changes
the lensing potential, and can also modify the lensing of B-mode polarisation.
Detection of B-modes is one of the primary science goals of future CMB
missions, with the aim of identifying primordial gravitational waves within
the GR framework.

Especially in the inferred values of H0 and σ8, there is some tension between
the data from CMB and local observations. However, the alternative models
that the Planck collaboration tested do not significantly improve these tensions
[Pla+16]. Similar conclusions have been reached by other groups that apply
different models [DSA19]. There is still a possibility that specific modified gravity
theories which have not yet been compared to the data in this way (or models
that have not yet been developed) might be a better fit than ΛCDM.

2.7.5.2 The Integrated Sachs–Wolfe Effect

In GR and most of its modifications, photons change their trajectories and
energies when moving through the curved space-time. The change in trajectories
can be seen in the effect of gravitational lensing, where the curvature around
a massive body will bend and concentrate light rays like a convex lens. Such
gravitational deflection has been observed around our Sun [Ken19], and also
around more massive objects like galaxies and clusters. The first discovery of a
strongly lensed quasar was done in 1979 [WCW79], where a galaxy in the line of
sight bends the light of the quasar such that two separate images of the single
quasar can be observed.
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A photon moving through a gravitational potential will lose or gain energy as
the level of the potential changes. This can for instance be seen in the red-shifting
of light leaving a massive star, where the photon spends energy when climbing
out of the potential well. The ISW effect is the change of photon energy as
a photon passes through a gravitational potential which is evolving in time;
If an over-density is stretching due to the cosmic expansion, its gravitational
potential becomes shallower, and a photon which gained energy while falling
into the potential well will lose a smaller amount of energy when climbing out
of the shallower potential. The result on the CMB field is that CMB photons
have a higher inferred temperature in regions where they have passed through
a supercluster that expands due to cosmic expansion, or have a lower inferred
temperature if they have passed through a supercluster that is increasing its
density through accretion. The ISW effect can also be seen in under-dense
regions, where an expanding void will leave a cold spot in the CMB.

Mathematically, the change in temperature ∆T of a photon due to the ISW
effect is given as a time integral of the change in total potential over the life of
the photon [Dod03]:

∆T
T0

=
to∫
te

(
Ψ̇ + Φ̇

)
dt. (2.23)

Here, T0 is the initial (background) temperature, te is the time of emission,
to is the time of observation, and Ψ̇, Φ̇ are the time derivatives of the metric
perturbations (potentials). Under the assumption of no anisotropic stress, Ψ = Φ
in the GR case, and we can write the ISW as

∆T
T0

= 2
to∫
te

(
Ψ̇
)

dt. (2.24)

Any physical process that changes the metric perturbations Ψ or Φ over
time will give an imprint on the CMB through the ISW effect. This includes
an increased growth of structure, or modifications to gravity that introduce
a different relation between matter and the metric perturbations. Both of
these effects can come from a coupled scalar field, affecting either the clustering
through a fifth force or affecting the lensing potential through the coupling
between matter and the metric.

2.7.5.3 The Slingshot Effect

A special case of the ISW effect is the slingshot effect. If a non-evolving massive
body (e.g. a galaxy) has a velocity component perpendicular to the line of
sight relative to the observer, CMB photons that pass close to this mass are
exposed to a time-evolving potential well. On their way to the observer, the
CMB photons pass through a potential well that becomes deeper in front of the
moving mass and shallower behind the moving mass; There is a net increase in
∆T behind the object and a net decrease in ∆T in front of the object, resulting
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Figure 2.3: Example of the dark matter power spectrum of the redshift zero
universe for some different models. The units of k along the horizontal axis are
in h/Mpc. The lower panel shows the relative difference with respect to ΛCDM.
Figure is compiled from my own N -body simulations of toy models of gravity.

in a characteristic dipole pattern. More details on these calculations can be
found in Appendix B.

The slingshot dipole of a single moving galaxy or galaxy cluster has a ∆T
that is subdominant to the CMB perturbations and the current instrument noise,
and thus has not been measured yet. In Paper III we propose a stacking scheme
to measure the slingshot effect and infer the average transverse infall velocity of
galaxies into a supercluster. This method is sensitive to the concentration m/rvir
of the infalling galaxies, as well as their average infall velocity vr. In typical
scalar–tensor theories, the fifth force is attractive and enhances gravitational
collapse, therefore we expect both m/rvir and vr to increase the measured
slingshot effect for these theories.

2.7.6 Matter Power Spectrum

The redshift zero fluctuations in the density of the Universe are often displayed by
plotting the power spectrum, abbreviated P (k). The power spectrum visualises
the amount of clustering, or correlations, on a given scale. An example of the
matter power spectra from a set of simulations with several different models
for gravity are shown in figure 2.3. The brown line is the power spectrum of
ΛCDM, while the other lines are toy models for modified gravity with a variety
of parameters. The horizontal axis of the graph represents the scale of structure,
with increasing wave-number k corresponding to smaller scales. The largest
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scales are on the left-hand side of the horizontal axis and the smallest scales are
to the right. The vertical axis, or the power, represents the amount of clustering
on that given scale.

To be more specific, the power spectrum is a Fourier transform of the two-
point correlation function of the matter over-density field in 3D space. The
over-density is defined as

δ (x) = ρ (x)− ρ̄
ρ̄

, (2.25)

where ρ̄ is the average (background) matter density. The two point correlation
function in real space is given by

ξ (r) = 〈δ (x) δ (x + r)〉 . (2.26)

Under the assumption of isotropy, we can average the two-point function over
all directions without losing information. Then, ξ (r) = ξ (r)|r|=r describes the
amount of self correlation in the density field at distances of r. The power
spectrum P (k) is defined by the Fourier transform

P (k) =
∫
ξ (x) e−ik·x d3x

∣∣
|k|=k . (2.27)

The spatial Fourier transform of the over-density δ (x) is δ̃ (k). From Fourier
quantities, the power spectrum can also be written as [Dod03]〈

δ̃ (k) δ̃ (k′)
〉

= (2π)3
P (k) δ3 (k− k′) . (2.28)

The angular bracket on the left-hand side is the average of the product, over
the whole distribution, and δ3 denotes the 3D Dirac delta function. The scalar
value k is the magnitude of the vector k. Repeated over- or under-densities on a
certain scale k, will increase the product on the left-hand side, and hence lead
to a higher power P (k) on that scale.

By extracting the galaxy two-point function from observational galaxy
catalogues, it is possible to build a precise galaxy power spectrum up to distances
of some hundred Mpc [Coo04]. There is introduced a bias when comparing the
theoretical dark matter power spectrum—typically generated from simulations—
with the observed galaxy power spectrum from galaxy surveys [DJS18]. We
do not have access to observe the dark matter distribution directly5, hence
a common alternative is to assume that the galaxies trace the dark matter
distribution to a given extent. The highest density peaks of the dark matter
distribution form galaxies, and these galaxies are typically highly clustered
compared to the dark matter. This bias can be modelled as a linear galaxy bias
b, which appears as a factor enhancing the galaxy over-density

δg = bδDM. (2.29)
5Although, the dark matter distribution can be inferred indirectly through e.g. gravitational

lensing.
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The power spectrum—or rather the change in power with relation to GR—can
be used to differentiate different models of gravity. The lower panel of figure 2.3
shows the relative difference in power with respect to the ΛCDM model (GR).

∆P (k) = P (k)
P (k)GR

− 1. (2.30)

An increase in the force of gravity on a given length scale is expected to increase
correlations, and therefore power, on that scale. Most scalar–tensor theories for
modified gravity have a fifth force that is attractive, which enhances gravity on
the smallest scales. This effect is seen in most of the example models in the plot:
model A, D, E, and F all show a significant increase of 5 to 50 % in power on
scales smaller than k = 1h/Mpc. Model C has a very weak coupling, so the fifth
forces have not affected the matter distribution significantly; The P (k) of model
C is indistinguishable from that of GR.

Model B shows behaviour which is not typically expected from scalar–tensor
theories. Here the power on the largest scales is significantly higher than in the
GR case, while it is lower than GR on the smallest scales. One interpretation
of this could be that gravity is effectively enhanced on the largest scales, while
there is an effect suppressing gravity or otherwise smoothing out the matter
distribution on small scales.

The largest scales of the power spectrum can be compared to linear theory,
while on the smallest scales (below a few megaparsecs) we need non-linear
approaches like N -body simulations to model the power spectrum precisely. On
these scales, there is currently some freedom to modify gravity because the power
is not well constrained with current surveys. Upcoming surveys (like Euclid and
SKA) will be able to more precisely discern modifications to gravity on Mpc
scales.

2.7.7 Beyond the Power Spectrum

For a Gaussian density distribution, the power spectrum contains enough
information to reconstruct the underlying density field. However, the power
spectrum does not retain all information about other density distributions. One
way to extract more information from a non-Gaussian density field is by going to
higher-order statistics. The bi-spectrum is for instance based on the three-point
correlation function (whereas the power spectrum is based on the two-point
correlation function).

Linear perturbation theory predicts that a matter distribution in an expanding
universe evolves as a log-normal distribution, under the assumption of GR and
a Gaussian velocity field [CJ91]. Hence, the logarithm of the matter density
field, log (ρ), is expected to be close to Gaussian. Taking the power spectrum
of the logarithmic density field retains more information about the original
density distribution [GE15]. When taking the power spectrum of a realistic
density distribution, the small and highly over-dense areas containing galaxies
and clusters are weighted the most and contribute more to the power spectrum
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than other areas. These over-dense regions are expected to be screened in
most theories of modified gravity. Hence, the traditional power spectrum mostly
probes regions where we know that gravity is similar to GR. Other transformation
functions for the density field can yield a power spectrum that is more sensitive
to differences induced by modified gravity [LM17].

2.7.8 Void Statistics

Most of the currently viable theories of modified gravity apply some kind
of screening mechanism, which effectively hides the differences from GR in
high-density environments like in galaxy clusters. For this reason, we expect
modifications of gravity to be stronger in environments of lower density, like
filaments and voids [Fal+18]. One simple statistical tool is to look at the
abundance of voids within a certain under-density or size range. With better
measurements, it is possible to map the density field around voids to find the void
profiles, which can be compared to the ones from simulations. Other statistical
methods include finding the power spectrum of voids [Per+19].

2.7.9 Velocity Statistics

When an external force acts on a test particle, the particle will first change its
velocity before it significantly changes its position. This means that velocities
of galaxies are sensitive to changes in the fifth force affecting that galaxy. The
velocities of objects relative to the Earth can be measured with the Doppler
effect, which gives a red-shift or a blue-shift of spectral lines depending on if the
object moves away from or towards the Earth. The Doppler shift only measures
the radial velocity component, and furthermore it is not trivial to disentangle
the peculiar radial velocity from the radial velocity due to expansion of space
between the object and the observer.

From the radial velocity field of galaxies, it is possible to extract an estimator
for the velocity power spectrum [How+17], as well as the pairwise velocity
dispersion [Iva+16]. Both of these statistics can be used to constrain theories of
gravity.

Knowledge of the transverse velocity component would add more information
to galaxy catalogues, allowing us to disentangle the cosmic expansion from
peculiar velocities and giving better statistics when comparing models to
observations. In Paper III we present a method to use the slingshot effect
to measure the transverse motions of galaxies falling into a galaxy cluster. The
slingshot effect results in an increase in energy for photons passing behind a
moving massive object, and a decrease in energy for photons passing in front
of the moving object. This effect is very small, but by combining the images
around many infalling galaxies, we expect that the average infall velocity can be
detected with this effect in the near future.
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Figure 2.4: A schematic of possible gravitational wave polarisations. Only
modes (a) and (b) are allowed to propagate in GR. The figure is re-used from
[Wil06], with permission from Clifford Will. The original figure was accessed at
https://link.springer.com/article/10.12942%2Flrr-2006-3

2.7.10 Gravitational Waves

The most stringent constraints on modified gravity from gravitational waves are
from the binary neutron star merger GW170817, where there was an associated
gamma-ray burst detected directly after the gravitational waves. This constrains
the speed of gravitational waves to be very close to the speed of light, which rules
out theories where the coupling is expected to change the speed of gravitational
waves [EZ18].

With more detectors, it will be possible to measure the polarisation of
gravitational waves precisely. See figure 2.4 for illustrations of the deformations
of space when a gravitational wave with a given polarisation passes Earth. Pure
GR only allows propagating tensor waves, resulting in deformations of type (a)
and (b). Scalar field theories in general allow monopole deformations (c), and
some theories predict the propagation of the other modes (d), (e), or (f) as
well [ACD08]. The detection of a monopole gravitational wave (or other exotic
polarisations) will be a strong sign of gravity beyond GR [GSO16].
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Chapter 3

Numerical Simulations

The computation power available for scientists is continuously growing. This is
due to an increase in the number of transistors per processor core, but also due
to more processor cores being assembled in each super-computer. Combined with
the effort of programmers to find more efficient solutions to numerical problems,
this allows us to create increasingly complex and detailed computer simulations.
In astrophysics, simulations are extensively used to create a virtual cosmos from
scratch, which we can control and study in ways that we cannot do with the
Universe we live in. Numerical simulations play a key role in my study of the
nature of gravity, and in this chapter, I will delve deeper into the specifics of my
implementations of modified gravity. Specifically, I will discuss how to simulate
the time evolution of a scalar field out of the quasi-static approximation, and
how to implement the extra fifth force in N -body simulations.

3.1 History and Linear Theory

By assuming that small scales do not affect the large scales significantly, it is
possible to apply perturbation theory to the different components of the Universe
(dark matter, baryons, and radiation), and infer the growth of structures on
different scales. Working in Fourier space, computer simulations that evolve
the linear Einstein–Boltzmann equations (see Appendix C) can track the linear
evolution of many different scales independently, resulting in a linear power
spectrum. This method can be used to estimate the power spectrum of
the temperature fluctuations of the CMB, or the large scales of the matter
power spectrum at redshift zero. These Einstein–Boltzmann solvers can be
combined with a Monte Carlo Markov chain (MCMC) code for efficient parameter
estimation, which has been done by for instance the Planck collaboration when
predicting ΛCDM parameters from CMB data [Pla+18].

Linear perturbation theory and ΛCDM successfully reproduce CMB measure-
ments of the early universe, as well as the large scales structures of the observed
universe today. However, linear theory breaks down at high densities, meaning
that the power spectrum on the smallest scales, where the density perturbations
have grown beyond the validity of the linear regime, cannot be trusted [Sch06].
The approximate terminology for length scales I use in my work is: linear scales
are larger than 100 Mpc, quasi-linear scales are between a few and 100 Mpc, and
non-linear scales are smaller than a few Mpc. In the quasi-linear regime, it is
still possible to get good results with linear theory, given some tweaking [Ber96].

On smaller, non-linear scales, other methods must be used to calculate the
evolution of matter. One commonly used method is N -body simulations, where
lumps of matter with the mass of millions, or even billions, of solar masses are
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considered individual particles. This corresponds to reducing a galaxy to a few
point particles. The motions of the underlying matter distribution is traced
through computing the motion of the particles in what is called a gravitational
N -body system. By allowing these point masses to interact individually, one can
expect a precision limited by the resolution of your simulation. Such simulations
are used to reach non-linear resolutions below a Mpc, even down to kiloparsecs,
at which scale baryon physics starts to become important for the evolution of
structures, like galaxies. In this work, I will focus on N -body simulations without
baryonic physics.

The gravitational two-body problem can be solved exactly by using calculus.
However, the three-body problem is shown to not have a general solution on
closed form, except for in special configurations of the three masses [MQ14].
The general N -body problem with N � 2 must be solved numerically, which
in practice means using computer simulations. A numerical solution is always
an approximation to the motion that the bodies would have in reality, but
through higher resolution and improved numerical methods, it is possible to
come arbitrarily close to the real solution, given that the problem is numerically
stable.

Light intensity goes as 1/r2, just like gravity. Therefore, gravitational forces
could be modelled in a laboratory using light sources as “point masses”. Using
light bulbs and photocell measurements, the gravitational motions of a galaxy
were integrated forward in time numerically using an analogue version of an
N -body solver before advanced computers were available [Hol41].

The first computer implementation employed direct summation; For every
time step, the gravitational acceleration of each individual particle is calculated by
summing up the forces from each of the other particles. This kind of calculation
has a complexity of O

(
n2). This means that having ten times more particles

will increase the computation time a hundredfold. With this implementation, we
cannot have very many particles before being limited by the processing power of
our computers.

3.2 Cosmological N -body Simulations

There are many different implementations of cosmological N -body simulations
that allows better performance than direct summation of the forces. Some of the
most commonly used codes are Ramses [Tey02], Gadget [Spr05], and Pkdgrav
[Sta01]. These codes are designed to run in parallel on modern supercomputers
with thousands of CPU cores. The mentioned codes have the capability to
include a hydrodynamic component to simulate baryonic physics as well as the
dark matter N -body component. The dark matter N -body part of the currently
used methods now agree to a sub-percent level in the power spectrum ([Sch+16]
show less than a percent difference in power for k < 1h/Mpc).

In modern N -body simulations, millions or billions of point particles are
used to trace the underlying continuous matter distribution. The particles are
distributed in a simulation box with side lengths of megaparsecs to gigaparsecs.
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A larger box size means including more cosmic volume and therefore more total
mass; each cubic megaparsec of space contains on average 45 billion solar masses
of matter1.

A smaller volume box allows finer resolution for the mass particles, as well
as resolving smaller structures like galaxies and satellite galaxies. However, a
small volume box does not allow any structures larger than the box size to
form. This is a problem because the environment inside of enormous under-
dense supervoids and over-dense superclusters provides different conditions for
structure formation on small scales than a box with the average density of the
Universe. To get a realistic sample of environments similar to the ones found
in the observed universe, the box size should ideally be bigger than the biggest
expected structures; The biggest observed structure is a cosmic wall several Gpc
wide [HHB13].

The expansion of space is calculated from Friedmann equations (1.4) and
(1.5). This is included in the N -body simulation by using a comoving coordinate
system, where the simulation box and the coordinate grid are continuously
expanding according to the calculated scale factor. In this prescription, only the
peculiar motions of the particles relative to the expanding grid are tracked.

In the simplest cases, the particles only interact through gravity. Pure
gravitational N -body is well suited for tracing the evolution of pressureless
matter. The main matter content of the Universe is consistent with collisionless
and pressureless dark matter, and even stars and galaxies are usually far enough
from each other for gravity to dominate. On scales larger than galaxies, where
baryon physics are negligible, the collisionless N -body prescription is sufficient.
See [KVA12] for a comprehensive review of dark matter-only simulations.

In cosmology, we are mostly interested in the larger picture, but in other
areas of astrophysics, one might want to precisely simulate scales of galaxies
and smaller. In this case, the effects of the electromagnetic force on baryons
must be included. This can be done through hydrodynamic simulations, where a
baryonic gas component—separate from the dark matter N -body component—is
simulated with effects like temperature, pressure and friction. More advanced
simulations include radiation/neutrino components, stellar- and supernova
feedback, magneto-hydro-dynamics, and processes for radiative transfer. In
addition to baryon physics that are available in N -body codes like Ramses
and Gadget, there are other astrophysical codes developed specifically for
hydrodynamical simulations, like Arepo [Vog+12] and Gasoline [WKQ17].
Simulating baryons properly is significantly more computationally expensive than
dark matter, meaning that it is preferred to run dark matter-only simulations if
the relevant scales are not affected by gas physics. Hence, none of these baryonic
effects are included in the simulations done in this thesis.

An alternative to hydrodynamical simulations that still allows us to see
structures on galaxy scales is to “paint on” the gas and the galaxies after a pure
dark matter N -body simulation is finished. This method uses some statistical

1Calculated by assuming Ωm ≈ 0.3 and using the value of the critical density of the
Universe given in [McG].
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prescription to populate dark matter haloes with galaxies. The tuning of the
parameters in this method is not exact, because different sources (including both
simulations and observations) do not agree perfectly. Furthermore, care must be
taken when applying such a prescription to theories beyond ΛCDM because the
modifications may change the halo masses, rates of occupation, and gas fraction
[Dev+19].

3.3 Implementation for GR

Numerical solutions involve the discretisation of mass, space and time. Particle
motions are integrated forward in time using a time-stepping algorithm. For each
time step, the acceleration of each particle is calculated from the gravitational
force, while the position and velocity are found from a discrete time integration
scheme (like Euler or Runge-Kutta). The biggest bottleneck in this method is
the calculation of the gravitational on each particle. There are several different
ways to improve the force calculation from O

(
n2) to O (n logn) or better. The

general idea is that particles that are far away do not need to be summed over
individually, but rather averaged in some way.

Pkdgrav splits the particles into a binary k-d tree structure by bisecting
the simulation volume until each leaf of the tree contains at most 8 particles.
Particles that are close to each other in the tree structure are on average close to
each other physically. When calculating gravity, far away particles are grouped
according to the nodes of the tree structure, while nearby particles are summed
over directly.

Gadget also splits the particles into a tree structure, but they follow the
approach of Barnes & Hut [BH86] to repeatedly subdivide the cells in the volume
into eight sub-cells, each with half the side lengths of the parent cell. This
generates an oct-tree, which groups the particles in a hierarchical structure
depending on their distance. The oct-tree is traversed to determine if a node of
the tree is far enough away to count as a group, or if the node has to be opened
and the eight sub-nodes considered individually.

Ramses is a particle-mesh code. The acceleration of particles are not
calculated through gravitational force calculations between each particle,
but rather through calculating the gravitational potential from the density
distribution on the simulation grid. The code adaptively and recursively splits
the grid cells into oct-trees to increase the resolution of structures where particles
are clustered. The modified gravity N -body code Isis [LMW14], which I am
most familiar with, is based on Ramses. Hence, specific details in the rest of this
section reflects this particle-mesh N -body solver.

3.3.1 Initial Conditions

It is not necessary to run a full N -body solver from the initial perturbations at
the time of inflation, because the density perturbations in the early universe are
small enough for linear theory to hold for all scales. It is typical to evolve the
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perturbations linearly first, then make a particle realisation of the density field
and start the N -body simulation at around redshift z = 50. It has been found
that the power spectrum and mass functions do not change significantly even
when starting at a redshift of z = 25 in GR [Kne+09].

3.3.2 Interactions over Short and Long Distances

To avoid that the 1/r2 force grows unbounded when two particles are close to
each other, a softening of the force is often introduced. The point particles
represent smooth blobs of matter, meaning that in a real situation they would
not have a hard 2-body interaction when their centres of mass pass close to each
other. A typical form of the amplitude of the softened force is

F = Gm1m2

r2 + ε2
, (3.1)

for some smoothing length ε. At large distances, r � ε and the force behaves as
1/r2, but for shorter distances, the force asymptotically approaches an upper
limit set by 1/ε2.

Ramses finds the Newtonian force FN on the particles from the gradient of
the gravitational potential,

FN = −∇Ψ. (3.2)
To calculate the gravitational potential Ψ, a gravitational Poisson’s equation is
solved numerically. The equation is

∇2Ψ = 4πGδρ, (3.3)

where δρ is the matter over-density. The equation in itself is solved with numerical
methods described in detail in [Tey02]. To find the density field on the mesh
grid, a cloud-in-cell interpolation scheme is used to assign particles to the grid
cells. With this scheme, the point particles don’t just contribute to the density
in the cell where they reside, but their mass is distributed over neighbouring
grid cells as well according to the distance from the centre of the cells. This
ensures that there is a smooth change in the density field as a particle crosses a
boundary between two grid cells.

Structures that form near the edge of the simulation box should in principle
interact with structures that have formed outside of the simulation edges. To
emulate an infinite Universe with a finite box size, it’s common to apply periodic
boundary conditions. In this way, we ensure that particles are affected by a
gravitational force from far away structures in all directions. The force of gravity
goes down with distance as 1/r2, so there are usually no issues with a structure
interacting with itself through the other side of the box, given a large enough
box size.

3.3.3 Adaptive Mesh Refinements

The initial matter distribution at the start of the N -body run is very smooth.
The grid of Ramses typically starts with the same amount of grid cells as there
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are particles in the initial realisation. For instance, a run with 10243 ≈ 109

particles starts with a domain grid of 1024×1024×1024 grid cells, typically with
one particle in each cell. When matter clusters under gravity, many particles
concentrate in small areas of the grid, leaving other grid cells empty. Because
the force is calculated on the grid, the force interactions between particles within
one grid cell are not precise. To solve this, the Adaptive Mesh Refinement
(AMR) method is introduced. This method involves that a cell is split on-the-fly
if certain refinement criteria are met. A typical refinement criterion for pure
N -body simulations is to split a cell in eight equal sub-cells if there are more
than eight particles in it2.

The AMR refinements can be applied recursively on already refined cells
if they meet the refinement criteria, resulting in a spatial grid with arbitrary
precision in regions of high matter density. Each new refined level has effectively
a higher spatial resolution. This also implies that to track the particle motions
correctly, the code needs a higher temporal resolution as well. This can be seen
from the Courant–Friedrichs–Lewy condition, which requires ∆t . C∆x for
some constant C to guarantee convergence of a numerical solution. As ∆x is
halved in the AMR process, each refined cell needs twice the amount of time
steps compared to the parent cell. The higher spatial and temporal resolution
increases the computation time and memory requirements for highly refined
regions drastically. For this reason, it is common to specify an upper level of
refinements, which limits the final resolution.

3.3.4 Weak Field Limit and Newtonian Gravity

Even if we allow densities to grow to non-linear values (ρ/ρ0 � 1), the
gravitational potential is still approximately uniform on scales larger than our
solar system. The metric perturbation Ψ is O

(
10−6) close to the Sun, and much

smaller on relevant cosmological scales. Taking Ψ to first order (often called the
weak field limit) is considered safe and is equivalent to the Newtonian limit of
GR. Relativistic effects of compact objects and high energies are not considered
in a cosmological context, which allows us to make many simplifications to the
equations and reduce the computation time. N -body simulations applying the
weak field simplification will not be able to simulate forces close to neutron
stars, or the precession of Mercury correctly. Furthermore, the simulations
do not include black holes or gravitational waves, and the speed of gravity is
considered infinite. It is assumed that gravitational waves do not affect the
matter distribution significantly and can be neglected. The massive N -body
particles trace a large volume of cold dark matter, which changes very slowly.
The slow movement indicates that the matter distribution does not change
measurably during the travelling time of gravity; This means that instantaneous
forces give the same acceleration as the true forces, which should propagate

2The number 8 appears here because we split the (cubical) cell in two along all 3 dimensions;
the first split bisects the cell in two cells along one axis, the split along the second axis gives a
total of four cells, and finally each of them are split in two along the third axis, resulting in
2 × 2 × 2 = 8 cubes.
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with the speed of light. All relevant relativistic effects on the largest scales are
included through the background expansion of the grid from the Friedmann
equations.

For scales larger than a few kiloparsecs, the weak field (Newtonian)
implementation of gravity is expected to work well. On kpc to Mpc scales,
correctly including baryonic effects are much more important than higher-order
relativistic corrections to gravity. The N -body code Gevolution includes higher-
order relativistic effects, which in theory allows Mercury precession, as well as
other corrections that can be visible on kpc to Mpc scales [Ada+16]. The field of
numerical relativity is dedicated to studying extreme astrophysical phenomena
on smaller scales, including black holes, binary neutron stars, and gravitational
waves. Numerical relativity is beyond the scope of this thesis.

3.4 Review on Modified Gravity Simulations

A lot of effort has already been done in the field of numerical simulations
of modified gravity. This section lists a few of the contributions and ideas
that have been developed. In addition to Isis, which is developed at the
University of Oslo, other research groups worldwide have developed codes for
modified gravity simulations; Some of the available codes are Ecosmog [Li+12],
MG-Gadget [PBS13], and Dgpm [Sch09]. The implementations of these codes
have been compared, and the results agree within 1 % in the power spectrum
for the compared models [Win+15].

By using these codes, and spending significant computing resources, it is
possible to generate suites of simulations for extracting observables like the
matter power spectrum. One example of a suite of high-resolution simulations
with f(R)-gravity is the lightcone simulation project [Arn+19].

Because simulations of modified gravity are generally orders of magnitude
more computationally expensive than GR-simulations, there have been consider-
able efforts in ways to simulate the models more efficiently. One prescription,
which also works for speeding up simulations of GR, is to use perturbation
theory for large scales and allow significantly longer time steps for the particles
[Win+17]. Another prescription is to only run a GR simulation, and modify
the observables after the simulation has finished, for instance by applying a
transformation to the power spectrum [Win+19].

In an nDGP model, the Vainshtein screening mechanism hides small scale
modifications to GR effectively. It has been discovered that the scalar field does
not need to be solved on the refined levels of the particle-mesh grid, but only on
the domain grid. This technique speeds up the simulations by more than a factor
of 10, while the impact on the matter power spectrum is less than 1 % [BBL15].
For quasi-static f(R) simulations, the same group has also discovered a possibility
for significant speed-up; The Newton–Gauss–Seidel iterative method, which is
commonly employed to solve Poisson’s equation, has a very poor convergence
rate. They propose alternative solver for the scalar field which, even when
allowing AMR, gives a speed-up of a factor of at least 5 [Bos+17].
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The clustering effects of modified gravity can in some cases be degenerate
with other astrophysical effects, like warm dark matter and massive neutrinos.
Some numerical studies that investigate how to break these degeneracies are
[BV16] and [Mer+19].

