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Application of contemporary renormalization group techniques to strongly-coupled field theories

Thesis directed by Professor Anna Hasenfratz

I explore the infrared properties of massless SU(3) gauge-fermion systems with Nf = 0, 8, and

12 Dirac fermions in the fundamental representation of SU(3) using non-perturbative Wilsonian

renormalization group (RG) techniques. From an infinite volume massless RG scheme based upon the

gradient flow transformation, I calculate the non-perturbative RG β-function for all three systems. I

verify my determination of the RG β-function by calculating the Λ-parameter of the Nf = 0 system

and the leading irrelevant critical exponent at the infrared fixed point of the Nf = 12 system; both

are in reasonable agreement with the literature. The Nf = 8 β-function exhibits tantalizing signs of

upward curvature, which could indicate that the Nf = 8 system is either infrared conformal or slowly

walking. Additionally, I develop a finite size scaling method based on radial basis function neural

networks. This method is tested on the finite-temperature phase transition of various two-dimensional

classical spin systems. It is then applied to a potential quantum (zero-temperature) phase transition

that the Nf = 8 appears to undergo in transiting from a weakly-coupled conformal phase to a

strongly-coupled symmetric mass generation phase.
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Chapter 1

Introduction

Renormalization is a practice which used to be widely regarded as

distasteful, and so was largely done in the privacy of one’s own

home. That has all changed.

C. P. Burgess [59]

Our modern understanding of quantum field theories (QFTs), be it effective or fundamental,

rests upon the bedrock ideas of renormalization. This is especially true for SU(N) gauge-fermion

systems, which are often so strongly coupled at low energies that non-perturbative renormalization

techniques are one of the only means by which one can hope to understand their low-energy properties.

The primary objective of this thesis is to explore various aspects of SU(3) gauge-fermion systems with

Nf fermions in the fundamental representation of SU(3) using non-perturbative renormalization group

techniques that have been developed roughly over the past decade. This journey will take us through

a variety of interesting topics, such as the physics of confinement, conformal systems, Standard Model

physics (and beyond), quantum/classical phase transitions, symmetric mass generation, spin models,

machine learning, optimization algorithms, Bayesian statistics/methods, Monte Carlo algorithms,

high-performance computing, and much more, so sit back, relax, and enjoy the ride.



2

1.1 Gauge-fermion systems and renormalization

The classical Minkowski space action of a four-dimensional massless SU(N) gauge-fermion

system with Nf fermions in the fundamental representation of SU(N) is

S
[
Aµ,Ψ,Ψ

]
=

∫
d4x

[
− 1

2g20
Trc
[
Fµν(x)F

µν(x)
]
+

Nf∑

f=0

Ψ
(f)

(x)DfΨ
(f)(x)

]
, (1.1)

where

Df ≡ iγµDµ −m(f)
0 (1.2)

with Dirac matrix γµ and

Dµ = ∂µ − iAµ(x) (1.3)

the gauge covariant derivative. The non-Abelian vector potential Aµ(x) ∈ su(N) enters the field

strength tensor Fµν(x) as

Fµν(x) = i
[
Dµ,Dν

]
∈ su(N). (1.4)

For the purpose of brevity, I shall refer to such systems as gauge-fermion systems. The m
(f)
0

parameters are the “bare mass”. The fermion field Ψ(f)(x) of “flavor” f is Grassmann-valued

and transforms under the fundamental representation of SU(N); likewise, Ψ(f)
(x) ≡ Ψ(f)(x)†γ0.

Furthermore, “Trc” denotes a trace over the “color indices” of either elements of SU(N) or its Lie

algebra su(N). For now, the bare gauge coupling g20 is just a dimensionless parameter. In the

quantized system on a (Euclidean) hypercubic lattice, g20 controls the lattice spacing and hence

the continuum limit. Quantization of the gauge-fermion system defined by Eqn. 1.1 proceeds

schematically by defining the Minkowski space path integral

Z ≡
∫ [

dAµdΨdΨ · · ·
]
exp

(
iS
[
Aµ,Ψ,Ψ, ...

])
, (1.5)
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where
[
dAµdΨdΨ · · ·

]
is a formal “measure” (not actually a measure) that leaves room for additional

unphysical “ghost” fields in S
[
Aµ,Ψ,Ψ, ...

]
that take care of ambiguities in the path integral arising

from gauge freedom.

Essentially all of the difficulties pertaining to understanding the quantum properties of gauge-

fermion systems arise from Eqn. 1.5. Perhaps the most egregious sin of Eqn. 1.5 is that the integral

itself is not well-defined as it stands. In essence, the purpose of renormalization is to give expressions

like Eqn. 1.5 meaning. In the early days of quantum field theory (roughly, 1930s-1950s), issues with

the definition of quantum field theories (QFTs) like that of Eqn. 1.5, quantum electrodynamics (QED),

revealed themselves through divergences that appear in perturbative expansions of observables at

next-to-leading-order in the bare gauge coupling g20. Due in large to the work of Richard Feynman,

Julian Schwinger, Freeman Dyson, and Sin-Itiro Tomonaga in the 1950s, it became apparent that

divergences appearing in perturbative calculations of QED observables could be removed by the

procedure of renormalization as follows.

(1) Introduce a cutoff Λ in fluctuations of the QFT.

(2) Redefine (renormalize) the couplings
{
g20,m

(f)
0

}
→
{
g2,m(f)

}
in Eqn. 1.1 by defining

{
g2,m(f)

}
in terms physical observables {O1, O2, ...}.

(3) Take the Λ→∞ limit with
{
g2,m(f)

}
fixed.

The latter three step procedure not only removed divergences from observables in QED, it also

opened the door to performing calculations of the Lamb shift and anomalous magnetic moment of

the electron with unprecedented accuracy. At about the same time, Murray Gell-Mann and Francis

Low noted that the renormalized coupling g2(µ) in a massless (m(f) = 0) renormalization scheme

can be expressed in terms of a renormalization scale µ2 [143]. The running of g2(µ) with µ2 was

later characterized in the 1970s by Curtis Callan and Kurt Symanzik in terms of the renormalization

group (RG) β-function β
(
g2
)

as [65, 349]

µ2
dg2(µ)

dµ2
= β

(
g2
)
. (1.6)
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Almost in parallel with the work of Callan and Symanzik, Kenneth Wilson reformulated the

renormalization procedure in terms of Leo Kadanoff’s block spin transformation [216], for which

Wilson won the Nobel prize [372–374].

According to the perspective of Wilsonian RG, a continuum quantum field theory defined at

a scale µ and parameterized by the renormalized coupling g2(µ) is obtained from a sequence of

effective field theories (EFT) that approach the continuum QFT in the Λ → ∞ limit at fixed µ

(equivalently, fixed g2(µ)). Each EFT comes with its own cutoff Λ ≥ µ and is hence well-defined,

at least in the eyes of the common physicist. In the parlance of high-energy physics, each EFT

is said to be “defined at the scale Λ”, meaning that the EFT is unable to describe physics that

occurs at scales µ > Λ. Each EFT can be made to better approximate its corresponding continuum

QFT by integrating out fluctuations (degrees of freedom) between µ and Λ while imposing that the

integration procedure does not disturb physical properties of the EFT at scales ≲ µ. This is achieved

by performing a series of renormalization group transformations on the EFT, which are discussed

at length in Chapter 2. Performing the same procedure for a continuous sequence of EFTs defined

at Λ approaching infinity, the continuum QFT defined at µ is reached. Alternatively, one need not

even take a continuum limit in the first place, as each EFT is a well-defined approximation of a

continuum QFT that exists up in the high heavens. So long as a sufficiently low µ can be reached

from the EFT, it can be used to probe the low-energy properties of the continuum QFT with a

systematic error that goes as (µ/Λ)p log(µ/Λ)q for some p, q ∈ Z at leading order. The modern view

of the Standard Model is that it is such an EFT; however, whether or not the Standard Model EFT

(SMEFT) has a well-defined continuum limit is up for debate.

1.1.1 The zero-temperature phase diagram

Bringing ourselves back down to the task at hand, Wilsonian RG, and the many decades

of research that lead up to it, tells us how to access the low-energy properties of the quantized

gauge-fermion system defined by Eqns. 1.1-1.5 from a sequence of RG transformations and continuum

Λ→∞ limits. Given an RG transformation, the renormalized coupling g2(µ) defined by the RG



5

transformation characterizes the scale-dependent behavior of the continuum gauge-fermion system.

The β-function for g2(µ) can be calculated in renormalized perturbation theory. Famously, the 1-loop

β-function

β
(
g2
)
∼ −b0

g4

(4π)2

was first calculated in 1974 by David Gross and Frank Wilczek, along with David Politzer indepen-

dently, which earned all three of them the Nobel prize [154, 155, 301].1 The 1-loop coefficient

b0 =
1

3

(
11N − 2Nf

)
(1.7)

is greater than zero when Nf ≤ 11N/2, which implies that the renormalized coupling g2 → 0 when

µ → ∞; in other words, the system is weakly interacting a high energies (short distances). The

latter property is referred to as asymptotic freedom. The two-loop perturbative β-function for the

gauge-fermion system defined by Eqn. 1.1 with m(f)
0 = 0 was calculated by William Caswell in 1974

[75], yielding

β
(
g2
)
∼ − g4

(4π)2

[
b0 + b1

g2

(4π)2

]
(
g2/4π → 0

)
, (1.8)

where

b1 =
2N(17N − 5Nf)

3
−
(
N2 − 1

)
Nf

N
. (1.9)

In a massless RG scheme, the b0 and b1 coefficients are universal, meaning that they are independent

of the RG transformation (or scheme) used to calculate them. RG scheme dependence in the

perturbative RG β-function enters at 3-loops and beyond. In what follows, I am going to focus on

the massless N = 3 case unless stated otherwise.

1.1.1.1 The quantum electrodynamics-like phase

According to the 2-loop β-function, massless SU(3) gauge-fermion systems lose asymptotic

freedom at N∗
f ≈ 16.5. In other words, the system exists in a quantum electrodynamics (QED-like)

1Supposedly, Gerard ’t Hooft had discovered asymptotic freedom a year before, but never published the result [1].
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phase with a positive β-function when g2/4π ≪ 1 for Nf ≳ N∗
f . In Chapter 3.4, we will learn that

the existence of a repulsive fixed point (β
(
g2⋆
)
= 0) in the RG flow dictated by the β-function implies

that a continuum limit from a collection of EFTs can be defined. Such fixed points are referred to as

a ultraviolet fixed points (UVFPs). Attractive fixed points are referred to as infrared fixed points

(IRFPs), such as the IRFP of the QED phase at

g2⋆ = 0 (IRFP, Nf ≳ N∗
f ). (1.10)

Should a UVFP exist in the QED phase, the value of the non-trivial fixed point coupling g2⋆ at

leading order in 1/Nf is expected to go as

g2⋆ ∝ 1/Nf (hypothesized UVFP, Nf ≳ N∗
f ) (1.11)

in any RG scheme [203]. However, it should be noted that evidence for presence of a UVFP in the

QED phase is few and far between. Closer to N∗
f , it is possible that the fixed point is simply not

accessible from perturbation theory and it instead arises non-perturbatively, as was hoped for QED

and is still hoped for asymptotically safe approaches to quantum gravity [311].

1.1.1.2 The conformal phase

Below N∗
f , the two-loop β-function possesses both a UVFP at

g2⋆ = 0 (UVFP, Nf ≲ N∗
f ). (1.12)

It also possesses an IRFP for some range of N c
f ≤ Nf ≲ 16. The Nf = 16 IRFP at

g2⋆ ≈ −(4π)2b0/b1 ≈ 0.523 (IRFP, Nf = 16) (1.13)
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is accessible from perturbation theory. This is the Caswell–Banks–Zaks fixed point [28, 75]. Though

it had been noted before [75], Tom Banks and Alex Zaks were the first to explore it systematically

[28]. The existence of an IRFP at some g2⋆ ̸= 0 has interesting consequences for the low-energy

dynamics of the system. Most notably, deep within the infrared, the system is conformal ; in other

words, it is invariant under coordinate transformations xµ → xµ + ϵµ satisfying [138, 314]

∂µϵν + ∂νϵµ ≈
1

2

(
∂σϵ

σ
)
gµν (ϵµ/xµ ≪ 1), (1.14)

where gµν is the metric tensor. Such a coordinate transformation changes the metric as

gµν → Ω2(x)gµν , (1.15)

where
1

2

(
∂µϵ

ρ + ∂νϵ
σ
)
gµνgρσ ≈ Ω2(x)− 1 (ϵµ/xµ ≪ 1). (1.16)

The transformations generated by infinitesimal ϵµ are described by the conformal group. According

to Eqn. 1.15, the group of diltations (Ω2 independent of x) is a subgroup of the conformal group.

As such, conformally invariant field theories are also scale invariant. Conformal invariance implies

that the correlation function of any operator O(x) transforms under x→ λx as

⟨O(λx)O(0)⟩ = λ−2∆O⟨O(x)O(0)⟩ (1.17)

for ∆O a constant that is referred to as the scaling dimension of O. This implies that the correlation

function of a field Φ (e.g., a gauge or fermion field) decays as

⟨Φ(x)Φ(0)⟩ = |x|−2∆Φ , (1.18)
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where ∆Φ is the scaling dimension of Φ. Additionally, the expected trace of the stress tensor Tµν

vanishes
〈
Tµµ
〉
= 0. (1.19)

Eqns. 1.17-1.18 imply that the spectrum is continuous; as such, the low-energy dynamics does

not permit the existence of a particle spectrum. Furthermore, if conformal invariance is broken

explicitly by introducing a fermion mass, the corresponding hadron spectrum will exhibit conformal

hyperscaling. Deriving conformal hyperscaling follows along the same line of reasoning that leads

to finite size scaling, which I describe in Chapter 2.5. In the language of RG, the fermion mass

is a relevant deformation that repels any RG flow away from the critical surface. Therefore, the

zero-momentum correlation function

GO
(
x̂4; m̂

)
≡
∫

d3x ⟨O(x, x4)O(0)⟩ (1.20)

of any operator O in an EFT of the mass-deformed conformal system is expected to scale as [100]

GO
(
x4; m̂

)
∝ FO

(
x̂4m̂

1/(1+γ⋆m)
) (

m̂≪ 1
)

(1.21)

where x̂4 = Λx4 is the source/sink separation along the time direction and m̂ = mf/Λ is the

degenerate fermion mass. Both are expressed in units of the cutoff Λ. The constant γ⋆m is the mass

anomalous dimension at the IRFP. The function FO is a universal scaling function. Eqn. 1.21

implies that any hadron mass of the mass-deformed EFT must scale as

MO/Λ ∝ m̂1/(1+γ⋆m)
(
m̂≪ 1

)
. (1.22)

In other words, ratios of hadron masses from the mass-deformed EFT should be flat in m̂. Such

hyperscaling relations have been used extensively to test for conformality in lattice gauge theory

simulations of many-flavor gauge-fermion systems. See, for example, references provided in overview
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of Chapter 5. The range in Nf over which massless SU(N) gauge-fermion systems are both

asymptotically free and conformal is referred to as the conformal window. The lower boundary of

the conformal window N c
f in Nf is referred to as the conformal sill.

1.1.1.3 The confined phase

For Nf < N c
f , the low-energy dynamics is drastically different than it is for Nf > N c

f ; however,

it is much more familiar. The confined phase is characterized by the generation of an infrared scale,

the confinement scale, that is associated with the phenomenon of confinement ; i.e., the inability

to separate fermions in a hadron without putting so much energy into the system that the act of

pulling them apart simply creates more hadrons. The confined phase exists between 0 ≤ Nf < N c
f .

For Nf ≥ 1, the confined phase is also characterized by spontaneous chiral symmetry breaking, which

I shall now describe.

The classical action of Eqn. 1.1 in themf = 0 limit is symmetric under U ∈ SU(Nf)R×SU(Nf)L

transformations of the form

U = exp
(
iα · T

)
or U = exp

(
iγ5α · T

)
, (1.23)

where T =
(
T 1, T 2, ..., TN

2
f -1
)

is a collection of generators for su(Nf), α ∈ RN
2
f -1, and γ5 ≡ iγ1γ2γ3γ4

is the standard chirality operator that separates any Dirac fermion into left-handed components (L)

Ψ
(f)
L ≡ 1

2

(
1− γ5

)
Ψ(f) (1.24)

and right-handed components (R)

Ψ
(f)
R ≡ 1

2

(
1 + γ5

)
Ψ(f) (1.25)

in four dimensions. Elements of SU(Nf)R × SU(Nf)L act on an extended space of spinors involving

all flavors Ψ ≡
(
Ψ(0),Ψ(1), ...,Ψ(Nf-1)

)
. Note that there are also two additional U(1) “axial” and
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“vector” symmetries; however, the U(1) axial symmetry is broken due to quantum effects. The

transformations U ∈ SU(Nf)R × SU(Nf)L involving the chirality operator γ5, otherwise known as

axial vector transformations, mix both flavors Ψ(f) and chiral components Ψ(f)
L /Ψ

(f)
R . In the confined

phase, this chiral symmetry is spontaneously broken, taking

SU(Nf)R × SU(Nf)L → SU
(
Nf

)
V
, (1.26)

where SU
(
Nf

)
V

is the “vector subgroup” of SU(Nf)R × SU(Nf)L; it is the isospin symmetry that is

approximately realized in the light quark sector of QCD. This spontaneous chiral symmetry breaking

(χSB) has profound consequences for the low-energy dynamics of gauge-fermion systems in the

confined phase. For one, it produces Goldstone bosons π =
(
π−, π0, π+

)
, which are identified with

the pseudo-Goldstone pions of QCD. Without pions, the nuclear force that keeps nuclei together

would not be strong enough to keep them from falling apart. As Goldstone bosons, the pions

are also the lightest states of QCD. Therefore, they have a dominant effect in just about every

low-energy QCD process. χSB also has important consequences for the spectrum of baryons in

QCD; for example, it is responsible for the non-degeneracy of nucleons with their parity partners,

which are significantly heavier [142]. Quite frankly, it is hard to overstate the importance of χSB. In

the isospin symmetric limit, the masses of the pions follow the famous Gell-Mann-Oakes-Renner

(GMOR) relation [141, 144, 368]

M2
π ∝ Λχmf (mf/Λχ ≪ 1), (1.27)

where Λχ is the “chiral symmetry breaking scale”. This is to be juxtaposed against the hyperscaling

prediction of Eqn. 1.22 in the conformal phase.
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1.1.1.4 Quantum phase transition at the conformal sill

The difference between the low-energy dynamics of the confined and conformal phase is quite

astonishing. Below the conformal sill, the system is confining, chirally broken, and full of hadrons.

Above the conformal sill, the system is interacting (and thereby non-trivial), chirally symmetric,

and there are no particles in sight. Something quite dramatic must be happening at N c
f . Such a

transition is referred to as a quantum phase transition (QPT), as it is not a consequence of thermal

fluctuations. Already, we expect two things to happen when crossing the conformal sill from the

confined phase. For one, we of course expect that β-function in any RG scheme to pick up an

infrared fixed point. Additionally, we expect the chiral condensate

Σf ≡
〈
Ψ

(f)
(x)Ψ(f)(x)

〉
(1.28)

to vanish. The position argument is suppressed because the chiral condensate expectation is

translationally invariant. Because on the main focuses of this thesis is on the calculation non-

perturbative β-functions, I shall not dwell too much on the relevance of the chiral condensate.

The β-function is expected to either “jump” or “walk ” within the vicinity of N c
f . In the jumping

scenario, the β-function depends on g2 and Nf like [323, 324]

β
(
g2
)
∝ −g

4
[
1− k1g2 − δ(Nf)

]

1− k2g2
(jumping), (1.29)

where

δ(Nf)→ 0 as Nf → N c
f (1.30)

and k1, k2 are free parameters. In the walking scenario, the β-function goes with g2 and Nf as [323]

β
(
g2
)
∝ −g4

[(
g2 − k

)2 − δ(Nf)
]

(walking), (1.31)

where k is a free parameter and δ(Nf) is defined by Eqn. 1.30. In Figs. 1.1-1.2, I illustrate the shape
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Figure 1.1: Illustration of the β-function in the jumping dynamics scenario just below the conformal
sill (Nf < N c

f , blue line), at the conformal sill (Nf = N c
f , red line), and just below the conformal sill

(Nf > N c
f , blue line).

of the β-function in a jumping scenario (Fig. 1.1, Eqn. 1.29) and walking scenario (Fig. 1.2, Eqn.

1.31) for Nf just below, at, and just above the conformal sill with k = k1 = k2 = 1 for the purposes

of illustration.

β-functions of the form of Eqn. 1.29 have appeared in literature on supersymmetric Yang-Mills

[279, 333] and non-supersymmetric Yang-Mills [77, 315]. As is illustrated in Fig. 1.1, the β-function

runs into a pole at g2p ≈ 1/k2 below N c
f (blue line). Past the pole, it runs into a UVFP. Above N c

f

(green line), the β-function exhibits an IRFP on the weak coupling side of the pole and does nothing

exciting on the other side of the pole. Only at Nf = N c
f (red line) is the β-function on one side of the

pole connected to the other side of the pole. As jumping dynamics is associated with a first-order

conformal QPT, the system on the weak coupling side of the pole is not connected to the strong

coupling side, except at Nf = N c
f .

The walking scenario has received much more attention in the literature due to its relevance

to beyond Standard Model (BSM) model building. Similar behavior has also been observed in a

variety of systems [136, 221, 261]. When Nf > N c
f (green line), the β-function runs from the UVFP
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Figure 1.2: Illustration of the β-function in the walking dynamics scenario just below the conformal
sill (Nf < N c

f , blue line), at the conformal sill (Nf = N c
f , red line), and just below the conformal sill

(Nf > N c
f , blue line).

at g2⋆ = 0 to an IRFP at some g2a⋆. In addition to g2a⋆, the RG flow also possesses another UVFP

at some g2b⋆ > g2a⋆. As Nf → N c
f from the conformal phase, g2a⋆ increases, while g2b⋆ decreases. The

conformal QPT occurs when g2a⋆ and g2b⋆ merge (red line). Below N c
f , g

2
a⋆ and g2b⋆ move away the

complex plane. Once the system is in the confined phase, chiral symmetry is broken and the system

confines. From the confined phase and just below N c
f , the Λ-parameter ΛX, which characterizes

the scale of non-perturbative observables calculated within any particular RG scheme X from the

confined phase (see Chapter 4.6), scales with Nf as [323]

ΛX ∝
(
N c

f −Nf

)−1
exp

[
− π

2

(
N c

f −Nf

)−1/2
]
. (1.32)

Eqn. 1.32 is the famous Miransky scaling [261]. Such scaling is reminiscent of the ∞-order phase

transition of the two-dimensional XY model (explored in Chapter 6); as such, the picture posited

by Miransky scaling is that the conformal QPT is ∞-order; i.e., due to an essential singularity in

logZ. Corrections to Miransky scaling have been explored in Ref. [50]; see also Ref. [221] for more
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information on the relevance of Miransky scaling to the picture of merging fixed points.

1.2 Relevance to beyond Standard Model physics

1.2.1 The conformal window and beyond Standard Model physics

The pattern of chiral symmetry breaking (Eqn. 1.26) in the confined phase of a gauge-fermion

system is similar in structure to the pattern of symmetry breaking that occurs in the electroweak

sector. The symmetry breaking pattern for spontaneous electroweak symmetry breaking (EWSB) is

SU(2)L × SU(2)R → SU(2)V. (1.33)

More precisely, because the U(1)Y subgroup of SU(2)R is gauged, the symmetry breaking pattern is

SU(2)L ×U(1)Y → U(1)Q, (1.34)

where U(1)Q is the Abelian electromagnetic gauge symmetry [287, 323]. As an aside, note that this

standard realization of EWSB appears to be in conflict with Elizur’s theorem, which states that a

gauge symmetry cannot be spontaneously broken [116, 153]; as such, the interpretation of EWSB in

the Standard Model must be more subtle than the standard approach that is expounded by most

physicists, including the author. The formal similarity between the symmetry breaking pattern of

χSB and that of EWSB led to the development of technicolor models (TC), which aimed to deliver

EWSB from a form of χSB by extending the Standard Model with a new SU(N) gauge-fermion

sector possessing Nf < N c
f fermions in some representation of SU(N) (or some other Lie group) [119,

200, 236]. The technicolor Higgs arises from the formation of a non-zero chiral condensate (Eqn.

1.28) due to χSB, which generates of mass for the W± and Z bosons. Extended technicolor (ETC)

models additionally aim to address the EWSB-induced generation of fermion masses in the Standard

Model [119, 220]. While the foundations of early TC/ETC models were sound, they ultimately failed

to meet the following experimental criteria [200, 236].
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(1) TC/ETC models fail to pass electroweak precision tests.

(2) ETC models fail to suppress effects from flavor changing neutral currents (FCNCs) while

also accommodating for the heaviness of the top quark2 [236].

Interest in TC(ETC) models was revived with the advent of walking technicolor (WTC) [85, 121,

297], which is founded on the same χSB-induced EWSB principles as TC(ETC) models; however,

the β-function of the strongly-coupled sector is of the walking type described in Sec. 1.1.1.4 and

illustrated in Fig. 1.2. Defining µTC to be the scale at which chiral symmetry breaks and µETC to be

the scale at which the fermions acquire their mass (possibly from additional spontaneous symmetry

breaking), the chiral condensate Σf
(
µTC

)
at µTC is related to Σf

(
µETC

)
in WTC models as [323]

Σf
(
µETC

)
∼ log

(
µETC

µTC

)γ⋆m
Σf
(
µTC

)
; (1.35)

in other words, the condensate at the µETC scale is logarithmically enhanced. The fixed point mass

anomalous dimension γ⋆m determines the size of the logarithmic enhancement. If the enhancement is

large enough, then it is possible for WTC to evade the problems introduced by electroweak precision

observables and FCNCs, so long as γ⋆m is at least O(1). WTC models built on top of conformal

phases that are sufficiently close to the boundary of the conformal window, so that γ⋆m ∼ O(1),

could additionally evade the issue that are posed by needing to produce the top quark mass [64,

85]. Though, to the best of the author’s knowledge, the latter statement has yet to be established

conclusively; see, also, Refs. [64, 218] for workarounds involving fermion partial compositeness. Many

of the modern BSM models that are WTC-adjacent are constructed from systems that are barely

below the conformal sill. This allows them to utilize the approximate conformal invariance that is

potentially realized by near-conformal systems to deliver EWSB from an approximate breakdown of

conformal invariance. In such models, the Higgs is a pseudo-Nambu-Goldstone (pNGB) boson of

spontaneous conformal symmetry breaking; i.e., it is a dilaton. Such models have been investigated

2The top quark is incredibly massive as far as Standard Model fermions are concerned, with a rest mass of mt ≈ 173
GeV. That is close to the mass of rhenium (≈ 173 GeV), which has an atomic number of 75.
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extensively using dilaton effective chiral perturbation theory (dχPT) to describe potential candidates

for such models using lattice simulations [14, 20, 149–151, 208]. I will discuss some of these attempts

at describing the (N,Nf) = (3, 8) system using dχPT in Chapter 7. See Refs. [86, 287] for extensive

reviews of many other pNGB models.

1.2.2 Symmetric mass generation

Before signing off on this section, let me briefly mention ideas from condensed matter physics

that could have implications for the problem of dynamically generating fermion masses. Roughly over

the past two decades, a mechanism for mass generation in interacting systems has been discovered

and investigated extensively. Such symmetric mass generation (SMG) can occur if the system is

free of quantum anomalies. It is also intimately connected to the physics of chiral edge modes [156,

366, 386]. For a review of SMG, see Ref. [367]. Recently, it has been realized that 4-dimensional

systems of Kähler-Dirac fermions, or multiples of 4 Dirac fermions, could possess just the anomaly

cancellation needed to realize SMG [62, 76]. The same result has also been interpreted in the

context of chiral edge modes by realizing 4-dimensional Kähler-Dirac fermions as edge states of a

5-dimensional symmetry protected topological phase [156]. Lattice simulations of the (N,Nf) = (3, 8)

gauge-fermion system show some signs of an SMG phase [170], though much more scrutiny is needed;

this is explored further in Chapter 7. The existence of a strongly-coupled SMG phase that is

continuously connected to some other weakly coupled phase (likely conformal) could open up exciting

opportunities for BSM model building. It has been even put forth by Ref. [170] that the existence

of such a continuous phase transition could signal the beginning of the conformal window. If not,

it could at least be an interesting example of an SMG phase that is induced by strong dynamics,

which, to the best of the author’s knowledge, has yet to be realized.

1.3 Synopsis of key results

This thesis focuses upon two approaches to extracting information about properties of massless

SU(3) gauge-fermion systems using tools from Wilsonian RG. The first approach utilizes non-
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Figure 1.3: Gradient-flow-based continuum β-function for Nf = 0 (blue), 8 (red), and 12 (green).
Non-perturbative continuum β-function indicated by multicolored bands with the width of the band
indicating the error. Perturbative 1- (dashed), 2- (dotted), and 3-loop β-function indicated by
multicolored lines [161].

perturbative β-functions, which are calculated from Monte Carlo simulations of the Nf = 0, 8, and 12

system in Chapters 4, 7, and 5, respectively. The second approach utilizes finite-size scaling (FSS).

In Chapter 6, I describe a neural-network-based method for FSS and apply it to various spin systems.

In Chapter 7, the same neural-network-based FSS method is applied to the zero-temperature phase

of the Nf = 8 system.

1.3.1 Non-perturbative β-functions

Fig. 1.3 shows the prediction for the continuum β-function β
(
g2
)

for Nf = 0 (blue, Chapter 4),

8 (red, Chapter 7), and 12 (green, Chapter 5) as multicolored bands. The width of the band indicates

the error. The continuum β-function is calculated from an infinite-volume/massless RG scheme that

utilizes the continuous gradient flow smearing transformation of Ref. [252], as described in Chapter

4 [181, 189, 190, 293]. All simulations utilize the Hamiltonian (hybrid) Monte Carlo algorithm

described in Chapter 8.1.1. The simulations of Chapters 5 and 7 additionally utilize Pauli-Villars
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improvement, which is described Chapter 5.2. The continuum β-function in Fig. 1.3 is juxtaposed

against the universal 1- (dahsed) and 2-loop (dotted) perturbative β-functions, along with the

3-loop (dashed-dotted) perturbative β-function that is calculated from the same gradient flow-based

RG scheme as the non-perturbative continuum β-functions [161]. The color of the perturbative

β-function indicates the corresponding value of Nf .

The behavior of the β-function in the weak coupling region (g2/4π ≪ 1) for each Nf approaches

its respective perturbative counterpart, as expected. On the other hand, the strong coupling behavior

from different Nf is very different. For the Nf = 0 system (blue band in Fig. 1.3), the β-function

increases in magnitude without bound; eventually, it becomes asymptotically linear in g2. Most of

the Nf = 0 β-function is cut off in Fig. 1.3 for the purposes of visualization. The full continuum

β-function is shown in either Fig. 4.8 or Fig. 4.12. In Chapter 4, I verify the calculation of the Nf = 0

β-function by calculating from it the MS Λ-parameter. The calculation yields
√
8t0ΛMS = 0.622(10),

which is consistent with the most recent determinations based on gradient flow [92, 380] (see Fig.

4.16). The scale t0 is used in modern-day scale setting calculations3 and is defined by g2(µ0) ≈ 15.8

at µ20 ∼ 1/8t0 in the aforementioned infinite-volume/massless gradient flow RG scheme [252].

The Nf = 8 β-function (red band in Fig. 1.3) initially decreases, then begins to show signs of

turning around around 15 ≲ g2 ≲ 23. If the Nf = 8 system is below the conformal window, then

such behavior could be indicative of walking (Fig. 1.2). If Nf = 8 is instead inside the conformal

window, then the turnaround is a sign of the β-function running into an IRFP. In any case, the

β-function for the Nf = 8 system is very different asymptotically from that of Nf = 0 and even the

Nf = 2 β-function of Ref. [177] calculated from the same RG scheme.

The Nf = 12 system (green band in Fig. 1.3) is likely in the conformal phase, which is

supported by a majority of investigations probing its infrared behavior properties. Indeed, the

Nf = 12 RG β-function of this thesis exhibits an IRFP at g2⋆ = 6.60(62). To verify the calculation

of the Nf = 12 β-function in Chapter 5, I calculate from it the leading irrelevant critical exponent

3Slight correction: the w0 scale is often preferred over t0 for scale setting because w2
0 > t0; hence, cutoff effects in

w0 are suppressed relative to t0.
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Figure 1.4: Result of finite size scaling analysis of the gradient flow renormalized coupling g2 for
the Nf = 8 system using a radial basis function network. ∞-order scaling with ν = 1/2 is shown
in top left panel and ν = 1 in the top right panel. 2nd-order scaling shown in bottom panel.
The prediction for the scaling function Fg2 from the radial basis function (RBFN) is indicated by
a gold band with the width of the band indicating the error. Scaling function is normalized by
N = 128π2/(3N2 − 3) (N = 3) for visualization purposes. Data entering the curve collapse analysis
is indicated by multicolored error bars for L/a = 16 (blue), 20 (orange), 24 (green), and 32 (purple).

γ⋆g = 0.199(32). I find that the estimate for γ⋆g is consistent with the literature at the 1σ-2σ level

[106, 186, 321] (see Fig. 5.8).

1.3.2 Finite size scaling with neural networks

The renormalized coupling g2 is a scaling variable in the vicinity of an RG fixed point.

Therefore, it can be used to probe the properties of phase transitions that occur as the bare gauge

coupling βb ≡ 6/g20 → βbc in infinite volume. In a finite volume, the RG coupling g2(L, βb) ≡ g2
(
µ;L

)
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with µ ≡ c/L for some c ∈ (0, 1/2] is expected to scale with βb and L in the vicinity of βbc as

g2(L, βb) = Fg2(x) (βb ≈ βbc),

where

x(L, βb) = (βb/βbc − 1)L1/ν (2nd-order)

for a 2nd-order phase transition or

x(L, βb) = L exp
[
− ζ(βb/βbc − 1)−ν

]
(∞-order)

for an ∞-order phase transition (like the BKT transition of the XY model). First-order phase

transitions also scale as x = (βb/βbc − 1)L1/ν , but with ν = 1/d [96, 120]. The function Fg2 is

a universal scaling function. It is similar to the scaling function of Eqn. 1.21 for the two-point

correlation function of some operator in a mass-deformed conformal field theory. The parameters

βbc, ν and ζ of the phase transition can be extracted by requiring that g2(L, βb) = Fg2(x) forms a

unique a one-dimensional curve in x. Once the correct critical parameters have been identified, the

individual curves of g2(L, βb) in βb at fixed L collapse onto Fg2(x); hence, this method is referred to

as curve collapse. One of the particularly tricky road bumps encountered by curve collapse analyses

is the need to estimate the scaling function Fg2 , which is typically done by replacing it with some

parametric ansatz; i.e., a polynomial. The parameters of the parametric ansatz for Fg2 are then

estimated simultaneously with the critical parameters as part of the curve collapse. It is desirable

to have on hand a collection of expressive functions that are capable of representing Fg2 . I show

in Chapter 6 that a type of single-layer artificial neural network known as a radial basis function

network (RBFN) can be very useful for this purpose, as RBFNs are specially-designed for function

approximation. I test the RBFN-based curve collapse on the finite-temperature phase transition of

various two-dimensional spin systems in Chapter 6. I then apply the same curve collapse analysis to

the zero-temperature phase transition of the Nf = 8 system into an SMG-like phase in Chapter 7
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In Fig. 1.4, I summarize the result of the Nf = 8 curve collapse for ∞-order scaling with

ν = 1/2, 1 (top left and right panels, respectively) and 2nd-order scaling (bottom panel). In each

panel of Fig. 1.4, the scaling function Fg2 is rescaled by N ≡ 128π2/(3N2 − 3) ≈ 53.6 for the

purposes of visualization and set c = 0.45. The prediction for Fg2 from the radial basis function

network is shown as a gold band. The width of the band indicates the statistical error. Individual

volumes at different βb are shown as colored markers with error bars. The prediction for βbc, ν and ζ

is shown in the top left corner of each panel. Though it is not shown in Fig. 1.4, 1st-order scaling

is strongly disfavored compared to 2nd-order and ∞-order scaling. For reasons that I discuss in

detail in Chapter 7, this does not necessarily imply that the transition is not 1st-order. Outside of

1st-order scaling, no one scaling is unambiguously preferred over another according to the simple

statistical tests that are applied to the curve collapse analysis of each scaling scenario (χ2 and

marginal likelihood). If the correlation length, defined in Chapter 2.2.2, can be determined, then it

will be possible determine whether the curve collapse analysis strongly disfavoring 1st-order scaling

hold water. If so, then there is a real possibility that the Nf = 8 system could possesses an SMG

phase with a consistent continuum limit.4

1.4 Road map

The core chapters of this thesis are Chapters 4-7. Readers that are interested only in the main

results of this thesis are advised to read just those chapters. Subleading developments are discussed

in Chapter 8. Relevant background material is given in Chapters 2-3. Below, I provide a road map

for navigating the material of this thesis.

(1) Chapter 2 (Wilsonian renormalization group): I introduce the Wilsonian renormal-

ization group tools that are used throughout this thesis, such RG transformations, RG

β-functions, running anomalous dimensions, and finite size scaling. The content of this

chapter is relevant to Chapters 4-8. It is also used in Chapter 3.4 to discuss the notion of

continuum limits.
4Pending confirmation that the SMG-like phase observed by Ref. [170] is a legitimate SMG phase.
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(2) Chapter 3 (Lattice gauge theory): I introduce the the basic tools and language of lattice

gauge theory with an emphasis on staggered fermions. The content of this chapter is relevant

to Chapters 4, 5, 7, and 8.

(3) Chapter 4 (Nf = 0): I first introduce the continuous β-function method (CBFM) for

calculating the infinite-volume RG β-function from gradient flow. I then apply the CBFM

to the Nf = 0 system. The Λ-parameter of the Nf = 0 system is calculated and a method

for matching β-functions non-perturbatively is introduced. The CBFM is also deployed in

Chapters 5, 7, and 8.3.

(4) Chapter 5 (Nf = 12): I calculate the continuum gradient flow β-function for the Nf = 12

system using the CBFM of Chapter 4. From the β-function, I calculate the leading irrelevant

critical exponent γ⋆g . The Bayesian model averaging procedure introduced in this chapter is

deployed in Chapter 7.

(5) Chapter 6 (Finite size scaling with neural networks): I both introduce the radial-

basis-function-network (RBFN-based) curve collapse method and apply it to curve collapse

analyses of the q-state Potts model and p-state clock model for q = 2, 3 and p = 4,∞.

I speculate on other applications of radial basis function networks to lattice field theory

analyses and exemplify one such method by determining the critical temperature of the

∞-state clock (XY) model from a direct interpolation of helicity modulus using an RBFN.

The RBFN-based curve collapse method is used in Chapter 7.

(6) Chapter 7 (Nf = 8): I first analyze the zero-temperature phase transition of the Nf = 8

system using the RBFN-based curve collapse method of Chapter 6. I then calculate the

continuum gradient flow β-function using the CBFM of Chapter 4. Error estimates for the

continuum β-function are improved by deploying the Bayesian model averaging procedure

introduced in Chapter 5.

(7) Chapter 8 (Other Developments): I first discuss the high-performance code development
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that went into creating the Quantum EXpressions (QEX-based) qex_staghmc suite [284].

qex_staghmc is used for most of the large-volume simulations and gradient flow measurements

of Chapters 5 and 7. I then discuss the code development that went into creating the SwissFit

library, which implements many of the Bayesian-statistics-inspired analysis tools that are

deployed in Chapters 5-7. I end by briefly discussing a calculation of operator anomalous

dimensions in the Nf = 10 system using domain wall fermion simulations.

(8) Chapter 8 (Conclusions): Summarizes the main technical results of this thesis and

discusses future research directions.



Chapter 2

The Wilsonian renormalization group

In The Renormalization Group method you take a structure you

don’t understand and convert it to another structure you don’t

understand. You keep doing it until you finally understand.

Michael Berry [40]

Broadly speaking, the Wilsonian renormalization group (RG), or just “renormalization group”,

refers to a formal collection of ideas and techniques that aid in the investigation of scale-dependent

properties of a physical system. Though the focus of this thesis is on gauge-fermion systems, this

chapter aims to treat the renormalization group in as broad of terms as possible. In doing so, we

can appreciate what the renormalization group tells us about field theories on a lattice in general

and we can directly apply what we have learned to other systems throughout this thesis.

To this end, let us consider a generic collection of fields {φf(n)} indexed by f that are defined

over a d-dimensional hypercubic lattice with lattice spacing a. For notational simplicity, we suppress

any additional indices that each φf may possess. The fields in {φf(n)} interact according a classical

action S[φ] that is a sum of terms

S[φ] =
∑

i

KiOi[φ], (2.1)

where each Oi respects the symmetries of S[φ] and each Ki is a coupling constant that renders

the combination KiOi[φ] dimensionless. Quantum fluctuations of this system are captured by the
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partition function

Zφ =

∫ ∏

f

[dφf] exp
(
-S[φ]

)
, (2.2)

from which we define the vacuum expectation value of a generic observable O[φ] as

⟨O[φ]⟩ = Z−1
φ

∫ ∏

f

[dφf] O[φ] exp
(
-S[φ]

)
. (2.3)

The key theoretical tool of the renormalization group is the renormalization group transformation,

which systematically removes irrelevant short-distance fluctuations while preserving physical long-

distance properties of the system under investigation. One can learn quite a bit about the properties of

field theories in general by understanding how the couplings Ki vary under repeated renormalization

group transformations.

2.1 Renormalization group transformations

A generic renormalization group proceeds via the following two step procedure; see Refs. [222,

230, 255, 356] for more details and applications to specific systems.

(1) Coarse grain: It is common to define the coarse graining step of an RG transformation

either in real space or in wave number (dual) space. Both achieve the task of eliminating

short-distance fluctuations.

• Real space: Eliminate short-distance fluctuations by defining a new set of coarse-

grained fields {φf} that are some local average over the original fields {φf}. If the

average is performed over fields that fluctuate on scales less than or equal to ba, then

the new coarse-grained fields live on a lattice with lattice spacing ba. The local average

should be defined in such a way that the symmetries of the original action are preserved;

this makes implementing a real space coarse-graining step in a gauge-fermion system

quite difficult, but not impossible [99, 194, 204].

• Dual space: Eliminate short-distance fluctuations by integrating out wave number
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fluctuations in the π/ba ≤ |k| ≤ π/a shell. More precisely, let the Fourier-transformed

fields be {φ̃f(k)}. We can then eliminate modes in the π/ba ≤ |k| ≤ π/a shell by

integrating over them in the partition function. This defines a new action S
[
φ̃f

]
for the

low wave number fields
{
φ̃f(k)

}
that is related to the original action S[φ̃f] as

−S
[
φ̃f

]
= log

∫ ∏

f

∏

π/ba≤|k|≤π/a

[
dφ̃f(k)

]
exp

(
-S[φ̃]

)
. (2.4)

The inverse Fourier transformed low wave number fields {φf} now live on a new lattice

with lattice spacing ba. For complicated systems, coarse graining in wave number space

can be more efficient computationally than coarse graining in real space.

(2) Renormalization: If necessary, restore the contrast of the fields of the original lattice by

rescaling the coarse-grained fields as φ′
f = Zfφf.

Depending on your familiarity with RG, you may now be wondering why I have not included

the rescaling step, whereby all dimensionful scales l are rescaled as l → l/b. The latter step is

usually included in treatments of RG that are geared toward condensed matter physics, where the

lattice spacing is held fixed and the rescaling step is necessary to restore the original lattice spacing

(resolution) [222, 230, 356]. However, the perspective in high-energy physics is quite different. The

lattice spacing, or ultraviolet cutoff, changes under an RG transformation, but all dimensionful scales

below the cutoff are held fixed [70]. As far as dimensionless quantities are concerned, this difference

in perspectives does not matter. However, it is worth keeping in mind because it can lead to a whole

array of confusions, as it had for me.

For the renormalization group transformation to preserve the long-distance properties of the

original set of fields, it must be the case that it preserves the partition function; that is,

Zφ =

∫ ∏

f

[dφf] exp
(
-S[φ]

)
=

∫ ∏

f

[dφ′
f] exp

(
-S ′[φ′]

)
= Zφ′ . (2.5)

This condition imposes a set of constraints on the steps of the renormalization group transformation.
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The action S ′[φ′] is composed of two sets of terms. The first set of terms are the same as the original

action S[φ], but they are composed of the renormalized fields {φ′
f(n)} and they are expressed in

terms of a new set of renormalized couplings K ′
i({Ki}). The second set of terms are generated by

the coarse-graining procedure of the renormalization group transformation (if they were not already

present in S[φ]). There are usually an infinite number of such terms. Due to the condition of Eqn.

2.5, iterating the renormalization group transformation induces a flow on the infinite-dimensional

space of couplings K ′ ≡ (K ′
1,K

′
2, ...) defined by each S ′[φ′]. This flow is the renormalization group

flow.

2.2 Renormalization group flow

Consider now a map Rb that takes any initial set of couplings K0 to a new set of couplings

K ′ = Rb(K0) via an RG transformation. The coarse graining step of the RG transformation ensures

that Rb does not have an inverse. It must also be the case that [230, 255]

Rb′(K
′) = Rb′b(K0). (2.6)

This where I must insert the obligatory statement that Eqn. 2.6 combined with Rb lacking an inverse

implies that a renormalization group transformation does not actually form a group. It forms a

semi-group. Hence, the name renormalization group is a misnomer; such is the way of science. We

can think about the flow that is induced by Rb using the language of dynamical systems. Namely,

the topology of the flow over the entire set of initial couplings K0 is completely specified by the

action of Rb on K that are within the local vicinity of a fixed point K⋆ of Rb, which is defined by

Rb

(
K⋆
)
= K⋆. (2.7)

If we know what the local behavior of couplings K0 starting near every fixed point K⋆ looks like

under an RG transformation, then we can qualitatively determine what the global topology of the
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flow must look like.

2.2.1 The β-function and characterizing fixed points by their local topology

Let us take b to be a dimensionless quantity that can be varied continuously. This is most easily

realized by a RG transformation in dual space, though it is possible to define RG transformations

with continuous b in real space. We can cast the flow of the couplings Ki under an infinite number

of infinitesimally small RG transformations in terms of a differential equation

−b2dKi(b)

db2
≡ βi(K), (2.8)

where βi(K) is referred to as the renormalization group β-function of coupling Ki. As it contains

all of the information about the RG flow, it is only a function of the couplings K. In Appendix

A, I present a perspective of what is to follow in a form that may be more comfortable to folks

in the condensed matter community. If you have never been introduced to the concepts of the

renormalization group, I recommend reading Appendix A before continuing. Fixed points K⋆

correspond to points in K-space where the RG β-function is zero; that is,

βi(K
⋆) = 0 (2.9)

for all i. Let δK ≡K−K⋆. Then, for δKi/K
⋆
i ≪ 1, we can approximate the RG flow by linearizing

the β-function as

βi(K) = BδK +O
(
δK2

)
, (2.10)

where B is a linear operator with components

Bij =
∂βi(K)

∂Kj

∣∣∣∣
K=K⋆

. (2.11)
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The principal axes of B completely characterize the local topology of the RG flow about K⋆.

Denoting e(α)L as a normalized left eigenvector (principal axis) of B, we have

e(α)L B = e(α)L λ(α). (2.12)

Along the principal axes, the RG equation is decoupled with β-function

−b2dKα(b)

db2
= βα(Kα) ≈ λ(α)δKα +O

(
δK2

)
(2.13)

within the vicinity of K⋆. The component Kα is obtained from K via the projection Kα = e(α)L K;

δKα is referred to as a scaling variable. The sign of λ(α) indicates whether Kα flows into the fixed

point (irrelevant), out of the fixed point (relevant), or if higher-order in terms in δK are needed to

determine if Kα flows into or out of the fixed point (marginally irrelevant or marginally relevant).

