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Abstract: Recently, a concept known as µTRISTAN, which involves the acceleration of µ+, has been

proposed. This initiative has led to considerations of a new design for a neutrino factory. Additionally,

leveraging the polarization of µ+, measurements of T violation in neutrino oscillations are also being

explored. In this paper, we present analytical expressions for T violation in neutrino oscillations

within the framework of standard three-flavor neutrino oscillations, a scenario involving nonstandard

interactions, and a case of unitarity violation. We point out that examining the energy spectrum of T

violation may be useful for probing new physics effects.
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1. Introduction

Results from various neutrino oscillation experiments have nearly determined the
three mixing angles and the absolute values of the mass squared differences in the standard
three-flavor mixing scenario within the lepton sector [1]. The remaining undetermined
parameters, such as the mass ordering, the octant of the atmospheric neutrino oscillation
mixing angle, and the CP phase, are expected to be resolved by the high-intensity neutrino
long-baseline experiments currently under construction, such as T2HK and DUNE. Once
the CP phase is established, the standard three-flavor lepton mixing scheme will be so-
lidified, achieving the final goal of studies on standard three-flavor neutrino oscillations.
To explore physics beyond this framework using neutrino oscillations, experiments in
previously unexplored channels will be necessary.

Recently, a concept known as µTRISTAN [2] has been proposed, which involves
creating a low-emittance µ+ beam using ultra-cold muon technology and accelerating it
to energies suitable for a µ+ collider. The expected number of muons at µTRISTAN is on
the order of 1013 to 1014 muons per second. This proposal has reignited interest [3] in the
neutrino factory concept [4,5], which could be developed en route to achieving a muon
collider. At such a neutrino factory, the decay of µ+ in the storage ring would produce νµ

and νe. Ref. [6] explored the potential to polarize the µ beam to reduce the flux of νµ or
νµ, thereby enabling the measurement of νe → νµ transitions. If this can be achieved, it
would allow for the measurement of T violation in neutrino oscillations, i.e., the difference
between the oscillation probabilities P(νµ → νe) and P(νe → νµ).

T violation in neutrino oscillations has been discussed by many researchers in the
past [6–28]. T violation has attracted significant attention primarily because its structure
is simpler than that of CP violation, which compares P(νµ → νe) with P(νµ → νe) and
involves complications due to the presence of the matter effect. (To justify discussions of T
violation on an equal footing with CP violation, CPT symmetry is necessary in the neutrino
sector. Refs. [29–33] studied CPT symmetry in the neutrino sector and concluded that there
are strong constraints on CPT violation.) In this paper, we derive the analytical forms of T
violation in three scenarios: the standard three-flavor scheme, a scenario with nonstandard
interactions, and a case of unitarity violation. We also briefly comment on the feasibility of
probing new physics effects by examining the energy dependence of T violation.

In Section 2, we review the formalism by Kimura, Takamura, and Yokomakura [34,35]
to derive analytical formulas for the oscillation probabilities. In Section 3, we derive
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the analytic forms for T violation in the three cases: the standard three-flavor mixing
framework, a scenario involving flavor-dependent nonstandard interactions, and a case
with unitarity violation. In Section 4, we summarize our conclusions.

2. Analytical Formula for Oscillation Probabilities

It is known [36] (see also earlier works [37–39]) that after eliminating the negative
energy states by a Tani–Foldy–Wouthusen-type transformation, the Dirac equation for
neutrinos propagating in matter is reduced to the familiar form:

i
dΨ

dt
=
(

UEU−1 +A
)

Ψ, (1)

where U is the PMNS matrix,

Ψ ≡




νe

νµ

ντ




is the flavor eigenstate,

E ≡ diag(E1, E2, E3) (2)

is the diagonal matrix of the energy eigenvalue Ej ≡
√

m2
j + p⃗ 2 (j = 1, 2, 3) of each mass

eigenstate with momentum p⃗, and the matrix

A ≡
√

2 GF

{
diag

(
Ne −

Nn

2
,−Nn

2
,−Nn

2

)}
.

stands for the matter effect, which is characterized by the Fermi coupling constant GF,
the electron density Ne, and the neutron density Nn. Throughout this paper we assume for
simplicity that the density of matter is constant. The 3 × 3 matrix on the right-hand side of
Equation (1) is Hermitian and can be formally diagonalized by a unitary matrix Ũ as

UEU−1 +A = ŨẼŨ−1, (3)

where

Ẽ ≡ diag
(

Ẽ1, Ẽ2, Ẽ3

)

is a diagonal matrix with the energy eigenvalue Ẽj in the presence of the matter effect.
Equation (1) can be easily solved, resulting in the flavor eigenstate at the distance L:

Ψ(L) = Ũ exp
(
−iẼL

)
Ũ−1Ψ(0). (4)

Thus, we have the probability amplitude A(νβ → να) of the flavor transition νβ → να:

A(νβ → να) =
[
Ũ exp

(
−iẼL

)
Ũ−1

]
αβ

. (5)

