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Abstract: The Standard Model (SM) Higgs potential is likely to be metastable, in which
case Higgs Inflation requires an extension of the SM to sufficiently stabilise the Higgs potential.
Here we consider stabilisation by adding nQ ≤ 3 Vector-Like Quarks (VLQs) of mass mQ. We
consider isosinglet T vector quarks transforming under the SM gauge group as (3, 1, 2/3) and
B vector quarks transforming as (3, 1, −1/3). Requiring stability of the finite temperature
effective potential after instant reheating, and assuming that the t-quark mass mt equals the
mean value of its experimental range, we find that the upper bounds on mQ for T quarks are
5.8 TeV (for nQ = 2) and 55 TeV (for nQ = 3). The corresponding absolute stability upper
bounds are 4.4 TeV and 29 TeV. For nQ = 1 there is stability only for mt at its -2-σ value,
in which case mQ ≤ 1.6 TeV for one T quark. The upper bounds are generally smaller for
B vector quarks, with finite temperature stability for mQ less than 2.8 TeV (for nQ = 2),
18 TeV (for nQ = 3) and 1.0 TeV (for nQ = 1). The upper bounds on mQ are sensitive
to the t-quark mass, becoming smaller as mt increases. The inflation predictions depend
upon the conformal frame in which the model is renormalised. For renormalisation in the
Einstein frame (Prescription I) the predictions are almost indistinguishable from the classical
values: ns = 0.966 and r = 3.3 × 10−3. In this case the stability upper bounds on mQ apply.
Renormalisation in the Jordan frame (Prescription II) predicts larger values of ns and r, with
ns generally in the range 0.980 to 0.990 and r of the order of 0.01. The predicted range of ns

is consistent with the CMB range obtained in Hubble tension solutions which modify the
sound horizon at decoupling, whilst the predicted values of r will be easily observable by
forthcoming CMB experiments. The observational upper bound on r generally imposes a
stronger constraint on mQ in Prescription II than the requirement of stability, with the T

quark upper bound equal to 2.4 TeV for nQ = 2 and 13 TeV for nQ = 3, assuming mt equals
its mean value. nQ = 1 is generally ruled out by the large value of r. The mQ upper bounds
rapidly decrease with decreasing r. We conclude that VLQ-stabilised Higgs Inflation with
Prescription II renormalisation favours 1-10 TeV vector-like quarks that will be accessible to
future colliders, and predicts a tensor-to-scalar ratio that will be observable in forthcoming
CMB experiments and values of ns that favour an early-time solution to the Hubble tension.
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1 Introduction

The electroweak vacuum is likely to be metastable due to quantum corrections [1–7].1 In
the case of the SM this does not present any cosmological or phenomenological problem,
as the Universe can naturally evolve into the electroweak vacuum once finite temperature
evolution is taken into account [8, 9]. However, in the case of Higgs Inflation [10, 11], it is
essential that the Higgs potential is sufficiently stable to support inflation, which requires that
the instability scale is greater than the Higgs field during inflation, of the order of MP l/

√
ξ,

where ξ is the non-minimal coupling. To achieve this, it is likely that additional particles
must be added to the SM2 Here we consider the addition of vector-like fermions, focusing

1In [7] it was found that, using 2023 PDG inputs, there is only a small region of the 4-σ ellipse in mt and
αs(Mz) for which stability is possible, and using correlated CMS inputs, which have larger errors but take
into account correlations between the measurements, there is only a very small region of the 2-σ ellipse for
which stability is possible. In [6] it was also found that only a small region of the 2-σ ellipse is still compatible
with stability. A factor of 2 improvement in the errors will exclude stability to 5-σ [7].

2It is possible to have Higgs Inflation in the unmodified SM if the SM instability scale is larger than the
Higgs field during inflation, which requires a low value for mt. In [12] (see also [13]) it is proposed that this
is possible if the PDG pole mass from the tt production cross-section is considered rather than the direct
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on isosinglet vector-like quarks (VLQs) in the (3, 1, YQ) representation. Vector-like fermions
are anomaly-free and allow a mass term. We will specifically focus on vector-like quarks in
the same repesentation as SM quarks: T vector-like quarks transforming as (3, 1, 2/3) and
B vector-like quarks transforming as (3, 1, −1/3). These can mix with the SM quarks and
so decay, as is necessary to avoid cosmologically excluded stable coloured particles [18]. It
is known that vector-like fermions can stabilise the Higgs potential through modification of
the renormalisation group (RG) running of the gauge couplings [19–22]. TeV-scale fermions
have also been motivated by vacuum selection considerations in [6] and [23].