The eigenvalues λ(α) are universal in the sense that they do not depend on the RG transformation

used to calculate them. This is our first instance of universality coming into play. Physical systems

with the same RG eigenvalues λ(α) are said to belong to the same universality class ; here, equivalent

“physical systems” can mean different lattice discretizations of a continuum field theory.

2.2.2 Characterizing fixed points by the correlation length

Aside from the local topology the RG flow about a fixed point K⋆, fixed points are also

characterized by the minimum length ξ̃(K) (in units of the lattice spacing) over which the fields

φf(n) at lattice site n are correlated with another lattice site m that is separated from n by a vector

of length ξ̃(K). After an RG transformation, the correlation length in units of the lattice spacing

ξ̃(K) at K = Rb(K0) is related to ξ̃(K0) at K0 before the RG transformation as

ξ̃(K) = ξ̃(K0)/b. (2.14)
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Therefore, once the fixed point K⋆ is “reached”, the correlation length transforms as

ξ̃(K⋆) = ξ̃(K⋆)/b (2.15)

under an RG transformation. The only way that Eqn. 2.15 can be true is if ξ̃(K⋆) is either zero

or infinite. A fixed point is called a critical fixed point if ξ̃(K⋆) is infinite; otherwise, it is called

a trivial fixed point. The collection of couplings that flow into a critical fixed point form what is

called the critical manifold or critical surface. Since the correlation lengths up to the fixed point

are related to one another by Eqn. 2.14, it must be the case that each of the correlation lengths on

the critical surface are infinite. In Appendix B, I use the Ising model to describe how the global

topology of an RG flow can be characterized by the local topology and correlation length at all fixed

points of an RG transformation.

2.3 Connection to β-functions in high energy physics

At this point, you may be wondering how the notion of a renormalized coupling in this

chapter is related to the renormalized coupling that you may be familiar with from the Review

for Particle Physics, the Flavor Lattice Averaging Group report, or whatever your favorite source

of information about high energy physics is [6, 381]. In the high energy physics literature on

quantum chromodynamics (QCD), it is common to define a renormalized coupling in terms of some

observable O(µ) at an energy scale µ that is related to the renormalized coupling in the MS scheme

g2
MS

(µ) ≡ 4παs(µ) in perturbation theory as

O(µ) ∼ a1αs(µ) + a2αs(µ)
2 +O

(
α4
s

)
(2.16)

for constants a1, a2, and so forth. For the perturbative calculations that take up much of the

particle physics literature, such a practical definition is perfectly reasonable and allows for important

Standard Model calculations to be carried out at energy scales that are relevant to the Large Hadron
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Collider (LHC). I delve into calculations of αs in slightly more detail in Chapter 4.6. The connection

between the procedure of defining a renormalization coupling by relations like Eqn. 2.16 and the

RG-based definition that I have discussed already in this chapter is subtle and, from the author’s

perspective, not well-understood. Nonetheless, I shall make an argument that will convince some,

but not all. Given that renormalization is an infamously difficult subject to understand and different

sub-disciplines have varying notions of RG that are tailored to fit their idea of what RG is useful for,

both reactions are quite frankly within reason.

Suppose that I have defined a renormalization group transformation that preserves the partition

function Zφ of some physical system as in Sec. 2.1. The expectation value of an RG-transformed

observable O′(b) in the “bare system” is related to the expectation value of O before the RG

transformation in the “renormalized system” as [74, 256]

⟨O′(b)⟩K0 = ZO(b)⟨O⟩K(b), (2.17)

where ⟨· · · ⟩K0 is an expectation value in the bare system, ⟨· · · ⟩K(b) is an expectation value in the

renormalized system, ZO(b) is the wave function renormalization of O, and I have neglected any

potential operator mixing. Note that Eqn. 2.17 states that expectation values of RG blocked

observables O(b) in the bare system are equivalent to expectation values of unblocked observables in

the renormalized system; i.e.,
〈
O(b)

〉
K0

= ⟨O⟩K(b), (2.18)

as O′(b) = ZO(b)O(b) by definition [73, 157, 347].

Suppose now that the RG transformation that we are performing has a fixed point. Additionally,

suppose that there exists some set of relevant observables {Oα} with ZOα(b) = 1 about the fixed

point; in other words,

⟨O′(b)⟩K0 = ⟨O⟩K(b). (2.19)

If the number of Oα is equal to the number of relevant couplings of the fixed point, then Eqn. 2.19
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implies that there is a one-to-one relation between the set {Oα} and the relevant couplings {Kα} as

far as mapping out the relevant directions of the RG flow about the fixed point is concerned [258].

As such, the {Oα} can be used to define a set of renormalized couplings

g2α(b) ∼ ⟨O′
α(b)⟩K0 (2.20)

and corresponding β-functions

βα
(
g2α
)
≡ −b2dg

2
α(b)

db2
(2.21)

that characterize the relevant directions of the RG flow. To the best of the author’s knowledge,

there is no reason to expect ZO(b) to diverge away from unity as the flow evolves away from the

local vicinity of the fixed point; hence, the
{
g2α(b)

}
should map out the entire RG flow that emerges

from the fixed point. Moreover, Eqn. 2.19 ensures that the couplings
{
g2α(b)

}
are also regular if the

couplings of the Wilsonian effective action are regular; this is always the case. As such, if the RG

flow emerging out of one fixed point runs into another fixed point, the relevant couplings
{
g2α(b)

}

of the former fixed point must evolve into irrelevant couplings of the latter fixed point. There are

often many different choices for the {Oα} from which one can define {g2α(b)} to map out the RG

flow. As far as calculations for QCD are concerned, defining a running coupling in terms of some

observable O(µ) about the ultraviolet fixed point of QCD (see Sec. 3.4), where asymptotic freedom

reigns supreme, is similar to the procedure of picking out a coupling g2(µ) that maps out the RG

flow of QCD. Note, however, that perturbatively-defined RG couplings like those of Eqn. 2.16 can

lead to certain pathologies where the coupling appears to be well-defined pertubatively, but it does

not actually track the RG flow outside of the local vicinity of the fixed point. In such cases, one

is advised to refer to the non-perturbative definition motivated by Eqn. 2.19. Even so, because

there are no proofs of any of the statements that I have made about Wilsonian RG in this chapter,

it is possible that even the couplings based on Eqn. 2.19 break down. To this end, high energy

physics is really in need of a constructive approach to non-perturbative quantum field theory and

renormalization. Nonetheless, one has to start somewhere and check that what they’re doing along
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the way is sane.

2.4 Running operator anomalous dimensions

The correlation function of an operator O(n) in the bare system K0 is related to the expectation

value of the same observable O(n) in the renormalized (blocked) system K as [74]

⟨O(n)O(0)⟩K0 = Z2
O(b)⟨O(nb)O(0)⟩K(b), (2.22)

where nb ≡ n/b. Eqn. 2.22 is the Wilsonian RG version of the Callan-Symanzik equation [65, 349,

350]. Combining Eqns. 2.17 and Eqn. 2.22 yields the following string of identities (nb ≫ 1)

⟨O(n)O(0)⟩K0 = ⟨O′(nb; b)O′(0; b)⟩K0 = Z2
O(b)

〈
O(nb; b)O(0; b)

〉
K0
, (2.23)

where O′(nb; b) and O(nb; b) denote the renormalized and blocked O(n), respectively. The first

equality states that correlations in O are identical to those of O′ as far as fluctuations in the bare

system at scales nb ≫ 1 are concerned. In other words, renormalized observables preserve the

long-distance properties of their unrenormalized counterparts. Eqn. 2.23 also hints at a method for

determining ZO(b) in terms of the expectation value of the RG blocked observables O(nb; b) in the

bare system

Z−2
O (b) =

〈
O(nb; b)O(0; b)

〉
K0

⟨O(n)O(0)⟩K0

. (2.24)

Note again that Eqn. 2.24 requires nb ≫ 1. Eqn. 2.24 can be taken as a non-perturbative definition of

the wave function renormalization for O for the RG transformation (scheme) that takes K0 →K(b).

The wave function renormalization ZO is not physical in the sense that its running depends

upon the RG transformation that it is defined from. However, like the renormalized coupling, its

behavior in the vicinity of a RG fixed point K⋆ is universal. Supposing then that the abstract RG

flow we are working with exhibits an RG fixed point at K⋆, the wave function renormalization runs
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with b in the vicinity of K⋆ as

ZO(b) ∼ b−∆O (K →K⋆), (2.25)

where

∆O ≡ dO + γ⋆O (2.26)

is the scaling dimension, dO is the canonical dimension, and γ⋆O is the anomalous dimension of O.

The anomalous dimension γ⋆O is universal and characterizes various properties of the system close

to or at K⋆; it is a critical exponent. If O is dimensionless, as is the case for any observable that

is measured from lattice simulations before scale setting, and the RG flow is nonlinear, then Eqns.

2.24-2.26 can be used to define a running operator anomalous dimension in terms of ZO as

b
d

db
logZO(b) ≡ γO

(
K
)
. (2.27)

Furthermore, if one defines [74, 177]

RO(b) ≡
〈
O(nb; b)O(0; b)

〉
K0

⟨O(n)O(0)⟩K0

, (2.28)

then Eqn. 2.24 implies that

γO
(
K
)
= −2b d

db
logRO(b). (2.29)

In any case,

γO
(
K
)
→ γ⋆O. (2.30)

If the RG flow is linear, then γO can be calculated similarly by extending the definition of RO(b). I

will use the ideas of this section, specifically Eqn. 2.29, in Chapter 8.3.
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2.5 Phase transitions and finite size scaling

A phase transition for a system living on a lattice is generally characterized by a non-analyticity

in the reduced Helmholtz free energy per site, defined as

Aφ(K) ≡ −N−d logZφ, (2.31)

at some critical value K = Kc of the couplings K. For notational convenience, I have defined

N ≡ L/a, such that the volume in units of the lattice spacing is Nd. Such non-analyticities exist only

in the infinite volume limit. The phenomenology of any particular phase transition depends strongly

on its order. Discontinuities in any of the first-order partial derivatives of Aφ(K) are associated

with first-order transitions, which exhibit phenomena such as phase coexistence, hysteresis, and

the release of latent heat. Second -order phase transitions are associated with discontinuities in any

of the second-order derivatives of Aφ(K) and most notably exhibit a diverging correlation length,

leading to phenomena such as scale invariance and power law scaling. The continuum limit of the

gauge-fermion systems that we have been exploring in this thesis is a second-order phase transition.

Non-analyticities in Aφ(K) that are due to an essential singularity are categorized as ∞-order

phase transitions. The correlation length at an infinite-order phase transition also diverges; however,

the manner in which it diverges is not characterized by a power law like it is for a second-order

phase transition. First-order phase transitions are fascinating in their own right; however, they

are extremely difficult to simulate using conventional canonical Monte Carlo techniques due to

hysteresis.1 As such, I will only explore 2nd- and infinite-order phase transitions in this chapter,

which I collectively refer to as continuous phase transitions. All statements that follow hold for

continuous phase transitions unless stated otherwise.

According to the definition for an RG transformation that I gave in Sec. 2.1, Aφ(K) transforms

1One way to get around the hysteresis-induced problems that canonical algorithms experience when simulating
first-order phase transitions is to use the beautiful multicanonical sampling technique; see Refs. [33, 38, 39].
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under an RG transformation (K →K ′) as

Aφ(K) = Fφ(K) + b−dAφ(K
′) (infinite volume), (2.32)

where Fφ(K) is a “constant” that originates from averaging over the short-distance (a ≤ l ≤ ba)

degrees of freedom in the coarse graining step; it does not contribute any singularities to Aφ(K)

[70]. Therefore, it is common to define singular part of Aφ(K) by its behavior under an RG

transformation:

A(s)
φ (K) = b−dA(s)

φ (K ′) (infinite volume). (2.33)

Eqn. 2.33 is the famous scaling hypothesis, first posited on phenomenological grounds by Widom in

1965 and put to work soon after for the Ising system by Kadanoff [216, 371]. In a finite volume, the

infinite volume non-analyticities in A(s)
φ (K) are smoothed out. From the perspective of RG, this is

because N−1 = a/L acts as a relevant variable that pushes the system off of any critical surface.

The transformation for the singular part of the free energy is modified in a finite volume as [69, 70]

A(s)
φ

(
K, N−1

)
= b−dA(s)

φ

(
K ′, bN−1

)
(finite volume). (2.34)

From Eqn. 2.34, all of the well-known FSS relations for a 2nd-order phase transition follow. Infinite-

order phase transitions have to be treated with care, though the overall structure of the FSS relations

are similar. Both for the purposes of simplicity and concreteness, let us now focus on a system with

one relevant parameter (with respect to some fixed point). Moreover, let us focus specifically on

the one-dimensional subspace of the full set of couplings, so the K ≡ (K, 0, 0, ...) with K the single

relevant coupling. For example, we could be studying the Ising model with no external magnetic

field and no nearest-neighbor coupling; the RG flow in this case is demonstrated in Fig. B.1 for

K2 = K3 = 0 (as defined in that appendix).

Define k ≡ K/Kc − 1 for Kc the critical coupling of the infinite volume phase transition. The



37

singular part of the free energy transforms under an RG transformation in a finite volume as

A(s)
φ

(
k,N−1

)
= b−dA(s)

φ

(
b1/νk, bN−1

)
(2nd-order) (2.35)

at leading order (no corrections to scaling) for a 2nd-order phase transition. The 1/ν exponent is the

conventional renormalization group eigenvalue of K; it is also the critical exponent of the correlation

length (in units of the lattice spacing)

ξ̃(K) ∼ |k|−ν (2nd-order). (2.36)

Eqn. 2.35 implies that the singular part of the free energy is a homogeneous function of k and N−1.

The homogeneity of A(s)
φ

(
k,N−1

)
around K ≈ Kc implies that it can be rewritten as [148, 230]

A(s)
φ

(
k,N−1

)
= NdΦ±

(
|k|N1/ν

)
(2nd-order), (2.37)

where Φ± is a universal scaling function that could differ for K+ → Kc (above, Φ+) or K− → Kc

(below, Φ−). The scaling behavior of any observable that is derived from A
(s)
φ

(
k,N−1

)
will depend

upon the dimensionless combination |k|N1/ν within the vicinity of K ≈ Kc due to the presence of

the scaling function in Eqn. 2.37. Interestingly enough, the scaling of Eqn. 2.37 also holds for a

first-order phase transition, but with ν = 1/d [96, 120]. Assuming that the correlation length is

known, this makes Eqn. 2.37 a good test for distinguishing a 2nd-order phase transition from a

1st-order phase transition. However, it is absolutely crucial to stress that this test only holds any

weight if the correlation length in units of the lattice spacing is known at each K; otherwise, it is

possible to misidentify a phase transition as 2nd-order due to the pseudocritical behavior that is

observed for first-order phase transitions with large (but not infinite) correlation lengths.

Similar behavior is observed for ∞-order phase transitions; however, the argumentation is

more challenging. A heuristic way to arrive at the scaling form of the free energy for an infinite-order

phase transition is to first note that the argument of the scaling function for a 2nd-order phase
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transition is related to the correlation length ξ̃ of the infinite volume system as [70]

|k|N1/ν ∼
(
ξ̃(K)/N

)−1/ν
(2nd-order). (2.38)

As such, I could have also written Eqn. 2.37 as

A(s)
φ

(
k,N−1

)
= NdΦ±

(
ξ̃(K)/N

)
, (2.39)

which holds for any continuous phase transition of a single variable. Note that I am sloppily still

referring to the scaling function as Φ± despite changing its argument; for this I have no remorse and

I will continue this practice for the sake of notational brevity. The infinite-volume correlation length

of an ∞-order phase transition diverges as

ξ̃(K) ∼ exp
(
ζ|k|−ν

)
(∞-order), (2.40)

where ν is a universal critical exponent and ζ is a non-universal constant. Therefore, A(s)
φ

(
k,N−1

)

scales in the vicinity of an ∞-order phase transition as

A(s)
φ

(
k,N−1

)
= NdΦ±

(
N exp

(
-ζ|k|−ν

))
(∞-order) (2.41)

after some rearranging of the arguments. As is the case for a 2nd-order phase transition, all

observables derived from Eqn. 2.41 will scale with the combination N exp
(
-ζ|k|−ν

)
around K ≈ Kc

in some manner. I will use the ideas of this section in Chapters 6 and 7.



Chapter 3

Gauge-fermion systems on a lattice

[Lattice gauge theory] is merely a corner of quantum field theory,

and the techniques lattice theorists use are simply decorated

versions of techniques used across the board by physicists studying

problems with many degrees of freedom in particle, condensed

matter, and nuclear physics.

Thomas DeGrand and Carleton DeTar [98]

In this chapter, I introduce the lattice discretization of SU(N) gauge-fermion systems on a

hypercubic Euclidean spacetime lattice. In Secs. 3.1-3.2, I discuss the classical aspects of discretizing

gauge and fermion fields. I then discuss the quantization of lattice-discretized gauge-fermion systems

in Sec. 3.3 and end in Sec. 3.4 by treating the notion of continuum limits with the tools of the

renormalization group that I introduced in Chapter 2. For further reading, see Refs. [88, 142, 227,

265]. For mathematically-rigorous treatments of gauge-fermion systems in the continuum and on a

lattice, see Refs. [105, 159, 270] and Refs. [26, 107–109, 329], respectively.

3.1 Classical pure Yang-Mills on a lattice

The classical SU(N) Yang-Mills system in the continuum is described by a vector potential

Aµ(x) ∈ su(N), from which the field strength tensor

Fµν(x) = ∂µAν(x)− ∂νAµ(x) + i[Aµ(x),Aν(x)] ∈ su(N). (3.1)
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is specified. Under a local gauge transformation Λ(x) ∈ SU(N), Fµν(x) transforms as

Fµν(x)→ Λ(x)Fµν(x)Λ(x)
†.

As such, the simplest local action that we can construct from Aµ(x) that satisfies both (Euclidean)

Poincaré invariance and local gauge invariance is

SYM[Aµ] = −
1

2g20

∫
ddx Trc

[
Fµν(x)F

µν(x)
]
, (3.2)

where Trc denotes a trace over color indices and g20 is a dimensionless parameter that we shall identify

with the bare gauge coupling once we quantize the classical Yang-Mills system. Eqn. 3.2 is referred

to as the Yang-Mills action.

The key mathematical object that will allow us to transcribe the continuum Yang-Mills action

onto a lattice is the parallel transporter. Given a curve C in Rd, the parallel transporter associated

to C is

U(C) = P exp

[
i

∫

C
dxµAµ(x)

]
, (3.3)

where P is the path ordering operator [265]. Taking C to form a closed boundary of a 2-dimensional

surface Ω (C = ∂Ω), a generalization of Stokes’ theorem implies [142, 265]

U(C) = P exp

[
i

∫

Ω
dxµdyµFµν(x)

]
. (3.4)

Eqn. 3.4 forms the basis of Wilson’s discretization of Eqn. 3.2 [375].

Pass now from the continuum to a d-dimensional hypercubic lattice Zd with uniform lattice

spacing a. We take the discretized parallel transporter of a curve C connecting any lattice site

n ≡ x/a to the next lattice site n+ µ̂ to be

logUµ(n) ≡ iaAµ(an). (3.5)
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We refer to Uµ(n) as a gauge link ; the gauge links play the role of the continuum vector potential.

Under a local gauge transformation, gauge links transform as

Uµ(n)→ Λ(an)Uµ(n)Λ(an+ aµ̂)†. (3.6)

Now defining a curve C that starts at n and traverses the smallest possible square loop in the µ-ν

plane, the lattice discretization of Eqn. 3.4 is

logUµν(n) ≡ logUµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†Uν(n)† ≈ ia2Fµν(an) +O
(
a4
)
, (3.7)

which is referred to as a plaquette. The simplest discretization of Eqn. 3.2 that we can construct

from the gauge links Uµ(n) that is invariant under gauge transformations is

SW[Uµ] ≡
βb
N

∑

n

∑

µ<ν

ℜTrc
[
1− Uµν(n)

]
, (3.8)

where βb ≡ 2N/g20. The action SW is referred to as the Wilson action, as it was first written down

by Kenneth G. Wilson in 1974 [375]. The classical continuum limit of Eqn. 3.8, taken by driving

a→ 0 directly, yields

SW[Uµ] = −
a4

2g20

[∑

n

∑

µν

Trc
[
Fµν(an)Fµν(an)

]
+O

(
a4
)
]

∼ − 1

2g20

∫
ddx Trc

[
Fµν(an)F

µν(an)
]

(a→ 0),

which follows from Eqns. 3.7-3.8.
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3.2 Classical fermions on a lattice

Free classical Dirac fermions in continuum Euclidean space are described by Grassmannn-valued

spinor fields Ψ(f)(x) that are endowed with the action

SF[Ψ] ≡
∫

ddx

Nf∑

f=1

Ψ
(f)

(x)DfΨ
(f)(x), (3.9)

where Df ≡ γµ∂µ +mf is the Euclidean Dirac operator with Euclidean Dirac matrices satisfying

{γµ, γν} = 2δµν .

Nf is the number of fermion flavors, and Ψ
(f)

(x) ≡ Ψ(f)(x)†γ0. Discretizing Eqn. 3.9 is a formidible

task due to the infamous Nielsen–Ninomiya no-go theorem. For simplicity, consider just one of the

flavors in Eqn. 3.9, with action

S(f)F [Ψ] ≡
∫

ddx Ψ
(f)

(x)DfΨ
(f)(x). (3.10)

Discretizing Eqn. 3.10 amounts to discretizing the Dirac operator Df . Consider the Fourier-

transformed lattice Dirac operator D̃f (p) with Fourier transformed action

S(f)F

[
Ψ̃
]
=

∫
ddp

(2π)d
Ψ̃(p)D̃f (p)Ψ̃(p)

and take the following conditions on Df to hold [227].

• Translational invariance: for a generic Dirac spinor ũ(p), Dfe
ipxũ(p) = D̃f (p)e

ipxũ(p).

• Locality : D̃f (p) is both an analytic and periodic function of p.

• Proper continuum limit : D̃f (p) = iγµpµ +O
(
a|p|

)
.

The Nielsen–Ninomiya theorem then states that the following cannot hold simultaneously in four

dimensions for a discretized massless Dirac operator [227].
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• No species doubling : D̃f (p) is invertible for all non-zero p.

• Strict continuum chiral symmetry : for γ5 ≡ iγ1γ2γ3γ4, {Df , γ5} = 0.

In other words, we either have more fermions in the continuum than we intended or we have

strict chiral symmetry. Any lattice fermion formulation in four dimensions must contend with the

Nielsen-Ninomiya theorem. I discuss in detail only the lattice fermion formulations that are utilized

in the present thesis. From here on, I shall bring back the flavor index f only when necessary.

Moreover, I distinguish lattice fermions ψ from continuum fermions Ψ notationally by

ψ(n) = Ψ(an). (3.11)

3.2.1 Staggered lattice fermions

Let us begin with the simplest discretization of D that fully preserves chiral symmetry. Define

a forward difference operator ∂µ as

a∂µψ(n) ≡ ψ(n+ µ̂)− ψ(n) (3.12)

and a backward difference operator ∂∗µ as

a∂∗µψ(n) ≡ ψ(n)− ψ(n− µ̂). (3.13)

In tems of ∂µ and ∂∗µ, we can write down a discretization of the Dirac operator that preserves chiral

symmetry when m = 0 as

DN =
1

2

∑

µ

γµ
(
∂µ + ∂∗µ

)
+m. (3.14)

The discretized Dirac operator DN is often referred to as the naïve Dirac operator; as is the case for

many names in the physical sciences, this is quite unnecessarily disparaging. In any case, D̃N(p)

is not invertible when all pµ = 0 or π/a. There are sixteen such momenta. Therefore, DN yields

sixteen degenerate continuum fermions. This is despite the fact that we discretized the D for only a
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single flavor. That is the price we pay for enforcing chiral symmetry.

Staggered fermions reduce the number of doublers from sixteen to four while retaining a

residual U(1) chiral symmetry by mixing lattice indices n with spinor indices α. Consider the local

transformation

ψ(n)→ Ω(n)ψ(n), (3.15)

where

Ω(n) = γn1
1 γn2

2 γn3
3 γn4

4 (3.16)

for n = (n1, n2, n3, n4) [98, 142]. Performing the staggered transformation of Eqn. 3.15 on the naïve

lattice fermion action with naïve lattice Dirac operator DN produces a new action that, when written

in terms of the transformed lattice fermions fields, has a new lattice Dirac operator

DS =
1

2

∑

µ

αµ(n)
(
∂µ + ∂∗µ

)
+m, (3.17)

where

α1(n) = 1 and αµ(n) = (−1)nµ−1αµ−1 for µ > 1. (3.18)

The new action with staggered Dirac operator DS is diagonal in spin; in other words, the components

of the Dirac spinor have been decoupled. We call these decoupled components staggered fermions χ.

The action for a single staggered fermion is

SSF[χ] = a4
∑

n

χ(n)DSχ(n). (3.19)

Staggered fermions were first introduced in a seminal paper by Leonard Susskind and John Kogut in

1975 [228]. Therefore, they are sometimes referred to as Kogut-Susskind fermions. Note that there

also exists a beautiful differential geometric formulation of staggered fermions that starts in the

continuum with Kähler-Dirac fermions [35]. The staggered fermion action of Eqn. 3.19 with m = 0
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is invariant under the U(1) transformation [98]

χ(n)→ exp
(
iΓ5(n)θ

)
ψ(n), (3.20)

where Γ5(n) = 1 for n even and −1 for n odd. This U(1) transformation is a remnant of chiral

symmetry.

One staggered fermion is equivalent to four Dirac fermions. The four degenerate Dirac fermions

are referred to as tastes because physicists think they’re funny. To see how one gets four Dirac

fermions out of one staggered fermion, consider the unitary change of basis [98, 265]

ψ(f)
α (n) ≡ 1

8

∑

η

Ωfα(η)χ(2n+ η), (3.21)

where ηµ = 0 or 1. Each ψ(f)(n) is a four-component Dirac fermion. The matrix Ω is the same as

Eqn. 3.16, but one index is for spin and the other is for flavor. With the change of basis in Eqn.

3.16, the staggered action of Eqn. 3.19 reads

SSF[ψ] ∝ a4
∑

n,µ

ψ(n)

[
1

2
(γµ ⊗ I)

(
∂µ + ∂∗µ

)
− a
(
γ5 ⊗ γ∗µγ5

)
□µ

]
ψ(n) + a4m

∑

n

ψ(n)ψ(n), (3.22)

where the “⊗” denotes a tensor product “spin”⊗ “taste” and

4a2□µψ(n) ≡ 4a2∂∗µ∂µψ(n) ≡ ψ(n+ µ̂) + ψ(n− µ̂)− 2ψ(n). (3.23)

The γ-matrices on the flavor side are understood to act on the flavor components of the Dirac spinor

in Eqn. 3.21. The term

aψ(n)
(
γ5 ⊗ γ∗µγ5

)
□µψ(n)

in Eqn. 3.22 breaks taste symmetry at non-zero lattice spacing. The massless Dirac operator in this
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new “spin-taste” basis

DSST ∝
1

2
(γµ ⊗ I)

(
∂µ + ∂∗µ

)
− a
(
γ5 ⊗ γ∗µγ5

)
□µ (3.24)

has a Fourier transform that is not invertible only at four momenta due to the appearance of the

taste-breaking term. The four momenta at which D−1
SST has a pole correspond to four “tastes” of

Dirac fermion in the continuum. This reduction in the number of doublers comes at the cost of

explicitly breaking taste symmetry. However, there is still a residual U(1) chiral symmetry, and

when this U(1) chiral symmetry is spontaneously broken, it produces a Goldstone boson [98].

3.2.2 Other lattice fermions

Staggered fermions are only one of a whole zoo of lattice fermion contenders. I have focused

on staggered fermions because they are the primary formulation that is utilized in this thesis. In Sec.

8.3, I use another formulation of lattice fermion known as domain wall (DW) fermions. For the sake

of completeness, let me briefly discuss DW fermions by starting with Wilson fermions.

Wilson fermions reduce the number of fermion doublers in four dimensions from sixteen to

one by explicitly breaking chiral symmetry [375]. The Wilson Dirac operator is

DW =
1

2

∑

µ

[
γµ
(
∂µ + ∂∗µ

)
− a□µ

]
+m. (3.25)

The −a□µ term is responsible for explicitly breaking chiral symmetry in Eqn. 3.25. Notice that the

chiral symmetry breaking term for the Wilson Dirac operator is similar to the taste breaking term

in the staggered Dirac operator in the spin-taste basis. Domain wall fermions are five-dimensional

Wilson fermions with a topological defect in the fifth-dimension that separates left-handed modes

from right-handed modes on the four-dimensional boundary [217, 219, 331, 363]. Denote the size

of the fifth dimension as N5. When N5 → ∞, DW fermions are equivalent to a formulation of

lattice fermion that obeys a lattice analogue of chiral symmetry that is expressed by the famous
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Ginsparg-Wilson equation [146, 195, 196, 275]

{DDW, γ5} ∼ aDDWγ5DDW (N5 →∞), (3.26)

where DDW denotes the domain wall discretization of the Dirac operator. The N5 →∞ limit of a

DW fermion is known as an overlap fermion [276]. Both overlap fermions and DW fermions possess

no doublers at the cost of explicitly breaking chiral symmetry according to Eqn. 3.26. When N5 is

finite, there are corrections to Eqn. 3.26. For an explicit form of the DW Dirac operator DDW, see

Ref. [142]. Note that modern simulations with DW fermions, including those in Sec. 8.3, typically

utilize a generalization of DW fermions known as Möbius domain wall fermions [54].

3.2.3 Coupling lattice fermions to lattice gauge fields

When one says that a continuum fermion field Ψ “transforms under the fundamental represen-

tation of SU(N)”, they are asserting that Ψ is smooth map x 7→ Ψ(x) ∈ Vx, where x ∈ R4 and Vx is

a vector space that furnishes the fundamental representation of SU(N).1 Because the vector spaces

Vx and Vy for x, y ∈ R4 are different vector spaces, there is no meaning to comparing Ψ(x) ∈ Vx to

Ψ(y) ∈ Vy without some mathematical device that transports vectors in Vy to vectors in Vx (and

vice-versa). That device is the parallel transporter that I briefly introduced in Sec. 3.1.

Take C to be a curve that connects any two points x, y ∈ R4. The action of the parallel

transporter U(C) on Ψ(y) is to transport it to Vx; e.g., U(C)Ψ(y) ∈ Vx. By transporting Ψ(y) ∈ Vy

to Vx, one can now compare Ψ(y) to Ψ(x).2 In Sec. 3.1, I introduced the gauge link Uµ(n) as a

discretization of the parallel transporter that links n→ n+ µ̂. To make the forward and backward

difference operators in Eqns. 3.12-3.13 well-defined when the lattice field ψ transforms under

the fundamental representation of SU(N) at each lattice site, one uses the gauge link to connect

1Many of the following statements readily generalize to any other spacetime manifold and Lie group representation.
2It is worth noting that one can also easily define the gauge covariant derivative without reverting to arguments

from gauge invariance, which I always found to be unsatisfying.
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neighboring lattice sites as

a∂µψ(n) ≡ Uµ(n)ψ(n+ µ̂)− ψ(n) (3.27)

and

a∂∗µψ(n) ≡ ψ(n)− Uµ(n)†ψ(n− µ̂). (3.28)

By redefining the forward- and backward-difference operators in Eqns. 3.12-3.13 as 3.27-3.28, one

has coupled the lattice gauge field Uµ(n) to a generic lattice fermion field ψ. That is all there is to

it. All expressions involving ∂µ and ∂∗µ remain the same.

3.3 Quantization of gauge-fermion systems on a lattice

Quantum fluctuations of a gauge-fermion system on a Euclidean space-time lattice Z4 are

captured by the partition function

Z =

∫ [
dUµ

][
dψdψ

]
exp

(
-Slat.[Uµ, ψ, ψ]

)
, (3.29)

where Slat. a lattice discretization of the continuum gauge-fermion action. No Faddeev-Popov ghost

fields are needed to fix up the gauge integration measure. The integration measure for the gauge

fields
[
dUµ

]
≡
∏

n∈Z4

4∏

µ=1

dUµ(n) (3.30)

is a Haar measure. The integration “measure” for the fermion fields

[
dψdψ

]
∝
∏

n∈Z4

∏

α

dψα(n)dψα(n) (3.31)

indicates notationally that we are performing a Berezin integral. It is not a true Lebesgue measure.

The integration measure for the fermions is normalized such that

∫ [
dψdψ

]
exp

(
-
∑

n,α

ψα(n)ψα(n)

)
= 1. (3.32)
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Figure 3.1: Illustration of an RG flow for a gauge-fermion system with a single relevant coupling
that emerges from a critical fixed point. The left panel shows the critical surface of the critical fixed
point as a bounded surface with purple lines. The flows starting on the critical surface are indicated
by dashed arrows. The renormalized trajectory emerging from the critical fixed point is indicated by
a solid green arrow. The right panel shows the RG flow of systems starting off of the critical surface,
which are indicated by a thick dashed line marked as “bare action”. The RG flows of such systems
are indicated by dashed arrows. As in the left panel, the renormalized trajectory is indicated by a
green arrow.

For naïve, Wilson, and domain wall fermions, α ∈ {1, 2, 3, 4}. For staggered fermions, I drop the

α index. Let us assume that physical observables derived from Z have a well-defined continuum

limit. I’ll discuss this in the next section. I also assume that the continuum limit satisfies the

Osterwalder-Schrader axioms [285], which implies that the Wick-rotated continuum limit defines

a Minkowski space quantum field theory in the sense of the Wightmann axioms [344]. Rather

infamously, this has yet to be proven, but you can win one million dollars from the Clay Mathematics

Institute if you’re the lucky one to figure it out; hence, this is left as an exercise to the reader.

3.4 Renormalization and the continuum limit

In Chapter 2, I introduced the renormalization group. In this section, I shall apply the ideas

and language that we learned in that chapter to understand the continuum limit in gauge-fermion
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systems with Nf ≲ 11N/2. To start, recall that the gauge-fermion system defined by the partition

function of Eqn. 3.29 is formally a classical statistical mechanical system with reduced Hamiltonian

Slat.[Uµ, ψ, ψ]. In Sec. 2.2.2, I briefly discussed the notion of a correlation length ξ̃
(
g20
)
, which is the

shortest distance over which the fields of such systems are correlated with one another. Specifically,

we learned that the correlation length in units of the lattice spacing diverges at a critical fixed point.

If we are to keep all scales that are greater than the lattice spacing fixed along the continuum limit,

then the correlation length ξ̃
(
g20
)

must also diverge in the continuum limit. Therefore, the existence

of a continuum limit in a gauge-fermion system is tied to the existence of a critical fixed point in

the renormalization group flow of the underlying system. This is also true in general. Even more,

the RG trajectory that emerges from the critical fixed point furnishes a definition of the continuum

gauge-fermion system at any length scale [193, 194]. This special trajectory is referred to as the

renormalized trajectory (RT).

In Fig. 3.1, I illustrate the RG flow for a system with a critical fixed point and a single

relevant coupling. Such a critical fixed point is referred to as an ultraviolet fixed point (UVFP).

The RT is shown as a green arrow that emerges from the critical fixed point. Consider that any

point along the RT is connected to the fixed point by an infinite number of infinitesimally small RG

transformations. Within the vicinity of the fixed point, the system is completely free of any cutoff

effects; this includes any and all long-distance properties of that system. Since RG transformations

preserve the long-distance properties of the system, it must be the case that any point along the RT

is completely free of cutoff effects [193]. Each point of the RT therefore furnishes a definition of the

continuum system at any length scale that we may observe it at. Returning to the flow diagram

of Fig. 3.1, the surface that is bounded by purple lines is the critical surface. Any RG trajectory

starting on the critical surface, but not at the fixed point, flows to the fixed point, as indicated by the

dashed lines in the left panel of Fig. 3.1. A massless gauge-fermion system with a particular lattice

action and bare gauge coupling g20 defines a set of starting points in couplings space, as indicated

by the thick dashed line that is marked with “bare action” in the right panel of Fig. 3.1. Each RG

trajectory of such a system, indicated by thin dashed lines in the right panel of Fig. 3.1, converges
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to the renormalized trajectory. This is merely reflecting the fact that the gauge-fermion system

defined over a spacetime lattice with lattice spacing a approximates the continuum gauge-fermion

system well over distance scales l/a≫ 1. The idea that the RG trajectory of any lattice action at

any g20 converges onto the RT is a consequence of universality. Each and every action defines its

own line of starting points in the space of couplings illustrated in the right panel of Fig. 3.1. A

classically improved lattice action defines a line of starting points that is close to the RT within the

vicinity of the critical surface (see Appendix F).

The flow diagram in the right panel of Fig. 3.1 tells us how to take the continuum limit. Each

point along the RT is parameterized by a renormalized coupling g2(b) with a β-function defined as

in Eqn. 2.8. As the bare gauge coupling is tuned closer to the critical surface, the RG flow converges

onto the RT earlier because it is a better approximation of the continuum system at distances scales

of increasing length. By fixing g2(b), one is picking a point along the renormalized trajectory. Once

the RG flows that start off of the critical surface reach the scale b, one can collapse them onto the

RT by tuning g20 to the critical surface [205]. Hence, one takes the continuum limit by fixing g2(b)

and tuning g20 to the critical surface. In principle, it is not even necessary to that the continuum

limit. If one is far enough along the the RG flow in the sense that one is close to the RT, then cutoff

effects are suppressed and they are able to access long-distance observables of the continuum system.

As I describe in Appendix C, this is achieved by tuning the bare gauge coupling in a gauge fermion

system to zero (g20 → 0).

3.4.1 Connection to quantum chromodynamics

The notion of a continuum limit that I have described may not be familiar to many lattice

field theory practitioners, especially those that work on quantum chromodynamics (QCD) at the

physical point. Namely, where is the fixed renormalized coupling in a calculation of the hadronic

contribution to the muon’s anomalous magnetic moment or hadronic spectroscopy calculations (e.g.,

Ref. [115]), for example [12, 122]? The answer is that it is hidden in the scale setting component of

many lattice calculations, whereby some observable O(l) is fixed is fixed to some value O(l0) = c
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to estimate a reference scale l0/a that all dimensionful quantities, such as hadron masses, can be

expressed in terms of [6, 31, 43, 336].3 As has been described in Chapter 2.3, the observable O(l)

can be used to define a renormalized coupling that runs with l and has the same global properties as

the couplings g2(b) of the RG transformation if it obeys certain conditions under a renormalization

group transformation. Hence, by fixing O(l0) = c along the continuum limit, one is indeed fixing

a renormalized coupling. The bare masses {mi} in such calculations are typically, but not always,

fixed by requiring that the same number of hadron masses {Mi} are fixed to their physical values.

This is particularly evident in spectroscopic calculations.4 For example, the massess of the up mu

and down md quarks in the isospin-symmetric limit (mu = md) are often fixed by requiring that the

pion mass Mπ is equal to the mass of the neutral pion Mπ0 ≈ 135 MeV [381].5

3As of the writing of this thesis, the most recent Flavor Lattice Averaging Group (FLAG) review contains up-to-date
information on scale setting calculations in lattice gauge theory [6].

4See Fig. 3 of Ref. [115] and note which meson masses are fixed.
5See Refs. [32, 42, 93] for an example in the context of calculations of the hadronic vacuum polarization contribution

to the muon’s anomalous magnetic moment, especially Table 1 of Ref. [93].



Chapter 4

The β-function of the pure Yang-Mills system

In this chapter, we get our feet wet with calculating RG β-functions on the lattice using the

pure SU(3) Yang-Mills system. Gradient flow and its connection to the renomalization group is

discussed in Secs. 4.1-4.2. The continuous β-function method (CBFM) for extracting the continuum

β-function from gradient flow is outlined in Sec. 4.3. I calculate the continuum RG β-function for

the Nf = 0 system using the CBFM in Sec. 4.5. From the β-function, I calculate the pure Yang-Mills

Λ-parameter in Sec. 4.6. I end this chapter with a proposal for matching β-functions from different

RG schemes non-perturbatively in Sec. 4.7. The main results of this chapter are based on the works

of Refs. [181, 294].

4.1 Gradient flow

The β-function in this chapter relies upon the gradient flow transformation [252, 253, 272]

and its connection to renormalization group transformations [72–74]. Using the notation of Chapter

2, the gradient flow transformation is a continuous smearing operation on the elementary fields {φf}

along the gradient of some flow action S f
[
φf

]
.1

The gradient flow equation for a pure Yang-Mills system is [253, 254]

dAµ(x, t)

dt
= −g20

δSYM[Aµ]

δAµ(x, t)
, (4.1)

1Sometimes, it is preferable to include extra terms in the gradient flow equation that force the gradient flow to
preserve some symmetries of Sf

[
φf

]
; as a simple example, I derive a gradient flow equation for the XY model in

Appendix E.
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where Aµ(x, t)
∣∣
t=0

= Aµ(x), SYM[Aµ] is defined in Eqn. 3.2, and δSYM[Aµ]/δAµ(x, t) is a somewhat

sloppy notation for a distributional derivative of SYM with respect to Aµ(x, t). A lattice discretization

of the continuum Yang-Mills gradient flow is [253, 254]

d

dt
Uµ(n, t) = −g20

(
∂x,µS f [Uµ]

)
Uµ(n, t), (4.2)

with Uµ(n, t)
∣∣
t=0

= Uµ(n) and the action S f [Uµ] some lattice discretization of SYM[Aµ] (such as the

Wilson action of Eqn. 3.8). I call S f [Uµ] the flow action. The differential operator

∂n,µ = T a∂an,µ (4.3)

is defined by the action of ∂an,µ on a differentiable function F of the SU(N) links Uµ(n, ...) as [252]

∂an,µf(Uµ(n, ...)) =
d

ds
F
(
esX

a(m,ν)Uµ(n, ...)
)∣∣∣∣
s=0

, (4.4)

where

Xa(m, ν) = T a if (m, ν) = (n, µ) else 0. (4.5)

I have intentionally not specified the co-domain of F . Note that the basis for the Lie algebra that ∂an,µ

is defined with respect to is arbitrary. For this thesis, I follow Ref. [253] and choose the conventional

basis {T a} normalized as

Trc
[
T aT b

]
= −1

2
δab (4.6)

and satisfying the structure equation

[
T a, T b

]
= fabcT c, (4.7)

along with various other relations that follow from the completeness of the {T a} basis. See Chapter

8.1.2 for a description of numerically integrating the gradient flow equation of Eqn. 4.2.
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4.2 Renormalization and gradient flow

The gradient flow equation is a dissipative Langevin equation without noise [72, 389]. The

latter realization bears a fruitful connection between gradient flow and stochastic renormalization

that was worked out in Refs. [72, 73]; however, there is still more work that could be done along

this direction. Though the construction of Refs. [72, 73] is more rigorous, it is conceptually simpler

to parse out the connection between gradient flow and renormalization by thinking in terms of the

real-space RG transformation that I briefly touched upon in Sec. 2.1 [74]. Note that there are also

many wonderful works that discuss the connection between gradient flow and the renormalization

group at length in terms of exact renormalization group transformations [263, 264, 337–339], along

with various other perspectives [2, 68, 238, 256, 257, 345].

The gradient flow transformation suppresses wave number fluctuations in the π/a ≤ |k| ≲ π/bta

shell for bt ∝
√
8t/t0 with t0 some dimensionful constant that makes b dimensionless [250]. Returning

to the notation of Chapter 2, define the RG blocked fields
{
φ
(bt)
f (nbt)

}
(nbt = n/bt) in terms of the

gradient flowed fields {φf(n, t)} as [74]

φ
(bt)
f (nbt) = φf(n, t). (4.8)

From the RG blocked fields, define the rescaled (renormalized) fields as

φ′(bt)
f (nbt) = Zf(bt)φ

(bt)
f (nbt), (4.9)

where Zf(bt) is the wave function renormalization of φf. The wave function renormalization Zf(bt) is

fixed by requiring that the correlation functions of {φf} are preserved at long distances (compared to

the lattice spacing of the unblocked lattice). Assuming that the definitions in Eqns. 4.8-4.9 describe

an RG transformation for local operators at asymptotically large bt, one can define a renormalized

coupling g2(bt) in terms of the expectation value of a local operator O(bt) that does not renormalize;
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i.e.,

g2(bt) ∼ ⟨O(bt)⟩. (4.10)

The corresponding β-function is

βα
(
g2α
)
≡ −b2dg

2
α(b)

db2
. (4.11)

Note that I have been careful to state that gradient flow describes an RG transformation, as the

definitions of Eqns. 4.8-4.9 cannot fully specify a true RG transformation on their own. This is

evident from the fact that the GF equations are reversible; gradient flow suppresses short-distance

fluctuations, but it does not remove them completely. Nonetheless, gradient flow is capable of

describing an RG transformation for (expectation values of) local operators at asymptotic bt [72, 73].

4.3 Introduction to the continuous β-function method

Consider the Yang-Mills energy density

E(x, t) = −1

2
ℜTrc

[
Fµν(x, t)Fµν(x, t)

]
. (4.12)

at GF flow time t. The observable t2⟨E(x, t)⟩ has no wave function renormalization [250]. Hence, I

can use it to define a renormalized coupling in infinite volume as

g2GF(t) ≡ N⟨t2E(t)⟩ (4.13)

and corresponding renormalization group β-function as

βGF

(
g2GF

)
≡ −t d

dt
g2GF(t). (4.14)

The normalization N = 128π2/(3N2 − 3) is chosen such that g2GF matches g2
MS

at tree-level [252].

The renormalized coupling of Eqn. 4.13 tracks the renormalized trajectory that emerges from the

UVFP of the gauge-fermion system, should it exist [256]. Note that I have not once referred to
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perturbation theory in defining g2GF outside of the choice for N . That is not meant to say that

perturbation theory will not be useful for either improving or modifying the definition of g2GF.

4.3.1 Defining the gradient flow renormlized coupling in a finite volume

I wish to calculate the RG β-function of Eqn. 4.14 from finite-volume lattice simulations. To

this end, one must start out by defining the renormalized coupling in a finite volume. This is more

tricky than it may sound. The low-energy dynamics of an interacting gauge-fermion system in a

finite volume with periodic boundary conditions is dominated by gauge zero modes [247]. The effect

of the gauge zero-modes on the finite-volume Yang-Mills energy density ⟨E(t;L)⟩ must be treated

exactly when defining the renormalized coupling. The details of properly treating the gauge zero

modes were worked out in Ref. [130]. At leading order in the renormalized coupling of the MS

scheme g2
MS

, the Yang-Mills energy density is related to g2
MS

as [130]

⟨t2E(t;L)⟩ = N−1g2
MS

(µ)
(
1 + δ(t, L)

)
, (4.15)

where

δ(t, L) ≡ −1

3

(
8πt

L2

)2

+ ϑ4
(
exp

(
-8t/L2

))
− 1 (4.16)

and ϑ(·) is the Jacobi elliptic function

ϑ(x) ≡
∞∑

n=−∞
xn

2
. (4.17)

As

g2
MS
≈ g2GF +O

(
g4GF

) (
g2
MS
/4π ≪ 1

)
(4.18)

at tree level, a suitable definition of the gradient flow coupling in finite volume is

g2GF(t;L) ≡
N

1 + δ(t, L)
⟨t2E(t;L)⟩. (4.19)
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Crucially, as t/L2 → 0, so too does δ(t, L)→ 0. Therefore, the definition of Eqn. 4.19 approaches

the infinite volume definition of the renormalized coupling in Eqn. 4.13 as t/L2 → 0. Note, also,

that Eqns. 4.15-4.19 imply that the leading finite-volume effects in g2GF(t;L)/4π ≲ 1 are

g2GF(t;L) ≈ g2GF(t) + κ
(
t/L2

)2 (
g2GF/4π ≪ 1

)
, (4.20)

where κ is a constant whose dependence on t is revealed through non-perturbative simulations. One

could have guessed the latter scaling of g2GF(t;L) in t/L from the mass dimension of E(t, L); such

scaling is likely to hold outside of the weakly-coupled perturbative regime.