There have been some studies on implementing baryonic effects in modified
gravity simulations, and on the possible degeneracies between baryonic physics
and modified gravity [EFM18; Ham+15b]. More recently, hydrodynamical
simulations with realistic baryon physics have uncovered new possible probes
for modified gravity, including expected changes in the neutral hydrogen power
spectrum and in the amount of galaxies forming discs [ALL19].

3.5 Simulating a Scalar Field

In the Einstein frame, scalar–tensor theories result in a fifth force acting on
matter, in addition to the gravitational force of GR. In a modified gravity N -body
code like Isis, the particle motions are calculated by applying fifth forces in
addition to the Newtonian forces [LMW14]. For each time step of the particles,
the fifth forces can be found from equation (2.4) or equivalent depending on
theory. The fifth force calculation in conformal theories typically involve the
scalar field gradient and possibly the scalar field value; For instance, in the
conformal symmetron model, the fifth force is Fφ ∝ φ∇φ. These quantities are
needed at each point in space and for each time step of the force calculation
in the N -body scheme. For more complex theories than the simple conformal
scalar field, higher order derivatives (in space and time) of the field are needed
for calculating the force.

To find the scalar field φ and its derivatives needed for the force calculation,
the starting point is the EOM (2.5). The full equation of motion of the scalar field
is a computationally expensive equation to solve numerically (it is a non-linear
and hyperbolic differential equation which is second order in time). I will present
a method for solving the full equation in section 3.5.2, but a faster method is to
apply the quasi-static approximation.

3.5.1 The Quasi-Static Approximation

The realisation that leads to the quasi-static approximation is analogous to the
justification for not including the speed of gravity in GR simulations; Because the
density field evolves slowly, the effective potential—and the expectation value of
the scalar field—is expected to evolve slowly as well. This approximation implies
ignoring time derivatives of the scalar field in the EOM (2.5). This reduces the
EOM to a Poisson’s equation,

∇2φ = f (φ, ρ) . (3.4)

The field value can be found at each time step from solving the simplified
equation, similarly to how the gravitational potential is found in a Newtonian
N -body code (see section 3.3).
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The quasi-static approximation is found to be valid for predicting some
observables (including the power spectrum) in cosmological simulations of the
f(R) model [BHL15] and the symmetron model [Win+15]. It is reasonable to
assume it works well for most conformal theories. Nevertheless, it is important
to test the assumption for any given model by comparing the results with
simulations performed out of the quasi-static assumption.

3.5.2 Naive Non-Static Implementation in the N -body Code

Out of the quasi-static approximation, the field has memory of previous time
steps—a certain momentum—and should be integrated forward in time instead
of solved independently for each time step. The method described here was first
implemented in [LM14].

The quasi-static assumption has not been tested thoroughly for disformally
coupled fields. The fifth force for a pure disformal coupling, given by equation
(2.12), depends on the local value of the first and second time derivatives of the
scalar field. These quantities can be found more precisely out of the quasi-static
approximation. Furthermore, both in the conformal and the disformal case,
solving the full EOM allows for wave propagation in the scalar field. In Paper I,
we conclude that such waves can have a significant impact on the PPN parameter
γPPN.

The full EOM is an initial value problem. Because each calculation of the
field needs some information about the past of the field, we need to set up the
initial conditions of the field at the start of our simulation. Optimally the initial
perturbations of the field should be decided from linear theory, like the initial
perturbations of the density field. However, we find in the tested disformal
models that the resulting field evolution and density distribution at redshift zero
are not very sensitive to the initial conditions of the field. This is also the case
for the disformally coupled symmetron [HLM16], but although we expect it to
be the case for many models, the assumption should be verified for every new
branch of models.

The non-static method solves the full EOM with a leapfrog scheme, similar
to the work explained in my master thesis [Hag15] and in [LM14]. The principle
of the leapfrog scheme is similar to the simple forward Euler method, except
that the field velocity φ̇ is calculated at points in time that are shifted by half a
time step ∆t/2 relative to the integer time steps of the field value φ.

Oscillations in the scalar field are typically significantly faster than the
motions of the N -body particles. To track the field evolution precisely, we find
that there should be thousands of time steps for the scalar field for each time step
of the particles. Due to this, the non-static implementation is computationally
expensive and requires at least a factor of 100 more CPU time than a quasi-static
simulation with the same resolution.

Another disadvantage of the current implementation of the non-static solver is
that it does not allow for AMR in the simulation grid. This can be implemented
in the future, but the task is not trivial; When a grid cell is refined, the field in the
refined cells must be interpolated with higher-order methods designed to avoid
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artificial waves. A sloppy interpolation method can introduce perturbations in
the scalar field which are not of a physical origin.

Performing a full N -body simulation of modified gravity to study a specific
phenomena is not only computationally expensive but also impractical because
the scalar field dynamics are very complex in a cosmological simulation. I have
developed a simple stand-alone solver of the non-static EOM to understand how
scalar fields behave on smaller scales than the domain grid of the cosmological
N -body simulations.

3.5.3 Higher Resolution in Spherical Symmetry

To understand how the scalar field behaves in the presence of a matter over-
density, I implemented a one-dimensional, spherically symmetric solver. Just like
the implementation in the N -body code, this solver uses the leapfrog integration
scheme. However, due to the spherical symmetry, it only solves the EOM in
one dimension. This allows me to increase the spatial and temporal resolution
significantly without increasing the computation time too much. This code is
customisable to allow many different EOMs for different theories, with full control
of the profile of the central spherical density distribution as well as the boundary
conditions for the scalar field—allowing for instance external incoming waves.
The code can be used to look for phenomena in the scalar field, predict fifth
forces, and check the importance of scalar field waves. Optionally, log-spaced
radial coordinates allow higher resolution close to the centre of the simulation.
This is useful when simulating waves of short wavelength arriving from many
Mpc distance, and still allows us to resolve the scalar field dynamics inside of
the Milky Way galaxy.

The code does not include an evolution of the background matter density
nor the cosmic expansion. The currently implemented density distribution is a
static Navarro–Frenk–White (NFW) matter overdensity. I used this code during
my work on Paper I to estimate how external waves in the scalar field affect
the screened regions of the symmetron model. In this paper, it is described
how external waves entering the Milky Way halo can disrupt the value of γPPN
sufficiently to be measured by the Cassini experiment.

3.6 Disformal Phenomenology

In the following section, I describe the numerical implementation of a disformally
coupled scalar field, without assuming the quasi-static approximation. I also
describe and discuss phenomena that appear when including the disformal
coupling. This section is in essence a supplement to Paper II.

3.6.1 Previous Discoveries and Motivation

Disformally coupled fields have been investigated analytically and in the linear
regime, [Bek93; BM18; Koi08; Sak14; vM15; Zum+10], but at the time of writing,
results from these studies have not been confirmed in the non-linear regime. The

46



Disformal Phenomenology

non-static version of ISIS has been used to study the symmetron model with
and without a disformal term [HLM16; LM14], and includes all the necessary
routines to implement the pure disformal EOM and the associated fifth force.
Part of my work related to Paper II was to extend ISIS for a pure disformal
model, which is a step forward in the study of disformally coupled fields in the
non-linear regime.

For my master thesis, I studied a conformal symmetron model with an
additional disformal coupling. In this way, it was possible to study the added
disformal effects, while the conformal part of the model ensured that the scalar
field remained stable. See [HLM16] for a paper describing the main results from
the work during my master.

A pure conformal symmetron model is known to increase power with respect
to ΛCDM. Adding a disformal coupling on top of the conformal model results in
a reduction of power, but not below the original ΛCDM value. The suppression
of the conformal contribution by the disformal factor has also been found in
linear theory [vM15].

In the symmetron, the effective potential has a deep minimum at φ = 0 in
regions of very high density. An unexpected result found in [HLM16] is that the
addition of an intermediate strength disformal coupling increases the amplitude
of scalar wave oscillations in centre of haloes. Due to the deep potential in these
regions, a significant amount of energy is needed to perturb the field by the
amount found in the simulations.

3.6.2 Possible Explanations

By evolving the disformal scalar field evolution in spherical symmetry (see section
3.5.3), I was able to study the disformal scalar field in a controlled setting.

The disformal effect, which can explain many of the observations, is the
phenomenon that a disformally coupled scalar field slows down in high densities.
The field reacts slower to the potential and the Laplacean because the acceleration
φ̈ is suppressed by a factor 1/

(
1 + γ2ρ

)
in the EOM3.

In a mixed conformal and disformal model, the disformal effect reduces the
growth of field perturbations in the early universe; the conformal effects will
take longer time to work, and the conformal fifth force is suppressed while
the perturbations are small. This effect is related to the disformal screening
mechanism [KMZ12]. The reduction of power could also be due to repulsive fifth
forces, which we study further in Paper II.

The disformal effect also leads to clustering of waves inside of haloes. The
waves in the scalar field move with approximately the speed of light in vacuum,
but if a scalar field wave enters a high-density region, it slows down significantly.
See figure 3.1, which shows how a long-wavelength wave packet can become
trapped inside a galaxy and get increased gradients. If a galaxy is immersed in
a background of scalar field waves, wave energy will build up over time.

3In the limit of low kinetic energy, X ≈ 0, the fraction γ2 ≡ B/(1 − 2BX) simplifies to B.
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Figure 3.1: Sketch of a wave packet entering a massive galaxy from the right.
The four panels are four different snapshots, increasing in time in reading order
(top left, top right, bottom left, bottom right). The horizontal axis is the distance
from the centre of the galaxy (normalised to 1 Mpc) and the vertical axis is the
perturbation of the scalar field (normalised to 1 MPl).

3.6.3 N -body Simulations with Disformally Coupled
Quintessence

One of the goals of this doctorate thesis was to build upon the modified gravity
N -body code Isis ([LMW14]) to simulate and study a scalar field coupled
disformally to matter. The main results of this effort are presented in Paper II.
In this section, I explain the code and discuss some of the results beyond the
description in the paper.

3.6.3.1 Numerical Set-up

The EOM (2.9) is a second order differential equation which must be split into
two first order equations to be integrated numerically. Furthermore, to avoid
units, the scalar field has to be normalised with respect to a mass scale. We
chose the renormalisation χ = φ/MPl and an auxillary velocity field q = χ′/a,
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where a prime denotes a derivative with respect to super-comoving time4. The
numerical leapfrog integration evolves the variables q and χ as a set of coupled
differential equations, specifically

qi+1/2 = qi−1/2 + q′i ×∆t, (3.5)
χi+1 = χi + aqi+1/2 ×∆t. (3.6)

The derivative of q is q′ = a′χ′ + aχ′′ , where χ′′ can be derived from the EOM
by transforming cosmic time derivatives to supercomoving time derivatives. I
will not do this derivation here, but rather re-state the implemented equations
in their normal form.

After isolating φ̈ on the left-hand side, the disformal EOM is given by

φ̈ = 1
(1 + γ2ρ)

[
1
a2∇

2φ− 3Hφ̇− γ2ρ

(
B,φ
2B φ̇2

)
− V,φ

]
, (3.7)

where
γ2 = B

1− 2BX . (3.8)

The fifth force for a non-relativistic particle (v � c) in an expanding FLRW
metric in the pure disformal case is given by

Fφ = − 1
a2

(
Bφ̈+ 1

2B,φφ̇
2)

1− 2BX ∇φ = −γ
2

a2

(
φ̈+ B,φ

2B φ̇2
)
∇φ. (3.9)

See Appendix A for the derivation of both of these equations. I implemented
these disformal equations into the non-static version of Isis (albeit on a slightly
transformed form with different variables).

For the potential V , we chose a decreasing exponential given by

V (φ) = V0e
−ν φ

MPl , (3.10)

for positively valued constants V0 and ν. For the disformal term B, we chose an
increasing exponential

B (φ) = B0e
β φ
MPl , (3.11)

where B0 is required to be positive (to avoid superluminal wave propagation
in the EOM), and β is a dimensionless constant specifying the disformal slope.
The special case β = 0 gives a constant disformal coupling B (φ) = B0, which is
sufficient to understand the basic disformal effects; I will assume β = 0 in this
thesis, even though we describe some effects of β 6= 0 in Paper II.

The name disformal quintessence comes from the sloped shape of the potential,
which allows the field to roll and give rise to quintessence dark energy. The
exponential forms of B and V are widely employed when studying disformal
quintessence in the background and in the linear regime [BM18; Koi08; vM15;

4Super-comoving time coordinates are used in Ramses. The supercomoving time τ is
defined as a2dτ = dt.
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Zum+10]. One of the advantages of exponentials is that they allow us to write
the derivatives in a compact form where

V,φ = − ν

MPl
V (φ) , (3.12)

B,φ = β

MPl
B (φ) . (3.13)

We chose a flat φ = 0 initial condition for the disformally coupled scalar
field. The global initial value of the field is not an independent parameter when
studying this model; Thanks to the exponential forms of B and V , a shift in the
initial background value can be absorbed in a redefinition of the constants B0
and V0. The initial perturbations of the field can in theory have an effect, which
we neglect when setting φ = 0. Our choice of a uniform initial field value does
not correspond to the value that could be calculated from linear perturbation
theory. In Paper II we argue that the matter distribution is not significantly
affected by this choice, because the fifth force is small compared to the Newtonian
force before the field perturbations reach the equilibrium value. In figure 7 of
Paper II, the relative error between the simulated scalar field and the theoretical
equilibrium scalar field (see equation 3.16) drops below 1 % before redshift z = 4.
We expect primordial gradients in the scalar field to be washed out during
inflation, and we expect the scalar field acceleration φ̈ to be suppressed in the
early universe due to the high matter density. This suppresses the fifth force
(Fφ ∝ φ̈∇φ), as well as φ̇ at redshifts before the start of the N -body simulation,
at least for the parameters studied here. A hypothetical mechanism that leads
to significant field gradients and time derivatives at early times was not studied,
but such an injection of kinetic energy can have a lingering effect both on the
field evolution and the particle evolution at later times.

3.6.3.2 On the 1 − 2BX Singularity

There is a possibility for a singularity in the γ2 term of equation (2.9). The
singularity appears when the denominator of

γ2 = B

1− 2BX (3.14)

is exactly zero, or when 2BX = 1. In the early universe, we assume 2BX to be
negligible because the field is frozen and the perturbations are small. To avoid
the instability, we require 2BX < 1 at later times. As the field rolls along the
potential, the kinetic energy,

X ∝
(
φ̇
)2 − (∇φ)2

, (3.15)

is expected to increase. However, in a physical setting, the apparent instability
is avoided because the field will gradually freeze as it approaches the singularity
[ZKM13]. The finite time step of numerical methods means that the field jumps
large steps at once, ignoring the progressive freezing that could have happened
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Figure 3.2: Time evolution of disformal field profile around an NFW halo. The
left panel shows a scenario where the field acceleration φ̈ is always positive, while
the right panel shows a scenario where the field acceleration is first positive, then
becomes negative. The unit along the x-axis is Mpc, while the field value along
the y-axis is normalised to MPl.

between each time step. This numerical method is usually fine in continuous
regions of the effective potential, but close to singularities, this can lead to
numerical errors. For some sets of parameters, the term 2BX can evolve fast,
and special care should be taken to increase the amount of time steps accordingly.
Disformal dark energy, with parameters constrained to fit the CMB ([BM18]) is
allowed without numerical instabilities in the N -body case we explored.

3.6.3.3 Field Profile

The background field is expected to accelerate to higher values as it rolls down
the quintessence-like potential. As the field rolls, it acquires depressions around
over-dense haloes. This effect can also be explained by the suppression of the
field acceleration. The left-hand panel of figure 3.2 shows how the field grows
faster in low densities than in the centre of the halo (r = 0). The plot is created
from a simulation of the disformal EOM in the high-resolution spherical code.

In Paper II we find that the scalar field perturbation evolves to become
approximately proportional to the gravitational potential,

φ ≈ ξ0Ψ + φ0. (3.16)

Here, ξ0 is a factor that can be calculated from background quantities, and
φ0 is the background value of the scalar field. I will call equation (3.16) the
proportionality assumption. The proportionality factor ξ0 is an approximation
of ξ, which is given by

ξ ≡ 2M2
Pl

(
Bφ̈+ 1

2B,φφ̇
2
)
. (3.17)

Then, ξ0 is calculated by using background quantities for φ and its derivatives.
The proportionality assumption requires that the quantities used to calculate ξ0
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(i.e. B, φ̇, and φ̈) do not deviate far from their background values. This
assumption holds for most parts of the tested parameter space; The time
derivatives φ̇ and φ̈ are nearly uniform after the field velocity has reached
an equilibrium roll. The full derivation of the proportionality assumption is
explained in Paper II.

The factor ξ can be negative. For the case β = 0, this happens if φ̈ < 0,
which means that the field is in a decelerating phase. A negative ξ means that
the field flips from having depressions in over-dense regions to having spikes
in over-dense regions. The gradient of the field changes from pointing out of
over-densities to pointing into over-densities. The process of field flipping around
a halo is seen in the right-hand panel of figure 3.2. The existence of a phase of
negative field acceleration depends on the shape of the potential V , and on the
model parameters. In the case of the quintessence potential, the field has a high
acceleration early on, and when the slope of the potential flattens out, the field
acceleration drops. Then, the Hubble friction term (Hφ̇) is allowed to dominate
and provides a negative acceleration.

3.6.3.4 Repulsive Fifth Forces and Reduced Power

The fifth force given in equation (3.9) can be written as

Fφ ∝ −ξ∇φ. (3.18)

Under the proportionality assumption for the scalar field, the fifth force is
approximated as

Fφ ∝ −ξ2
0∇Ψ. (3.19)

In Paper II we find that under these assumptions, the field profile flips at the
same time as the fifth force pre-factor changes sign, and the fifth force always
points in the same direction as the Newtonian force.

In the full N -body simulation, ξ is calculated locally without the proportion-
ality assumption. In this case, the pre-factor ξ in the equation for the fifth force
(3.18) is allowed to change sign first, while the field spends some time flipping.
This results in a short period of time when the fifth force points in the opposite
direction of Newtonian gravity. For the sets of parameters studied, just one
of the simulations exhibited a field flip with transient repulsive fifth forces. In
this simulation, the repulsive forces lasted for a short period of time and were
weak compared to gravity, which leads us to believe that they do not have a big
impact on cosmological structures.

A few of the simulations exhibited a small reduction of power on small
scales with respect to ΛCDM, but we conclude that this is not due to prolonged
repulsive fifth forces. The reason for this reduction is not yet known, but one
possibility is that when the attractive fifth forces increase, they tighten the
binding energy of virialised structures, but when the fifth forces decrease, energy
conservation leads to a subsequent expansion of the structures. This possibility
has to be studied further.
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Figure 3.3: The disformal fifth force compared to the Newtonian force, as
a function of the local density. The top panel compares the absolute value
(amplitude), while the bottom panel compares the dot product. A dot product
of 1 means that the forces are parallel, while −1 means that the forces are
anti-parallel. Each cross is one grid cell in the simulation of 2563 grid cells. The
red line is the binned average, with error bars indicating the standard deviation
in that bin.

3.6.4 Speeding up Modified Gravity Simulations by Assuming
Geff Globally

In Paper II we find that we can apply a time-varying effective gravitational
constant G→ Geff (t) to achieve a decent approximation to the disformal fifth
force on large scales. A plot of the fifth forces from one snapshot of one of the
simulations is shown in figure 3.3. From this plot we can see that the average
of the ratio of |Fφ| / |FN | is fairly flat around 0.2, which indicates that in this
snapshot we could apply Geff ≈ G × 1.2 instead of calculating the fifth force
explicitly.

Applying a global Geff is a lot faster than typical simulations for modified
gravity because there is no need to simulate the scalar field; a Newtonian
simulation with a formula for Geff (t) is sufficient. This implementation is a
work in progress, and is expected to work for the disformal quintessence, and
several non-screened conformal models. This kind of simulations can be especially
important for exploring models which hides their modifications to gravity through
a coupling in the dark sector instead of a strong screening mechanism.

This method implies losing some phenomenology, which can be understood
from the spread in figure 3.3, where the fifth forces in the individual grid cells
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are not arranged in a line, but have values ranging from 0.1 to 0.3 times the
Newtonian force. This spread is not achieved with the approximation of a global
Geff . Furthermore, a flat value |Fφ| / |FN | = 0.2 does not account for the reduced
fifth force due to the disformal screening, an effect which we see evidence of in
the high-density end on the right-hand side of the plot.

54



Papers





Paper I

Cosmic Tsunamis in Modified
Gravity: Scalar waves disrupting
screening mechanisms

Robert Hagala, Claudio Llinares, David F. Mota
Published in Physical Review Letters, March 2017, volume 118, issue 10,
101301. DOI: 10.1103/PhysRevLett.118.101301. arXiv: 1607.02600.

I

57

https://doi.org/10.1103/PhysRevLett.118.101301
http://arxiv.org/abs/1607.02600
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Extending general relativity by adding extra degrees of freedom is a popular approach for explaining the
accelerated expansion of the Universe and to build high energy completions of the theory of gravity. The
presence of such new degrees of freedom is, however, tightly constrained from several observations and
experiments that aim to test general relativity in a wide range of scales. The viability of a given modified
theory of gravity, therefore, strongly depends on the existence of a screening mechanism that suppresses the
extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of
freedom can significantly impact the efficiency of some screening mechanisms, thereby threatening the
viability of these modified gravity theories. Specifically, we show that the waves produced in the
symmetron model can increase the amplitude of the fifth force and the parametrized post Newtonian
parameters by several orders of magnitude.

DOI: 10.1103/PhysRevLett.118.101301

Since 1998, it has been known that the Universe expands
at an accelerating rate that is consistent with the existence
of a cosmological constant [1]. Attempts to interpret the
cosmological constant as the vacuum energy from particle
physics yields a mismatch of several orders of magnitude.
This is known as the cosmological constant problem [2]. A
possible solution to this problem may lie on an extension of
general relativity in such a way that a new gravity degree of
freedom drives the accelerated expansion on large
scales [3].
General relativity is, however, one of the most success-

fully tested theories in a wide range of scales, including
table top experiments on Earth, laser ranging and radio
wave bending in the Solar System, the rotation of black
hole binaries, and the timing of pulsars [4]. Therefore, any
modification to Einstein’s gravity must include a screening
mechanism to hide the new extra degree of freedom and
reduce the theory to general relativity in those well tested
regimes [5].
The common feature to all the screening mechanisms

proposed in the literature is that they are built, and their
efficiency tested, assuming the so called quasistatic
approximation for the field equations. For instance, in
scalar-tensor theories, a scalar degree of freedom is
introduced into the standard Einstein-Hilbert action. This
field follows the Klein-Gordon equation of motion, which
determines both its time and spatial variations. When

constructing screening mechanisms to hide the scalar field
within the accurately tested regimes, the quasistatic
approximation is invariably applied to the equations of
motion for the field. This simplifies the calculations by
implying that the scalar field is at rest in the minimum of
the local effective potential at all points in space and time.
This reduces the equation of motion to a Poisson-like
equation, which is readily solved to find the approximated
scalar field value at any point.
Notice, however, that the full equation of motion for the

scalar field is, in fact, a second order differential equation in
time, more similar to a wave equation. Therefore, ignoring
the time evolution of the field, via the quasistatic approxi-
mation, is to shortfall effects that are only possible to
realize when considering the full equation of motion [6,7].
In this Letter, we find that, when relaxing the quasistatic

approximation, the presence of waves may result in striking
consequences for the efficiency and viability of the
screening mechanism. In particular, we show that energetic
waves in the extra degree of freedom strongly weaken
the screening process for a theory with a standard kinetic
term. Therefore, modified gravity theories previously
considered viable may, in fact, be ruled out by the present
days gravity experiments and observational data. To under-
stand the implications of these waves in greater detail, we
simulate a scalar degree of freedom with externally
generated waves. The waves propagate radially in towards
a spherically symmetric matter distribution, modeled after
the Milky Way halo.
The Model.—As a working example, we implement a

specific form of modified gravity called the symmetron [8].
This is a scalar-tensor theory with a screening mechanism,
constructed to hide modifications to general relativity in
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high density regions. In spite of this specificity, the results
presented in this Letter should be considered for any
modified gravity theories that have extra degrees of
freedom with wave-type equations of motion. Examples
of such screening mechanisms include the chameleon
[9], disformal [10], Dirac-Born-Infeld fields [11], or K-
mouflage [12].
We consider the following general scalar-tensor action

for canonical scalar fields:

S ¼
Z � ffiffiffiffiffiffi

−g
p �

R
16πG

−
1

2
ϕ;μϕ;μ − VðϕÞ

�
þ

ffiffiffiffiffiffi
−~g

p
~Lm

�
d4x;

ð1Þ

where g is the Einstein frame (geometric) metric, and ~g is
the Jordan frame metric—the metric dictating the geodesics
of particles. R is the Ricci scalar, and ~Lm is the Lagrangian
density of matter (computed using the Jordan frame metric
~g). The field potential VðϕÞ is the quartic symmetron
potential with the three free parameters μ, λ, and V0

VðϕÞ ¼ −
1

2
μ2ϕ2 þ 1

4
λϕ4 þ V0: ð2Þ

The Jordan frame metric ~g is related to the Einstein
frame metric according to the conformal transformation
~gμν ¼ CðϕÞgμν. The specific form of C for the symmetron
is CðϕÞ ¼ 1þ ðϕ=MÞ2. The mass scale M is a free
parameter that gives the strength of the interaction with
the matter fields.
The equation of motion for the scalar field is

ϕ̈þ 3H _ϕ −
1

a2
∇2ϕ ¼ −ρ

C;ϕðϕÞ
2CðϕÞ − V;ϕðϕÞ; ð3Þ

where a dot represents a partial derivative with respect to
cosmic time, H ¼ ð _a=aÞ is the Hubble parameter, and a is
the scale factor. The Einstein frame metric is assumed to be
a flat Friedmann-Lemaître-Robertson-Walker metric with a
single scalar perturbation ΨE, specifically

ds2 ¼ −ð1þ 2ΨEÞdt2 þ a2ðtÞð1 − 2ΨEÞdr2: ð4Þ

For convenience, we normalize the field to the vacuum
expectation value of the symmetron field, ϕ0 ≡ ðμ= ffiffiffi

λ
p Þ. As

such, the new dimensionless field χ ¼ ϕ=ϕ0 should behave
in a controlled way, with jχj≲ 1. Also, for numerical
convenience, we introduce the parameter aSSB, which
defines the expansion factor at the time of spontaneous
symmetry breaking. We also introduce a dimensionless
symmetron coupling constant β≡ ½ðϕ0MPlÞ=M2�, and the
range of the symmetron field in vacuum, λ0 ≡ ½1=ð ffiffiffi

2
p

μÞ�.
By taking into account these definitions, we can rewrite
Eq. (3) as

χ̈ þ 3H _χ −
∇2χ

a2
¼ −

1

2λ20

��
a3SSB
C

ρ

ρ0
− 1

�
χ þ χ3

�
; ð5Þ

where ρ is the total matter density, and ρ0 the background
density of the Universe.
As a working example, we fix the symmetron parameters

such that β ¼ 1, aSSB ¼ 0.5, and λ0 ¼ 0.25 Mpc=h. This is
equivalent to a symmetron mass M ¼ 3.4 × 10−4Mpl ¼
4.2 × 1015 GeV=c2. These parameters are being widely
assumed to represent a viable model that evades all the
bounds from both Solar System and astrophysical data.
With this choice of parameters, we aim to prove that even
such a model may, in fact, be ruled out when one fully
integrates the equations of motion of the field without the
quasistatic assumption and, thereby, allow for the effects of
the scalar waves.
Solar System constraints.—In order to test how screening

mechanisms work in the Solar System, the community
generally chooses a static, spherically symmetric matter
distribution to mimic the Galaxy. We follow this approach
and choose the Navarro-Frenk-White (NFW) density
profile with the characteristics to represent the Milky Way
galaxy, specifically with a virial radius of rvir ¼ 137 kpc=h
and concentration c ¼ 28, resulting in a halo mass of
1.0 × 1012 M⊙ and a circular velocity of 220 km=s at
8 kpc. The reason for the high value of the concentration
is simply that we are modeling not only dark matter, but the
total matter of the Milky Way, which is more concentrated
than the pure dark matter halo. We also did the calculations
with an Einasto profile with identical virial mass, and found
that the results presented in this Letter are not very sensitive to
the choice of distribution. Because of limitations of spherical
symmetry, we did not model a galactic disc.
One of the most precisely measured gravity parameters

to probe deviations from general relativity is the para-
metrized post-Newtonian (PPN) parameter γ. It can be
expressed as the ratio of the metric perturbations in the
Jordan frame, ΨJ and ΦJ. We find the expression for γ − 1
to be