In this paper we will determine the upper bounds on the VLQ mass mQ from the
requirement of sufficient Higgs stability for inflation and the predictions of the model for
inflation observables. An important distinction should be made between absolute stability
of the zero temperature Higgs potential and stability of the finite temperature effective
potential. For successful Higgs Inflation, it is only necessary that the Universe evolve into
the electroweak vacuum following inflation and reheating. We will show that the upper
bounds on mQ from the finite temperature effective potential are weaker than those from
absolute stability of the Higgs potential.

In the following we will consider nQ VLQs of type T or B. We will run the 3-loop SM RG
equations [2], modified to include the Higgs propagator suppression due to the non-minimal
coupling [24–26], together with the leading order 2-loop corrections due to the VLQs [19].

The upper bounds on mQ from stability are independent of the renormalisation frame
of the quantum corrections to the Higgs potential. However, the conformal frame in which
the model is renormalised is important when calculating the inflation observables: the scalar
spectral index ns and tensor-to-scalar ratio r. Two cases are commonly considered [27, 28];
renormalisation in the Einstein frame (Prescription I) and renormalisation in the Jordan
frame (Prescription II). These frames correspond to different UV completions of the theory
and should therefore be considered as different Higgs Inflation models [29]. We will show
that whereas Prescription I predicts essentially the same values as classical Higgs Inflation,
Prescription II predicts values of ns and r that are considerably larger than classical Higgs
Inflation. This allows Higgs Inflation to be compatible with the CMB spectral index of Early
Dark Energy (EDE) solutions of the Hubble tension, which typically require larger values
of ns to fit the observed CMB than ΛCDM [30–32]. In addition, the predicted primordial
gravitational waves are close to the present observational upper bound and will be easily
observable by forthcoming CMB experiments [33].

The paper is organised as follows. In section 2 we review the Higgs Inflation model and
VLQ stabilisation. In section 3 discuss the quantum corrections to the Higgs potential. In
section 4 we discuss the finite temperature effective potential. In section 5 we present our
results and in section 6 we discuss our conclusions.

measurement value used here. While the direct measurement value has smaller errors, there is a theoretical
uncertainty between the Monte Carlo generator t-quark mass, which is extracted from direct measurements of
the kinematics of tt events, and the pole mass. This is due to non-perturbative effects that are difficult to
quantify [14–16]. For a discussion of the t-quark mass, uncertainties in its determination and its implications
for electroweak vacuum stability, see [17].
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2 Higgs inflation with vector-like quarks

We first review the essential aspects of Higgs Inflation and its modification via VLQs. The
action of the model in the Jordan frame is

S =
∫

d4x
√

−g

[(
M2

P l + ξϕ2
) R

2 − 1
2∂µϕ∂µϕ − V (ϕ) + L̂

]
, (2.1)

where L̂ is the Lagrangian of the SM and VLQ fields excluding the Higgs kinetic and potential
terms. To analyse inflation and the post-inflation era, we transform the action to the Einstein
frame via a conformal transformation g̃µν = Ω2gµν , where

Ω2 =
(

1 + ξϕ2

M2
P l

)
. (2.2)

The Einstein frame action is then

S =
∫

d4x
√

−g̃

[
M2

P l

2 R̃ − 1
2Ω2

(
1 + 6ξ2ϕ2

Ω2M2
P l

)
∂µϕ∂µϕ − VE(ϕ) + L̂

Ω4

]
, (2.3)

where VE(ϕ) = V (ϕ)/Ω4 is the Higgs potential in the Einstein frame.
At field values ϕ > ϕc = MP l/

√
ξ ∼ 1016 GeV, the conformal factor Ω strongly deviates

from 1 and the classical Einstein frame potential has a plateau suitable for inflation. To
obtain the predictions for the model, we will numerically solve for the end of inflation, σend,
defined as when either |η(σ)| > 1 or ϵ(σ) > 1 first occurs as σ decreases. Here σ is the
canonically normalised inflaton, which is related to ϕ by

dσ

dϕ
= 1

Ω

(
1 + 6ξ2ϕ2

Ω2M2
P l

)1/2

. (2.4)

We then numerically integrate for the number of e-foldings of inflation as a function of σ

N = − 1
M2

P l

∫ σend

σ

VE(σ)
V ′

E(σ)dσ (2.5)

to determine σ and so ϕ at the pivot scale N∗. The scalar spectral index, tensor-to-scalar
ratio and curvature perturbation power spectrum are calculated in the standard way

ns = 1 + 2η − 6ϵ , (2.6)
r = 16ϵ , (2.7)

and
Pζ = VE(σ)

24π2ϵM4
P l

, (2.8)

where the slow-roll parameters are η = M2
P lV

′′
E (σ)/VE(σ) and ϵ = (M2

P l/2)(V ′
E(σ)/VE(σ))2,

where primes denote derivatives with respect to σ.
Once quantum corrections are included, the SM potential becomes negative once ϕ >