From Equation (5) we observe that the shift E → E − 1E1, where 1 stands for the 3 × 3
identity matrix, changes only the overall phase of the probability amplitude A(νβ → να),

and this phase does not affect the value of the probability P(νβ → να) = |A(νβ → να)|2
of the flavor transition νβ → να. In the following discussions, therefore, for simplicity, we
define the diagonal energy matrix E and the potential one A as follows:
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E ≡ diag(E1, E2, E3)− E1 1

= diag(0, ∆E21, ∆E31) (6)

A ≡
√

2 GF

{
diag

(
Ne −

Nn

2
,−Nn

2
,−Nn

2

)
+

(
Nn

2

)
1

}

= diag(A, 0, 0) (7)

with

∆Ejk ≡ Ej − Ek ≃
m2

j − m2
k

2|⃗ p| ≡
∆m2

jk

2|⃗ p| ≡
∆m2

jk

2E

A ≡
√

2 GF Ne . (8)

Thus, the appearance of the oscillation probability P(νβ → να) (α ̸= β) is given by

P(νβ → να)

=

∣∣∣∣
[
Ũ exp

(
−iẼL

)
Ũ−1

]
αβ

∣∣∣∣
2

=

∣∣∣∣∣
3

∑
j=1

X̃
αβ
j e−iẼj L

∣∣∣∣∣

2

=

∣∣∣∣∣e
−iẼ1L

3

∑
j=1

X̃
αβ
j e−i∆Ẽj1L

∣∣∣∣∣

2

=

∣∣∣∣∣
3

∑
j=1

X̃
αβ
j

(
e−i∆Ẽj1L − 1

)∣∣∣∣∣

2

(9)

=

∣∣∣∣∣(−2i)
3

∑
j=2

e−i∆Ẽj1L/2X̃
αβ
j sin

(
∆Ẽj1L

2

)∣∣∣∣∣

2

= 4

∣∣∣∣∣e
−i∆Ẽ31L/2X̃

αβ
3 sin

(
∆Ẽ31L

2

)
+ e−i∆Ẽ21L/2X̃

αβ
2 sin

(
∆Ẽ21L

2

)∣∣∣∣∣

2

= 4

∣∣∣∣∣X̃
αβ
3 sin

(
∆Ẽ31L

2

)
+ ei∆Ẽ32L/2X̃

αβ
2 sin

(
∆Ẽ21L

2

)∣∣∣∣∣

2

(10)

where

X̃
αβ
j ≡ ŨαjŨ

∗
βj

∆Ẽjk ≡ Ẽj − Ẽk

have been defined,

3

∑
j=1

X̃
αβ
j = δαβ = 0 for α ̸= β (11)

was subtracted in Equation (9) and throughout this paper the indices α, β = (e, µ, τ) and
j, k = (1, 2, 3) stand for those of the flavor and mass eigenstates, respectively. Once we

know the eigenvalues Ẽj and the quantity X̃
αβ
j , the oscillation probability can be expressed

analytically. ( In the case of three neutrino flavors in matter, the energy eigenvalues, Ẽj, can
in principle be analytically determined using the cubic equation root formula [40]. However,
the analytic expression for Ẽj involving the inverse cosine function is not practically useful.

Therefore, below we will calculate Ẽj using perturbation theory with small parameters,

such as ∆E21/∆E31 = ∆m2
21/∆m2

31 ≈ 1/30 and those relevant to nonstandard scenarios).
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So the only non-trivial problem in the standard case is to obtain the expression for X̃
αβ
j ,

and this was achieved by Kimura, Takamura and Yokomakura [34,35]. Their arguments are
based on the trivial identities. From the unitarity condition of the matrix Ũ, we have

δαβ =
[
ŨŨ−1

]
αβ

= ∑
j

ŨαjŨ
∗
βj = ∑

j

X̃
αβ
j . (12)

Next, we take the (α, β) component of both sides in Equation (3):

[
UEU−1 +A

]
αβ

=
[
ŨẼŨ−1

]
αβ

= ∑
j

ŨαjẼjŨ
∗
βj = ∑

j

ẼjX̃
αβ
j (13)

Furthermore, we take the (α, β) component of the square of Equation (3):

[(
UEU−1 +A

)2
]

αβ

=
[
ŨẼ2Ũ−1

]
αβ

= ∑
j

ŨαjẼ
2
j Ũ∗

βj = ∑
j

Ẽ2
j X̃

αβ
j (14)

Putting Equations (12)–(14) together, we have




1 1 1

Ẽ1 Ẽ2 Ẽ3

Ẽ2
1 Ẽ2

2 Ẽ2
3







X̃
αβ
1

X̃
αβ
2

X̃
αβ
3


 =




Y
αβ
1

Y
αβ
2

Y
αβ
3


 (15)

with

Y
αβ
j ≡

[(
UEU−1 +A

)j−1
]

αβ

for j = 1, 2, 3 ,

which can be easily solved by inverting the Vandermonde matrix:




X̃
αβ
1

X̃
αβ
2

X̃
αβ
3




=




1

∆Ẽ21∆Ẽ31

(Ẽ2Ẽ3, −(Ẽ2 + Ẽ3), 1)

−1

∆Ẽ21∆Ẽ32

(Ẽ3Ẽ1, −(Ẽ3 + Ẽ1), 1)

1

∆Ẽ31∆Ẽ32

(Ẽ1Ẽ2, −(Ẽ1 + Ẽ2), 1)







Y
αβ
1

Y
αβ
2

Y
αβ
3




. (16)

3. Analytic Form of T Violation

In this section, we derive the analytic form of T violation in the cases with and without
unitarity, using the formalism described in Section 2.

3.1. The Three-Flavor Case with Unitarity

First, let us discuss the case where time evolution is unitary. From Equation (10),
we have

P(νµ → νe)− P(νe → νµ)

= 4 sin

(
∆Ẽ31L

2

)
sin

(
∆Ẽ21L

2

)

×
[
ei∆Ẽ32L/2X̃

eµ∗
3 X̃

eµ
2 + e−i∆Ẽ32L/2X̃

eµ
3 X̃

eµ∗
2

−ei∆Ẽ32L/2X̃
eµ
3 X̃

eµ∗
2 − e−i∆Ẽ32L/2X̃

eµ∗
3 X̃

eµ
2

]

= 16 Im
[

X̃
eµ
2 X̃

eµ∗
3

]
sin

(
∆Ẽ32L

2

)
sin

(
∆Ẽ31L

2

)
sin

(
∆Ẽ21L

2

)
, (17)
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Furthermore, from Equation (16), the factor Im
[

X̃
eµ
2 X̃

eµ∗
3

]
in Equation (17) can be rewrit-

ten as

Im
[

X̃
eµ
2 X̃

eµ∗
3

]
=

−1

∆Ẽ21∆Ẽ32

1

∆Ẽ31∆Ẽ32

× Im
[
{Y

eµ
3 − (Ẽ3 + Ẽ1)Y

eµ
2 }{Y

eµ∗
3 − (Ẽ1 + Ẽ2)Y

eµ∗
2 }

]

=
1

∆Ẽ21∆Ẽ31∆Ẽ32

Im
[
Y

eµ
2 Y

eµ∗
3

]
(18)

Equations (17) and (18) are applicable for a generic case, as long as the unitarity relation
(11) holds.

3.1.1. The Standard Three-Flavor Case

In the standard three-flavor case, Y
αβ
j+1 ≡ [(UEU−1 +A)j]αβ (j = 1, 2) can be expressed

as follows:

Y
αβ
2 ≡

[
UEU−1 +A

]
αβ

=
3

∑
j=2

∆Ej1X
αβ
j + A δαeδβe (19)

Y
αβ
3 ≡

[(
UEU−1 +A

)2
]

αβ

=
3

∑
j=2

(∆Ej1)
2X

αβ
j + A

3

∑
j=2

∆Ej1

(
δαeX

eβ
j + δβeXαe

j

)
+ A2 δαeδβe , (20)

where we have also defined the quantity in vacuum:

X
αβ
j ≡ UαjU

∗
βj . (21)

From Equations (19) and (20), the factor Im
[
Y

eµ
2 Y

eµ∗
3

]
in Equation (18) can be rewritten as

Im
[
Y

eµ
2 Y

eµ∗
3

]

= Im
[(

∆E21X
eµ
2 + ∆E31X

eµ
3

)

×
{

∆E21(∆E21 + A)X
eµ∗
2 + ∆E31(∆E31 + A)X

eµ∗
3

}]

= Im
[

X
eµ
2 X

eµ∗
3

]
∆E21∆E31∆E32 (22)

Im
[

X
eµ
2 X

eµ∗
3

]
in Equation (22) is the Jarlskog factor [41] for the lepton sector, and is given

in the standard parametrization [1] with the three mixing angles θjk (j, k = 1, 2, 3) and the
Dirac CP phase δ by

J ≡ Im
[

X
eµ
2 X

eµ∗
3

]

= −1

8
sin δ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 .

Hence, we obtain

P(νµ → νe)− P(νe → νµ)

= 16 J
∆E21∆E31∆E32

∆Ẽ21∆Ẽ31∆Ẽ32

sin

(
∆Ẽ32L

2

)
sin

(
∆Ẽ31L

2

)
sin

(
∆Ẽ21L

2

)
(23)



Entropy 2024, 26, 472 6 of 15

Equation (23) is a well-known formula [10] for the standard three-flavor case. It is remark-
able that in the standard three-flavor case, T violation in matter, when divided by the
δ-independent factor 16 ∏j>k[sin(∆ẼjkL/2)∆Ejk/∆Ẽjk], coincides with the Jarlskog factor
in vacuum. This implies that the only source of T violation is the CP phase δ in the stan-
dard three-flavor case, and it is the reason why T violation is simpler than CP violation in
neutrino oscillations.