γ − 1 ¼ −
ϕ2

M2

2
ϕ2

M2 − 2ΨE − 2ΨE
ϕ2

M2

: ð6Þ

In general relativity, γ ¼ 1 exactly. The strongest constraint
to date, measured by the Cassini spacecraft [13], is γ − 1 ¼
ð2.1� 2.3Þ × 10−5.
The screening mechanism of the symmetron model

works by modifying the effective potential such that
the field value is pushed towards zero in high density
regions—like the inner regions of the Galaxy. This results
in γ − 1 → 0, such that the deviations from general rela-
tivity in the proximity of the Solar System are small. The
same occurs for the fifth force Fϕ associated to the
scalar field.
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We calculate the γ parameter arising from the smoothed
matter distribution of the Milky Way. Note that, by using
this method, we find an upper bound on the actual value of
jγ − 1j in the inner Solar System. This is because we do not
include the presence of massive bodies like the Sun, which
will increase the screening to some degree. Nevertheless,
most of the screening is believed to come from the matter
distribution of the Galaxy because, in the symmetron
model, the Solar System cannot screen itself in vacuum,
and therefore, the theory depends on a working screening
from the Galaxy.
Simulations.—Since the equation of motion is a hyper-

bolic partial differential equation, it can be solved as an
initial value and boundary condition problem. The initial
condition at t ¼ 0 is chosen to be the static solution of the
nonlinearKlein-Gordon equation ofmotion.With a constant
boundary condition, this would imply that the field will stay
at rest forever. The boundary condition at the edge of
the simulation at rmax is chosen to emulate incoming
sinusoidal waves in the scalar field, specifically χðrmax; tÞ ¼
χ0ðrmaxÞ þ A sin ðωtÞ. Possible sources of such waves will
be discussed later.
We set up a radial grid, divided into linearly spaced steps

Δr up to rmax ¼ 4 Mpc=h. On each of the grid points, we
specify the matter density according to the NFW halo.
Starting from the initial value and with the inclusion of
incoming waves, we evolve Eq. (5) forward in time steps of
size Δt, using the leapfrog algorithm for time integration in
each grid point. Tests of this technique applied to the
symmetron are presented in [6,14]. We are only interested
in events that happen during the last few megayears of
cosmic time, meaning that we take the approximations
z ≈ 0 and a ≈ 1 in all computations. Spatial derivatives are
found using a finite difference method in spherical coor-
dinates, assuming all derivatives in the tangential directions
vanish. The code outputs the evolution of the scalar field
and, more importantly, the value of jγ − 1j at 8 kpc from the
center—corresponding to the position of the Solar System
in the Milky Way.
We confirm that the values used for technical parameters

of our solver give a stable solution by running convergence
tests. These are performed by increasing the resolution in
factors of two (both temporal and spatial resolution
separately) until the resulting scalar field at some later
time tmax does not change significantly with resolution.
Results.—Figure 1 shows an example of how the PPN

parameter γ changes when awave enters the inner 100 kpc of
the Milky Way. The vertical line shows the position of the
Solar System,whichwe assume to be 8 kpc from theGalactic
center. The modifications to gravity are initially screened
very well in the regions around this position, with jγ − 1j <
10−8 (blue dashed line). However, after the wave has arrived
(black solid line), the scalar field is perturbed enough to
breach the Solar System constraints, jγ − 1j > 2 × 10−5. In
other words, the screening mechanism breaks down under

these circumstances. The wave in this particular simulation
has an amplitude A ¼ 0.01 and a frequency ω ¼ 40 Myr−1.
The cusps are regions where the scalar field is zero, which
exist since the wave oscillates both above and below χ ¼ 0.
When measuring γ arising from a single sinusoidal wave

with low frequency, there is a possibility that the local wave
is between two extrema at the time of measurement. This
could render this kind of detection difficult for several
thousand years. Nevertheless, given that various astro-
physical events—such as supernovae—can generate waves,
the probability that one of the wavefronts would bring us
away from the minima at the present time is not negligible.
In order to investigate how our result depends on the

frequency ω and amplitude A of the waves, we simulate
incoming waves with several values of these two param-
eters. Figure 2 shows the maximum growth of jγ − 1j that
we found at 8 kpc from the Galactic center. Brighter colors
mean a larger increase of jγ − 1j compared to the quasi-
static approximation. The values of the frequency and
amplitude that lie in the black region of the plot, give waves
that do not significantly impact γ compared to the quasi-
static solution. Therefore, in this region of parameter space,
the screening mechanism is efficient and hides the extra
degree of freedom from gravity experiments.
From Figure 2, it is possible to conclude that higher

frequencies and amplitudes for the incoming scalar waves
give larger deviations from the general relativity result (i.e.,
γ ¼ 1). The limit where amplitude and frequency go to zero
is equivalent to the quasistatic limit, where no waves are
produced and their energy is zero. As one goes into the high

FIG. 1. The PPN parameter jγ − 1j, plotted against distance
from the center of the Galaxy. The curves show jγ − 1j in the
quasistatic case (blue dashed line), as well as after a scalar wave
has entered the halo (black solid line). The vertical (green dotted)
line indicates the position of the Solar System, and the horizontal
(red dotted) line indicates the highest allowed value of γ − 1 in the
Solar System from the Cassini experiment. When the wave enters
the Milky Way, it increases the value of jγ − 1j by several orders
of magnitude.
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frequency and amplitude regime, the waves carry more
energy, and therefore, the PPN parameter γ starts deviating
significantly from the quasistatic limit. Note that, since in
the symmetron model, the fifth force is Fϕ ∝ ∇ϕ2=M2,
these values can be immediately extrapolated to the impact
of the waves on this quantity [8].
The dependence of the γ PPN parameter on the wave

amplitude is straightforward to understand: When a wave
propagates through the screened regions of the halo, a
larger amplitude wave will lead to larger displacements
of the field from the screening value ϕ ≈ 0. Therefore,
jγ − 1j ∝ ϕ2 will increase accordingly.
The frequency dependence of the γ parameter is a

consequence of the following: The effective potential of
the symmetron grows steeper and narrower in high density
areas. In other words, the mass of the field increases
towards the center of the halo. Therefore, it becomes more
difficult to perturb the field away from the minimum, and a
higher wave energy is needed to displace it. Specifically, if
the energy of the external waves is small compared to the
mass of the field, the field will not be perturbed and the γ
parameter will not be affected.
The results obtained in this Letter imply that if waves with

sufficient amplitude or frequency can somehow be gener-
ated in a given model for modified gravity, they will have to
be taken into account when constraining the model param-
eters. Cosmic tsunamis, resulting from extreme events,
could even completely ruin the screening mechanisms in
modified gravity by increasing the deviations from general
relativity by several orders of magnitude compared to the
quasistatic case. A subject that must be discussed now is the
generation of such waves. Extreme events on small scales,
such as collision of neutron stars, stellar, or super-massive

black holes are obvious examples. Generation of waves by
pulsating stars are another possibility [15].
In the specific case of the symmetron model, it is

possible to obtain waves from events that occur on
cosmological scales. First, the symmetron model undergoes
a phase transition when the density falls below a specific
threshold. This transition first occurs in voids when the
expansion factor is close to aSSB [6,14]. When this happens,
the scalar field receives a kick, which produces waves
traveling from the center of the voids towards the dark
matter halos. By doing postprocessing of simulations
presented in [16], we find that, in a symmetron model
with slightly different parameters, the amplitude of cos-
mological waves is typically smaller that 0.1 and the
associated frequencies are of the order of 1/Myr. Note that
these values depend on the model parameters and, hence,
must be taken only as indicative. Scalar waves can also be
created through the collapse of topological defects, which
are known to exist in any model in which such phase
transition occurs. The energies associated with these kinds
of waves are studied in [17].
Conclusions.—Modifications to general relativity have

long been studied, both when searching for the source of
the accelerated expansion of the Universe, and to construct a
UV complete theory of gravity. However, there are strong
Solar System constraints on the deviation from Einstein’s
gravity when extending the theory by adding new degrees of
freedom. Thus, the viability of modified theories of gravity is
strongly dependent on the existence of a screening mecha-
nism that suppresses any extra degrees of freedom at these
scales. In this Letter, we show that waves propagating in an
additional gravity degree of freedom, may significantly spoil
the screening mechanism and, hence, jeopardize the viability
of the given modified gravity theory. Specifically, we show
that waves in a given model can increase the amplitude of the
fifth force and the post-Newtonian parameter jγ − 1j by
several orders of magnitude, rendering theories previously
assumed to be viable unfeasible.
We reach our conclusions by performing numerical

simulations of the propagation of waves through a
Milky Way sized dark matter halo. For a particular set
of model parameters, we determine the importance of the
amplitude and frequency of the incoming waves. Increased
amplitudes and frequencies (i.e., higher energy waves) lead
to a greater impact on observables associated to the Solar
System.
Our results were obtained in the context of a specificmodel

of modified gravity, the symmetron model. We expect that
they can be generalized to other models as well. For instance,
including an extra disformal term in the coupling of the
symmetron field can increase the amplitude of the oscillations
of the scalar field in the center of the halos [16], thus,
weakening the efficiency of the screening mechanism even
further. Waves were also studied in a particular version of
fðRÞ theories [18]. While the impact of these waves was

FIG. 2. Maximum increase in the PPN parameter jγ − 1j due to
incoming scalar field waves at the position of the Sun in the
Galaxy (8 kpc from the center) as a function of amplitude and
frequency of the incoming waves. The color indicates by which
factor jγ − 1j is increased when compared to the quasistatic case
with no waves.
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found to be negligible in a cosmological context (i.e.,
structure formation), their effect in Solar System tests may
still be detectable and help in further constraining the model.
To demonstrate that similar effects can be expected in other
theories, we propose a simple calculation regarding a viable
chameleonmodel [19] (n ¼ 1,M ¼ 10−3MPl,Λ ¼ 2 meV).
When awhite dwarf explodes as a type Ia supernova,waves in
the chameleon field will be measurable at several Mpc
distance. Full details on this calculation can be found in
the Supplemental Material [20].
The applicability of the quasistatic approximation should

be carefully analyzed when obtaining constraints for modi-
fied gravity theories from Solar System experiments. Our
results show that, in modified gravity, the Solar System—
and indeed, the Galaxy—can not be studied in isolation;
events that occur on cosmological scales might actually
impact events that happen in the inner Solar System. While
our conclusions make it more difficult to build viable
modified gravity theories based on screening mechanisms,
the existence of nonstatic effects opens a completely new
window for developing new tests of gravity.
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Supplementary Material,
Cosmic Tsunamis in Modified Gravity

R. Hagala, C. Llinares, D. F. Mota

Chameleon Waves from Supernova Type Ia

In this supplementary material we do an order-of-
magnitude estimate of the effects of Chameleon scalar
field waves generated by a type Ia supernova. We will
first find the energy that can be released into scalar field
waves in such an event, and then consider the amplitude
of scalar waves with this energy. Finally, we will pre-
dict the measurable impact on |γ − 1| from waves with
this amplitude. All calculations are initially performed
with natural units ~ = c = 1, with preferred units of
mass. These will then be translated to lengths or times
as needed.

Let us regard a simple n = 1 Chameleon field with
effective potential

Veff = ρ

(
1 +

β

MPl
φ

)
+
M5

φ
. (1)

For such a model, the scalar field value at the minimum
of the potential and the effective mass will be given by

φmin =

(
M5MPl

ρβ

)1/2

, (2)

meff =

(
4ρ3β3

M3
PlM

5

)1/4

. (3)

To be specific, we set

M = 0.2 meV ≈ 10−31MPl,

β = 103,

in agreement with all current observational and experi-
mental constraints [1][2]. This choice corresponds to a
Chameleon range in the background density of the uni-
verse of λc = 1/meff = 0.04 parsec.

For the supernova, we will assume the simplest possible
model: a white dwarf – located in or close to our Milky
Way – with radius 2 · 106 m, and mass 1.4M�; it has
a density of about ρWD = 1037ρ0. This white dwarf is
completely destroyed over some short time, spreading the
matter evenly over several parsec such that ρend � ρWD.
Inside the white dwarf, the Chameleon field range will be
sub-micrometre scale, so we can safely assume φ = φmin

throughout the white dwarf.
The proposal is that there is a significant energy differ-

ence for the scalar field when the effective potential goes
from a density of ρWD to ρend. This energy difference

will be released (at least partially) in the form of scalar
field waves. Assuming the field follows the minimum of
Veff as the density changes, one can insert the expression
for the field value (2) into the effective potential equation
(1).

Veff = ρ+ 2

(
M5βρ

MPl

)1/2

. (4)

The change in the effective potential when the density
goes from ρWD to ρend can then be found from

∆Veff = ρWD− ρend + 2

(
M5β

MPl

)1/2 (
ρ

1/2
WD − ρ

1/2
end

)
. (5)

Using the conversion factors

ρ0 = 3Ω0H
2
0M

2
Pl ≈ H2

0M
2
Pl,

H0 = 2 · 10−4 Mpc−1 ≈ 6 · 10−61MPl,

one finds the energy density expected at the source of the
supernova,

∆Veff ≈ ρWD ≈ 3.6 · 10−84M4
Pl. (6)

The other terms of equation (5) are many orders of mag-
nitude smaller and can be safely neglected for this pur-
pose. Assuming no Hubble friction, this energy will be
diluted with 1/r2 as the waves travel radially outward,
until they reach the solar system.

Now we need to estimate the amplitude of oscillations
of the field resulting from this release. Close to the sun
– where Cassini measured γ [3] – the average density is
around ρ� ≈ 1029ρ0. If the field is at rest at the bottom
of the effective potential, it will have a field value dictated
by equation (2). For small φ, the Chameleon will have
a γ parameter following |γ − 1| ∝ φ. Inserting numbers,
we find

φmin,� =
(
2.7 · 10−67M2

Pl

)1/2

= 5.2 · 10−34MPl.

To increase |γ − 1| by a factor of 10, we would need
oscillations within the potential with enough energy to
lift φ from φmin,� to 10 · φmin,� given a constant density
ρ�. To find numbers for the energy density needed, we
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can calculate the difference in the value of the effective
potential Veff when going from from φmin,� to 10 ·φmin,�.

∆Veff = Veff (φ = 10φmin,�)− Veff (φ = φmin,�) (7)

= 9ρ�
β

MPl
φmin,� −

9M5

10φmin,�
,

=
81

10

(
ρ�βM5

MPl

)1/2

,

≈ 1.5 · 10−121M4
Pl. (8)

When comparing this to the scalar field energy released
in the supernova (equation 5), one can find that even if
less than 1% of the energy is released into waves (the rest
can be transferred to the nearby matter through the fifth
force), one should be able to measure a 10-fold increase in
|γ − 1| as far as 10 Mpc away from the supernova – a dis-
tance within which there are several hundreds of galaxies.
This serves as proof that there exists phenomena that can
release measurable scalar field waves in viable Chameleon
models as well as the Symmetron model presented in the
Letter.

On a final note: if we are at a minimum and not at a
maximum of a wave, it could significantly lower the value
of |γ − 1|. How long time will it take for the measurable
maximum to arrive? To find the frequency of the waves,
let us model the effective potential around φmin to second
order in δφ, we find

Veff ≈ Vmin +M5

(
ρβ

M5MPl

)3/2

(δφ)
2
, (9)

a simple harmonic oscillator with natural frequency

ω0 =
√

2M5

(
ρβ

M5MPl

)3/4

. (10)

Considering the energy scales we have been using in the
Letter and in this reply, δφ is not small enough for this
approximation to hold perfectly, but the order of mag-
nitude should nevertheless give us a useful estimate. In-
serting the average density of the universe ρ0, and the
chosen Chameleon parameters, we find

ω0 =
√

2 · 10−155M5
Pl

(
3.6 · 1037M−2

Pl

)3/4
,

ω0 = 6.6 · 10−50MPl ≈ 2 · 10−7 Hz,

in the order of a couple oscillations per year. Such a
frequency is viable to observe in e.g. the rate of change
of γ over time.
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ABSTRACT
The Quintessence model is one of the simplest and better known alternatives to Ein-
stein’s theory for gravity. The properties of the solutions have been studied in great
detail in the background, linear and non-linear contexts in cosmology. Here we discuss
new phenomenology that is induced by adding disformal terms to the interactions.
Among other results, we show analytically and using cosmological simulations ran
with the code Isis that the model posses a mechanism through which is it possible
to obtain repulsive fifth forces, which are opposite to gravity. Although the equations
are very complex, we also find that most of the new phenomenology can be explained
by studying background quantities. We used our simulation data to test approximate
relations that exist between the metric and scalar field perturbations as well as be-
tween the fifth force and gravity. Excellent agreement was found between exact and
approximated solutions, which opens the way for running disformal gravity cosmolog-
ical simulations using simply a Newtonian solver. These results could not only help
us to find new ways of testing gravity, but also provide new motivations for building
alternative models.

Key words: gravitation – cosmology:theory – cosmology:dark energy – cosmol-
ogy:dark matter – cosmology:large-scale structure of Universe – methods: numerical

1 INTRODUCTION

Observations of distant supernovae, quasars, and of the Cos-
mic Microwave Background are consistent with a universe
with late time accelerated expansion (Riess & et al. (1998);
Astier et al. (2006); Risaliti & Lusso (2015); Planck Col-
laboration et al. (2016a)). Although this effect can be mim-
icked by introducing a cosmological constant to Einstein’s
equations, the true nature of the expansion is still unknown.
Moreover, the apparent value of the cosmological constant
does not correspond to the vacuum energy predicted by par-
ticle physics (e.g. Weinberg 1989). Among the several solu-
tions to these inconsistencies, there is the idea of modify-
ing Einstein’s theory for gravity. A comprehensive descrip-
tion of many of these theories and their cosmological im-
plications can be found in reviews by Clifton et al. (2012),
Amendola et al. (2018), Copeland et al. (2006), Silvestri &
Trodden (2009), Weinberg et al. (2013), Joyce et al. (2015),
Lue et al. (2004), Koyama (2016), Nojiri et al. (2017) or Li
et al. (2018).

Many of these modified gravity (MG) theories can be

? E-mail: claudio.llinares@port.ac.uk

interpreted as having two geometries for space-time. One of
these two geometries characterizes the curvature of space-
time, while the other describes the impact that this curva-
ture has on the dynamics of matter. The simplest way of
relating these two metrics is through a conformal transfor-
mation (i.e. one metric is obtained from the other with a
rescaling). This rescaling factor is equal in all dimensions
and hence conserves shapes. The next step in complexity
consists in adding a dependence with the direction to this
relation. This can be done through so called disformal trans-
formations, which in the case of scalar-tensor theories de-
pend on the derivatives of a scalar field (Bekenstein 1993).
These kind of transformations have been studied in several
contexts in cosmology such as inflation (Kaloper 2004), dark
matter (Skordis et al. 2006; Arroja et al. 2015), dark energy
(Koivisto 2008; Koivisto & Mota 2008; van de Bruck et al.
2017; Sakstein 2015), screening of modified gravity (Koivisto
et al. 2012; Ip et al. 2015), non-linear structure formation
(Hagala et al. 2016) and others (Barrow & Mota 2003; Brax
et al. 2013; Bettoni & Liberati 2013; Deruelle & Rua 2014;
Ben Achour et al. 2016; van de Bruck et al. 2016; Sakstein
2014; Sakstein & Verner 2015).

In this work, we will study the impact that the addition

c© 2019 The Authors
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of a disformal coupling has on the solutions of field equations
and the non-linear matter distribution. We give a concrete
example which we obtained by perturbing with a disformal
coupling the quintessence model, which is one of the best
known extended models of gravity. Contrary to other works
in which the emphasis is put on parameter estimation, here
we are interested in finding novel phenomenology associated
to this coupling, independently of the validity of the model
from an observational perspective. Doing this is important
because knowing what effects are associated to this partic-
ular coupling could help to construct models with similar
phenomenology, but that are compatible with specific data
sets. This in turn may enable us to construct novel tests of
gravity based on this new phenomenology.

Among other characteristics of the solutions of the
Klein-Gordon equation for the quintessence field, we will
discuss a very simple relation that the disformal coupling
induces between this field and the gravitational potential,
which can be translated into a similar relation between the
fifth force associated to the scalar field and gravity. We will
first analyse this and other effects analytically. We will con-
firm these estimations a posteriori in a realistic set up given
by fully non-linear cosmological simulations. These simula-
tions track the scalar field by means of a non-linear hyper-
bolic solver which takes into account time derivatives in the
background as well as in the perturbations and thus, pro-
vides the most accurate solution can that be obtained, with-
out assuming specific symmetries or neglecting terms in the
equations.

We present details of the model in section 2. In section
3 we describe analytical properties of the evolution of the
background and perturbed scalar field as well as of the fifth
force that arises from it. Section 4 describes the cosmological
simulation suit in which we base our non-linear analysis. We
present results from these simulations on the scalar field and
matter distributions in Sections 5 and 6 respectively. We
summarize our results and conclude in section 7.

2 DISFORMALLY COUPLED QUINTESSENCE

The model that we consider in this work can be defined with
the following action

S =
∫ [√−g

(
R

16πG
+ X−V (φ)

)
+
√−gLB +

√
−g̃L̃DM

]
d4x,

(1)

where X is the kinetic energy density of the field, defined by

X ≡−1
2

φ ,aφ,a (2)

and LB and L̃DM are the Lagrangians of the baryonic and
dark matter fields respectively. We assume that the coupling
is non-universal and that these two fields are coupled to the
Einstein and Jordan frames metrics gab and g̃ab respectively,
which are related through the following disformal transfor-
mation:

g̃ab = gab + B(φ)φ,aφ,b. (3)

The reason for adopting a non-universal coupling is that the
model does not include a screening mechanism. With this

assumption, we ensure that only the dark matter compo-
nent of the Universe will be affected by the modification to
gravity and that Solar System constraints will be fulfilled.
Furthermore, the choice of a non-universal coupling also en-
sures that the model is compatible with recent constraints
on the speed of gravity waves that were obtained through
the detection of an optical counterpart of a black-hole col-
lision (Abbott et al. 2017). Note that a similar approach
was followed by several authors already (Xia 2013; Li &
Barrow 2011; Skordis et al. 2015; Brevik et al. 2015; van
de Bruck & Morrice 2015). Screening mechanisms may be
added by making appropriate choices of the conformal part
of the transformation, which we assume is equal to one. An
example of such a procedure was presented by Hagala et al.
(2016), who studied the effects of a disformal coupling in-
cluded on top of the symmetron model, which is defined by
a conformal coupling 1 + φ 2.

We choose the following form for the disformal coupling
B and the potential V

B(φ) = B0 exp
(
βφ/Mpl

)
, (4)

V (φ) = V0 exp
(
−νφ/Mpl

)
, (5)

which were already studied on several occasions by Koivisto
(2008), Koivisto et al. (2012), Zumalacárregui et al. (2013),
van de Bruck & Morrice (2015), van de Bruck et al. (2016),
Zumalacárregui et al. (2010) and Sakstein (2015). This
choice was made not only because it provides simple equa-
tions from which several analytical properties can be stud-
ied, but also because a change of the initial value of the
scalar field, φ → φinit + φ̄ , can be collected into a change of
the parameters B0 and V0. Taking this into account releases
us from treating the initial value of the field as a free param-
eter, allowing us to fix φinit = 0 without loss of generality.

We will restrict our analysis to positive values of B0,
V0, and ν. The potential V (φ) is thus a decreasing function
of φ , which will result in a background field rolling down
the potential towards infinity. Negative values of ν would
simply make the field roll towards negative values instead,
and the analysis in this paper would be identical after the
transformation φ →−φ and β →−β . A positive choice of B0
is needed to ensure B(φ) > 0. As mentioned by Bekenstein
(1993), a negative coupling B(φ) breaks causality by allow-
ing information in the scalar field to propagate faster than
the speed of light. We will look at three different general
cases for β : negative, positive, and zero. These correspond
to a disformal coupling B(φ) which is respectively decreasing
with φ , increasing with φ , or constant.

Variation of the action (1) with respect to the field φ
yields the following equation of motion for the scalar field:

φ̈ =
1(

1 + γ2ρ
)
[

c2

a2 ∇2φ −3Hφ̇ − B,φ γ2

2B
ρφ̇ 2−V,φ

]
, (6)

where

γ2 =
B

1 + Bφ ,aφ,a
, (7)

we assumed that matter is a pressureless perfect fluid and
that the Einstein frame metric takes the following form:

ds2 =−(1 + 2Ψ)dt2 + a2 (t)(1−2Ψ)
(

dx2 + dy2 + dz2
)
, (8)

where the Newtonian frame scalar perturbation Ψ is the
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Disformal quintessence 3

Type of transition Without damping With damping

Quintessence linear → Quintessence non-linear T nd
a ≡ 2

√
2 Ta ≡ 5.7 (numerical)

Disformal linear → Quintessence linear T nd
b ≡

√
6D Tb ≡

√
2D

Disformal linear → disformal non-linear T nd
c ≡ 37/12Γ1/3 (3/4)

√
2D1/4 Tc ≡ T nd

c

Table 1. Characteristic time scales that arise in the background solutions of the Klein-Gordon equation for Einstein-de Sitter cosmology.

Note that the non-linear regimes mentioned here are associated with the moment in which the background equation for the scalar field
becomes non-linear (and not to the non-linear regime usually studied in cosmology). The superscript nd makes reference to “non-damped”

solutions.

usual Newtonian potential. Here and throughout this pa-
per, a dot corresponds to a partial derivative with respect to
cosmic time t. Note that the only differences that the equa-
tion of motion (6) has with respect to the usual quintessence
model are:

• A factor
(
1 + γ2ρ

)−1
which changes both the speed at

which the scalar field evolves in the background and the
speed of scalar waves.
• The addition of a term (B,φ γ2)/(2B)ρφ̇ 2 (i.e. an addi-

tional force acting on the field).

These two additional terms are not exclusive to the base
model we choose (in this case the quintessence model), but
are characteristic of the disformal coupling. The aim of this
paper is to understand the consequences that these terms
have in both the solutions of the Klein-Gordon equation and
the non-linear distribution of matter in the Universe.

3 ANALYTICAL PROPERTIES OF THE
MODEL

This section describes analytical solutions of the Klein-
Gordon equation for the scalar field. We will study sepa-
rately the time evolution of the scalar field in the background
(for an Einstein-de Sitter universe) and its perturbations.
Furthermore, we will discuss properties of the fifth force that
arise from it.

3.1 Disformal field dynamics: background
evolution in an Einstein-de Sitter universe

Before studying properties of the solutions, it is convenient
to write the Klein-Gordon equation (6) with dimensionless
variables. In the limit γ2→ B, the equation takes the follow-
ing form:

∂ 2
t̃ χ̃ =−2

t̃
t̃2 + Dexp(F χ̃)

∂t̃ χ̃−
1
2

FD
t̃2 + Dexp(F χ̃)

(∂t̃ χ̃)2 +

t̃2

t̃2 + Dexp(F χ̃)
exp(−χ̃) , (9)

where we used the following dimensionless variables:

χ̃ ≡ ν
φ

MP
, (10)

t̃ ≡√v0νH0t (11)

and the following dimensionless parameters:

b0 ≡ H2
0 M2

plB0, D≡ 4
3

b0v0ν2, (12)

v0 ≡
V0

H2
0 M2

pl
, F ≡ β

ν
. (13)

Cosmological energy scales are of the order of H2
0 M2

pl, mean-
ing that these rescalings will give cosmological consequences
for model parameters b0 and v0 close to unity. Since details of
the background evolution of the metric are not expected to
change the phenomenology provided by the disformal terms,
we will study the simplest case: a flat universe with no cos-
mological constant. Thus, we derived Eq. 9 by assuming the
following relations between time and expansion factor

a(t) =

(
3H0t

2

)2/3
(14)

and the following evolution of the background density

ρ(a) =
ρ(a = 1)

a3 =
3H2

0 M2
P

a3 . (15)

Note that this solution is not strictly valid in disformal grav-
ity. However, taking into account corrections associated with
the disformal coupling will add a new layer of complexity
which is beyond the scope of this paper. We briefly discuss
these solutions in Appendix B.

These definitions show that the four original free pa-
rameters V0,ν ,B0 and β are degenerate and that the shape
of the background solutions depends only on two free pa-
rameters D and F. The limit (D,F)→ 0 corresponds to the
usual quintessence model which does not depend on any free
parameter (all the information provided by the two original
parameters V0 and ν can be condensed in the rescaling of the
time and the scalar field). The limit F→ 0 is associated with
a constant disformal coupling, where β = 0. We will study
these two limits first separately and then the most general
case with β 6= 0.

3.1.1 Quintessence

The quintessence limit is defined by assuming (D,F)→ 0
and gives rise to the following Klein-Gordon equation for
the evolution of the background field:

∂ 2
t̃ χ̃ =−2

t̃
∂t̃ χ̃ + exp(−χ̃) . (16)

The solution is shaped by the presence of a damping term
and of a non-linear regime which is triggered when the field is
large enough to reach the non-linear part of the exponential
function. In order to understand consequences of two effects,
we study four different cases that correspond to equations
that are and are not linearized with respect to the field and
with and without the addition of the damping term. Table
A1 in Appendix A summarizes properties of these four solu-
tions. The definition of the time scales that appear in these
results is given in Table 1 in this section. The left panel of
Fig. 1 shows the evolution of the field in these four special
cases.