4.3.2 Discretization of the Yang-Mills energy density and tree-level improvement

In this chapter, I discretize E(t) with the Wilson discretization (W), the Symanzik discretization

(S), and the clover discretization (C). I have described the Wilson and Symanzik discretization of the

Yang-Mills energy density in Chapter 3.1 and Appendix F, respectively. The clover discretization of

the Yang-Mills energy density is obtained from a direct discretization of Fµν(x) as [142]

F (clov.)
µν (n) ∼

(
Qµν(n)−Qνµ(n)

)
∼ a2Fµν(an) (a→ 0), (4.21)

where

Qµν(n) ≡ Uµν(n) + Uν,−µ(n) + U−µ,−ν(n) + U−ν,µ(n) (4.22)

and the plaquette Uµν(n) is defined in Chapter 3. The negative indices are to be interpreted as

reversing the direction of the gauge links that make up a particular plaquette via the prescription

U−µ(n) ≡ Uµ(n− µ̂)†. (4.23)
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To this end, I calculate the lattice-discretized renormalized coupling in finite volume as

g2GF

(
t;L, g20

)
≡ N

1 + δ(t, L)
⟨t2E

(
t;L
)
⟩g20 , (4.24)

where E
(
t;L
)

is discretized with the Wilson, Symanzik or Clover discretization. I refer to these

discretizations as different “operators” to follow the language used in the literature. In fact, one can

do better than Eqn. 4.24. By redefining δ(t, L) in Eqn. 4.16, one can correct tree-level discretization

effects in g2GF

(
t;L, g20

)
. The manner in which this is done is similar to the tree-level improvement

that I briefly discuss in Appendix F and it is outlined clearly in Ref. [123]. Defining

ap̂µ = 2 sin
(
apµ/2

)
and

ap̃µ = sin(apµ),

one can express the kernel Sµν for an improved lattice action as [123, 139, 248, 369, 370]

Sµν = δµν

(
p̂2 − a2cI

∑

ρ

p̂4ρ − a2cIp̂2µp̂2
)
− p̂µp̂ν

(
1− a2cIp̂2µ − a2cIp̂2ν

)
(Symanzik) (4.25)

or
(
δµν p̃

2 − p̃µp̃ν
)∂p̂µ
∂pµ

∂p̂µ
∂pµ

(clover), (4.26)

where cI is an improvement coefficient similar to cp/cr in Appendix F. In terms of Sµν for the flow

S fµν , action Saµν , and E(t) operator Seµν , the tree-level improved δ(t, L) is [123]

δ(t, L) =
1

3

(
8πt

L2

)2
(
2 + Tr

L/a−1∑

nµ=0,n2 ̸=0

exp
[
-t
(
S f + G

)]
(Sa + G)−1 exp

[
-t
(
S f + G

)]
Se
)
− 1, (4.27)

where

Gµν =
1

α
p̂µp̂ν (4.28)

is a gauge fixing factor. Despite the Eqn. 4.27 involving G, the correction δ(t, L) is gauge-invariant.

The tree-level correction δ(t, L) from Eqn. 4.27 is included in the definition of g2GF

(
t;L, g20

)
by
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calculating δ(t, L) numerically with α = 1.

4.3.3 Extracting the continuum β-function from finite-volume simulations

I wish to calculate the infinite-volume gradient-based RG β-function in the continuum from

the finite-volume gradient flow coupling defined in Eqn. 4.19 with δ(t, L) given by either Eqn. 4.16

or Eqn. 4.27. One way to do this is by the method of step-scaling [130, 254, 307], whereby one

defines a renormalized coupling that runs with the volume L as [130]

g2c
(
L, g20

)
= g2GF

(
t;L, g20

)∣∣∣
8t=(cL)2

. (4.29)

As such, each value of c defines a renormalization scheme. From g2c
(
L, g20

)
, one typically either

calculates the discrete β-function

βc,s
(
g2c ;L, g

2
0

)
≡ g2c

(
sL, g20

)
− g2c

(
L, g20

)

log s2
(4.30)

or its closely-related cousin, the step-scaling function

Σc,s
(
u;L, g20

)
= g2c

(
sL; g20

)∣∣∣
g2c (L,g

2
0)=u

. (4.31)

Note that the difference between the discrete β-function and step-scaling function is superficial. Once

one has either of the two, a continuum extrapolation to the a/L→ 0 limit at fixed g2c is performed.

Step-scaling has been applied with great success to a variety of important gauge-fermion systems;

see, for example, Refs. [56, 66, 91, 92, 124, 125, 130, 132–134, 183–187, 244, 245, 269, 306]. However,

there is one issue that step-scaling cannot overcome: it requires that the volume L is the only

dimensionful scale that is available to the system [131, 294]. As such, step-scaling is not applicable to

large-volume confined regime of a lattice gauge-fermion system, where confinement introduces another

infrared scale; namely, the confinement scale. In the lattice gauge theory literature, the “large-volume

confined regime” is referred to the p-regime; usually, “large volume” means Mπ0L≫ 1, where Mπ0 is
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the mass of the neutral pion. This is to be juxtaposed against the small-volume deconfined regime;

i.e., the ϵ-regime (Mπ0L≪ 1). To get around the latter shortcoming of step-scaling, a method for

extracting the infinite-volume gradient flow β-function was proposed independently by the authors

of Ref. [131] and the authors of Refs. [189, 190].

The method by which the infinite volume β-function of Refs. [131, 189, 190] is calculated is

referred to in the literature as either the continuous β-function method (CBFM) or infinite volume

β-function. In this thesis, I follow the convention of Refs. [189, 190] and refer to it as the CBFM.

For a massless gauge-fermion system, the CBFM proceeds conceptually in three steps.

(1) Finite-volume coupling and β-function: Calculate g2GF

(
t;L, g20

)
using Eqn. 4.24 and

βGF

(
t;L, g20

)
= −tdg2GF

(
t;L, g20

)
/dt, where δ(t, L) is given by either Eqn. 4.16 or Eqn. 4.27.

(2) Infinite volume limit: There are many ways that this can be done. The two that have

been explored for massless systems thus far are as follows.

• Extrapolate βGF

(
t;L, g20

)
linearly in a4/L4 at fixed t/a2 and g2GF

(
t;L, g20

)
[189, 190].

• Extrapolate both g2GF

(
t;L, g20

)
and βGF

(
t;L, g20

)
linearly in a4/L4 at fixed t/a2 and g20 .

This was first explored in Ref. [294] and subsequently deployed in Refs. [180, 181, 235,

294, 380]. This approach avoids potential systematic uncertainties that are associated

with finite-volume effects in g2GF

(
t;L, g20

)
.

In Ref. [131], another method for extracting the infinite volume β-function for massive

gauge-fermion systems has been explored. This method corrects for finite-volume effects using

a generic ansatz for Goldstone-boson-induced round-the-world effects. The Goldstone boson

masses are then extrapolated to the chiral limit using information from chiral perturbation

theory applied to gradient flow observables [29]. See Ref. [177] for recent developments

regarding the CBFM for massive systems. If finite-volume effects are small, then extrapolating

to the infinite volume limit may not be strictly necessary, depending on the desired precision;

see, for example, Refs. [178, 179].
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(3) Continuum limit: In Sec. 3.4, I stated that the continuum limit of a gauge-fermion system

is taken by fixing the renormalized coupling and tuning g20 to a critical surface. This is

accomplished by extrapolating infinite-volume-extrapolated β-function βGF

(
t; g20

)
linearly in

a2/t at fixed g2GF = g2GF

(
t
)
. Extrapolating in a2/t→ 0 automatically tunes g20 → 0. Each

g2GF(t) specifies a point on the renormalized trajectory in the right panel of Fig. 3.1. Hence,

the continuum extrapolation can be thought of as projecting the RG flows that start off of

the critical surface onto the renormalized trajectory.

Since its inception is Refs. [131, 189, 190], the CBFM has been applied to a variety of massless

SU(3) gauge-fermion systems with Nf = 0 [181, 294, 380], Nf = 2 [177, 189, 190], Nf = 10 [179, 235],

and Nf = 12 [180, 189] fermions in the fundamental representation of SU(3). In Chapters 5 and 7,

I shall apply it to the Nf = 12 and 8 systems, respectively. The CBFM has also been applied to

the massless SU(4) gauge-fermion system with four fermions in the fundamental respresentation of

SU(4) and another four fermions in the two-index antisymmetric representation of SU(4) [178].

4.4 Simulation details

The continuum β-function in this chapter is extracted from Hamiltonian (hybrid) Monte Carlo

(HMC) simulations that utilize a tree-level improved Symanzik (Lüscher-Weisz) gauge action [112,

248, 251], as implemented in the GRID C++ mathematical object library [47]. If the reader is unfamiliar

with the HMC algorithm, consider reading Chapter 8.1.1. For a description of tree-level improved

gauge actions, see Appendix F. All lattices used in this chapter are symmetric and possess periodic

boundary conditions in all four directions. In Table 4.1, I list the full set of volumes 20 ≤ L/a ≤ 48

(five total) and bare gauge couplings 4.3 ≤ βb ≡ 6/g20 ≤ 9.5 (nineteen total), along with the total

number of thermalized samples “No.” and the acceptance rate “Acc.” for each statistical ensemble

(L/a, βb). The molecular dynamics trajectory length (see Chapter 8.1.1) is set to τ = 2 and each

statistical sample is separated by a total of 20 molecular dynamics time units (MDTU). Integration

of the gradient flow equations (see Chapter 8.1.2), along with the measurement of gradient flow
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L/a

20 24 28 32 48

βb Acc. No. Acc. No. Acc. No. Acc. No. Acc. No.

4.30 87.9% 451 86.6% 467 85.3% 297 80.7% 165 · · · · · ·
4.35 86.5% 451 84.8% 458 82.0% 277 78.8% 171 · · · · · ·
4.40 86.6% 451 80.8% 460 83.7% 272 82.3% 167 · · · · · ·
4.50 85.1% 451 84.2% 501 86.2% 1391 81.0% 250 · · · · · ·
4.60 86.1% 451 85.2% 490 83.3% 1040 84.9% 202 · · · · · ·
4.70 84.2% 451 84.1% 490 80.5% 681 82.1% 201 · · · · · ·
4.80 86.5% 451 88.0% 469 80.5% 681 78.9% 140 · · · · · ·
4.90 85.0% 451 85.3% 491 82.7% 701 83.4% 163 · · · · · ·
5.00 82.6% 451 85.5% 456 81.0% 772 77.3% 211 80.8% 124

5.30 84.4% 451 88.3% 534 82.9% 911 78.4% 656 81.8% 139

5.50 83.6% 451 87.6% 456 81.8% 701 77.8% 608 78.2% 149

6.00 84.4% 451 84.6% 476 84.6% 661 79.2% 472 76.8% 227

6.50 81.1% 451 80.7% 486 82.8% 661 85.0% 563 77.4% 233

7.00 81.3% 451 79.2% 461 81.7% 701 84.6% 527 74.7% 241

7.50 82.6% 451 81.3% 466 80.5% 661 83.7% 489 73.6% 224

8.00 81.3% 451 78.3% 456 76.1% 701 85.0% 487 73.3% 211

8.50 78.8% 451 77.4% 461 79.5% 661 81.6% 462 74.6% 211

9.00 78.2% 451 76.8% 581 78.0% 524 81.6% 531 71.7% 208

9.50 77.4% 621 77.5% 481 77.7% 547 81.7% 541 69.2% 208

Table 4.1: From Ref. [181]. Total number of configurations “No.” and acceptance rate “Acc.” for
each volume (L/a)4 and bare gauge coupling βb ≡ 6/g20 that is used to extract the continuum renor-
malization group β-function for the pure Yang-Mills system. Each statistical sample (configuration)
is separated by 20 molecular dynamics time units (see Chapter 8.1.1).

observables is performed using the QLUA software library [300].
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Figure 4.1: From Ref. [181]. The (direction-averaged) gradient-flowed Polyakov loop magnitude at
flow time 8t = (L/2)2 against the bare gauge coupling on different volumes (indicated by different
colors; see legend).

4.4.1 Physical regimes of the pure Yang-Mills system in a finite box

As the coupling βb increases at fixed L/a, the pure Yang-Mills system transitions from

exhibiting signs of confinement to being deconfined. It is important to note, however, that there is

no zero-temperature deconfinement phase transition in the pure Yang-Mills system. Instead, the

smooth transition between the two regimes reflects a difference in the physics that occurs at short

distances (small physical volumes, ϵ-regime), where the system is asymptotically free, and the physics

that occurs at long distances (large physical volumes, p-regime), where the system is confining. As a

consequence of center symmetry breaking, the temporal Polyakov loop (a.k.a. thermal Wilson line)

[36]

P4̂ =
1

N(L/a)3

∑

n

Trc

L/a−1∏

n4=0

[
U4
(
n
)]
n=(n,n4)

(4.32)

is an order parameter for the first-order deconfinement phase transition that the pure Yang-Mills

system exhibits at finite-temperature [55, 153, 310]. One can define the Polyakov loop similarly in

any direction; therefore, I will refer to it as Px̂ for x = 1, 2, 3, 4 henceforth. At zero-temperature,
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the expectation value of the Polyakov loop magnitude ⟨|Px̂|⟩ is exactly zero in the infinite volume

limit. In a finite volume, the zero temperature ⟨|Px̂|⟩ approaches zero as the size of the volume

increases. Because small physical volumes2 probe only short-distance properties of the Yang-Mills

system, they are governed by asymptotic freedom. The physics of confinement should be manifest

in the large physical volume regime; hence, the expectation value of the Polyakov loop magnitude

should approach zero in this regime. Because the Polyakov loop expectation is merely reflecting

the infrared properties of the zero-temperature pure Yang-Mills system that are accessible from a

particular physical volume, the transition between the two regimes must be smooth. Moreover, the

infinite volume limit of observables that are measured in either regime must be consistent over the

physical scales that they are capable of capturing. Put another way, there is no phase transition

that separates one finite-volume zero-temperature regime from another in the infinite volume limit;

therefore, the phase of their zero-temperature thermodynamic limit must be consistent.

Estimating the Polyakov loop from lattice simulations can be quite difficult, as it exhibits

considerable statistical noise. Luckily, gradient flow can be used to dramatically reduce the statistical

noise in the Polyakov loop [295]. In Fig. 4.1, I plot the magnitude of the gradient-flowed Polyakov

loop averaged over all four directions at gradient flow time 8t = (L/2)2. As expected, the Polyakov

loop increases with βb at fixed L/a and varies inversely with L/a at fixed βb ≲ 4.0, where all volumes

are safely in the confined regime. Moreover, because the simulations in this chapter are performed

in a finite box, the Polyakov loop is never exactly zero. There is a sudden, yet smooth, jump in

the Polyakov loop on all volumes around 5.0 ≲ βb ≲ 6.0. The region about which the jump occurs

corresponds to the range in g20 over which the volumes that have been simulated in this chapter

traverse the confinement scale.

The physics of confinement could be intimately tied to the presence of instantons in the vacuum

of gauge-fermion systems3 [326]. Lending support to this idea is the observation of an increase in

2By “physical”, I am referring to the size of the volume expressed in units of the scale at which confinement kicks in.
3To a physicist, instantons are particle-like local optima of the classical action. See Ref. [326] for a classic overview

of instanton physics and Ref. [138] for more modern treatment. For a more mathematically precise treatment of
instantons, see Refs. [41, 270].
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statistical fluctuations of the topological charge once the physical volume crosses the confinement

scale. According to the Atiyah-Singer index theorem [24], the continuum topological charge

Q
(cont.)
top. =

1

32π2
ϵµνρσ

∫
d4x Trc

[
Fµν(x)Fρσ(x)

]
(4.33)

is related to the number of instantons n+ and anti-instantons n− as

Q
(cont.)
top. = n+ − n− ∈ Z. (4.34)

Different integral values for Q are referred to as topological sectors. An analogue of the topological

charge on a hypercubic spacetime lattice can be defined in terms of the clover discretization of Fµν(x)

in Eqn. 4.21 as

Q
(lat.)
top. =

1

32π2
ϵµνρσ

∑

n

Trc
[
F (clov.)
µν (n)F (clov.)

ρσ (n)
]

(4.35)

or any other lattice discretization of Fµν(x) [4]. As was the case for the Polaykov loop, measuring the

topological charge from lattice simulations is extremely difficult without the use of noise reduction

techniques. Moreover, since the Atiyah-Singer index theorem applies to continuum gauge fields, the

lattice discretization of the topological charge is not necessarily an integer. Once again, gradient

flow comes to the rescue, as it acts to suppress the short-distance fluctuations that give rise to

the statistical noise in Q
(lat.)
top. and which prevent individual gauge configurations from at least

approximately realizing the index theorem [252]. Note that this is not because gradient flow is

somehow reducing the lattice spacing. Rather, the gradient flow takes the topological charge closer

to the renormalized trajectory (“longer distances”), where cutoff effects are suppressed and the lattice

discretization of the topological charge converges to its integral continuum counterpart.

Corroborating the onset of confinement in the simulations of this chapter is the presence of

fluctuations in gradient-flowed topological charge at 8t = (L/2)2 for βb ≲ 5.0. As βb decreases, the

frequency and magnitude of tunneling events between different topological sectors increases. For

the purposes of illustration, I have plotted Monte Carlo time history of the topological charge on a
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Figure 4.2: The Monte Carlo time history of the gradient-flowed topological charge at flow time
t = (L/2)2 on a box of size (L/a)4 = 324 at βb = 4.3 (top left panel), 4.6 (top right panel), and 7.0
(bottom panel).

(L/a)4 = 324 volume at βb = 4.3, 4.6 and 7.0 in Fig. 4.2. At the strongest coupling βb = 4.3, the

topological charge fluctuates in the range −40 ≲ Q
(lat.)
top. ≲ 40. Closer to the region where L/a = 32

traverses the confinement scale at βb = 4.6, the topological charge only fluctuates in the range

−10 ≲ Q
(lat.)
top. ≲ 10 and it takes longer for the topological charge to tunnel between sectors. The

increase in the Monte Carlo time that it takes for the system tunnel between topological sectors

as βb increases is a consequence of critical slowing down. Well within the deconfined regime at

βb = 7.0, the topological charge stays at Q(lat.)
top. ≈ 0. Due to the fast running of the pure Yang-Mills

system, the impact of a non-zero topological charge is not resolved statistically. This is quite different

from what is observed in slow-running systems, where tunneling between topological sectors can

have a significant impact on g2GF

(
t;L, g20

)
[191]. Furthermore, following the recommendation of

the step-scaling study of Ref. [92], I have estimated g2GF

(
t;L, g20

)
from filtered configurations with
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Q
(lat.)
top. ≈ 0 and no significant impact on the resulting estimate for g2GF

(
t;L, g20

)
is observed, aside

from a significant increase in the statistical error.

4.5 Calculation of the continuum β-function

Following the first step of the CBFM laid out in Sec. 4.3, I calculate the renormalized coupling

g2GF

(
t;L, g20

)
using Eqn. 4.24 with δ(t, L) given by either Eqn. 4.16 or Eqn. 4.27. The operator Se

from which I estimate the Yang-Mills energy density E(t;L) is either the Wilson operator of Eqn.

3.8 (Se = W), the Symanzik operator defined in Appendix F (Se = S), or the clover operator defined

in terms of Eqn. 4.21 (Se = C).The flow action S f is either Wilson flow S f = W or Zeuthen flow

S f = Z, which is defined in Chapter 8.1. I refer to a specific combination of flow S f and E(t, L)

operator Se as “S fSe”; e.g., the Zeuthen flow action for Se with Symanzik action for Se is “ZS”. If

tree-level corrections are included in δ(t, L) (Eqn. 4.24), then an “n” is prepended to “S fSe”; e.g.,

“nZS”. From g2GF

(
t;L, g20

)
, I calculate the RG β-function in a finite volume as

βGF

(
t;L, g20

)
= −t d

dt
g2GF

(
t;L, g20

)
, (4.36)

where the derivative d/dt is discretized using a 5-point stencil [302]; explicitly,

12δt
d

dt
g2GF

(
t;L, g20

)

≈ −g2GF

(
t+ 2δt;L, g20

)
+ 8g2GF

(
t+ δt;L, g20

)
− 8g2GF

(
t− δt;L, g20

)
+ g2GF

(
t− 2δt;L, g20

)
. (4.37)

I set value for δt = 0.04 by the time step “ϵ” that is used to integrate the gradient flow equations (see

Chapter 8.1.2). I have checked to ensure that the estimate of βGF

(
t;L, g20

)
from Eqns. 4.36-4.37 does

not change significantly if I use a high-order stencil. I have also checked that lower-order stencils

converge comfortably to the 5-point stencil of Eqn. 4.37. A time step of δt = 0.01 has also been

run on select ensembles as a crosscheck of the choice for ϵ used in this chapter and no significant

change in E(t, L) is observed. Correlated statistical uncertainties are estimated and kept track of
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using the automatic error propagation tools of the gvar library [241]. All fits in the rest of this

chapter are performed using the lsqfit library [240], which utilizes the robust trust region reflective

algorithm implemented in the SciPy library to estimate fit parameters via maximum a posteriori

(MAP) estimation [49, 361]. Correlated uncertainties in fit parameters are estimated via Laplace

approximation of the posterior distribution over the fit parameters about their MAP estimate; see

Appendix D and Chapter 8.2 for further details.

4.5.1 Infinite volume extrapolation

As the Yang-Mills energy density is a dimension-4 operator, finite-volume effects in g2GF

(
t;L, g20

)

and βGF

(
t;L, g20

)
are expected to be O

(
t2/L4

)
. By fixing both βb = 6/g20 (i.e., the lattice spacing)

and the flow time in lattice units t/a2, both g2GF

(
t;L, g20

)
and βGF

(
t;L, g20

)
scale with the linear

extent of the lattice L/a according the generic ansatz

FV
(
t;L, g20

)
= k1

(
t; g20

)
+ k2

(
t; g20

)
(a/L)4 (fixed t/a2 and βb), (4.38)

at leading order in t/L. The “constants” k1
(
t; g20

)
and k2

(
t; g20

)
are fixed for any specific (t/a2, βb)

pair. I extrapolate g2GF

(
t;L, g20

)
and βGF

(
t;L, g20

)
to the a/L→ 0 limit by independently fitting both

of them to the ansatz of Eqn. 4.38. In Fig. 4.3, I illustrate typical infinite volume extrapolations

for g2GF

(
t;L, g20

)
(left panels) and βGF

(
t;L, g20

)
(right panels) at one “weak coupling” βb = 6.00, two

“intermediate couplings” βb = 5.5, 4.9, and one “strong coupling” βb = 4.35 (top panel to bottom

panel). The renormalized couplings and correspond β-functions in Fig. 4.3 are derived from the

“nZS” combination. Each panel shows the infinite volume extrapolation at five fixed flow times

t/a2 = 2.0 (yellow), 2.52 (green), 3.0 (blue), 3.52 (purple), and 4.0 (red).

In the strong coupling regime, confinement introduces an additional infrared scale. As such,

finite volume effects in the strong coupling regime are suppressed. Therefore, I utilize the full set

of volumes 20 ≤ L/a ≤ 32 over 4.3 ≤ βb ≤ 4.9 (see Table. 4.1), as illustrated in the bottom two

panels of Fig. 4.3. In the weak coupling regime, where the volume furnishes the only infrared



70

48−4 32−428−4 24−4 20−4

(a/L)4

2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80

g2 G
F(

t;
L,

g2 0)

t/a2 = 2.0

t/a2 = 2.52

t/a2 = 3.0

t/a2 = 3.52

t/a2 = 4.0

nZS, βb = 6.00

48−4 32−428−4 24−4 20−4

(a/L)4

−0.600
−0.575
−0.550
−0.525
−0.500
−0.475
−0.450
−0.425
−0.400

β G
F(

t;
L,

g2 0)

t/a2 = 2.0

t/a2 = 2.52

t/a2 = 3.0

t/a2 = 4.0

nZS, βb = 6.00

48−4 32−428−4 24−4 20−4

(a/L)4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

g2 G
F(

t;
L,

g2 0)

t/a2 = 2.0

t/a2 = 2.52

t/a2 = 3.0

t/a2 = 3.52

t/a2 = 4.0

nZS, βb = 5.50

48−4 32−428−4 24−4 20−4

(a/L)4

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

β G
F(

t;
L,

g2 0)

t/a2 = 2.0

t/a2 = 2.52
t/a2 = 3.0
t/a2 = 3.52
t/a2 = 4.0

nZS, βb = 5.50

32−428−4 24−4 20−4

(a/L)4

5.0

5.5

6.0

6.5

7.0

7.5

g2 G
F(

t;
L,

g2 0)

t/a2 = 2.0

t/a2 = 2.52

t/a2 = 3.0

t/a2 = 3.52

t/a2 = 4.0
nZS, βb = 4.90

32−428−4 24−4 20−4

(a/L)4

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

β G
F(

t;
L,

g2 0)

t/a2 = 2.0

t/a2 = 2.52

t/a2 = 3.0

t/a2 = 3.52

t/a2 = 4.0

nZS, βb = 4.90

32−428−4 24−4 20−4

(a/L)4

14
16
18
20
22
24
26
28
30

g2 G
F(

t;
L,

g2 0)

t/a2 = 2.0

t/a2 = 2.52

t/a2 = 3.0

t/a2 = 3.52

t/a2 = 4.0
nZS, βb = 4.35

32−428−4 24−4 20−4

(a/L)4

−30

−25

−20

−15

−10

β G
F(

t;
L,

g2 0)

t/a2 = 2.0

t/a2 = 2.52

t/a2 = 3.0

t/a2 = 3.52

t/a2 = 4.0

nZS, βb = 4.35

Figure 4.3: From Ref. [181]. Illustration of the infinite volume extrapolation of g2GF

(
t;L, g20

)
(left

panels) and βGF

(
t;L, g20

)
(right panels) at βb = 6.00, 5.50, 4.90, 4.35 (top to bottom). Colored bands

indicate the statistical error of the extrapolating curve and the central value is indicates the central
value. Black markers (with error bars) contribute to the fit, whereas grey markers are not included
in the fit and are shown for the purposes of illustration.
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scale, finite-volume effects are more pronounced. This can be seen in the top panel of Fig. 4.3,

where it is clear that the L/a = 20 simulations deviate significantly from the linear trend in a4/L4.

Therefore, I drop the L/a = 20 volumes and utilize an additional set of L/a = 48 volumes in the

weak coupling regime (6.0 ≲ βb ≤ 9.5, with the exception of βb = 6.0 on L/a = 20). In the transition

region (4.6 ≲ βb ≲ 6.0 for 20 ≲ L/a ≲ 40), the integrated autocorrelation time for g2GF

(
t;L, g20

)
and

βGF

(
t;L, g20

)
increases significantly from a maximum for 80 MDTU outside of the transition region

to a maximum of 300 MDTU within the transition region. Such long integrated autocorrelation

times likely lead to underestimated statistical errors, even after they have been explicitly taken into

account via binning.

Overall, most fits have acceptable p-values (p ≳ 10%). See Chapter 8.2 for a refresher on

goodness-of-fit; namely, the notion of a p-value. Notable exceptions occur at βb = 5.0, 5.3 and 5.5,

which are well within the transition region. The p-values for extrapolations at βb = 5.0 are in the

1.4% ≲ p ≲ 3.1% range. The infinite volume extrapolations at βb = 5.0 are the only extrapolations

that utilize all five volumes; however, the extrapolations at βb are dominated by the largest volumes.

Infinite volume extrapolations at βb = 5.3 possess nearly vanishing p-values. Significantly increasing

the number of statistical samples for each ensemble at βb = 5.3, especially those that are solidly within

the transition region, does not improve the p-value for the extrapolations at βb = 5.3. Therefore,

βb = 5.3 likely suffers from sitting on top of the transition region and is dropped from the central

analysis. The p-values for infinite volume extrapolations at βb = 5.5 are in the 0.14% ≲ p ≲ 0.4%

range. The extrapolation at βb = 5.5 is illustrated in the second-to-top panel of Fig. 4.3. Such small

p-values are possibly attributable to underestimated errors on L/a = 32, as it generally deviates

from the linear trend in a4/L4 at the ≈ 2σ level.

4.5.2 The effect of tree-level improvement

Including corrections for tree-level cutoff effects in δ(t, L) (Eqn. 4.27) has a significant impact

on the consistency of estimates for g2GF

(
t;L, g20

)
from different S fSe combinations in the weak

coupling regime, and, surprisingly, in the strong coupling regime, though to a lesser extent. Fig.



72

1.0 1.5 2.0 2.5 3.0 3.5 4.0
t/a2

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8
g2 G

F(
t;

g2 0)
Z, βb = 6.00

Wilson
Symanzik
clover

1.0 1.5 2.0 2.5 3.0 3.5 4.0
t/a2

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

g2 G
F(

t;
g2 0)

nZ, βb = 6.00

Wilson
Symanzik
clover

1.0 1.5 2.0 2.5 3.0 3.5 4.0
t/a2

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

g2 G
F(

t;
g2 0)

W, βb = 6.00

Wilson
Symanzik
clover

1.0 1.5 2.0 2.5 3.0 3.5 4.0
t/a2

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

g2 G
F(

t;
g2 0)

nW, βb = 6.00

Wilson
Symanzik
clover

Figure 4.4: From Ref. [181]. Infinite-volume-extrapolated gradient flow coupling g2GF

(
t; g20

)
at

βb = 6.0 without tree-level corrections (left panels) and with tree-level corrections (right panels)
against t/a2. Wilson operator indicated by blue back, Symanzik by red, and clover by green. Zeuthen
flow shown in top panels and Wilson flow shown in bottom panels.

4.4 illustrates the effect of tree-level corrections on the infinite-volume-extrapolated GF coupling

g2GF

(
t; g20

)
at weak coupling (βb = 6.0) for S f = Z (top panels) and S f = W (bottom panels).

Different colors indicate different operators Se, with Se = W (Wilson, blue), Se = S (Symanzik,

red), and Se = C (clover, green). Similarly, Fig. 4.5 illustrates the effect of tree-level corrections on

g2GF

(
t; g20

)
at strong coupling (βb = 4.35) for the same set of flow/operator combinations S fSe as in

Fig. 4.4.

At weak coupling, where the perturbatively calculated tree-level corrections should have the

most significant impact on the estimate of g2GF

(
t; g20

)
, there is a substantial gain in consistency

between different S fSe (right panels of Fig. 4.4) in comparison to unimproved estimates of g2GF

(
t; g20

)

(left panels of Fig. 4.4). This is holds for the entire range of t/a2 that I use in the continuum
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Figure 4.5: From Ref. [181]. Infinite-volume-extrapolated gradient flow coupling g2GF

(
t; g20

)
at

βb = 4.35 without tree-level corrections (left panels) and with tree-level corrections (right panels)
against t/a2. Wilson operator indicated by blue back, Symanzik by red, and clover by green. Zeuthen
flow shown in top panels and Wilson flow shown in bottom panels.

extrapolations of Sec. 4.5.3, though there is a slight gain in consistency as t/a2 increases. Tree level

corrections also improve the consistency of different S fSe combinations at strong coupling, though

the improvement is less dramatic than it is at weak coupling. It also degrades with increasing t/a2.

That tree-level corrections provide any considerable level of improvement at such strong couplings

(6 ≲ g2GF

(
t; g20

)
≲ 20) is surprising, though the observation a degradation of the improvement as

t/a2 increases is less so. In any case, the significant effect that tree-level corrections on the estimate

of g2GF

(
t; g20

)
over the entire range of renormalized couplings that I explore in this chapter justifies

their exclusive use throughout the rest of this chapter. Henceforth, all estimates of g2GF

(
t; g20

)
will

utilize tree-level corrections. It has been checked that unimproved g2GF

(
t; g20

)
yield consistent results

for the continuum β-function (though with a considerable increase in error). Furthermore, based
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Figure 4.6: From Ref. [181]. Interpolation of βGF

(
t; g20

)
in g2GF

(
t; g20

)
at fixed t/a2 = 2.0 (yellow),

2.52 (green), 3.0 (blue), 3.52 (purple), and 4.0 (red). Different colored symbols correspond to
(g2GF

(
t; g20

)
, βGF

(
t; g20

)
) pairs at 2.0 ≤ t/a2 ≤ 4.0. Colored bands indicate the interpolated β-function

from Eqn. 4.42. In the lower panel, I plot βGF

(
t; g20

)
/g4GF

(
t; g20

)
to enhance the weak coupling

regime.

on the improvement from tree-level corrections observed in Figs. 4.5-4.5, the central results of this

chapter will be based on the nZS combination; however, I will return to the systematic uncertainty

that is associated with choosing a particular S fSe combination in Sec. 4.5.4.
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4.5.3 Continuum extrapolation

The continuum extrapolation at a particular g2GF is taken by fixing g2GF = g2GF(t) and

extrapolating βGF

(
t; g20

)
to the a2/t→ 0 limit. As the leading discretization effects in βGF

(
t; g20

)
are

O
(
a2/t

)
, achieving the latter goal requires obtaining a collection of pairs

(
βGF

(
t; g20

)
, t/a2

)
at each

fixed g2GF over which the continuum extrapolation is performed. For each fixed g2GF, the β-function

βGF

(
t; g20

)
is extrapolated to the continuum a2/t→ 0 limit by fitting the

(
βGF

(
t; g20

)
, t/a2

)
at that

g2GF to the ansatz

βGF

(
t; g20

)
= βGF

(
g2GF

)
+ κ(t)(a2/t) (fixed g2GF), (4.39)

where κ(t) is a t-dependent “constant” and βGF

(
g2GF

)
is the continuum β-function at g2GF. Note that

there is a hidden assumption here, being that the leading discretization effects in g2GF

(
t; g20

)
are

suppressed compared to those in βGF

(
t; g20

)
or, at least, that they can be absorbed into κ(t) when

extrapolating βGF

(
t; g20

)
to the continuum limit with Eqn. 4.39. If this is not the case, then there is

an ambiguity in the a2/t→ 0 limit due to t not necessarily being fixed along the continuum limit.

In practice, this potential issue does not appear to affect the continuum extrapolation, so long as

there is sufficient control over cutoff effects; though it should be kept in mind in any application of

the CBFM.

4.5.3.1 Intermediate interpolation

To obtain the
(
βGF

(
t; g20

)
, t/a2

)
pairs that are required to take the continuum limit at any

fixed g2GF, I must interpolate βGF

(
t; g20

)
in g2GF

(
t; g20

)
over available t/a2 entering the continuum

limit. Obtaining the necessary
(
βGF

(
t; g20

)
, t/a2

)
pairs then follows by choosing a set of t/a2 over

which one wishes to perform the continuum extrapolation, fixing g2GF, then obtaining βGF

(
t; g20

)
at

that fixed g2GF = g2GF

(
t; g20

)
from each fixed t/a2 interpolation. The interpolation at each fixed t/a2

must be capable of accommodating the differing curvatures of βGF

(
t; g20

)
in g2GF

(
t; g20

)
in the weak

coupling regime (g2GF

(
t; g20

)
≲ 4π) and the strong coupling regime (g2GF

(
t; g20

)
≳ 4π).
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Once t/a2 is large enough to have reached the vicinity of the renormalized trajectory, the

dependence of the weak coupling β-function βGF

(
t; g20

)
on g2GF

(
t; g20

)
should converge asymptotically

to its one-loop counterpart (see Chapter 1) as

βGF

(
t; g20

)
∼ −b0

(
g2GF

(
t; g20

)
/4π

)2 (
g2GF

(
t; g20

)
→ 0

)
(4.40)

up to discretization effects. See Eqn. 1.9 for a definition of the one-loop universal constant b0. In

the strong coupling regime, the β-function is observed empirically to be linear in g2GF

(
t; g20

)
; that is,

βGF

(
t; g20

)
∝ g2GF

(
t; g20

) (
g2GF

(
t; g20

)
≳ 4π

)
. (4.41)

See, for example, the top panel of Fig. 4.6, which I will discuss in detail soon. This linearity in the

β-function survives the continuum limit and I will discuss it further in Sec. 4.5.5. A simple polynomial

is not capable of describing such desperate regimes in the curvature without also introducing a

number of systematic effects that are difficult to control for. A better approach is to construct an

interpolating function that matches onto Eqn. 4.40 at weak coupling, Eqn. 4.41 at strong coupling,

and everything else in-between. This is achieved with an N -order ratio of polynomials IN of the

form

IN
(
g2GF

)
≡
−p0g4GF

(
1 +

∑N
i=1 pig

2i
GF

)

1 +
∑N+1

j=1 qjg
2j
GF

. (4.42)

The leading power of g2GF in the numerator of Eqn. 4.42 explicitly forces IN
(
g2GF

)
→ −p0g4GF as

g2GF → 0. The order of the polynomial in the denominator forces IN
(
g2GF

)
∝ g2GF when g2GF/4π ≫ 1.

Because discretization effects affect the asymptotic behavior of the β-function, the ansatz of Eqn. 4.42

may have the effect of cutting off the smallest values of t/a2 that could viably enter the continuum

extrapolation. Nonetheless, the lowest order N that reasonably fits the data is N = 4, which yields

p-values in the 17%− 32% range for 2.0 ≤ t/a2 ≤ 4.0.

In the top panel of Fig. 4.6, I show the result of the intermediate interpolation over the
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Figure 4.7: From Ref. [181]. Continuum a2/t→ 0 extrapolation between g2GF = 1.2 to 15.8. The
results are shown in two separate panels to accommodate the increasingly faster running of the
coupling. In all cases, we show all three operators with Zeuthen flow after tln improvement, though
the different operators overlap and are barely distinguishable in the plot. The open symbols are not
included in the extrapolation fit. They are shown to illustrate the linear behavior of the data even
outside the region used in the fit.
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Figure 4.8: From Ref. [181]. The predicted β-function (salmon colored band) overlayed with the
infinite volume extrapolated data at different bare coupling βb (colored data points) for our main
analysis based on nZS for flow times t/a2 ∈ [2.0, 4.0], separated by ∆t/a2 = 0.2. The insert magnifies
the weak coupling region. The nZS combination shows very little cutoff dependence and the raw
lattice data sit on top of the continuum extrapolated value.

entire range of g2GF

(
t; g20

)
that the simulations of this chapter are capable of covering. I focus in
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on the weak coupling region in the bottom panel of Fig. 4.6. Following the suggestion of Ref.

[92], I normalize βGF

(
t; g20

)
by g4GF

(
t; g20

)
. Focusing first on the top panel of Fig. 4.6, I show the

result for the interpolation as multicolored bands with the same color scheme for the flow time

as in Fig. 4.3. Data points entering any interpolation at a particular t/a2 are marked with “×”

markers with an error bar. The subpanel shows the weak coupling β-function. Grey lines correspond

to the perturbative 1- (dashed) and 2-loop (dotted) universal β-function, along with the 3-loop

(dashed-dotted) GF β-function from Ref. [161]. Qualitatively, the β-function appears to converge

onto its perturbative counterpart as g2GF

(
t; g20

)
reaches deeper into the weak coupling regime. Any

mismatch between βGF

(
t; g20

)
and its perturbative counterpart in the weak coupling regime are

better visualized by inspecting βGF

(
t; g20

)
/g4GF

(
t; g20

)
, as is done in the bottom panel of Fig. 4.6.

Qualitatively, βGF

(
t; g20

)
/g4GF

(
t; g20

)
appears to approach the 3-loop GF curve as a2/t→ 0 at fixed

g2GF

(
t; g20

)
≲ 2.0. In the strong coupling regime, the interpolated β-function becomes increasingly

linear in g2GF

(
t; g20

)
, as I have already alluded to. Over the entire range of g2GF

(
t; g20

)
, the scale of

the cutoff effects are much smaller than the absolute scale of βGF

(
t; g20

)
. Hence, one may expect a

fairly mild continuum extrapolation throughout the range of investigated renormalized couplings

g2GF

(
t; g20

)
. We will see in Sec. 4.5.3 that the continuum extrapolations indeed support the latter

observation.

4.5.3.2 Continuum extrapolation

Now that I have interpolated βGF

(
t; g20

)
in g2GF

(
t; g20

)
over a set of fixed t/a2, I can take the

continuum extrapolation at any g2GF that is covered by the fixed-t/a2 interpolations using Eqn. 4.39.

The minimum flow time tmin/a
2 and maximum flow time tmax/a

2 over which the extrapolation is

performed must be chosen with care. If tmin/a
2 is too small, then the flow may not be close enough

to the renormalized trajectory for the linear scaling in Eqn. 4.39 to be realized. If tmax/a
2 is too

large, then the continuum extrapolation will pick up residual finite-volume effects due to the presence

of higher-order corrections to the finite-volume scaling of g2GF

(
t;L, g20

)
and βGF

(
t;L, g20

)
with t2/L4.

Because the β-function obtained from different flow/operator combinations must be consistent in the
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Figure 4.9: From Ref. [181]. Comparison of different continuum limit results obtained with tln
improved flow operator combinations. All results overlap and form a single band.
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Figure 4.10: Continuum βGF

(
g2GF

)
/g4GF over region where βGF

(
g2GF

)
/g4GF changes curvature. Colored

maroon band indicated continuum prediction for βGF

(
g2GF

)
/g4GF from nZS combination. Grey lines

indicate 1- (dashed), 2- (dotted) and 3-loop (dashed-dotted) perturbative β-function [161].

continuum limit, I use the consistency of the continuum extrapolation of g2GF

(
t; g20

)
from operators

Se to set the tmin/a
2, tmax/a

2 over which the continuum extrapolation is performed. The range
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Figure 4.11: From Ref. [181]. Systematic uncertainties with respect to our main analysis based on
nZS. By varying different parts of our analysis one after the other, we calculate the relative changes
of the central value and compare the size of the different systematic uncertainties (colored lines) to
our statistical uncertainty (salmon-colored band).

[tmin, tmax]/a
2 = [2.0, 4.0] achieves a reasonable degree of consistency over 1.2 ≲ g2GF ≲ 20; hence,

this is the range that is chosen for the central analysis. In Sec. 4.5.4, I estimate the systematic

uncertainty that is associated with different choices for tmin/a
2, tmax/a

2.

In Fig. 4.7, I illustrate the continuum extrapolation at fixed 1.2 ≤ g2GF ≤ 0.3N ≈ 15.8 over

[tmin, tmax]/a
2 = [2.0, 4.0] for Se = W (Wilson, blue), S (Symanzik, red), and C (clover, green). The

multicolored bands correspond to the extrapolation and circular markers (with error bars) are the

data points used in the fit (filled) and left out of the fit (open). Note two interesting observations:

(1) relative to the absolute scale of the continuum limit, the βGF

(
t; g20

)
from different Se are

fairly close to one another and

(2) the continuum extrapolation for all Se are indeed quite mild in comparison to the absolute

scale of βGF

(
t; g20

)
.

Both of the latter observations are attributed primarily to the tree-level improvement discussed in

Sec. 4.5.2. The closeness of βGF

(
t; g20

)
from different Se was already noted in Sec. 4.5.2, as it was
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the primary motivation for choosing only tree-level-corrected g2GF

(
t;L, g20

)
for the central analysis.

Without tree-level corrections, the slope for the continuum extrapolation from different Se is generally

larger than those with tree-level corrections, which increases the statistical error in the continuum

extrapolation. To emphasize the latter point, I juxtapose the β
(
t; g20

)
at 4.3 ≤ βb ≤ 9.5 (colored

markers with error bars) and 2.0 ≤ t/a2 ≤ 4.0 from the nZS combination against its continuum

prediction β
(
g2GF

)
(maroon band) in Fig. 4.8. For better visibility, I spread out fixed βb data points

in steps of δt/a2 = 0.2. For the vast majority of 1.2 ≲ g2GF ≲ 27, the values for β
(
t; g20

)
at fixed βb

either overlap with or are within the local vicinity of their continuum counterpart.

Note that the flow time is actually a continuous variable, as the gradient flow is a continuous

stochastic process. The discrete t/a2 that enter the continuum extrapolation are highly correlated

with one another, which makes the covariance matrix for the data points that enter the continuum

extrapolation poorly conditioned (see Appendix D). One way out is to approximate the covariance

matrix by its diagonal components; however, the resulting χ2 and p-value lose their meaning. Even

worse, this “fix” can lead to underestimating the statistical error. To obtain βGF

(
g2GF

)
with a reliable

statistical error, I first estimate the central value for βGF

(
g2GF

)
from a continuum extrapolation with

a diagonal covariance matrix. I then repeat the latter fit with data shifted by ±1σ. The statistical

error in βGF

(
g2GF

)
is estimated from the half difference of the central value for βGF

(
g2GF

)
from the

βGF

(
t; g20

)
± 1σ fits. This ensures that I am able to perform the continuum extrapolation without

running into issues with the poorly conditioned covariance matrix and/or underestimated statistical

errors, as it essentially assumes that the data are 100% correlated.

The authors of Ref. [57] recently (as of the writing of this thesis) devised a method for

estimating the χ2 and p-value of “uncorrelated fits” (those that must approximate the covariance

matrix by its diagonal components) in such a way that both goodness-of-fit measures retain their

original meaning. I was not aware of this method at the time that I performed the analysis in this

chapter; however, I intend to include it in future analyses of the continuous β-function. Doing so

could open the door to using Bayesian model averaging as a means to estimate the various systematic

uncertainties that are present in the continuum extrapolation step of the continuous β-function
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method directly [210, 273, 274], assuming that the notion of subset select for continuous Gaussian

variables (i.e., a Gaussian process) can be defined unambiguously. I explore the use of Bayesian

model averaging for the infinite volume extrapolation step of the Nf = 12 continuous β-function

method in Chapter 5. It is also applied to the infinite volume extrapolation step of the Nf = 8

system in Chapter 7.

4.5.4 Systematic errors in the β-function

I estimate the combined statistical (Fig. 4.8) and systematic error in the continuum βGF

(
g2GF

)

from the nZS combination by first considering variations in the analysis that I have presented in

Secs. 4.5.1-4.5.3. The percent shift ∆βGF

(
g2GF

)
in the central value for continuum prediction for

βGF

(
g2GF

)
resulting from each variation is summarized in Fig. 4.11. Note that, as g2GF increases,

different S fSe begin to lose a2/t values over which the continuum extrapolation discussed in Sec.

4.5.3 can be performed. This results is small discontinuities in the central value for the continuum

β-function as g2GF crosses such thresholds. The values βGF

(
g2GF

)
on either side of the discontinuity

are consistent within their respective statistical errors; however, they result in small discontinuities

in the estimate for the systematic error, as is observed in Fig. 4.11. The variations considered in

this chapter are as follows.

• Including βb= 5.3: Data at βb = 5.3 sits in the middle of the transition region. As such, the

autocorrelation time is quite large and obtaining a reliable estimate for the statistical error is

challenging. This results in a nearly vanishing p-value for the infinite volume extrapolation

at βb = 5.3 and it is hence dropped from the central analysis. Unfortunately, it also lies in a

sensitive region of the β-function, where βGF

(
g2GF

)
/g4GF is observed to change curvature. I

illustrate the change in curvature in Fig. 4.10. βb = 5.3 is therefore added back into the

analyses to estimate the impact that it has on the β-function in that region. Unsurprisingly,

it is the largest systematic effect (O(1.3%)) around g2GF ∼ 5.0.

