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The Unruh effect is a surprising prediction of quantum field theory that asserts accelerating observers 
perceive a thermal spectrum of particles with a temperature proportional to their acceleration. However, 
it has recently been shown that particle detectors can click less often or even cool down as their 
acceleration increases, in contrast to the heating one would expect. This leads to the so called anti-
Unruh phenomena. Here we consider detectors outside a BTZ black hole and demonstrate the existence 
of black hole analogues of these effects, which we dub anti-Hawking phenomena.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The Unruh effect is one of the most striking predictions of 
quantum field theory. Observers undergoing uniform acceleration 
in the Minkowski vacuum will experience a thermal bath of par-
ticles at a temperature proportional to the acceleration [1]. The 
Unruh effect is the flat spacetime ‘cousin’ of the Hawking effect, 
which describes black hole evaporation. In both instances, ther-
mality of the Unruh/Hawking radiation can be verified via local 
measurements described by particle detector models that interact 
with the field, thermalizing in the limit of infinite time [2,3].

Recently it has been realized that probing the Unruh effect 
via detector models can lead to counter-intuitive results that be-
come manifest under quite generic circumstances [4,5]. It has been 
shown that a detector can click less often as the temperature of 
the field increases, and this can persist even in the limit of in-
finite interaction time. For finite interaction times that are long 
enough that the detector can still be regarded as having approxi-
mately thermalized, it is possible for the temperature recorded by 
the detector to decrease as the temperature of the field increases. 
Collectively these results have been termed anti-Unruh phenomena, 
with the former corresponding to the weak anti-Unruh effect and 
the latter the strong anti-Unruh effect [4,5].
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Unfortunately, relatively little is known about the general con-
ditions that give rise to these effects and even less is known in 
scenarios with non-trivial spacetime curvature. Most significantly, 
anti-Unruh phenomena are inherent to accelerating motion and are 
not observed by an inertial detector coupled to a thermal state [5]. 
The effects are present for topological qubits undergoing various 
motions in Minkowski space and have been found to be associ-
ated with a decoherence impedance effect [6]. It has also been 
shown [7] that tuning to parameter regimes where anti-Unruh 
phenomena are active can serve as a mechanism to amplify the 
amount of entanglement extracted from the quantum vacuum in 
entanglement harvesting protocols [8–11].

Here we inquire if there are analogues of anti-Unruh phenom-
ena for the Hawking effect and find that detectors outside a black 
hole can experience an analogous anti-Hawking effect. Specifically, 
we consider the response of a detector interacting with a (mass-
less) conformally coupled scalar field in the background a (2 + 1)-
dimensional BTZ black hole [12,13]. We find that the effects we 
observe are truly due to the black hole, being absent for Rindler 
horizons in both AdS and Minkowski spacetimes. This wholly new 
prediction for black holes cannot simply be viewed as a conse-
quence of the equivalence principle.

As a simplified model of an atom interacting with the vacuum, 
we employ the Unruh-DeWitt detector [1,14], which consists of a 
two-level quantum system moving along the spacetime trajectory 
xD(τ ), parametrized by the detector’s proper time τ , that interacts 
locally with a scalar field φ(x). The ground and excited states of 
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the detector are denoted as |0D 〉 and |1D〉, respectively, and sepa-
rated by an energy gap �. In the interaction picture, the Hamilto-
nian describing the interaction of the detector with the field is

H D(τ )=λχD(τ )
(

ei�τσ+ + e−i�τσ−)
⊗ φ [xD(τ )] , (1)

where χD(τ ) ≤ 1 is a switching function controlling the duration 
of the interaction, and σ+ := |1D〉〈0D | and σ− := |0D〉〈1D | are 
ladder operators acting on the Hilbert space associated with the 
detector. Although simple, this model captures the relevant fea-
tures of the light-matter interaction when no angular momentum 
exchange is involved [15,16].