The complete solution of the quintessence equation of
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Figure 1. Background evolution of the field for quintessence model (left panel) and disformal model with constant coupling (for three

different values of the free parameter D and F = 0). Each panel contains four curves that correspond to the four models described in

Tables A1 and A2 in Appendix A. The vertical lines correspond to the different time scales defined in Table 1 for the case that includes
damping. The numerical values of these time scales are very close to the values that do not include damping.

motion (Eq. 16; red curve in Fig. 1) has a characteristic time
scale that divides the linear regime at early times from the
non-linear regime at late times. At early times, the damp-
ing term interacts with the force that induces the field to
roll down the potential in such a way that only the nor-
malization of the solution is changed with respect to the
undamped solution. This regime is characterized by a loga-
rithmic slope ( d log χ̃

d log t̃ = t̃
χ̃ ∂t̃ χ̃) equal to two. During the tran-

sition to the non-linear regime, the force that accelerates the
field becomes negligible and thus, the evolution of the field is
damped and approaches a solution with a logarithmic slope
equal to zero.

3.1.2 Disformal gravity with constant disformal coupling

We now study solutions of the Klein-Gordon equation in the
limit F → 0 and D 6= 0:

∂ 2
t̃ χ̃ =−2

t̃
t̃2 + D

∂t̃ χ̃ +
t̃2

t̃2 + D
exp(−χ̃) . (17)

Properties of the solutions for the same four special cases
discussed in the previous section are summarized in Table
A2 in Appendix A. These solutions are shown in the three
right panels of Fig. 1 for three different values of the only
free parameter D. The red curve in these panels corresponds
to the solution of the complete equation (Eq. 17).

These results can be summarized as follows. The evolu-
tion of the field at early times can be described analytically
by linearizing the equation with respect to time and the
field itself. Since the coefficient that appears in front of the
time derivative in the damping term approaches zero at early
times, it is possible to neglect it in this regime (note that
this cannot be done in the quintessence model, for which
this coefficient diverges at t̃ = 0). The solution for the early
universe is then a power law with a logarithmic slope equal
to four, which is higher than in the quintessence case and
thus, implies a slower evolution at early times. Once this
early stage is finalized, three different processes dictate the
further evolution:

(i) The two explicit functions of time that exist in the
two terms in the right hand side of Eq. 17 approach the
quintessence value (1/t̃ and 1 respectively).

(ii) The damping term increases with time.
(iii) The term that forces the field to roll down the po-

tential (second term on the right hand side of the equation)
drops (i.e. the non-linear regime is reached).

Three possible solutions exist depending on which of these
processes is activated first, which in turn depends on the
amplitude of D. For small values of D (red curve in the second
panel from left to right of Fig. 1), the transition towards the
quintessence limit occurs first (i.e. Tb < Ta and Tb < Tc). In
this case the equation is transformed into the same equation
that defines the quintessence model and thus the evolution
continues following the solutions described in the previous
section and in Table A1 in Appendix A.

For intermediate values of D (red curve in the third
panel from left to right of Fig. 1), the damping term
dominates before the occurence of the transition to the
quintessence regime. In this case the acceleration of the field
becomes negative and the field loses kinetic energy. The so-
lution becomes flat with a logarithmic slope equal to zero.

Finally, for very large values of D (red curve in the
fourth panel from left to right of Fig. 1), the evolution of the
field stays in the disformal regime until the exponential func-
tion in the potential starts decaying. The equation of mo-
tion becomes the equation of a free particle, whose solution
has a logarithmic slope equal to one. Once this happened,
the field continues evolving unperturbed until the damping
term dominates. At this moment, the field decelerates and
the slope becomes equal to zero.

These apparently complex solutions can be summarized
in a simple way by plotting their logarithmic slope as a func-
tion of D and t̃, which we calculated numerically and show
in Fig. 2. The transition between different regimes is given
by the characteristic time scales defined in Table 1.

3.1.3 Disformal gravity with exponential disformal
coupling

Assuming β (which is equivalent to F in the parametriza-
tion studied here) is different than zero has two effects in the
equation of motion (Eq. 9). Firstly, it gives an additional
dependence with the field χ̃ to the coefficients that con-
trol the transition between the disformal and quintessence
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Figure 2. Colour coded is the logarithmic slope of the solution of
the background Klein-Gordon equation for the disformal model

with β = 0 and an Einstein-de Sitter universe. The three lines

correspond to the three time scales defined in Table 1 (for the
case that includes damping).

regimes. This new dependence converts the parameter D into
an effective parameter D̃ = Dexp(F χ̃). Positive or negative
values of F will result in D̃ increasing or decreasing with
time, which in turn, will delay or accelerate the transition to
the quintessence regime (defined by Tb). Secondly, assuming
F 6= 0 will add a new term to the equation of motion which
will act as an additional damping term or external force on
the field depending on the sign of F.

In the case F > 0, the parameter D̃ will grow exponen-
tially with the value of the field. This will decrease the time
required to reach the transition to the non-linear regime as
well as decrease the importance of the damping terms. Since
the new damping term decreases faster with time than the
usual one, it will not have any impact on the overall shape
of the solutions. Figure 3 shows the logarithmic slope of the
solution in the plane (D, t̃) for different values of F. For small
values of D and intermediate values of F (second panel from
the left), the damping term kicks in before the transition to
the non-linear regime is reached and thus, the solution gets
flat, with a logarithmic slope equal to zero. However, the
dependence of D̃ with χ̃ will force the damping to decrease
faster that the usual case, thus giving the chance to the po-
tential term to resurge and change the logarithmic slope of
the solution back to one. Afterwards, all the terms on the
right hand side will dissapear, which let the field evolve as
a free particle, with a slope equal to one. For large values of
F, the transition to the non-linear disformal regime is faster
than the transition to the linear quintessence regime, and so
the slope of the solution has a direct transition from four to
one.

To analyse the case F < 0, it is convenient to re-write
the equation of motion (Eq. 9) as follows:

∂ 2
t̃ χ̃ =−1

4

[
4t̃ + FD∂t̃ χ̃

t̃2 + Dexp(F χ̃)

]
∂t̃ χ̃ +

t̃2

t̃2 + Dexp(F χ̃)
exp(−χ̃) .

(18)

Here, it becomes evident that the condition for the first term
of the right hand size to be negative (and thus, to act as a
damping term instead of an external force) is

4t̃ + FD∂t̃ χ̃ > 0. (19)

By substituting the possible asymptotic limits discussed in
Table A2 (i.e. t̃4, t̃2, t̃ and log(t̃)), we can see that the equa-
tion of motion will eventually become unstable for negative
values of F. In the particular regime in which χ̃ ∝ t̃2, the
solution is unstable for all t̃.

3.2 Disformal field dynamics: perturbations

The model we are dealing with does not include conformal or
explicit couplings. However, the disformal coupling that we
allowed for can generate perturbations in the field by itself.
The mechanism by which these perturbations originate is
based on the fact that, thanks to the term (1 + γ2ρ)−1 in
the Klein-Gordon equation (Eq. 6), the field rolls down the
potential V at different rates in regions that have different
densities (slower rate in higher density regions). The shape of
these perturbations can be summarized in a simple relation
between the metric perturbation Ψ and the scalar field φ ,
which can be translated (after appropriate approximations)
into a similar relation between the fifth force associated with
the scalar field and gravity.

We can determine the exact form of field perturbations
by re-writing the Klein-Gordon equation (Eq. 6) as follows:

∇2φ =
a2

c2
γ2

B

[
Bφ̈ +

1
2

B,φ φ̇ 2
]

δρ + ε, (20)

where we decomposed the density in a background value plus
a (not necessarily small) perturbation

ρ(x, t) = ρ0(t)+ δρ(x, t) (21)

and we defined

ε ≡
[

(1 + γ2ρ0)φ̈ + 3Hφ̇ +
B,φ γ2

2B
ρ0φ̇ 2 +V,φ

]
a2

c2 , (22)

which is equal to zero in the background. By substituting
the factor δρ that appears in Eq. 20 with the corresponding
value that can be obtained from the Poisson’s equation for
the metric perturbation

∇2Ψ =
a2

2M2
P

δρ, (23)

we can relate the Laplacian of the scalar field and the metric
perturbation:

∇2φ = ξ ∇2Ψ + ε, (24)

where we have defined

ξ ≡ 2M2
P

c2
γ2

B

(
Bφ̈ +

1
2

B,φ φ̇ 2
)
. (25)

We now substitute all the dependences with the scalar field
and its time derivatives with background values. The term
ε will disappear and we will end up with an equation that
can be integrated and whose solution is

φ = ξ0Ψ + φ0 + υ , (26)
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Figure 3. Color coded is the logarithmic slope of the solution of the background Klein-Gordon equation for the disformal model for
different values of F in an Einstein-de Sitter universe.

where υ is a solution of the Laplace equation, which, to-
gether with the background value of the field φ0, acts as an
integration constant. We will test this relation in the follow-
ing sections by comparing results obtained from non-linear
simulations which do not rely on approximations. Since it
will be used a posteriori, we show here the explicit form
that the coefficient ξ acquires when assuming an exponen-
tial potential as in Eqs. 4 and 12:

ξ0 =
2b0

H2
0 c2

(
φ̈0 + β

φ̇ 2
0

2Mp

)
exp(βφ0/Mp)

1− b0
H2

0 M2
P

φ̇ 2
. (27)

The sub-index zero in these expressions highlights the fact
that these are background quantities. The relation between
the fields given by Eq. 26 depends on the model parameter b0
and β and thus, breaks the degeneracy between parameters
that enabled us to define D and F (Eqs. 12 and 13). In the
following section, we will study the consequences of breaking
this degeneracy by simulating models that have the same
background parameters D and F, but different b0.

An important characteristic of Eq. 26 is that the sign of
the coefficient ξ0 depends in part on the sign of the sec-
ond derivative of the field. This means that at the mo-
ment in which the background field transitions towards the
non-linear regime described in previous section (i.e. the mo-
ment in which its second derivative becomes negative), the
scalar field perturbations will be able to flip; their usual
distribution will thus be inverted and local minima of the
field will correspond to local minima in the density distri-
bution. The physical mechanism responsible for this phe-
nomenon is related to the fact that the term (1 + γ2ρ)−1 in
the Klein-Gordon equation (Eq. 6) increases the efficiency
of the damping term in low density regions. Thus, at the
moment in which the damping term grows to the point in
which it can affect the evolution of the field, the values in
the halos overshoot that of the voids and inverts the sign of
the perturbations. Since the fifth force has an explicit de-
pendence on the potential V (and thus, on the scalar field
itself), the flip in the perturbations will have a direct impact
on the distribution of forces and the evolution of matter that
is defined by it.

3.3 The fifth force

The acceleration of a test particle in scalar-tensor theories
can be found by studying the Jordan frame geodesics equa-

tions (Zumalacárregui et al. 2013; Hagala et al. 2016). In
the weak field limit of a general theory with a purely dis-
formal coupling, the geodesic equation for a non-relativistic
test particle is given by

ẍ + 2Hẋ +(ζ · ẋ)∇φ +
∇Ψ
a2 +

c4

2M2
P

ξ
gφ

∇φ
a2 = 0, (28)

where we have defined

gφ ≡ 1−2BX (29)

to simplify the notation and the 3-vector ζ is a function of
derivatives of φ . Eq. 28 is equivalent to Newton’s second
law, where the acceleration of a body is proportional to the
sum of forces acting on it. The second term on the left hand
side of the equation corresponds to a damping force induced
by the expansion of the Universe; the third term is second
order and the last two correspond to the Newtonian and fifth
forces, which we define as:

FΨ ≡−
∇Ψ
a2 , (30)

Fφ ≡−
c4

2M2
P

ξ
gφ

∇φ
a2 . (31)

These two force fields can be related to each other by taking
into account the connection that exists between the scalar
field and the metric perturbation discussed in the previ-
ous section. As the version of that relation that does not
rely on approximations applies to the Laplacian of the fields
(Eq. 24), it is convenient to study the divergence of these
force fields. Thus, by taking into account definitions 30 and
31 and Eq. 24, we can write

∇ ·Fφ = (1−δd)η2∇ ·FΨ, (32)

where the quantity

δd ≡ gφ
ξ 2∇ ·FΨ

[
∇
(

ξ
gφ

)
·∇φ +

ξ
gφ

ε
]

(33)

is exactly zero in the background and we defined

η2 ≡ c2

2M2
P

ξ 2

gφ
. (34)

The sign of η2 depends exclusively on the sign of gφ , which
must be positive for the theory to be stable. This is because
the disformal transformation (Eq. 3) becomes singular when
gφ = 0 (i.e g̃µ

µ = 0 and thus, the metric becomes not invert-
ible), so this crossing must be avoided. Futhermore, Koivisto
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et al. (2012) showed that the evolution of the field will natu-
rally avoid this singularity by progressively freezing the field
before 2BX reaches unity. We can therefore assume gφ > 0,

which results in η2 being positive.
Eq. 32 can be integrated after evaluating the coefficient

(1− dδ )η2 in the background, which is the same as we did
in the previous section when integrating Eq. 24 to connect
the field with the metric perturbations. The end result is:

Fφ = η2
0 FΨ + ∇×k, (35)

where the curl field k is an integration constant (in the sense
that its divergence is zero) and we took into account that δd
is equal to zero in the background. The properties of ∇×k
are very well known in the context of Modified Newtonian
Dynamics (MOND). In particular, it has been shown that it
is exactly zero for particular symmetries and that behaves
at least as r−3 for non-symmetric configurations (Bekenstein
& Milgrom 1984). Its effects in structure formation (in the
context of MOND, which deals with a universe without dark
matter) were studied in detail by Llinares et al. (2008) (ad-
ditional results associated with this paper can be found in
Llinares (2011)).

The results described in this section and the previous
one can be used to define two different simulation methods
which will depend on two different approximations. First, it
is possible to neglect the effects induced by the term υ in
Eq. 26. Assuming also that ξ0 is independent of the posi-
tion (which we actually did to derive that equation), we can
discretise the space and time derivatives that appear in the
definition of the fifth force (Eq. 31). Thus, the fifth force can
be calculated as a linear combination of values of φ in space
and time. We will discuss in the following section the impact
that making these approximations has in the estimation of
the scalar field by comparing with exact results obtained
from cosmological simulations. A companion paper will also
contain a detailed estimation of how the error associated
with these approximations translates into the predictions of
observable quantities.

A different simulation approach that can be defined
from these results consists in neglecting the curl term in
Eq. 35 to find a relation between the Newtonian and fifth
force fields. This second case is equivalent to assume that
all the gravitational effects can be condensed in an effective
gravitational constant Geff = G(1+η2

0 ), which is assumed to
be independent of the position. Note that similar approxi-
mations were discussed in Sakstein (2014) in the context of
Solar System tests.

3.4 Achieving a repulsive fifth force

The presence of non-canonical kinetic terms in the definition
of a scalar tensor theory, can give rise to repulsive forces
(Amendola 2004). Since disformal gravity fulfils this con-
dition when written in the Jordan frame, it may be worth
investigating how repulsive forces can be achieved in this
model. The possibility of obtaining repulsive fifth forces is
not only interesting from a theoretical perspective, but be-
comes relevant in the context of the discrepancy found by
the Planck collaboration between the normalization of den-
sity perturbations σ8 that can be inferred from the CMB
and from lensing (Planck Collaboration et al. 2016b). Al-
though the measured discordance could be due to unknown

biases or even statistical fluctuations (Addison et al. 2016;
Couchot et al. 2017; Kitching et al. 2016), these results could
also be a signal of new physics. A repulsive MG force will
delay clustering with respect to GR and thus could help in
reducing the tension.

The necessary condition for the fifth force to be opposite
to gravity can be obtained from the relation between these
two force fields provided by Eq. 35. However, since approx-
imations where made when deriving this equation, a more
appropriate starting point for this analysis is the divergence
of this relation, for which we present an exact expression in
Eq. 32. This equation tells us that the only way in which
the divergence of the two force fields can have different sign
is by having

δd > 1. (36)

Since this quantity is equal to zero in the background, the
disformal fifth force is parallel to gravity at order zero. At
first order in perturbations of the field, δd takes the following
form:

δd ∼
(
1 + γ2ρ0

) ¨δφ + 3H ˙δφ +V0ν2/M2
Pδφ

ξ 2∇ ·FΨ
, (37)

where we assumed β = 0 for simplicity. Since the sign of δd
depends on the sign of the perturbations, this quantity can
certainly be positive. It will also become larger than one at
least in the specific redshifts in which ξ changes sign and
in regions where ∇ ·FΨ changes sign (i.e. in the transition
between voids and over-dense regions). So we can be cer-
tain that repulsive forces do exist in this model at least as a
transient and in specific regions of space. This result show
that the approximations that we made to obtain Eq. 35 from
Eq. 32 may be important in specific situations and thus can-
not be taken by granted in general. This may be important in
particular because voids and their outer limits, where ∇ ·FΨ
approaches zero, were discussed in several opportunities as
relevant probes of modified gravity (Llinares 2011; Cai et al.
2015; Barreira et al. 2015; Voivodic et al. 2017; Falck et al.
2018).

An additional result that comes from Eq. 37 is that the
fifth force has an explicit dependence with the potential V ,
and thus with the absolute value and sign of the perturba-
tions. This may be important since we showed in Section
3.2 that the scalar field perturbations are proportional to
the metric perturbations (Eq. 26) and that they can flip fol-
lowing the sign of the coefficient ξ0. So the moment in which
the field perturbations flip, will be associated with a change
in the amplitude of the fifth force.

4 N-BODY SIMULATIONS

We summarize in this section technical aspects of the 3D
cosmological simulations that we run to both confirm the
results presented above in a realistic set up and quantify the
impact that the fifth force has in the matter distribution
in the non-linear regime. This section also describes in de-
tail our motivation for choosing the particular set of model
parameters that we simulated.
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[t!]
Model v0 ν b0 β D F v0ν Notes

GR — — — — — — — ΛCDM with Planck 2015 parameters

DDE 3.055 0.4 1 (-10,0,10) 0.65 (−25,0,25) 1.22 Correct amount of Disformal Dark Energy
Fiducial 1 1 1 0 1.3 0 1 —

VF 10 1 0.1 0 1.3 0 10 Velocity flips in less than a Hubble time.

Steep 10−3 103 0.01 0 1.3×101 0 1 V is steep ⇒ fast transition to non-linear phase.
FF 0.1 100 1 (-10,0,10) 1.3×103 (−0.1,0,0.1) 10 Field flips in less than a Hubble time.

Table 2. Model parameters used for the N-body runs. See Section 4 for explanation.

4.1 Set up of the simulations

The simulations were run with the modified gravity N-body
cosmological code Isis (Llinares et al. 2014), which is based
of the particle mesh code Ramses by Teyssier (2002). The
code includes a solver for the non-linear MG elliptic equa-
tions that can be obtained after assuming the quasi-static
approximation. However, since in disformal gravity the time
derivatives play a central role in both the Klein-Gordon and
geodesics equations (Eqs. 6 and 28), the validity of this ap-
proximation is not guaranteed. Thus, we made use of the
non-static solver of Isis (Llinares & Mota 2014; Hagala
et al. 2016), which relies on a non-linear hyperbolic solver
that can take into consideration time derivatives of the back-
ground and perturbed fields.

To be consistent with the simulation code Isis/Ramses,
we will use the supercomoving time τ, which relates to cos-
mic time t through dτ = dt/a2 (Martel & Shapiro 1998). We
will denote derivatives with respect to this new time with
a prime. We will also work with the following normalized
scalar field

χ ≡ φ
Mpl

. (38)

The code variables associated to the time derivatives φ̇ and
φ̈ are

q≡ aχ ′, (39)

q′ = a′χ ′+ aχ ′′. (40)

We performed N-body simulations with 2563 particles in
a cubic box with a comoving side length of 256 Mpc/h. The
background cosmology is assumed to be the same for all the
runs and given by Planck 2015 best fit ΛCDM parameters
(Planck Collaboration et al. 2016a): (H0,ΩΛ,Ωm,σ8) = (67.74
km/s/Mpc, 0.6911,0.3089,0.8159). The assumption behind
this selection for the background expansion is that the en-
ergy of the scalar field is compatible with a cosmological
constant with the value required by observations. Thus, from
the numerical point of view, taking into account the energy
of the scalar field is equivalent to adding a cosmological con-
stant. We note that not all the models that we simulated
possess this property. However, in this paper, rather that
finding the best fit disformal parameters, we are interested
in looking for new phenomenology which may provide us
with novel ways of looking at the data. This may poten-
tially lead to a detection of deviations from GR in the data,
which does not necessarily correspond exactly to the model
studied here, but that share observable signatures with it.
Taking into account the energy of the scalar field will compli-
cate the analysis, but will not provide additional information
on the disformal effects associated with the perturbations.

The initial conditions for the N-body particles were gen-

erated assuming that the impact of the scalar field at high
redshift is negligible. Thus, all the simulations use the same
initial conditions, which were generated with the Zeldovich
approximation with the code Grafic2 (Bertschinger 2001).
These sets of initial conditions share not only the power
spectrum, but also the phases. By doing this, we ensure that
differences found between the various simulated models are
induced by the presence of a fifth force and not the initial
particle distribution.

The codes Ramses and quasi-static Isis include adap-
tive mesh refinements (AMR), which means that they can
increase the resolution locally as required by the complexity
of the solutions. However, the non-static version of Isis does
not include this technique. Thus, our analysis will only be
valid up to the Nyquist frequency of the domain grid which
covers the whole simulation box and has 256 nodes per di-
mension. The three-dimensional particle data was output at
nine different snapshots, at z = 2.33, 1.00, 0.43, 0.25, 0.11,
0.081, 0.053, 0.026, and 0. In addition, the code outputs all
the available fields (density, metric perturbation, scalar field
and its derivatives) in a two-dimensional slice that crosses
the center of the box at 200 different points in time, ranging
from z = 16 to z = 0.

4.2 Simulated models

Table 2 lists the model parameters that we chose for the
simulations. We also included the derived background pa-
rameters D and F defined in Section 3.1 and the product
v0ν which will be useful to interpret results in the following
sections. Note that the background parameters D and F were
original defined for an Einstein-de Sitter universe, so they
must be taken only as indicative. The slope of the disformal
coupling β is set to zero for all the runs except the models
DDE and FF, for which we made two additional runs with
β =±10. A brief explanation of the motivation for each set
of parameters follows.

In the Fiducial run, all three free parameters of the
model are set to one. These values give a background evo-
lution that is very close to that of the ΛCDM model. To
confirm this, we also run the Disformal Dark Energy (DDE)
simulation with parameters that were specifically tuned to
recover the ΛCDM expansion rate. The parameters of this
simulation are such that the potential V (φ) gives the ob-
served amount of Dark Energy at redshift zero and at the
same time stays within constraints obtained in the linear
regime by van de Bruck & Mifsud (2018). We find that their
upper limit for the coupling, B0 = (0.2meV)4, is equivalent

to B0 ≈ 1/
(

H2
0 M2

pl

)
in the units used in this work. Conse-

quently, using a dimensionless coupling b0 = O (1) will give
a model that is within the constraints given in that study.
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Figure 4. Background evolution of the scalar field (left) and its time derivative (right) for the simulated models as a function of the
expansion factor a. The continuous curves are Runge-Kutta solutions of the order zero Klein-Gordon equation and the points are the

mean values obtained from the non-linear simulations in slices that pass through the centre of the box. Results of the DDE run are very
similar to those of the Fiducial run, so we exclude them to avoid overcrowding the plots.

The initial potential, v0 = 3.055, was found with a shooting
algorithm, following van de Bruck & Mifsud (2018). Com-
bining this with a small value for ν (i.e. a flat potential)
results in V ∼ 3H2

0 M2
pl today, and hence gives rise to a dark

energy component similar to a cosmological constant. Most
of the results that come out of these two simulations (Fidu-
cial and DDE) are similar. Thus, we will show only results
of the Fiducial run and point out differences when needed.

The parameters of the Field Flipping (FF) and Velocity
Flipping (VF) models were chosen to present a broad spec-
trum of phenomenology. The FF simulation enters the non-
linear background phase discussed in Section 3.1.2 before
redshift zero. The analysis presented in Section 3.2 shows
that this will induce a flip in the scalar field perturbations.
Once this happens, the distribution of the field perturba-
tions will contradict the usual profile for a coupled scalar
field and will associate high density regions with local max-
ima in the field. In the VF case, a Hubble time is enough
to get the flip in the time derivative of the field, but not in
the field itself. The parameters of this model were chosen to
study how the degeneracy that exists between background
parameters D and F can be broken by looking at the pertur-
bations in the fields. Thus, the simulation shares the values
of D and F with the Fiducial simulation, however, it has a
different value of b0.

The Steep model was run using parameters that corre-
spond to a steep potential V , and thus undergoes an early
transition towards the non-linear regime (i.e. corresponds to
a small value Tc). The aim of this simulation is to analyse
the consequences of a field that is active only at high redshift
and is damped afterwards.

5 SIMULATION RESULTS: PROPERTIES OF
THE FIELDS

We discuss in this section several aspects of the distribu-
tion of the simulated fields as well as a comparison with the
analytic estimations presented in Section 3.

5.1 Background evolution of scalar field

Given that the simulations track the scalar field χ rather
than its perturbations δ χ on a background χ0, it is worth
asking if the mean value of the simulated scalar field agrees
with the background value that can be calculated, for in-
stance, with a Runge-Kutta solver. We show such a com-
parison in Figure 4. The lines in the left and right panels
are Runge-Kutta solutions for the background scalar field
and its time derivative respectively. The points are the mean
values obtained from the N-body simulations in slices that
pass through the centre of the box. The abrupt decline to-
wards zero at high redshift is related to the fact that the
initial conditions are not given at a = 0, but at the starting
redshift of the simulations, when we assumed that the field
is equal to zero. Both solutions agree very well, which is a
confirmation of a reliability of the code.

5.2 Qualitative behaviour of scalar field
perturbations

Figure 5 shows the time evolution of scalar field perturba-
tions as found in 2D slices that pass through the center of
the 3D box. Different rows correspond to different redshifts
(shown to the left of the color bar). The first column shows
the density distribution, while the other four correspond to
the perturbation in the scalar field. In this section we are
only interested in a qualitative description of the effects asso-
ciated to the disformal coupling, thus we normalized the per-
turbations with the maximum value reached in each model
separatelly. When using this normalization, the perturba-
tions lie always between minus one and one. A quantitative
description will be presented in following sections. Since the
Fiducial and DDE models have almost identical evolution,
we show only one of these two models.

The panels show that scalar field perturbations can do
more that simply grow with time as happens in other scalar
tensor theories. The only model that has a monotonic growth
of perturbations is the Fiducial one. In the VF model, the
perturbations grow until redshift of about z = 0.82 and then
wash out until being completely absent at redshift z = 0.
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Figure 5. The first column shows the evolution of the density distribution. The rest of the columns show the time evolution of scalar

field perturbations for different models. The colours correspond to the scalar field perturbations normalized to the maximum reached
in each model, which means that the values go from -1 (dark blue) to +1 (dark red). The scaling of the colours is symmetric-log. The

numbers next to the color bar correspond to the redshift of each row. For reasons of space, we show only the bottom half of each slide.
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Figure 6. Time evolution of the coefficient ξ0 that relates metric

perturbations Ψ with the scalar field χ (Eq. 26) for the simulated
models. The DDE model is similar to the Fiducial one, and thus

not shown to avoid overcrowding the plot. The sharp transitions

between positive and negative values are produced by the sym-
log scaling that we used for the vertical axis. See section 5.2 for

explanation.

In the Steep model, the perturbations grow very rapidly at
early times, reaching their maximum at z∼ 5. Then the field
flips, developing maxima in the position of the halos and
minima in the voids. After the flip occurs, the perturbations
washed out as happened in the VF model. Finally, the FF
model has a behaviour which is similar to the Steep model:
a maximum of the perturbations at z ∼ 1.38, followed by a
flip at z ∼ 0.48. In this particular case, the perturbations
continue being almost constant until z = 0.

The solutions shown in these panels seem very com-
plex, but can be easily explained with the relation between
the scalar field φ and the gravitational potential Ψ that we
discussed in Section 3.2 (Eq. 26). Assuming that the integra-
tion constant υ in that equation is zero, we find that both
fields are related through the parameter ξ0, whose time de-
pendence is shown in Figure 6 for the same models presented
in Figure 5. Two pairs of models have identical behaviour
at high redshift. This has the consequence that the early
evolution of ξ0

1:

ξ0(t� 1) =

3MpH2
0

c2 t2

[
v0ν
4

+
MPH4

0
85

v2
0ν2β
b0

t4

]
exp(βφ0/Mp) (41)

depends on the product v0ν, which is the same for the two
pairs of models (Fiducial, Steep) and (VF, FF) (see spe-
cific values in Table 2). This degeneracy is broken at later
times, and thus models that agreed at high redshift depart
from each other later on. The reason for this degeneracy to
be absent in different columns of Figure 5 is that the nor-
malization chosen for these panels is different for different

1 We derived this special case by taking into account the early
redshift solution (Eq.A5) together with the definitions provided

in Section 3.1 and the definition of ξ0.
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Figure 7. The blue curves correspond to the maximum relative

difference between the scalar field values obtained from the N-

body simulations and the ones we obtained from the gravitational
potential by assuming υ is zero in Eq. 26. The gravitational po-

tential was obtained by solving Poisson’s equation with the same

solver that was used to run the simulations. The orange curves
are the maximum ratio between the fifth force FΨ and gravity Fφ .