• Infinite volume extrapolation: Two variations are considered.
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(1) Drop the smallest volume and perform a linear fit to all three volumes.

(2) Repeat the analysis with only the largest volume.

Both effects yield similar shifts in βGF

(
g2GF

)
, but using just the largest volume has the largest

effect. Hence, it is what is used to estimate the systematic uncertainty that is associated

with the infinite volume extrapolation. According to Fig. 4.11, it is the dominant source of

systematic uncertainty for g2GF ≳ 11.

• Intermediate interpolation: The value for the order N of the interpolating function

in Eqn. 4.42 is chosen based on the stability of the β-function against increasing N . The

intermediate interpolation is varied by choosing N = 2 and 6. The largest effect is observed

in going from N = 4 to 2; hence, it is taken as an estimate for the systematic error that is

associated to the intermediate interpolation.

• Continuum fit range: The continuum extrapolation is varied by changing the tmin/a
2 and

tmax/a
2 over which the continuum extrapolation is performed as follows.

(1) Fix tmin/a
2 = 2.0 and vary 4.0 ≤ tmax/a

2 ≤ 5.0.

(2) Fix tmax/a
2 = 4.0 and vary 1.52 ≤ tmin/a

2 ≤ 2.0.

The systematic error is estimated from the maximum of the latter variations at each g2GF.

The maximum systematic effect from varying the flow time range is O(0.3%).

• Flow/operator combination: In Fig. 4.9, I show the continuum βGF

(
g2GF

)
from each

S fSe combination. Taken together, the continuum curves nearly form a uniform curve. In

Fig. 4.11, one observes ever-so-slight variations in the central result for βGF

(
g2GF

)
, most of

which are either well within 1σ of the central nZS statistical error or just outside of 1σ. The

largest variations are observed from the clover operator, which are O(0.8%-1.0%). Because

varying the flow/operator combination is the dominant systematic effect for 7.5 ≲ g2GF ≲ 11,

the largest flow/operator deviation at each g2GF is taken as an estimate for the systematic

error that is associated with choosing a particular S fSe in the central analysis.
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Figure 4.12: From Ref. [181]. Final result for βGF

(
g2GF

)
as a function of g2GF for the coupling range

relevant to determine the Λ parameter. The yellow inner band shows only the statistical uncertainty,
whereas the red outer band shows the combined statistical and systematic uncertainties.

The latter systematic errors are included in the combined statitsical/systematic error by adding

them to the statistical error in quadrature. In Fig. 4.12, I compare the continuum βGF

(
g2GF

)
with

just statistical errors (yellow) against βGF

(
g2GF

)
with both statistical and systematic errors (red)

over the range of g2GF that will enter the Λ-parameter calculation of Sec. 4.6.

4.5.5 The continuum β-function

The continuum prediction for the β-function illustrated in Figs. 4.8 and Fig. 4.12 exhibits a

number of expected and unexpected features. In the weak coupling region, it appears to converge to

the 1-, 2- and 3-loop perturbative β-function [161], as one should expect. This will be discussed

further in Sec. 4.6, where matching onto the perturbative regime will be crucial for estimating

the Λ-parameter. I have also alluded many times already to the linearity of the β-function in the

strong coupling regime. The slope of βGF

(
g2GF

)
in g2GF in the linear region predicts directly how the
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continuum gradient-flowed Yang-Mills energy depends on the gradient flow time t. First, take

βGF

(
g2GF

)
≈ c0 + c1g

2
GF (g2GF/4π ≫ 1) (4.43)

as an ansatz. Then the solution to the RG equation for the continuum g2GF (Eqn. 4.14) is

c1g
2
GF(t) ≈ c0 + (Λt)−c1 ∝ t2⟨E(t)⟩ (g2GF/4π ≫ 1), (4.44)

where Λ is an integration constant that fixes the dimension of Λt. Early literature on gradient flow

observed that −c1 is O(1) [252]. More recent literature posits that −c1 = 1 exactly [271, 328], albeit

from simulations that have been performed on a single bare gauge coupling and gradient flow times

that extend well beyond 8t = (L/2)2 on their largest volume (L/a = 32). At such large flow times,

statements based on gradient flow regarding infinite volume properties of Yang-Mills systems lose

their meaning because the smearing radius now wraps around the lattice and finite-volume effects

are manifest. The dependence of c1 on g2GF is illustrated in Fig. 4.13.

Over 20 ≲ g2GF ≲ 27, the slope (derivative) of the continuum β-function from the simulations

of this chapter levels off at c1 ≈ −1.32. The spikes in c1 that are occasionally observed for g2GF ≳ 15

in Fig. 4.13 are due to occasional discontinuities in the continuum β-function that occur when the

continuum extrapolation loses a2/t values over which to extrapolate βGF

(
t; g20

)
to a2/t→ 0 at larger

fixed g2GF. The discontinuities have a small effect on the βGF

(
g2GF

)
, but they lead to occasional

numerical spikes in the derivative that do not reflect the slope in the strong coupling region. Their

effect is also observed as discontinuities is the systematic error estimates reported in Fig. 4.11. They

also do not affect the estimate for c1 = −1.32(1) reported in Ref. [181], which is shown as a grey

line in Fig. 4.13. Note that value for c1 in Ref. [181] is obtained from a cubic spline interpolation

of βGF

(
g2GF

)
in g2GF using the Steffen algorithm provided by gvar [241, 342].4 The spline-based

estimate was crosschecked against a simple linear fit of βGF

(
g2GF

)
in g2GF over the region where

dβGF/dg
2
GF levels off. The slope in Fig. 4.13 is obtained from a naive estimate of the slope over a

4Using a spline is justified by the high degree of statistical correlation in βGF

(
g2GF

)
amongst neighboring g2GF.
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Figure 4.13: Slope of continuum βGF

(
g2GF

)
predicted from c1δg

2
GF ≡ βGF

(
g2GF + δg2GF

)
− βGF

(
g2GF)

for δg2GF = 0.25 (maroon band). See text in Sec. 4.5.5 for a description of the numerical spikes that
occasionally occur when g2GF ≳ 15. These spikes do not affect the central estimate c1 = −1.32(1)
from Ref. [181] is shown as a grey line. The value for c1 = −1 is shown as a black dashed line for
visualization purposes.

coarser set of β-function values and is shown for the purposes of visualization. As such, the estimate

from Ref. [181] is slightly lower than the slope in Fig. 4.13, but it is consistent nonetheless. In any

case, the slope obtained from the numerical simulations of this chapter is not consistent with unity,

which implies that t2⟨E(t)⟩ is not linear in Λt over the largest range of investigated flow times in this

chapter. As the linearity of t2⟨E(t)⟩ in Λt discussed in Refs. [252, 271, 328] is merely an observation

and not a rigorous result, there is no good reason to believe that the slope reported in this chapter

is incorrect based on the commonly-held notation that it should be consistent with unity. It is also

possible that the slope has a mild dependence on g2GF at strong coupling and slowly converges to

unity. If this is the case, then the simulations of this chapter are simply not capable reaching large

enough g2GF to detect such dependence of c1 on g2GF.

As of the writing of this thesis, a rigorous explanation for the linearity of the continuum

β-function strong coupling regime does not exist. Moreover, it is not evident that such linear

strong coupling behavior should be universal in confining systems. Nonetheless, there exists a small
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literature on the behavior of non-perturbative β-functions in the confining regime [77, 271, 315, 328],

all of which exhibit some form of linearity in the confined regime. Even the textbook β-function

that is defined in terms of the static qq̄ “quark” 5 potential V (R) as

g2V (R) ∝ R2V (R) =⇒ βV
(
g2V
)
≡ −R2dg

2
V (R)

dR2
(4.45)

is linear in its respective renormalized coupling g2V (R) in the confining regime, where V (R) ≈ σR

with σ the string tension [313].6 The slope of the β-function is such a scheme is c(V )
1 = −3/2,

which is slightly higher in magnitude, but not statistically consistent with, the slope obtained in the

gradient-flow-based scheme of this chapter. There is no reason to expect that such a slope should

be universal without more theoretical input; moreover, the coupling g2V may not properly furnish a

proper definition of the renormalized coupling in the pure Yang-Mills system. The proposal in Ref.

[315] for the pure Yang-Mills system is based on the Novikov-Shifman-Vainshtein-Zakharov (NSVZ)

β-function of N = 1 supersymmetric Yang-Mills systems [279, 333]. A similar β-function is obtained

in Ref. [77]. However, the β-function obtained from both methods has a pole singularity that it must

cross before the β-function becomes linear. Moreover, the slope is positive in both Refs. [77, 315],

which is the opposite of what is predicted from the GF β-function. Refs. [271, 328] claim that the

linearity of GF-based β-functions is a consequence of confinement; as such, its linearity is attributed

to the same source of the linearity of the β-function defined in Eqn. 4.45. It is also plausible that

the linearity of the β-function can be attributed to Yang-Mills instantons, as they are all that is left

after gradient flow suppresses all other high-wavenumber fluctuations. Unfortunately, the source of

the observed asymptotic linearity in the β-function is unknown. The same can be said for whether

or not they asymptotic linearity has some universal component to it in a confined system. However,

there are plenty of directions for research that could be explored along the same vein.

5More precisely, V (R) is the potential between any source/anti-source of color flux; hence, it is well-defined for the
pure Yang-Mills system [265].

6Note using V (R) to defined a β-function is valid only in the pure Yang-Mills system, where there is no string
breaking due to the presence of fermions.
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4.6 The Λ-parameter and strong coupling constant

The continuum β-function βGF

(
g2GF

)
that I calculated in Sec. 4.5 characterizes the running of

g2GF(t) with 8t ∝ 1/µ2 according to Eqn. 4.14. More generally, in any renormalization scheme X,

µ2
dg2X(µ)

dµ2
≡ βX

(
g2X
)

(4.46)

for g2X(µ) the renormalized coupling of renormalization scheme X. It is assumed that g2X(µ) is

either a genuine renormalized coupling appearing in some Wilsonian effective action or, equivalently,

defined in terms of an observable OX that does not renormalize under some RG transformation.

There are two equivalent ways that one could solve Eqn. 4.46 assuming that βX
(
g2X
)

is known over

the desired range of g2X = g2X(µ).

4.6.1 Initial value problem: the strong coupling constant

Assuming that one knows g2X(µ0) = 4παX for some constant αX , they can use Eqn. 4.46

to evolve g2X(µ0) at µ0 to g2X(µ) at some other scale µ. This is what is done in many studies of

the Standard Model that need input from quantum chromodynamics (QCD) at scales that are

well above the pole mass of the Z boson, where QCD is pertubative. In such studies, αX in the

X = MS scheme is defined in terms of the MS running coupling g2
MS

(µ0) at µ0 = MZ , where MZ

is the pole mass of the Z boson. The value of αMS is often called the “strong coupling constant”

αs, though there is nothing special about αs outside of being deep enough in the perturbative

regime of QCD that g2
MS

(µ) ≡ 4παs(µ) for any µ ≥MZ can be determined from the perturbative

β-function in the MS scheme.7 The value of αs is therefore considered to be an important Standard

Model parameter, entering a variety of perturbative QCD processes; calculations of the t quark

mass and decay constants; Higgs production processes; hadronic Z widths; and much more [89, 90,

95]. See the most recent Flavor Lattice Averaging Group (FLAG) report for more information on

contemporary αs determinations based on lattice field theory. Currently, lattice-based determinations

7The MS β-function is known to a whopping 5-loop order [198]
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of αs = 0.1184(8) (Nf = 4) are the most precise.8

4.6.2 Direct integration: the Λ-parameter

One can also just integrate Eqn. 4.46 directly using separation of variables. In the “log b0”

convention, the solution is

Λ2
X

µ2
=

(
b0g

2
X(µ)

)- b1
b20 exp

(
-

1

b0gX(µ)2

)
× exp

[
-
∫ g2X(µ)

0
dx

(
1

β(x)
+

1

b0x2
− b1

b20x

)]
, (4.47)

where b0, b1 are universal 1- and 2-loop coefficients of the β-function defined in Chapter 1 [173, 227,

335]. Strictly speaking, the Λ-parameter is an integration constant that fixes the dimension of ΛX/µ.

As an integration constant, knowing ΛX is equivalent to knowing any initial value of g2X(µ0) as far

as solving Eqn. 4.46 is concerned. The Λ-parameter possesses a number of theoretical properties

that tend to make it easier to calculate than αX . For one, it is a RG invariant, meaning

dΛX
dµ2

= 0. (4.48)

This is already evident from the fact that it is an integration constant. Conveniently, the Λ-parameter

in any other scheme Y is related to ΛX by an exact one-loop relation

Λ2
Y /Λ

2
X = exp(d1/b0), (4.49)

where d1 is the one-loop coefficient relating g2Y to g2X as

g2Y = g2X + d1g
4
X +O

(
g6X
)

(g2X , g
2
Y ≪ 4π) (4.50)

and b0 is the one-loop universal β-function coefficient [92]. Eqn. 4.49 follows directly from Eqns.

4.47 and 4.50. That it is exact appears to be a consequence of asymptotic freedom, though it is

8Compare to the current global average αs = 0.1179(9) from the most recent Particle Data Group (PDG) Review
of Particle Physics [381].
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Figure 4.14: From Ref. [181]. βGF(g
2
GF)/g

4
GF in the weak coupling region. The salmon-colored band

shows our nonperturbatively determined βGF with combined statistical and systematic uncertainties.
We match to the 3-loop GF function using Eq. (4.52) in the range g2GF ∈ [1.4, 1.8] indicated by
the grey hatched area. Shifting our nonperturbative values by ±1σ, we obtain the magenta bands
providing the upper and lower limits of the resulting matched function shown in blue.

plausible that there is a better and/or more fundamental explanation for it being exact. In principle,

if the Λ-parameter is known in one scheme, then is known in any other scheme, so long as d1 is

calculable. For example, ΛMS is related numerically to the Λ-parameter of the infinite volume

gradient-flow-based scheme of this chapter ΛGF as [92, 161]

ΛMS/ΛGF = 0.534162960405763... (4.51)

In principle, if one can calculate t̃Λ2
GF in terms of some known hadronic scale t̃, then ΛMS, and hence

αs, is determined. Calculating t̃Λ2
GF at the t̃ = 8t0 scale defined by g2GF(t0) ≡ 0.3N is the objective

of the next section [252]. Note that t0 (and its counterpart from the β-function w0) is used most

modern scale setting studies [6, 31, 43, 336], though w0 has largely superseded it.
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4.6.3 Calculation of the pure Yang-Mills Λ-parameter

The definition of the Λ-parameter in Eqn. 4.47 hints at a method for determining tΛGF in

terms of the β-function that I calculated in Sec. 4.5: simply throw βGF in for βX and integrate

up to g2GF(t). However, this requires that I am able to determine the continuum β-function for

g2GF ≲ 1.2, where the non-perturbative simulations in this chapter no longer cover the β-function.

Deep within the weak coupling regime, one can use the 3-loop perturbative β-function from Ref.

[161]; however, in-between it is necessary to match the non-perturbative β-function to the 3-loop

perturbative β-function. To this end, first define the following ansatz for the β-function in the weak

coupling regime

β4(g
2
GF) ≡ −

g4GF

(4π)2

(
b0 + b1

g2GF

(4π)2
+ b2

g4GF

(4π)3
+ bpg

6
GF

)
, (4.52)

where b0, b1, and b2 are the one-, two-, and 3-loop coefficients for the perturbative β-function [161]

and bp is a free parameter [161]. I determine bp by requiring that

∫ g2f

g2i

dx 1/β(x)
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is the same for β = β4 and β = βGF over g2GF ∈
[
g2i , g

2
f

]
for some choice of g2i , g

2
f . Because different

βGF

(
g2GF

)
are correlated with one another and I no longer have access to the covariance matrix,

I estimate the error in β4(g2GF) from this procedure by repeating this exercise with βGF ± 1σ and

estimating the error in bp from the half difference. The error in bp is then propagated directly into

β4
(
g2GF

)
at any g2GF using the automatic error propagation tools provided by the gvar library. I

choose g2i , g
2
f = 1.4, 1.8, respectively, and show the result of the matching procedure in Fig. 4.14.

The maroon band in Fig. 4.14 is the non-perturbative βGF

(
g2GF

)
that I calculated in Sec. 4.5. The

blue band indicates the estimate for β4 from the matching procedure described above, with errors

bounded by the matching procedure performed at βGF ± 1σ (purple bands). The region over which

the matching is performed (g2i ≤ g2GF ≤ g2f ) is shown as a crosshatched band in Fig. 4.14.

With β4
(
g2GF

)
determined, I am able to extend the non-perturbative β-function down to

g2GF → 0. To calculate 8t0Λ
2
GF, I use β4

(
g2GF

)
in place of βX in Eqn. 4.47 for g2GF ≤ 1.4 and

βGF

(
g2GF

)
for 1.4 < g2GF ≤ 0.3N . To determine the integral in Eqn. 4.49, I interpolate over

βGF

(
g2GF

)
using a fine grid of g2GF so that I can represent βGF

(
g2GF

)
as a continuous variable, then

perform the integral
∫ g2GF(t0)

0
dx

(
1

βGF(x)
+

1

b0x2
− b1
b20x

)

numerically via an adaptive 4th-order Runge-Kutta integration algorithm [302, 342]. Note that the

error in βGF

(
g2GF

)
is the combined statistical/systematic error from Sec. 4.5.4. Both the spline

algorithm and the Runge-Kutta integration are performed using the numerical analysis tools provided

by gvar, which ensures that all errors are properly propagated back into 8t0Λ
2
GF [241]. I have checked

to ensure that the central value and error of 8t0Λ2
GF does not change if I make the grid in g2GF finer

for the spline interpolation over βGF

(
g2GF

)
.

In Fig. 4.15, I demonstrate the effect varying the g2i , g
2
f in the matching procedure used to

obtain β4 has on the estimate of 8t0Λ2
MS

. Keeping g2f = 1.8 fixed (left panel), the central value for

8t0Λ
2
MS

settles around g2i = 1.4. Keeping gi = 1.4 fixed (right panel), the central value for settles

around g2f = 1.8, though the central value changes much less when varying g2f < 1.8 at fixed g2i = 1.4
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than it does when varying g2i < 1.4 at fixed g2f = 1.8. Increasing g2i beyond 1.4 at fixed g2f = 1.8 or

g2f beyond 1.8 at fixed g2i = 1.4 only decreases the error on 8t0Λ
2
MS

; therefore, g2i , g
2
f = 1.4, 1.8 is

chosen, so as to be as conservative with the error as possible. Taken together, I get the following

estimate for the Λ-parameter

√
8t0ΛGF = 1.164(19), (4.53)

which yields

√
8t0ΛMS = 0.622(10). (4.54)

using the relation between ΛGF and ΛMS in Eqn. 4.51.

4.6.4 Comparison of the Λ-parameter against the literature

Calculations of the Λ-parameter for the pure Yang-Mills system have a long history going all

the way back to 1980 with derivation/standardization of Eqn. 4.49 [173]. A variety of methods have

been both proposed and deployed to calculate the Λ-parameter from lattice simulations. In Fig.

4.16, I juxtapose the determinations of the Λ-parameter that have met the Flavor Lattice Averaging

Group (FLAG) criteria against the value for t0Λ2
MS

that I obtain from the β-function in this chapter

[6]. Such studies utilize Schrödinger functional methods [67, 209], Wilson loops [147, 226], and the

short-distance static quark potential V (R) [48], and gradient-flow-based step-scaling [92]. Note that

the gradient flow result of Ref. [92] was reanalyzed with a better method for controlling systematic

errors in Ref. [269], from which a consistent estimate of t0Λ2
MS

was obtained. Just a few weeks

before the the result for 8t0Λ
2
MS

presented in this chapter was announced, the group of Ref. [380]

announced their value for 8t0Λ
2
MS

using the same CBFM method discussed in this chapter. Values

for the Λ-parameter that are not based on gradient flow are expressed in terms of the Sommer

scale r0, defined as F (r0)r20 = 1.65 in terms of the force F (R) that is derived from the static quark
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Figure 4.16: From Ref. [181]. Comparison of our result for
√
8t0ΛGF (maroon star) to the preliminary

result by Wong et al. [380] (orange pentagon) and Dalla Brida/Ramos [92] (green triangle). In addition
we show values for r0ΛMS which enter the FLAG 2021 averages: ALPHA 98 [67], QCDSF/UKQCD
05 [147], Brambilla 10 [48], Kitazawa 16 [226], and Ishikawa 17 [209]. These values are converted to√
8t0ΛGF using

√
8t0/r0 from [252] (open symbols) or Ref. [92] (filled symbols).

potential V (R) 4.5.5. Therefore, such results for r0ΛMS must be converted to 8t0Λ
2
MS

using the value

for
√
8t0/r0 = 0.948(7) for Ref. [252] (open symbols in Fig. 4.16) or

√
8t0/r0 = 0.9414(90) from Ref.

[92] (closed symbols in Fig. 4.16).

The estimate for 8t0Λ
2
MS

compares well with the other gradient-flow-based estimates from the

literature [91, 380]. However, there is a gap between estimates based on gradient flow and estimates

that utilize the Sommer scale r0. It is plausible that the discrepancy between the two is simply due

to the estimate for
√
8t0/r0 itself, as r0 can be a difficult quantity to calculate precisely. Regardless,

given the spread in 8t0Λ
2
MS

observed in Fig. 4.16, much scrutiny is needed. This especially rings true

given that the pure Yang-Mills system is supposed to be fairly well-understood. The authors of Refs.

[92, 269] have even called for a revision of the FLAG criteria for the Λ-parameter altogether, given

the precision of their gradient-based-result. Hopefully, the resolution to this discrepancy will lead to

a better understanding of lattice-based determinations of 8t0Λ2
MS

and their associate systematics.
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4.7 Scheme transformations and non-perturbative matching

I wrap this chapter up with a brief discussion of renormalization scheme transformations.

Additionally, I propose a method for matching the β-function of one RG scheme to another non-

perturbatively. One of the largest sources of systematic error in the calculation of 8t0Λ2
MS

in this

chapter is the matching procedure discussed in Sec. 4.6.3. This is due in part to the size of the 3-loop

correction to the β-function, which causes the 3-loop GF β-function to exhibit poor convergence

compared to other RG schemes [91, 161]. This was already pointed out in the gradient-flow-based

step-scaling study of 8t0Λ2
MS

from Ref. [92] (green triangle in Fig. 4.16). An alternative to matching

the non-perturbative continuum β-function to its continuum perturbative counterpart (in the same

RG scheme) could be to match the GF β-function of this chapter to a β-function from another RG

scheme that has either better convergence properties at weak coupling. Consider that, for any two

renormalized couplings g2X , g
2
Y defined as in Sec. 4.2, there is some bijection G ∈ C1 such that [322]

g2Y = GXY
(
g2X
)
. (4.55)

The Jacobian of GXY (just the derivative with respect to g2X in this case) and its inverse cannot be

singular. To see why, note that the corresponding β-functions βX , βY are related as

βY
(
g2Y
)
=
∂GXY
∂g2X

βX
(
g2X
)
. (4.56)

For the RG β-functions to have the same number of fixed points and the same slope at those fixed

points, Eqn. 4.56 requires that ∂GXY /∂g2X (and its inverse) is not singular; otherwise, the existence

of a fixed point could be scheme-dependent. Eqn. 4.56 also hints at a method for matching the RG

β-function in one scheme to another non-perturbatively. Taking, for example, the ansatz

GXY (x) = x+ x2
Np-1∑

i=0

cnx
n, (4.57)
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it is plausible that GXY (x) could be determined approximately over some range of g2X by requiring

βX
(
g2X) = βY

(
GXY (x)

)
/G′

XY (x)

∣∣∣∣
x=g2X

, (4.58)

where

G′
XY (x) =

dGXY (x)

dx
. (4.59)

If such a procedure could be performed in a controlled manner, it would allow for lattice calculations

to utilize different schemes for different parts of the calculation by patching them together where the

overlap. This could be especially useful for the calculation of 8t0Λ2
MS

in this chapter, where being

able to utilize calculations based on Schrödinger functional methods could significantly improve

the control that I have over the weak coupling region. See Refs. [317, 318, 322, 334] for more

information on the properties of GXY , which are currently not well-understood in the high-energy

physics community as a whole.



Chapter 5

The β-function of the massless twelve flavor system

In the last chapter, I calculated the renormalization group β-function within the Nf = 0

extreme of the Nf < N c
f side of the conformal window. In this chapter, I am going to take you to

the Nf = 12 extreme on the Nf > N c
f side of the conformal window. Nevertheless, the techniques

that I used to calculate the β-function of the pure Yang-Mills system shall carry over directly to

the twelve-flavor system. This chapter is laid out as follows. In Sec. 5.1, I briefly review the

last several decades of research into the infrared properties of the Nf = 12 system. I discuss an

improvement technique in Sec. 5.2 that allows for the simulations in this chapter to reach deep into

the infrared regime of the twelve flavor system. I summarize the simulations that are used to extract

the β-function for this system in Sec. 5.3. In Sec. 5.4, I calculate the continuum renormalization

group β-function using the methods that I introduced in Chapter 4. The continuumm β-function in

Sec. 4 strongly suggests that the twelve-flavor system exhibits an infrared fixed point. I wrap up

by calculating the leading irrelevant critical exponent at the infrared fixed point in Sec. 5.5. The

content of this chapter is based on Ref. [293].

5.1 Overview of the twelve-flavor system

The massless twelve-flavor system was one of the first systems to be targeted by investigations

of the SU(3) conformal window. As such, a variety of analytical and numerical techniques have

been deployed to understand both the properties of this system and where it lies with respect to

the conformal window. Along the vein of analytical techniques, groups have utilized perturbation



99

theory [106, 298, 316, 319–321], the gap equation [22, 30], functional renormalization group methods

[50, 51], conformal expansion [237], conformal bootstrap [243], the background field method [152],

perturbative non-relativistic quantum chromodynamics [81], and large-N expansion [312]. As a

whole, analytical investigations tend to predict that the twelve flavor system is infrared conformal,

though a sizeable chunk of such investigations are taken up by perturbative approaches that are

more or less likely to agree with one another in the first place. Taking perturbative calculations out

of the picture, which also includes investigations that combine perturbation theory with the gap

equation, analytical studies still tend to lie on the side of infrared conformality, though the margin

is quite a bit smaller. Numerical studies deploying techniques that are based on non-perturbative

lattice simulations also tend to lean toward the twelve-flavor system being infrared conformal. Such

studies have utilized finite-volume step-scaling [18, 19, 126, 132, 134, 167, 182, 186, 244, 245] (see

Sec. 4.3), Monte Carlo renormalization group methods [168, 169], hadron mass and decay constant

spectroscopy [9, 11, 16, 78, 97, 102, 128, 129, 246], and the Dirac eigenmode spectrum [79, 127]. Of

these studies, some of the most convincing evidence has come from the large-scale studies of the

Lattice Kobayashi–Maskawa Instutute (LatKMI) collaboration, which collectively observe evidence

for conformal hyperscaling and the presence of a light scalar boson at non-zero fermion mass [9, 11].

The latter studies are to be juxtaposed against the detailed study from Ref. [128], which concluded

that the twelve-flavor is consistent with being chirally broken based multiple observables, such as

the chiral condensate and the pseudoscalar spectrum. However, various claims made in Ref. [128]

have been refuted using the same dataset [16, 97]. The debate surrounding infrared conformality in

the twelve-flavor system morphed from being centered around spectroscopy and chiral symmetry

breaking to non-perturbative determinations of the RG β-function, of which Refs. [126, 167, 182,

186, 244] claim to find evidence of an infrared fixed point and Refs. [126, 132, 134, 245] do not.

Taken as a whole, the majority of investigations that probe the infrared properties of the twelve

flavor system conclude that it is infrared conformal,1 while a minority conclude that it is confining,

1See Refs. [9, 11, 16, 18, 19, 22, 30, 78, 79, 97, 102, 106, 167–169, 182, 186, 237, 243, 244, 246, 298, 316, 319, 321]
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chirally broken, or are inconclusive.2

5.2 Bulk phase transitions and Pauli-Villars improvement

The debate surrounding infrared conformality in the twelve flavor system, as approached

from the perspective of non-perturbative β-functions, is largely due to the presence of unphysical

first-order bulk phase transitions that prevent simulations from reaching far enough into the infrared

regime to observe to observe an infrared fixed point [80, 103, 280, 327, 340]. Bulk first-order phase

transitions are triggered by unphysical ultraviolet fluctuations [188]. Such fluctuations get worse as

Nf increases. Recently, it has been proposed to utilize heavy Pauli-Villars (PV) fields to cancel off

the ultraviolet fluctuations that trigger bulk first-order phase transitions [188].

Heavy staggered Pauli-Villars fields ϕ(s) with species index s and action

SPV
[
ϕ,ϕ†] = 1

2

∑

n,s

ϕ(s)†(n)D
(s)†
S D

(s)
S ϕ(s)(n) (5.1)

induce an effective action of the form

Sind
[
Uµ
]
= NsPV

∑

l

(−1)l/2
l(am)l

∑

n

∑

Cl

EClTrc
[
UCl(n)

]
, (5.2)

where NsPV ≡ 8NPV is the number of staggered species of Pauli-Villars fields and NPV is the total

number of Pauli-Villars fields, amPV is the mass of the degenerate Pauli-Villars fields, Cl is closed a

loop of size l (in units of the lattice spacing), UCl(n) is the lattice-discretized parallel transporter

starting at n and traversing Cl (defined in terms of a produce of links Uµ as in Eqn. 3.7), and

ECl = 1
4Tr
[
γµ1 · · · γµl

]
is a pure sign factor that is determined by the geometry of Cl [171, 172, 174,

188]. Note that NsPV can be halved by using “half fields”, which are described in Chapter 8.1.1.

The staggered Dirac operator D
(s)
S was defined in Chapter 3. Note that the form of Eqn. 5.2 with

smeared gauge links (see Appendix G) could be slightly more complicated. At leading order in 1/am,

observables calculated from fluctuations in the induced action of Eqn. 5.2 are equal to observables
2See Refs. [126, 128, 129, 135, 152, 245, 312]
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Figure 5.1: From Ref. [293]. The gradient-flowed Polyakov loop expectation value at flow time
8t/a2 ≈ (L/2a)2 versus the bare gauge coupling βb on each volume in Table 4.1. The absolute value
of the Polyakov loop is shown by colored error bars: L/a = 24 (blue), 28 (yellow), 32 (green), 36
(orange), and 40 (pink).

generated by fluctuations in the Wilson action (Eqn. 3.8), but with a coupling [188]

βind = − NsPV

(2amPV)4
(5.3)

In other words, heavy Pauli-Villars felds have an anti-screening effect. The anti-screening of the

PV fields can be used to cancel off the ultraviolet fluctuations that trigger first-order bulk phase

transitions. Moreover, by keeping the mass of the PV fields constant in units of the lattice spacing

along the continuum limit, the PV fields decouple. As such, the leave the infrared properties of the

target system untouched in the continuum limit. PV-improvement was first tested in the four-, eight-,

and twelve-flavor system in Ref. [188], which yielded promising results. Pauli-Villars fields have

since been deployed in simulations using Wilson fermions (briefly discussed in Sec. 3.2.2) with great

success [178, 179]. I have implemented PV improvment in the Quantum EXpressions (QEX-based)

qex_staghmc Monte Carlo suite.3 I describe qex_staghmc in detail in Chapter 8.

3My fork of the QEX library is publicly available at https://github.com/ctpeterson/qex.

https://github.com/ctpeterson/qex
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βb L/a

24 28 32 36 40

9.20 340 253 188 188 133

9.40 347 262 215 273 186

9.60 244 233 251 203 166

9.80 275 329 250 297 280

10.0 271 246 312 151 134

10.2 184 209 217 221 133

10.4 283 241 299 221 142

10.8 246 220 288 208 306

11.0 236 288 156 151 156

11.4 188 194 223 193 183

12.0 182 248 200 254 167

12.8 180 179 204 254 209

13.6 251 183 168 254 228

14.6 253 191 178 251 226

Table 5.1: The number of thermalized configurations analyzed at each bare coupling βb and volume
L/a. The configurations are separated by 10 MDTUs.

5.3 Simulation details

The simulations in this chapter utilize an adjoint-plaquette gauge action (see Appendix F), a

massless (amf = 0) nHYP-smeared staggered fermion action (see Appendix G for details on nHYP

smearing), and an nHYP-smeared Pauli-Villars action with NPV = 48 PV fields and amPV = 0.5.

Both the PV and fermion files have completely anti-periodic boundary conditions in all four directions.

All simulations are performed either using a modified version of the MILC library (KS_nHYP_FS)4 or

qex_staghmc (see Sec. 8.1 for details). The same is true for all gauge flow measurements. Details

of how gauge flow measurements are performed are discussed in Chapter 8.1.2. In Table 5.1, I list

the total number of thermalized configurations for each (L/a, βb) pair that I use to extract the

4The modified MILC library can be found at https://github.com/daschaich/KS_nHYP_FA

https://github.com/daschaich/KS_nHYP_FA
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β-function in this chapter.

In Fig. 5.1, I plot the gradient flowed temporal Polyakov loop magnitude (Eqn. 4.32) P4̂ ≡ P

at 8t = (L/2)2 for all ensembles in Table 5.1 against βb. The statistical error in the Polyakov loop is

estimated using the Γ-method implemented in the pyerrors library, which automatically accounts

for autocorrelation [214, 215, 308, 325, 378]. However, the statistical errors in Fig. 5.1 are still

likely underestimated. As I discussed in Chapter 4.4.1, the Polyakov loop indicates the onset of

confinement, as was evident from the sharp drop in the Polaykov loop observed in the Nf = 0 system

in Fig. 4.1. For the Nf = 12 simulations of this chapter, the Polyakov loop is showing no such signs

over the investigated βb. In fact, if the simulations were to show any signs of confinement (or even

fluctuations in the topological charge), then it would not be possible to perform them with amf = 0.

The reason for this is that the Dirac operator develops a zero-mode at amf = 0 in a confined system;

such a zero more prevents the Dirac operator from being invertible and hence the fermion sector

from being simulations using pseudofermions. Hence, the simulations in this chapter show no signs

of confinement over the range of investigated volumes and couplings. That, or they somehow only

cover the ϵ-regime, which is unlikely.

5.4 Calculation of the β-function

As in Chapter 4, I calculate the continuum RG β-function βGF

(
g2GF

)
using gradient flow and

the continuous β-function method (CBFM). The steps of the calculation are the same; however,

some details differ by improving upon the analysis presented in Chapter 4. The present study utilizes

only Wilson flow (S f = W) and either the Wilson or clover operator (Se = W,C) to discretize

the Yang-Mills energy density E(t, L). The finite-volume renormalized coupling g2GF

(
t;L, g20

)
is

calculated from the Yang-Mills energy density using Eqn. 4.19 with δ(t, L) defined by Eqn. 4.16;

i.e., I do not consider any tree-level corrections in δ(t, L). Moreover, I denote the calculation of

g2GF

(
t;L, g20

)
from a specific flow/operator combination as “S fSe”; e.g., “WC” for Wilson flow and

clover operator. The finite-volume β-function βGF

(
t;L, g20

)
is calculated from the renormalized

coupling numerically using Eqn. 4.36 and the 5-point stencil of Eqn. 4.37.
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Figure 5.2: From Ref. [293]. Result of our infinite volume extrapolation of g2GF

(
t;L, g20

)
(left panels)

and βGF

(
t;L, g20

)
(right panels) for the Wilson (W) operator at βb = 9.60 (top panels), 9.80 (middle

panels) and 10.2 (bottom panels). Black (×) markers with error bars are the data included in
our extrapolation. Extrapolations with errors that are predicted from Bayesian model averaging
are indicated by multi-colored bands at t/a2 = 2.5 (red), 3.5 (light green), 4.5 (cyan), and 6.0
(light purple). We do not show the infinite volume extrapolation of βGF

(
t;L, g20

)
at t/a2 = 4.5 for

visualization purposes.

Correlated errors are calculated and kept track of using the automatic error propagation tools

provided by the gvar library [241]. Autocorrelation is accounted for by binning. Moreover, any

fits to data utilize either lsqfit or my Python-based fitting library, SwissFit [240, 290]. Both

lsqfit and SwissFit are integrated with gvar so as to ensure that any statistical correlations are
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Figure 5.3: From Ref. [293]. Result of our infinite volume extrapolation of g2GF

(
t;L, g20

)
(left panels)

and βGF

(
t;L, g20

)
(right panels) for the clover (C) operator at βb = 9.60 (top panels), 9.80 (middle

panels) and 10.2 (bottom panels). Black (×) markers with error bars are the data included in
our extrapolation. Extrapolations with errors that are predicted from Bayesian model averaging
are indicated by multi-colored bands at t/a2 = 2.5 (red), 3.5 (light green), 4.5 (cyan), and 6.0
(light purple). We do not show the infinite volume extrapolation of βGF

(
t;L, g20

)
at t/a2 = 4.5 for

visualization purposes.

estimated and kept track of throughout the fitting process. See Chapter 8.2 for more information

about SwissFit.
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5.4.1 Infinite volume extrapolation with Bayesian model averaging

The first step of the CBFM is to take the infinite volume limit. In this chapter, I extrapolate

both g2GF

(
t;L, g20

)
and βGF

(
t;L, g20

)
to a/L→ 0 at fixed βb and t/a2 using the ansatz of Eqn. 4.38,

as was done in Chapter 4. However, I improve upon the error estimation by leveraging Bayesian

model averaging (BMA) [210, 273, 274] to include the systematic error that is associated with fitting

over subsets of volumes into the combined statistical/systematic error automatically. In Appendix

D, I discuss the background of BMA in detail. In practice, I implement the BMA procedure for the

infinite volume extrapolation at each fixed βb, t/a2 as follows.

(1) Fit over subsets: For each subset η of the full set of available volumes L/a ∈ {24, 28, 32, 36, 40}

with at least three volumes, I perform a fit over the subset η using Eqn. 4.38. I further

denote the estimate for ki
(
t; g20

)
in Eqn. 4.38 from fit η as k(η)i

(
t; g20

)
. From the χ2 of fit η

(see Chapter 8.2 for a refresher on the χ2), I associate a model weight wη to subset η as

wη ∝ exp

[
-
1

2

(
χ2
η + 2dη

)]
, (5.4)

where χ2
η is the χ2 of fit η and dη is the number of volumes not included in fit η from the full

set of available volumes. The extra 2dη term acts as a penalty in the model weight wη for

not including data [210, 274]. The model weights wη are normalized such that
∑

η wη = 1.

(2) Estimate of the mean: Denote the posterior mode of ki
(
t; g20

)
from fit η as k(η)i

(
t; g20

)
.

Then the Bayesian-model-averaged mean ki
(
t; g20

)
is estimated from the weights wη as

ki
(
t; g20

)
=
∑

η

k
(η)
i

(
t; g20

)
wη. (5.5)

In other words, the mean of ki
(
t; g20

)
is estimated from a weighted sum over the posterior

mode of k(η)i
(
t; g20

)
from each fit η.

(3) Estimate of the covariance: Denote covariance of
{
k
(η)
i

(
t; g20

)}
from fit η as C(η)

ij

(
t; g20

)
.
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Then the covariance suggested by BMA is estimated from C
(η)
ij

(
t; g20

)
as

Cij
(
t; g20

)
=
∑

η

C
(η)
ij

(
t; g20

)
wη +

∑

η

k
(η)
i

(
t; g20

)
k
(η)
j

(
t; g20

)
wη − ki

(
t; g20

)
kj
(
t; g20

)
. (5.6)

The total error for ki is Cii. It includes both the statistical error C(η)
ii from each fit η via a

weighted sum and an additional two terms that collectively represent the contribution from

the model uncertainty.

The BMA procedure above is repeated over each (βb, t/a
2) pair for both g2GF

(
t;L, g20

)
and βGF

(
t;L, g20

)
.

In Fig. 5.2, I illustrate the infinite volume extrapolation of g2GF

(
t;L, g20

)
(left panels) and

βGF

(
t;L, g20

)
(right panels) at βb = 9.6 (top panels), 9.8 (middle panels), and 10.2 (bottom panels)

for the S fSe = WW combination. I show the same information in Fig. 5.2, but for the S fSe = WC

combination. The bare gauge couplings shown in both figures are chosen such the the g2GF

(
t; g20

)
from

the infinite volume extrapolation are within the vicinity of the continuum predictions for g2GF⋆. For

all three βb, the L/a = 24 volume deviates from the linear trend in a4/L4. As such, its contribution

to the model average is negligible. The four largest volumes generally fit the linear trend in a4/L4

well and any minor deviations result in a larger model uncertainty.

5.4.2 Continuum extrapolation

The continuum extrapolation at each fixed g2GF is performed by fitting
(
βGF

(
t; g20

)
, t/a2

)
to

Eqn. 4.39. As was the case in Chapter 4, doing so at any fixed g2GF requires first interpolating

βGF

(
t; g20

)
in g2GF

(
t; g20

)
at fixed t/a2.

5.4.2.1 Intermediate interpolation

The β-function for the twelve flavor system is slowly running and its curvature in g2GF does

not change as dramatically as it had for the pure Yang-Mills system. Therefore, the interpolating
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Figure 5.4: From Ref. [293]. Illustration of our interpolation of βGF

(
t; g20

)
in βGF

(
t; g20

)
for the

Wilson operator (top panel) and clover operator (bottom panel). Interpolations at fixed t/a2 are
indicated by colored bands, with t/a2 = 2.5 (red), 3.5 (light green), 4.5 (cyan), and 6.0 (light
purple). The width of the band indicates the error. The data contributing to each interpolation
is indicated by an open circular marker with both x- and y-errors. We compare our interpolation
against the continuum 1- (dashed), 2- (dotted), and 3-loop (dashed-dotted) gradient flow β function
from perturbation theory [161].

function need not be overly complicated and a simply polynomial ansatz of the form

IN
(
g2GF

)
= g4GF

N−1∑

i=0

png
2n
GF (5.7)
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Figure 5.5: From Ref. [293]. Illustration of our continuum extrapolation of βGF

(
t; g20

)
at fixed

g2GF = 2.0 (teal), 4.0 (dark orange), 6.0 (magenta), and 8.0 (forest green). Data contributing to
our extrapolation with the W operator are shown as error bars with triangular markers and the C
operator are shown as error bars with circular markers. Our extrapolations are shown as colored
bands, where the error is indicated by the width of the band.

is sufficient to capture the curvature for all intents and purposes. The leading O
(
g4GF

)
term in Eqn.

5.7 forces the known weak coupling behavior of the β-function up to discretization effects. As was the

case for the pure Yang-Mills system, forcing such behavior at weak coupling may cut off otherwise

viable small t/a2 for use in the continuum extrapolation. Unlike the analysis presented in Chapter

4, I include the statistical error in g2GF

(
t; g20

)
by treating it as a Gaussian prior (see Appendix D).

Moreover, I put a prior on each pn with a mean of zero and a width of unity to stabilize each fit.
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Figure 5.6: From Ref. [293]. Our continuum prediction for βGF

(
g2GF

)
as a function of g2GF for

the W operator (gold band) and C operator (maroon band). The width of the band indicates
the error. The nonperturbative results are juxtaposed against the 1- (dashed), 2- (dotted), and
3-loop (dashed-dotted) gradient flow β function from perturbation theory [161]. Also shown is the
step-scaling β function in the c = 0.25 scheme from Ref. [186] as a grey band.

The order N of the polynomial is chosen to be the smallest value that reasonably fits the data. This

turns out to be N = 4, as N ≤ 3 are unable to accommodate for slight variations in the curvature

and hence possess poor p-values. In Sec. 5.5, I explore the systematic effect associated with the

order N of the interpolating polynomial in my estimate of the fixed point coupling g2GF⋆ and leading

irrelevant critical exponent γ⋆g .

If Fig. 5.4, I illustrate the intermediate interpolation of βGF

(
t; g20

)
in g2GF

(
t; g20

)
using the

ansatz of Eqn. 5.7 at fixed t/a2 = 2.5 (red), 3.5 (green), 4.5 (blue), and 6.0 (purple) for the WW

combination (top panel) and the WC combination (bottom panel). The interpolation is juxtaposed

against the 1-, 2-, and 3-loop continuum β-function from perturbation theory [161]. Over the t/a2

that will enter the continuum extrapolation, the p-values tend to be quite high. This indicates that I

could be overfitting. However, it may also be the case that the estimate for the error from the BMA

is an overestimate. As I have already noted, reducing the order makes the intermediate interpolation

significantly worse. As a remedy for potentially overfitting, I could decrease the width of the prior
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on the pn; however, this has little effect on the outcome of the continuum extrapolation, so I leave

the prior on pn as is.

5.4.2.2 Continuum extrapolation

With the intermediate interpolation taken care of, we are ready to take the continuum limit.

No improvements over the analysis in Chapter 4 are made to the continuum extrapolation. The

β-function βGF

(
t; g20

)
is again extrapolated to the continuum limit over a set of fixed g2GF and the

issue of strong correlations in each fit persist. Issues with such such correlations are again remedied

by first performing an uncorrelated fit of βGF

(
t; g20

)
in a2/t to estimate the central value. Then

uncorrelated fits to βGF

(
t; g20

)
± 1σ are used to estimate the statistical uncertainty from the half

difference of the central value for βGF

(
g2GF

)
from the shifted fits.

In Fig. 5.5, I illustrate the result of the continuum extrapolation for both WW and WC at

g2GF = 2.0 (blue), 4.0 (yellow), 6.0 (pink), and 8.0 (green). For t/a2 ≳ 6.0, the data begins to deviate

from the linear trend, indicating the the infinite volume extrapolation is no longer reliable beyond

t/a2 ≈ 6.0. The same is true for t/a2 ≲ 3.5, which indicates that cutoff effects are not sufficienly

suppressed until t/a2 ≈ 3.5. The choice [tmin, tmin]/a
2 = [3.5, 6.0] lies between these two regimes;

hence, it is chosen as the preferred flow time range for the central analysis of this chapter. In Sec.

5.5, I will explore the effect of varying tmin/a
2, tmin/a

2 on the estimate of the fixed point coupling

g2GF⋆ and leading irrelevant critical exponent γ⋆g .

5.4.3 The continuum β-function

The continuum prediction for βGF

(
g2GF

)
from the WW and WC combinations is shown in Fig.

5.6. I once again juxtapose the continuum prediction for βGF

(
g2GF

)
against its 1-, 2-, and 3-loop

continuum counterparts from perturbation theory [161]. Also shown for the purposes of comparison

is the continuum step-scaling β-function from Ref. [186]. The continuum prediction for βGF

(
g2GF

)

from both flow/operator combinations is consistent, overlapping well within error. At weak coupling

(g2GF ≲ 4π), the β-function shows signs of converging to the 1-, 2-, and 3-loop perturbative β-function.
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The β-function crosses the origin in g2GF around g2GF⋆ ≈ 6.6 for both operators. The prediction for

g2GF⋆ from the step-scaling β-function in Ref. [186] differs from the latter prediction; however, the

step-scaling β-function is obtained from a different RG scheme. Therefore, the prediction for the

fixed point coupling need not agree with the step-scaling prediction.

5.5 Leading irrelevant critical exponent

The renormalized coupling g2GF at the IRFP is irrelevant. The renormalized coupling g2GF

is also a scaling variable of the IRFP. According to the discussion in Chapter 2, the β-function

βGF

(
g2GF

)
depends on g2GF within the vicinity of g2GF⋆ as

βGF

(
g2GF

)
≈
γ⋆g
2

(
g2GF − g2GF⋆

)
(g2GF ≈ g2GF⋆), (5.8)

where γ⋆g is the leading irrelevant critical exponent. The factor of 1/2 in Eqn. 5.8 is conventional. In

Chapter 2, I stated that the critical exponent of scaling variables are universal. That is, they are a

property of the physical system that must be independent of the RG scheme used to extract them.