3.1.2. The Case with Nonstandard Interactions

As long as unitarity in the three-flavor framework is maintained, Equation (18) holds.
In this subsection, let us consider the scenario with flavor-dependent nonstandard interac-
tions [42,43] during neutrino propagation. This scenario has garnered significant attention
due to its potential implications for phenomenology. In this case, the mass matrix is
given by

UEU−1 +A+ANP (24)

with

ANP ≡ A




ϵee ϵeµ ϵeτ

ϵ∗eµ ϵµµ ϵµτ

ϵ∗eτ ϵ∗µτ ϵττ


 ,

where A and A are given by Equations (7) and (8), respectively. The dimensionless quanti-
ties ϵαβ stand for the ratio of the nonstandard Fermi coupling constant interaction to the
standard one. Since the matrix (24) is Hermitian, time evolution is unitary and all the
arguments up to Equation (18) hold also in this case. The oscillation probability is given
by Equations (10) and (16), where the standard potential matrix A must be replaced by
A+ANP.

The extra complication compared to the standard case is calculations of the eigenvalues
Ẽj and the elements [(UEU−1 +A+ANP)

m]αβ (m = 1, 2). Here, we work with perturbation

theory with respect to the small parameters ∆E21/∆E31 = ∆m2
21/∆m2

31 ≃ 1/30 and ϵαβ,
which we assume to be as small as ∆E21/∆E31. Namely, throughout this paper we assume

|∆E31| ∼ A ≫ |∆E21| ≳ A |ϵαβ| .

and take into consideration to first order in these small parameters. Then, to first order in
them, we obtain

Y
eµ
2 ≡

[
UEU−1 +A+ANP

]
eµ

= ∆E31X
eµ
3 + ∆E21X

eµ
2 + A ϵeµ (25)

Y
eµ
3 ≡

[(
UEU−1 +A+ANP

)2
]

eµ

≃ {(∆E31)
2 + A ∆E31}X

eµ
3 + A ∆E21X

eµ
2

+A2 ϵeµ + ∆E31{X3,ANP}eµ

= (∆E31 + A)Y
eµ
2 − ∆E31∆E21X

eµ
2 − A ∆E31 ϵeµ + ∆E31{X3,ANP}eµ , (26)

where the curly bracket stands for an anticommutator of matrices P and Q: {P, Q} ≡
PQ + QP, and X3 is a 3 × 3 matrix defined by

X3 ≡ U diag(0, 0, 1)U−1 (27)

(X3)αβ = Uα3U∗
β3 = X

αβ
3 .
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From this, the first term on the right-hand side of Equation (26) drops in the factor

Im
[
Y

eµ
2 Y

eµ∗
3

]
, and we obtain

Im
[
Y

eµ
2 Y

eµ∗
3

]
= −Im

[
Y

eµ∗
2 Y

eµ
3

]

≃ ∆E31 Im
[
Y

eµ∗
2

(
∆E21X

eµ
2 + A ϵeµ − {X3,ANP}eµ

)]

≃ (∆E31)
2 Im

[
X

eµ∗
3

(
∆E21X

eµ
2 + A ϵeµ − {X3,ANP}eµ

)]

= (∆E31)
2 Im

[
X

eµ∗
3

{
∆E21X

eµ
2 + A

(
Xττ

3 ϵeµ − Xeτ
3 ϵτµ − X

τµ
3 ϵeτ

)}]
,

where we have ignored terms of order O((∆E21)
2), O(A2(ϵαβ)

2), and O(A∆E21ϵαβ). Thus,
we finally obtain the form for T violation:

P(νµ → νe)− P(νe → νµ)

≃ 16 (∆E31)
2

∆Ẽ21∆Ẽ31∆Ẽ32

sin

(
∆Ẽ32L

2

)
sin

(
∆Ẽ31L

2

)
sin

(
∆Ẽ21L

2

)

× Im
[

X
eµ∗
3

{
∆E21X

eµ
2 + A

(
Xττ

3 ϵeµ − Xeτ
3 ϵτµ − X

τµ
3 ϵeτ

)}]
(28)

Note that the form of the standard contribution (∆E31)
2∆E21, Im

[
X

eµ
2 X

eµ∗
3

]
in Equation (28)

differs slightly from that in Equation (22) because we are neglecting terms of order
O((∆E21)

2). The terms proportional to A in the parenthesis in Equation (28) represent the
additional contributions to T violation due to nonstandard interactions. These additional
contributions are constant with respect to the neutrino energy E, and they exhibit a dif-
ferent energy dependence from that of the standard one, ∆E21X

eµ
2 = (∆m2

21/2E)Ue2U∗
µ2.

Therefore, if the magnitude of the additional contributions from nonstandard interactions is
significant enough, then their effects are expected to be observable in the energy spectrum
of T violation. Constraints on the parameters ϵαβ have been provided in Refs. [44–46].
Depending on the sensitivity of each experiment, it may or may not be possible to detect
the signal or to improve the existing bounds on ϵαβ. The aim of this paper is to derive the
analytic form of T violation; estimating experimental sensitivity is beyond its scope.