Suppose the detector is initially (τ → −∞) in its ground state 
while the field is initially in the its vacuum state |0〉, so that the 
joint state of the detector and field together is |�i〉 = |0D〉 |0〉. 
Given the field/detector interaction Hamiltonian (1), the final (τ →
∞) state of the field-detector system is given by

|� f 〉 = T e
−i

∫
dt

[
dτ
dt H D (τ )

]
|�i〉 , (2)

where T is the time ordering operator and we have chosen to 
evolve the field and detectors with respect to an appropriate coor-
dinate time t with respect to which the vacuum state of the field 
is defined. The final state of the detector alone is obtained from (2)
by tracing out the field degrees of freedom, ρA := trφ

( |� f 〉〈� f |
)
, 

which to leading order in the interaction strength is given by

ρD :=
(

1 − P D 0
0 P D

)
+O

(
λ4

)
, (3)

where

P D := λ2
∫

dτdτ ′ χD(τ )χD(τ ′)

× e−i�
(
τ−τ ′)

W
(
xD(t), xD(t′)

)
, (4)

where W (x, x′) := 〈0|φ(x)φ(x′) |0〉 is the Wightman function as-
sociated with the field state |0〉. The object P D is the transition 
probability, though in this work it will be more convenient to work 
with the response function

F := P D

λ2σ
, (5)

where σ is a characteristic time scale for the interaction — we 
shall provide an explicit definition for σ below, when we introduce 
a specific switching function.

We focus on quantum field theory states that satisfy the Kubo-
Martin-Schwinger (KMS) condition [17–19]. The KMS condition 
provides a general definition of thermal states in quantum field 
theory where the usual Gibbs distribution may be problematic 
or difficult to rigorously define. For a KMS state with temper-
ature TKMS, the corresponding Wightman function will satisfy 
the following imaginary time boundary condition [20] W (τ −
i/TKMS, τ ′) = W (τ ′, τ ), where we have introduced the shorthand 
W (τ ′, τ ) := W (xD(τ ′), xD(τ )).

To understand the process by which the detector thermal-
izes with the field it is useful to introduce the excitation to de-
excitation ratio (EDR) of the detector:

R = F(�)

F(−�)
. (6)

If the detector thermalizes to a temperature T , then this ratio will 
satisfy the detailed balance form of the KMS condition [21]

R = e−�/T , (7)
with the temperature independent of the gap. We can define a 
temperature estimator from the EDR ratio that we will denote as 
TEDR:

TEDR = − �

logR
. (8)

The technical considerations below will require only the details 
of a conformally coupled scalar on AdS3. For convenience, we col-
lect the relevant details in the supplement, though a more detailed 
discussion using the same notation can be found in [22,23].

Let us begin by considering accelerating observers in AdS3. Con-
trary to the situation in flat space, an accelerating observer in AdS 
need not see an acceleration horizon. There exists a critical acceler-
ation ac = 1/
 partitioning observers into three classes: sub-critical 
(a < ac), critical (a = ac), and super-critical (a > ac). It is only the 
latter that experiences an acceleration horizon, and it this class of 
super-critical accelerations that we shall consider here [24]. In this 
case the metric reads

ds2 = −
(

r2


2
− 1

)
dt2 +

(
r2


2
− 1

)−1

dr2 + r2d�2 . (9)

This is the AdS-Rindler metric, which contains an acceleration hori-
zon located at r = 
. Here we should note the coordinate � takes 
on values on the full real line.

An observer at constant r = R D has an acceleration with mag-
nitude given by

|a| = 1




x√
x2 − 1

, x := R D



. (10)

The minimum acceleration is |a| = 1/
 (the critical acceleration ac), 
and this happens near r = ∞, while |a| → ∞ as r → 
.