By comparing blue and orange curves, we can confirm that the
times where the relative error associated to the approximation is

large, the force is small and thus, no measurable effect should ap-

pear in the density distribution. We show results from 2D slices
that pass through the center of the 3D box. See Section 5.3 for

explanation.

models. Finally, figure 6 also shows that ξ0 becomes larger
for smaller values of b0. This may seem to contradict the fact
that the solutions provided in Section 3, which depend only
on D, are independent of b0. However, one must take into
account that there is an additional factor b0 in the definition
of t̃ used in that section.

Comparison of Figures 5 and 6 unveils the close relation
that exists between the evolution of the perturbations and
ξ0. The maxima in the perturbations agree with the maxima
in ξ0. Also the moment in which the flips occur in the field
agree with the change in the sign of ξ0.

The fact that the scalar field perturbations shown in
Figure 5 go back and forth in the FF simulation may open
the question of the possibility of obtaining sustained oscil-
lations in the field perturbations. However, these changes in
the perturbations are associated with transitions between
different regimes in the background evolution of the field,
which are condensed in the evolution of ξ0. The analysis
presented in Section 3.1 shows that after the second oscil-
lation occurred, the perturbations cannot do more than to
approach zero.

5.3 Testing analytic predictions for field
perturbations

A more quantitative comparison between the the scalar field
that we extracted from the self-consistent N-body simula-
tions and the predictions that we can obtain by assuming
that υ = 0 in Eq. 26 is shown in Figure 7. The blue curves
are the maximum relative difference between these two fields
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Figure 8. Cosine of the angle between Newtonian and fifth force as a function of time and simulated model. Dark red and blue correspond
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we expect repulsive forces associated to the zeros of ξ0: VF, FF
and Steep. The vertical arrows show the zeros of ξ0 for these

models.

as found in 2D slices that pass through the centre of the box
and as a function of redshift. Different panels correspond to
different simulations. The fields that we used for this com-
parison are the fully non-linear scalar field φ and the solution
of the Poisson’s equation Ψ that are used to calculate the
forces while the simulations run. In other words, these are
the most accurate fields (φ and Ψ) that we have at hand.
The plots show that there is a very good agreement between
the exact field provided by the simulations and our predic-
tion: differences are below 0.1% at all times after z = 1. The
larger differences that occur at high redshift are related to
the fact that we did not take into account perturbations of
the scalar field in the initial conditions for the simulations
(instead, we approximated them by zero). Thus, there is a
transient in which the field evolves from zero to a field that
has a power spectrum compatible with Eq. 26.

These high redshift differences can be reduced by choos-
ing more accurate initial conditions (for instance, generated
as a realization of a linear power spectrum). However, given
that they occur at a moment in the history of the Universe
when the fifth force is negligible, is it likely that they will not
affect the matter distribution. We confirmed this by plotting
the maximum ratio between the fifth force Fφ and gravity
FΨ on the 2D slices as a function of time (orange curves in
Figure 7). As expected, the fifth force is sub-dominant at
high redshift. By the moment in which the fifth force goes
above 1% of the Newtonian force, the error in our predic-
tion of the scalar field is already below 0.1% and continues
decreasing from there.

The good agreement that we found between exact and
approximate solutions shows that it does make sense to run
disformal gravity cosmological simulations by using Eq. 26
instead of a hyperbolic solver (as described at the end of
Section 3.2). This will largely reduce the overhead associated
with the modified gravity solver and will make disformal
simulations competitive in terms of speed. The impact of this

approximation in the predicted power spectrum of density
perturbations will be presented in a companion paper.

5.4 Direction of the fifth force

In section 3.4, we discussed a sufficient condition for the
presence of repulsive fifth forces (i.e. opposite to gravity),
which is condensed in Eqs. 36 and 37. Given that our simu-
lations track the evolution of the scalar field without making
any approximations or simplifications in the equations, it is
possible to use the simulated force field to confirm if repul-
sive forces do exist in a realistic set up. Figure 8 shows the
cosine of the angle between the Newtonian and fifth forces
in the same slices and for the same redshifts and simulations
we presented in Figure 5. Dark red and blue correspond to
parallel and antiparallel forces and the numbers to the left
of the colour bar make reference to the redshift of each slice.

The panels show that all the simulations produce repul-
sive forces at high redshift, however these occur during the
warm up phase of the simulation in which the scalar field
transitions from the initial condition (φ = 0) to a distribu-
tion that is consistent with the density field (see discussion
in the previous section). Moving forward in time, we see that
repulsive forces appear only at specific redshifts. These red-
shift values are consistent with the discussion presented in
Section 3.4, where we found that repulsive forces will occur
in the zeros of the function ξ0. This is confirmed in Figure
9, where we show the fifth percentile of the distribution of
the angle between the forces as a function of scale factor for
the 2D slices. The vertical arrows are the zeros of ξ0, which
are consistent with the moments in which the forces become
antiparallel.

6 SIMULATION RESULTS: IMPACT OF THE
FIFTH FORCE ON THE MATTER
DISTRIBUTION

We describe now the effects that the presence of the fifth
force has on the distribution of matter. We do this by study-
ing differences between the power spectrum of dark matter
density perturbations of the GR and MG simulations. We
do firstly the analysis for the models that have β = 0 and
discuss a posteriori the differences induced by adding a de-
pendence of the coupling with the scalar field through β .

6.1 Power spectrum of models with β = 0

Figure 10 shows the time evolution of the relative difference
between the MG and GR power spectra for the models that
have a constant disformal coupling (i.e. with β = 0). Different
panels correspond to the different models that we simulated
and different lines within each panel to different redshifts.
In the Steep run, the evolution is very close to GR, and
thus we multiplied these curves by 104. As the curves have
positive and negative values, we show their absolute values
and highlight the negative parts with dotted lines.

The models can be divided in two different categories:
those in which the fifth force produces a monotonic increase
of power with respect to GR (models DDE and Fiducial)
and those that have a monotonic increase until some specific
redshift and then continue increasing at large scales, but
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Figure 10. Relative difference between MG and GR dark matter power spectrum from all the simulations. The values obtained from
the Steep simulation are much smaller than the scale used for the other models, and thus we multiplied them by 104 for presentation

purposes only.

have a slower evolution than GR at small scales (models
FF, VF and Steep).

Some insight on the phenomenology associated to these
curves can be gained by comparing the amplitude of the fifth
force with the gravitational force. By assuming that δd is
second order in Eq. 32, we can obtain Eq. 35. If we further
assume ∇× k� 1, we find that the amplitude of the fifth
force for a particular set of parameters depends exclusively
on the background quantity η2

0 , which we show in Figure 11
for all the simulated models as a function of the expansion
factor a. Since the values of the DDE run are very close
to those of the Fiducial run, we excluded them from this
plot. The discontinuities in the derivatives of these curves
are not real, but related to the log scaling of the vertical axis.
However, these discontinuities do have a physical meaning,
since they occur at moments when the parameter ξ0 changes
sign (see Figure 6).

From these curves, we can see that the pairs of models
M1 = (Fiducial, Steep) and M2 = (VF, FF) have identical
forces at high redshift and so it is expected that their early
time evolution will be identical. The fact that η2

0 of the mod-
els M2 is more than two orders of magnitude larger than that
of the modes M1 is responsible for the large differences found
in Figure 10: models M2 have a much faster evolution, reach-
ing differences with respect to GR of more than 10% at large
scales. Note that the model FF has a smaller coupling con-
stant than the Fiducial model. Naively, one will expect that
a smaller coupling constant will be associated to a slower
evolution, however, the particulars of the definition of η2

0
(in particular, the functions ξ and gφ ) give stronger forces
in the FF case.

Comparison between the Steep and Fiducial values of

η2
0 show that even if both models share the same force fields

at high redshift, they depart from each other later on. In
the Steep simulation, the forces stay always close to zero
and thus differences in the power spectrum with respect to
GR are minimal.

Figure 11 can also help us understand why the power
spectrum of the MG simulations goes below the GR val-
ues at low redshifts. In particular, it is possible to see that
the moment in which (PMG−PGR)/PGR starts moving back
to zero corresponds to the moment in which η2

0 starts de-
creasing and approaches zero. Also, this change in the be-
haviour of the power spectrum occurs at small scales, where
the structure of the halos dominates the signal. These facts
are consistent with a decrease of power in MG simulations
induced by an expansion of the halos when the fifth force dis-
appears and the kinetic energy of the dark matter particles
dominates.

Finally, we would like to point out that late evolution of
the models DDE and Fiducial is almost scale independent.
After an initial shape is given to the difference between MG
and GR, that shape is almost conserved later on. Departure
from scale invariance evolution of these curves occurs close
to the Nyquist frequency of the simulations, and thus higher
resolution simulations should be run in order to confirm this
result.

Note that our analysis based on η2
0 does not take into

account the back-reaction that the presence of the fifth force
has on the metric perturbations (through changes in the
density distribution). However, this effect was taken into ac-
count in the simulations, which are fully self-consistent.
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Figure 11. Time evolution of the dimensionless coefficient η2

that relates Newtonian and fifth force fields when calculated with

background quantities for the simulated models. The DDE model
is similar to the Fiducial one and thus, is not shown to avoid

overcrowding the plot. The discontinuities in the derivatives are

not real, but produced by the log scaling.

6.2 Response of the power spectrum to changes
in β

In this section, we discuss the impact that the parameter β ,
which determines the slope of the disformal coupling, has
on the power spectrum of density perturbations. Figure 12
shows a comparison between simulations that were run with
β = 0 and β =±10. The left and right panels correspond to
the base models DDE and FF respectively. Continuous and
dotted lines correspond to positive and negative values of β .

The left panel shows that allowing β to be different
than zero in the DDE model has a monotonic effect with fre-
quency. Positive values of β force the coupling to go up with
the value of the field (see Eq. 4), which in turn increases the
power with respect to the base model defined by β = 0. As in
this model, the power increases with respect to GR, the net
effect is a faster evolution with respect to GR. The opposite
happens when β is negative: the coupling decreases as the
field rolls down the potential, and thus reduces the impact
of modified gravity in the power spectrum. This decrease
in power is relevant when it comes to use perturbations to
further constrain the parameter space of this model. In the
previous section, we showed that even if the DDE model is
compatible with CMB observations (van de Bruck & Mifsud
2018) it gives an increase in the power spectrum of about
10% at k ∼ 3 h/Mpc, which might be too large for it to be
compatible with galaxy surveys. This being a problem or not
will naturally depend on the galaxy formation model used
to connect these predictions with the actual distribution of
galaxies. In case this is indeed a problem, we show here that
it can be alleviated by choosing negative values for β . In fact,
the relative difference between the simulation that was run
with β = −10 and β = 0 at the Nyquist frequency is of the
same order than the effect that the base model with β = 0
has with respect to GR and thus can reduce the modified
gravity effects by a factor of about two.

The effects of β in the FF model are more complex.
A positive coupling constant β has the same effect in the

power spectrum as in the DDE model at large scales (i.e. it
induces an increase in power). However, at small scales, the
impact of modified gravity in the power spectrum decreases
with respect to the base model with β = 0. Note that the
same happens when comparing the base model with GR,
however the transition between positive and negative MG
effects occurs at different frequency k. The net effect of as-
suming positive β is to increase even more the power with
respect to GR at large scales and reduce it at small scales.
The opposite occurs when β is assumed to be negative: there
is a reduction of power at large scales and an increase at
small scales. As in the DDE case, allowing β to move away
from zero may help in reducing the problem that we found
in previous section with excessive increase in power at large
scales. However, in this case, the effects of β are one order
of magnitude below the effect produced by the base model
with β = 0 and thus, including β cannot save the model (at
least not with the parameter we choose, which is equal to
-10).

7 CONCLUSIONS

We studied new phenomenology that arises when adding a
disformal coupling to a very simple and well known extension
to General Relativity (GR) such as the quintessence model.
The paper is divided in two main parts. We first discuss
analytical properties of the solutions of the field equation for
the background as well as the perturbations. In the second
part, we present cosmological non-linear simulations that we
run with the code Isis (Llinares et al. 2014), which is based
of the particle mesh code Ramses (Teyssier 2002). We use the
simulated data to show how our analytic predictions perform
in realistic situations associated with the non-linear regime
of cosmological evolution.

We start by describing background solutions of the
Klein-Gordon equation for an Einstein-de Sitter cosmology.
We found that the shape of the solution depends on only two
parameters D and F (see Eq. 12 and 13), which are combina-
tions of the original four free parameters (V0, ν, B0 and β ).
In the case F = 0, we identified three different characteristic
time scales (shown in Table 1 and Figure 2), which deter-
mine the structure of the solution. These scales consist in
a transition between a disformal regime and a quintessence
regime and a transition between these two regimes and a
non-linear regime that occurs when the fields grow to the
point that it is not possible to linearise the potential V . As-
suming F 6= 0 changes the definition of these time scales for
F > 0 and induces an instability in the case F < 0, for which
we provide a condition on its associated time scale.

The first part of the paper also deals with analytic prop-
erties of the perturbed Klein-Gordon equation. In particu-
lar, we show that there is an approximate proportionality
relation between the perturbed scalar field and the scalar
perturbations of the metric. The relation can be simplified
by substituting the fields that constitute the proportionality
factor with background quantities. By analysing the modi-
fied geodesics equation, we also show that a similar relation
exists between the Newtonian force and the fifth force that
arises from the scalar field. We close the analytic section by
discussing the conditions under which the fifth force can be
repulsive. This is relevant in the context of the tension that
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Figure 12. Relative difference between dark matter power spectra of simulations with β equal and different than zero. The left and right
panels correspond to the DDE and FF models respectively. Different colours are different redshifts and different line styles correspond

to simulations run with β = −10 and β = 10. The sharp transition between positive and negative values in the right panel is generated

by the symlog scaling that we use to be able to plot positive and negative values.

is known to exist between measurements of the normaliza-
tion of density perturbations in the universe using high and
low redshift data sets (Planck Collaboration et al. 2016b;
Addison et al. 2016; Couchot et al. 2017; Kitching et al.
2016).

In the second part of the paper, we first used our N-body
simulations to study properties of the field distribution. Very
good agreement was found between the exact solution ob-
tained by the non-linear hyperbolic solver of the cosmolog-
ical code (which can solve the equation without relying on
any assumptions or approximations) and the prediction ob-
tained following the proportionality relation with the metric
perturbations. This shows that, although the model is very
complex, it can be simulated with a very simple algorithm
based on the solution of the Poisson’s equation, which exists
in any standard gravity cosmological code. We will present
in a companion paper a detailed analysis of the accuracy
with which the method can predict the evolution of matter.

An additional result associated with the simulated fields
is that the perturbations do not grow monotonically with
time, but can undergo oscillations. Combining these results
with our analytic results, we show that these oscillations can-
not be sustained, but that field perturbations can have at
most one maximum and one minimum and that ultimately
will decrease towards zero. The time scale for these oscilla-
tions naturally depends on the model parameters.

Our simulations also show that the repulsive forces that
we predicted analytically do emerge in realistic situations.
We found that depending on the model parameters, repul-
sive forces can appear as transients that occur only at spe-
cific redshifts or be sustained in time. In both cases, the
existence of forces is related with the zeros of the function
ξ0, which connects metric and scalar field perturbations.

It is worth mentioning that repulsive forces may arise
in laboratory experiments aimed to the detection of fifth

forces (e.g. Burrage et al. 2015; Burrage & Copeland 2016;
Burrage et al. 2016a,b; Jaffe et al. 2017; Brax & Davis 2016;
Llinares & Brax 2019). Since these effects are encoded in the
term ∇×k defined in Eq. 35 and this term is exactly zero
in spherical symmetry, a spherically symmetric experiment
will not give rise to repulsive forces. More complex matter
distributions are needed to give the desired effect. In other
words, the presence of repulsive forces (which are opposite to
gravity independently of the force that is associated to the
walls of the experiment) can be tested by comparing results
obtained with different distributions of matter (e.g. spherical
vs. cubic). Note that this reasoning can be done only after
evaluating the coefficient (1−δd)η2 in the background (see
derivation of Eq. 32). Relaxing this assumption may give
additional mechanisms for the realization of repulsive forces.

We complete the analysis of our simulations by study-
ing how the fifth force that arises from the scalar field affects
the matter distribution. In particular, we focus on the power
spectrum of density perturbations. For the models that have
β = 0 (i.e. a constant disformal coupling), we show that mod-
els with weak coupling produce an increase of power at small
scales, which is almost scale invariant at late times. Models
with larger coupling have an early increase in power which
is followed with a decrease. In these cases, the fifth force is
such that it reduces the clustering with respect to GR. We
also studied the impact of β in the density perturbations.
We found that positive or negative β , increase or decrease
the effects of the fifth force at all scales.

Only one of all the simulated models (the DDE model)
provides a background cosmology that is consistent with
CMB data. However, the aim of this work is not to pro-
vide best parameters, but to highlight new phenomenology.
The effects that we describe here may also appear in similar
models which may be consistent with background data for
different sets of parameters. In other words, it may be pos-
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sible to build models with effects similar to those discussed
here and that at the same time provide a background that
is consistent with data.

ACKNOWLEDGEMENTS

Many thanks to Jack Morrice for helpful discussions and
David Bacon and Kazuya Koyama for carefully reading the
manuscript. We also thank the Research Council of Norway
for their support. CLL acknowledges support from STFC
consolidated grant ST/L00075X/1 & ST/P000541/1 and
ERC grant ERC-StG-716532-PUNCA. The simulations used
in this paper were performed on the NOTUR cluster FRAM.
This paper is based upon work from COST action CA15117
(CANTATA), supported by COST (European Cooperation
in Science and Technology).

REFERENCES

Abbott B. P., et al., 2017, ApJ, 848, L13

Addison G. E., Huang Y., Watts D. J., Bennett C. L., Halpern

M., Hinshaw G., Weiland J. L., 2016, ApJ, 818, 132

Amendola L., 2004, Physical Review Letters, 93, 181102

Amendola L., et al., 2018, Living Reviews in Relativity, 21, 2

Arroja F., Bartolo N., Karmakar P., Matarrese S., 2015, J. Cos-
mology Astropart. Phys., 9, 051

Astier P., et al., 2006, A&A, 447, 31

Barreira A., Cautun M., Li B., Baugh C. M., Pascoli S., 2015,

J. Cosmology Astropart. Phys., 8, 028

Barrow J. D., Mota D. F., 2003, Class. Quant. Grav., 20, 2045

Bekenstein J. D., 1993, Phys. Rev. D, 48, 3641

Bekenstein J., Milgrom M., 1984, ApJ, 286, 7

Ben Achour J., Langlois D., Noui K., 2016, Phys. Rev., D93,

124005

Bertschinger E., 2001, ApJS, 137, 1

Bettoni D., Liberati S., 2013, Phys. Rev., D88, 084020

Brax P., Davis A.-C., 2016, Phys. Rev., D94, 104069

Brax P., Burrage C., Davis A.-C., Gubitosi G., 2013, JCAP, 1311,

001

Brevik I., Obukhov V. V., Timoshkin A. V., 2015, Ap&SS, 359,

11

Burrage C., Copeland E. J., 2016, Contemporary Physics, 57, 164

Burrage C., Copeland E. J., Hinds E. A., 2015, J. Cosmology
Astropart. Phys., 3, 042

Burrage C., Copeland E. J., Stevenson J. A., 2016a, J. Cosmology

Astropart. Phys., 8, 070

Burrage C., Kuribayashi-Coleman A., Stevenson J., Thrussell B.,

2016b, J. Cosmology Astropart. Phys., 12, 041

Cai Y.-C., Padilla N., Li B., 2015, MNRAS, 451, 1036

Clifton T., Ferreira P. G., Padilla A., Skordis C., 2012, Phys. Rep.,

513, 1

Copeland E. J., Sami M., Tsujikawa S., 2006, International Jour-
nal of Modern Physics D, 15, 1753
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APPENDIX A: ASYMPTOTIC SOLUTIONS
FOR BACKGROUND FIELDS FOR AN
EINSTEIN-DE SITTER UNIVERSE

Tables A1 and A2 summarize solutions of the Klein-Gordon
equation described in Sections 3.1.1 and 3.1.2. These are
solutions for the limits (D,F)→ 0 (Table A1) and F → 0
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Q1. Quintessence, linear (χ̃ << 1χ̃ << 1χ̃ << 1), without damping:

∂ 2
t̃ χ̃ = 1 ⇒ χ̃ =

t̃2

2
(A1)

The equation of motion is linear; its solution is a power law.

Q2. Quintessence, linear (χ̃ << 1χ̃ << 1χ̃ << 1), with damping:

∂ 2
t̃ χ̃ =−2

t̃
∂t̃ χ̃ + 1 ⇒ χ̃ =

t̃2

6
(A2)

The equation of motion is still linear. The damping term is present at all times and changes only the normalization of the solution

(not the slope).

Q3. Quintessence, non-linear (χ̃ ∼ 1χ̃ ∼ 1χ̃ ∼ 1), without damping:

∂ 2
t̃ χ̃ = exp(−χ̃) ⇒ χ̃ = log

[
cosh2

(
t̃√
2

)]
∼
{

t̃2/2 if t̃ . T nd
a ,√

2t̃ if t̃ & T nd
a

(A3)

Taking into account the exponential definition of the potential

gives a non-linearity to the equation which is active only for large
enough values of χ̃. This non-linearity is negligible at early times

and thus, the solutions behave as the linear solutions Q1 and Q2.

At late times, the force responsible for the evolution of the field

decreases with time, giving a different slope to the solution. The

transition time T nd
a between the linear and non-linear regimes can

be calculated as the moment in which the two asymptotes of the

solution cross each other.

Q4. Quintessence, non-linear (χ̃ ∼ 1χ̃ ∼ 1χ̃ ∼ 1), with damping:

∂ 2
t̃ χ̃ =−2

t̃
∂t̃ χ̃ + exp(−χ̃) ⇒ χ̃ ∼

{
t̃2/6 if t̃ . Ta,

log
(
t̃2/2

)
if t̃ & Ta (this is an exact solution)

(A4)

A combination of the presence of the damping term and the reduc-

tion of the potential with time changes the slope of the solution in

the non-linear regime, which becomes logarithmic at large times.
This changes slightly the transition time Ta, which we estimated

numerically as the moment in which the logarithmic slope of the

solution is the mean of the two asymptotes. Note that the tran-

sition between linear and non-linear regimes and undamped and
damped regimes occurs approximately at the same time.

Table A1. General properties of background solutions of the quintessence model. See section 3.1.1 for explanation.

(Table A2) for small and large values of the field and with
and without including the damping term in the equation.

APPENDIX B: NON-EDS BACKGROUND
SOLUTIONS

We discussed in Section 3.1 solutions of the Klein-Gordon
for an Einstein-de Sitter universe (i.e. a flat Universe with
Ωm = 1). This simplification in the energy content of the
Universe, enabled us to obtain analytic solutions for several
models from which general properties can be understood. In
the more realistic case, in which the energy of the scalar field
is taken into account, the solutions are far more complex. An
example of these solutions is presented in Figure B1, were
we show colour coded the logaritmic slope of the scalar field

d log χ̃
d loga

=
a

χ̃da/dt̃
dχ̃
dt̃

(B1)

as a function of expansion factor and the free parameter D
for three different models.

The model presented in the left panel assumes the back-
ground metric is EDS. The solutions are the same that we
presented in Figure 2; although here we show derivatives
with respect to log(a) intead of time and thus, the exact

numbers of the slope in different regimes are different. The
central panel shows the result of assuming a ΛCDM back-
ground. The presence of a dark energy component changes
the behaviour of the model for large values of D: instead of
a transition to the disformal non-linear regime (see Figure 2
for nomenclature), we have a transition to the quintessence
linear regime, which occurs at values of a that are indepen-
dent of D. The right panel shows an example of the complete
solution, in which the energy of the scalar field is included in
the Friedmann equations (which results in additional terms
in the equation for the density parameter Ωm). Here, the new
transition that occurred at large values of D in the previous
case is not only delayed, but also has a complex dependence
with D. Different solutions occur for different values of ν.

A complete analysis of the fully self-consistent back-
ground evolution is beyond the scope of this paper. In order
to simplify the work of those who want to move forward in
the understanding of these solutions, we provide the com-
plete set of equations that need to be solved in convenient
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D1. Disformal, β = 0β = 0β = 0, linear (χ << 1χ << 1χ << 1), without damping:

∂ 2
t̃ χ̃ =

t̃2

t̃2 + D
⇒ χ̃ =

t̃2

2

[
1− 2

√
D

t̃
tan−1

(
t̃√
D

)
+

D
t̃2 log

(
t̃2 + D

D

)]
∼
{

t̃4/(12D) if t̃ . T nd
b ,

t̃2/2 if t̃ & T nd
b

(A5)

The disformal coupling gives a time dependence to the term asso-

ciated to the external force, which is such that it approaches zero

at early times. This changes the logarithmic slope of the solution
with respect to the equivalent solution of the quintessence model

(model Q1 in Table A1) at early times. At late times, the time

dependence approaches a constant and thus, the evolution of the

field is as in the quintessence model Q1. The transition time T nd
b

can be estimated as the moment where the two assymptotes cross
each other.

D2. Disformal, β = 0β = 0β = 0, linear (χ << 1χ << 1χ << 1), with damping:

∂ 2
t̃ χ̃ =−2

t̃
t̃2 + D

∂t̃ χ̃ +
t̃2

t̃2 + D
⇒ χ̃ =

t̃2

6

[
1− D

t̃2 log
(

t̃2 + D
D

)]
∼
{

t̃4/(12D) if t̃ . Tb,

t̃2/6 if t̃ & Tb
(A6)

The damping term of the disformal equation differs with respect

to the one we find in the quintessence case (model Q2 in Table

A1) in that it approaches zero at early times. Thus, the early time
solution is not affected by the presence of this term (i.e. it is a

power law with a logarithmic slope equal to four as in D1). At late

times, the solution switches to the solution for the quintessence

model that includes damping (model Q2). The transition occurs
at a slightly earlier time Tb.

D3. Disformal, β = 0β = 0β = 0, non-linear (χ ∼ 1χ ∼ 1χ ∼ 1), without damping:

∂ 2
t̃ χ̃ =

t̃2

t̃2 + D
exp(−χ̃) ⇒





D� 1(
T nd

c . T nd
b

) ⇒ χ ∼





t̃4/(12D) if t̃ . T nd
b

t̃2/2 if T nd
b . t̃ . T nd

a√
2t̃ if t̃ & T nd

a

D� 1(
T nd

c & T nd
b

) ⇒ χ ∼ 3
[
e−t̃4/(12D)−1

]
− 33/4
√

2D1/4
Γ
[

3/4,
t̃4

12D
,0
]

t̃ ∼





t̃4/(12D) if t̃ . T nd
c

33/4Γ(3/4)√
2D1/4 t̃ if t̃ & T nd

c

(A7)

For D � 1, the equation can be linearised with respect to

D and becomes a perturbed quintessence equation: ∂ 2
t̃ χ̃ =(

1−D/t̃2)exp(−χ). Since the disformal effects are a perturbation,
the transition to the quintessence regime occurs before anything

else happens. Thus, the solution transitions first from the linear

disformal to the linear quintessence regimes at T nd
b (as in solution

D1) and then towards the non-linear quintessence regime at T nd
a

(as in solution Q3).

For D� 1, the transition towards the non-linear regime occurs

before the transition to the quintessence regime. We can obtain

a good approximation of the solution by linearizing the equation
with respect to time and substituting the early time solution in

the exponential function (i.e. by solving ∂ 2
t̃ χ̃ = t̃2 exp

(
−t̃4/(12D)

)
).

After the transition to the non-linear regime occured, the field
behaves as a free particle and thus, no more transitions occur.

D4. Disformal, β = 0β = 0β = 0, non-linear (χ ∼ 1χ ∼ 1χ ∼ 1), with damping:

∂ 2
t̃ χ̃ =

t̃2

t̃2 + D
exp(−χ̃) ⇒





D� 1
(Tc . Tb)

⇒ χ ∼





t̃4/(12D) if t̃ . Tb

t̃2/6 if Tb . t̃ . Ta

log
(
t̃2/2

)
if t̃ & Ta

D� 1
(Tc & Tb)

⇒ χ ∼





t̃4/(12D) if t̃ . Tc
33/4Γ(3/4)√

2D1/4 t̃ if Tc . t̃ . Tb

log
(
t̃2/2

)
+ 35/4Γ(3/4)D1/4 if t̃ & Tb

(A8)

For D� 1, the solution has a quick transition towards the linear

quintessence regime as in D3. Since damping was taken into ac-
count in these solutions, the transition is towards Q4 instead of

Q3).

For D � 1, we have again (as in D3) that the transition to-

wards the non-linear regime occurs before the transition to the

quintessence regime. The transition can be obtained by patching
solutions of the different regimes, but taking into account that

damping affects the quintessence regime at large t̃ and adding an

appropiate constant to ensure continuity at Tc.