∼ Λ
and Higgs Inflation is no longer possible if Λ < ϕc. In the next section we will show that
this is true over the whole 2-σ range of mt. The introduction of VLQs modifies the RG
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evolution primarily by modifying the running of the strong gauge coupling g3, which in turn
modifies the running of the t-quark Yukawa yt and so the running of λh. This can be seen by
considering the contribution to the 1-loop RG equations due purely to yt and g3 [3, 19]

µ
∂λh

∂µ
= −6y4

t + . . . (2.9)

µ
∂yt

∂µ
= −8ytg

3
3 + 9

2y3
t + . . . (2.10)

µ
∂g3
∂µ

= −7g3
3 + 2

3nQg3
3 + . . . (2.11)

Increasing nQ reduces the rate of decrease of g3 with µ and so increases g3 at a given µ,
which reduces the rate of increase of yt and so reduces yt for a given µ. This in turn reduces
the rate of decrease of λh with µ, decreasing the instability of the Higgs potential.

3 Quantum corrections to the Higgs potential

3.1 The metastable Standard Model Higgs potential

To demonstrate the instability of the SM Higgs potential, we first compute the SM Higgs
potential using the RG equations and initial MS values of the SM couplings that we will later
use for VLQ-stabilised Higgs Inflation. We run the 3-loop SM RG equations given in [2] and
use the relation between the t-quark mass and the MS t-quark coupling at µ = mt [2],

yt = 0.93690 + 0.00556 (mt − 173.34 GeV) . (3.1)

For the range of t-quark mass, we use the 2022 PDG release direct measurement value,
mt = 172.69 ± 0.30 GeV [34]. Since metastability is less sensitive to the errors in the other
SM inputs (although there is a significant dependence on the strong gauge coupling), in
this analysis we will use the mean values for those quantities given in [2]: g3 = 1.1666,
g = 0.64779, g′ = 0.35830 and λh = 0.12604.

In figure 1 we show the Higgs self-coupling λh(µ), calculated at the RG scale µ = ϕ,
for the mean, -1-σ and -2-σ values of mt, corresponding to progressively weaker instability.
In all cases the potential runs to negative values.

In figure 2 we show the Higgs potential calculated using the 1-loop Coleman-Weinberg
(CW) correction at µ = ϕ. In the figure we show log10|V (ϕ)| multiplied by the sign of V (ϕ),
which is useful for visualising the negative gap in the Higgs potential. For all mt within the
2-σ range the potential is metastable, with the instability scale given by Λ = 2.2 × 1011 GeV,
7.9 × 1011 GeV and 3.0 × 1012 GeV for the mean, -1-σ and -2-σ values of mt, respectively. The
potential eventually becomes positive again, at ϕ > ϕupper = 1029 GeV for the mean value
of mt, where ϕupper is the upper bound of the negative gap in the potential. Therefore it is
likely that the SM Higgs potential is metastable and unable to support Higgs Inflation.

3.2 Quantum corrections in VLQ-stabilised Higgs inflation

We again use the 3-loop MS RG equations for the SM given in [2], now modified to take into
account the Higgs propagator suppression due to the kinetic term mixing of the physical
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Figure 1. SM Higgs coupling λh(µ) at µ = ϕ for the mean, -1-σ and -2-σ values of mt.
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Figure 2. SM Higgs potential calculated at µ = ϕ for the mean, -1-σ and -2-σ values of mt.
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Figure 3. Upper bound on mQ as a function of mt for T vector quarks with nQ = 3, from absolute
stability and from stability of the finite temperature effective potential.

Higgs boson with the graviton in the presence of a background ϕ, which suppresses the
physical Higgs boson propagator by a factor s(ϕ) [24, 25],

s(ϕ) =
1 + ξϕ2

M2
P

1 + (6ξ + 1) ξϕ2

M2
P

. (3.2)

This results in a suppression of the contribution of the physical Higgs to the RG equations,
but does not affect the Goldstone contribution. We have included the s(t) factors at 1-loop
given in [25, 26] and at 2-loop given in [24]. In practice, the propagator suppression has a
small effect on the RG evolution of the couplings and Higgs potential. Finally, we supplement
the 3-loop SM RG equations with the 1-loop and leading 2-loop VLQ corrections given in [19],
which we summarise in appendix A. The T and B vector quarks will also have unknown
Yukawa couplings to the SM quarks and Higgs boson. We will assume that these couplings
are small enough to not significantly modify the Higgs potential.