3.2. The Three-Flavor Case with Unitarity Violation

The discussions in Section 3.1 are based on the assumption that time evolution is
unitary. In Ref. [47], the possibility to have a nonunitary leptonic mixing matrix was pointed
out. In that case, the relation between the mass eigenstate νj and the flavor eigenstate να is
given by a nonunitary matrix N:

να = Nαj νj

N ≡ (1 + η)U

with

η† = η . (29)

In the so-called minimal unitarity violation, which was discussed in Ref. [47], the constraint
on the deviation matrix η turned out to be strong. Here, we take phenomenologically the
form of the nonunitary matrix N and assume that the elements of the deviation matrix η

are of order ∆E21/∆E31 or smaller, as in Section 3.1.2, namely,

|∆E31| ∼ A ≫ |∆E21| ≳ A |ηαβ| .
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It was argued in Ref. [48] that time evolution in the case of a nonunitary mixing matrix can
be discussed in terms of the mass eigenstate

Ψm ≡




ν1

ν2

ν3


 ,

and its time evolution is described by

i
dΨm

dt
=
{
E + NTAN∗ − An

(
NT N∗ − 1

)}
Ψm , (30)

where E and A are defined by Equations (6) and (7),

An ≡ 1√
2

GF Nn

stands for the absolute value of the contribution to the matter effect from the neutral current
interaction, and the term An 1 was added to simplify the calculations without changing
the absolute value of the probability amplitude. The 3 × 3 matrix on the right-hand side of
Equation (30) can be diagonalized with a unitary matrix W:

E + NTAN∗ − An

(
NT N∗ − 1

)
= WẼW−1, (31)

where

Ẽ ≡ diag
(

Ẽ1, Ẽ2, Ẽ3

)

is the energy eigenvalue matrix in matter with unitarity violation. The mass eigenstate at
distance L can be solved as

Ψm(L) = W exp(−iẼL)W−1Ψm(0). (32)

In cases involving unitarity violation, due to the modified form of the charged current
interaction [47], after computing the probability amplitude from Equation (32) we must

multiply the probability amplitude by an additional factor of (NN†)−1/2
ββ for the production

process and (NN†)−1/2
αα for detection. Defining the modified amplitude

Â(νβ → να) ≡ A(νβ → να)(NN†)1/2
αα (NN†)1/2

ββ

= [N∗W exp(−iẼL)W−1NT ]αβ ,

the modified probability

P̂(να → νβ) ≡ |Â(να → νβ)|2 ,

and the quantity

X̃ αβ
j ≡ (N∗W)αj(NW∗)βj ,
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we have the following expression for the appearance oscillation probability:

P̂(νβ → να)

=

∣∣∣∣
[

N∗W exp
(
−iẼL

)
W−1NT

]
αβ

∣∣∣∣
2

=

∣∣∣∣∣
3

∑
j=1

X̃ αβ
j e−iẼj L

∣∣∣∣∣

2

=

∣∣∣∣∣e
−iẼ1 L

3

∑
j=1

X̃ αβ
j e−i∆Ẽj1 L

∣∣∣∣∣

2

=

∣∣∣∣∣
3

∑
j=1

X̃ αβ
j

{
1 −

(
1 − e−i∆Ẽj1 L

)}∣∣∣∣∣

2

=

∣∣∣∣∣[N
∗NT ]αβ − 2i

3

∑
j=2

e−i∆Ẽj1 L/2X̃ αβ
j sin

(
∆Ẽj1L

2

)∣∣∣∣∣

2

=

∣∣∣∣∣[{(1 + η)2}T ]αβ + 2e−i∆Ẽ31 L/2−iπ/2X̃ αβ
3 sin

(
∆Ẽ31L

2

)

+2e−i∆Ẽ21 L/2−iπ/2X̃ αβ
2 sin

(
∆Ẽ21L

2

)∣∣∣∣∣

2

≃ 4

∣∣∣∣∣ηβα + e−i∆Ẽ31 L/2−iπ/2X̃ αβ
3 sin

(
∆Ẽ31L

2

)

+e−i∆Ẽ21 L/2−iπ/2X̃ αβ
2 sin

(
∆Ẽ21L

2

)∣∣∣∣∣

2

. (33)

T violation P(νµ → νe) − P(νe → νµ) is a small quantity, and the difference between
the probability P(νµ → νe) and the modified one P̂(νµ → νe) comes from the factor
(NN†)αα(NN†)ββ = [(1 + η)2]αα[(1 + η)2]ββ ≃ 1 + 2ηαα + 2ηββ, which has a small devi-
ation from 1. Therefore, T violation of the probability P(νµ → νe)− P(νe → νµ) can be
approximated by that of the modified probability P̂(νµ → νe) − P̂(νe → νµ). Hence, T
violation is given by