Table A2. General properties of background solutions of models with conformal coupling.

variables for the case β = 0:

∂ 2
t̃ χ̃ =

1
1 + 3

4 DΩ̃m

[
−3H̃∂t̃ χ̃ + exp(−χ̃)

]
(B2)

∂t̃Ω̃m =−3H̃Ω̃m−
D
ν2

∂t̃ χ̃
1 + 3

4 DΩ̃m

[
3H̃∂t̃ χ̃− exp(−χ̃)

]
Ω̃m (B3)

H̃2 = Ω̃m +
1

3ν2

[
∂t̃ χ̃
2

+ exp(−χ̃)

]
, (B4)

where we used a renormalized density parameter:

Ω̃m ≡
Ωm

v0ν2 . (B5)

The equation of motion for this quantity (Eq. B3) can be
obtained by combining Eq. B4 (i.e. the component 00 of the
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background Einstein’s equations) and the ii equation:

H2− ä
a

=− 1
M2

P

[
φ̇ 2

2
−V (φ)

]
. (B6)

The equations can be further simplified by defining q≡ ∂t̃ χ̃
and using u = lna intead of t̃ as integration variable:

∂uχ̃ =
q
H̃

(B7)

∂uq =
1

1 + 3
4 DΩ̃m

[
−3q +

exp(−χ̃)

H̃

]
(B8)

∂uΩ̃m =−3Ω̃m−
D
ν2

qΩ̃m

1 + 3
4 DΩ̃m

[
3q− exp(−χ̃)

H̃

]
(B9)

H̃2 = Ω̃m +
1

3ν2

[
q2

2
+ exp(−χ̃)

]
. (B10)

The initial conditions for the scalar field and its derivative
are defined as equal to zero at very high redshift. To define
the initial condition for Ω̃m, it is possible to use a shooting
method, and force the solution to be equal to 0.3 (aproxi-
matelly the ΛCDM value) at a = 1.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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Figure B1. Colour coded is the logarithmic slope of the solution of the background Klein-Gordon equation for the disformal model

with β = 0 and three different models for the background expansion: Einstein-de Sitter, ΛCDM (with a cosmological constant) and
disformal model with ν = 100. The EDS model is the same as shown in Figure 2, with the difference that here we used expansion factor

as independent variable and thus, the exact values of the slopes are different.
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ABSTRACT

Context. There are currently no reliable methods to measure the transverse velocities of galaxies. This is an important piece of
information that is lacking in galaxy catalogues, and it could allow us to probe the physics of structure formation and to test the
underlying theory of gravity. The slingshot effect—a special case of the integrated Sachs–Wolfe effect—is expected to create dipole
signals in the temperature fluctuations of the cosmic microwave background (CMB) radiation. This effect creates a hot spot behind
and a cold spot in front of moving massive objects. The dipole signal created by the slingshot effect can be used to measure transverse
velocities, but because the signal is expected to be weak, the effect has not been measured yet.
Aims. Our aim is to show that the slingshot effect can be measured by stacking the signals of galaxies falling into a collapsing cluster.
Furthermore, we evaluate whether the effect can probe modified gravity.
Methods. We used data from a simulated galaxy catalogue (MultiDark Planck 2) to mimic observations. We identified a 1015 M�
cluster, and made maps of the slingshot effect for photons passing near 8438 infalling galaxies. To emulate instrument noise, we
added uncorrelated Gaussian noise to each map. We assumed that the average velocity is directed towards the centre of the cluster.
The maps were rotated according to the expected direction of motion. This assures that the dipole signal adds up constructively when
stacking the maps. We compared the stacked maps to a dipole stencil to determine the quality of the signal. We also evaluated the
probability of fitting the stencil in the absence of the slingshot signal.
Results. Each galaxy gives a signal of around ∆T/T ≈ 10−9, while the current precision of CMB experiments is ∆T/T ≈ 4 × 10−6.
By stacking around 10 000 galaxies and performing a stencil fit, the slingshot signal can be over the detectable threshold with today’s
experiments. However, due to the difficulty of distinguishing an actual signal from false positives, future CMB experiments must be
used to be certain of the strength of the observed signal.

1. Introduction

By precisely measuring the positions and velocities of galaxies,
we can use them as tracers for mapping the underlying matter
distribution of the large-scale structure of the Universe. Further-
more, in systems where the matter distribution is known from
other methods, for instance from gravitational lensing, precise
catalogues of the positions and velocities of galaxies can be used
as a consistency check to test our models of gravity and structure
formation. While the radial velocity with respect to the Earth
is measurable through the Doppler effect, transverse velocities
of galaxies are more challenging to measure. The only reliable
method of estimating transverse velocities of an object directly
is through detecting a change in position relative to the back-
ground between two observations, which is known as the proper
motion of the object. The recent data release of Gaia (Gaia Col-
laboration et al. 2018) presented the proper motions of over a
billion stars in our galaxy, where the velocities were found using
this method. However, this option becomes unfeasible at scales
larger than our galaxy because many years must pass before dis-
tant galaxies will move far enough for the motion to be resolved.

When a galaxy is affected by an external force like gravity,
the resulting acceleration first changes the velocity of the galaxy
before the position of the galaxy changes significantly. Better
knowledge of the peculiar velocities of observed galaxies will
help us compare our models of gravity on large scales with the
forces acting on those galaxies. This can be particularly useful
when studying theories of modified gravity, but can also be used
to measure the amount and distribution of dark matter in the con-
text of ΛCDM. Velocities can be used as a consistency check

for our models of structure formation. The best models predict
the matter distribution very well, but the velocity fields of the
same models are not usually compared to observations (Steb-
bins 2006). Furthermore, measurements of tangential velocities
can break the degeneracy between expansion velocity and pecu-
liar velocity, which is a problem when using only the redshift to
measure velocities.

The slingshot effect was first mentioned by Birkinshaw &
Gull (1983), and is a promising probe for measuring transverse
motions. It is a special case of the integrated Sachs–Wolfe (ISW)
effect (Sachs & Wolfe 1967). The ISW contribution to the cos-
mic microwave background (CMB) is due to the evolution of a
gravitational potential while photons are passing through it. The
most relevant result of the late-time ISW is what is known as
the Rees–Sciama effect (Rees & Sciama 1968). As structure col-
lapses under gravity—or expands with the Hubble flow—while
a photon passes through, the change in the gravitational potential
of the structure will affect the photon energy. The Rees–Sciama
effect results in an overall increase or decrease in the measured
CMB temperature centred around clusters and voids. The Rees–
Sciama effect can be estimated from galaxy surveys, and is ex-
pected to be important at the largest angular scales (Maturi et al.
2007a). In the literature, the slingshot effect is also called the
Birkinshaw–Gull effect or the moving lens effect. Sometimes the
name of the Rees–Sciama effect is used interchangeably with the
slingshot effect, even though it describes a related but slightly
different phenomenon.

The slingshot effect is related to the Rees–Sciama effect, but
instead of a single hot spot centred on the halo, it creates a dipole
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Fig. 1. Contour plot of the temperature dipole created by the slingshot
effect. The arrow indicates the direction of motion of the galaxy. An
increase in photon temperature is indicated in red; a decrease in temper-
ature is illustrated in blue and with dashed contours. This example is a
galaxy of virial mass 1.2 × 1012 M�, moving with a transverse velocity
component of 880 km/s, viewed at a distance of 100 Mpc

pattern with a cold spot in front of a moving halo and a hot
spot behind it. Stebbins (2006) states that transverse motions of
galaxies can be measured on the small scales of the CMB by
statistically analysing these dipole patterns. The intention of this
paper is to propose a method for measuring this effect. Suffi-
ciently precise measurements of the effect can be used as a self-
consistency check of our models of structure formation, and as
a more direct measure of the gravitational forces acting on large
scales.

The mechanism behind the dipole pattern of the slingshot ef-
fect can be understood as follows. If a CMB photon enters in
front of the moving halo, the gravitational potential becomes
deeper while the photon is passing through the potential well,
meaning that the photon has to spend more energy getting out
and becomes redshifted. Likewise, if a CMB photon enters be-
hind the moving halo, the gravitational potential along the pho-
ton trajectory becomes shallower while the photon passes, al-
lowing the photon to gain some energy. The result is a dipole
signal. An example of the signal is represented visually in fig-
ure 1. The increase or decrease in photon energy can be com-
pared to the gravity assist manoeuvre: a spacecraft can gain ve-
locity relative to the heliocentric reference frame by passing in
the trail of a moving planet. An effect related to the slingshot ef-
fect was proposed by Molnar et al. (2013), where a difference in
redshift between two lensed images from the same source can be
used to infer the tangential velocity of the lens. Other attempts
at indirectly inferring transverse velocities include analysing mi-
crolensing parallaxes in very specific set-ups, where a quasar can
be found behind the galaxy whose velocity is to be found (see
e.g. Gould 1994).

The slingshot signal grows stronger with more massive and
faster moving structures. Birkinshaw & Gull (1983) predicted
that a massive and rapidly moving galaxy cluster should produce
a measurable signal, but to our knowledge the effect has not been
measured yet. As indicated by Stebbins (2006), the difficulty in
measuring the effect could be due to similar dipole patterns being
produced by the kinematic Sunyaev–Zel’dovich effect and by the

lensing of the CMB anisotropies. With the current CMB exper-
iments it is therefore impossible to measure the slingshot effect
of a single galaxy. Recently, Hotinli et al. (2018) investigated
the detectability of the slingshot effect by estimating the cor-
rections to the CMB power spectrum. Furthermore, Yasini et al.
(2018) proposed an estimator for the pairwise peculiar velocities
of clusters using the slingshot effect. Both of these recent studies
found that the combined effects of transversely moving objects
should be measurable with CMB surveys in the near future.

The process of image stacking has the ability to isolate the
slingshot effect from that of the kinematic Sunyaev–Zel’dovich
effect and the lensed CMB. These two confounding effects are
not correlated with position and velocity in the same way as
the slingshot effect, meaning that their contribution is expected
to average to zero when stacking enough images. Maturi et al.
(2007b) propose that the slingshot effect can be measured by
stacking the CMB maps of 1000 cluster mergers. In the current
work we present a method for detecting the average peculiar in-
fall velocity of galaxies around a single cluster. By aligning and
stacking the signal from galaxies in a mock catalogue, and then
fitting the stacked image to a template, we show that the effect
will be detectable with CMB experiments in the near future, such
as CMB-S4 (Abazajian et al. 2016).

2. Methods

The ISW effect changes the temperature of the CMB photons
during the time t they spend in an evolving gravitational potential
Φ. Specifically,

∆T
T

= 2
∫

Φ̇ dt, (1)

where the dot indicates a time derivative. We adopt units such
that c = 1.
The slingshot effect is the change in photon temperature due to
the transverse motion of an unevolving gravitational well. Fol-
lowing a flow of photons travelling through a moving halo, this
effect can be expressed as

∆Tslingshot

T
= 2

∫
v⊥ · ∇Φ dt. (2)

We chose a coordinate system where light moves in the posi-
tive z-direction, along the line of sight. The projected motion v⊥
of the halo is taken to be constant and along the x-axis. In this
frame, we define vx as the velocity component perpendicular to
the line of sight. Since the photons move with the speed of light
and we chose units where c = 1, the time integral can be changed
into an integral along z:

∆Tslingshot

T
= 2vx

∫
∂Φ

∂x
dz. (3)

The coordinates x, y, and z represent physical distances (mea-
sured in non-comoving megaparsecs). To estimate the magnitude
of the slingshot effect, we assume a simple yet realistic model for
the gravitational potential Φ derived from the halo model set-up.

2.1. Halo model set-up

For the purpose of calculating the signal from a single halo, we
modelled the halo as a spherically symmetric matter distribution,
centred at x = y = z = 0. We assumed that all of the dark mat-
ter halo mass is in a Navarro–Frenk–White (NFW) profile with
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concentration cNFW = 15 (Navarro et al. 1995). We populated the
halo with baryons, consisting of an additional 10% of the dark
matter mass. We used a Hernquist profile for the baryons (Hern-
quist 1990), applying a Hernquist scale length a that relates to
the virial radius rvir of the dark matter halo according to

a =
0.015 rvir

1 +
√

2
(4)

(see the Appendix for the detailed calculations of the slingshot
effect from the NFW and the Hernquist component). The result-
ing expression we implemented to calculate the slingshot effect
from a single halo is

∆Tslingshot

T
=

2GmDMvx

rvir

(
QNFW +

1
10

QHernq

)
, (5)

where

QNFW ≡
gxr

x2
r + y2

r

ln
c2

NFW

(
x2

r + y2
r

)
4

 − S (2 arctan (S ) − π)

 ,
(6)

and

QHernq ≡

1 +
√

2
0.015

 xa

x2
a + y2

a − 1
[2 + U (2 arctan (U) − π)] . (7)

Here, mDM is the virial mass of the dark matter halo. The con-
stant g depends on the concentration cNFW according to equation
(16) in the Appendix. We use the following notation for dimen-
sionless coordinates: xr ≡ x/rvir and xa ≡ x/a. Furthermore,

S ≡
1√

c2 (
x2

r + y2
r
)
− 1

(8)

and

U ≡
1√

x2
a + y2

a − 1
. (9)

We note that the Q-expressions here are independent of
halo parameters for the chosen model. This means that we only
needed to calculate a template of the slingshot effect once, us-
ing units of the virial radius, we then re-scaled the template to
galaxies of any size. The deciding factor for the amplitude of the
slingshot effect is the combination mvx/rvir.

2.2. Realistic observational set-up

The slingshot effect, described by equation (5), increases with
the mass of the halo, and with the transverse velocity vx rela-
tive to the CMB. We find that the slingshot signal from a single
large galaxy with mass 1013M�, moving at 1000 km/s, is around
∆T/T ∼ 10−8, equivalent to 0.03 µK. Most galaxies would be
less massive and move more slowly, giving an average signal of
∆T/T ≈ 3×10−9 (see section 2.3). Figure 1 shows the raw sling-
shot signal from an example galaxy, with a cold spot in front of
the moving galaxy and a hot spot behind. This example galaxy
is slightly heavier and moves slightly faster than the average, re-
sulting in a stronger signal than ∆T/T ≈ 3 × 10−9.

The Atacama Cosmology Telescope (ACT) has instru-
ment noise down to 6 µK · arcmin, or a per-pixel noise of

σ∆T/T ∼ 4 × 10−6 when assuming 0.5 arcmin pixels1 (see
Hincks et al. 2010 for details on the expected sensitivity and
beam profile point spread function of ACT). The given noise
level indicates that measuring the signal from a single massive
galaxy is impossible since the signal of ∆T/T ∼ 10−8 would
be drowned out by noise. To get a signal-to-noise ratio (S/N)
of the order of one, we would need to increase the signal, or
reduce the noise, by a factor of 400. The signal increases with
the square root of the number of stacked images, which means
that we would have to stack the signal of over 160 000 fast and
massive galaxies, or closer to 107 average galaxies. Furthermore,
these galaxies must be close enough to us for the dipole to be re-
solved in the CMB map. The ACT has 1.3 arcmin full width at
half maximum (FWHM) beam resolution. A typical galaxy with
virial radius of 100 kpc must be within about 250 Mpc to be
resolved with two or more pixels.

An important consideration when stacking these dipole im-
ages is that they need to be oriented correctly, such that the
galaxy velocity directions point along approximately the same
axis. Because there are no good ways to measure the transverse
velocity of a single galaxy yet, it is necessary to stack observ-
able galaxies only where the approximate direction of motion
can be inferred from other means. While other papers suggest
using the relative velocity of pairs of galaxy clusters (e.g. Yasini
et al. 2018), in this work we study the infall velocity of galaxies
in the large-scale structure of the cosmos. To estimate a direction
of peculiar motion, we assumed that galaxies will fall towards
not yet virialised cluster structures in their vicinity. This is not
true for absolutely all galaxies, but when stacking images it is
sufficient for the sample to have an average velocity in the radial
direction. Another option not covered in this paper is stacking
galaxies near the edges of voids. We expect void galaxies to have
an average velocity directed out of the underdense region.

We suggest using the Coma Cluster to align the velocities
of nearby galaxies in a realistic observational set-up. At a dis-
tance of about 100 Mpc (Liu & Graham 2002), the Coma Clus-
ter is within the 250 Mpc needed to resolve a slingshot dipole.
It is well studied, and not obscured by the Milky Way disc. The
Coma Cluster is located approximately at a RA of 195 degrees
and Dec of +28 degrees. Several current surveys cover this re-
gion, for instance the BOSS spectrographic survey of the SDSS
(Sloan Digital Sky Survey). The Coma Cluster has a mass of
about 1.9 × 1015M� (found through weak lensing by Kubo et al.
2007). Together with the Leo Cluster, it is part of the rich Coma
Supercluster, which is large enough to have not yet completely
virialised. The total number of galaxies falling towards the su-
percluster could be sufficient to achieve a S/N of the order of
unity through stacking 2. Reaching a S/N of one requires that
all of the infalling galaxies should be catalogued with position
and redshift, and that on average they are falling in as fast as
expected from simulations. Furthermore, the presence of fore-
ground sources in our own galaxy can interfere with the precise
measurement of the CMB around some of these galaxies.

To identify the signal even when the total stacked S/N is less
than one, we propose fitting the expected dipole signal to the
stacked image. Furthermore, we propose to estimate the prob-
ability of having false positives by fitting a template of the ex-
pected signal to several stacks of uncorrelated noise maps. If it

1 It is common to construct maps using 2-3 pixels per FWHM of the
instrument beam. The FWHM of ACT is 1.3 arcmin.
2 Assuming that there are, on average, a few galaxies per cubic mega-
parsec of space, there should be approximately 106 galaxies within a 50
Mpc sphere.
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Fig. 2. Scatter plot of the projected radial motion of halos close to the
massive supercluster. The horizontal axis shows the projected distance
from the centre of the structure (in units of the virial radius of the su-
percluster). The vertical axis shows the projected radial velocity of the
halo in question; positive values indicate infalling motion. The red line
shows the binned mean. The error of the mean is consistent with the
width of the line. The colour of a point indicates the virial mass of that
halo.

is sufficiently improbable to achieve the best fit dipole randomly
with just noise, we can say that the dipole is detectable, even if
it is not visible by eye in the stacked image.

2.3. Stacking images from a simulated halo catalogue

To emulate realistic halos, we used the halo catalogue from the
MultiDark Planck 2 survey described by Prada et al. (2012). The
data set contains dark matter halos identified with the Rockstar
halo finder (Behroozi et al. 2013). In this

(
1Gpc/h

)3-box sim-
ulation, we identified one of the largest halos. It has a virial
mass of the order of Mvir, supercluster ≈ 1015 M� and a virial radius
rvir, supercluster ≈ 4 Mpc, which is similar to values for the Coma
Cluster. We find that this is the centre of a massive supercluster
that has not yet virialised, meaning that nearby smaller halos are
falling towards the supercluster. The virial mass and virial radius
estimated by the halo finder at redshift zero is significantly lower
than the actual mass affected gravitationally.

When studying subhalos close to the identified supercluster,
we find that they indeed have a velocity component directed to-
wards the centre of the structure (see figure 2 for a scatter plot of
the velocities of halos surrounding the supercluster). The net in-
ward flow of matter is apparent from closer than 1 rvir, supercluster,
up to distances of about 20 rvir, supercluster.

We picked out nearby halos with virial mass above 1011M�
within 10 rvir, supercluster (approximately 40 Mpc) of the central su-
percluster. The mass cut-off was chosen to exclude halos hosting
dwarf galaxies because they are more difficult to observe and
they add a weak signal to the stack. The distance cut-off was
chosen by hand; repeating the analysis with a 15 rvir, supercluster
distance cut-off instead did not significantly improve the re-
sults compared to 10 rvir, supercluster. We draw the conclusion
that the halos that are further away add more noise than sig-
nal, for instance because their velocities are misaligned due to
other nearby structure. The chosen cut of 10 rvir, supercluster and

M > 1011M� leaves 8438 halos in our final sample. These
halos mostly consist of galaxies, but also some galaxy groups
and galaxy clusters. The selected halos have an average mass of
1.79 × 1012 M�. We chose the z-axis of the 3D simulation as the
line of sight, and projected the velocity of each halo down to the
plane perpendicular to this axis (the x-y plane).

To simulate the signal observed with ACT, we created a 2D
map of ∆Tslingshot/T for each galaxy halo. The map size was cho-
sen to fit two times the virial radius of that galaxy, with 0.5
arcmin pixel size. We smoothed the map with Gaussian blur
with 2.6 pixels FWHM to emulate the 1.3 arcmin beam of ACT
(Hincks et al. 2010). We assumed that each pixel of each image
has an independent noise, drawn from a normal distribution with
standard deviation σ∆T/T . We performed the full analysis with
three different values for the noise standard deviation: 4 × 10−6,
1 × 10−6, and 1 × 10−7. We did not vary the other parameters,
such as the angular resolution.

We neglected perturbations in the CMB background because
we assumed the background can be modelled well enough, and
subtracted on the relevant scales (corresponding to l > 500). We
also neglected non-dipole contributions like foreground sources.
All of these are either expected to average out when stacked (if
they are not correlated with the galaxy position and direction of
motion) or have a monopole signal that will not contribute to the
dipole stencil fit. Furthermore, we also neglected galaxy lensing
of large-scale CMB gradients, which will introduce dipoles on
scales similar to the slingshot effect. The large-scale gradients of
the CMB are not expected to be correlated with the velocity of
low redshift galaxies falling into a massive cluster, so the ampli-
tude of lensing of the CMB will be negligible with large enough
data sets, as outlined by Stebbins (2006). To further help remove
this confounding signal, a delensing algorithm can be applied
to the map around each galaxy before stacking (see e.g. Man-
zotti 2018; a process of delensing for the purpose of isolating the
slingshot signal is suggested in Maturi et al. 2007b). Similarly,
we also neglected the signals from nearby galaxies or galaxies
located behind the observed ones; if another galaxy is within
2rvir of the imaged galaxy, it will introduce an additional dipole
which is not positioned at the centre of the map. The chance of
such an overlap is not negligible, but since the relative positions
are not considered correlated with the direction of infall velocity,
the stacking and fitting process is not expected to be sensitive to
this signal.

The combined maps of each nearby halo were, after apply-
ing the instrumental point spread function and adding noise,
aligned according to the expected infall direction (i.e. radially
towards the centre of the supercluster) to simulate real observa-
tions where we have no a priori knowledge of the individual pe-
culiar velocities. Since we used realistic simulations, our mock
data sets take into account the fact that the individual galaxy mo-
tion is not necessarily aligned with the radial direction. Before
stacking, the maps were re-scaled with respect to the virial ra-
dius of each galaxy, using linear interpolation. This ensures that
the stacked image will not be radially smeared due to size incon-
sistencies. In the main analysis we assumed that we have perfect
knowledge of the virial radius, but we also did a smaller analy-
sis consisting of fewer individual stacks than the main analysis,
where we included the uncertainties on the virial mass and radius
to show that our results are robust to this uncertainty.

The signal from each individual halo was summed up, and
divided by the number of halos to achieve an average (or ef-
fective) signal. Example realisations of this average signal after
stacking 8438 halos are shown in the top row of figure 3. The
three columns are for three different noise levels: current ACT
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Fig. 3. Example realisations of the stacks (top row), and the residuals (bottom row) after stacking the slingshot signal of 8438 halos and subtracting
the best fit. The left panels are for a noise per pixel of σ∆T/T = 4 × 10−6, resembling current surveys. The central panels have ‘near-future’ noise
levels of σ∆T/T = 1 × 10−6, and the rightmost panels are for a very low noise per pixel (σ∆T/T = 1 × 10−7) to visually see the emergence of an
image. The individual images are scaled with respect to the virial radius of the halo before stacking. The x- and y-axes are in units of the virial
radius of the halo.

noise (σ∆T/T = 4×10−6), a CMB-S4 noise level in the near future
(σ∆T/T = 1×10−6), and a futuristic survey (σ∆T/T = 1×10−7). We
do not vary the resolution between these experiments, because
CMB-S4 is expected to have a similar spatial resolution to ACT
(1 and a few arcminutes; see Abazajian et al. 2016). The ACT
noise level is equivalent to 6 µK · arcmin (Hincks et al. 2010),
while the CMB-S4 noise level is equivalent to 1.5 µK · arcmin,
consistent with the ∼ 1 µK · arcmin (Abazajian et al. 2016). The
futuristic noise level in the rightmost column is shown to empha-
sise the expected visual signal if we had sufficiently good statis-
tics, and is not considered realistic in the foreseeable future. The
best fit stencil to the low noise stack suggests a signal amplitude
of ∆T/T ≈ 3×10−9. We are stacking almost 10 000 halos, which
is expected to increase the S/N by a factor of 100. The best fit and
the residuals are of similar amplitude when the noise per pixel is
10−7, indicating a S/N ∼ 1 after stacking. The stacked signal is
expected to be 100 times stronger than the average signal from a
single halo, which confirms that an average halo has a signal of
the order of ∆T/T ∼ 10−9. The realisation with the ‘near-future’
noise level, shown in the middle column of figure 3, also recov-
ers the expected signal with amplitude ∆T/T ≈ 3× 10−9, but the
ACT noise level of 4×10−6 results in a S/N that is too low for the
fitting algorithm to find a statistically significant dipole pattern
in the shown example.

In the main analysis we used a uniform weighting when av-
eraging the stacks. However, the S/N can possibly be improved
by choosing a different weighting for the galaxy maps. Specif-
ically the weighting can be chosen in such a way that bigger
and faster galaxies contribute more to the stack than smaller and

slower galaxies, which add mostly noise. As seen in figure 2, the
average radial velocity is expected to be greatest around 1 virial
radius from the central region of the supercluster, and then to re-
duce with distance. This suggests the possibility of weighting the
galaxies according to distance. Another possibility is to weight
them according to their estimated mass. In addition to the main
analysis, we performed a small analysis with three weighting
schemes. The first weights galaxies according to projected dis-
tance from the centre of the supercluster, r⊥ (normalised to the
virial radius of the supercluster), with weight wd =

√
r⊥e−0.3r⊥ .

The second weights galaxies according to the logarithm of the
galaxy mass (including a random spread in the halo mass) as
wm = log10(Mvir/1010M�). The third weighting scheme com-
bines the distance and mass weighting, wc = wd × wm.

2.4. Observational challenges

The analysis assumes that we can identify O(104) galaxies near
the Coma cluster. The area of the sky where these galaxies can
be found is a 40 Mpc radius circle at a distance of 100 Mpc, cor-
responding to 1400-1500 square degrees. There is a possibility
that the least massive galaxies will not be visible in the galaxy
surveys. The faintest galaxies we studied have a halo mass of
1011M�. To estimate if the observed magnitude of these galax-
ies can be seen with optical surveys, we assume 1/10 mass in
baryons and a mass-to-light ratio of 10 (in Faber & Gallagher
1979 all of the measured galaxies have a mass-to-light ratio
lower than 12). This results in a luminosity of 109, and a bolo-
metric magnitude of approximately 19 at the largest distances of
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up to 200 Mpc. This is within the scope of contemporary surveys
like the SDSS. The slingshot signal contribution will be strongest
from the most massive galaxies, so missing a few of the faintest
galaxies is not expected to change the stack significantly.

To rescale the galaxy maps correctly, we suggest inferring
the virial radius from the galaxy virial mass. In many cases when
a lensing analysis has not been performed, the total halo mass is
not known and must be estimated from the galaxy luminosity. A
possibility is to go via the mass of neutral hydrogen (HI), which
can be measured from the HI line or estimated from visible light.
To distinguish galaxies in the vicinity of the cluster from dis-
tant background galaxies, it is important to know the redshift of
each galaxy fairly well, within an error of approximately 50%.
At a distance of 100 Mpc (corresponding to about z = 0.02),
the uncertainty of a measurement of the photometric redshift is
σz & 0.03 (Bolzonella et al. 2000). This implies that we need
spectroscopic data for all the galaxies used in the stacking pro-
cess.

Several of the above problems can be partially solved if we
consider data from the upcoming Square Kilometre Array (SKA)
phase 2, expected to be online in 2030 (Bull 2016). SKA is a
planned full-sky spectroscopic survey, and Norris et al. (2014)
suggest that it is expected to identify the position and redshift of
all galaxies of the relevant magnitudes up to z = 0.05. We expect
SKA to find the HI mass of all viable slingshot galaxies with fair
certainty.

Whether using data from SKA or the SDSS, the biggest
source of error when estimating the virial radius is the con-
version from HI mass to halo mass. Villaescusa-Navarro et al.
(2018) and Padmanabhan & Kulkarni (2017) both indicate a
spread of about one order of magnitude in the halo mass for a
given HI mass. We did not include this error when rescaling the
individual maps in the main analysis, but we performed a sepa-
rate smaller analysis where we included the corresponding error
in virial radius. We find that the error in rescaling of the virial
radius does not induce a bias, and does not significantly increase
the uncertainty of the results. We expand upon this in the results
section (section 4).