3.3 Renormalisation prescription

The form of the quantum correction to the potential during inflation depends upon the
conformal frame in which the model is renormalised. Two frames are commonly consid-
ered, known as Prescription I, where the model is renormalised in the Einstein frame, and
Prescription II, where the model is renormalised in the Jordan frame and the complete
quantum corrected Higgs potential is transformed to the Einstein frame [27, 28]. These are in
effect two completely different versions of Higgs Inflation, which correspond to different UV
completions of the model [29]. In the case of Prescription II, we will run the SM RG equations
(including the Higgs propagator suppression) up to µ = ϕ. In the case of Prescription I, the
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Figure 4. The T = 0 Prescription II Higgs potential as a function of mQ, for the case of T vector
quarks with nQ = 3 and mean mt. The negative potential gap progressively closes as mQ is reduced.
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Figure 5. Quantum corrected T = 0 potential and finite temperature effective potential, for T vector
quarks with nQ = 3, mQ = 30 GeV and mean mt.
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Figure 6. Prescription II values of r and ns as mQ varies from 1 TeV to 55 TeV, for the case of T

quarks witn nQ = 3 and mean mt. The observational upper bound on r imposes an upper bound
on mQ of around 13 TeV. The range of values of ns is 0.984 to 0.990 as mQ increases from 1 TeV to
13 TeV, with the smallest value of r being 0.011.
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Figure 7. Prescription II values of r and ns as mQ varies from 1 TeV to 18 TeV, for the case of B

quarks with nQ = 3 and mean mt. The observational upper bound on r imposes an upper bound
on mQ of around 10 TeV. The range of values of ns is 0.979 to 0.989 as mQ increases from 1 TeV to
10 TeV. with the smallest value of r being 0.0079.
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Figure 8. Upper bound on mQ as a function of mt for T vector quarks with nQ = 2, from absolute
stability and from stability of the finite temperature effective potential.
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Figure 9. Prescription II values of r and ns as mQ varies from 1 TeV to 5 TeV, for the case of T

quarks with nQ = 2 and mean mt. The observational upper bound on r imposes an upper bound
on mQ of around 2.4 TeV. The range of values of ns is 0.988 to 0.990 as mQ increases from 1 TeV to
2.4 TeV, with the smallest value of r being 0.017.
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Figure 10. Prescription II values of r and ns as mQ varies from 1 TeV to 2.8 TeV, for the case of B

quarks with nQ = 2 and mean mt. The observational upper bound on r imposes an upper bound on
mQ of around 1.75 TeV. The range of values of ns is 0.987 to 0.990 as mQ increases from 1 TeV to
1.75 TeV. with the smallest value of r being 0.015.

SM RG equations become invalid once the conformal factor significantly deviates from 1 and
µ = ϕ >

∼ ϕc. We will therefore run to RG equations up to µc = 0.1ϕc and then use the 1-loop
CW correction to compute the potential at ϕ > ϕc. Since the quantum corrections become
rapidly independent of ϕ at ϕ > ϕc in Prescription I, this choice of renormalisation scale is
large enough to prevent large logarithms in the 1-loop CW potential.

3.4 Perturbative unitarity violation

Higgs scalar scattering in the cosmological background during inflation is expected to violate
unitarity at energies E ≈ ϕ, corresponding to the mass of the W and Z bosons during inflation,
where ϕ is the background Higgs field during inflation [35, 36]. If perturbative unitarity
indicates true unitarity violation, then a change in the theory is necessary, characterised by
the energy scale ϕ. In this case it is possible that new physics could modify the effective
potential at the scale ϕ.3 Alternatively, perturbative unitarity violation in Higgs scattering
may instead indicate a breakdown of perturbation theory, with unitarity conserved non-
perturbatively [39–42]. In this case no new physics is necessary to conserve unitarity, and
since the effect of the non-minimal coupling on the RG equations and the effective potential
is taken into account by the Higgs propagator suppression, there is no reason for the effective
potential to be modified. In the following we assume that any corrections associated with
unitarity conservation are small enough to be neglected.

3In [37, 38] it is proposed that the new physics associated with the UV completion could introduce threshold
effects that modify the SM couplings at the scale µ ∼ MP l/ξ, This could alter the Higgs potential and allow
for inflation even if the unmodified SM Higgs potential is unstable.
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3.5 The 1-loop Coleman-Weinberg correction

To calculate the quantum corrected Higgs potential, we run the couplings up to the renor-
malisation scale µ and then add the 1-loop CW correction. In general, the MS scheme SM
1-loop CW potential is given by [4]

∆V1−loop =
∑

i

CiM
4
i

64π2

[
ln
(

M2
i

µ2

)
− Ki

]
, (3.3)

where Mi the mass in the renormalisation frame and (Ci, Ki) = (3, 3/2) for the Goldstone
bosons, (6, 5/6) for the W bosons, (3, 5/6) for the Z boson, and (-12, 3/2) for the t-quark.
In these we have summed over the 3 Goldstone bosons, 2 W bosons and all t-quark colours.
We do not include the physical SM Higgs boson as its contribution is suppressed by the
non-minimal coupling propagator suppression. The particle masses are Mi = MJ, i in the
Jordan frame and MJ, i/Ω in the Einstein frame. The terms in the 1-loop CW potential in
the chosen renormalisation frame therefore have the form