The solution to the RG equation within the vicinity of the fixed point is

g2GF(t) = g2GF⋆ +
(
Λt
)−γ⋆g/2 (g2GF ≈ g2GF⋆), (5.9)

where Λ is an integration constant that sets the dimension of t. Eqn. 5.9 shows explicitly that the

β-function for positive γ⋆g describes the running of an irrelevant coupling, as the solution to the

RG equation within the vicinity of the fixed point indicates that g2GF(t) → g2GF⋆ as t → ∞. The

rate at which g2GF(t) decays to g2GF⋆ is characterized by the size of γ⋆g , which enters as a potentially

non-integral exponent in Eqn. 5.9. Note that γ⋆g is also often referred to as the anomalous dimension

of ⟨Trc
[
FµνFµν

]
⟩, which is somewhat coincidentally quite clear already from the definition of g2GF in

terms of the gradient-flowed Yang-Mills energy E(t) density in Eqn. 4.13.
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Figure 5.7: From Ref. [293]. Comparison of our estimated g2GF⋆ and γ⋆g for different tmin/a
2 (x-axes)

and tmax/a
2 = 5.0 (green), 5.5 (gold), 6.0 (navy) from the continuum extrapolation.

5.5.1 Calculation of the leading irrelevant critical exponent

Because the continuum extrapolation in Sec. 5.4.2.2 approximates the covariance matrix of

βGF

(
t; g20

)
by its diagonal component, I no longer have access to the correlation matrix for βGF

(
g2GF

)

among the chosen g2GF. To ensure that the statistical error is not underestimated, I take βGF

(
g2GF

)

among each g2GF to be 100% correlated and estimate both g2GF⋆ and γ⋆g via the following procedure.

(1) Interpolation: I first interpolate the central value for βGF

(
g2GF

)
among a grid of g2GF using

the “Steffen” monotonic spline algorithm provided by the gvar library [241, 342]. The latter

spline interpolation is also repeated for the central value of βGF

(
g2GF

)
± 1σ. The grid of g2GF

for all three spline interpolations has δg2GF = 0.1. The resulting estimate for g2GF⋆ and γ⋆g

from Steps 2-4 is not sensitive to the choice of δg2GF within their statistical uncertainty.

(2) Central value of g2
GF⋆: I estimate the central value for g2GF⋆ by applying a derivative-free
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root finding algorithm on the spline interpolation of βGF

(
g2GF

)
from Step 1 [52]. The root

finding algorithm is provided by the gvar library [241].

(3) Central value of γ⋆g : The central value of γ⋆g is obtained from the prediction for g2GF⋆ in

Step 1 by evaluating the natural derivative of the monotonic spline at g2GF⋆ [342].

(4) Statistical error of g2GF⋆ and γ⋆g : I estimate the statistical error for both g2GF⋆ and γ⋆g by

repeating Steps 2-3 for the spline interpolation over the central value of βGF

(
g2GF

)
± 1σ from

Step 1 and taking the statistical error to be the half difference in the central value obtained

from both, respectively.

The latter steps yield a prediction of g2GF⋆ = 6.69(35), 6.60(36) and γ⋆g = 0.206(19), 0.199(18) for

WW and WC, respectively. Globally, results from the WC flow/operator combination appear to be

more stable against variations in analysis than the WW combination. As such, I take WC to be the

preferred flow/operator combination.

5.5.2 Systematic errors

I consider additional estimates for the systematic error on γ⋆g by varying the analysis presented

in Secs. 5.4-5.5.1 as follows.

• Order of the intermediate interpolation: The highest order polynomial that I can use

for the intermediate interpolation ansatz of Eqn. 5.7 before I lose control over the continuum

extrapolation due to overfitting is N = 6. Therefore, I vary the intermediate interpolation

by choosing N = 6, which results in a shift of δγ⋆g ≈ 0.001. The latter shift is taken as

an estimate for the systematic error that is associated with the order of the intermediate

interpolation.

• Flow time range for the continuum extrapolation: In the bottom panel of Fig. 5.7, I

illustrate the dependence of γ⋆g on tmin/a
2 ∈ [3.0, 4.0] at fixed tmax = 5.0 (green), 5.5 (tan),

and 6.0 (blue) for the WW combination (bottom left) and WC combination (bottom right).
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Though the central value for γ⋆g is consistent across all variations in tmin/a
2, tmax/a

2, it

stabilizes around tmin/a
2 ≳ 3.5 at tmax ≈ 6.0, lending further justification for the choice of

flow time range taken in Sec. 5.4.2.2. I estimate the systematic error that is associated with

the continuum flow time range as the difference between the most extreme values for γ⋆g in

the bottom panel of Fig. 5.7, yielding δγ⋆g ≈ 0.006.

• Choosing the W operator over C: The final variation is simply to choose the WW

combination over the WC combination. This yields an estimate for the systematic uncertainty

from the choice of flow/operator combination δγ⋆g ≈ 0.007.

As a conservative estimate for the combined statistical/systematic error, I estimate the total error

by combining the latter variations with the statistical error linearly. This yields an estimate of

γ⋆g = 0.199(32) (5.10)

for the leading irrelevant critical exponent. Repeating the latter variations for g2GF⋆ yields a systematic

error of ≈ 0.12 from the interpolation order, ≈ 0.05 from the continuum flow time range, and ≈ 0.09

from the flow/operator combination. Combining the latter systematic errors for g2GF⋆ linearly with

its statistical error yields an estimate of

g2GF⋆ = 6.60(62) (5.11)

for the fixed point value of the renormalized coupling g2GF.

5.5.3 Comparison against the literature

There is a small, but non-negligible, literature on calculations of γ⋆g from studies that conclude

the twelve flavor system to be conformal on the basis of observing a zero of the RG β-function. The

4-loop β-function in the MS scheme produces the estimate γ⋆g ≈ 0.282 without utilizing resummation

techniques [298], while lower orders in the loop expansion tend to yield larger estimates and are
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Figure 5.8: From Ref. [293]. Comparison of our value for γ⋆g (maroon errorbar) against Ref. [186]
(teal error bar) and Ref. [106] (dark gold error bar). The smaller error bar on our result indicates
the error without accounting for systematic effects; the larger error bar indicates our error after
accounting for systematic effects. We indicate our total error with a grey band for visualization.

fairly unreliable. After applying Borel resummation to the perturbative 5-loop β-function, Ref. [106]

estimates γ⋆g = 0.23(6), where the error is purely systematic. The “scheme-independent” approach

of Ref. [321] also estimates γ⋆g ≈ 0.228 at 5-loop order. The only non-perturbative estimate of γ⋆g

that the author of this thesis is aware of comes from Ref. [186], which yields γ⋆g = 0.26(2) using the

gradient-flow-based step-scaling method that I briefly touched upon in Chapter 4.3. In Fig. 5.8, I

compare the estimate for γ⋆g from Secs. 5.5.1-5.5.2 to the step-scaling estimate γ⋆g = 0.26(2) from

Ref. [186] (Hasenfratz2016, blue point) and the Borel-resummed perturbative estimtae γ⋆g = 0.23(6)

from Ref. [106] (DiPietro2020, dark gold point). The estimate in this chapter is not consistent with

the step-scaling estimate in Ref. [186] within the combined uncertainty of both approaches, but it

is consistent with the Borel-resummed perturbative estimate of Ref. [106] (within the combined

uncertainty). The “scheme-independent” estimate γ⋆g ≈ 0.228 of Ref. [321] is also consistent with

γ⋆g = 0.199(32); however, it lies on the edge of the combined statistical/systematic error, which I
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have already stated could be an overestimate. Overall, one can confidently state that the estimate

for γ⋆g in this chapter is consistent with the available literature at the 1-2σ leve.



Chapter 6

Interlude: Finite size scaling with radial basis function networks

All models are wrong, but some are useful

George E. P. Box [45]

After having explored the use of renormalization group techniques in systems well outside of

the conformal window (Nf = 0, Chapter 4) and likely well inside of the conformal window (Nf = 12,

Chapter 5), the latter part of this thesis is dedicated to trying to understand a system (Nf = 8,

Chapter 7) that could be on, or at least close to, the edge of the conformal window. This is going to

be an extremely difficult task, so before embarking on this journey we shall make a pit stop and

explore some techniques that have been developed for tackling the Nf = 8 system. This will take

us into a world of well-understood two-dimensional spin systems, which may be just what we need

before we jump deep into the unknown.

Finite size scaling (FSS, Chapter 2.5) by the method of curve collapse is a simple, yet powerful

theoretical tool for probing the properties of a given phase transition, but it must be wielded with

care. Assuming that the FSS dataset that one is working with is up to snuff, the primary hurdle to

get over when working curve collapse is choosing an appropriate parametric ansatz for the scaling

function. This chapter is dedicated to exploring the use of radial basis function networks (RBFNs),

a special type of single-layer artificial neural network, are capable of doing the job. To start, Sec.

6.1introduces the method of curve collapse. Sec. 6.2 introduces radial basis function neural networks

and how to deployed them in a curve collapse analysis. The RBFN-based curve collapse is tested
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on the two-dimensional p-state Potts model for p = 2, 3 in Sec. 6.3 and the q-state clock model

for q = 4,∞ in Sec. 6.4. I end this chapter by speculating other uses of the RBFNs in lattice field

theory analyses in Sec. 6.5; as an example, I explore a method for extracting the critical temperature

of the ∞-state clock (XY) model from a direct interpolation of the helicity modulus using an RBFN.

The content of this chapter is based on Ref. [292].

6.1 Curve collapse

In Chapter 2.5, I discussed the general idea of finite size scaling (FSS) in terms of how the

singular part of the free energy A(s)
φ

(
K,N−1

s

)
transforms under an RG transformation in a finite

volume Nd
s ≡ (L/a)d. As a corollary to that discussion, finite-volume observables O(K,Ns) derived

from A
(s)
φ

(
K,N−1

s

)
scale within the vicinity of a continuous phase transition as [69, 303]

O
(
K,Ns

)
= NγO

s FO
(
ξ̃(K)/Ns

)
(K ≈ Kc), (6.1)

where γO is the leading anomalous dimension of O at Kc, FO is a universal scaling function, and

ξ̃(K) is the infinite volume correlation length in units of the lattice spacing. I have also assumed that

the scaling behavior does not differ depending on the direction that we approach Kc from; this will

be the case for the systems that I study in the rest of this thesis. For a 2nd-order phase transition

ξ̃(K) ∼ |k|−ν (2nd-order),

where k ≡ K/Kc − 1; therefore,

O
(
K,Ns

)
= NγO

s FO
(
|k|N1/ν

s

)
(K ≈ Kc, 2nd-order). (6.2)

Note that the FO from Eqn. 6.1 differs from that of Eqn. 6.2 because I have manipulated its

arguments; however, I am referring to them as the same function for notational brevity. Meanwhile,
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for an ∞-order phase transition,

ξ̃(K) ∼ exp
(
ζ|k|−ν

)
(∞-order);

therefore,

O
(
K,Ns

)
= NγO

s FO
(
Ns exp

(
-ζ|k|−ν

))
(K ≈ Kc, ∞-order), (6.3)

again after a little rearrangement of the argument.

Eqns. 6.2 and 6.3 hint at a method for extracting the critical parameters Kc, ν and possibly ζ

(depending on the order of the phase transition) from a series of finite volume simulations at various

(K,Ns) pairs. By simulating the system on multiple volumes Ns and couplings K that are in the

vicinity of Kc, one may estimate the critical parameters by requiring that

O
(
K,Ns

)
/NγO

s = FO(x) (6.4)

is a unique function of

x(K,Ns) ≡ |k|N1/ν
s (2nd-order) (6.5)

for a 2nd-order phase transition or

x(K,Ns) ≡ Ns exp
(
-ζ|k|−ν

)
(∞-order) (6.6)

for a ∞-order phase transition. When the critical parameters have been identified correctly, the

individual curves for O(K,Ns) in K at fixed Ns are said to collapse onto one another when re-

expressed in terms of x(K,Ns) and rescaled by N−γO
s . The latter method is therefore referred to as

curve collapse.

As the scaling function FO(x) is a priori unknown and (usually) not determined by a finite

number of parameters (i.e., it is non-parametric), it is typically estimated from a parametric ansatz

whose parameters are determined as part of the curve collapse analysis; for example, a polynomial
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Figure 6.1: From Ref. [292]. Illustration of a radial basis function network (RBFN). The total
number of center parameters cn, counting the components of each cn, is equal to the number of
connections between the input nodes (green circles on left; a.k.a., input features) and hidden nodes
(blue circles). The number of weights is equal to the number of connections between the hidden
nodes and output nodes (green circles on right; a.k.a., output features).

or ratio of polynomials. With so much freedom in choosing the ansatz for FO(x), it would be nice to

have on hand a family of interpolating functions that generally perform well at interpolating over

a variety of curves. As universal function approximators, radial basis function networks could be

just the right tool for the job. The rest of this chapter is therefore dedicated to exploring the use of

radial basis function networks in various finite size scaling problems.
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6.2 Radial basis function networks and finite size scaling

A radial basis function network is a special type of single-layer artificial neural network that

is specially designed for the purposes of function approximation [145]. In Fig. 6.1, I illustrate the

general structure of an RBFN. The inputs x ∈ RL (left green nodes in Fig. 6.1) of the network are

connected to the nodes of the hidden layer (center blue nodes) by the center parameters cn ∈ RL.

The output of each hidden node is then passed through a radial basis function ρ and aggregated

linearly into the output nodes (right green nodes) via matrix multiplication with the network weights

wmn. The output of the full network is

RBFNm(x) =
∑

n

wmnρ
(
-β2n||x− cn||2

)
+ bm, (6.7)

where cn and wmn are the aforementioned center parameters and network weights, respectively;

{bm} are the network biases ; and {βn} are the radial basis function bandwidths. In this chapter, the

radial basis functions are exponential

ρ(·) = exp(·) (6.8)

and the norm || · || is the standard Euclidean norm; as such, the output of each hidden node has a

Gaussian profile. The total number of free parameters ΘRBFN ≡ {cn, βn, wmn, bm} for an RBFN is

the same as for a standard feedforward neural network.

According to the universal approximation theorem for RBFNs, an RBFN with exponential

activation units in its hidden layer is capable of approximating any continuous function on a compact

subset of RM with an accuracy that scales with the number of hidden nodes [288]. For problems

involving large, complicated datasets, RBFNs have been largely phased out by various kinds of

deep neural networks; however, such neural networks are completely unnecessary for the small-scale

parameter estimation problems that are needed for most lattice field theory analyses. For such

small-scale problems, the simplicity and approximation power of RBFNs could be of great benefit.



123

6.2.1 Finite size scaling with radial basis function networks

For the purposes of FSS by the method of curve collapse, I estimate the scaling function FO(x)

defined by Eqns. 6.4-6.6 by parameterizing it with an RBFN that possesses as single input node and

a single output node. In other words, I take

O
(
K,Ns

)
/NγO

s = FO(x) ≈ RBFN(x) =
∑

n

wn exp
[
-β2n(x− cn)2

]
+ b, (6.9)

where the input x is given by either Eqn. 6.5 or 6.6 and center parameters cn are scalar. Because the

multi-dimensional hidden layer is collapsed onto a single node in the output layer, I denote the weights

in Eqn. 6.9 as wn. The full set of free parameters for the RBFN is then ΘRBFN = {cn, βn, wn, b}. The

parameters of the RBFN ΘRBFN are estimated alongside the critical parameters Θcrit. ≡ {Kc, ν, γO, ζ}

(ζ ∈ Θcrit. only for ∞-order transitions) by fitting Eqn. 6.9 to data for O
(
K,Ns

)
via maximum a

posteriori (MAP) estimation. For the types of problems that are encountered in lattice gauge theory,

MAP estimation reduces to the problem of minimizing an augmented χ2
aug., which is the sum of

the χ2 of the data χ2
data and the χ2 of the prior χ2

prior. Estimating the “mean” (posterior mode)

of Θ ≡ ΘRBFN ∪Θcrit. will therefore be done in this chapter by minimizing χ2
aug.; uncertainties in

the posterior mode of Θ are estimated from a Laplace approximation of the posterior. Details of

MAP estimation, the definition of χ2
aug., and uncertainty estimation about MAP estimates are all

described in detail in Appendix D and Chapter 8.2.

6.2.2 Fitting with the basin hopping optimization algorithm

The landscape of χ2
aug.(Θ) in Θ can be very rich in structure. Due in part to the symmetries

of RBFNs, χ2
aug.(Θ) often possess many (possibly degenerate) local optima with their own basins of

attraction, along with steep barriers that separate regions of Θ space. MAP estimation assumes that

the parameters Θ have been estimated from the global optimum of χ2
aug.(Θ). If one wishes to use a

local optimization algorithm, finding the global optimum requires using an extremely clever (or lucky)

procedure for initializing Θ; however, this is difficult to do in practice and by no means efficient.
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Algorithm 1: From Ref. [292]. The basin hopping global optimization algorithm, as
implemented in Ref. [364]. The LocalOptimization step utilizes the trust region reflective
local optimization algorithm [49]. We use the SciPy library’s implementation of both
optimization algorithms [361].

Input: Θ0, α, T
Θ← LocalOptimization(Θ0);
Θbest ← Θ;
while Θbest not converged do

Θ′ ← RandomPerturbation(Θ, α);
Θ′ ← LocalOptimization(Θ′);
Θ← MetropolisCriterion(Θ,Θ′, T ) ;
if new Θbest then

Θbest ← Θ
end

end
Output: Θbest

In the machine learning literature, the Adam variant of stochastic gradient descent optimization

algorithms is the industry standard [225], along with its Nesterov-accelerated counterpart [111].

Because it is stochastic, it can achieve the task of finding global optima, though it is not guaranteed

to. It is also specially designed to be efficient for problems involving large datasets. As such, it

can be very inefficient for the small-scale problem of fitting a model to data with even less than a

few hundred data points. One way out is to utilize a global optimization algorithm; however, many

global optimization algorithms tend to be fairly inefficient for one reason or another. After all, there

is no free lunch. This is precisely true for optimization algorithms, which perform equally well when

averaged over the set of all optimization problems [379]. Unfortunately, this means that one often

has to settle with the algorithm that generally works best for a particular class of problems.

Typically, I find that utilizing a global optimization algorithm is more efficient for finding

even just stable local optima than cleverly engineering a good initial condition for kick-starting a

local search. Though I will not go through the details in this thesis, I have exhaustively tested a

variety of popular global optimization algorithms, such as dual simulated annealing [357, 383, 384];

various metaheuristic genetic/evolutionary algorithms such as differential evolution [343, 387] and

particle swarm [223]; Bayesian optimization [140]; basin hopping [364]; and many others. Of the
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global optimization algorithms that I have tested, the basin hopping (BH) algorithm combined with

the trust region reflecitve (TRF) local optimization algorithm tends to perform the best at finding

global optima, or at least stable local optima, in the smallest number of iterations [49, 364].

Conventional BH algorithms combine the benefits of local search strategies via gradient-based

optimization techniques, random perturbations in Θ space (hops), and Metropolis acceptance criteria

to guide the algorithm’s exploration through rugged, potentially funnel-like, χ2
aug.(Θ) landscapes

[364]. Each iteration of BH performs the following steps (see Algorithm 1).

(1) RandomPerturbation: Pick a random unit direction Θ̂ and update Θ→ Θ′ as Θ′ = Θ+αΘ̂

for step size α. I find that choosing α from a uniform distribution can help the algorithm

move around Θ space more efficiently.

(2) LocalOptimization: Update Θ′ → Θ′ by running a local optimization algorithm on Θ′.

In this thesis, I use the trust region reflective algorithm for the local optimization [49].

The TRF algorithm is a fantastic general-purpose algorithm, and I typically find that it

vastly outperforms other popular local optimization algorithms, such as L-BFGS-B [63],

Levenberg-Marquardt [242, 259], and nonlinear conjugate gradient methods [341].

(3) MetropolisCriterion: Accept the optimized Θ′ from Step 2 with probability

acc. prob. = exp
[
-max

(
0, χ2

aug.(Θ
′)− χ2

aug.(Θ)
)]1/T

, (6.10)

where T is a temperature hyperparameter that should not be confused with the physical

temperature. A good choice for T is the average separation in χ2
aug. among local optima

[361]; however, I typically find that simply setting T = 1 suffices for all intents and purposes.

If Θ′ is accepted, then Θ′ → Θ.

(4) Global optimum test: If χ2
aug.(Θ) is lower than χ2

aug.(Θbest), set Θbest = Θ.

Unfortunately, the BH algorithm for T ≠ 0 is not guaranteed to converge. Therefore, the termination

criterion for BH is often set by the maximum number of iterations that Θbest has not been improved.
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Furthermore, I typically chain runs of the BH algorithm with different α to ensure that I have

reached as stable of an optimum as a I can. As there is no test of global optimality without knowing

what the global optimum explicitly, this is unfortunately the best that one can do. Despite the

downsides of the BH algorithm, it nonetheless performs surprisingly well at finding stable optima

of χ2
aug.(Θ) in comparison to any other algorithm that I have used. It is no wonder that it is the

industry standard for many problems that involve finding the lowest energy state of atomic clusters,

crystals, and biological macromolecules [27, 110, 233, 281, 364, 365, 388]. Moreover, in a recent

comparative analysis, BH was found to generally outperform many popular evolutionary strategies on

various challenging opimization tasks, save for the covariance matrix adaptation evolution strategy

(CMA-ES) [160], which slightly outperformed BH [25]. It would be worth looking into CMA-ES in

the future as a better alternative to BH.

6.2.3 Empirical Bayes estimation via surrogate-based optimization

One advantage of using MAP estimation over, say, maximum likelihood estimation, is the

control that it provides for overfitting through the use of priors. In this chapter, I put a prior on the

network weights wn with a mean of zero and a width λ; such a prior enters χ2
aug.(Θ) as

χ2
ridge(Θ) =

1

λ2

∑

n

w2
n, (6.11)

which I refer to as a ridge regression prior in this chapter because it first appeared in the literature

on ridge regression [201, 296, 354]. In the machine learning literature, adding terms like Eqn. 6.11

to the loss function of a neural network is referred to as L2-regularization or weight decay [60, 118,

268]. It is not immediately clear how λ should be set, so as to avoid overfitting. One criterion

could simply be to tune λ such that χ2
aug./d.o.f. ∼ 1 (see Chapter 8.2); however, this could lead to

bias. Another approach could be to set a prior on λ itself, to which λ would be estimated from

a doubly-augmented χ2 via MAP estimation. Such an approach is called hierarchical Bayesian

modelling [268]. Of course, this only shifts the ambiguity in λ to an ambiguity in its prior. A nice
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automated procedure for setting λ that is an approximation to hierarchical Bayesian modelling is

the empirical Bayes procedure [71, 239].

In Appendix D, I briefly defined the marginal likelihood (ML). In short, it is the normalization

factor in Bayes’ theorem that is proportional to the probability Pr
(
D|M

)
of the data D given some

modelM for the data. The empirical Bayes procedure follows by choosing any unknown priors by

extremizing the marginal likelihood. What this means for the goals of this chapter is that we should

calculate λ by optimizing the marginal likelihood in λ. In practice, the marginal likelihood can be

estimated from a Laplace approximation of the posterior about the MAP estimate Θ∗ as

−2 logML ≈ χ2
aug.(Θ

∗) + log
(2π)d.o.f. detΣX detΣC

detΣΘ∗
, (6.12)

where ΣX is the covariance (of the mean) of the data, ΣC is the covariance of the priors, ΣΘ∗ is the

covariance of the MAP-estimated parameters Θ∗, and “d.o.f.” is the number of degrees of freedom of

the fit, all of which are defined in Chapter 8.2.

Each value of the approximate marginal likelihood is estimated from a fit at a particular λ.

Therefore, extremizing the marginal likelihood (equivalently, minimizing − logML) with a gradient-

based local optimization algorithm could be prohibitively expensive. A nice way to get around this

is via the following surrogate-based optimization procedure.

(1) Calculate ML: Calculate logML over a grid of λ.

(2) Interpolate: Interpolate the estimate for logML in λ from Step 1 with a spline. The

monotonic interpolating spline that I’ve used many times throughout this thesis already will

do just fine [342].

(3) Optimize: Optimize − logML in λ using a gradient-based local optimization that treats

the spline as a surrogate for the actual marginal likelihood. The gradient can be calculated

easily from the natural derivative of the spline.

The initial grid of logML estimates in λ need not be very fine; ten to twenty or even less often works
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Figure 6.2: From Ref. [292]. Example of an interpolation over the marginal likelihood in Eqn. 6.12
with a cubic spline (red line). Each black circle represents the marginal likelihood calculated from
a curve collapse fit of the 2-state Potts model Binder cumulant at a particular value of λ. The
minimum of the surrogate spline λ∗ is the value for λ suggested by the empirical Bayes procedure.

well. Most important for having the latter procedure work is to make sure that the initial estimates

of logML are robust. In practice, this is achieved by calculating logML from one fit at a particular

λ at the lower end of the grid, then calculating logML for all other λ by sequentially initializing

each fit with the result of the previous fit. As long as the first fit in the sequence is robust, all

other fits typically fall in line how they should. Note that, for less complicated fit functions, the

surrogate-based empirical Bayes procedure of this section can be implemented in an embarrassingly

parallel fashion, which could significantly reduce the amount of time that it takes to go through the

entire empirical Bayes procedure. This method could also be improved upon if accuracy is a great

concern by embedding it in a bisection algorithm for finding the root of d logML/dλ.

In Fig. 6.2, I illustrate what the a spline interpolation of − logML in λ looks like for one

of the example problems that we will encounter in Sec. 6.3. Specifically, the curve in Fig. 6.2 is

from a fit of the RBFN-based scaling function for the Binder cumulant of the 2-state Potts (Ising)

model. The black circles labelled “representative fits” are from a RBFN-based curve collapse fit at a

particular λ. The red curve is the spline-based interpolation over the representative fits. The value
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Figure 6.3: From Ref. [292]. BFN-based curve collapse analysis of the 2-state Potts (Ising) model
using the Binder cumulant U (2)

4,Potts (top panel) and the magnetic susceptibility χ(2)
Potts (bottom panel).

The curve collapse uses Ns = 64 (pink), 96 (blue), 128 (purple), and 256 (red) volumes in the
coupling range 0.87 ≤ K(2)

Potts ≤ 0.90. Data used in the curve collapse are marked with an open × (fit
data); otherwise, they are marked with an open ◦ (other data). The scaling function FO predicted
by the RBFN is plotted as a grey band. The width of the band corresponds to the predicted error.
The RBFN in the top panel has two nodes in its hidden layer and the RBFN in the bottom panel
has three.

of the optimum λ∗ ≈ 1.776 from the surrogate spline is the prior width that is suggested by the

empirical Bayes procedure.
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Figure 6.4: From Ref. [292]. RBFN-based curve collapse analysis of the 3-state Potts model using
the Binder cumulant U (3)

4,Potts (top panel) and order parameter susceptibility χ(3)
Potts (bottom panel).

The curve collapse uses Ns = 64 (pink), 96 (blue), 128 (purple), 196 (tan), 256 (red), and 512 (cyan)
volumes for U (3)

4,Potts and Ns = 128, 196, 256, and 512 volumes for χ(3)
Potts (same scheme as U (3)

4,Potts).

The K(3)
Potts values used in both curve collapse analyses are in the range 1.005 ≤ K(3)

Potts ≤ 1.018 for
U

(3)
4,Potts and 1.005 ≤ K(3)

Potts ≤ 1.026 for χ(3)
Potts. Data used in the curve collapse are marked with an

open × (fit data); otherwise, they are marked with an open ◦ (other data). The scaling function
FO predicted by the RBFN is plotted as a grey band. The width of the band corresponds to the
predicted error. The RBFN in both panels has two nodes in its hidden layer.
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2-state Potts model 3-state Potts model

Param. U
(q)
4,Potts χ

(q)
Potts Exact U

(q)
4,Potts χ

(q)
Potts Exact

K
(q)
Potts 0.881363(15) 0.881363(28) log

(
1 +
√
2
)

1.00518(15) 1.005007(48) log
(
1 +
√
3
)

ν 0.9995(27) 0.9979(40) 1 0.833(34) 0.820(23) 5/6

η — 0.2496(29) 1/4 — 0.2713(80) 4/15

Table 6.1: From Ref. [292]. Comparison of our RBFN-based estimates of K(q)
Potts, ν and η critical

parameters for q = 2, 3 from a curve collapse analysis of U (q)
4,Potts and χ(q)

Potts. Exact critical parameters
are from Ref. [382]. Predicted critical parameters from Figs. 6.3-6.4.

6.3 Application: The q-state Potts model for q = 2, 3

I first test the RBFN-based method that I introduced in Sec. 6.2 on the two-dimensional

isotropic p-state Potts model, which is a generalization of the two-dimensional isotropic Ising model

(q = 2) to q ≥ 2 discrete spins. The reduced Hamiltonian for the q-state Potts model is

H(q)
Potts = −K

(q)
Potts

∑

⟨ij⟩

δ(si, sj), (6.13)

where si ∈ {1, ..., q} and the Kronecker delta δ(si, sj) = 1 when si = sj and δ(si, sj) = 0 otherwise.

The notation ⟨ij⟩ denotes a sum over sites i and nearest-neighbors j. In this section, I consider both

q = 2 (the Ising model) and q = 3. For all q ≥ 2, the q-state model exhibits a phase transition at

K
(q)
Potts,c = log

(
1 +
√
q
)

(6.14)

that is 2nd-order for q ≤ 4 and first-order for q > 4 [113, 114, 382].1 The order parameter that

distinguishes one phase from another is the magnetization

Mq

(
K

(q)
Potts, Ns

)
≡ 1

N2
s

∑

i

δ(si, 1)− 1/q. (6.15)

1Note that the critical coupling for q = 2 differs from the conventional Ising model coupling as K
(2)
Potts,c = 2KIsing,c
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The critical exponents for q = 2, 3 are known exactly [382], which makes the q = 2, 3 system a great

test bed for the RBFN-based curve collapse of this chapter. I simulate both systems using the Wolff

cluster algorithm implemented in the beautiful Julia-based SpinMonteCarlo library [267, 377]. See

Appendix J for a brief description of cluster algorithms.

I test the RBFN-based curve collapse of this chapter on the 2- and 3-state Potts model by

determining K(q)
Potts,c, ν and η2 from a curve collapse analysis of the Binder cumulant

U
(q)
4,Potts

(
K

(q)
Potts, Ns

)
=

1

2

[
3−

⟨M4
q ⟩

⟨M2
q ⟩2

]
(6.16)

and the connected magnetic susceptibility

χ
(q)
Potts

(
K

(q)
Potts, Ns

)
= K

(q)
PottsN

2
s

〈
(|Mq| − ⟨|Mq|⟩)2

〉
, (6.17)

where Mq

(
K

(q)
Potts, Ns

)
is defined in Eqn. 6.15. The Binder cumulant and connected magnetic

susceptibility scale as Eqn. 6.4 for x
(
K

(q)
Potts, Ns

)
=
∣∣k(q)Potts

∣∣N1/ν
s (2nd-order scaling) with γ

U
(q)
4,Potts

= 0

and γ
χ
(q)
Potts

= 2− η, respectively [69, 303]. In Fig. 6.3, I illustrate the result of the curve collapse

for the Binder cumulant (top panel) and connected magnetic susceptibility (bottom panel) for the

2-state Potts (Ising) model. I show the same information for the 3-state Potts model in Fig. 6.4.

They grey band in both figures in the prediction for the scaling function FO for the Binder cumulant

(top panels) and the connected magnetic susceptibility (bottom panels). The multicolored error bars

illustrate the data that entering the curve collapse, with each color representing a fixed volume Ns

(see the respective legends). In Table 6.1, I compare the prediction for the critical parameters from

the RBFN-based curve collapse against their exact values from Ref. [382]. From the range of Ns and

K
(q)
Potts entering the curve collapse analysis of both models, the prediction for the critical parameters

listed in Table 6.1 agree with their exact counterparts at the 1σ level and the p-values for all fits are

in the 36%-62% range.

2η is the anomalous dimension of the wave function.
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Perhaps the most interesting observation of the curve collapse analysis summarized in Figs.

6.3-6.4 is the exceedingly small number of nodes in the hidden layer; each RBFN possesses a mere

2-3 hidden nodes, depending on the observable. Nonetheless, the RBFN manages to accommodate

both the S-shaped profile of three out of four of the observables, along with the peaked profile of

the connected magnetic susceptibility of the 2-state Potts model. This is to be contrasted with

the feedforward-neural-network-based curve collapse of Ref. [385], which deployed neural networks

containing two internal layers with twenty nodes per layer. Even using the feedforward neural

networks provided by SwissFit [290], I find that such a massive neural network is completely

unnecessary for the purposes of curve collapse. Even worse, such a model has a negative number of

degrees of freedom without the imposition of priors; as such, the χ2 and p-value are meaningless.

The approach advocated in this chapter does not run into such issues.

6.4 Application: The p-state clock model for p = 4,∞

The two-dimensional isotropic p-state clock model is a discrete version of the two-dimensional

isotropic XY model. The discrete spin variables are described by angles θi = 2πni/p that live at

each lattice site i for 1 ≤ ni ≤ p. The reduced Hamiltonian for the p-state clock model is

H(p)
clock = −K(p)

clock

∑

⟨ij⟩

cos
(
θi − θj

)
. (6.18)

As was the case for the q-state Potts model, p = 2 is equivalent to the two-dimensional Ising model.

In contrast, the p→∞ limit is equivalent to the famous two-dimensional XY model. It is generally

accepted that the p-state clock model exhibits one or more phase transitions for all p ≥ 2 and that

there is some p for which one of the phase transitions switches from being 2nd-order or ∞-order.

In this chapter, I investigate the 4- and ∞-state clock model. Unknown to the author before

I started present investigation of this system, the 4-state clock model is in the Ising universality

class [117]; that is, it possesses exactly the same leading-order critical exponents as the 2-state Potts

(Ising) model. As such, it is 2nd-order. Even more, it possesses exactly the same critical temperature
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Figure 6.5: From Ref. [292]. RBFN-based curve collapse of the 4-state clock model using the Binder
cumulant U (4)

4,clock (top panel) and connected magnetic susceptibility χ
(4)
clock (bottom panel). The

curve collapse uses Ns = 96 (blue), 128 (purple), 196 (tan), 256 (red). The K(4)
clock values used in

the curve collapse of U (4)
4,clock are in the range 0.870 ≤ K

(4)
clock ≤ 0.893 and the K(4)

clock values used

for χ(4)
clock are in the range 0.870 ≤ K(4)

clock ≤ 0.885. Data used in the curve collapse is marked with
an open × (fit data); otherwise, it is marked with an open ◦ (other data). The scaling function
FO predicted by the RBFN is plotted as a grey band. The width of the band corresponds to the
predicted error. The RBFN in both panels has three nodes in its hidden layer.

[283]

K
(4)
clock,c = log

(
1 +
√
2
)
. (6.19)
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Figure 6.6: From Ref. [292]. RBFN-based curve collapse analysis of the ∞-state clock (XY) model
using the Binder cumulant U (∞)

4,clock (top panel) and connected magnetic susceptibility χ(∞)
clock (bottom

panel). The curve collapse uses Ns = 128 (purple), 196 (tan), 256 (red), 320 (yellow), and 512 (cyan).
The K(∞)

clock values used for both curve collapse analyses between 1.005/1.0 for U (∞)
4,clock/χ

(∞)
clock and 1.1,

1.1, 1.102, 1.102, and 1.105 for Ns = 128, 320, 256, 160 and 512, respectively for both observables.
Data used in the curve collapse is marked with an open × (fit data); otherwise, it is marked with an
open ◦ (other data). The scaling function FO predicted by the RBFN is plotted as a grey band.
The width of the band corresponds to the predicted error. The RBFN in both panels has two nodes
in its hidden layer.

The phase transition of the ∞-state clock (XY) model is much more interesting. Because it is a two-

dimensional system with continuous spins, it cannot exhibit a phase transition in the “conventional”
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4-state clock model ∞-state clock (XY) model

Param. U
(p)
4,clock χ

(p)
clock Exact U

(p)
4,clock χ

(p)
clock Literature/Exact

K
(p)
clock 0.881379(17) 0.881430(66) log

(
1 +
√
2
)

1.126(10) 1.1160(86) 1.1199...

ζ — — — 1.6(1.2) 1.45(62) 1.5...

ν 0.9976(41) 1.001(11) 1 0.55(20) 0.526(92) 1/2

η — 0.2510(39) 1/4 — 0.2513(85) 1/4

Table 6.2: From Ref. [292]. Comparison of our RBFN-based estimates of K(p)
clock, ν, η, and ζ critical

parameters for p = 4,∞ from a curve collapse analysis of U (p)
4,clock and χ

(p)
clock. The exact critical

parameters are from Refs. [231, 382]. Values from the literature for K(∞)
clock,c and ζ are from Refs.

[166, 229, 232, 277]. Predicted critical parameters from Figs. 6.5-6.6.

sense (a byproduct of spontaneous symmetry breaking) due to the Mermin-Wagner theorem [260].

The phase transition of the XY model is not such a phase transition. The transition is triggered by a

sudden transition from a phase that is dominated by spin-wave dynamics to a phase that is dominated

by interacting vortices [222, 231]; in other words, the phase transition is induced by topology and not

the spontaneous breakdown of some symmetry. This is the Berezinsky-Kosterlitz-Thouless (BKT)

transition [37, 231, 232]. Even more, the transition is ∞-order [231]. The transition temperature is

not known exactly; however, a multitude of studies spanning many decades in the literature have

pinned it down to

1/K
(∞)
clock,c ≈ 0.893 (6.20)

with a global uncertainty in 1/K
(∞)
clock,c that is roughly O(0.001) [166, 229, 277]. This amounts to

K
(∞)
clock,c ≈ 1.12. RG analysis of the ∞-state clock model yields ν = 1/2 and ζ ≈ 1.5 [231].

I simulate the 4-state clock model using the cluster algorithm provided by the SpinMonteCarlo

library [267, 377]. On the other hand, I simulate the ∞-state clock model using the heatbath

algorithm provided by the Quantum EXpressions (QEX) library [284]. The author’s reason for using

the heatbath algorithm is historical. One the original goals of this project was to use the GF-based

renormalized coupling for FSS, as I do in Chapter 7. At the time, I wanted to utilize the tools
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provided by QEX library to accomplish this goal. Conveniently, QEX also had an implementation

of the heatbath algorithm that allowed me to simultaneously generate heatbath samples and run

gradient flow measurements. As little came out of my investigation of the renormalized coupling,

I regret not simulating the ∞-state clock model with the cluster algorithm, which is superior to

the heatbath algorithm for spin systems near criticality. In any case, I briefly discuss the heatbath

algorithm in Appendix J.

As in Sec. 6.3, I test out the RBFN-based curve collapse on the 4- and∞-state clock model by

considering the Binder cumulant and magnetic susceptibility. To this end, I define the magnetization

vector

M
(
K

(p)
clock, Ns

)
≡ 1

N2
s

∑

i

(
cos(θi), sin(θi)

)
(6.21)

in place of the magnetization defined in Eqn. 6.15 for the Potts model. The Binder cumulant is

calculated from the magnitude of the magnitization as

U
(p)
4,clock

(
K

(p)
clock, Ns

)
=

1

2

[
3− ⟨|M|

4⟩
⟨|M|2⟩2

]
. (6.22)

For the magnetic susceptibility of the 4-state clock model, I calculate the connected magnetic

susceptibility as

χ
(4)
clock

(
K

(4)
clock, Ns

)
= K

(4)
clockN

2
s

〈
(|M| − ⟨|M|⟩)2

〉
, (6.23)

while for the magnetic susceptibility of the ∞-state clock model, I use the estimator

χ
(∞)
clock

(
K

(∞)
clock, Ns

)
= K

(∞)
clockN

2
s

〈∣∣M
(
K

(∞)
clock, Ns

)∣∣2
〉

(6.24)

suggested by Refs. [158, 286]. The Binder cumulant and connected magnetic susceptibility

scale as Eqn. 6.4 with x
(
K

(4)
clock, Ns

)
=
∣∣k(4)clock

∣∣N1/ν
s for the 4-state model and x

(
K

(∞)
clock, Ns

)
=

Ns exp
(
-ζ
∣∣k(∞)

clock

∣∣−ν) for the∞-state clock model. Moreover, for both models γ
χ
(4)
clock

= γ
χ
(∞)
clock

= 2−η

with η = 1/4 [232, 382]. In Fig. 6.5, I illustrate the result of the curve collapse for the Binder
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cumulant (top panel) and connected magnetic susceptibility (bottom panel) for the 4-state clock

model. I show the same information for the ∞-state clock (XY) model in Fig. 6.6. In Table 6.2,

I compare the prediction for the critical parameters from the RBFN-based curve collapse against

what is known from the literature [166, 229, 232, 277].

The RBFN-based curve collapse for the p-state clock model yields predictions for the critical

parameters of both models that are consistent with either their exact values or their estimates from

the literature over the range of Ns and K
(p)
clock used in each analysis. The p-values for the 4-state

clock model curve collapse are 54% and 83% for the Binder cumulant and connected magnetic

susceptibility, respectively. For the∞-state clock model, they are 100% and 94%. Such high p-values

indicate either that the model overfits or the errors on the data are overestimated. Given that the

size of the error bars appear to be much larger than the fluctuations in the central values of the data,

it is much more likely that the errors have been overestimated. As with the q-state Potts model, the

RBFN has only 2-3 hidden nodes. The RBFN’s ability to accommodate for the differing curvatures

of the scaling function while producing estimates for the critical parameters that agree with the

literature with such a small number of hidden nodes is quite impressive.

6.5 Other uses of radial basis function networks in lattice field theory

Though I have introduced radial basis function networks in this chapter for the purpose of

extracting the critical parameters of a model, there are a variety of problems in lattice field theory

and the broader scientific domain that could exploit the expressivity and simplicity of RBFNs.

One such class of problems are those which require estimating the non-parametric component of a

semi-parametric model. The curve collapse analysis that we have explored in this chapter belongs to

the latter category: to estimate the critical parameters of the model, it is necessary to estimate the

non-parametric and a priori unknown scaling function FO. Another familiar example appears in

hadron spectroscopy. Spectroscopy calculations often involve estimating the ground state energy Ẽ0

and amplitude Ã0 (in units of the lattice spacing), along with any excited state energies/amplitudes,
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Figure 6.7: From Ref. [292]. RBFN-based interpolation of the helicity modulus Υ(K
(∞)
clock, Ns) for

the ∞-state clock (XY) model at fixed Ns. Data included in fit is shown as an errorbar with an
open “×” marker. RBFN-based interpolation is shown as a colored band. Interpolation performed
on Ns = 128 (purple), 160 (dark green), 256 (red), 320 (yellow), and 512 (cyan). The RBFN-based
fits are shown as a colored bands, with the width of the band indicating the error. The color of each
band indicates the Ns at which the fit was performed. The helicity modulus at K(∞)

clock,c(Ns) given by
Eqn. 6.29 is indicated by a dotted black line. The RBFN has 2 nodes in its hidden layer.

from a fit of two-point function data to the ansatz

G(x̃4) = Ã0 exp
(
-Ẽ0x̃4

)
+

∞∑

i=1

Ãi exp
(
-Ẽix̃4

)
, (6.25)

where x̃4 is the temporal extent of the lattice in units of the lattice spacing. The excited state sum is

non-parametric in the sense that requires knowledge of an infinite number of Ãi, Ẽi. Estimating Ẽ0

and Ã0 requires truncating the excited state sum, and the stability of the estimate is assessed by the

observation of a stable plateau of the ground state parameters in the number of states contribution

to the sum. The need to choose a cutoff in the number of excited states can introduce an additional

source of systematic uncertainty. Parameterizing the excited state sum with a radial basis function

network could improve the estimate of at least the ground state energy/amplitude by removing this

ambiguity; however, one of course still needs to choose how many parameters the RBFN should
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Figure 6.8: From Ref. [292]. Extrapolation of the pseudocritical temperature K(∞)
clock,c(Ns) calculated

from the intersection of our RBFN-based interpolation (colored bands in Fig. 6.7) with the universal
jump condition (dotted line in Fig. 6.7) to 1/Ns → 0 using Eqn. 6.30. The pseudocritical
temperatures are indicated by multi-colored errorbars with open diamond markers “⋄” and utilize
the same color scheme as Fig. 6.7 for different Ns (see caption). Result of fit to Eqn. 6.30 is shown
as a grey band and the central value of the fit prediction is shown as a dotted black line.

posses.

A more trivial class of problems are those that require directly interpolating some observable.

We have already encountered these kinds of problems many times in this thesis; see, for example,

Chapters 4.5.3.1 and 5.4.2.1. Let’s now end this chapter with an example calculation that utilizes

an RBFN as a tool for direct interpolation. From the RBFN-based interpolation, I will extract the

critical temperature of the ∞-state clock model.

6.5.1 Example: The critical temperature of the ∞-state clock model

My goal in this section is to estimate the critical temperature K(∞)
clock,c of the BKT transition

from the helicity modulus, defined as

Υ
(
K

(∞)
clock, Ns

)
=

1

2

2∑

µ=1

〈
eµ −N2

sK
(p)
clocks

2
µ

〉
, (6.26)
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with

eµ =
1

N2
s

∑

⟨ij⟩µ

cos(θi − θj), (6.27)

sµ =
1

N2
s

∑

⟨ij⟩µ

sin(θi − θj), (6.28)

where ⟨ij⟩µ denotes a sum of lattice sites i along the µ-direction and their nearest-neighbors j [229,

277, 358, 359]. Next, I interpolate Υ
(
K

(p)
clock, Ns

)
in K(∞)

clock at fixed Ns with an RBFN possessing two

hidden nodes. In Fig. 6.7, I show the result of the interpolation at Ns = 128, 160, 256, 320, and 512

as multicolored bands. The p-values for the fits are in the 27%− 83% range. At K(∞)
clock,c, there is a

universal jump condition

Υ
(
K

(∞)
clock,c, Ns

)
= 2fr/πK

(∞)
clock,c(Ns), (6.29)

where fr = 1 − 16π exp(-4π) [277]. The jump condition is shown as a dotted black line in Fig.

6.7. I calculate the pseudocritical temperature K(∞)
clock,c(Ns) from the intersection of Υ

(
K

(p)
clock,c, Ns

)

intersects the right hand side of Eqn. 6.29. At leading order, the pseudocritical temperature

K
(∞)
clock,c(Ns) depends upon Ns as

K
(∞)
clock,c(Ns) = K

(∞)
clock,c + ζ−1/ν log

(
κNs

)−1/ν
. (6.30)

I then extract K(∞)
clock,c from Eqn. 6.30 using the pseudocritical coupling K(∞)

clock,c(Ns) extracted from

the universal jump condition. The data is not precise enough to determine both K(∞)
clock,c and ν, so I

fix ν = 1/2. I illustrate the extrapolation in Fig. 6.8. The estimate K(∞)
clock,c = 1.124(14) is consistent

with the result that I obtained from the RBFN-based curve collapse and the literature (see Table

6.2). It is clear from Fig. 6.8 that the error in K(∞)
clock,c(Ns) fans out as 1/Ns → 0 because the data

entering the extrapolation are situated far away from the infinite volume limit. The large distance

over which the extrapolation must be performed is a consequence of the logarithmic scaling of certain

observables with Ns for ∞-order transitions. Unfortunately, one must simulate large volumes.