In this analysis, we assumed that the CMB behind the galax-
ies is known and can be subtracted. If there are no other sig-
nificant contributions between the surface of last scattering and
the observed galaxy, the CMB is a Gaussian random field with
a standard deviation in ∆T/T of σ∆T/T = 10−4. By masking
out the signal surrounding the galaxy, the CMB signal from the
external area can be interpolated it into the masked region (see
e.g. Bucher & Louis 2012 for an example prescription to fill in
masked regions of the CMB map). Subtracting the expected in-
terpolated CMB from the actual observed signal will leave signal
and noise, without the CMB perturbations. Likewise, the galaxy
itself, lensing of gradients in the CMB, and foreground sources
can outshine the dipole signal from the slingshot effect. None of
these effects are expected to give a dipole correlated with the in-
fall velocity, so the process of stacking in itself should suppress
any apparent signals from other sources.

3. Statistical analysis

For realistic noise levels of 10−6 and above, it is impossible to
see the dipole fit by eye. We compared the stacked image to
the model in equation (5), using a least-squares method with
two free parameters. The two free parameters used in the fit are
the combination mvx/rvir, which gives the amplitude of the sig-
nal, and an image-smoothing radius rsmooth, which is related to
the instrument beam. When stacking images that are re-scaled

with respect to their radius, the stack will consist of images with
different effective beam widths. The resulting merged image is
not exactly equivalent to a dipole signal with a single-Gaussian
smoothing like the one we apply in our least-squares procedure.
We find that fitting the stencil with a single effective smooth-
ing radius consistently overestimates the signal by 3–4 %. This
can be avoided by choosing a different stencil, for instance pre-
generating a stencil from a stack of noiseless smoothed maps.

In the following sections we introduce measurements of the
quality of the fit and amplitude of the signal. We also show that
these two quantities can be combined into a single estimator that
can be used to distinguish a true detection from a false positive.

3.1. Lower bound on the dipole amplitude

If the best fit of a stack corresponds to a very low amplitude
mvx/rvir, it is indistinguishable from zero amplitude. A detection
limit for this number should be estimated based on the error bars
of the data, and on the expected masses and velocities of the
stacked galaxies. This limit will therefore depend on the mass
and structure of the central supercluster and on the precision of
data in the galaxy catalogue in the real-world scenario. The least-
squares method we applied has discrete values for the combina-
tion mvx/rvir. This means that below some threshold value, the
amplitude will be rounded down to zero in our implementation.
We chose this value conservatively in a way that does not signif-
icantly impact the results.

In our case, the average expected velocity is O(100) km/s (as
seen in figure 2), and the average galaxy mass is 1.8 × 1012 M�.
To be conservative, we set the threshold for a zero amplitude de-
tection corresponding to a 1012 M� galaxy, moving at less than
10 km/s. This choice is arbitrary and different values can be cho-
sen when handling actual observations. The chosen threshold is
equivalent to a factor of about 0.05 of the expected value for
mvx/rvir. This does not mean that we ignore individual images
of galaxies that are smaller or slower than this threshold. We
stacked all galaxies, and considered the stacked signal to have
zero amplitude if the best fit indicates that the average value for
mvx/rvir is less than ∼ 5 % of the expected average.

3.2. Quality of fit

For each stack d we found the best fit template t with a least-
squares method. The template t is a smoothed image of the pure
slingshot signal (equation 5). Both d and t are column vectors
containing each pixel of the stacked image and the best fit tem-
plate. To gauge the quality of the fit, we calculated the normal
equations

q =
tT d
tT t

, (10)

where tT is a row vector equivalent to the transpose of t. This
statistic is related to the χ2-statistic. If you imagine the t and
d vectors of dimension n = nx × ny (with nx and ny being the
amount of pixels in the x- and y-direction of the map, respec-
tively), the q statistic is equivalent to the Euclidean dot prod-
uct between the data and the template, normalised to the length
of the expected template vector. The result is equal to 1 if the
two vectors are of equal length and parallel to each other, and
0 if they are orthogonal. Calculating q is equivalent to summing
up the pixel-by-pixel product of stack and template (vector dot
product), and normalising to the squared norm of the template.
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Fig. 4. Histogram of the B statistic from stacks of pure noise (orange) and of signal plus noise (blue). The three panels correspond to 4 × 10−6,
1 × 10−6, and 1 × 10−7 noise levels (from left to right). Values of B below 0 are not plotted.

A true fit of a stack with a slingshot signal, like the ones
shown in figure 3, gives q ≈ 1 if the noise is low. Fitting a tem-
plate when no signal is present gives q ≈ 0. The probability dis-
tribution of the best fit q has a spread, which widens with higher
noise levels. In practice it is possible to get q > 1 if the stack
data d is parallel and has a bigger amplitude than the template
t. It is also possible to get q < 0 if the dot product is negative
(i.e. when the vectors are anti-parallel). Both of these options
are worse quality fits than q = 1.

3.3. Combined statistic to identify false positives

In addition to the possibility of a low quality fit when the signal
is present, there is also a chance for the algorithm to detect a
signal in pure noise with no actual signal present. We call such
a detection a false positive. We consider a signal to be a proper
detection if two conditions are met simultaneously: the quality
of fit q is close to 1, and the fitted amplitude of the combination
mvx/rvir is close to the expected amplitude. We consider a signal
to be a bad detection if the best fit amplitude is low or if the
quality of fit q is small (or negative). To take into account both
of these measures of the detection level, we define a combined
statistic,

B ≡ q ×
mvx

rvir
. (11)

The B statistic combines both qualities we are interested in
when looking for a good detection: a significant amplitude for
the fitted dipole, and a decent quality of the fit. We made a prob-
ability distribution of the outcome for measurements of B given
a specific noise level by creating several real stacks and several
false stacks (with no dipole signal). We created several realisa-
tions of the real stack, by repeating the pipeline described in sec-
tion 2.3, but using a different random seed for the noise for each
realisation. We also created several false stacks, where each of
the stacks consists of images of the 8438 halos in our selection.
The individual images pass through the same pipeline as the real
stacks, but without the addition of the slingshot dipole. Each im-
age consists purely of the per-pixel noise, and is later smoothed
and re-scaled with respect to the expected virial radius of the
halo.

For each realisation we calculated B, and combined the data
from all samples to find a probability distribution for B. If there
is significant overlap between the probability distributions from
the stacks with a signal and without a signal, it is impossible to
distinguish whether an observed stack contains a signal or not.
If the distributions are sufficiently separated along B, the proba-

bility of a strong observed signal being a false positive is small,
hence we can distinguish a true signal from a false positive.

4. Results

In this section, we first discuss the probability of a statistically
significant detection, with current and future surveys. Then we
present results from our smaller sets of test analyses, where we
estimate the bias from having an uncertainty in the assumed
virial radius of a galaxy, and evaluate the effectivity of our
weighting schemes. Finally we consider how the results apply
to modified gravity.

4.1. Detection probability

Histograms of B/Bexpected are shown in figure 4. The three panels
correspond to the distributions found from stacks with 4 × 10−6,
1×10−6, and 1×10−7 noise, respectively. The histograms emerg-
ing from multiple realisations of the stack can be interpreted as
an estimate of the probability distribution of measuring a certain
value of B, given a known noise level. The orange histograms are
for stacks of pure noise, while the blue histograms are for stacks
of signal and noise. The values are binned in evenly spaced bins
from B = 0 to B/Bexpected = 5. The expected value, Bexpected,
is found by assuming q = 1 and taking the average mvx/rvir
in the sample. The average mass of the halos in our sample is
1.79 × 1012 M�, the average radial infall velocity is 675 km/s,
and the average virial radius is 196 kpc. For the galaxies around
the simulated supercluster we study, we find the value

Bexpected = 7.29 × 109 M�/Mpc = 2.08 × 10−10/G. (12)

In the realisations with 4 × 10−6 noise, the histograms of the
stacks with signal and with pure noise overlap significantly, and
the probability of observing a value we can distinguish from
noise is low. For near-future noise levels of 1 × 10−6, the situ-
ation is better. The mean value for B when no signal is present is
about three standard deviations lower than the mean value for B
with signal. This suggests a very good probability of measuring
a value of B high enough to be reasonably sure it is not from
noise. In the futuristic noise realisations, the histograms do not
overlap at all, meaning that in this theoretical scenario we can
always distinguish the existence of a signal from a case with no
signal.

We present data for the different runs in Table 1. P(ND) is the
probability of a non-detection. The chance of a non-detection is
calculated as the probability for a given stack to be indistinguish-
able from B = 0 within one standard deviation. For noise levels
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Table 1. Details of the analysis of the simulated stacks

Noise Signal # stacks P(ND) mean q mean B (mv/rvir) 95 OSCI
(
B/Bexpected

)
P(FP)

4 × 10−6 No 45 000 72.7 % 0.413 0.514 0.68 ± 0.89 51.44 %
1 × 10−6 No 65 000 72.9 % 0.399 0.130 0.176 ± 0.220 2.89 %
1 × 10−7 No 45 000 81.0 % 0.1696 0.0089 0.023 ± 0.018 0.00 %
4 × 10−6 Yes 20 000 45.0 % 0.898 1.433 1.59 ± 1.23 0
1 × 10−6 Yes 20 000 0.22 % 0.986 1.165 1.200 ± 0.374 0.661
1 × 10−7 Yes 20 000 0 % 0.9961 1.046 1.050 ± 0.052 0.9709

Notes. P(ND) is the probability of a non-detection (i.e. how many of the stacks are indistinguishable from B = 0 within 1σ). The mean measured B
and the mean amplitude mv/rvir are normalised with respect to the expected value of the average sample. The amplitude column shows the average
value and also the standard deviation among all the realisations. 95 OSCI is the lower 95 % one-sided confidence interval, or the 5th percentile of
B/Bexpected. P(FP) is the probability of a false positive among the stacks of pure noise.

of 4×10−6, we find a 45 % probability for non-detections among
the stacks that include a signal. This means that, even with cur-
rent experiments, there is a better than 50-50 chance of achieving
a fit that is distinguishable from zero. For the near-future noise
levels, we get very few non-detections in the stacks that include
an actual signal. However, because pure noise can also lead to a
detection, we must also consider the chance of a false positive
before labelling any detection above the threshold a true detec-
tion.

The mean B shown in the table is normalised with respect
to the expected value of B for the galaxies in the sample (i.e.
the shown B is divided by Bexpected from equation (12)). Specif-
ically, unbiased measurements of the normalised B have an ex-
pected mean of B = 1 when the dipole signal is present, and
0 when there is only noise. The amplitude mv/rvir of the sig-
nal is also normalised with respect to the expected amplitude,
(mv/rvir)expected, which has the same value as Bexpected. The col-
umn labelled 95 OSCI contains the lower 95 % one-sided con-
fidence interval, or the 5th percentile of B/Bexpected; 95 % of all
stacks in this set of stacks has a B above this level. The proba-
bility of a false positive, P(FP), is shown in the last column of
Table 1. This probability is found by computing what percentage
of the stacks with pure noise, no signal, and that give a value of B
that falls above the 5th percentile we would expect if there were
a signal. Specifically, P(FP) = P(Bno−signal > B95 OSCI), where
Bno−signal is B in a stack with pure noise, and B95 OSCI is the lower
95 % OSCI for B in the stacks with signal.

A conservative estimate for the chances of measuring a false
positive can be found in the rightmost column of Table 1. We
focus on the results for the near future experiments with 1×10−6

noise. A true stack with this noise level has B/Bexpected > 0.661
with 95 % confidence. If there is no signal in the stacks, the
chance of getting B/Bexpected > 0.661 is just 2.89 %. This means
that with CMB-S4 we can distinguish the slingshot signal from
pure noise with P < 0.05 certainty. Furthermore, if the signal
is present in near-future observations, we should also be able to
put error bars on the measurement of the combination mv/rvir be-
cause the expected value for this combination is approximately
three standard deviations away from zero.

4.2. Testing assumptions and weighting schemes

We repeated four sets of a smaller analysis, where each set in-
cludes 5000 realisations of the stack instead of the 20 000 re-
alisations used in the main analysis. One of the sets includes a
random error in the assumed virial masses, which induces an er-
ror in the virial radius when assuming mvir ∝ r3

vir. The result of
including this error is that the stack is slightly smeared, but the

dipole stencil still clearly detects the signal. For the 10−6 noise
level simulations, the chance of detecting a false positive in-
creases from 2.89 % to 4.06 %, and the standard deviation of the
recovered mv/rvir increases slightly. The detection is still greater
than two sigma significance, indicating that the analysis is robust
to the possible error in estimated virial radius.

The other three sets of analyses include the three non-
uniform weighting schemes described in section 2.3. The
distance-based weighting scheme, wd =

√
r⊥e−0.3r⊥ , has a max-

imum weight at 1.67 virial radius of the cluster. This weight-
ing increases the signal by 5 %, but also increases the aver-
aged noise level similarly. The averaged noise increases when
using a weighted average instead of uniform weights because
the galaxies that are suppressed contribute less to the cancella-
tion of noise. Other weighting schemes for distance are not con-
sidered, but the studied one does not improve the S/N according
to our analysis. Even if the S/N does not improve, a benefit of
this method is that we do not need to put in a sharp distance cut-
off by hand, but rather we can tune the slope of the weighting
function.

We also used a mass-based weighting scheme, with wm =
log10(Mvir/1010M�). This weighting increases the S/N signifi-
cantly by weighting massive galaxies more than light galaxies.
The expected detection of the slingshot signal with 10−6 noise
level increases from 3 σ to 5 σ, and the chance of a false posi-
tive decreases from 2.89 % to 0.02 %. This suggests that a mass-
based weighting scheme should be considered when using real
observations. The final weighting scheme we tested is a combi-
nation of the distance- and mass-based weighting scheme, but it
does not improve the results over the pure mass-based weighting
scheme. A possible method for defining a more optimal weight-
ing scheme in a future analysis is via matched filtering. For the
noise levels of current surveys (4 × 10−6), the mass weighting
does not increase the S/N sufficiently to avoid the confusion with
false positives.

4.3. Applications to modified gravity

When using the method discussed in this paper, we estimate an
average mvx/rvir of infalling galaxies around a cluster. This can
be combined with other observables, like the velocity along the
line of sight and the inferred halo mass from lensing. Compared
with such additional data, the slingshot effect can be used as an
independent probe of modified gravity. Many scalar–tensor theo-
ries will increase the clustering on scales of kiloparsecs to mega-
parsecs. For instance, the Chameleon model studied by Brax
et al. (2013) shows increased clustering. If the modifications ap-
ply on galaxy scales, each galaxy can be more massive and more
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dense. If the modifications apply on megaparsec scales, galaxies
will fall faster due to the fifth forces on large scales (Ivarsen et al.
2016). Both of these effects would increase the expected sling-
shot signal with respect to a similar scenario in ΛCDM, making
it a possible probe for enhanced gravity over several different
scales. Because the method described in this paper only mea-
sures the combination mvx/rvir, the separate effects of higher in-
fall velocity and higher galaxy density are degenerate.

From the halo mass function of the pure Symmetron case in
Hagala et al. (2016), we find that in a typical Symmetron sce-
nario, the individual galaxies will have a 20 % increase in mass.
Assuming a 10% increase in infall velocity3, we estimate that
the average mvx/rvir at redshift zero can increase by about 30 %
relative to GR. In the case of uniform weighting of the galaxy
maps and 10−6 noise level, this increase is equivalent to the one
standard deviation measurement error on the slingshot signal.

We find that the average mvx/rvir amongst the 4700 most
massive clusters in the simulated catalogue has a standard de-
viation similar to the average of mvx/rvir. This means that, even
in the context of ΛCDM, the amplitude of the slingshot signal
around a single cluster is not decided by the mass of the cluster
alone, but also by a combination of the surrounding large-scale
structure and the merger history of the cluster. Unless we know
such specifics about the studied cluster, we would need to ob-
serve 36 clusters to reduce the error of the mean for the ‘uni-
versal’ mvx/rvir with a factor 1/

√
36 ≈ 1/6. If we can do this,

the uncertainty of our measurements can be low enough for us
to begin distinguishing gravitational models like the Symmetron
from pure ΛCDM, with two sigma significance. Better knowl-
edge of the mass distribution of the surroundings of the cluster
and a better weighting scheme for the stacking of galaxy maps
can both reduce the number of clusters needed to distinguish be-
tween different gravitational models.

5. Conclusion

In this paper, we present a method for detecting transverse mo-
tions of galaxies by stacking the dipole signal of the slingshot
effect. For this method to work we need to be able to identify a
preferential direction to align the galaxies along their expected
direction of motion. This can be done by taking into account
galaxies that either fall into clusters or move away from the cen-
tre of the voids. We show a detection strategy for galaxies falling
into a nearby cluster, like the Coma Cluster. A similar analysis
can be performed for galaxies around voids.

The possibility of detecting the signal with certainty with
CMB-S4 experiments is very high. There are some simplifica-
tions in this paper that should be considered more thoroughly
when analysing real data. The most important considerations
relate to the choice of cut-off in halo mass, and the cut-off
in distance from the central cluster. We use a mass cut-off of
M > 1011M� when considering a halo for stacking. A cut-off
that is too low means adding mostly noise for each image, while
a mass cut-off that is too high gives fewer halos to stack. Fur-
thermore, we do not include an upper mass limit. This means
that in practice we are stacking the dark matter halos of some
smaller galaxy clusters as well as individual galaxies. Choosing
the halo mass cut-offs in a more sophisticated way (e.g. using a
weighting scheme) could improve the signal. Increasing the dis-
tance within which to consider infalling galaxies will allow us
to include more galaxies and could result in better statistics. An

3 For all Symmetron models except the one with the weakest coupling,
Ivarsen et al. (2016) found a > 10% increase in pairwise velocities

inner radius cut-off can also be considered, since galaxies within
approximately one virial radius of the cluster do not appear to
have a preferred radial direction. When excluding these galax-
ies, a better signal can be expected. Another option is to use a
distance-based weighting scheme instead of a hard cut-off. We
tested a simple distance-based weighting scheme, which does
not impact the S/N significantly. We also tested a mass-based
weighting scheme, which we find to increase the S/N by weight-
ing massive galaxies more than light galaxies. When used on
real data, this weighting scheme can be more or less efficient de-
pending on the confidence of the mass estimates in the galaxy
catalogue.

In this paper, we stacked the CMB maps centred on O
(
104

)
simulated galaxies, and oriented them according to their ex-
pected infall direction towards a nearby massive cluster. By fit-
ting a dipole template to the stacked signal, we show that the
slingshot effect is statistically distinguishable from noise when
using the next generation of CMB experiments. By measuring
the slingshot signal around 36 clusters, we can constrain the
signal sufficiently to test alternative theories for gravity.
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Appendix: Calculation of slingshot effect from a spherical halo model

We have that

∆Tslingshot

T
= 2vx

∫
∂Φ

∂x
dz. (13)

Since gravitational potentials are additive, we will have a contribution from the NFW dark matter profile and from the Hernquist
profile:

∆Tslingshot

T
= 2vx

∫
∂ΦNFW

∂x
+
∂ΦHernq

∂x
dz. (14)

We now calculate these integrals separately. In principle the integral limits is from the surface of last scattering and until today, but
as long as the kernel we are integrating peaks around z = 0, we can safely integrate from z = −∞ to z = ∞ instead.

NFW

From Łokas & Mamon (2001), the gravitational potential of the NFW halo is given by

ΦNFW = −Gmg ×
ln

(
1 +

cNFWr
rvir

)
r

, (15)

where cNFW is the concentration (we assume cNFW = 15) and

g ≡
1

ln(cNFW + 1) − cNFW
cNFW+1

. (16)

Substituting r =
√

x2 + y2 + z2, we can do the derivative with respect to x,

∂ΦNFW

∂x
=

Gmgx
r2

 ln
(
1 +

cNFWr
rvir

)
r

−
cNFW/rvir

1 +
cNFWr

rvir

 . (17)

We can find the indefinite integral

∫
∂ΦNFW

∂x
dz =

Gmgx


rvir arctan

 cNFWz√
c2
NFW(x2+y2)−r2

vir


√

c2
NFW(x2+y2)−r2

vir

−

rvir arctan

 rvirz

r
√

c2
NFW(x2+y2)−r2

vir


√

c2
NFW(x2+y2)−r2

vir

+
z ln

(
cNFWr

rvir
+1

)
r − ln (r + z)


x2 + y2 (18)

(19)

We are interested in evaluating this integral with limits z = −∞ and z = ∞. We start by finding the limits of the arctangent
expressions. We use that limx→±∞ arctan (x) = ±π/2, and find that the first arctangent has the limit

arctan

 cNFWz√
c2

NFW
(
x2 + y2) − r2

vir


∣∣∣∣∣∣∣∣∣
z→∞

= lim
Z→∞

arctan(Z) =
π

2
, (20)

and similarly

arctan

 cNFWz√
c2

NFW
(
x2 + y2) − r2

vir


∣∣∣∣∣∣∣∣∣
z→−∞

= −
π

2
. (21)

To evaluate the limits of the second arctangent, we note that

lim
z→±∞

z
r

= ±1. (22)
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This leaves us with the following arguments for the second arctangent:

rvirz

r
√

c2
NFW

(
x2 + y2) − r2

vir

∣∣∣∣∣∣∣∣∣
z→∞

=
rvir√

c2
NFW

(
x2 + y2) − r2

vir

, (23)

rvirz

r
√

c2
NFW

(
x2 + y2) − r2

vir

∣∣∣∣∣∣∣∣∣
z→−∞

= −
rvir√

c2
NFW

(
x2 + y2) − r2

vir

. (24)

Regarding the logarithmic expressions, the limit at z→ ∞ is

lim
z→∞

z ln
(

cNFWr
rvir

+ 1
)

r
− ln (r + z) = lim

z→∞
ln

(
cNFWr

rvir
+ 1

)
− ln (z + z) = lim

z→∞
ln

(
cNFWz/rvir

2z

)
= ln

(
cNFW

2rvir

)
. (25)

The limit of the logarithmic terms when z→ −∞ is

lim
z→−∞

z ln
(

cNFWr
rvir

+ 1
)

r
− ln (r + z) = lim

z→−∞
− ln

(
cNFWz

rvir

)
− ln

z
√

1 +
x2 + y2

z2 − z

 = lim
z→−∞

− ln
(

cNFWz
rvir

)
− ln

(
x2 + y2

2z

)
(26)

= − ln

cNFW

(
x2 + y2

)
2rvir

 , (27)

where we use that
√

1 + x ≈ 1 + x/2 for small x.
Combining all of these, we are left with

∞∫
−∞

∂ΦNFW

∂x
dz =

Gmgx
x2 + y2

S (π − 2 arctan (S )) + ln

c2
NFW

(
x2 + y2

)
4r2

vir


 . (28)

Here, we have defined

S ≡
rvir√

c2
NFW

(
x2 + y2) − r2

vir

. (29)

Hernquist

The gravitational potential of a Hernquist halo with mass m is simply given by

ΦHernq = −
Gm
r + a

, (30)

where a is a scale length, which is related to the half-mass radius as a =
r1/2

1+
√

2
. We chose r1/2 = 0.015rvir based on figure 1 from

Kravtsov (2013), where the data indicates r1/2 ≈ 0.015r200c.
The derivative with respect to the x coordinate is

∂ΦHernq

∂x
=

Gmx

r (a + r)2 , (31)

which results in the following indefinite integral along z:

∫
∂ΦHernq

∂x
dz =

Gmx
a2


a2z(

x2 + y2 − a2) (r + a)
+

a3 arctan
(

az
r
√

x2+y2−a2

)
(
x2 + y2 − a2)3/2 −

a3 arctan
(

z√
x2+y2−a2

)
(
x2 + y2 − a2)3/2

 . (32)

We chose to define

U ≡
a√

x2 + y2 − a2
, (33)

which does not depend on z.
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The limits of the first term when z→ ±∞ are

lim
z→∞

U2z
(r + a)

= U2 (34)

and

lim
z→−∞

U2z
(r + a)

= −U2. (35)

The limits of the second term are

lim
z→∞

U3 arctan
(
U

z
r

)
= U3 arctan (U) (36)

and

lim
z→−∞

U3 arctan
(
U

z
r

)
= −U3 arctan (U) . (37)

The last arctangent converges to ±π/2, giving

lim
z→∞
−U3 arctan

(
U

z
a

)
= −

πU3

2
(38)

and

lim
z→−∞

−U3 arctan
(
U

z
a

)
=
πU3

2
. (39)

Finally, the slingshot integral for the Hernquist distribution can be written

∞∫
−∞

∂ΦHernq

∂x
dz = Gmx

U2

a2 (2 + U [2 arctan (U) − π]) . (40)

Sum

Because we are assuming that the total mass mDM of the dark matter halo is in the NFW component, with an additional mDM/10 in
baryons, we write the combined effect as

∆Tslingshot

T
= 2vx

∫
∂

∂x
ΦNFW (m = mDM) +

∂

∂x
ΦHernq

(
m =

mDM

10

)
dz =

2GmDMvx

rvir

(
QNFW +

1
10

QHernq

)
. (41)

Here, we use the following notation for dimensionless coordinates: xr ≡ x/rvir and xa ≡ x/a. Furthermore,

QNFW ≡
gxr

x2
r + y2

r

ln
c2

NFW

(
x2

r + y2
r

)
4

 − S (2 arctan (S ) − π)

 , (42)

and

QHernq ≡

1 +
√

2
0.015

 xa

x2
a + y2

a − 1
[2 + U (2 arctan (U) − π)] . (43)

The factor of
(
1 +
√

2
)
/0.015 is to convert from the Hernquist scale a to rvir. We repeat the definitions

S ≡
1√

c2
NFW

(
x2

r + y2
r
)
− 1

, (44)

U ≡
1√

x2
a + y2

a − 1
. (45)

We note that S and U can become imaginary for light passing close to the centre of the halo. Specifically, both U and S are
∈ [−i,−∞i). However, z (2 × arctan (z) − π) always has one real value, even for imaginary z.
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Proof: For a real x > 1, it follows that z = −ix is negative imaginary with the same domain as U and S . Using the logarithm
definition of the complex arctangent, we have

(−ix) (2 × arctan (−ix) − π) = (−ix)
(
2 ×

i
2

ln
(

1 − x
1 + x

)
− π

)
(46)

= x
(
ln

(
1 − x
1 + x

)
+ πi

)
= x

(
ln

(
x − 1
1 + x

)
+ 2πi

)
(47)

=
choice

x ln
(

x − 1
1 + x

)
. (48)

In the last line, we used the fact that for complex logarithms, ln (z) = ln (−z) + πi. Furthermore, any addition of 2πi can be cancelled
by the corresponding free choice of 2kπi in the multi-valued complex logarithm. With x > 1, this result proves that there is always
a real branch of the expression z (2 × arctan (z) − π). This expression is also continuous for values of r2 = x2 + y2 crossing through
the singularity in U or S .
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Chapter 4

Conclusions

The ΛCDM concordance model describes the observed properties of the universe
well on large scales, but it has several problems. A key question in the quest to
solve some of these problems is to explain the nature of dark energy, for which
modified gravity is a possible candidate.

The focus of this thesis has been to better understand scalar–tensor theories
for gravity in the non-linear regime. Specifically, I have investigated phenomena
appearing out of the quasi-static approximation, when allowing time derivatives
of the scalar field. During my PhD, I have developed a fast, spherically symmetric
code to test and understand properties of the equation of motion of a scalar
field. Furthermore, I have implemented the disformal quintessence model in
the modified gravity N -body code Ramses. I have also proposed a new probe
for measuring peculiar transverse velocities, which can be used to distinguish
theories of modified gravity from GR. These are examples of specialised analyses
which can be used for improving the prediction power of old probes, as well
as for suggesting new signatures of modifications to gravity. In this chapter, I
summarise and discuss the three papers of my doctorate, before concluding and
placing my work in a greater perspective.

4.1 Scalar Field Waves

In Paper I we used the spherically symmetric code to test the quasi-static
approximation, which is commonly assumed when studying conformal models.
We found that the symmetron and the chameleon screening mechanisms in
general work well under the influence of waves. The exceptions are very special
set-ups, for instance where incoming spherically concentrated waves in the scalar
field can disrupt the scalar field enough to break the Cassini bounds on the
PPN quantity |γPPN − 1|. Specifically, in the symmetron model, we suggest
that the collapse of domain walls in a void surrounding a galaxy can lead to
waves with a significant amplitude entering the galaxy. In this scenario, the wave
energy is sufficiently concentrated to excite the field even in the regions where
the effective potential well is steep and narrow. Furthermore, we found that in
the chameleon model, a very energetic event which moves a lot of matter—like a
nearby supernova explosion—can generate waves in the scalar field that have a
large enough amplitude to temporarily break the chameleon screening.

My main contribution to Paper I was to implement and test the spherical
scalar field EOM solver, as well as to run the code and interpret the output. This
included selection of model parameters, set-up of the density profile, analysis
of previous N -body output to determine a suitable range of external wave
parameters (in amplitude and frequency), and creation of figures. Significant
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parts of the analytical calculations and interpretations of the results were also
done by me, including the supplementary material following Paper I, wherein
I proposed and calculated how a type Ia supernova can generate waves in the
chameleon scalar field.