∆V1−loop ∼ C M4
J

16π2Ω4α

(
ln
(

M2
J (ϕ)

µ2Ω2α

)
− K

)
, (3.4)

where α = 1 for Prescription I and α = 0 for Prescription II. Once transformed the Einstein
frame, the final 1-loop potential is of the form

VE(ϕ) = V (ϕ)
Ω4 +

∑
i

Ci M4
J, i

16π2Ω4

[
ln
(

M2
J, i(ϕ)

µ2
cΩ2α

)
− Ki

]
. (3.5)

4 The finite temperature effective potential

The condition for successful Higgs Inflation is that the Higgs expectation value can evolve
into the electroweak vacuum. This does not require absolute stability but only that the
minimum of the finite temperature effective potential (FTEP) after inflation, which gives the
thermal equilibrium expectation value of the Higgs field, is at ϕ = 0. We refer to this as finite
temperature stability. Due to the large couplings of the Higgs boson to the SM fields, after
inflation the Higgs field oscillations rapidly preheat and decay to SM fields [43–45]. We will
therefore assume that reheating is instantaneous and compute the FTEP after inflation to
see if it is stable. We calculate the FTEP in the Einstein frame, which is the frame in which
inflation is analysed, so the mass terms entering the FTEP are calculated in the Einstein
frame. These are generally related to the conventional (i.e. Jordan frame) SM masses MJ, i

by Mi = MJ, i/Ω. In practice, the Einstein frame is essentially the same as the Jordan frame
when calculating the FTEP, since Ω ≈ 1 after inflation and reheating.

The FTEP is given by VE(ϕ, T ) = VE(ϕ) + ∆V (ϕ, T ), where

∆V (ϕ, T ) = T 4

2π2

∑
i

nB, i IB

[
M2

i (ϕ)
T 2

]
− T 4

2π2

∑
i

nF, i IF

[
M2

i (ϕ)
T 2

]
(4.1)

where the integrals IB and IF are given by

IB

[
M2

i (ϕ)
T 2

]
=
∫ ∞

0
dx x2 ln

1 − exp

−

√
x2 + M2

i (ϕ)
T 2

 (4.2)
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mt(GeV) mQ ( Abs) mQ ( Finite T)
173.29 (+2-σ) 6.1 TeV 11 TeV
172.99 (+1-σ) 12 TeV 25 TeV
172.69 (mean) 29 TeV 55 TeV
172.39 (−1-σ) 88 TeV 175 TeV
172.09 (−2-σ) 380 TeV 680 TeV

Table 1. mQ upper bound as a function of mt for T vector quarks with nQ = 3, from absolute and
finite temperature stability.

and

IF

[
M2

i (ϕ)
T 2

]
=
∫ ∞

0
dx x2 ln

1 + exp

−

√
x2 + M2

i (ϕ)
T 2

 , (4.3)

where nB, i and nF, i are the number of degrees of freedom of the bosons and fermions. In
the figures we show VE(ϕ, T ) − ∆V (0, T ) so that the finite temperature contribution equals
zero at ϕ = 0.

5 Results

The potential during inflation depends upon the value of the non-minimal coupling. This is
determined by requiring that the curvature perturbation power spectrum at the pivot scale
is equal to its observed value. The number of e-foldings at the pivot scale is discussed in
appendix B. We find that in general the potential at the end of inflation is Vend ≈ 1064 GeV4,
where Vend = VE(σend) is the Einstein frame potential at the end of inflation, and so N∗ ≈ 57
for the case of instant reheating.

The present experimental lower bound on the mass of vector quarks is around 1 TeV, with
the exact lower bound depending on the assumed decay mode of the vector quark [46–49].
We will therefore impose a lower bound of 1 TeV on mQ in our results.

5.1 nQ = 3

For the mean t-quark mass and three T vector quarks, we find that the absolute stability
bound is mQ ≤ 29 TeV, and the finite temperature stability bound is mQ ≤ 55 TeV. For B

vector quarks, the corresponding bounds are mQ ≤ 14 TeV and mQ ≤ 18 TeV respectively.
In table 1 and figure 3 we show how the stability bounds vary with mt over the 2-σ

observed range for three T quarks. The upper bounds on mQ are sensitive to mt, becoming
smaller as mt increases and the SM instability strengthens.