P(νµ → νe)− P(νe → νµ)

≃ P̂(νµ → νe)− P̂(νe → νµ)

= 4

∣∣∣∣∣ηµe + e−i∆Ẽ31L/2−iπ/2X̃ eµ
3 sin

(
∆Ẽ31L

2

)
+ e−i∆Ẽ21L/2−iπ/2X̃ eµ

2 sin

(
∆Ẽ21L

2

)∣∣∣∣∣

2

−4

∣∣∣∣∣ηeµ + e−i∆Ẽ31L/2−iπ/2X̃ µe
3 sin

(
∆Ẽ31L

2

)
+ e−i∆Ẽ21L/2−iπ/2X̃ µe

2 sin

(
∆Ẽ21L

2

)∣∣∣∣∣

2

= 4 sin

(
∆Ẽ31L

2

)(
ηµeX̃ eµ∗

3 − η∗
µeX̃

eµ
3

)
(ei∆Ẽ31L/2+iπ/2 − e−i∆Ẽ31L/2−iπ/2)

+4 sin

(
∆Ẽ21L

2

)(
ηµeX̃ eµ∗

2 − η∗
µeX̃

eµ
2

)
(ei∆Ẽ21L/2+iπ/2 − e−i∆Ẽ21L/2−iπ/2)

−4 sin

(
∆Ẽ31L

2

)
sin

(
∆Ẽ21L

2

)(
X̃ eµ

3 X̃ eµ∗
2 − X̃ eµ∗

3 X̃ eµ
2

)

×(ei∆Ẽ31L/2+iπ/2−i∆Ẽ21L/2−iπ/2 − e−i∆Ẽ31L/2−iπ/2+i∆Ẽ21L/2+iπ/2)

= −16 Im
[
X̃ eµ

2 X̃ eµ∗
3

]
sin

(
∆Ẽ31L

2

)
sin

(
∆Ẽ21L

2

)
sin

(
∆Ẽ32L

2

)

+8 Im
[
ηµeX̃ eµ∗

3

]
sin
(

∆Ẽ31L
)
+ 8 Im

[
ηµeX̃ eµ∗

2

]
sin
(

∆Ẽ21L
)

(34)
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We observe that the energy dependence of T violation in this case is different from that

with unitarity, since we have extra contributions which are proportional to sin
(

∆Ẽ31L
)

or

sin
(

∆Ẽ21L
)

. As in the case with unitarity, X̃ αβ
j can be expressed in terms of the quantity

X
αβ
j ≡ UαjU

∗
βj in vacuum, Ẽj, and ηαβ. First of all, we note the following relations:

∑
j

(Ẽj)
mX̃ αβ

j

= ∑
j

(N∗W)αj(Ẽj)
m(NW∗)βj

=
[

N∗
{
E + NTAN∗ − An

(
NT N∗ − 1

)}m
NT
]

αβ

=
[

N
{
E + N†AN − An

(
N†N − 1

)}m
N†
]

βα

≡ Yαβ
m+1 for m = 0, 1, 2. (35)

Then, we rewrite Equations (35) as

3

∑
m=1

Vjm X̃ αβ
m = Yαβ

j for j = 1, 2, 3, (36)

where Vjm ≡ (Ẽm)j−1 is the element of the Vandermonde matrix V, as in the case with
unitarity (see Equation (15)). The simultaneous Equation (36) can be solved by inverting V,
and we obtain

X̃ αβ
j =

3

∑
m=1

(V−1)jm Yαβ
m . (37)

The factor Im
[
X̃ eµ

2 X̃ eµ∗
3

]
can be expressed in terms of Ẽj and Y eµ

j :

Im
[
X̃ eµ

2 X̃ eµ∗
3

]

=
−1

∆Ẽ21∆Ẽ32

1

∆Ẽ31∆Ẽ32

× Im
[
{Y eµ

3 − (Ẽ3 + Ẽ1)Y eµ
2 + Ẽ3Ẽ1Y eµ

1 }{Y eµ∗
3 − (Ẽ1 + Ẽ2)Y eµ∗

2 + Ẽ1Ẽ2Y eµ∗
1 }

]

=
1

∆Ẽ21∆Ẽ31∆Ẽ32

(
Ẽ2

1 Im
[
Y eµ

1 Y eµ∗
2

]
− Ẽ1 Im

[
Y eµ

1 Y eµ∗
3

]
+ Im

[
Y eµ

2 Y eµ∗
3

])
. (38)

The quantities Y eµ
j (j = 1, 2, 3) are calculated as follows:

Y eµ
1 = [NN†]µe = [(1 + η)2]µe ≃ 2 ηµe ,

Y eµ
2 =

[
N
{
E + N†A N − An

(
N†N − 1

)}
N†
]

µe

=
[
(1 + η)

{
UEU−1 + (1 + η)A(1 + η)− An

(
(1 + η)2 − 1

)}
(1 + η)