We choose for the detector a Gaussian switching function 
χD(τ ) = exp

(−τ 2/2σ 2
)
, with the interpretation that the detec-

tor interacts with the field for an interval of time ∼ σ centered 
on the t = 0 hypersurface. To determine the KMS temperature of 
the field, it is easy to show that regularity of the Euclidean sec-
tor requires the imaginary time t has period β = 2π
, from which 
it follows that the temperature is T = 1/β = 1/(2π
). However, to 
compute the local temperature of the field at the location of the 
detector we must also account for time dilation effects. Doing so, 
we obtain TKMS = √

a2
2 − 1/(2π
), where we have used Eq. (10)
to write the temperature in terms of a instead of R D . In terms of 
these variables, we find (see the supplement) the response func-
tion of a static detector at fixed r and � is given by [25]

FAdS−R =
√

π

4
− i

4
√

π
PV

∞∫
−∞

dz
e−z2/(2π TKMSσ )2

e−i�z/(π TKMS)

sinh z

− ζ

2
√

2π
Re

∞∫
0

dz
e−z2/(4π TKMSσ )2

e−i�z/(2π TKMS)√
1 + 8π2
2T 2

KMS − cosh z
, (11)

where PV means that the principle value of the integral should 
be taken and ζ specifies the boundary condition satisfied by the 
field at spatial infinity: ζ = −1 (Neumann), ζ = 0 (transparent), 
and ζ = 1 (Dirichlet).

We can confirm that in the limit of infinite interaction time the 
detector truly thermalizes to TKMS. To see this, note that in the 
limit σ → ∞ the integrals appearing in Eq. (11) can be written in 
terms of special functions:

Fσ→∞
AdS−R =

√
π

[
1 − tanh

(
�

)]

4 2TKMS
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Fig. 1. Weak anti-Unruh effect for AdS-Rindler. Here we show a plot of the response 
function against the KMS temperature of the field for the particular choice of �
 =
1/10 in the infinite interaction limit. The weak anti-Unruh effect is present only for 
Neumann boundary conditions.

×
{

1 − ζ P− 1
2 + i�

2π TKMS

(
1 + 8π2
2T 2

KMS

)}
, (12)

where Pν is the associated Legendre function of the first kind and 
satisfies P−1/2+iλ = P−1/2−iλ . It then follows that for all bound-
ary conditions the detector satisfies the detailed balance condition 
with T = TKMS.

From Eq. (12) we can extract some details concerning weak 
anti-Unruh phenomena, as indicated Fig. 1, which plots all three 
boundary conditions. For the ζ = −1 Neumann boundary condition 
we see a region of TKMS values for which the response function de-
creases with increasing TKMS. This indicates that weak anti-Unruh 
phenomena are present in the infinite interaction limit. A more 
detailed numerical exploration of the parameter space strongly 
suggests that it is only in the case of Neumann boundary con-
ditions that this can occur, irrespective of the energy gap [26]. 
Increasing the detector gap has the effect of pushing the region 
where ∂F/∂TKMS < 0 to higher TKMS — or, in other words, a de-
tector with a larger gap needs to be closer to the AdS-Rindler 
horizon to observe the effect. We find that the effect is absent 
in flat spacetime, where these boundary terms vanish, consistent 
with [5], where it was claimed that both strong and weak anti-
Unruh phenomena are absent for accelerating observers coupled 
to a massless field in (2 + 1)-dimensional Minkowski space.

We have also explored numerically the behavior of the response 
function for finite interaction times. Provided �
2 < σ and the 
boundary conditions are Neumann, we find that the weak anti-
Unruh phenomenon emerges; we find no examples of weak anti-
Unruh phenomena for other boundary conditions. Furthermore, de-
spite an intensive exploration of the parameter space, we find no 
examples of strong anti-Unruh phenomena, though since our meth-
ods are numerical we cannot completely rule out this possibility.

Turning to black holes, we consider the BTZ black hole of mass 
M , whose metric is

ds2 = − f (r)dt2 + dr2

f (r)
+ r2dφ2, (13)

where f (r) = r2/
2 − M and the horizon is located at rh = √
M
. In 

these coordinates, the angular direction is identified φ ∼ φ + 2π , 
and it is ultimately this identification that distinguishes the BTZ 
metric from the AdS-Rindler case (9). Due to the simplicity of the 
BTZ spacetime, the Wightman function for a conformally coupled 
scalar field (in the Hartle-Hawking state) in a BTZ background is 
known analytically [27,28]. We provide the necessary details of 
this construction in the supplement.