In figure 4 we show the effect of decreasing mQ on the T = 0 potential and its stability
for Prescription II with three T vector quarks. For the case without VLQs, the upper bound
on the gap is around 1029 GeV and the lower bound is around 1011 GeV. Once the vector
quarks are introduced, the lower bound of the gap increases and the upper bound (more
rapidly) decreases as mQ decreases, until the gap disappears and the potential becomes
absolutely stable at mQ = 29 GeV.
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mQ ns r ξ(mt)/103 Vend ( GeV4)
55 TeV 0.9744 0.101 0.45 1.31 × 1064

29 TeV 0.9833 6.99 × 10−2 0.58 1.89 × 1064

20 TeV 0.9872 5.25 × 10−2 0.70 1.86 × 1064

15 TeV 0.9890 4.21 × 10−2 0.84 1.63 × 1064

13 TeV 0.9895 3.80 × 10−2 0.91 1.53 × 1064

12 TeV 0.9897 3.59 × 10−2 0.93 1.55 × 1064

10 TeV 0.9898 3.17 × 10−2 1.05 1.37 × 1063

5 TeV 0.9889 2.11 × 10−2 1.45 1.05 × 1063

3 TeV 0.9874 1.65 × 10−2 1.84 8.31 × 1063

1 TeV 0.9836 1.12 × 10−2 2.70 6.07 × 1063

Table 2. Prescription II inflation observables and parameters as a function of mQ, for T vector
quarks with nQ = 3 and mean mt.

mQ ns r ξ(mt)/103 Vend ( GeV4)
18 TeV 0.9739 9.20 × 10−2 0.35 1.15 × 1064

14 TeV 0.9814 6.94 × 10−2 0.42 1.70 × 1064

10 TeV 0.9882 4.06 × 10−2 0.60 1.60 × 1064

9 TeV 0.9890 3.48 × 10−2 0.68 1.44 × 1064

8 TeV 0.9892 2.97 × 10−2 0.75 1.36 × 1064

6 TeV 0.9885 2.12 × 10−2 1.02 1.00 × 1064

3 TeV 0.9844 1.23 × 10−2 1.65 6.61 × 1063

1 TeV 0.9792 7.87 × 10−3 2.70 4.56 × 1063

Table 3. Prescription II inflation observables and parameters as a function of mQ, for B vector
quarks with nQ = 3 and mean mt.

mt(GeV) ns r ξ(mt)/103 Vend ( GeV4)
173.29 (+2-σ) 0.9896 3.24 × 10−2 1.07 1.43 × 1064 GeV
172.99 (+1-σ) 0.9890 2.21 × 10−2 1.46 1.04 × 1064 GeV
172.69 (Mean) 0.9873 1.65 × 10−2 1.84 8.31 × 1063 GeV
172.39 (−1-σ) 0.9854 1.34 × 10−2 2.21 6.98 × 1063 GeV
172.09 (−2-σ) 0.9839 1.12 × 10−2 2.57 6.08 × 1063 GeV

Table 4. Prescription II inflation observables and parameters as a function of mt, for T vector quarks
with nQ = 3 and mQ = 3 TeV.
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mt(GeV) mQ ( Abs) mQ ( Finite T)
173.29 (+2-σ) 1.0 TeV 1.3 TeV
172.99 (+1-σ) 2.0 TeV 2.3 TeV
172.69 (mean) 4.4 TeV 5.8 TeV
172.39 (−1-σ) 12 TeV 15 TeV
172.09 (−2-σ) 45 TeV 60 TeV

Table 5. mQ upper bound as a function of mt, for T vector quarks with nQ = 2, from absolute and
finite temperature stability.

mQ ns r ξ(mt)/103 Vend ( GeV4)
5.0 TeV 0.9763 9.14 × 10−2 0.40 1.46 × 1064

4.0 TeV 0.9821 7.25 × 10−2 0.46 1.84 × 1064

3.0 TeV 0.9876 5.04 × 10−2 0.59 1.76 × 1064

2.4 TeV 0.9895 3.84 × 10−2 0.72 1.55 × 1064

2.0 TeV 0.9900 3.10 × 10−2 0.85 1.33 × 1064

1.5 TeV 0.9895 2.34 × 10−2 1.06 1.10 × 1064

1.0 TeV 0.9877 1.68 × 10−2 1.40 8.54 × 1063

Table 6. Prescription II inflation observables and parameters as a function of mQ, for T vector
quarks with nQ = 2 and mean mt.

mQ ns r ξ(mt)/103 Vend ( GeV4)
2.8 TeV 0.9734 9.76 × 10−2 0.29 1.28 × 1064

2.6 TeV 0.9765 8.93 × 10−2 0.31 1.61 × 1064

2.0 TeV 0.9877 5.06 × 10−2 0.45 1.84 × 1064

1.75 TeV 0.9899 3.78 × 10−2 0.56 1.55 × 1064

1.5 TeV 0.9903 2.77 × 10−2 0.85 1.29 × 1064

1.25 TeV 0.9893 2.05 × 10−2 0.71 1.26 × 1064

1.0 TeV 0.9874 1.55 × 10−2 1.15 7.91 × 1063

Table 7. Prescription II inflation observables and parameters as a function of mQ, for B vector
quarks with nQ = 2 and mean mt.
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In figure 5 we show the T = 0 and FTEP potential for mQ = 30 TeV and three T vector
quarks, showing that the T = 0 potential is metastable, with a deep minimum at ϕ ̸= 0,
whereas the FTEP has a minimum only at ϕ = 0. In this case ϕ will cool into the electroweak
vacuum after inflation, even though the SM potential is metastable.