Chapter 7

Finite size scaling and β-function of the massless eight flavor system

Up to this point, we have explored a variety of renormalization group methods and physical

systems. My goal in this chapter is to apply the methods that we have developed and subsequently

deployed to study the infrared properties of the massless SU(3) gauge-fermion system with Nf = 8

fermions in the fundamental representation of SU(3). The Nf = 8 system is the least well-understood

and, consequentially, the most controversial/challenging system that I explore in this thesis. As

such, the content of this chapter reflects an ongoing effort to understand its infrared behavior. In

Sec. 7.1, I review the literature on Nf = 8. I summarize the simulations that have been performed

for the content of this chapter in Sec. 7.2. The rest of this chapter is dedicated to understanding

the zero-temperature phase structure of the Nf = 8 using the radial basis function network-based

finite size scaling method described/deployed in Chapter 6 (Sec. 7.3) and the renormalization group

β-function using the methods described/deployed in Chapters 4 and 5 (Sec. 7.4).

7.1 Overview of the eight flavor system

Much of the literature on Nf = 8 system suggests that it could be close to the edge of the

conformal window. Early investigations of this system were partially motivated by the presence

of an IRFP in the perturbative two-loop β-function (see Chapter 1), which predicts an IRFP for

8.05 ≲ Nf ≲ 16.5 [346]. However, the two-loop fixed point at Nf ≈ 8.05 is observed at such an

absurdly large renormalized coupling that it cannot be described by perturbation theory. The

most recent non-perturbative determinations of the β-function from lattice simulations of the
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Nf = 8 system have not observed an IRFP over the range of renormalized couplings that have been

investigated thusfar [18, 19, 124, 185, 187]. As the value of the fixed point coupling g2X⋆ in any RG

scheme X increases as Nf → N c
f from the conformal phase, it is possible that such studies simply

could not reach large enough g2X to see signs of an IRFP. Interestingly enough, the few studies that

have managed to reach renormalized couplings in the range 8.0 ≲ g2c ≲ 16.0 using gradient-flow-based

step-scaling schemes (see Chapter 4.3) do observe signs of an inflection point in the continuum

β-function [185, 187]; however, the presence of a bulk phase transition (see Chapter 5.2) in such

studies prevented them from reaching further into the infrared regime. Note additionally that an

observation of the β-function turning around could indicate either that the β-function possesses an

IRFP or that there is some range of renormalized couplings over which the renormalized coupling

is slowly walking ; without a conclusive observation of either behavior, it is impossible to tell from

the turnaround of the β-function alone. It is also possible that the β-function turning around, or at

least exhibiting an inflection point, is due to some scheme-dependent quirk, unlike the existence of

an infrared fixed point.

As investigations of the non-perturbative RG β-function have thus far been largely inconclusive,

much of what is known about the Nf = 8 system from the literature has been obtained by other

means. Finite-temperature investigations tend to suggest that the system is chirally broken; however,

such investigations have largely been unable to conclusively establish the existence of chiral symmetry

breaking due to the presence of bulk first-order phase transitions that prevent a reliable extrapolation

to the chiral limit [15, 104, 262]. The Monte Carlo RG calculation of Ref. [168] indicates that the

Nf = 8 system is QCD-like, while the Dirac eigenspectrum of Ref. [79] suggests that the mass

anomalous dimension is O(1), which could indicate either the presence of an IRFP or walking.

Of the various observables/methods that have been deployed to understand the Nf = 8 system,

investigations of the hadron spectrum have arguably revealed the most useful/interesting results.

Large-scale studies of the Nf = 8 hadron spectrum tend to conclude that it is very close to the

confined/chirally-broken side of the conformal sill [7, 8, 10, 13, 15, 17, 53, 127]. The Lattice Strong

Dynamics (LSD) and Lattice Kobayashi–Maskawa Institute (LatKMI) collaborations are the big
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dogs on this front. Both have observed that the lightest scalar meson appears to be nearly degenerate

with the lightest pseudoscalar meson, possibly even all of the way down to the chiral limit. This

is to be contrasted with QCD, where the mass of the broad σ resonance (≈ 500 MeV) is certainly

not degenerate with the mass of the neutral pion (≈ 135 MeV). Moreover, many of the qualitative

features of the hadron spectrum appear to be described well by dilaton effective chiral perturbation

theory (dχPT) [14, 20, 149–151, 208], such as possible approximate conformal hyperscaling away

from the chiral limit [21, 332]. See also Refs. [101, 390] for an emerging alternative to dχPT.

While a sizeable portion of the high energy physics community has been arguing over low-

energy behavior of the Nf = 8 system, the condensed matter community has been working on a

separate development that could be relevant to the Nf = 8 system and BSM model building as a

whole. Roughly over the last two decades, a new mechanism for generating fermion masses without

spontaneous symmetry breaking has been discovered and subsequently understood in terms of

anomaly cancellation. Such symmetric mass generation (SMG) is possible if the system of fermions

is strictly free of quantum anomalies [367]. It is becoming increasingly clear that SMG is intimately

related to the physics of chiral edge modes, which underlies the domain wall discretization of the

Dirac operator that I briefly described in Chapter 3.2.2; see, for example, Refs. [366, 386]. In

fact, SMG has even been proposed as a machanism for evading the Nielsen–Ninomiya theorem (see

Chapter 3.2) altogether [355]. As far as the Nf = 8 system is concerned, it is now understood

that 4-dimensional systems with Nf = 8 continuum Dirac fermions, or two species of Khäler-Dirac

fermion,1 are free of anomalies; hence, they are capable of exhibiting SMG [62, 76]. Such anomaly

cancellation can also be understood by identifying 4-dimensional Kähler-Dirac fermions with the

boundary of a 5-dimensional bosonic symmetry-protected topological phase [156]. This opens up

the fascinating possibility that the Nf = 8 system could possess an SMG phase that is triggered by

strong dynamics.

Evidence for the existence of a strongly-coupled SMG phase in the Nf = 8 system has been

presented in Ref. [170], though it had been known for some time already that lattice simulations of

1Lattice-discretized Khäler-Dirac fermions are equivalent to free staggered fermions [35].
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L/a (weak coupling)

βb 16 20 24 30 32 36 40

8.80 252 238 211 250 115 129 151

8.85 263 219 196 246 185 142 150

8.90 211 212 180 201 121 281 151

9.00 286 203 230 242 248 445 158

9.10 182 169 197 213 213 177 –

9.20 306 187 215 275 160 185 151

9.30 249 176 182 205 182 164 –

9.40 171 178 250 207 183 175 150

9.60 247 141 281 210 206 132 151

9.90 – – 241 236 229 168 151

10.4 – – 252 172 197 127 –

11.0 – – 181 202 232 176 –

Table 7.1: The number of thermalized configurations analyzed at each bare coupling βb and volume
L/a. The configurations are separated by 10 MDTUs.

the Nf = 8 system possessed a very strange strong coupling phase [80]. Staggered simulations refer to

the latter phase as an “�S4 phase” because it is identified in staggered simulations from a spontaneous

breakdown of single-site shift symmetry. The system in the �S4 phase exhibits confinement, but not

chiral symmetry breaking. In the confined/chirally-broken phase of a QCD-like system (that is,

below the conformal window), it is impossible to simulate at zero bare fermion mass amf because

the Dirac operator develops a zero mode; however, in the �S4 phase of the Nf = 8 system, nothing

prevents simulating at amf = 0 because chiral symmetry is preserved. Some other mechanism must

be responsible for generating confinement with amf = 0 in this phase, and a plausible candidate

could be SMG. The �S4 phase was originally identified as a bulk phase (see Chapter 5.2), as the

transition into the �S4 phase appeared to be first-order and had been observed in both the Nf = 8

and Nf = 12 systems. However, with the advent of Pauli-Villars improvement, which I have already

discussed in Chapter 5.2, it was soon realized that the transition into the �S4 phase in the Nf = 8
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system could be continuous, at least from the perspective of a gradient-flow-based finite size scaling

(FSS) analysis of the transition [170]. Such extraordinary claims require extraordinary evidence,

so I will scrutinize the results of Ref. [170] with an updated dataset using the RBFN-based curve

collapse of Chapter 6 (Sec. 7.3). This will be followed up to a non-perturbative determination of the

β-function using the method described in Chapter 4 and subsequently deployed in the Nf = 0 and

Nf = 12 systems in Chapters 4 and 5, respectively (Sec. 7.4).

7.2 Simulation details

The simulations in this chapter utilize an adjoint-plaquette gauge action (see Appendix F), a

massless (amf = 0) nHYP-smeared staggered fermion action, and an nHYP-smeared Pauli-Villars

(PV) action with NPV = 64 staggered PV fields (8 PV fields per fermion field) with mass amPV = 0.75.

Both the PV and fermion files have completely anti-periodic boundary conditions in all four directions.

The same action was deployed in the finite size scaling study of Ref. [170]. All simulations are

performed either using a modified version of the MILC library (KS_nHYP_FS)2 or qex_staghmc (see

Sec. 8.1 for details). The same is true for all gauge flow measurements. Details of how gauge flow

measurements are performed are discussed in Sec. 8.1 and Chapter 8.1.2.

The datasets in this chapter are split into two categories: weak coupling and strong coupling ;

see Tables 7.1 and 7.2 for the total number of thermalized configurations at each (βb, L/a) pair

making up both, respectively. The weak coupling ensembles (Table 7.1) are used to determine the

continuum β-function from the weak coupling phase (Sec. 7.4); though the ensembles for this dataset

have been generated from a mix of KS_nHYP_FS and qex_staghmc, all gauge flow measurements

utilize qex_staghmc. Many of the strong coupling ensembles with 16 ≤ L/a ≤ 24 were utilized in

Ref. [170], though a number of L/a = 24 volumes are either new or have been updated and the

L/a = 32 volumes are completely new. The statistical errors in the strong coupling dataset are

likely underestimated due to not properly accounting for the autocorrelation time. As such, the

statistical errors have been increased by a factor of two on all strong coupling ensembles. A more

2KS_nHYP_FS can be found at https://github.com/daschaich/KS_nHYP_FA

https://github.com/daschaich/KS_nHYP_FA
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L/a (strong coupling)

βb 16 20 24 30 32 36 40

8.470 168 – – – – – –

8.500 129 – – – – – –

8.540 – 111 – – – – –

8.525 257 – – – – – –

8.550 221 – – – – – –

8.560 – 145 – – – – –

8.575 171 – 61 – – – –

8.580 – 156 – – 125 – –

8.590 238 139 – – 100 – –

8.600 488 131 90 – 80 – –

8.610 457 293 164 – – – –

8.620 – – – – 145 – –

8.625 717 388 107 – – – –

8.630 – – 172 – – – –

8.640 – 190 142 – 121 – –

8.650 410 321 117 – – – –

8.660 – – 114 – 114 – –

8.670 – – – – 107 – –

8.680 – – – – 60 – –

8.700 132 277 85 – – – –

8.750 291 216 117 – 38 – –

Table 7.2: The number of thermalized configurations analyzed at each bare coupling βb and volume
L/a. The configurations are separated by 10 MDTUs.

careful scrutiny of the statistical errors is underway.

In Fig. 7.1, I illustrate the dependence of

g2c
(
L, g20

)
≡ g2GF

(
t;L, g20

)∣∣∣
t=(cL)2/8
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Figure 7.1: The gradient flow coupling g2GF

(
t;L, g20

)
at 8t/a2 = (cL/a)2 (c = 0.45) for each βb ≡ 6/g20

at fixed 16 ≤ L/a ≤ 40. The coupling on each volume is indicated by multicolored error bars. See
legend for color coding.

at c = 0.45 on βb at fixed 16 ≤ L/a ≤ 40 in both the weak and strong coupling phases. The

gradient flow coupling g2GF

(
t;L, g20

)
is defined in Eqn. 4.24 with δ(t, L) set by Eqn. 4.16. I already

defined g2c
(
L, g20

)
in Chapter 4.3, where it was introduced in the context of gradient-flow-based

determinations of the RG β-function that utilize step-scaling. The coupling g2c
(
L, g20

)
in Fig. 7.1

is determined from Wilson flow (S f = W) and the operator (Se) is the following combination of

Se = W,C:

g2c
(
L, g20

)
≡ 3

2
g2c,W

(
L, g20

)
− 1

2
g2c,C

(
L, g20

)
(this chapter), (7.1)

where g2c,W
(
L, g20

)
, g2c,C

(
L, g20

)
are g2c from the S fSe = WW,WC combinations, respectively. The

combination of Eqn. 7.1 is observed empirically to reduce cutoff effects and was utilized in Ref. [170].

The same combination with c = 0.45 will be deployed in Sec. 7.3 for the purposes of finite size scaling.

The dependence of g2c
(
L, g20

)
on βb is much more mild in the weak coupling phase than it is in the

strong coupling phase. Once the simulations cross the phase boundary from weak to strong coupling,

g2c
(
L, g20

)
sharply increases in magnitude. As discussed at length in Ref. [170], the onset of the strong
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coupling phase is also characterized by a sudden increase in fluctuations of the topological charge

(see Chapter 4.4.1). As I have already mentioned in Sec. 7.1, the strong coupling phase is confining,

which explains both the strong dependence of g2c
(
L, g20

)
on βb and the observation of fluctuations

in the topological charge. Nonetheless, all simulations in the strong coupling phase have amf = 0,

which is made possible by the apparent preservation of chiral symmetry in the strong coupling phase.

Large-scale spectroscopy calculations in the strong coupling phase are currently being performed by

the LSD collaboration using qex_staghmc. These should reveal more information about the chiral

properties of the strong coupling phase. All simulations in the weak coupling phase have amf = 0

as well.

7.3 Finite size scaling in the eight flavor system

The coupling g2c
(
L, g20

)
is a dimensionless scaling variable; as such, it is expected to scale as

Eqn. 6.4 within the vicinity of a phase transition (βb ≈ βb,c) with γg2c = 0 and Ns ≡ L/a. In other

words,

g2c
(
L, g20

)
≈ Fg2c (x) (βb ≈ βb,c), (7.2)

where

x(βb, L) ≡ |βb/βb,c − 1|(L/a)1/ν (2nd-order) (7.3)

or

ax(βb, L) ≡ L exp
(
-ζ|βb/βb,c − 1|−ν

)
(∞-order). (7.4)

Note that the phase transition, should it exist, is not a finite-temperature phase transition. It is a

zero-temperature phase transition, also referred to as a quantum phase transition (QPT). Without

PV fields, FSS predicts ν ≈ 1/d (d = 4), which is consistent with the discontinuity fixed point

prediction resulting from a first-order phase transition [120, 278]. Introducing PV fields has the

effect of smoothing out the transition; scaling with Eqn. 7.3 yields a prediction for ν that is not

consistent with a first-order transition and the data is even consistent with ∞-order scaling (Eqn.
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7.4) [170].

It is important to note that the non-observation of ν = 1/d does not necessarily imply that the

phase transition is not first-order. If the correlation length ξ̃(βb) is much greater than the volumes

L/a deployed in an FSS analysis of the phase transition, then FSS can predict a ν that is not

consistent with first-order scaling, even if the phase transition is first-order. Such pseudo-critical

scaling can only be detected by either simulating on volumes L/a≫ ξ̃(βb) or establishing that the

correlation length diverges as βb → βb,c. First-order transitions with large correlation lengths are

referred to as weakly first-order because the infinite volume discontinuity is smoothed out significantly

for L/a ≪ ξ̃(K). For an example of such a potentially dangerous situation, one need not look

further than the q-state Potts model already explored in Chapter 6.3. The finite-temperature phase

transition of the q-state Potts model is first-order for q ≥ 5 [113, 114]. The correlation length at

the first-order phase transition of the 5-state Potts model is an incredible ξ̃
(
K

(5)
Potts,c

)
≈ 2512 and

decreases to ξ̃
(
K

(10)
Potts,c

)
≈ 11 by q = 10 [58, 207]. If L/a≪ ξ̃

(
K

(5)
Potts

)
, a FSS analysis of the 5-state

Potts model will predict ν that reflects the pseudo-critical behavior of the model, which can lead to

incorrectly concluding that it is continuous if caution is not taken.

7.3.1 Finite size scaling with radial basis function networks

I explore the zero-temperature phase transition of the Nf = 8 system by approximating the

scaling function Fg2c (x) in Eqn. 7.2 with a radial basis function network (RBFN). Finite size scaling

with an RBFN has already been explored extensively in Chapter 6 for the 2nd-order transition of

the q = 2, 3 state Potts model and the p = 4 state clock model, along with the ∞-order (BKT)

transition of the ∞-state clock (XY) model. The RBFN-based FSS analysis of this chapter is carried

over verbatim, save for the imposition of priors on the RBFN centers (0(100)), bandwidths (0(100)),

and bias (0(100)) for the purposes of stabilizing the curve collapse. The width λ of the prior on the

weights of the RBFN is determined by the surrogate-based empirical Bayes analysis described in

Chapter 6.2.3. I perform the FSS with a variety of scaling ansatz. I test for 2nd-order scaling using

Eqn. 7.3 with ν free, while 1st-order scaling is tested similarly using Eqn. 7.3 with ν = 1/4 explicitly.
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Figure 7.2: 2nd-order curve collapse (Eqn. 7.3) for g2c at c = 0.45. Scaling function normalized
by N = 128π2/(3N2 − 3) for visualization purposes. Prediction from RBFN indicated by a gold
band with the width of the band indicating the error. Data entering the curve collapse indicated bu
multicolored error bars for L/a = 16 (blue), 20 (orange), 24 (green), 32 (purple). Percent on RBFN
label indicates the p-value of the fit.

The data is not precise enough to be able to determine ζ and ν simultaneously for ∞-order scaling

without introducing a dangerous amount of bias into the prior for ζ. Hence, I compare BKT-like

scaling using Eqn. 7.4 with ν = 1/2 against “walking” scaling using Eqn. 7.4 with ν = 1. The prior

for βb,c for all four fit ansatz is 8.7(7), based on the results of Ref. [170]; such a wide prior is chosen

to stabilize the fit while reducing bias as much as possible. The prior for ν from 2nd-order scaling

is 1(1); the same is true for the prior on ζ for the two ∞-order ansatz with ν = 1/2 and ν = 1.

Priors on the critical parameters βb,c, ν and ζ are enforced logarithmically, so as to explicitly enforce

positivity. The RBFN that fits the data best with the least number of parameters possesses two

nodes in its internal layer. Curiously, the width λ∗ that maximizes the marginal likelihood (Eqn.

6.12) is close to λ∗ ≈ 0.529 for all four scaling ansatz. In Table 7.3, I summarize the result of the

RBFN-based FSS at λ∗ for each of the aforementioned scaling ansatz.

According to Table 7.3, 1st-order scaling is strongly disfavored compared to both 2nd-order
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Figure 7.3: ∞-order curve collapse (Eqn. 7.4) for g2c at c = 0.45 with fixed ν = 1/2 (top panel)
and ν = 1 (bottom panel). Scaling function normalized by N = 128π2/(3N2 − 3) for visualization
purposes. Prediction from RBFN indicated by a gold band with the width of the band indicating
the error. Data entering the curve collapse indicated bu multicolored error bars for L/a = 16 (blue),
20 (orange), 24 (green), 32 (purple). Percent on RBFN label indicates the p-value of the fit.

scaling and ∞-order scaling. The augmented χ2 (χ2
aug.) and the χ2 of the data χ2

data per their

respective degrees of freedom are ≈ 20× larger for 1st-order scaling than all three continuous scaling

ansatz. The marginal likelihood for the 1st-order scaling ansatz is also significantly lower. As I have
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stated already, it is nevertheless impossible to completely rule out 1st-order scaling based on very

poor fit quality alone; more information from ξ̃(βb) is needed.

In Fig. 7.2, I illustrate the result of the RBFN-based FSS with 2nd-order scaling. The scaling

function Fg2c is plotted as a dark gold band and the width of the band indicates the statistical error

of Fg2c . The (βb, L/a) pairs entering the curve collapse are shown as multi-colored error bars, with

the color indicating the volume. The prediction for βb,c is just above the strongest βb entering the

β-function analysis of Sec. 7.4. The prediction for ν = 1.115(88) is ≈ 10% away from unity in

central value and statistically consistent with unity at the ≈ 1.35σ level. Note additionally that

the critical parameters βb,c, ν = 8.819(16), 1.115(88) are not consistent with those of Ref. [170] and

the χ2
aug./d.o.f. is much more reasonable. The reason for this discrepancy is likely attributed to the

improved analysis procedure of this chapter: I do not have to rely on matching to a single bare

gauge coupling, the RBFN is a better interpolator than the smoothing spline used in Ref. [170],

I am using a global optimization algorithm, I am controlling for overfitting with empirical Bayes,

and the error estimation is more reliable. Moreover, removing the L/a = 32 data yields a consistent

prediction for the critical parameters; therefore, it is unlikely that the discrepancy can be attributed

to an improvement in the underlying dataset.

Similarly, the result of the RBFN-based ∞-order curve collapse with ν = 1/2 and ν = 1

are shown in the top and bottom panels of Fig. 7.3, respectively. The prediction for βb,c =

8.913(23), 9.018(32) from ν = 1/2, 1, respectively, is weaker (smaller g20) than it is for 2nd-order

scaling and increases in magnitude with ν. Moreover, the prediction for ζ is negatively correlated

with ν; ζ = 0.598(69) from ν = 1/2 and ζ = 0.099(15) from ν = 1. As was the case for 2nd-order

scaling, the prediction for βb from either ∞-order ansatz is both higher than and not consistent with

the value for βb reported in Ref. [170].

From χ2
aug., χ2

data, and logML (listed in Table 7.3) alone, it is not possible to determine if

any one continuous scaling ansatz is unambiguously preferred over the others. The ∞-order ansatz

with ν = 1/2 is slightly preferred by χ2
aug. and logML, while ∞-order scaling with ν = 1 is slightly

preferred by χ2
aug.. The lead that ∞-order scaling with ν = 1/2 has over 2nd-order scaling as far as
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Fit result

Fit βb,c ν ζ χ2
aug./d.o.f. χ2

data/d.o.f.
∗ logML

1st-order 8.65101(20) 1/4 – 20.77 28.12 -267.70

2nd-order 8.819(16) 1.115(88) – 1.05 1.44 30.20

∞-order 8.913(23) 1/2 0.598(69) 1.01 1.38 30.74

∞-order 9.018(32) 1 0.099(15) 1.16 1.34 27.04

Table 7.3: Juxtaposition of 1st-, 2nd-, and ∞-order scaling ansatz. See Chapter 8.2 and Appendix
D for definition of χ2

aug., χ2
data, and marginal likelihood (ML). d.o.f. ≡ “# data−# parameters +

# priors” and d.o.f.∗ ≡ “# data−# parameters”. “# data = 30” fixed for all fits, “# parameters =
# priors = 9” for 2nd-/∞-order and 8 for 1st-order.

the marginal likelihood is concerned is so small that even stating that it is “preferred” over 2nd-order

scaling generous at best. Taken together, the best that one can state is that ∞-order scaling is

slightly preferred over 2nd-order scaling; however, the possibility of 2nd-order being preferred over

∞-order cannot be confidently ruled out with the dataset and analysis of this chapter. The most

definitive statement that can be made is that continuous scaling is strongly preferred over 1st-order

scaling, which indicates that the phase transition is likely not 1st-order if subsequent measurements

of the correlation length support that it is not finite at βb,c. Such investigations are underway.

7.4 Calculation of the continuum β-function

In Chapters 4 and 5, I calculated the continuum gradient flow β-function for the Nf = 0

and Nf = 12 systems, respectively. In both cases, I was able to calculate some quantity from the

β-function that more or less verified the legitimacy of the infinite volume RG scheme that I have

been using throughout this thesis, up to irregularities in the literature and systematic effects in

the analysis. In this section, I will apply the same methods to extract the continuum β-function

of the Nf = 8 system. As such, statistical uncertainties are estimated and kept track of using the

automatic error propagation tools provided by the gvar library [241]. Fits are performed using either

the SwissFit library (see Sec. 8.2) or the lsqfit library [240, 290]. I have also tested using the
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Γ-method to account for accounting for autocorrelation in correlated uncertainties [378]. This is

accomplished by first calculating the ordinary correlation matrix, then calculating the covariance

matrix from the correlation matrix by rescaling it with the statistical error estimated from the

Γ-method, as suggested by Ref. [215]. However, doing so introduces numerical noise into the analysis

that is difficult to control for, so I continue the practice of accounting for autocorrelation by binning.

In the CBFM analysis of Refs. [178, 179], multiple flows were used to cover the entire

renormalized trajectory from the UVFP to the IRFP of the models investigated in those works. The

flows deployed in Refs. [178, 179] are parameterized by the plaquette cp and rectangle cr coefficient

of the Lüscher-Weiss action briefly discussed in Chapter F [248, 369, 370], which are constrained by

cp + 8cr = 1 (7.5)

For example, the Wilson action is obtained from cr = 0, while the tree-level improved Lüscher-Weiss

action is obtained from cr = −1/12. In this chapter, I utilize different flows for the same purpose.

I refer to each flow as S f = PXY , where X is the numerator and Y is the denominator of the cp

coefficient; e.g., “P11=W” (Wilson flow) has cp = 1, while “P13” has cp = 1/3. The continuum

β-function in this chapter utilizes four flows: P11≡W (cp = 1), P23 (cp = 2/3), P13 (cp = 1/3),

and P16 (cp = 1/6). As in Chapters 4 and 5, I refer to the β-function determined from a specific

flow/operator combination as “S fSe”; e.g., P13 flow with the clover operator is “P13C”. For each

flow/operator combination, I calculate g2GF

(
t;L, g20

)
using Eqn. 4.24 with δ(t, L) set by Eqn. 4.16.

The corresponding finite-volume β-function βGF

(
t;L, g20

)
is calculated from g2GF

(
t;L, g20

)
using the

5-point stencil of Eqn. 4.37 with δt/a2 = 0.05.

7.4.1 Infinite volume extrapolation

I extrapolate both g2GF

(
t;L, g20

)
and βGF

(
t;L, g20

)
to the a/L → 0 limit at fixed βb and

t/a2 using Eqn. 4.38, as in Chapters 4 and 5. The uncertainty in ki
(
t; g20

)
coefficients of Eqn.

4.38 includes both the statistical uncertainty in g2GF

(
t;L, g20

)
and βGF

(
t;L, g20

)
, respectively, along
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Figure 7.4: Example of infinite volume extrapolation of g2GF

(
t;L, g20

)
(left panels) and βGF

(
t;L, g20

)

(right panels) for P11W (WW in previous chapters) flow/operator combination at βb = 8.85 (top
panels), 9.00 (middle panels), and 9.90 (bottom panels). Extrapolation shown at only t/a2 = 5.0
(red) and 6.5 (purple) for visualization purposes.
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Figure 7.5: Example of infinite volume extrapolation of g2GF

(
t;L, g20

)
(left panels) and βGF

(
t;L, g20

)

(right panels) for P16W flow/operator combination at βb = 8.85 (top panels), 9.00 (middle panels),
and 9.90 (bottom panels). Extrapolation shown at only t/a2 = 5.0 (red) and 6.5 (purple) for
visualization purposes.
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with the systematic uncertainty that is associated with extrapolating over any subsets of volumes

L/a ∈ {24, 30, 32, 36, 40} using the Bayesian model averaging procedure outlined/deployed in the

CBFM analysis of the Nf = 12 system in Chapter 5. All model variations contain at least three

volumes, so that the linear extrapolation in a4/L4 have at least one degree of freedom left.

I illustrate the infinite volume extrapolation with S fSe = P11W (WW) in Fig. 7.4 and

S fSe = P16W in Fig. 7.5 for g2GF

(
t;L, g20

)
(left panels) and βGF

(
t;L, g20

)
(right panels) at βb = 8.80

(top panels), 8.85 (middle-top), 9.00 (middle-bottom), and 9.90 (bottom). For the purposes of

illustration, I only show the extrapolation at t/a2 = 5.0, 6.5, which are the lower/upper bound on

the flow time entering the continuum extrapolation in Sec. 7.4.2. As βb decreases, finite volume

effects become more pronounced, perhaps due to being within the vicinity of the phase transition.

Nonetheless, finite volume effects at the strongest couplings (8.8 ≤ βb ≤ 8.9) appear to be described

quite well by a linear dependence on a4/L4. See, for example, the extrapolation at βb = 8.80 and

8.85 in Figs. 7.4 and 7.5. As βb increases, finite-volume effects tend to be comparatively mild;

however, statistical fluctuations in the ensembles at different L/a tend muddy the appearance of

any particular trend in a4/L4, perhaps because the extrapolation tends to be fairly flat. As such,

the combined statistical/systematic error predicted by Bayesian model averaging can, and often

does, cover the spread in the central values of the data entering the infinite volume extrapolation for

9.00 ≤ βb ≤ 11.0. See, for example, the extrapolations at βb = 9.00, 9.90 in Figs. 7.4 and 7.5.

7.4.2 Continuum extrapolation

I extrapolate βGF

(
t; g20

)
to the a2/t→ 0 limit at fixed g2GF using the ansatz of Eqn. 4.39. As

in Chapters 4 and 5, doing so requires first interpolating βGF

(
t; g20

)
in g2GF

(
t; g20

)
at fixed t/a2.

7.4.2.1 Intermediate interpolation

The fast running β-function of the Nf = 0 system in Chapter 4 required the use of an

interpolating function that is able to accommodate different asymptotic behaviors of the β-function

in the weak/strong coupling regime (Eqn. 4.42). The intermediate interpolation for the slow running
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Figure 7.6: Example of interpolation of βGF

(
t; g20

)
in g2GF

(
t; g20

)
for P11W (WW, top left), P23W

(top right), P13W (bottom left), and P16W (bottom right). Result of interpolation indicated
by multicolored bands at fixed t/a2 = 5.0 (red), 5.5 (green), 6.0 (cyan), and 6.5 (purple). Data
entering interpolation indicated by multicolored error bars with corresponding colors for each t/a2.
Interpolation juxtaposed against 1- (dashed), 2- (dotted), and 3-loop (dashed-dotted) continuum
β-function from perturbation theory [161].

β-function of the Nf = 12 system in Chapter 5 is described well by a perturbative ansatz (Eqn. 5.7).

The β-function of the Nf = 8 system does not run as fast as the Nf = 0 system, nor does it exhibit

signs of asymptotic linearity in g2GF for g2GF/4π ≫ 1. However, the running of the β-function in the

Nf = 8 system is fast enough so as to prevent it from being described well by a perturbative ansatz

over the entire range of renormalized couplings explored in this chapter. As such, the interpolating

function IN is chosen to be a generic polynomial

IN
(
g2GF

)
=

N−1∑

n=0

png
2n
GF. (7.6)
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Figure 7.7: Example of interpolation of βGF

(
t; g20

)
in g2GF

(
t; g20

)
for P11C (WC, top left), P23C

(top right), P13C (bottom left), and P16C (bottom right). Result of interpolation indicated by
multicolored bands at fixed t/a2 = 5.0 (red), 5.5 (green), 6.0 (cyan), and 6.5 (purple). Data
entering interpolation indicated by multicolored error bars with corresponding colors for each t/a2.
Interpolation juxtaposed against 1- (dashed), 2- (dotted), and 3-loop (dashed-dotted) continuum
β-function from perturbation theory [161].

As in Chapter 5, the statistical error in g2GF

(
t; g20

)
is accounted for by treating g2GF

(
t; g20

)
as a

Gaussian prior (see Appendix D). Moreover, a prior of 0.0(0.1) is imposed on the pn coefficients to

stabilize the fit. The lowest order N that fits the data well is N = 4; i.e., a cubic polynomial. In Fig.

7.6, I illustrate the intermediate interpolation for P11W (top left panel), P23W (top right panel),

P13W (bottom left panel), and P16W (bottom right panel) at t/a2 = 5.0, 6.0, 5.5 and 6.0 (different

colors). The same information for PXY C is illustrated in Fig. 7.7. In all cases, the p-values are

typically quite high. This was also the case in the Nf = 12 system and likely indicates that the

combined statistical/systematic error is overestimated. At the weakest couplings (g2GF/4π ≲ 1),

discretization effects appear to be quite mild. As g2GF enters the strong coupling g2GF/4π ≳ 1 regime,

discretization effects appear to increase; see, for example, the bottom right panel of Fig. 7.6 (P16W).
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Figure 7.8: Sample of continuum extrapolation for W (left panel) and C (right panel) operator at fixed
g2GF = 6.0 (teal), 10.0 (orange), and 22.0 (magenta). Different flows indicated by different symbols:
P11 (circle), P23 (box), P13 (diamond), and P16 (×). Data entering continuum extrapolation
indicated by filled symbols and data not entering continuum extrapolation are open.

7.4.2.2 Continuum extrapolation

With the intermediate interpolation on hand, the continuum limit is taken by extrapolating

βGF

(
t; g20

)
to the a2/t→ 0 limit over a set of fixed g2GF by fitting βGF

(
t; g20

)
linearly in a2/t at each

g2GF. The values for [tmin., tmax.]/a
2 over which the continuum extrapolation is performed is chosen

based upon the overlap of the continuum prediction for βGF

(
g2GF

)
from different flow/operator

combinations; the choice of [tmin., tmax.]/a
2 = [5.0, 6.5] yields reasonable agreement over the range of

accessible renormalized couplings 5 ≤ g2GF ≲ 24. The same issues with statistical correlations that

had to be dealt with in Chapters 4 and 5 are also present in the continuum extrapolation of this

chapter. As before, they are dealt with by estimating the central value of the continuum β-function

βGF

(
g2GF

)
from an “uncorrelated” fit and the error in βGF

(
g2GF

)
from the half difference of the central

value of fits to βGF

(
t; g20

)
± 1σ.
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In Fig. 7.8, I illustrate the continuum extrapolation for PXYW (left panel) and PXYW (right

panel) at g2GF = 6.0 (blue), 10.0 (orange), 22.0 (pink). The raw data for each flow is indicated by its

own marker: P11 (◦), P23 (□), P13 (⋄), P16 (×). The continuum prediction for βGF

(
g2GF

)
from the

W operator is consistent for all flows between 5.0 ≤ g2GF ≲ 15.0 and 5.0 ≤ g2GF ≲ 12.5 from the C

operator. The P11 flow peels off first, followed by P23; the P13 and P16 flows remain consistent over

the entire range of g2GF. The point in g2GF at which flows with larger cp peel off is accompanied by

nonlinear effects of βGF

(
t; g20

)
in a2/t. At first, the observation of flows with different cp peeling off

earlier in g2GF appears to be a cause for concern; however, it may be the case that different flows tend

to confidently cover different sections of the renormalized trajectory as far as the CBFM is concerned.

The same phenomenon has been observed in the CBFM analysis of the Nf = 10 system in Ref.

[179] and the CBFM analysis of the massless SU(4) system with four fermions in the fundamental

representation and four fermions in the two-index antisymmetric representation of Ref. [178].

7.4.3 The continuum β-function

In Fig. 7.9, I show the result for the continuum β-function from PXYW (top panel) and

PXY C (bottom panel). The continuum β-function is juxtaposed against the 1-, 2-, and 3-loop

perturbative β-function and the continuum β-function from the CBFM applied to simulations of

domain wall fermions (DWF, briefly discussed in Chapter 3.2.2) [161, 192]. For 5.0 ≤ g2GF ≲ 7.5, the

prediction for βGF

(
g2GF

)
from each flow/operator combination overlaps with the DWF prediction.

The continuum β-function extends past the DWF prediction up to g2GF ≈ 24. As I have already

mentioned, the continuum prediction from the P11 and P23 flows peels off earlier in g2GF, while the

P13 and P16 flows are consistent over the entire range of g2GF.

Intriguingly, the P13/P16 flows predict that the continuum β-function could curve upwards.

If the upward curvature is not either a systematic effect or an artefact of the RG scheme, then

the upward curvature could indicate either the presence of an IRFP or that the β-function will

eventually exhibit slow walking. If the results of the FSS analysis in Sec. 7.3 are to be believed, then

it is a bit surprising that the continuum β-function of this section is not already showing stronger
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Figure 7.9: Continuum Nf = 8 β-function from W (top panel) and C (bottom panel) operators for
each flow: C11 (blue), C23 (orange), C13 (green), and C16 (red). Width of band for continuum β-
function indicates the error. Juxtaposed against continuum prediction from domain wall simulations
using the same RG scheme [192] and 1- (dashed), 2- (dotted), and 3-loop (dashed-dotted) continuum
β-function from perturbation theory [161].

signs of an IRFP or slow walking. With the current action, it is unlikely that flows with smaller cp

will significantly extend the reach of the continuum β-function in g2GF, as they had for the Nf = 10

system in Ref. [179]. As is evident from Ref. [188], adding more PV fields is also not likely to extend
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the reach in g2GF, as the current action already saturates the PV improvement. Nonetheless, if the

continuum β-function of this chapter is to be taken seriously, or, even better, reproduced by another

group, then it is likely that simulations of the Nf = 8 system that have been performed up to the

date of writing this thesis have only probed the “weakly coupling” region of the Nf = 8 system.

The best that one can say now is that the Nf = 8 system likely has many surprises in store for the

future.



Chapter 8

Other developments

The topics covered in this chapter can generally be considered as “bonus content”, as they are

not core to the primary objective to this thesis, which has been covered in Chapters 4-7. I discuss

the important software development that made the results of Chapters 5-7 possible; namely, the

Quantum EXpressions (QEX-based) staggered Hamiltonian Monte Carlo code qex_staghmc software

suite (Sec. 8.1) and the SwissFit library (Sec. 8.2) [284, 290], both of which I wrote and am

currently responsible for maintaining. In Sec. 8.3, I discuss the extraction of running operator

anomalous dimensions in the Nf = 10 system using the RG scheme/methods deployed in Chapters

4-7. The latter project will likely never make it past preliminary results; hence, what has been

achieved is summarized in this chapter.

8.1 The Quantum EXpressions-based qex_staghmc suite

Chapters 5 and 7 utilize Pauli-Villars (PV) improved Hamiltonian Monte Carlo simulations

with Nst. = 2 and 3 species of staggered fermion, respectively. The first simulations of both systems

with PV improvement utilized a modified version of the MILCv7 library [170, 188].1 For the small

volume (8 ≤ L/a ≤ 24) simulations that were targeted by such studies, the modified MILC library was

efficient enough for all intents and purposes. However, simulating larger volumes (L/a = 36, 40) over

a reasonable amount of both human and computer time on modern machines required a more modern

code that is capable of fully utilizing the innovations in hardware/algorithms that have been made

1The modified MILC library can be found at https://github.com/daschaich/KS_nHYP_FA

https://github.com/daschaich/KS_nHYP_FA
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over the last decade. A natural target in the modern era of lattice calculations was to implement PV

improvement in the beautiful, highly-optimized GRID library [47], which was used in Chapter 4 to

simulate the pure Yang-Mills system. Even better, GRID was designed around domain wall fermions,

which implement Pauli-Villars fields already for a different purpose. However, I eventually came

to learn that modifying the GRID library to fit the needs of the calculations performed in Chapters

5 and 7 would be fairly difficult to achieve over a reasonable time frame. Instead, I decided to

implement PV improvement in the Quantum EXpressions (QEX) library, which already had many of

the foundational tools that I needed for the specific action that I intended to simulate [284]. Even

more, QEX was already in use by the Lattice Strong Dynamics (LSD) collaboration and is actively

supported by its developers at Argonne National Laboratory.

QEX2 is a high-level framework for performing lattice field theory computations using the

beautiful Nim programming language [284, 299]. QEX supports a combination of task-based parallelism,

thread-based parallelism, and single instruction/multiple data (SIMD-based) parallelism. It is also

capable of utilizing graphics processing units (GPUs) when deployed with QUDA as a backend [82].3

Nim is a high-level, multi-paradigm systems programming language that supports a variety of

meta-programming features that make it an extremely powerful/versatile tool for high performance

computing (HPC) [299]. qex_staghmc4 builds upon the extensive tools of QEX to provide a staggered

HMC suite that is both modular and readily/easily deployed with or without PV improvement.

qex_staghmc also ships with a production-ready code for integrating gradient flow equations and

measuring gradient flow observables with any Lüscher-Weiss gauge flow [248, 369, 370].

2QEX is available at https://github.com/jcosborn/qex.
3QUDA is available at https://github.com/lattice/quda
4qex_staghmc is available at https://github.com/ctpeterson/qex_staghmc.

https://github.com/jcosborn/qex
https://github.com/lattice/quda
https://github.com/ctpeterson/qex_staghmc
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8.1.1 Hamiltonian Monte Carlo

After integrating out the staggered fermion fields using the properties of Berezin integrals, the

partition function of Eqn. 3.29 can be written for certain flavor numbers as [227]

Z =

∫ [
dUµ

]
exp

(
-SG

[
Uµ
])Nst.−1∏

s=0

det
(
D

(s)
S D

(s)†
S

)
, (8.1)

where SG is some lattice discretization of the pure Yang-Mills action (Eqn. 3.2) and D
(s)
S is the

staggered Dirac operator of staggered species s defined by Eqn. 3.17. The operator D
(s)
S D

(s)†
S is

positive-definite. Working with D
(s)
S D

(s)†
S as opposed to D

(s)
S directly will not be a problem, as

number of fermion species represented by Eqn. 8.1 can be halved by using staggered “half” fields,

which I will discuss in Sec. 8.1.1.2. The coupling of the fermions to the gauge fields is contained

within D
(s)
S , as I have discussed in Sec. 3.2.3 already. Note, also, that D(s)

S typically includes smearing;

see Appendix G for details. The determinant in Eqn. 8.1 can be represented by pseudofermion fields

ϕ(n) ∈ C as

det
(
D

(s)
S D

(s)†
S

)
∝
∫ [

dϕ†dϕ
]∏

n,s

exp
(
− 1

2
ϕ(s)(n)†

[
D

(s)
S D

(s)†
S

]−1
ϕ(s)(n)

)
, (8.2)

which follows from the properties of Gaussian integrals. Combining Eqn. 8.1 with Eqn. 8.2, the

lattice-discretized staggered action can be represented in terms of purely bosonic fields as

Z =

∫ [
dUµ

][
dϕ†dϕ

]
exp

(
-Slat.

[
Uµ, ϕ, ϕ†

])
, (8.3)

where

Slat.
[
Uµ, ϕ, ϕ†

]
= SG

[
Uµ
]
+

1

2

∑

n,s

ϕ(s)(n)†
[
D

(s)
S D

(s)†
S

]−1
ϕ(s)(n) (8.4)

The state-of-the-art algorithm for sampling from the joint distribution

Pr
(
Uµ, ϕ, ϕ†

)
≡ Z−1 exp

(
-Slat.

[
Uµ, ϕ, ϕ†

])
(8.5)
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since the late 1980s is the Hamiltonian (hybrid) Monte Carlo (HMC) algorithm [112].

HMC is a Markov chain Monte Carlo algorithm for sampling from an arbitrary continuous

multi-dimensional probability distribution Pr. Each iteration of the HMC algorithm updates the

variables of the distribution Pr via discretized molecular dynamics evolution followed by a Metropolis

accept/reject test [142, 213, 227, 268]. Suppressing the species index, the field

φ(n) ≡ D−1
S ϕ(n) (8.6)

is distributed as

Pr
(
φ,φ†) ∝

∏

n

exp

(
− 1

2
φ(n)†φ(n)

)
;

in other words, it is Gaussian-distributed. Therefore, sampling from the pseudofermion fields is

as simple as drawing samples from Pr
(
φ,φ†) using an efficient algorithm for sampling from multi-

dimensional Gaussian distributions, such as the Box-Muller algorithm [46], and multiplying each

sample φ(n) by DS to obtain a sample for ϕ(n). Once the sample for ϕ(n) has been obtained

according to the latter procedure, updating the gauge field Uµ follows by first generating momenta

Pµ ∈ su(N) from the distribution,

log Pr
(
Pµ

)
∝ 1

2
TrcP

2
µ, (8.7)

then evolving Uµ → U ′
µ via discrete Hamiltonian evolution (molecular dynamics). The proposed

gauge configuration U ′
µ is then accepted with probability

α = exp

(
−max

[
0,H

(
U ′
µ

)
−H

(
Uµ
)])

, (8.8)

where

H
(
Uµ
)
=

1

2
TrcP

2
µ + Slat.

[
Uµ, ϕ, ϕ†

]
(8.9)

is the “Hamiltonian” that governs the molecular dynamics evolution. Because the evolution of Uµ is
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discretized, α is not necessarily equal to unity; instead, it is largely governed by a combination of

the molecular dynamics trajectory length τ , the number of molecular dynamics time steps NMD,

and the order of the molecular dynamics integration algorithm. The optimal acceptance rate α also

depends upon the molecular dynamics integration algorithm, which I discuss next.

The HMC algorithm combined with the sampling algorithm for ϕ yields (U , ϕ, ϕ†) that are

distributed according to Pr
(
Uµ, ϕ, ϕ†

)
if the molecular dynamics (MD) algorithm preserves the

volume of phase space and the dynamics is time-reversible; in other words, it is symplectic [227].

Symplectic MD integration algorithms were explored extensively in Ref. [282]. The latter integrators

are often referred to in the lattice gauge theory literature as Omelyan integrators as an homage

to the lead author of Ref. [282]; note, however, that there are many other symplectic integrators

that do not fall under the umbrella of Omelyan integrators. To the best of the author’s knowledge,

higher-order Omelyan integrators were first explored in the context of lattice gauge theory in Ref.

[353]. The lowest-order Omelyan integrator is the famous leap frog algorithm, which had been used

for decades before higher-order integrators were systematically introduced. All QEX-based simulations

of this thesis utilize a 2nd-order Omelyan integrator. Further details regarding Omelyan integrators,

particularly 2nd-order Omelyan integrators, can be found in Appendix H.

8.1.1.1 Even/odd decomposition

The staggered Dirac operator (Eqn. 3.17) connects only even sites to odd sites (and vice

versa). As such, it admits a decomposition into even/odd subspaces as [98, 227]

DS =


Dee Deo

Doe Doo


, (8.10)

where

Dee = Doo = m and D ≡ Doe = −Deo
†. (8.11)
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Furthermore, the expression for DS in Eqn. 8.10 admits a Schur decomposition of the form [98, 227]


Dee Deo

Doe Doo


 =


 m D

−D† m


 =


1 D/m

0 1




m+DD†/m 0

0 m




 1 0

−D†/m 1


. (8.12)

A corollary to the decomposition of Eqn. 8.12 is

D†
SDS =


D̂ 0

0 D


, (8.13)

where

D̂ ≡ m2 +DD† and D ≡ m2 +D†D. (8.14)

Another corollary of Eqn. 8.12 is that, for any two pseudofermion fields related by Dφ = ϕ, the

following relations hold [227]

D̂φe = mϕe −Dφo and mφo = ϕo +D†φe, (8.15)

where

φ = (φe, φo) and ϕ = (ϕe, ϕo)

is the decomposition of φ and ϕ into their respective even/odd subspaces. The even/odd decomposi-

tion, which I stress again is a consequence of having a nearest-neighbor Dirac operator, is extremely

useful, as we shall learn in Secs. 8.1.1.2-8.1.1.3. Note also that the Dee/Doo components of DS

are not always equal to the mass. For example, the Dirac operator for Wilson fermions DW (Eqn.

3.25) admits the decomposition of Eqn. 8.10; however, the Dee/Doo components are slightly more

complicated due to the explicit presence of the d’Alembertian.

8.1.1.2 Hamiltonian Monte Carlo with staggered half fields

Eqns. 8.13 and 8.15 make staggered fermions, or, really, any fermion formulation with a

nearest-neighbor Dirac operator (e.g., Wilson fermions), incredibly nice to work with as far as HMC
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is concerned. For one, Eqn. 8.12 combined with Eqn. 8.13 implies that setting ϕo = 0 and integrating

over ϕe in Eqn. 8.3 yields

∫ [
dϕ†edϕe

]
exp

(
− 1

2
ϕ†
[
DSD

†
S

]−1
ϕ
)
∝ det D̂ = detDS. (8.16)

In other words, the action of Eqn. 8.4 restricted to just the even sites is equivalent to the action of a

single staggered field at the level of expectation values. This does not change if DS is smeared. The

pseudofermion field ϕ restricted to just its even components is referred to as a half field. qex_staghmc

works exclusively with half fields.