We can obtain an expression for the response function of a de-
tector located at constant r and φ following [3,27,29,30]. This is 
done in the supplement and we mention only a few relevant de-
tails here. To facilitate comparison with the AdS-Rindler case, we 
note that the acceleration of a constant r trajectory in the BTZ 
spacetime is

|a| = 1




y√
y2 − 1

, y := R D



√

M
, (14)

which is exactly the same as in the AdS-Rindler case expressed in 
(10), modulo a rescaling of the parameter x = R D/
. The Hawk-
ing temperature can be computed using the usual Euclidean trick: 
TH = √

M/(2π
). Taking into account time dilation effects, the lo-
cal KMS temperature calculated at the position of detector on an 
r = R D surface is given by TKMS = √

a2
2 − 1/(2π
), identical to 
the AdS-Rindler case, where we have used (14). The response func-
tion is then:

FBTZ = FAdS−R

+ 1√
2π

∞∑
n=1

{ ∞∫
0

dz Re

[
exp

(−z2/(4πσTKMS)
2
)
exp

(−i�z/(2πTKMS)
)

√
cosh

(
α−

n
) − cosh(z)

]

−ζ

∞∫
0

dz Re

[
exp

(−z2/(4πσ TKMS)
2
)

exp
(−i�z/(2π TKMS)

)
√

cosh
(
α+

n
) − cosh(z)

]}
,

(15)

where

coshα∓
n =

(
1 + 4π2
2T 2

KMS

)
cosh(2πn

√
M) ∓ 4π2
2T 2

KMS .

(16)

The key observation is that, while the n = 0 terms in the BTZ re-
sponse function coincide exactly with the AdS-Rindler result (and 
so do not depend on the mass M), the remaining terms are novel. 
It is then these terms that are responsible for bonefide black hole 
effects. These higher-order terms are controlled by the BTZ mass 
parameter M , and their effect is most pronounced when M is 
small.

Once again, in the limit of infinite interaction time, the BTZ 
response function can be expressed explicitly in terms of special 
functions as

Fσ→∞
BTZ =

√
π

4

[
1 − tanh

(
�

2TKMS

)]

×
n=∞∑

n=−∞

[
P− 1

2 + i�
2π TKMS

(
coshα−

n

)

−ζ P− 1
2 + i�

2π TKMS

(
coshα+

n

)]
. (17)

From this expression, and using the fact that (for real λ) P−1/2+iλ=
P−1/2−iλ , it is straightforward to show that the detector satisfies 
the detailed balance condition with T = TKMS. Plotting the re-
sponse function in Fig. 2, we see that phenomena similar to the 
weak anti-Unruh effect exist provided that M is small enough. 
Since the effect depends on M , we shall call this an anti-Hawking 
effect. This holds for all three boundary conditions in strong con-
trast to the AdS-Rindler case.

Even more remarkably we find at finite interaction times the 
appearance of a strong version of the phenomenon, in which an 
increasing KMS temperature of the field yields decreasing EDR tem-
perature. In terms of the physical spacetime, this corresponds to a 
detector registering a lower EDR temperature as it gets closer to 
the black hole, as shown in Fig. 3. We find that the strong effect 
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Fig. 2. Here we show a plot of the BTZ response function in the infinite interaction 
time limit against the KMS temperature of the field. In this plot, M = 1/100 and 
�
 = 1/10. The inset shows a zoomed version of the Dirichlet boundary condition 
curve. For this choice of parameters, the weak anti-Hawking effect is observed for 
all three boundary conditions.

Fig. 3. Top: Strong ‘anti-Hawking’ effect for BTZ black hole. Here M = 1/500, �
 =
1/100, σ/
 = 1. The inset shows the ζ = 1 case in greater detail, revealing the 
strong version of the effect. Bottom: Gap independence of the EDR temperature in 
BTZ spacetime. In this plot we have set M = 1/500, TKMS = 0.05, σ/
 = 1.

‘emerges’ for small values of M . Though it is not shown in the fig-
ure, we find that TEDR always grows with TKMS for large values of 
TKMS.