We did not study the effect of waves on other scalar–tensor theories than the
symmetron and chameleon; a similar analysis has yet to be done for instance for
theories relying on screening through the Vainshtein mechanism. In Paper I we
only studied the impact of waves on one specific probe, the Cassini experiment
for measuring γPPN in the Solar System. Other probes, especially ones sensitive
to time variations of the scalar field, can be better indicators of scalar field
waves. This calls attention to the study of new non-linear probes, as well as
for estimating the effect of waves in other regions, like in un-screened dwarf
galaxies. We do not expect scalar waves to have a significant impact on structure
formation through the fifth force. This is because the extra force from a sinusoidal
wave changes direction as the wave passes, leading to a cancellation over time.
However, the extra energy in the stochastic scalar waves can affect the overall
background evolution. Furthermore, in theories where the speed of waves is
reduced in regions with high matter–energy density, waves are allowed to cluster
and form structures. This is the case in for instance disformally coupled theories,
which I studied in Paper II. The effects and possibilities of the clustering of
scalar field waves in the context of modified gravity has yet to be studied.

A follow-up study of the effect of scalar field waves on the Solar System was
performed by Ip and Schmidt [IS18]. Their main finding is that our conclusion on
the significance of waves in violating the bounds on |γPPN−1| is to a large extent
due to the spherical geometry we applied; The wave energy is concentrated on the
inner part of the Milky Way galaxy when allowing a spherical wave to propagate
inwards. According to their linear analysis, when allowing a plane wave of
amplitude δφ/φQS = 0.01 to enter the Milky Way1, the amplitude of |γPPN − 1|
is only enhanced by a factor of 16 over the quasi-static value, compared to our
prediction of a factor larger than 102-104. In the case of the chameleon model,
they agree that a supernova can generate large amplitude waves in the scalar
field due to the release of scalar charge, but they argue that only waves with
wavenumbers higher than the effective mass of the scalar field will propagate into
the Solar System, k & mSS. Under this assumption, waves of sufficient frequency
to propagate in the Solar System are expected to have a shorter wavelength
than the extent of the Cassini experiment described in [BIT03]. The effect of
such high-frequency waves are effectively cancelled over the time it takes light to
travel in the experiment, and hence will not give a measurable signal. Although
the chameleon screening can act as a high pass filter and reduce the propagation
of long-wavelength waves, a full scalar field simulation has yet to be done for a
supernova wave entering the solar system.

1Where φQS is the quasi-static value of the scalar field, and δφ/φQS = 0.01 is the higher
end expected deviation from the quasi-static value due to the stochastic scalar field wave
background found in [LM14].
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4.2 Disformal Phenomenology

In Paper II we studied a pure disformal model through N -body simulations.
We found a mechanism for the evolution of the field profile; The field moves
freely in voids, but in areas of high density, the disformal effect will slow down
the field acceleration with the suppressing factor 1/

(
1 + γ2ρ

)
. The disformal

effect plays an important role for the scalar field evolution, in setting up the
field profiles around overdensities, and for the deformation and clustering of
scalar field waves. We found that the scalar field profile in the quasi-static limit2

achieves a shape proportional to the Newtonian gravitational potential δφ ∝ Ψ.
This proportionality assumption is valid for a quintessence-like potential, where
the potential slope drives the scalar field towards higher values. We identified
one scenario where the proportionality assumption does not hold, which is during
a short amount of time when the proportionality constant changes sign. During
this period, we found indications of a transient repulsive fifth force.

My main contribution to Paper II was to extend Ramses/Isis to simulate
a pure disformally coupled scalar field, building upon earlier work of Claudio
Llinares. I implemented several auxillary tools for data post-processing, analysis,
and visualisation. I was responsible for the N -body related part of the paper,
including convergence testing and exploration of the parameter space of this
choice of disformal coupling and potential functions. The analysis of the repulsive
fifth forces associated with the field flip was to a large extent carried out by me.

Under the proportionality assumption, we derived a global formula for the
relation between the fifth force and the Newtonian force. This opens for the
possibility to do simulations of disformal quintessence faster, through applying
G → Geff (t) directly to a Newtonian simulation. This simplification ignores
non-linear screening effects as well as non-static effects like scalar field waves.
Nevertheless, this method can prove to be a valuable tool to assess the effects
of modified gravity on quasi-linear scales or to test the parameter space of the
model more efficiently. Similar simple simulations with Geff have been done for
conformally coupled theories. For instance, [LMB11] study extended quintessence
models, where the modification to gravity is seen in the Jordan frame as the scalar
field being coupled to the curvature3. For the case of the extended quintessence
models they studied, they find that the large scale properties of the simulation
are very well approximated by the assumption G → Geff (t) and a modified
background equation.

The N -body simulations we performed in Paper II do not modify the
background evolution compared to ΛCDM. This simplification is based on
the assumption that we expect the background evolution for viable theories to
follow ΛCDM closely. Furthermore, when keeping the background evolution
fixed, the differences between the particle distributions are only attributed to
the fifth forces. In this way, we avoid possible degeneracies between the effects
coming from the background evolution and effects of the fifth forces on the

2i.e. when neglecting time derivatives of the field perturbations δφ.
3Which is identical to a conformal theory with a fifth force after a conformal transformation.
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particle distribution.
There have been proposed many methods to distinguish disformally coupled

scalar fields from other theories of gravity or GR. Many of the methods are on
astrophysical small scales or in relativistic environments and require non-linear
treatments, or even quantum field theory calculations. On the background level,
the work of [vMM17] suggests that a disformal coupling is slightly favoured
over ΛCDM. Furthermore, they find that a disformal coupling on top of a
conformal coupling relaxes the constraints on the conformal parameters because
the disformal coupling suppresses the scalar field evolution in the early universe.
This suggests that adding a disformal coupling on top of a conformal model can
be used to build models with measurable small scale phenomenology, without
altering the background evolution significantly. On the level of cosmological
perturbations, there has been suggested a degeneracy between disformal and
conformal couplings [vM15]. This emphasises the need to go to non-linear
simulations and probes—like the ones presented in this thesis—to distinguish
disformal from conformal theories. A comprehensive study of disformal couplings
is done by [Sak14]. Although the author ignores the term φ̈ in the fifth force,
the results are nevertheless useful for the probes discussed, which include the
Cassini probe for γPPN, lunar laser ranging, laboratory tests, and the background
evolution. In [BBE15] the authors put bounds on the disformal coupling B
using data from the LHC particle collider. These bounds assume that the scalar
field couples disformally to the known Standard Model particles, and hence the
bounds do not apply to disformal couplings in the dark sector. Gravitational
waves, especially the recent binary neutron star merger with an electromagnetic
counterpart, enforce stringent constraints on many theories of modified gravity,
including theories with a disformal coupling [EZ18]. A disformal tuning is allowed
to save some sets of theories by forcing the speed of light to be equal to the
propagation speed of gravitational waves. Furthermore, a disformal coupling
only in the dark sector allows the Standard Model particles (including photons)
to travel on the same geodesics as the gravitational waves.

4.3 Transverse Velocities

The study of peculiar motions of galaxies is important for understanding the
underlying gravitational force. In combination with data on positions and
densities, velocities can be used as an independent consistency check of the
model of gravity. In Paper III we proposed a method to use the slingshot effect
for detecting the mean transverse velocity of galaxies falling into a cluster. The
method requires a massive galaxy cluster located no more than 200 Mpc away, a
galaxy catalogue with the positions and redshifts of the surrounding galaxies,
and a high-resolution map of the CMB around these galaxies. The method
consists of subtracting the expected CMB signal close to each infalling galaxy
and delensing the maps, then orienting the residue map from each galaxy along
the radial direction, and stacking the maps centred on the infalling galaxies.
This procedure ensures that instrument noise and confounding effects are kept
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to a minimum. After fitting a dipole stencil to the stacked maps, the amplitude
of the stencil yields an average value for the quantity mgvr/rvir,g for the stacked
galaxies, where mg and rvir,g are the virial mass and the virial radius of a given
galaxy, and vr is the projected infall velocity of the galaxy. With this method, the
slingshot effect should be measurable with the next generation of observations,
and given measurements of the average infall velocity around enough clusters,
we expect that this method can be used for distinguishing theories of modified
gravity from general relativity4. Other recent papers have suggested detecting
signals of the slingshot effect in the CMB power spectrum [Hot+18], or using
the effect to estimate the mean pairwise velocities of galaxy clusters [YMP18].
Both of these also conclude that next-generation CMB experiments (CMB stage
4) have good enough noise levels for the slingshot effect to be measurable.

Almost all of the work on paper Paper III, as well as most of the writing and
editing of the manuscript, was done by me. The general idea—that a moving
galaxy should have an effect on the measured CMB sky—and a sketch of the
slingshot equations presented in Appendix B along with a preliminary plot, were
provided by Claudio Llinares as a starting point for my work on this paper. The
idea of stacking the signal to battle instrument noise, as well as the choice to
orient the dipoles according to infall velocity around a cluster, was suggested by
me. I implemented the software for using a (publicly available) halo catalogue for
estimating the effect, as well as wrapper software to visualise and run statistics
on the output.

4.4 Outcome and Future Prospects

N -body simulations and other non-linear methods are useful tools to test and
investigate the small-scale effects of GR and modified theories of gravity. However,
due to the limitations of box size, as well as the large computational cost of
high-resolution simulations, these methods cannot be used as efficiently as linear
perturbation simulations to test the parameter space of cosmological models.
Especially on large scales where the linear approximation is expected to hold,
running N -body simulations for the purpose of parameter fitting is a waste
of resources. The quasi-linear and non-linear regimes of theories of modified
gravity can be explored more efficiently through the use of semi-analytic methods
[KTB16] and emulators [Win+19]. Machine learning has already been used in the
context of ΛCDM to predict structure formation with cosmological parameters
significantly beyond what was included in the original training data [He+19]. In
the future, machine learning and deep learning provides promising possibilities
to extract astrophysical data about certain models of modified gravity, without
having to run a separate N -body simulation for each set of parameters.

The CMB power spectrum and redshift zero matter power spectrum are still
the most used probes when comparing GR with alternative theories. Linear
theory and N -body simulations can be used as complementary tools to investigate

4For a typical symmetron scenario, we estimate that we need data from approximately 36
galaxy clusters to distinguish the modified gravity model from GR.
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alternative probes of modifications to GR. For instance, when studying a new
model for modified gravity, linear simulations can be used to effectively constrain
the parameter space when comparing the model to CMB or the background
evolution. The constrained parameter space can then be used to choose a few
sets of interesting parameters to explore in the non-linear regime through N -
body simulations. The final positions and velocities of the particles can then
be used to infer the non-linear power spectrum, as well as extract estimates
for other probes. In section 2.7, I briefly discussed several possible probes and
their applications to modified gravity theories. A recent comprehensive work on
alternative probes reviews new ways to test gravity [Bak+19]. In the non-linear
regime accessible by N -body simulations, some important tests the authors
propose are based on velocity statistics and peculiar velocities of galaxies, cluster
abundance and density profiles, as well as void statistics. To test and constrain
a wider range of theories at once, parametrisations like the PPN formalism and
effective field theory can be utilised instead of testing the theories one by one.
Several relevant frameworks and their application to observations are described
in [Lom18]. Machine learning is also a promising area for the investigation of
non-linear probes; The algorithms can effectively distinguish otherwise similar
cosmological models [Mer+19].

The quasi-static approximation has been tested in cosmological contexts in
the case of the f(R) model with chameleon screening ([BHL15]), the symmetron
model ([Win+15]), and for several models with Vainshtein screening ([WF15]).
All of these studies conclude that the fifth forces and the matter distribution
in high densities are not significantly impacted by assuming the quasi-static
approximation. In low-density regions, and for probes that are more sensitive to
modifications of gravity than the power spectrum is, the importance of scalar
field waves and other non-static effects is still not clear. Energetic events like
supernova explosions can create scalar waves of significant amplitude in the
chameleon model, but even though the authors of [IS18] argue that only waves
with a too high frequency to be measured can enter the Milky Way, this claim
has yet to be tested with high-resolution non-static simulations.

My overall conclusion from all my work is to always question and justify the
assumptions applied when studying a given theory of gravity. The novelty of my
research consists of studying phenomena and probes associated with scalar fields,
as well as specifically studying the disformal quintessence model in the non-linear
and non-static regime. My work paves the way for using simulations to find new
signatures of gravity, and to test the validity of assumptions in the non-linear
regime. In the future, mankind can use cosmological simulations—perhaps based
on the work presented here—to better understand gravity and how the Universe
works.
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Appendix A

Disformal Equations
The pure disformal model is defined by the Einstein–Hilbert action

S =
∫ √

−g
[

R

16πG + Lφ
]

+
√
−g̃L̃Md4x, (A.1)

where the pure disformal coupling is introduced through a disformal transforma-
tion in the matter sector, given by

g̃µν = gµν +B (φ)φ,µφ,ν . (A.2)

A.1 Equation of Motion

From [KMZ12], the EOM for a disformal field is in general given by

Mµν∇µ∇νφ+ 1
1− 2BXQµνT

µν + V = 0, (A.3)

where I have already inserted the conformal factor A = 1 throughout. Here we
have defined

Mµν = Lφ,Xgµν + Lφ,XXφ,µφ,ν −
B

1− 2BXTµνm ,

Qµν =
(
−B

′

2

)
φ,µφ,ν ,

X ≡ −1
2∇

µφ∇µφ = −1
2g

µνφ,µφ,ν = −1
2 (∂φ)2

,

V = Lφ,φ + 2XLφ,Xφ.

In this appendix, a prime denotes a derivative with respect to the scalar field φ.
When assuming a canonical scalar field,

Lφ = X − V (φ) , (A.4)

we get

Lφ,X = 1,
Lφ,XX = Lφ,Xφ = 0.

This simplifies the following symbols:

Mµν = gµν − B

1− 2BXTµνm

V = −V ′ (φ) .

127



A. Disformal Equations

Furthermore, when assuming nonrelativistic, shearless, and pressureless matter
with density ρ, the stress–energy tensor simplifies to

Tµνm = diag (ρ, 0, 0, 0) . (A.5)

This simplifies 15 components ofMµν (all except µ = ν = 0) to

Mµν = gµν , (A.6)

while the 00-component is given by

M00 = g00 − B

1− 2BX ρ. (A.7)

When inserting the above assumptions, it results in an equation of motion

gµν∇µ∇νφ−
B

1− 2BX ρ∇0∇0φ−
1

1− 2BX
B′

2 φ,0φ,0ρ− V ′ (φ) = 0. (A.8)

With the choice of Newtonian gauge, gµν is diagonal, and only the diagonal
elements of ∇µ∇νφ will contribute in the first term. The inverse metric is given
by

gµν = diag
(
− (1− 2Ψ) , 1

a2 (t) (1 + 2Ψ) , 1
a2 (t) (1 + 2Ψ) , 1

a2 (t) (1 + 2Ψ)
)
.

(A.9)
The first term of equation (A.8) can be written out as

gµν∇µ∇νφ = − (1− 2Ψ)∇0∇0φ+ 1
a2 (1 + 2Ψ)∇i∇iφ. (A.10)

Where the covariant derivative applied twice on a scalar is given by

∇µ∇νφ = ∇µ (φ,ν) = φ,µν − Γαµνφ,α. (A.11)

The Einstein frame Christoffel symbols are defined as

Γµαβ = 1
2g

µν (gνα,β + gνβ,α − gαβ,ν) . (A.12)

At this point, we make the choice of neglecting all terms where the Newtonian
potential Ψ or its derivatives Ψ,µ multiply the scalar field φ or its derivatives.
These higher order terms are small on large scales in the non-relativistic and
weak field limits, but their importance in non-static N -body simulations have not
been assesed thoroughly. Nevertheless, this assumption (essentially equivalent to
assuming the spatially flat FLRW metric when calculating the evolution of the
scalar field) greatly simplifies the numerical calculations for φ̈. The first term of
equation (A.8) now approximates to

gµν∇µ∇νφ = −φ̈+ 1
a2φ,ii − 3Hφ̇, (A.13)
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where the term with H = ȧ/a comes from the Christoffel symbol in the spatial
part of ∇µ∇νφ, each spatial component contributing with Hφ̇ each to the sum.
The final equation of motion for a pure disformally coupled scalar field, with
disformal coupling function B (φ) and potential V (φ), in an expanding and
spatially flat FLRW metric is

−
(
1 + γ2ρ

)
φ̈+ 1

a2∇
2φ− 3Hφ̇− γ2ρ

(
B,φ
2B φ̇2

)
− V,φ = 0, (A.14)

where ∇2φ = φ,ii and we have introduced the definition

γ2 ≡ B

1− 2BX . (A.15)

A.2 Geodesics and Fifth Force

The acceleration of a particle in scalar–tensor theories is in general given by the
geodesics calculated in the Jordan frame metric, where the geodesic equation is

ẍµ + Γ̄µαβ ẋ
αẋβ = 0, (A.16)

where Γ̄µαβ are the Christoffel symbols in the Jordan frame. These are given as
[ZKM13]

Γ̄µαβ = Γµαβ + 1
2 g̃

µν [∇αg̃βν +∇β g̃αν −∇ν g̃αβ ] . (A.17)

A non-relativistic particle with v � 1 has four-velocity

ẋµ =
(
1, v1, v2, v3) . (A.18)

In the assumption of non-relativistic particles, we only keep terms up to first
order of the three-velocity vi, which simplifies the geodesic equation to

ẍi + Γ̄i00 + 2Γ̄ij0ẋj = 0. (A.19)

A particle completely at rest with respect to the expanding FLRW spacetime
will not be affected by the Γ̄ij0 term. Because we are studying particles of slowly
moving cold dark matter, we chose to neglect all terms of Γ̄ij0 except the Hubble
friction term, Γij0 = Hδij , which also appears in the GR case and is already
implemented in Ramses through the choice of variables.

A.2.1 The Jordan Frame Metric and its Inverse

The Jordan frame metric is found from the definition of the disformal
transformation, which in the pure disformal case is

g̃µν = gµν +Bφ,µφ,ν . (A.20)

In [ZKM13] they state the general inverse of the disformal metric when allowing
a conformal term A. In the pure disformal case with A = 1, the inverse metric is

g̃µν = gµν − γ2φ,µφ,ν . (A.21)
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A.2.2 The i00 Component

Γ̄i00

=Γi00 + 1
2 g̃

iν [∇0g̃0ν +∇0g̃0ν −∇ν g̃00]

=Γi00 + 1
2 g̃

iν [2B (∇0φ,0φ,ν) + 2φ,0φ,νB,0 −B (∇νφ,0φ,0)− φ,0φ,0B,ν ]

=Γi00 + 1
2 g̃

iν [2Bφ,ν∇0φ,0 + 2φ,0φ,νB,0 − φ,0φ,0B,ν ] . (A.22)

The first term gives the Newtonian force, it is given by

Γi00 = 1
2g

iν (gν0,0 + gν0,0 − g00,ν) ,

= −1
2g

iig00,i,

= Ψ,i

a2 . (A.23)

Here, only ν = i gives a nonzero contribution from giν , and therefore it follows
that gν0,0 = gi0,0 = 0.

The second term is
1
2 g̃

iν2Bφ,ν∇0φ,0 =B
(
giν − γ2φ,iφ,ν

)
(φ,ν∇0φ,0) ,

=B
(

(1 + 2Ψ)
a2 (φ,i∇0φ,0)− γ2φ,iφ,νφ,ν∇0φ,0

)
,

=(1 + 2Ψ)
a2 γ2 (φ,i∇0φ,0) . (A.24)

We neglect all higher order terms where Ψ multiplies the field or its derivatives.
Under this assumption ∇0φ,0 = φ̈, which means that the second term can be
written

1
a2 γ

2φ̈φ,i. (A.25)

The third term is
1
2 g̃

iν2φ,0φ,νB,0 =
(
giν − γ2φ,iφ,ν

)
φ,0φ,νB,0

=
(

(1 + 2Ψ)
a2 φ,0φ,iB,0 + 2γ2giiφ,iφ,0XB,0

)
= (1 + 2Ψ)

a2 γ2φ,0φ,i
B,0
B
. (A.26)

Since B is a function of φ only, we can write B,0 = B,φφ,0. When neglecting
higher order terms where Ψ multiplies the field or its derivatives, the third term
becomes

1
a2 γ

2B,φ
B
φ̇2φ,i (A.27)
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Finally, the fourth term of Γ̄i00 is given by

−1
2 g̃

iνφ,0φ,0B,ν = −1
2
(
giν − γ2φ,iφ,ν

)
φ,0φ,0B,ν

= −1
2

(1 + 2Ψ)φ,0φ,0B,i
a2 + 1

2γ
2φ,iφ,νφ,0φ,0B,ν . (A.28)

After the usual neglections, rewriting B,ν = B,φφ,ν and φ,i = gijφ,j ≈ φ,i/a
2,

and recognising that φ,νφ,ν = −2X, the fourth term becomes

−
(
1 + 2Xγ2) B,φ

2a2 φ̇
2φ,i. (A.29)

When writing out γ2 and collecting the terms inside the parenthesis, this is
equivalent to

− B,φ
2Ba2 γ

2φ̇2φ,i. (A.30)

A.2.3 The Acceleration of a Test Particle

When inserting all the terms as well as the Hubble friction into equation (A.19),
and collecting terms, the resulting geodesic equation is

ẍi + Ψ,i

a2 + 1
a2

(
φ̈+ 1

2
B,φ
B
φ̇2
)
γ2φ,i + 2Hẋi = 0. (A.31)

The fifth force consists of the terms not found in GR; when removing the
gradient of Ψ and the Hubble friction, the acceleration of a test particle due to
the disformal fifth force is given by

Fφ = − 1
a2

(
φ̈+ 1

2
B,φ
B
φ̇2
)
γ2∇φ. (A.32)
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Appendix B

Slingshot Equations
The ISW effect changes the temperature of the CMB photons during the time t
they spend in an evolving gravitational potential Ψ. Specifically,

∆T
T

= 2
∫

Ψ̇ dt. (B.1)

The slingshot effect is the change in photon temperature due to the transverse
motion of an non-evolving potential well. Following a flow of photons travelling
through a moving halo, this effect can be expressed as

∆Tslingshot

T
= 2

∫
v⊥ · ∇Ψ dt. (B.2)

We chose a coordinate system where light moves in the positive z-direction,
along the line of sight. The projected motion v⊥ of the halo is taken to be
constant and along the x-axis. In this frame, we define vx as the velocity
component perpendicular to the line of sight. The y and z components of the
dot product are zero. The photons move with the speed of light, with c = 1,
such that the time integral can be exchanged with an integral along z:

∆Tslingshot

T
= 2vx

∫
∂Ψ
∂x

dz. (B.3)

This equation implies that the gradient of the gravitational potential Ψ close
to the moving mass is the source of positive Ψ̇ behind the mass and negative Ψ̇
in front of the mass, even though the shape of the potential Ψ does not change
relative to the moving mass.

See the appendix of Paper III for a concrete example of calculating ∆T
T

for a specific functional form of Ψ (r) around a galaxy assumed to consist of a
NFW dark matter halo populated with baryons following a Hernquist density
distribution.
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Appendix C

Linear Perturbation Theory
In linear perturbation theory, we aim to solve the Einstein field equations in
the case of a universe with small scalar perturbations in the metric and small
perturbations around the background (average) quantities of the density and
pressure for each fluid. Under the assumption that the perturbations are small,
we neglect all terms of higher than first order in the perturbed quantities. For
each component we add, we must close the system of equations by imposing
energy–momentum conservation. The set of equations listed in this appendix
are the perturbed Einstein equations; When combined with the Boltzmann
equations they describe a system out of thermodynamic equilibrium (and allow
for e.g. couplings between photons and baryons), and are often called the
Einstein–Boltzmann equations.

I will use conformal time τ defined as dτ = a−1dt. The perturbed metric is
now given by the line element

ds2 = a2 (τ)
[
− (1 + 2Ψ) dτ2 + (1− 2Φ) dxidxi

]
. (C.1)

Primes in this appendix are derivatives with respect to conformal time τ .
Equations are adapted from the appendix of [Mv17].

C.1 In ΛCDM

In a universe with multiple fluids denoted by i (each with a density perturbation
δρi = ρi − ρ̄i, an overdensity δi = δρi/ρ̄i, a perturbed pressure δpi = pi − p̄i, an
equation of state wi = pi/ρi, a velocity divergence θi = ∇·vi, and an anisotropic
stress scalar σi), the perturbed Einstein field equations are

k2Φ + 3H (Φ′ +HΨ) = −4πGa2
∑
i

δρi, (C.2)

k2 (Φ′ +HΨ) = 4πGa2
∑
i

ρi (1 + wi) θi,

(C.3)

Φ′′ +H (Ψ′ + 2Φ′) + Ψ
(
H2 + 2H′

)
+ k2

3 (Φ−Ψ) = 4πGa2
∑
i

δpi, (C.4)

k2 (Φ−Ψ) = 12πGa2
∑
i

ρi (1 + wi)σi,

(C.5)

where the last equation sets Φ = Ψ in the absence of anisotropic stress. Energy–
momentum conservation, enforced by the condition ∇µTµν = 0, leads to the
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perturbed continuity and Euler equations

δ′i + 3H
(
δpi
δρi
− wi

)
δi = − (1 + wi) (θi − 3Φ′) , (C.6)

θ′i +
[
H (1− 3wi) + w′i

1 + wi

]
θi = k2

[
Ψ + δpi

δρi

δi
1 + wi

]
− k2σi. (C.7)

C.2 In Scalar–Tensor Theories

In a general scalar–tensor theory with coupling function Q, a single shear-free
coupled fluid (denoted with subscript c) coupled to the scalar field φ will follow
the modified continuity and Euler equations

δ′
c + 3H

(
δpc

δρc
− wc

)
δc = − (1 + wc)

(
θc − 3Φ′)+ Q

ρc
φ′δc −

Q

ρc
δφ′ − φ′

ρc
δQ,

(C.8)

θ′
c +
[
H (1− 3wc) + w′

c

1 + wc

]
θc = k2

[
Ψ + δpc

δρc

δc

1 + wc

]
+ Q

ρc
φ′θc −

Q

ρc (1 + wc)k
2δφ,

(C.9)

which reduce to the uncoupled (GR) case when Q→ 0. In the Einstein frame,
the modifications appear only in the motion of matter, and hence the Einstein
equations (C.2 - C.5) are not modified. The extra scalar degree of freedom
introduces an extra equation; Perturbations of the scalar field δφ are found from
the perturbed scalar field equation of motion (Klein–Gordon equation)

δφ′′ + 2Hδφ′ +
(
k2 + a2V,φφ

)
δφ = (Ψ′ + 3Φ′)φ′ − 2a2V,φΨ + a2δQ+ 2a2QΨ.

(C.10)
This full set of equations can be solved numerically for a given Q, which is what
they did for a more general mixed conformal and disformal model in [Mv17].

C.2.1 A Conformally Coupled Fluid in the Quasi-Static Limit

In the case of a pure conformal coupling A (φ), and assuming that the coupled
fluid is pressureless dark matter, the coupling function (and its perturbation)
takes the form

Qconf = −1
2
A,φ
A
ρc = −1

2
∂ (lnA)
∂φ

ρc, (C.11)

δQconf = −ρc
A

(
1
2A,φδc +

[
1
2A,φφ + QA,φ

ρc

]
δφ

)
. (C.12)

In the case of only one fluid, namely the coupled pressureless dark matter, and
no anisotropic stress, the perturbed Einstein and continuity equations simplify
to

k2Ψ + 3H (Ψ′ +HΨ) = −4πGa2δρc, (C.13)

136



In Scalar–Tensor Theories

k2 (Ψ′ +HΨ) = 4πGa2ρcθc, (C.14)
Ψ′′ + 3HΨ′ + Ψ

(
H2 + 2H′

)
= 0 (C.15)

δ′c = − (θc − 3Ψ′) + Q

ρc
φ′δc −

Q

ρc
δφ′ − φ′

ρc
δQ, (C.16)

θ′c +Hθc = k2Ψ + Q

ρc
φ′θc −

Q

ρc
k2δφ. (C.17)

In the quasi-static limit, where we neglect time derivatives of the scalar field
and of the gravitational potential, the continuity equations (C.16 and C.17) and
the EOM (C.10) can be written

δ′c = −θc, (C.18)

θ′c +Hθc = k2
(

Ψ + 1
2
A,φ
A
δφ

)
, (C.19)

k2

a2 δφ = −ρc2
A,φ
A

(
δc −

(
1
2
A,φ
A

)
δφ+ Ψ

)
. (C.20)

In over-dense regions where δc > |Ψ| , |δφ|, and on sub-horizon scales (k � H),
equations (C.13) and (C.20) lead to similar Poisson’s equations for the Newtonian
potential and for the scalar field, namely

k2

a2 Ψ = −4πGδρc, (C.21)

k2

a2 δφ = −1
2
A,φ
A
δρc. (C.22)

In the case of a positively sloping conformal coupling, A,φ > 0, the field
perturbation will always be negative, δφ < 0, signifying that the scalar field—just
like the gravitational potential—has a dip in over-dense regions1. It can be
seen from the Euler equation (C.19) that the coupled matter gains a negative
divergence because θ′c < 0 in over-dense regions, and specifically it gains a more
negative divergence than in the GR case. This addition to the divergence is the
reason for enhanced structure growth in many scalar–tensor theories.

1A special case is when A,φ
A

is a constant, then the quasi-static scalar field perturbation
δφ is expected to evolve similarly to the Newtonian potential Ψ.
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