The stability upper bounds apply to both Prescription I and II, as ϕupper < ϕc when
stability breaks down and so the Jordan and Einstein frames are equivalent as far as stability
of the potential is concerned.

We next consider how the inflation predictions vary as a function of mQ. For Prescription
I, we find that the inflation predictions are almost exactly equal to the classical Higgs Inflation
predictions, ns = 0.966 and r = 3.2 × 10−3, for all mQ. This is due to the suppression of the
Einstein frame mass terms by Ω, which means that at ϕ > ϕc the 1-loop CW corrections
quickly becomes independent of ϕ.

For Prescription II, since the quantum corrections are calculated in the Jordan frame,
the quantum corrections to the potential are not cut off at ϕ > ϕc. In figure 6 we show r

versus ns for three T vector quarks for mQ in the range 1 TeV to 55 TeV and in table 2 we
show the predictions of the model for ns, r, ξ(mt) and Vend, with mt equal to its mean value.

We find from figure 6 that the upper bound on mQ from the observational 2-σ upper
bound on r is stronger than the bound from stability of the potential. Imposing the 2-σ
upper bound r < 0.037 [50] gives an upper bound on mQ of 13 TeV for three T quarks,
compared to 55 TeV from finite temperature stability.

For 1 TeV ≤ mQ ≤ 13 TeV the range of r is about 0.01 to 0.04. Therefore the predicted
range of values for r are not far below the present observational limits and will be easily
observable by the next generation of CMB polarisation experiments, which will be able to
observe r down to O(10−3) [33].

The values of ns for 1 TeV ≤ mQ ≤ 13 TeV are in the range 0.984 to 0.990. These values
are large compared to ΛCDM CMB range from Planck, ns = 0.965 ± 0.004 [51]. However,
ΛCDM is now challenged by the H0 tension between the ΛCDM CMB value of H0 and the
late-time supernova distance measurement of H0. In the case of early-time solutions of the
Hubble tension, where the tension is resolved by modifying the sound horizon at decoupling
via an additional energy density component, in particular Early Dark Energy (EDE), the
value of ns from CMB is larger than the ΛCDM value [30, 31]. This can be understood as
due to the additional scale dependent suppression of temperature fluctuations at smaller
length scales due to the additional energy density component, which requires a larger ns to
compensate. For the case of a typical EDE model based on an axion-like potential, the best-fit
values are in the range 0.981-0.996, depending on the data set [32]. Therefore Prescription II
Higgs Inflation with VLQ stabilisation can provide a minimal model for inflation based on TeV
scale physics that is also naturally compatible with early-time solutions to the H0 tension.

In figure 7 and table 3 we show the corresponding predictions for three B quarks. In this
case the observational bound on r imposes an upper bound on mQ of 10 TeV, as compared
to 18 TeV for finite temperature stability. As mQ varies from 1 TeV to 10 TeV the value of r

varies from about 0.008 to 0.04, whilst ns varies from 0.979 to 0.989.
In table 4 we show how the Prescription II inflation predictions vary with mt for three

T vector quarks with fixed mQ = 3 TeV. We see that the value of ns is greater than 0.984
and r is greater than 0.01 over the whole 2-σ experimental range of mt.
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5.2 nQ = 2

We next consider the effect of fewer VLQs. In this case the upper bounds on mQ are smaller,
increasing the likelihood that they will be observed in future colliders. For two T vector quarks
and the mean value mt = 172.69 GeV, the absolute stability upper bound on mQ is 4.4 TeV,
whilst the finite temperature stability upper bound is 5.8 TeV. The corresponding upper
bounds for the case of two B vector quarks are 2.6 TeV and 2.8 TeV respectively. In table 5 and
figure 8 we show how the stability bounds vary with mt for the case of two T vector quarks.

In figure 9 and table 6 we show r and ns for mQ varying from 1 TeV to 5 TeV for the
case of Prescription II with two T vector quarks and mt equal to its mean value. As in the
nQ = 3 case, the observational upper bound on r imposes a stronger constraint on mQ that
stability of the potential, with mQ

<
∼ 2.4 TeV compared with 5.8 TeV from finite temperature

stability. The values of r are in the range 0.017 to 0.04 and ns is in the range 0.988 to
0.990 for mQ in the range 1 TeV to 2.4 TeV.