]∣∣∣
µe

≃
[
UEU−1 +A+ {η, UEU−1}+ 2{η,A}− 2Anη

]
µe

≃ ∆E31X
µe
3 + ∆E21X

µe
2 + ∆E31{η, X3}µe + 2(A − An)ηµe ,
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Y eµ
3 =

[
N
{
E + N†A N − An

(
N†N − 1

)}2
N†

]

µe

=

[
(1 + η)

{
UEU−1 + (1 + η)A(1 + η)− An

(
(1 + η)2 − 1

)}2
(1 + η)

]∣∣∣∣
µe

≃
[
UE2U−1 +A2 + {UEU−1,A}

]
µe
+
[
{UEU−1, {η,A}}+ {A, {η,A}}

]
µe

−
[
2An{UEU−1, η}+ 2An{A, η}

]
µe

+
[
{η, UE2U−1}+ {η,A2}+ {η, {UEU−1,A}}

]
µe

≃ ∆E31(∆E31 + A) X
µe
3 + A ∆E21X

µe
2

+∆E31{X3, {η,A}}µe + {A, {η,A}}µe

−2An∆E31{X3, η}µe − 2An{A, η}µe

+∆E2
31{η, X3}µe + {η,A2}µe + ∆E31{η, {X3,A}}µe

= (∆E31 + A)Y eµ
2 − ∆E31∆E21 X

µe
2

−2(A − An)∆E31ηµe − (A + 2An)∆E31{X3, η}µe

+∆E31{X3, {η,A}}µe + ∆E31{η, {X3,A}}µe .

In the current scenario involving unitarity violation, we observe a nonvanishing contri-

bution from Yαβ
1 , necessitating knowledge of the explicit form of the energy eigenvalue

Ẽ1. Given that Y eµ
1 is of order O(ηαβ), to evaluate Equation (38) accurately to first order in

both ∆E21/∆E31 and ηαβ, we must calculate Ẽ1 solely to zeroth order in these parameters,
i.e., assuming ∆E21 → 0 and ηαβ → 0. Under these conditions, the characteristic equation
of the 3 × 3 matrix (31) is defined by

0 = det
[
1 t −

{
E + NTAN∗ − An

(
NT N∗ − 1

)}]

≃ det
[
1 t − diag(0, 0, ∆E31)− U−1 diag(A, 0, 0)U

]

= t
{

t2 − (∆E31 + A) t + A∆E31 cos2 θ13

}

= t (t − λ+)(t − λ−) ,

where λ± are the roots of the quadratic equation and are given by

λ± ≡ ∆E31 + A ± ∆Ẽ31

2

∆Ẽ31 ≡
√
(∆E31 cos 2θ13 − A)2 + (∆E31 sin 2θ13)2 .

From this, we obtain the energy eigenvalues Ẽj (j = 1, 2, 3) to the leading order in
∆E21/∆E31 and ηαβ:




Ẽ1

Ẽ2

Ẽ3


 ≃




λ−
0

λ+




The roots λ− = Ẽ1 and λ+ = Ẽ3 satisfy the quadratic equation

λ2
± − (∆E31 + A)λ± + A∆E31 cos2 θ13 = 0 .
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Hence, the first two terms on the right-hand side of Equation (38) can be rewritten as

Ẽ2
1 Im

[
Y eµ

1 Y eµ∗
2

]
− Ẽ1 Im

[
Y eµ

1 Y eµ∗
3

]

= Im
[
Y eµ

1

{
Ẽ2

1Y
eµ∗
2 − Ẽ1Y eµ∗

3

}]

≃ Im
[
Y eµ

1

{
∆E31X

µe∗
3 Ẽ2

1 − ∆E31(∆E31 + A) X
µe∗
3 Ẽ1

}]

= Im
[
Y eµ

1 A(∆E31)
2X

µe∗
3 cos2 θ13

]

= 2 A (∆E31)
2 cos2 θ13 Im

[
ηµeX

µe∗
3

]
,

whereas the third term on the right-hand side of Equation (38) can be written as

Im
[
Y eµ

2 Y eµ∗
3

]

= − Im
[
Y eµ∗

2

{
(∆E31 + A)Y eµ

2 − ∆E31∆E21 X
µe
2

−2(A − An)∆E31ηµe − (A + 2An)∆E31{X3, η}µe

+∆E31{X3, {η,A}}µe + ∆E31{η, {X3,A}}µe

}]

= ∆E31 Im
[

X
µe∗
3

{
∆E31∆E21X

µe
2

+2(A − An)∆E31ηµe + (A + 2An)∆E31{X3, η}µe

−∆E31{X3, {η,A}}µe − ∆E31{η, {X3,A}}µe

}]
.