So that we can better understand the differences between simulating with fermion fields and

Pauli-Villars fields, let us consider the force F
(ferm.)
µ (n) ∈ su(N) that is derived from the half field

action of Eqn. 8.16. From the definition of the link derivative ∂n,µ in Sec. 4.1, the force takes the

form (up to factors of 2)

2mF(ferm.)
µ (n) ∝ −T aℜTrc

[(
∂an,µDS

)
φ φ†

]
(m ̸= 0), (8.17)

where

φ ≡ D−1
S ϕ (8.18)

for ϕ = (ϕe, 0) and T a are the conventional su(N) generators defined in Sec. 4.1. The components of

φ are obtained from the even/odd reconstruction of Eqn. 8.15. For massless fields, no reconstruction

is needed and the force takes the equivalent form

2F(ferm.)
µ (n) ∝ −T aℜTrc

[(
∂an,µDS

)
φ̂ φ̂†

]
(m = 0), (8.19)

where

φ̂ ≡


 φe

−D†φe


 (8.20)

with φe the even component of φ = (φe, φo) defined in Eqn. 8.18. In qex_staghmc, the fermion
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force for any massive field is calculated using Eqn. 8.17; for massless fields, it is calculated with Eqn.

8.19. In both cases, it is necessary to invert D̂ to obtain φ. Because D̂ is positive definite, this is

done using the conjugate gradient algorithm [199]. More information about conjugate gradient can

be found in Appendix I. The reader may be concerned that I am inverting the Dirac operator for

two half fields when I could be inverting for one full field (Nf ≥ 8); however, half fields are typically

half as expensive as full fields. Therefore, the computational cost of simulating two half fields is

typically as expensive as simulating one full field. Note, also, that the molecular dynamics evolution

of Uµ keeps the original φ field (Eqn. 8.6) fixed.

8.1.1.3 Including Pauli-Villars fields

In some very real sense, Pauil-Villars fields are the opposite of pseudofermion fields. As far

as HMC is concerned, for any operation applied to the pseudofermions ϕ, the inverse operation is

applied to the PV fields ϕ. The action for the PV half fields is

SPV
[
ϕ,ϕ†] = 1

2
ϕ†D†

SDSϕ, (8.21)

where ϕ = (ϕe, 0). As was the case for the pseudofermion fields,

∫ [
dϕedϕ

†
e

]
exp

(
-SPV

[
ϕ,ϕ†]) ∝ det D̂−1 = detD−1

S . (8.22)

The φ(n) ≡ DSϕ(n) fields are distributed as

Pr
(
φ,φ†) ∝

∏

n

exp

(
− 1

2
φ(n)†φ(n)

)
; (8.23)

therefore, sampling the PV fields ϕ is as simple as drawing φ from a multi-dimensional Gaussian

distribution and inverting DS to obtain a sample of ϕ.
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2 nodes 4 nodes 8 nodes

(L/a)4 β hr. cr.-hr. hr. cr.-hr. hr. cr.-hr.

324 8.8 1.67 106.9 0.94 120.3 0.48 122.9

324 9.4 0.39 25.0 0.20 25.6 0.11 28.2

404 9.4 1.21 96.8 0.60 96.0 0.32 102.4

Table 8.1: Timing (in hours and core-hours) for a single unit molecular dynamics trajectory on two
volumes (L/a)4 = 324 (β = 8.8, 9.4) and 404 (β = 9.4) on 2, 4 and 8 Fermilab Cascade Lake LQ1
nodes.

For updating the gauge fields, the force F
(PV)
µ (n) from the Pauli-Villars fields is of the form

2F(PV)
µ (n) ∝ T aℜTrc

[(
∂an,µDS

)
ϕ̂ ϕ̂†

]
, (8.24)

where

ϕ̂ ≡


 ϕe

−D†ϕe


. (8.25)

That is all there is to it. The addition of PV fields incurs a negligible additional cost to the HMC

simulation, as the Dirac operator only needs to be inverted when obtaining ϕ from the distribution

of DSϕ; this pales in comparison to the cost of inverting DS O(10-100) times to calculate the fermion

force along the MD trajectory. In fact, PV fields have been observed empirically to improve the

condition number of the Dirac operator quite dramatically; as such, the cost of including PV fields

could be offset dramatically by the effect that they have on reducing the number of conjugate gradient

iterations needed to invert DS on the fermion fields [188]. For readers familiar with Hasenbusch

preconditioning, this is perhaps not too surprising [163, 165]. In fact, the first implementation of PV

improvement in KS_nHYP_FS simply modified the Hasenbusch preconditioning that was present in

MILC at the time.
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Figure 8.1: (Top left panel) Comparison of plaquette from qex_staghmc (teal) against KS_nHYP_FS
(QEX, magenta) for (amf , amPV) = (0.0, 0.75) with (L/a,NPV) = (24, 32) and 8.8 ≤ βb ≤ 9.9. (Top
right panel) comparison of qex_staghmc with smearing parameters α = (0.4, 0.5, 0.5) (magenta)
against qex_staghmc with smearing parameters α = (0.5, 0.5, 0.4) (maroon) and KS_nHYP_FS (MILC,
cyan) for (L/a, amf , amPV, NPV) = (8, 0.0, 0.75, 32) and βb = 11.0. (Bottom left panel) Comparison
of pure gauge against (L/a,Nf , NPV, amf , amPV) = (8, 8, 8, 0.5, 0.5), both using qex_staghmc.
(Bottom right panel) Comparison of (NPV, amf ) = (0, 0.0) against (NPV, amf ) = (32, 0.0) with
amPV ∈ {0.5, 1.0, 2.0, 5.0} and (L/a,Nf ) = (8, 8), both using qex_staghmc.

8.1.1.4 Simple tests

Fig. 8.1 illustrates simple tests verifying some expected behaviors of the PV-improved HMC

simulation performed by qex_staghmc using the plaquette (Eqn. 3.4). These tests are not exhaustive

by any means and the plaquette can only reveal so much; qex_staghmc has undergone much more

testing than what is shown in Fig. 8.1. Perhaps the most important test is to check that qex_staghmc
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Figure 8.2: Strong scaling plot qex_staghmc’s performance (normalized to the first data point) as a
function of the number of computing cores on Fermilab’s Cascade Lake cluster (LQ1).

reproduces PV-improved KS_nHYP_FS simulations. The top left panel of Fig. 8.1 compares the

plaquette from a simulation with the action of Chapter 7 on L/a = 24 for 8.8 ≤ βb ≤ 9.9 produced

by qex_staghmc (“QEX”, magenta) and KS_nHYP_FS (“MILC”, dark cyan). The central value for the

plaquette from both codes is consistent within their combined statistical precision. Additionally,

the order in which the nHYP smearing parameters α = (α1, α2, α3) are specified is reversed in

qex_staghmc relative to KS_nHYP_FS (see Appendix G). The top right panel of Fig. 8.1 verifies

that the reversed ordering of α in qex_staghmc (“QEX”, magenta) reproduces the plaquette from the

regular ordering of α in KS_nHYP_FS (“MILC”, cyan) on (L/a, βb) = (8, 11.0).

According to Eqn. 5.2, the effective action induced by heavy PV fields should exhibit the

following easily-verifiable properties.

• If Nf = NPV and amf = amPV, then expectation values of observables drawn from the

joint distribution Pr
(
Uµ, ϕ, ϕ†,ϕ,ϕ†) should agree with observables generated from the pure

Yang-Mills distribution Pr
(
Uµ
)
. In other words, the ensembled-averaged effective action

induced by the pseudofermion fields should cancel out the ensemble-averaged effective action
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induced by the PV fields. What’s left is a pure Yang-Mills system.

• If amPV ≫ 1, then observables drawn from the joint distribution Pr
(
Uµ, ϕ, ϕ†,ϕ,ϕ†) should

agree with observables generated from the joint distribution Pr
(
Uµ, ϕ, ϕ†

)
up to finite-amPV

effects. In other words, the PV fields decouple in the amPV →∞ limit.

The ensemble-averaged cancellation of the pseudofermion/PV effective actions is illustrated in the

bottom left panel of Fig. 8.1 for Nf = NPV = 8 and amf = amPV = 0.5 (L/a = 8). The plaquette,

0.636731(88), from 800 samples of Pr
(
Uµ
)

is consistent with the plaquette, 0.63679(11), from the

same number of samples from Pr
(
Uµ, ϕ, ϕ†,ϕ,ϕ†), verifying the latter expectation. The decoupling

of the PV fields in the amPV →∞ limit is illustrated in the bottom right panel of Fig. 8.1, which

compares the expectation value of a (L/a, βb) = (8, 9.0) simulation with (Nf , amf ) = (8, 0.0) and no

PV fields (“No PV”, magenta line) against a series of (L/a, βb) = (8, 9.0) with (Nf , amf) = (8, 0.0)

simulations and NPV = 32 with amPV = 0.5, 1.0, 2.0, and 5.0. Indeed, the plaquette for simulations

with increasing amPV are observed to converge upon the simulation with no PV fields, as expected

from decoupling.

Table 8.1 summarizes the result of timing tests on 2, 4 and 8 nodes of Fermilab’s Cascade Lake

cluster (48 cores/node) from a single HMC trajectory on (L/a, βb) = (32, 8.8), (32, 9.4), and (40, 9.4)

using the action of Chapter 7. In the context of high-performance computing, parallel software is said

to exhibit strong scaling if its performance is linear in the number of cores at fixed “problem size” (in

our case, fixed L/a, βb). Fig. 8.2 shows the result of a strong scaling test of qex_staghmc using the

information from Table 8.1. The “performance” in Fig. 8.2 is the time taken to complete a single MD

trajectory, normalized by the performance of the lowest core count at each fixed L/a, βb; moreover,

the simulations in Fig. 8.2 only utilizes task- and SIMD-based parallelism (i.e., no multithreading).

The vector length for SIMD-based parallelism is set to 8 by default. All three test cases exhibit

a reasonable degree of linearity of the performance in the number of cores; hence, qex_staghmc

exhibits favorable properties under strong scaling, at least without multithreading, which deserves

its own scrutiny.
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8.1.1.5 Performing Hamiltonian Monte Carlo simulations with qex_staghmc

I designed qex_staghmc around the solid foundation of QEX with ease-of-use and portability

in mind, even if doing so incurred minor penalties to performance. I wanted qex_staghmc to be

both flexible and performant, so as to address the needs of researchers working on small-medium

(and some large) scale lattice calculations that tackle problems in field theory and beyond Standard

Model physics. This is opposed to the large-scale collaborative efforts targeting precision QCD

observables, which require every bit of optimization that they can get, even if at the cost of making

software difficult to understand/modify by non-professionals. The massive amount of effort that the

developers of QEX have poured into it makes this possible, and their example QEX-based HMC codes

made the task of designing qex_staghmc much less painful than it could have been.

Compiling qex_staghmc is simple. After building/installing QEX according to the information

provided in the main Git branch of QEX (see Footnote 2), compilation proceeds by running

make staghmc_spv :FUELCompat=1

under the build directory that is created as part of build/installation process. The :FUELCompat=1

flag ensures backwards compatibility with the FUEL (QHMC) code.5 Specifying :FUELCompat=1 is

recommended, as all qex_staghmc features that have been tested from binaries that have been

compiled with the FUEL compatibility flag. If one wishes to change the number of colors N , simply

add the :nc flag to the make command; e.g., :nc=2 for SU(2). As much of QEX is N -agnostic, the

HMC code of qex_staghmc is as well (including the nHYP smearing).

Running the qex_staghmc HMC binary requires only an XML file, which is read in by

qex_staghmc to determine important properties of the HMC simulations, such as the number

of MD integration steps for each field (gauge, fermion, and PV); the MD trajectory length; the

Omelyan integrator for each field (gauge, fermion, and PV); the gauge action (Wilson, Lüscher-

Weiss, or adjoint-plaquette); the number of fermions and their masses; the number of PV fields

and their masses; the lattice geometry (L/a for any direction in any number of dimensions); the

5QHMC is available at https://github.com/jcosborn/qhmc.

https://github.com/jcosborn/qhmc
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boundary conditions for the fermion/PV fields (periodic or anti-periodic in any direction); the nHYP

searing parameters; and much more, such as the observables to be measured (and the measurement

frequency), along with any tests that should be performed (such as reversibility tests). A sample

XML file can be found under src/stagg_pv_hmc/input_hmc.xml in the Git development branch of

qex_staghmc (see Footnote 4). To run the qex_staghmc HMC binary, simply execute

<parallel_executor> <path_to_binary> –start_config=<start_config>

–end_config=<end_config> –config_space=<config_space> –save_freq=<save_freq>

–xml=<path_to_xml> –rank_geom=<rank_geom> –filename=<filename_convention>

–path=<path_to_read_write>

where <parallel_executor>=“mpiexec -n <n_tasks> -bind-to user:0,1”, “srun –mpi=pmi2”,

etc.; <path_to_binary> is the global path to the staghmc_spv binary; <start_config> is the start-

ing configuration number and <end_config> is the ending configuration number; <config_space> is

the number of full HMC iterations between configurations; <save_freq> is the frequency (in configu-

ration number) at which configurations are to be saved; <path_to_xml> is the path to the aforemen-

tioned configuration file; <rank_geom> is the geometry of the MPI ranks; <filename_convention>

is the default tag for naming configuration files; and <path_to_read_write> is the directory that

qex_staghmc is directed to read/write from. The files that are read/written from disk are the gauge

configurations (<filename_convention>_<configuration_number>.lat), parallel random number

generator files (<filename_convention>_<configuration_number>.rng), and serial random num-

ber generator files (<filename_convention>_<configuration_number>.global_rng). With all

three files, it is possible to easily checkpoint the HMC and regenerate each configuration for

measurements, up to ordering differences in parallel reductions.

8.1.2 Gradient flow

qex_staghmc lightly extends the gradient flow code already present in QEX to allow for inte-

grating flow equations with arbitrary Lüscher-Weiss gauge actions (see Chapter 7.4 or Appendix F)
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and ease-of-deployment in production running. Numerical integration of the gradient flow equation

(Eqn. 4.2) is performed using the 5th-order Runge-Kutta (RK5) scheme suggested in Ref. [252]. In

brief, the gradient flow equation of Eqn. 7.4 is of the form

dUt
dt

= Z(Ut)Ut, (8.26)

where Ut ∈ SU(N) is a generic gauge variable. Define the integration step ϵ = δt/a2. Then, following

Ref. [252], the RK5 integration proceeds recursively as

W0 = Ut,

W1 = exp

[
1

4
Z0

]
W0,

W2 = exp

[
8

9
Z1 −

17

36
Z0

]
W1,

Ut+ϵ = exp

[
3

4
Z2 −

8

9
Z1 +

17

36
Z0

]
W2, (8.27)

where

Zi = ϵZ(Wi) (i = 0, 1, 2). (8.28)

The RK5 scheme proposed by Eqns. 8.1.2-8.28 generally works well for 0.05 ≲ ϵ ≲ 0.1 at early

flow times. It is possible to achieve a considerable speed up by switching to a larger ϵ at late flow

times, where the transient effects are suppressed. In the future, I wish to test out the geometric

integration scheme proposed in Ref. [34]. I also intend to implement “Zeuthen flow” [305], which

amounts choosing Z(Uµ) in Eqn. 8.26 as

Z(Uµ) = −g20
(
1 +

a2

12
∂∗µ∂µ

)
∂x,µSLW

[
Uµ
]

(8.29)

where ∂µ and ∂∗µ have are defined in Eqn. 3.27 and Eqn. 3.28, respectively, and SLW is the tree-

level-improved Lüscher-Weiss gauge action (see Appendix F). Zeuthen flow was used in Chapter 4

with great success.
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8.1.2.1 Running gradient flow with qex_staghmc

Compiling qex_staghmc’s gradient follows as in Sec. 8.1.1.5. After installing/building QEX,

simply execute

make gauge_flow :FUELCompat=1

in the build directory created by the build/installation process. Running the gauge flow also requires

specifying an XML file, which tells qex_staghmc which cp to use; the value of ϵ to be used over any

arbitrary range of flow times; the lattice geometry; and various specifications for measuring gradient

flow observables, such as E(t) (Se = W,C), the Polyakov loop (Eqn. 4.32), and the topological

charge (Eqn. 4.35). A sample XML file can be found under src/flow/input_gf.xml in the Git

development branch of qex_staghmc (see Footnote 4). Executing the gauge flow is as simple as

running

<parallel_executor> <path_to_binary> –start_config=<start_config>

–end_config=<end_config> –xml=<path_to_xml> –filename=<filename_convention>

–rank_geom=<rank_geom>

where <parallel_executor>=“mpiexec -n <n_tasks> -bind-to user:0,1”, “srun –mpi=pmi2”,

etc.; <path_to_binary is the global path to the gauge_flow binary; <start_config> is the starting

configuration number and <end_config> is the ending configuration number; <path_to_xml> is the

global path to the aforementioned XML file; <rank_geom> is the geometry of the MPI ranks; and

<filename_convention> is the name convention for the gauge configurations to be flowed (e.g.,

<filename_convention>_<configuration_number>.lat).

8.2 The SwissFit library

For the neural-network-based fits of Chapters 6-7, I needed both an efficient, but not overly-

optimized, implementation of feedfoward and radial basis function neural networks that I could easily

modify. I also needed the freedom to choose the optimization algorithm for MAP estimation (see
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Appendix D) freely while retaining the ability to utilize the powerful tools of the gvar library for

propagating correlated uncertainties of MAP estimates Θ∗ for model parameters into both derived

quantities and the underlying dataset [241]. Preferably, the neural networks would also support gvar

data types. SwissFit was developed to meet these needs; however, over time it morphed into the

early workings of a fully-fledged scientific library written in Python. In this section, I will describe

the numerical details of features that SwissFit currently supports, though some minor details are

subject to change in future versions of SwissFit [290].6

8.2.1 Maximum a posteriori estimation by nonlinear least squares

In Appendix D.2, I introduce maximum a posteriori estimation (MAP) from the perspective

of Bayesian statistics and information theory. In short, the most probable constrained estimate for

the parameters Θ∗ of a modelM that describes a dataset X ≡ (x0, ..., xM-1) with mean ⟨X⟩ ≡ X

and covariance of the mean ΣX is given by the maximum a posteriori estimate (MAP)

Θ∗ ≡ argmin
Θ

χ2
aug.(Θ),

where

χ2
aug.(Θ) ≡ χ2

data(Θ) + χ2
prior(Θ)

is the augmented χ2 with

χ2
data(Θ) ≡

(
M(Θ)−X

)T
Σ−1
X

(
M(Θ)−X

)

defined by Eqn. D.26 and

χ2
prior(Θ) ≡

(
C(Θ)− C

)T
Σ−1
C

(
C(Θ)− C

)

6SwissFit is available at https://github.com/ctpeterson/SwissFit. Future versions of SwissFit will be avail-
able for installation via pip through PyPI [304].

https://github.com/ctpeterson/SwissFit
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define by Eqn. D.27. See Appendix D.2 for a discussion of individual terms in χ2
data and χ2

prior. For

the sake of notational simplicity, define

Σ ≡ ΣX ⊕ ΣC (8.30)

and

δ(Θ) ≡ δdata(Θ)⊕ δprior(Θ), (8.31)

where

δdata(Θ) ≡M(Θ)−X (8.32)

and

δprior(Θ) ≡ C(Θ)− C. (8.33)

In terms of the notation of Eqns. 8.30-8.33, the augmented χ2 reads

χ2
aug.(Θ) = δ(Θ)TΣ−1δ(Θ)

and the leading-order statistical uncertainty in Θ∗ from Eqn. D.24 is

[
ΣΘ∗

]
ij
≡ ∂δ(Θ)T

∂Θi
Σ−1∂δ(Θ)

∂Θj

∣∣∣∣
Θ=Θ∗

if Σ is independent of Θ. Note that Σ could depend on Θ in the case of hierarchical Bayesian

modelling; as SwissFit does not currently fully support hierarchical Bayesian modelling, such cases

are not considered in this section.

Before optimizing χ2
aug.(Θ), it is both numerically advantageous and computationally cost

effective to calculate the inverse square root Σ−1/2 of the covariance Σ. Because Σ is positive-definite,

Σ−1/2 is well-defined in terms of the singular value decomposition (SVD) of Σ

Σ = UTSU (8.34)
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as

Σ−1/2 = S−1/2U, (8.35)

where S is a diagonal matrix of singular values and U is an orthogonal matrix. The problem of

optimizing χ2
aug.(Θ) is then recast completely in terms of

δ̃(Θ) ≡ Σ−1/2δprior(Θ), (8.36)

whereby

χ2
aug.(Θ) = δ̃(Θ)Tδ̃(Θ) (8.37)

and
[
Σ−1
Θ∗
]
ij
=
∂δ̃(Θ)T

∂Θi

∂δ̃(Θ)

∂Θj

∣∣∣∣
Θ=Θ∗

. (8.38)

SwissFit utilizes the SVD algorithm implemented in NumPy to calculate Σ−1/2 [162]. NumPy itself

utilizes the _gesvd routine provided by LAPACK, which implements a generalized (quotient) singular

value decomposition algorithm [5]. On the other hand, the parameter covariance ΣΘ∗ of Eqn. 8.38 is

calculated from the Moore-Penrose pseudoinverse provided by SciPy [361], which is little more than

a repackaged SVD decomposition [289].

SwissFit supports the trust region reflective [49], dogbox [362], and Levenberg-Marquardt

[242, 259] local optimization algorithms and the basin hopping global optimization algorithm [364],

all of which are provided by the SciPy library [361]. Gradients are calculated using the automatic

differentiation tools provided by the gvar library [241]; hence, all that the user needs to provide

SwissFit is the model function in the form of a Python function that accepts gvar data types. Most

standard NumPy functions are compatible with gvar data types. gvar itself contains a variety of

wrapper functions for most standard functions. gvar also provides infrastructure for creating custom

gvar-compatible functions, so long as the derivative of the desired function is directly accessible

(analytically or numerically) [241].
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8.2.2 Quality of fit and model selection criteria

From the MAP estimate Θ∗, SwissFit calculates a number of standard measures for the

quality of fit. Directly accessible from the fit is the “Bayesian” χ2
aug./d.o.f. with

d.o.f. ≡ |X| − |Θ|+ |C| (8.39)

and the “frequentist” χ2
data/d.o.f.

∗ with

d.o.f.∗ ≡ |X| − |Θ|, (8.40)

where |X| is the number of data points, |Θ| is the number of model parameters, and |C| is the

number of priors (constraints). The standard criterion for a “good” fit is

χ2
aug./d.o.f. ∼ 1 and χ2

data/d.o.f.
∗ ∼ 1. (8.41)

A χ2 per the respective degrees of freedom that is much less than unity suggests either that the

model overfits the data or the uncertainty from Σ is much greater than the actual fluctuations in

the data (i.e., the uncertainties are overestimated). On the other hand, if the χ2 per the respective

degrees of freedom is much greater than unity, then the model either overfits or the uncertainty from

Σ is much smaller than the actual fluctuations in the data (i.e., the uncertainties are underestimated).

The Bayesian p-value

p-value =
1

Γ(d.o.f./2)

∫ ∞

χ2
aug./2

dt t
d.o.f.

2
−1e−t (Bayesian) (8.42)

is the probability that χ2
aug. could have by larger by chance and is easily calculated from SciPy’s

implementation of the regularized upper incomplete gamma function [361]. A “good” fit is con-

ventionally considered to have a p-value that is ≳ 10%, assuming that the statistical error is not
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overestimated. The corresponding “frequentist” p-value is

p-value =
1

Γ(d.o.f.∗/2)

∫ ∞

χ2
data/2

dt t
d.o.f.∗

2
−1e−t (frequentist). (8.43)

The interpretation of the frequentist p-value is slightly more complicated in the presence of priors.

Without priors, it of course equivalent to the Bayesian p-value. SwissFit calculates both p-values.

The marginal likelihood (Eqn. D.16) and Akaike information criterion (Eqn. D.33) are

useful for the purposes of model selection. Given a finite collection of candidate models M ≡
{
M(1),M(2), ...,M(NM)

}
, the modelM(η) ∈M with the highest marginal likelihood Pr

(
X
∣∣M(η)

)

is more likely to have given rise to the data X than any other model M(η′) ∈ M . The Laplace-

approximated marginal likelihood (Eqn. 6.12) about the MAP estimate Θ∗ is

−2 log Pr
(
X
∣∣M(η)

)
≈ χ2

aug.(Θ
∗) + log

(2π)d.o.f. detΣX detΣC
detΣΘ∗

.

It should be noted that the Laplace-approximated marginal likelihood is a point estimate. As such,

it could be a very poor estimate of the actual marginal likelihood, especially if the distribution

possesses many (possibly degenerate) peaks. In any case, the full marginal likelihood can be used for

the purposes of model selection if it is known that the correct model (i.e., the model that X arises

from) exists in M . As I have discussed in Chapter 6.2.3, the marginal likelihood is also useful for

inferring priors from data via the empirical Bayes procedure. Empirical Bayes is useful both for

estimating priors in the face of uncertainty and controlling for overfitting. If the correct model is not

in M and one simply wishes to select the model that best describes the data with the least number

of fit parameters, then the marginal likelihood is not appropriate. Instead, one should use a quantity

that weights fit quality against information loss, such as the Akaike information criterion

AIC = χ2
aug.

(
Θ∗)+ 2|Θ|. (8.44)

As is briefly discussed in Appendix D.2.4 and derived explicitly in Ref. [210], the AIC arises
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naturally from the posterior probability Pr(X|M), which is related to the marginal likelihood by

Bayes’ theorem (Eqn. D.17). The model with the lowest AIC fits the data best with the least

number of parameters (information loss); in other words, it is preferred by Occam’s razor. Both the

AIC and the Laplace-approximated marginal likelihood are estimated by SwissFit.

8.2.3 Consistent uncertainty propagation

Ensuring that all uncertainties are accounted for in algebraic operatations of Gaussian random

variables with Θ∗ using gvar is a surprisingly difficult task. Luckily, the lsqfit library has

implemented an ingenious solution that SwissFit utilizes to achieve the same goal [240]. The idea

is to utilize the estimate [44]

∇XΘ∗ = ΣΘ∗
[
∇Θδ̃(Θ)

]T
Σ−1/2

∣∣∣
Θ=Θ∗

(8.45)

for the derivative ∇XΘ∗ to both propagate the uncertainty of Θ∗ into derived quantities and

automatically account for correlations that any Gaussian random variable has with Θ∗ through

X; see Appendix D.1.3 for a brief discussion of Gaussian error propagation. For example, gvar

calculates the uncertainty in the scaling function of Chapters 6-7 using Eqn. 8.45. Similarly, Eqn.

8.45 also allows gvar to account for the correlation between γO and O(K,Ns) in estimating the

uncertainty of O(K,Ns)/Ns
γO in the curve collapse of magnetic susceptibilities in Chapter 6.

8.2.4 Incorporating neural networks

SwissFit provides utilities from implementing gvar-compatible radial basis function net-

works (RBFN, Chapters 6-7) and feedforward neural networks (FNN) in fit functions through

the RadialBasisNeuralNetwork and FeedforwardNeuralNetwork class, respectively. Both classes

inherit methods from the NeuralNetwork class. The topology and activation function for each

layer of either neural network is specified as a Python dictionary when instantiating a child of the

NeuralNetwork class. Exponential, multi-quadratic, inverse-quadratic, and multi-inverse-quadratic
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activations are supported for RBFN layers, along with both L1 and L2 norms for the argument of

the RBFs of each layer. The FeedforwardNeuralNetwork class supports linear, rectified linear unit

(ReLU), Gaussian error linear unit (GELU), exponential linear unit (ELU), hyperbolic tanh, and

sigmoidal activations, along with user-provided custom activations [84, 197]. Examples are provided

under the examples folder in the development branch of SwissFit (see Footnote 6).

8.3 Non-perturbative running anomalous dimensions in the ten flavor system

In Chapter 2.4, I discussed running operator anomalous dimensions in the context of Wilsonian

RG. In Chapter 1, I briefly touched upon the relevance that the fixed point value of running operator

anomalous dimensions has for beyond Standard Model physics phenomenology. In this section, I am

going to apply the gradient-flow-based methods of Chapters 4, 5, and 7 to calculate the running

pseudoscalar, tensor, and proton anomalous dimension of the Nf = 10 system over 2.0 ≲ g2GF ≲ 8.5

from the running of the wave function renormalization (Eqn. 2.24) of all three operators. If the

Nf = 10 system indeed lies within the conformal window, then the recent CBFM-based prediction

for the fixed point GF coupling g2GF⋆ ≈ 15.0 of Ref. [179] unfortunately indicates that the range of

couplings covered in this section is too small to be able to estimate any of the fixed point operator

anomalous dimensions for the Nf = 10 system. Similar calculations for the Nf = 2 system are

currently underway by collaborations that I am not currently involved in; see, for example, the work

of Ref. [177]. See also Ref. [74] for an early development of similar ideas.

8.3.1 Including fermions in gradient flow

In Chapters 4, 5, and 7, only the gradient flow of the gauge field was needed. Correlation

functions for fermionic observables are required to extract the running anomalous dimension of the

pseudoscalar, tensor and proton; hence, the gradient flow equation must be extended to include the

fermion fields. Including fermions in the gradient flow equations turns out to be fairly simple and is

laid out clearly in Ref. [249]. In short, the evolution equation for the gauge field is left untouched
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(Eqn. 4.2), while the lattice fermion field ψ is evolved according to

dψ(n, t)

dt
=
∑

µ

□µψ(n, t), (8.46)

where the box operator □µ has been defined in Eqn. 3.23 and is coupled to the flowed gauge field

Uµ(n, t) as in Chapter 3.2.3. The gradient flow is them performed by evolving Eqns. 4.2 and 8.46

simultaneously. In this section, the fermion fields are flowed alongside the gauge fields using the

“adjoint flow” first discussed in Ref. [249] and implemented in the QLUA library [300].

8.3.2 Operator anomalous dimensions from gradient-flowed correlation functions

Note that, unlike the GF equation for the gauge fields, the GF equation for the fermion fields

is linear. Because it is linear, the wave function picks up an additional contribution from the wave

function renormalization of the fermion fields Zψ that needs to be cancelled off in the definition of

RO in Eqn. 2.28. Additionally, it is numerically advantageous to flow only one of the operators O

in any given two-point function. As such, define the partially-flowed two-point function in infinite

volume as

GO
(
t, x̂4; g

2
0

)
=

∫
d3x̂ ⟨O

(
x̂, x̂4, t

)
O
(
x̂, 0
)
⟩, (8.47)

where the operator O
(
x̂, x̂4, t

)
is composed of “GF-blocked” fermion fields (Chapter 4.2), O

(
x̂, 0
)

is composed of unblocked fermion fields, and I’ve changed notation slightly to
(
x̂, x̂4

)
= x̂ ≡ n to

remain consistent with the noation of Ref. [177]. The integral over the spatial components x of

x̂ projects the two-point function onto zero spatial momentum. Eqn. 2.23 in Chapter 2.4 for the

partially-flowed two-point function then takes the form

GO
(
t0, x̂4; g

2
0

)
= ZnO

ψ (b)ZO(b)GO
(
t, x̂4; g

2
0

)
, (8.48)

where b2 ≡ t/t0 and nO is the number of fermion fields in O. To calculate the running of ZO from

γO, the contribution of ZnO
ψ to Eqn. 8.48 needs to be cancelled off. Because the vector current
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is exactly conserved in the Nf = 10 system, it only picks up a contribution from Zψ; hence, the

definition of RO in Eqn. 2.28 can be modified to cancel off the contribution of ZnO
ψ as

RO
(
t0, x̂4; g

2
0

)
≡ GO

(
t, x̂4; g

2
0

)

GV
(
t, x̂4; g20

)nO/nV
, (8.49)

where GV
(
t, x̂4; g

2
0

)
is the two-point function of the vector current. Though unflowed two-point

functions were included in the definition of Eqn. 2.28, they do not contribute to γO; hence, they are

not included in the definition of RO in Eqn. 8.49. From RO, the calculation of γO follows as (see

Eqn. 2.29 in Chapter 2.4):

−2t d
dt

logRO
(
t0, x̂4; g

2
0

)
= γO

(
t, x̂4; g

2
0

)
. (8.50)

For x̂24 ≫ 8t/a2, the logarithmic derivative should be indepndent of x̂4, as should γO. Note that the

factor of two in Eqn. 8.50 arises from a different source as in Eqn. 2.28. With the finite volume

version of the running anomalous dimension γO
(
t;L, g20

)
determined by Eqns. 8.48-8.50, calculating

the continuum prediction for γO
(
g2GF

)
follows exactly the same steps as the continuous β-function

method that I have deployed exhaustively in Chapters 4, 5, and 7.

8.3.3 Simulation details

The results of this section utilize a tree-level improved Lüscher-Weiss gauge action (Appendix F)

for the gauge sector [248, 251] and a stout smeared Möbius domain wall (DWF, Chapter 3.2.2) fermion

action for the fermion sector [54]. The stout-smeared pseudofermion action utilizes six levels of stout

smearing with ρ = 0.1; see Appendix G.2 for an overview of stout smearing [266]. Gauge configurations

are generated using the Hamiltonian Monte Carlo algorithm provided by the GRID library [47, 112].

Gauge/fermion flow measurements are performed using the QLUA library [300]. The flow is Wilson flow.

The full dataset is composed of six bare gauge couplings βb ≡ 6/g20 = 4.05, 4.10, 4.20, 4.60, 5.00, 6.00

on two volumes (L/a)3× (T/a) = 243×64 and 323×64. The length of the fifth dimension is N5 = 16
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Figure 8.3: Pseudoscalar mass anomalous dimension γm
(
t, x̂4;L, g

2
0

)
at fixed (L/a,Nf , βb) =

(24, 10, 4.2) and 1.5 ≤ t/a2 ≤ 5.0 (blue to red) against x̂4.

(Chapter 3.2.2), which yields a residual mass amres. ≲ 10−6.7

8.3.4 Calculation of operator anomalous dimensions

I start by calculating the finite volume renormalized coupling g2GF

(
t;L, g20

)
using Eqn. 4.19

with δ(t, L) chosen to include tree-level corrections for cutoff effects using Eqn. 4.27. The Yang-

Mills energy density E(t;L) is estimated from Wilson flow the tree-level-correct clover operator

(S fSe = WC). I then calculate the finite volume anomalous dimension γO
(
t, x̂4;L, g

2
0

)
for the

pseudoscalar, tensor, and proton operator using the finite-volume version of Eqns. 8.47-8.50. The

derivative in Eqn. 8.50 is calculated using the 5-point stencil of Eqn. 4.37 and has been crosschecked

against improved finite-difference schemes for logarithmic derivatives of logarithmic functions.

Fig. 8.3 illustrates the variation of the finite-volume pseudoscalar anomalous dimension with

x̂4 at fixed 1.5 ≤ t/a2 ≤ 5.0 (different colors), L/a = 24, and βb = 4.2. The pseudoscalar anomalous

dimension is denoted as “γm
(
t, x̂4;L, g

2
0

)
” because the preservation of chiral symmetry in the system

forces the scalar and pseudscalar to be degenerate. As such, the pseudoscalar anomalous dimension

7The size of the residual mass indicates the degree of chiral symmetry breaking.
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Figure 8.4: Sample of infinite volume extrapolation of g2GF

(
t;L, g20

)
(left panel) and mass pseudoscalar

anomalous dimension γm
(
t, x̂4;L, g

2
0

)
at fixed (L/a,Nf , βb) = (24, 10, 4.2) and 1.5 ≤ t/a2 ≤ 5.0 (blue

to red). Extrapolation indicated by multicolored bands with the width of the band indicating the
error and data entering interpolation indicated by corresponding multicolored error bar.

is the mass anomalous dimension. For each t/a2, there is a plateau over which γO
(
t, x̂4;L, g

2
0

)
is

independent of x̂4. As t/a2 increases, the region in x̂4 over which the anomalous dimension is flat

decreases because the short-distance overlap between the flowed and unflowed operators in the

partially-flowed two point function increases with t/a2. Such overlap distorts the correlation function

over distances x̂4 ≲ 8t/a2.

8.3.4.1 Infinite volume extrapolation

The infinite volume extrapolation is performed in the same manner as the infinite volume

extrapolation step of the continuous β-function method in Chapters 4, 5, and 7, only with a

minor modifications to the finite volume scaling of γO
(
t, x̂4;L, g

2
0

)
as compared to g2GF

(
t;L, g20

)
. I

extrapolate g2GF

(
t;L, g20

)
to a/L→ 0 limit at fixed βb, t/a2 by fitting the L/a = 24, 32 volumes to

the ansatz of Eqn. 4.38. The operator anomalous dimension is extrapolated to the infinite volume

limit via the same procedure; however, the finite volume ansatz is taken to be

FVO
(
t;L, g20

)
= k1

(
t; g20

)
+ k2

(
t; g20

)
(a/L)δO/2 (fixed t/a2 and βb) (8.51)
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Figure 8.5: Sample of quadratic interpolation of pseudoscalar anomalous dimension γm
(
t, x̂4; g

2
0

)
in

gradient flow coupling g2GF

(
t, x̂4; g

2
0

)
at fixed (Nf , x̂4) = (10, 23) and 1.5 ≤ t/a2 ≤ 5.0. Interpolation

indicated by multicolored bands with the width of the band indicating the error and data entering
interpolation indicated by corresponding multicolored error bar.

based on the mass dimension of O. For mesonic operators, δO ≈ 3 (e.g., the pseudoscalar), while

for baryonic operators δO ≈ 9/2 (e.g., the proton). I illustrate the infinite volume extrapolation for

g2GF

(
t;L, g20

)
in the left panel of Fig. 8.7 and γm

(
t, x̂4;L, g

2
0

)
(pseudoscalar) in the right panel of

Fig. 8.7 for 1.5 ≤ t/a2 ≤ 5.0 (different colors) and βb = 4.2. Because there are only two volumes

to do the extrapolation over, the resulting fit unfortunately has zero degrees of freedom. Though

the finite-volume effects appear to be mild, little can be said about the control that I have over the

infinite volume limit without at least one more volume.

8.3.4.2 Continuum extrapolation

As with the β-function, taking the continuum a2/t → 0 limit at fixed g2GF requires first

interpolating γO
(
t, x̂4; g

2
0

)
in g2GF

(
t;L, g20

)
at fixed t/a2 for each O. The interpolating function is
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Figure 8.6: Continuum extrapolation (left panels) and final continuum result (right panels) for
pseudoscalar (top panels), tensor (middle panels), and proton (bottom panels). Left panels show
multiple fixed 2.0 ≲ g2GF ≲ 9.0 (red to purple). Right panels show the final result from multiple
x̂4 (see color bar on right). Continuum prediction for pseudoscalar juxtaposed against 1-, 2-, and
3-loop perturbative mass anomalous dimension from Ref. [23]. Tensor and proton are only compared
against their corresponding 1-loop perturbative results.
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1-loop perturbative results.

chosen to be the simple polynomial ansatz of Eqn. 7.6 with N = 3. In other words, the interpolating

function is quadratic in g2GF. No priors are imposed on the fit parameters. The interpolation

is illustrated in Fig. 8.5 for γm
(
t, x̂4; g

2
0

)
at x̂4 over 1.5 ≤ t/a2 ≤ 5.0 (different colors). The

interpolation fits through most of the data well, save for βb = 4.2 and 4.6, which fluctuate away from

the interpolating band. It is reasonable to suspect that such fluctuations are be attributed to a lack

of control over the infinite volume extrapolation.

The continuum extrapolation is performed by fitting γO
(
t, x̂4; g

2
0

)
to the linear a2/t ansatz

of Eqn. 4.39 at each fixed g2GF. The continuum extrapolation is illustrated in the left panels of

Fig. 8.6, while the continuum prediction for γO
(
g2GF

)
from various x̂4 is illustrated in the right

panels of 8.6. The latter information is shown for the pseudoscalar in the top panels, tensor in the

middle panels, and proton in the bottom panels. The pseudoscalar (mass) anomalous dimension is
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juxtaposed against the 1-loop universal and 2-/3-loop gradient flow prediction from Ref. [23] in the

top right panel of Fig. 8.6, while the tensor (middle right) and proton (bottom right) are juxtaposed

only against their corresponding 1-loop perturbative anomalous dimension. Finite volume effects

are observed to heavily distort the trend of γO
(
t, x̂4; g

2
0

)
in a2/t for t/a2 ≳ 1.5. Moreover, nonlinear

cutoff effects in a2/t appear to be suppressed for t/a2 ≳ 3.0, though they are not as harsh as they

can be for the β-function. Hence, there is a small region of linearity between 1.5 ≲ t/a2 ≲ 3.0 over

which the continuum extrapolation is performed and the continuum prediction from various x̂4 are

consistent. Note that different operators can have different regions in x̂4 over which the anomalous

dimension of the corresonding operator is observed to plateau; e.g., the pseudoscalar anomalous

dimension reasonably plateus about 21 ≤ x̂4 ≤ 25, while the proton plateaus about 16 ≤ x̂4 ≤ 20,

though with more variation in the continuum prediction from different x̂4.

8.3.4.3 The continuum operator anomalous dimensions

In Fig. 8.7, I show the continuum prediction for the pseudoscalar (pink), tensor (maroon),

and proton (dark yellow). The pseudoscalar is juxtaposed against the 1-loop universal and 2-loop

gradient flow prediction from the perturbative calculation of Ref. [23], while the tensor and proton

are juxtaposed against only their 1-loop values. To little surprise, the continuum prediction for the

pseudoscalar is the most well resolved and exhibits the least significant systematic effects from the

choice in x̂4. In the other hand, the tensor and proton anomalous dimensions exhibit a considerable

degree of uncertainty in x̂4. Both correlation functions tend exhibit a considerable degree of statistical

noise; hence, the latter observation is also not particularly surprising. In any case, all three operator

anomalous dimensions indicate that they are approaching their perturbative counterparts in the

g2GF → 0 limit, with the proton most significant deviating from the 1-loop universal curve. It is

reasonable to suspect that the latter deviation is due to finite volume effects and that the combined

statistical/systematic error of the proton is much higher than the statistical error that is shown in

Figs. 8.6-8.7. On the other hand, the pseudoscalar (mass) anomalous dimension both converges

nicely onto the 1- and 2-loop curves as g2GF → 0 and closely follows the 2-loop curve up to, and
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possibly beyond, g2GF ≈ 10. Ref. [177] has also calculated the mass and tensor anomalous dimension

using a Pauli-Villars improved Wilson fermion action. The results of this section appear to agree

reasonably well with Ref. [177], though the mass anomalous dimension in Ref. [177] appears to

converge onto the 1-loop curve much earlier in g2GF and the upward curvature in the tensor is less

dramatic about 6 ≲ g2GF ≲ 8.5. Of course, as I have already mentioned, it is not possible to tell if the

infinite volume limit in this section is controlled without more information from larger volumes.



Chapter 9

Recapitulation and an eye toward the future

We have covered quite a bit of ground in this thesis. Unfortunately, due to constraints from

time, space, and relevance, I was not able to cover my contributions to muon gµ-2 [32, 94], nor have

I covered the long list of failed projects, such as my investigation of the thermodynamic properties

of the 4 + 6 mass-split system and its relevance to stochastic gravitational wave production [376];

Markov Chain Monte Carlo sampling of field theories with affine invariant Monte Carlo; including

effects from Pauli-Villars fields and fermion loops into corrections for discretization effects in the

gradient flow coupling; gradient flow renormalization applied to the BKT transition of the XY

model; the application finite size scaling with radial basis function networks to first-order phase

transitions simulated with multicanonical Monte Carlo algorithms; the application of feedfoward

neural networks to finite size scaling; and much more. In any case, I hope that you enjoyed the

journey as much as I have enjoyed both working on the content of this thesis and writing about it.

Before we sign off, let me summarize the lessons have been learned from this thesis and where they

might take us in the future.

I have calculated the continuum/infinite-volume renormalization group β-function of the

massless SU(3) gauge-fermion system forNf = 0, 8, and 12 fermions in the fundamental representation

of SU(3) in Chapters 4, 7, and 5, respectively. All β-function calculations in this thesis utilize

gradient flow and deploy the continuous β-function method (CBFM). I have also developed a method

for finite size scaling by the method of curve collapse that utilizes a radial basis function network to

approximate the scaling function. The latter method has been tested on the finite-temperature phase
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transition of various classical spin systems in Chapter 6. In Chapter 7, I applied the RBFN-based

curve collapse to the zero-temperature phase transition of the Nf = 8 system.

9.1 Non-perturbative β-functions

The state-of-the-art determinations of the β-function in this thesis have achieved unprecedented

reach into the infrared regime of each system investigated. In the Nf = 0 system, this is attributed to

the CBFM itself, which allows the β-function to be calculated in the confined regime; such is not true

for determinations of the β-function based on step scaling. The considerable reach into the infrared

regime of the Nf = 8 and 12 systems is attributed to the use of Pauli-Villars improvement, which

dampen the ultraviolet fluctuations that typically trigger first-order phase transitions in simulations

of many-flavor systems.

The Nf = 0 β-function exhibits interesting features in the strong coupling regime. For one, it is

linear in the renormalized coupling g2GF for sufficiently large g2GF/4π ≫ 1; i.e., βGF

(
g2GF

)
∼ c0+c1g2GF

at strong coupling. The slope c1 of the β-function in the strong coupling regime determines the

dependence of the expected Yang-Mills energy density t2⟨E(t)⟩ on the flow time as t2⟨E(t)⟩ ∝ t−c1 .

The expectation for c1 from the literature is c1 = −1, which is merely empirical; however, I calculate

a slope for the β-function of c1 = −1.320(10), which is not consistent with the latter expectation.

The linearity of the β-function in the strong coupling regime could be due to instantons or even

a universal feature of asymptotic RG β-functions (based on Wilsonian RG) in confined systems.

Note, additionally, that tree-level corrections are used to determine the Nf = 0 β-function. At weak

coupling, they work as expected. They are also surprisingly effective in the strong coupling regime,

where they are not expected work as well, if at all.

As the Nf = 0 β-function of Chapter 4 has been determined between 1.2 ≲ g2GF ≲ 27.0, I

am able to extract from it the Λ-parameter in the MS using an exact relation between the MS

Λ-parameter and the Λ-parameter of the infinite volume GF scheme of this thesis. Unfortunately,

doing so requires matching the non-perturbative β-function at the weakest accessible couplings to

the perturbative β-function, which is known up to 3-loops. The matching procedure is performed by
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appending onto the 3-loop β-function an additional O
(
g10GF

)
term with a coefficient that is determined

by the matching procedure. An alternative non-perturbative matching procedure is proposed but

not deployed. The β-function is then determined from g2GF = 0 to g2GF(t0) = 0.3N where the scale

setting parameter t0 is defined. From the full β-function, I determine the MS Λ-parameter of the

Nf = 0 to be
√
8t0ΛMS = 0.622(10), which is in fantastic agreement with the most high-precision

recent gradient-flow-based determinations, but in tension with other methods appearing in the

results compiled by the Flavor Lattice Averaging Group (FLAG) report. The reason for this tension

is unknown at the moment; however, it is reasonable to speculate that it could be due to a poor

determination of the ratio of t0 to the Sommer scale r0, which can be quite difficult to calculate

accurately. In the near future, the method deployed in Chapter 4 for calculating the Λ-parameter

could be utilized for high-precision determinations of the strong coupling constant αs.