In figure 10 and table 7 we show the corresponding results for the case of two B vector
quarks. In this case the observational upper bound on r imposes an upper bound on mQ of
1.75 TeV, compared to 2.8 TeV from finite temperature stability. The values of r are in the
range 0.016 to 0.04 and ns is in the range 0.987 to 0.990 for mQ in the range 1 TeV to 1.75 TeV.

5.3 nQ = 1

For the case of a single vector quark, we find stability is only possible if mt is at its negative
2-σ value or less. For the case of a single T vector quark, the absolute stability and the finite
temperature stability bounds on mQ are both 1.6 TeV. For the case of a single B vector quark
there is stability only at mQ ≤ 1.0 TeV. For Prescription II we find that there is no value
of mQ ≥ 1 TeV for which r is less than the observational upper bound. Therefore nQ = 1
is possible for Prescription I but it is ruled out for Prescription II.

6 Conclusions

Higgs Inflation is a minimal approach to inflation, using only the SM fields and TeV-scale
extensions to achieve inflation. Here we have considered a purely fermionic extension with the
addition of isosinglet vector-like quarks. This extension can be thought of as a continuation
of the structure of the SM, with a single scalar multiplet plus fermions.

It is likely that the VLQ mass is in the range 1-10 TeV. This will be true if the t-quark
mass is at its mean value or in the upper half of its 2-σ range. The mQ upper bounds are
also lower for smaller numbers of vector quarks. Thus there is good reason to hope that
proposed future particle colliders such as the HL-LHC and FCC-hh/SppC will be able to
detect VLQs if VLQ stabilised Higgs Inflation is correct [48, 49].

The inflation observables predicted by the model strongly depend upon the conformal
frame in which the theory is renormalised. Prescription I produces predictions for ns and r

that are essentially identical to the classical predictions of Higgs Inflation, ns = 0.966 and
r = 3.3 × 10−3, with the spectral index in good agreement with the conventional ΛCDM
CMB value. However, in light of the Hubble tension, it is not clear that the ΛCDM value
of ns is correct. Solutions of the tension that modify the sound horizon, in particular Early
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Dark Energy, typically favour values in the range 0.980-0.995. It may therefore be significant
that the Prescription II prediction of ns is also in the range 0.980-0.995. Moreover, this
is accompanied by a values of the tensor-to-scalar ratio in the range 0.01-0.04, with the
upper bound on mQ coming from the present observational upper bound on r rather than
from Higgs potential stability. Therefore Prescription II Higgs Inflation with VLQs typically
predicts 1-10 TeV VLQ masses, a value of ns compatible with early-time solutions to the
Hubble tension, and primordial gravitational waves that will be easily detectable by the
next generation of CMB observations.

A VLQ modifications of the SM RG equations

The 1-loop and leading 2-loop modifications to the SM RG equations due to nQ VLQs in
the (3, 1, YQ) representation are [19]

∆βg3, 1−loop = g2
3

16π2

(2
3nQ

)
, (A.1)

∆βg3, 2−loop = g5
3

(16π2)2 (10nQ) , (A.2)

∆βg′, 1−loop = g′ 3

(16π2)2

(
4nQY 2

Q

)
, (A.3)

and
∆βyt, 2−loop = ytg

4
3

(16π2)2

(40
9 nQ

)
. (A.4)

B N∗ for instant reheating

The reheating temperature, assuming instant reheating and an Einstein frame energy density
at the end of inflation given by Vend = VE(σend) ≈ λhM4

P l/(4ξ2), where λh and ξ are
calculated at µ = ϕend ≈ MP l/

√
ξ, is given by

TR =
( 30 Vend

π2g(TR)

)1/4
, (B.1)

where g(TR) ≈ 106.75 + 10.5nQ for the SM plus nQ isosinglet VLQs.
The number of e-foldings N∗ at the pivot scale, k∗, is obtained from

2π

k∗

(
aN

a0

)
≡ 2π

k∗

(
g(T0)
g(TR)

)1/3 ( T0
TR

)
e−N = H−1 , (B.2)

where T0 is the present CMB temperature, g(Ti) are the effective number of relativistic
degrees of freedom, and k∗ = 0.05 Mpc−1 is the Planck pivot scale. During inflation

H ≈
(

Vend

3M2
P l

)1/2

. (B.3)

Therefore

N∗ = ln

2πT0
k∗

(
g(T0)
g(TR)

)1/3(π2g(TR)
270

)1/4(
V

1/4
end

MP l

) . (B.4)
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For nQ = 3 we obtain

N∗ = 57.4 + 1
4 ln

(
Vend

1064 GeV4

)
. (B.5)
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