Thus, we obtain the expression for the factor Im
[
X̃ eµ

2 X̃ eµ∗
3

]
:

Im
[
X̃ eµ

2 X̃ eµ∗
3

]

=
1

∆Ẽ21∆Ẽ31∆Ẽ32

(
Ẽ2

1 Im
[
Y eµ

1 Y eµ∗
2

]
− Ẽ1 Im

[
Y eµ

1 Y eµ∗
3

]
+ Im

[
Y eµ

2 Y eµ∗
3

])

≃ ∆E31

∆Ẽ21∆Ẽ31∆Ẽ32

Im
[

X
µe∗
3

{
∆E21X

µe
2 + 4 A ηµe + 2An

(
{η, X3}µe − ηµe

)}]
(39)

To complete the calculation of Equation (34), we need to estimate the two quantities:

Im
[
ηµeX̃ eµ∗

3

]

=
1

∆Ẽ31∆Ẽ32

Im
[
ηµe

{
Ẽ1Ẽ2Y eµ∗

1 − (Ẽ1 + Ẽ2)Y eµ∗
2 + Y eµ∗

3

}]

≃ 1

∆Ẽ31∆Ẽ32

Im
[
ηµe

(
−Ẽ1Y eµ∗

2 + Y eµ∗
3

)]

≃ 1

∆Ẽ31λ+
Im
[
ηµe

(
−λ−∆E31X

µe∗
3 + ∆E31(∆E31 + A)X

µe∗
3

)]

=
1

∆Ẽ31λ+
λ+ ∆E31 Im

[
ηµeX

µe∗
3

]

=
∆E31

∆Ẽ31

Im
[
ηµeX

µe∗
3

]
, (40)
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Im
[
ηµeX̃ eµ∗

2

]

=
−1

∆Ẽ21∆Ẽ32

Im
[
ηµe

{
Ẽ3Ẽ1Y eµ∗

1 − (Ẽ3 + Ẽ1)Y eµ∗
2 + Y eµ∗

3

}]

≃ −1

∆Ẽ21∆Ẽ32

Im
[
−(Ẽ3 + Ẽ1)Y eµ∗

2 + Y eµ∗
3

]

≃ −1

∆Ẽ21∆Ẽ32

Im
[
−(Ẽ3 + Ẽ1)∆E31X

µe∗
3 + ∆E31(∆E31 + A)X

µe∗
3

]

≃ 0 , (41)

where terms of order O((∆E21/∆E31)
2), O((ϵαβ)

2), and O(ϵαβ∆E21/∆E31) have been ne-
glected in Equations (39)–(41). Putting Equations (39)–(41) together, the final expression for
T violation is given by

P(νµ → νe)− P(νe → νµ)

≃ 16
∆E31

A ∆Ẽ31 cos2 θ13

sin

(
∆Ẽ31L

2

)
sin

(
∆Ẽ21L

2

)
sin

(
∆Ẽ32L

2

)

× Im
[

X
µe∗
3

{
∆E21X

µe
2 + 4 A ηµe + 2An

(
{η, X3}µe − ηµe

)}]

+8
∆E31

∆Ẽ31

sin
(

∆Ẽ31L
)

Im
[
ηµeX

µe∗
3

]
(42)

Due to the additional contribution proportional to sin(∆Ẽ31L), the energy dependence of
Equation (42) in the scenario with unitarity violation differs from that in the scenarios with
unitarity, such as the standard case (23) and the nonstandard interaction case (42). Therefore,
if the contribution from unitarity violation is significant enough and the experimental
sensitivity is sufficiently high, it may be possible to distinguish the unitarity violation
scenario from both the standard and nonstandard interaction scenarios by examining the
energy spectrum in T violation.

4. Conclusions

In this paper, we have derived the analytical expression for T violation in neutrino
oscillations under three different scenarios: the standard three-flavor mixing framework,
a scenario involving flavor-dependent nonstandard interactions, and a case with unitarity
violation. In scenarios preserving unitarity, the T-violating component of the oscillation

probability is proportional to sin(∆Ẽ31L
2 ) sin(∆Ẽ21L

2 ) sin(∆Ẽ32L
2 ). However, in the case with

unitarity violation, there is an additional contribution proportional to sin(∆Ẽ31L). Should
future long-baseline experiments, such as µTRISTAN or other types of neutrino factories,
achieve high sensitivity to T violation across a broad energy spectrum, it may become
feasible to specifically probe unitarity in the νµ ↔ νe channel.

Moreover, we demonstrated that the coefficient of the term sin(∆Ẽ31L
2 ) sin(∆Ẽ21L

2 )

sin(∆Ẽ32L
2 )(∆E31)

2(∆Ẽ31∆Ẽ32∆Ẽ21)
−1 varies depending on whether neutrino propagation

follows the standard scheme or involves nonstandard interactions. In the standard scenario,
this coefficient is proportional to ∆E21 = ∆m2

21/2E. However, in the case with nonstandard
interactions, there is an additional contribution that is energy-independent. Thus, it may
be possible to observe the effects of nonstandard interactions by examining the energy
dependence of T violation.

The purpose of this paper is to derive the analytical expression of T violation, and we
did not quantitatively discuss the sensitivity of future experiments. The potential for T
violation in neutrino oscillations deserves further study.
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