Unfortunately, since the detector is at once both accelerating 
and in a black hole spacetime, we cannot strictly speaking separate 
the Unruh and Hawking effects experienced by the detector. How-
ever, we see that in the same regions of parameter space this effect 
is absent for a static detector in AdS3, while present for a static de-
tector outside a BTZ black hole. We emphasize that this indicates 
that the strong version of the effect shown here is a consequence 
of the black hole, and is not simply due to the acceleration horizon. 
In this sense, it again seems appropriate to refer to it as an ‘anti-
Hawking effect’. Furthermore, the effect is present for all boundary 
conditions on the field, though most pronounced for the Neumann 
case.

Since the interaction time is finite, the detector no longer satis-
fies the detailed balance condition for all energy gaps �. However, 
we have confirmed that in the regions of parameter space where 
the effect is observed, the EDR temperature is effectively gap-
independent for a wide range of values of �, indicating that the 
detector can be considered to have thermalized in an approximate 
sense [5,21] — this is shown explicitly in Fig. 3 for �’s ranging 
over four orders of magnitude. Of course, for a given choice of (fi-
nite) interaction time, the EDR temperature will exhibit energy gap 
dependence for sufficiently large values of �.

Summarizing, we have studied the response function of detec-
tors in three-dimensional AdS-Rindler space and the BTZ spacetime 
for interactions of both finite and infinite duration. In both cases, 
the Wightman function of the field pulled back to the trajectory 
of the detector satisfies the KMS condition, and moreover in the 
limit of infinite interaction time the detectors thermalize to the 
KMS temperature of the field.

For AdS-Rindler, we have found that in this limit the weak anti-
Unruh effect is present, provided that the field satisfies Neumann 
boundary conditions. This counter-intuitive effect is characterized 
by the detector registering fewer clicks as the temperature of the 
field increases. Our result indicates that spacetime curvature can 
induce this effect in cases where it would be absent in flat space-
time [5].

For the BTZ case, we find that in the limit of infinite interaction 
time the same effect is present for all choices of boundary condi-
tions, provided that the black hole mass M is sufficiently small. 
This provides evidence of a weak anti-Hawking effect. We also 
found for the first time evidence of a strong anti-Hawking effect 
for finite detector interaction times, provided that its mass M is 
sufficiently small. This effect, present for all boundary conditions, 
corresponds to the EDR temperature registered by the detector de-
creasing as the KMS temperature of the field increases. This is the 
black hole analog of the strong anti-Unruh effect discussed in [4,5]. 
The effect diminishes as M increases, quantitatively reflecting the 
common wisdom that a large black hole behaves like an accelera-
tion horizon. Just as in those cases, due to the finite nature of the 
interaction, the EDR temperature is not completely independent of 
the detector’s energy gap. Nonetheless, we demonstrated that over 
the range of parameters for which the effect is observed, the EDR 
temperature is effectively independent of the energy gap, provided 
that it is sufficiently small.

Our work demonstrates that quantum effects allow for a single 
detector to distinguish between a black hole horizon and a Rindler 
horizon, since the latter does not exhibit the strong effect. Due to 
the equivalence principle such distinctions using single-detectors 
are not possible classically; instead they require more detectors 
that can probe tidal effects present for black holes but absent for 
Rindler horizons.

There are a few natural directions that could be pursued in 
light of our results. The most obvious — and perhaps also most 
interesting — is to study higher dimensional black holes for evi-
dence of these effects. In the same spirit, it would be interesting 
to verify whether or not the effects persist for the case of infalling 
rather than static detectors. In this circumstance, observers are 
necessarily restricted to finite interaction times since their world-
lines will ultimately terminate at the singularity. It would also 
be worthwhile to determine the implications of the anti-Hawking 
phenomenon in the context of entanglement harvesting and deco-
herence, as for example in [6,7,22]. Additionally, since these effects 
are absent for inertial detectors interacting with thermal states [5], 
it is natural to wonder if they can occur in the context of the 
Gibbons-Hawking effect [31]. Finally, it would seem to be impor-
tant to determine exactly what physical characteristics of the un-
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derlying fields are necessary or sufficient for a detector to observe 
these effects.
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