The Nf = 12 β-function reported in Chapter 5 exhibits a clear infrared fixed point (IRFP) at

g2GF⋆ = 6.60(62). Additional systematic effects from the finite volume extrapolation are accounted for

with Bayesian model averaging. The leading irrelevant critical exponent at the IRFP γ⋆g = 0.199(32)

is calculated from the slope of the continuum β-function at g2GF⋆ and is in reasonable agreement with

estimates from perturbation theory at the 1σ level and the only other non-perturbative estimate at

the 2σ level. Though this calculation is the second non-perturbative β-function to have exhibited a

fixed point, it extends far beyond what has been calculated previously and is far more controlled

due to Pauli-Villars improvement.

Determination of the Nf = 8 β-function in Chapter 7 was by far the most challenging on a

technical level. As with Nf = 12, Bayesian model averaging is deployed to account for additional

systematic effects from the infinite volume extrapolation automatically. Multiple flows are deployed

and a reasonable degree of consistency between different flows is observed. Even better, the β-function

in the weak coupling agrees with determinations based on simulations with domain wall fermions

using the same RG scheme. The β-function initially decreases, then begins to show signs of turning

around around 15 ≲ g2GF ≲ 22. There are a number of reasons that the β-function could begin to

turn around. The least exciting reason is that it is an artefact of the RG scheme; though it is not
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possible to rule this out completely, it is unlikely. If the Nf = 8 system sits either below or at the

edge of the conformal window, the such a turn around could be indicative of slow walking. On the

other hand, if the Nf = 8 system is in the conformal phase, then the turnaround is likely a sign of

the β-function beginning to flow into an IRFP. In any case, such a turnaround could indicate that

large-scale simulations of the Nf = 8 system have yet to probe is behavior outside of the “weakly

coupling” region.

When combined with the Nf = 8 results of Ref. [179] obtained from the same RG scheme

and the Nf = 16 β-function that is accessible from perturbation theory, a consistent picture of the

conformal window of SU(3) gauge-fermion systems begins to take shape. For one, the value of g2GF⋆

increases with decreasing Nf toward the location of the conformal sill at N c
f . Should the results of

this thesis and that of Ref. [179] be replicated by other lattice gauge theory collaborations, this puts

a probable location for N c
f at N c

f ≲ 9 from Ref. [179] and possibly N c
f ≳ 8 from the calculation of

Chapter 7, though the lower bound imposed by the Nf = 8 calculation of Chapter 7 is certainly up

for debate. I have taken steps toward aiding in replication efforts by making all gradient flow data

for the Nf = 12 system publicly available at Ref. [291]. Data for the Nf = 8 system will be made

available upon publication.

Further developments of the CBFM that offer refined control over systematic errors and

estimates of statistical errors in the infinite volume and continuum extrapolations are needed.

Though the analysis of the β-function after the infinite volume extrapolation in Chapters 5 and

7 benefits immensely from implementing Bayesian model averaging (BMA) in the infinite volume

extrapolation, it is not immediately clear how to keep track of correlations between BMA quantities

and the quantities that they are derived from. This is needed to consistently keep track of correlations

throughout the interpolation step and the continuum extrapolation step. Otherwise, one has to settle

with taking the diagonal approximation of the covariance matrix in the continuum extrapolation

and estimate the statistical error from the 1σ bands of the data (assuming 100% correlation).

Additionally, treating the data of the continuum extrapolation as discrete is a fiction that

introduces a number of systematic effects into the continuum extrapolation that would better be
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rid of. For one, individual data points are highly-correlated with one another and it is typically

impossible to perform reliable correlated fits. By taking the diagonal approximation, the χ2 and

p-value lose their meaning. As I have already mentioned in Chapter 4, the latter problem could be

partially alleviated by estimating the χ2 and p-value in the diagonal approximation as suggested

by Ref. [57]; however, it remains unclear to how properly estimate the statistical error without

reverting to ad-hoc methods, such as assuming 100% correlation and fitting above/below the 1σ band.

Additionally, it is not possible to implement conventional BMA for the continuum extrapolation,

where it could be very useful, because there is no immediately obvious meaning to subset selection

for continuous data. Note that continuous Gaussian variables are well-defined as Gaussian processes.

Hence, it may be possible to instead leverage methods deployed for analyzing Gaussian processes in

the continuum extrapolation; however, where to start with that is not yet clear.

9.2 Finite size scaling with radial basis function networks

In Chapter 6, I develop a method for finite size scaling curve collapse based on radial basis

function networks (RBFN), which are a type of single-layer artificial neural network that is specially-

designed for function approximation. Curve collapse fits with the RBFN utilize the basin hopping

global optimization algorithm paired with the trust region reflective local optimization algorithm

to get around the issue of having to either engineer initial conditions or utilize local optimization

algorithms that are not guaranteed to converge to reasonable optima. The parameters of the RBFN

are constrained using the empirical Bayes method, which proceeds by optimizing the marginal

likelihood. Optimization of the marginal likelihood is efficiently achieved using a surrogated-based

optimization algorithm that I develop in Chapter 6. The empirical Bayes procedure takes care of

issues introduced by overfitting automatically and is extensible to higher-dimensional problems.

The RBFN-based curve collapse is tested on curve collapse analyses of the finite-temperature

phase transition of the two-dimensional q-state Potts model and p-state clock model for q = 2, 3 and

p = 4,∞. The critical parameters estimated from the Binder cumulant and magnetic susceptibility

of each model agree with either their exact values in the case of p = 2, 3 and q = 4 or their estimates
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from the literature for the case of q =∞. Intriguingly, the size of the RBFN need not be unreasonably

large, with 2-3 internal nodes performing just fine. Such a network is incredibly small compared to

the networks deployed in larger and obviously much more difficult problems; however, there seems to

be a pervasive mode of thought that that network should be much larger than is actually required

by the complexity of the problem at hand. I wrap Chapter 6 up by speculating on other uses of

RBFNs for analyses of lattice field theory data; as an example, I extract the critical temperature of

the ∞-state clock (XY) model from a direct interpolation of helicity modulus using an RBFN.

The RBFN-based curve collapse method of Chapter 6 is applied to the Nf = 8 system in

Chapter 7 to scrutinize claims of a possible continuous phase transition into a symmetric mass

generation phase made in Ref. [170]. The finite size scaling data in Chapter 7 extends the dataset of

Ref. [170] by including extra L/a = 24 volumes and a new set of L/a = 32 volumes. In agreement

with Ref. [170], 1st-order scaling is strongly disfavored by the curve collapse; however, it is not

possible to distinguish a preference for ∞-order scaling (ν = 1/2, 1) over 2nd-order scaling using

standard statistical tests. Moreover, the predictions for the critical parameters in Chapter 7 are in

tension with those of Ref. [170]; however, the curve collapse analysis of Chapter 7 is more reliable

on many levels due to both an improved dataset and an improved method. It is absolutely crucial to

stress that, despite first-order scaling being strongly disfavored by the curve collapse, it cannot be

ruled out without measurements of the correlation length over the same region of parameter space.

This will hopefully be possible with future investigations of the spectroscopy of the SMG-like phase

in the Nf = 8 system.

There much room for improvement in the RBFN-based FSS method. For one, it would be

highly desireable to have on hand a better global optimization algorithm than basin hopping for

the maximum a posteriori estimation. Though basin hopping vastly outperforms every other global

optimization algorithm that I tried, it is still not guaranteed to converge and coaxing the algorithm

into the global optimum can be a pill for the analyst. Improvements could also come in the way of

implementing basin hopping steps that are better tailored to neural networks. The empirical Bayes

procedure also leaves much room for improvement. For one, it is easily improved in one dimension
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by embedding the surrogate-based optimization procedure into a bisection method for finding the

optimum of the marginal likelihood. Though it is also possible to extend the surrogate based method

to more than one dimension, as would be desired for implementing the empirical Bayes procedure

for more than just the network weights. It may be more efficient to simply utilize the full machinery

of Bayesian optimization, which is able to implement more intelligent moves for surrogate-based

sampling of the objective function in question.
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Appendix A

Characterizing a fixed point by its local topology under an RG flow

Defining δK ≡K −K⋆ and taking δKi/K
⋆
i ≪ 1, we can linearize Rb about K⋆ as

Rb(δK) = RbδK +O
(
δK2

)
, (A.1)

where

Rij
b =

∂Rb(K)i
∂Kj

∣∣∣∣
K=K⋆

. (A.2)

is a linear operator. The left normalized eigenvectors e(α)L of Rb, defined by

e(α)L Rb = e(α)L λ
(α)
b , (A.3)

characterize the local topology of the flow within the vicinity of K⋆, as they are the principal axes

of Rb. The component δKα of δK along any one of the principal axes is referred to as a scaling

variable. Due to the semi-group composition law of Eqn. 1,

λ
(α)
b′ λ

(α)
b = λ

(α)
b′b , (A.4)

which implies

λ
(α)
b = byα , (A.5)
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for some b-independent variable yα, which is imprecisely called a renormalization group eigenvalue.

Therefore, the scaling variables δKα transform under an RG transformation as

δK ′
α = byαδKα +O

(
K2
α

)
. (A.6)

Whether or not the component δKα of δK along the principal axis e(α) flows into or out of the fixed

point K⋆ is completely determined by the sign of yα. If yα > 0, then it is repelled; in this case, we

say that δKα is relevenat. On the other hand, if yα < 0, it is attracted to δKα = 0, and we refer to

δKα as irrelevant. If yα = 0, we refer to δKα as marginal and higher-order terms in Eqn. A.6 are

required to determine whether or not δKα is marginally relevant or marginally irrelevant.



Appendix B

Global topology of an RG flow

Figure B.1: Renormalization group flow diagram of the 2-dimensional Ising model in the (K1,K2)
subspace (left panel) and (K1,K3) subspace (right panel).

Let us now explore the global topology of an RG flow by examining the Ising model. In

terms of the notation that we have set up in Chapter 2, the fields of the Ising model take values in

φf(n) = φ(n) ∈ {−1,+1} and interact via the action

S[φ] = K1

∑

⟨nm⟩n

φ(n)φ(m) +K2

∑

⟨nm⟩nn

φ(n)φ(m) +K3

∑

n

φ(n) + ..., (B.1)

where ⟨nm⟩n denotes a sum over lattice sites n and nearest-neigbors m, while ⟨nm⟩nn denotes a
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sum over lattice sites n and next-nearest-neighbors m. The interested reader is advised to consult

Refs. [70, 148, 230] for a treatment of constructing RG transformations for the Ising model. In

Fig. B.1, I show the flow diagram of the Ising model in the (K1,K2) subspace with K3 = 0 and

the (K1,K3) subspace with K2 = 0. The green dots in both diagrams represent critical fixed points.

The critical fixed point in the K2 = K3 = 0 subspace represents the famous ferromagnetic phase

transition of the Ising model, and the value of K1 at the fixed point is proportional to the inverse

of the Curie temperature. In the (K1,K2) subspace, the critical fixed point at the center of the

diagram on the right panel of Fig. B.1 possess a critical surface that extends to the critical fixed

points on the K1- and K2-axes. The orange dots represent trivial fixed points, which occur at infinite

temperature, where the system is non-interacting. The purple fixed point in the (K1,K3) subspace

diagram represents what is known as a discontinuity fixed point ; these generally describe first-order

phase transitions and lie on a phase boundary [69, 148, 278]. Finally, the red circles indicate sinks,

which have no relevant directions.
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Tuning the bare gauge coupling to a critical surface

I stated in Sec. 3.4 that the existance of a continuum limit is intimately tied to the existence

of a critical fixed point; we call such fixed point an ultraviolet fixed point. As the correlation length

in units of the lattice spacing depends on the bare gauge coupling g20, one should be able to tune

g20 to a critical surface where the correlation length diverges. Assuming that this relationship is

invertible, one expects the bare gauge coupling to depend on the correlation length and therefore

on the lattice spacing. Close to a critical surface, any physical quantity Q(a) with a well-defined

continuum limit scales with the lattice spacing as [227],

−a2 d

da2
Q(a) =

(
a2

∂

∂a2
− β

(
g20
) ∂

∂g20

)
Q(a) = O

(
(aµ)p ln(aµ)k

)
(C.1)

for some p, k ∈ Z. The O
(
(aµ)p ln(aµ)k

)
terms are called scaling violations. Eqn. C.1 is a lattice

version of the Callan-Symanzik equation and

−a2 d

da2
g20(a) ≡ β

(
g20
)

(C.2)

is the β-function of the bare coupling; it characterizes the dependence of the bare gauge coupling

g20(a) on the lattice spacing a. One can calculate the β-function β
(
g20
)

in the weak bare gauge

coupling limit using perturbation theory [88, 227, 313, 335]. The β-function at two-loop order is

β
(
g20
)
∼ − g40

(4π)2

[
b0 + b1

g20
(4π)2

]
(
g20/4π → 0

)
, (C.3)
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where

3b0 = 11N − 2Nf ,

b1 =
2N(17N − 5Nf)

3
−
(
N2 − 1

)
Nf

N
,

which were already defined in in Chapter 1. In terms of b0, b1, the solution to Eqn. C.2 is

−2 ln(aΛLat.) =
1

b0g20
+
b1
b20

ln
(
b0g

2
0

)
+O

(
g20
)
, (C.4)

where ΛLat. is an dimensionful integration constant known as the lattice Λ-parameter. Eqn. C.4 tells

us that we should take the continuum limit aΛLat. → 0 by tuning g20(a) to zero when N > 2Nf/11.

Note that the above solution is not unique; the form that I have chosen is referred to as the “ln b0”

convention [335].
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Important ideas from statistics

Most modern lattice field theory calculations, including those in this thesis, are done by

running “computer experiments” using Monte Carlo algorithms. As such, making/testing predictions

from lattice data requires using statistical methods. The goal of this appendix is to briefly describe

some of the foundational ideas/methods from statistics that are applied throughout this thesis.

D.1 Estimating observables from Markov chains

Consider a collection of random variables X = {x0, x1, ...} and samples

Xi ∈ S(X) ≡
{
Xj =

(
x
(j)
0 , x

(j)
1 , ...

)∣∣∣1 ≤ j ≤M − 1
}

(D.1)

of X that have been generated from some Markov chain Monte Carlo (MCMC) algorithm. From

S(X), we wish to estimate the mean X and covariance of the mean ΣX (uncertainty) of X. As the

samples Xi are members of a Markov chain, the optimal estimate for the mean is simply

X =
1

M

M−1∑

i=0

Xi. (D.2)

Because the samples in S(X) are not necessarily statistically independent, the standard sample

covariance, defined as

MΣX ≡
1

M − 1

∑

i

(
Xi −Xi

)
⊗
(
Xi −Xi

)
(D.3)
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where “⊗” is the dyadic (tensor) product, underestimates the statistical uncertainty in X. Accounting

for autocorrelation is crucial for properly estimating statistical errors from Markov chain Monte

Carlo data.

D.1.1 Autocorrelation time

The autocorrelation time τ(xk) of some observable xk ∈ X is defined as the average separation

between statistically independent samples x(j)k → x
(j+τ(xk))
k of the Markov chain. The effect of

autocorrelation is to modify the variance

Mσ2k =
1

M − 1

∑

i

(
x
(i)
k − xk

)2
(D.4)

as

σ2k → τ(xk)σ
2
k, (D.5)

thereby reducing M as

Meff. →M/τ(xk). (D.6)

Meff. is referred to as the effective sample size. There are a number of methods for estimating τ(xk);

I will outline two that I utilize regularly.

D.1.1.1 Batch means

One way to estimate τ(xk) is from the effective sample (ESS) size itself. For a sufficiently long

Markov chain, the effective sample size can be estimated reliably from the variance

σ̃2k =
1

Nb − 1

Nb−1∑

j=0

Bj

(
x
(j)
k − xk

)2
(D.7)

of batch means

x
(j)
k ≡

1

Bj

Bj−1∑

i=0

x
(i)
k (D.8)
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over batches of size Bj satisfying

M =

Nb∑

j=0

Bj . (D.9)

From σ̃2k, the effective sample size is

ESSk =
σ2k
σ̃2k
, (D.10)

from which the autocorrelation time is estimated as

τ(xk) ≈
M

ESSk
(D.11)

The asymptotically optimal batch size is Bj = M1/3; for a multivariate definition of the effective

sample size, see Ref. [360]. The ESS method for estimating τ(xk) is particularly useful when more

robust methods are not available or as a crosscheck of other methods.

D.1.1.2 Integrated autocorrelation time

The integrated autocorrelation time

τint.(xk) = 1 + 2

M−1∑

τ=0

Γk(τ)

σ2k
(D.12)

defined in terms of the autocorrelation function

Γk(τ) ≡
1

M − 1

∑

j

(
x
(j)
k − xk

)(
x
(j+τ)
k − xk

)
(D.13)

is an estimator for the autocorrelation time. Note that Γk(0) = σ2k. The noise in the estimate for

τint.(xk) increases with incresing τ . Therefore, the upper bound on the sum in Eqn. D.12 is typically

cut off at some value W that is calculated from an automatic windowing procedure [378]. The

statistical error in τint(xk) can also be directly estimated [378]. A particularly efficient alternative

method for calculating τint.(xk) from Γk(τ) is by fast Fourier transform; see the autocorr module of

Ref. [137] for details.
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D.1.2 Accounting for autocorrelation

From an estimate of the autocorrelation time τ(xk) for xk of interest, the covariance can be

estimated by rescaling the covariance matrix as

[
ΣX
]
kl
→ τ(xk)

1/2
[
ΣX
]
kl
τ(xl)

1/2. (D.14)

Note, however, that Eqn. D.14 is not guaranteed to be positive semi-definite and can introduce a

considerable degree of noise into ΣX . Alternatively, one can simply use the estimate for τ(xk) to

estimate bin size from which ΣX is estimated by binning [142]. Past τ(xk), the statistical error should

stabilize up to finite sample size effects. If no plateau in the statistical error is observed about τ(xk),

then the size M of the dataset is too small to reliably estimate the statistical error. Unfortunately,

binning cannot account for autocorrelation in the full covariance matrix, as each observable has

its own autocorrelation time. Hence, if binning is used to account for autocorrelation for multiple

observables, the bin size should be chosen to be at least as large as the largest autocorrelation time.

D.1.3 Propagation of uncertainties

From the uncertainty of primary observables xk ∈ X, the uncertainty of an observable f(X)

derived from X is easily estimated from the derivative [∂f
(
X
)
/∂xk] and covariance ΣX using

standard Gaussian error propagation

σ2
f
=
∑

kl

∂f
(
X
)

∂xk

[
ΣX
]
kl

∂f
(
X
)

∂xl
. (D.15)

The derivative [∂f
(
X
)
/∂xk] can easily be calculated using automatic differentiation. This opens

the door to automatic error propagation by automatic differentiation, which is implemented in the

beautiful gvar and pyerrors libraries [215, 241].
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D.2 Inference with Bayesian statistics

Throughout this thesis, probability distributions Pr are interpreted as representing the degree

to which a hypothesis taking the form of a model M with model parameters Θ is to be believed.

In other words, probabilities represent beliefs. A hypothesis (model)M is tested by confronting it

with data X. Prior beliefs regardingM and its parameters Θ before being confronted with data are

represented by the joint distribution Pr(M,Θ) (prior). Expectations regarding the data X given the

modelM and its parameters Θ are represented by the conditional joint distribution Pr(X|M,Θ)

(likelihood). Given the prior Pr(M,Θ) and likelihood Pr(X|M,Θ), the marginal likelihood

Pr(X|M) ≡
∫
[dΘ]Pr(X|M,Θ)Pr(M,Θ) (D.16)

represents expectations regarding X given M taking all Θ into consideration. The integration

measure [dΘ] is a multidimensional integration measure over each Θi ∈ Θ. The marginal likelihood

is also referred to as the evidence, and it plays an important role in both model selection when

confronted with competing models and prior selection when an appropriate choice for the prior is

unknown. Expectations regarding Θ given X and M are inferred from the prior, likelihood, and

marginal likelihood according to Bayes’ theorem

Pr(Θ|X,M) =
Pr(X|M,Θ)Pr(M,Θ)

Pr(X|M)
, (D.17)

which follows from elementary properties of conditional distributions [268]. The distribution

Pr(Θ|X,M) is referred to as the posterior.

D.2.1 Principle of maximum entropy

Let X be a collection of random variables. Given the first M central moments of X

µX ≡
{
µ
(1)
X ≡ X,µ

(2)
X ≡ ΣX , ..., µ

(M)
X

}
, (D.18)
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where X = ⟨X⟩ is the mean of X and ΣX is the covariance of X, the distribution Pr
(
X|µX

)
that

maximizes the differential entropy functional

SDE[Pr] ≡ −
∫

[dX] Pr
(
X|µX

)
log Pr

(
X|µX

)
(D.19)

is the best representation of the current state of knowledge about X from the perspective of

information theory [211, 212]. It is interesting to note that the differential entropy is the diagonal

component of the cross entropy entering the Kullback-Liebler divergence [234].

In lattice field theory calculations based on Markov chain Monte Carlo (see Sec. D.1), it is

often the case that one wishes to estimate the parameters Θ of a model M from an estimate of

the mean X and covariance of the mean ΣX that is derived from a finite number of samples for X.

DefiningMi(Θ) to be an estimate for the estimate of xi ∈ X from the modelM, the principle of

maximum entropy suggests that we should model the likelihood in Eqn. D.17 as

Pr(X|M,Θ) = (2π)−|X|/2 det
(
ΣX
)−1/2

exp

[
− 1

2

(
M(Θ)−X

)T
Σ−1
X

(
M(Θ)−X

)]
, (D.20)

where |X| is the size (cardinality) of X, X ≡ (x0, x1, ...) is the collection of xi ∈ X represented as a

vector that is ordered according to the entries of ΣX , and the same is true of the respective model

estimates M(Θ) =
(
M0(Θ),M1(Θ), ...

)
. Suppose also that any prior beliefs (e.g., constraints,

domain-specific knowledge, etc.) C(Θ) about the parameters Θ ofM can be represented by their

mean C (expectation) and covariance of the mean ΣC (uncertainty). Then the principle of maximum

entropy suggests that the prior Pr(M,Θ) should be chosen as

Pr(M,Θ) ≡ (2π)−|C|/2 det
(
ΣC
)−1/2

exp

[
− 1

2

(
C(Θ)− C

)T
Σ−1
C

(
C(Θ)− C

)]
, (D.21)

where |C| is the cardinality of C, C ≡ (C0, C1, ...) is the collection of Ci ∈ C represented as a vector

that is ordered according to the entries of ΣC , and C(Θ) =
(
C0(Θ), C1(Θ), ...

)
is the respective

estimate for the constraints C at a particular value of Θ.
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D.2.2 Maximum a posteriori estimation

The posterior derived from Eqns. D.20-D.21 yields the expected value

⟨Θ⟩ ≡ Θ =

∫
[dΘ] ΘPr(Θ|X,M)

for Θ. However, it is quite often the case that the expected value Θ is difficult to estimate, as it

requires numerically evaluating an integral over all Θ. What is typically done instead is to calculate

the posterior mode Θ∗ of Θ as

Θ∗ ≡ argmax
Θ

[
Pr(Θ|X,M)

]
. (D.22)

If most of the posterior mass of Pr(Θ|X,M) is concentrated about the posterior mode Θ∗, then Θ∗

may be a good estimate for Θ. About the posterior mode Θ∗,

log Pr(Θ|X,M) = log Pr
(
Θ∗∣∣X,M

)
− 1

2

(
Θ−Θ∗)TΣ−1

Θ∗
(
Θ−Θ∗)+O

(
(Θ−Θ∗)3

)
, (D.23)

where
[
Σ−1
Θ∗

]
ij
≡ ∂2 log Pr(Θ|X,M)

∂Θi∂Θj

∣∣∣∣
Θ=Θ∗

(D.24)

is an estimate of the posterior covariance matrix and Θi,Θj ∈ Θ. The approximation of Eqn. D.23 is

referred to as a Laplace approximation. If the O
(
(Θ−Θ∗)3

)
terms in Eqn. D.23 are negligible, then

Pr(Θ|X,M) about Θ∗ is approximately Gaussian and ΣΘ∗ is a good estimate for the covariance.

Note that the estimate for the marginal likelihood Pr(X|M) in Eqn. 6.12 of Chapter 6 is obtained

by directly plugging Eqn. D.23 into the definition of the marginal likelihood (Eqn. D.16) with

O
(
(Θ−Θ∗)3

)
terms dropped.

Unfortunately, real world posterior distributions are not always the nicely-peaked, unimodal

distributions that practitioners of statistical methods dream of in their sleep. For example, the model
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M could possess symmetries that show up in Pr(Θ|X,M) as degenerate extrema1 or Pr(Θ|X,M)

itself could possess a variety steep valleys, flat directions, sharp “cliffs” separating disparate regions

of Θ space, etc. for a variety of reasons. In such cases, all that one can state is that the maximum

a posteriori (MAP) estimate Θ∗ is a probable estimate for Θ∗ with an uncertainty ΣΘ∗ that is

estimated from the local curvature of log Pr(Θ|X,M) about Θ∗. Still, many statistical practitioners,

including the author, will loosely refer Θ∗ as the central value of Θ estimated from fitting M to X.

D.2.3 The augmented χ2

Obtaining the MAP estimate Θ∗ of Eqn. D.22 is typically achieved by minimizing an augmented

χ2 [239], defined as

−2 log Pr(Θ|X,M) ∝ χ2
aug.(Θ) ≡ χ2

data(Θ) + χ2
prior(Θ), (D.25)

where

−2 log Pr(X|M,Θ) ∝
(
M(Θ)−X

)T
Σ−1
X

(
M(Θ)−X

)
≡ χ2

data(Θ) (D.26)

and

−2 log ∝ Pr(M,Θ) ∝
(
C(Θ)− C

)T
Σ−1
C

(
C(Θ)− C

)
≡ χ2

prior(Θ). (D.27)

The factors of log 2π, log Pr(X|M), log detΣX , and log detΣC typically do not enter the χ2 definitions

of Eqns. D.25-D.27 because they do not depend upon Θ. Note, however, that a modified definition

of χ2
aug. is needed if one wishes to implement hierarchical Bayesian modelling. The problem of

estimating Θ∗ is then recast as a problem of finding the Θ that minimizes χ2
aug.(Θ); in other words,

Θ∗ = argmin
Θ

χ2
aug.(Θ). (D.28)

The term “augmented χ2” is a little bit silly, as it refers to idea of augmenting onto the frequentist

χ2 (i.e., χ2
data) an additional term that is meant to constrain Θ (as in the case of ridge regression,

1Sometimes, such symmetries can broken explicitly with priors.
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see Chapter 6). We see now from our short discussion in this appendix that the definition of χ2
aug.

is founded in combining ideas of Bayesian statistics with those of information theory. Chapter 8.2

discusses the optimization of χ2
aug. to obtain Θ∗, along with measures of goodness of fit and model

selection criteria in the context of the open source SwissFit software written by the author.

D.2.4 Bayesian model averaging

The problem of inferring a set of parameters Θ that are common to a collection of competing

modelsM(η) and/or data subsets X(η) ⊆ X is achieved by extending Bayes’ theorem as [202]

Pr(Θ|X) =
∑

η

Pr
(
Θ
∣∣M(η), X(η)

)
Pr
(
M(η)

∣∣X(η)
)
, (D.29)

where the posterior probability Pr
(
M(η)|X(η)

)
is related to the marginal likelihood Pr

(
X(η)

∣∣M(η)
)

according to Bayes’ theorem as

Pr
(
M(η)

∣∣X(η)
)
=

Pr
(
X(η)

∣∣M(η)
)
Pr
(
M(η)

)
∑

σ Pr
(
X(σ)

∣∣M(σ)
)
Pr
(
M(σ)

) . (D.30)

The leading-order, bias-corrected estimate for the posterior probability Pr
(
M(η)

∣∣X(η)
)

about the

MAP estimate Θ∗ has been derived in Ref. [210], yielding

−2 log Pr
(
M(η)

∣∣X(η)
)
= −2 log Pr

(
M(η)

)
+ χ2

aug.

(
Θ∗)+ 2|Θ|+ 2dη + ..., (D.31)

where

dη ≡ |X| −
∣∣X(η)

∣∣. (D.32)

The last three terms in Eqn. D.31 make up the Akaike information criterion (AIC)

AIC ≡ χ2
aug.

(
Θ∗)+ 2|Θ|+ 2dη (D.33)
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Assuming that all modelsM(η) are equally probable before being confronted with data X(η), the

model-averaged posterior mode Θ is

Θ =
∑

η

Θ∗
η Pr

(
M(η)

∣∣X(η)
)
, (D.34)

while the model-averaged posterior covariance ΣΘ is

ΣΘ =
∑

η

ΣΘ∗
η
Pr
(
M(η)

∣∣X(η)
)
+
∑

η

Θ∗
η ⊗Θ∗

η Pr
(
M(η)

∣∣X(η)
)
−Θ⊗Θ, (D.35)

with Pr
(
M(η)

∣∣X(η)
)

given by Eqn. D.31; Θ∗
η the MAP estimate for Θ∗ from model/subset η; Θ∗

η

the corresponding vector of map estimates ordered according to the covariance ΣΘ∗
η

of Θ∗
η; and Θ

the vector of model-averaged MAP estimates (Eqn. D.34). The first term in Eqn. D.35 is merely

the posterior covariance averaged against Pr
(
M(η)

∣∣X(η)
)
, while the latter two terms contribute an

additional uncertainty to ΣΘ from variations in the models/subsets. In other words, if the posterior

probability Pr
(
M(η)

∣∣X(η)
)

is the same for all models/subsets, then the latter two terms in Eqn.

D.35 do not contribute to the total uncertainty.
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Gradient flow equation for the XY model

E.1 Gradient flow equation with an explicit constraint

In this section, I am going to derive a gradient flow equation for the XY model that builds in

some set of constraints. I briefly introduce the XY model as the “∞-state clock model” in Chapter

6.4. First, define the rescaled reduced Hamiltonian H̃(∞)
clock[n] as

H̃(∞)
clock[n] ≡ H

(∞)
clock[n]/K

(∞)
clock = −

∑

x,µ,j

nj(x)nj(x+ µ̂) (E.1)

where x ∈ Λ ⊂ Z× Z, µ, j ∈ {0, 1}, and, according to Eqn. 6.18 in Chapter 6.4,

n(x)2 = 1 ∀x ∈ Λ. (E.2)

To write down a gradient flow equation that respects the constraint of Eqn. E.2, I use the Lagrange

multiplier method. Computing the gradient of the rescaled Hamiltonian with respect to the flowed

spin nit(y) (not yet taking into account the constraint), I get

δ

δnit(y)

∑

x,µ,j

njt (x)n
j
t (x+ µ̂) =

∑

µ

[
ni(y − µ̂) + (y + µ̂)

]
≡ f it (y), (E.3)

where I’ve defined f it (y) as the value of the (negative) gradient for convenience. The gradient flow

equation with a Lagrange multiplier taking into account the constraint will have a constraint force
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of the form
λ(t)

2

δ

δnit(y)

∑

x

(∑

j

njt (x)
2 − 1

)
= λ(t)nit(y),

where the Lagrange multiplier was defined with a factor of 1/2 out front for convenience. We

therefore have the following equations

dnit(y)

dt
= f it (y) + λ(t)nit(y), (E.4)

and
∑

j

njt (y)
dnjt (y)

dt
= 0, (E.5)

where Eqn. E.5 is obtained by differentiating Eqn. E.2 with respect to the gradient flow time t.

Plugging the right hand side of Eqn. E.4 into Eqn. E.5, we obtain λ(t) as

λ(t) = −
∑

j

njt (y)f
j
t (y),

so that the full gradient flow equation is

dnit(y)

dt
= f it (y)− nit(y)

∑

j

njt (y)f
j
t (y) =

∑

j

(
δij − nit(y)njt (y)

)
f jt (y), (E.6)

which is of the same form as the O(N) model gradient flow equations obtained in Refs. [224, 258] by

different methods. Explicitly, we have for the XY model

dnt(y)

dt
=




n1t (y)
2 −n0t (y)n1t (y)

−n0t (y)n1t (y) n0t (y)
2







f0t (y)

f1t (y)



≡Mt(y)ft(y). (E.7)
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E.2 Gradient flow equation with an implicit constraint

Define

zt(y) ≡ n0t (y) + in1t (y) and ft(y) = f0t (y) + if1t (y). (E.8)

Also, just to set up notation, z̄ = z∗ = z†. Then from the explicit form of the gradient flow equation

given by E.7, we have

dzt(y)

dt
= −1

2
zt(y)

2 ¯ft(y) +
1

2
ft(y) =

1

2

(
z̄t(y)ft(y)− zt(y)f̄t(y)

)
zt(y) = iIm

(
z̄t(y)ft(y)

)
zt(y).

This is nice and compact. Let’s write this result down in its final form.

dzt(y)

dt
= iIm

(
z̄t(y)ft(y)

)
zt(y). (E.9)

Now let’s take the GF equation expressed as Eqn. 4.2 and see what we get out of that. First, I have

to write down a quick rule for taking derivatives with respect to U(1) group elements. This rule is

∂yzt(y) ≡ i
d

ds
eiszt(y)

∣∣∣
s=0

δx,y = −zt(y)δx,y. (E.10)

Eqn. E.10 is just a specialization of the natural derivative on Lie groups from the left-invariant

vector field, which I discuss in Chapter 4.1. The derivative satisfies

∂y z̄t(y) = z̄t(y). (E.11)

Now, the U(1) analogue of Eqn. 4.2 reads

dzt(y)

dt
= −∂yH̃(∞)

clock

[
zt, z̄t

]
zt(y), (E.12)
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where the XY Hamiltonian H̃(∞)
clock

[
zt, z̄t

]
is derived from Eqn. E.1 using the reparameterization in

Sec. E.1 as

H̃(∞)
clock

[
zt, z̄t

]
= −ℜ

∑

x,µ

zt(x)z̄t(x+ µ̂). (E.13)

Working the derivative out with our rule from Eqn. E.10, I get

∂yH̃(∞)
clock

[
zt, z̄t

]
= −iIm

∑

µ

z̄t(y)
(
zt(y + µ̂) + zt(y − µ̂)

)
= −iIm

(
z̄t(y)ft(y)

)
,

so that Eqn. 4.2 turns into
dzt(y)

dt
= iIm

(
z̄t(y)ft(y)

)
zt(y). (E.14)

Therefore, we see that these two equations are exactly the same. I have implemented the gradient

flow equation of Eqn. E.14 in the Quantum EXpressions (QEX)-based qex_staghmc library with the

help of the beautiful Arraymancer library in Nim [284, 309].
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Improved actions

Perturbative on-shell (classical) improvement attempts to remove cutoff effects explicitly.

Improvement of the action and the observables derived from the action tend to be intertwined. As

such, if one wishes to implement classical improvment, it is often the case that both the action and

target observables must be considered. In the RG picture of this thesis, namely that of Fig. 3.1 in

Chapter 3.4, classical improvement can be thought of as moving actions that are in the vicinity of

the critical surface closer to the renormalized trajectory. Far away from the critical surface, quantum

effects can kick in and one must consider quantum effects in their improvement programme; see, for

example, the Symanzik effective field theory approach of Ref. [206]. In this appendix, I am going to

describe only the gauge action improvement used in this thesis.

F.1 Lüscher-Weiss (Symanzik) actions

Classical improvement is outlined beautifully in the seminal work of Ref. [251] by Martin

Lüscher and Peter Weisz, though many of the details of classical improvement had been worked out

already by Peter Weisz and Kurt Symanzik [351, 352, 369]. To start, consider that the classical

gauge field Aµ(x) can be approximated arbitrarily well by a link variable Uµ(n) as

iaAµ(an) ∼ logUµ(n) (a→ 0),
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as in Eqn. 3.5 of Chapter 3.1. As such, any gauge-invariant observable O that is also invariant

under the lattice equivalent of rotations and reflections can be expanded asymptotically in the lattice

spacing a as

O ∼
∑

even k>0

akOk (a→ 0), (F.1)

where, schematically,

O2 = 0 (1),

O4 = r
∑

µν

Trc
[
FµνFµν

]
(2),

O6 = r1
∑

µν

Trc
[
DµFµνDµFµν

]
+ r2

∑

µνρ

Trc
[
DµFνρDµFνρ

]
+ r3

∑

µνρ

Trc
[
DµFµρDνFνρ

]

+“contractions over Trc
[
FµνDρFσδ

]′′
(3), (F.2)

with

DρFµν = ∂ρFµν +
[
Aρ,Fµν

]
. (F.3)

Now take

SG
[
Uµ
]
= βb

3∑

l=0

cl
∑

n

∑

Cl

Trc
[
UCl(n)

]
(F.4)

as a generic ansatz for the gauge action and define UCl(n) to be a product l of gauge links Uµ that

form a closed curve Cl. The notation for the ansatz of Eqn. F.4 differs from that of Ref. [251] to

remain consistent with the notation for the Pauli-Villars effective action in Eqn. 5.2 of Chapter 5.2.

The coefficients cl are conventionally normalized as

c0 + 8c1 + 8c2 + 16c3 = 1. (F.5)

Note that cl could depend on g20; however, for the purposes of classical improvement, this does

not matter. By expanding each
∑

Cl TrcUCl(n) term in Eqn. F.4 according to Eqns. F.1-F.2 and
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imposing that all O
(
a2
)

terms vanish, one arrives at the following general constraint for cl

|x| < 1/16,

c0 =
5

3
− 24x,

c1 = −
1

12
+ x,

c2 = 0,

c3 = x, (F.6)

which represents the most general on-shell improved action that one can construct out of Eqn. F.4

[251]. The choice

x = 0 (tree-level Luescher-Weiss)

is computationally the most convenient; hence, it is often referred to as the tree-level improved

Lüscher-Weiss (Symanzik) gauge action, as in Chapters 4 and 8.3.

In Chapter 7, I use different Lüscher-Weiss gauge actions for the gauge flow. Because the goal

there is not classical improvement, it is not necessary to set cl according to Eqn. F.6. Rather, I set

c2 = c3 = 0 (flow action)

and redefine

c0 ≡ cp and c1 ≡ cr (flow action),

which is consistent the constraints imposed by tree-level improvement of the action only when

cr = −1/12. The notation for cp/cr refers to the fact that each C0 in Eqn. F.4 is a plaquette, while

each C1 is a planar rectangle.
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F.2 Mixed fundamental/adjoint action

Though throughout this thesis I have assumed that the gauge links Uµ(n) live in the fundamental

representation of SU(N) by definition, such a restriction is actually not necessary, so long as the gauge

action that is constructed from some non-fundamental representation is in the same universality

class as the fundamental one. In fact, one can even consider mixing representations within the same

action. A natural question, then, is whether using mixed representation actions can reduce lattice

artefacts. In Ref. [164], the mixed action

SG
[
Uµ
]
=
∑

α=F,A

β̃α
dα

∑

n

∑

µ<ν

ℜTrc
[
1− U (α)

µν (n)
]

(F.7)

with fundamental (F ) and adjoint (A) terms was observed to reduce cutoff effects in spectral

measurements of the glueball mass as compared to its pure fundamental (Wilson) counterpart

β̃A < 0. In Eqn. F.7, dα represents is the dimension of the representation, such that

dF = N and dA = N2 − 1. (F.8)

Note that, even though the gauge action has both fundamental and adjoint link variables, we can

work exclusively with the fundamental link variables as a consequence of the identity

Trc
[
U (A)

]
= Trc

[
U (F )

]
Trc
[
U (F )†]− 1, (F.9)

which reproduces dA in Eqn. F.8 on the identity. Since the work of Ref. [164], Eqn. F.7 has become

a fan favorite action in the beyond Standard Model (BSM) physics community. Modern studies

using Eqn. F.7, such as those of Chapters 5 and 7, typically choose

βA/βF = −1/4, (F.10)
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where

βA ≡ β̃F and βA ≡
β̃A

1− 1/N2
. (F.11)

At tree-level, the corresponding “equivalent Wilson bare gauge coupling” is

β = βF
(
1 + 2βA/βF

)
. (F.12)

Though the action of Eqn. F.7 has been used for many decades in the BSM literature, very little has

been done in the way of systematically exploring its cutoff effects in other observables. Nonetheless,

it has been deployed in this thesis for the purposes of remaining consistent with simulations that

were already present and available for use. In future studies, the author would prefer to utilize

improved gauge actions that are better motivated.



Appendix G

Gauge smearing

Broadly speaking, the RG flow diagram of Fig. 3.1 in Chapter 3.4 suggests that there are three

“simple” ways that one can reduce lattice artefacts. One method is to tune g20 closer to the critical

surface (g20 → 0) while keeping all relevant scales l ≫ a fixed. This is just the continuum limit.

Another method is to explicitly cancel off cutoff effects via classical improvement or its extension

including logarithmic corrections that arise from quantum effects. This is the classical improvment

described in Appendix F. The last method is to average out short-distance fluctuations in such

a way that long-distance observables are unaffected by the averaging procedure. This is what an

RG transformation does, and it is in essence what gauge smearing does; it brings the action closer

to the renormalized trajectory by non-perturbatively smoothing out ultraviolet fluctuations. Note

that ideas that underpin smearing are similar, but not strictly equivalent, to those that underpin

so-called perfect actions, which attempt to utilize RG transformations to construct lattice actions

that are so close to the renormalized trajectory that they are devoid of any lattice artefacts [99,

193]. Unfortunately, perfect actions are not practically realizable; see, however, Ref. [204] for some

interesting recent work on constructing perfect actions using machine learning. There are many

kinds of gauge link smearing, and just about every large-scale lattice collaboration hails the gauge

smearing that it uses as “optimal” in some sense. In this appendix, I shall briefly describe only the

two types of gauge link smearing that have been deployed in this thesis.
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G.1 Normalized hypercubic smearing (nHYP)

Every simulation that utilizes staggered fermions in this thesis deploys hypercubic smearing

(nHYP) to smear out the gauge links in the pseudofermion action or the Pauli-Villars action (see

Chapter 8.1) [175, 176]. The basic ingredient of nHYP smearing is the APE smearing, which takes

the form [3]

Uµ(n)→ ProjG

[
(1− α)Uµ(n) +

α

Nstp.
Σµ

]
, (G.1)

where ProjG[U ] is a projection operator that takes U ∈ GL(N) to some group G, Σµ is a local

sum over “staples” (products of three gauge links that are one link away from forming a closed

loop), and Nstp. is the number of staples entering Σµ. Note that PG does not have to project U

back into SU(N). As long as the resulting action is in the same universality class and the new “fat”

link transforms under gauge transformations as Uµ does, all is fine and dandy. nHYP smearing is

constructed from three levels APE smearing that forces all contributing gauge links to exist only

within neighboring hypercubes of the fat link and has

ProjU(N)(U) = U
(
U †U

)−1/2
. (G.2)

Explicitly,

Vµ;νρ = ProjU(N)

[
(1− α1)Uµ(n) +

α1

2

∑

±η ̸=µ,ν,ρ
Uη(n)Uµ(n+ η̂)Uη(n+ µ̂)†

]
(1),

Ṽµ;ν = ProjU(N)

[
(1− α2)Uµ(n) +

α2

4

∑

±ρ̸=µ,ν
Vρ;νµ(n)Vµ;ρν(n+ ρ̂)Vρ;νµ(n+ µ̂)†

]
(2),

Vµ(n) = ProjU(N)

[
(1− α3)Uµ(n) +

α3

6

∑

±ν ̸=µ
Ṽν;µ(n)Ṽµ;ν(n+ ν̂)Ṽν;µ(n+ µ̂)†

]
(3). (G.3)

Because the projection onto U(N) is differentiable, the full collection of smearing steps comprising

the nHYP smearing transformation of Eqn. G.1 can be implemented in HMC. Note that the ordering

on α ≡ (α1, α2, α3) in Eqn. G.1 is the convention in QEX [284], which differs from Ref. [175] by
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an exchange of α1 with α3. Details of calculating the force from the fermion sector when using

nHYP-smeared links can be found in Ref. [175]. The force is heroically implemented in QEX [284].

G.2 Stout smearing

The gradient flow transformation (see Chapter 4.1) is an infinitesimal stout smearing. To see

how, note that the first-order solution to the gradient flow equation for the gauge fields (Eqn. 8.26,

alternatively Eqn. 4.2) by Euler integration is

Uµ(n, t+ ϵ) ≈ exp
[
ϵZµ(n, t)

]
Uµ(n, t) (G.4)

for ϵ≪ 1 (in lattice units). Eqn. G.4 is equivalent to the stout smearing introduced in Ref. [266]

with the identification [227]

ϵ ≡ ρ,

Σµ(n, t) ≡
∑

±ν ̸=µ
Uν(n, t)Uµ(n+ ν̂, t)Uν(n+ µ̂, t)†,

Ωµ(n, t) ≡ Σµ(n, t)Uµ(n, t)† − Uµ(n, t)Σµ(n, t)†,

Zµ(n, t) =
1

2
Ωµ(n, t)−

1

N
Trc
[
Ωµ(n, t)

]
∈ su(N). (G.5)

The staple sum Σµ is the same as we already encountered in Sec. G.1 for APE smearing and nHYP

smearing [3, 175]. Because Zµ(n, t) ∈ su(N), the stout-smeared link stays in SU(N), as is the

case for gradient flowed links. The exponential can be accurately evaluated numerically using the

Cayley-Hamilton theorem. Moreover, the stout smearing transformation is differentiable; as such,

it can be implemented in HMC. See Ref. [266] for details regarding the force from pseudofermion

actions involving stout-smeared links. Note, also, that future implementations of stout smearing

could benefit from a version of automatic differentiation adapted to group derivatives; see the

appendix of Ref. [204] and the beautiful Julia-based Gaugefields.jl library.1 Usually, many levels

1Gaugefields.jl can be found at https://github.com/akio-tomiya/Gaugefields.jl.

https://github.com/akio-tomiya/Gaugefields.jl
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of stout smearing are performed on the gauge links. For example, the simulations of Chapter 8.3 are

performed with six levels of stout smearing with ρ = 0.1.



Appendix H

Symplectic Integrators

QEX, specifically Xiaoyong Jin’s MDevolve,1 uses a symplectic Omelyan integrator with various

options for including higher-order terms, which I shall now describe. Following Ref. [353], let q and

p be generalized coordinates and let f stand for either q or p. Furthermore, define a linear operator

L(H) (with H the Hamiltonian) acting on f via the Poisson bracket as [330, 353]

L(H)f ≡ {f,H} = ḟ . (H.1)

Written explicitly in terms of q or p, Eqn. H.1 gives Hamilton’s equations of motion, with the formal

(approximate) solution

f(t+ δt) ≈ exp
(
δtL(H)

)
f(t). (H.2)

Assuming that L(H) can be decomposed as L(H) = T + V , where T is the kinetic part (involving

only p) and V is the interaction part (involving only q), we have

exp
(
δtL(H)

)
= exp

[
1

2
δtT

]
exp(δtV ) exp

[
1

2
δtT

]
+O

(
δt3
)
≡ G2(∆t) +O

(
δt3
)
. (H.3)

Eqn. H.3 gives the well-known leapfrog (2LF) integrator. The mapping G2(δt) :M→M, where

M is the symplectic manifold that p and q live on, is symplectic and time reversible. Hence, G2(δt)

1MDevolve is available at https://github.com/jxy/MDevolve.

https://github.com/jxy/MDevolve
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may be used to update the fields in an HMC simulation.2

Higher-order integrators G2k+2(δt) may be generated recursively from lower-order integrators

G2k(δt); however, the performance of such integrators may be sub-optimal [353]. An alternative to

the recursive approach, famously explored by Omelyan et al. in Ref. [282], starts by decomposing

exp
(
δtL(H)

)
as

exp
(
δtL(H)

)
=

k∏

i=1

exp
(
ciδtT ) exp

(
diδtV ) +O

(
δtn+1

)
, (H.4)

where ci, di are constrained to obey
∑

i ci =
∑

i di = 1. Time-reversibility imposes additional

constraints on ci and di [353]. For a fixed choice of n (the order of the integrator), the error depends

on the choice of k and additional details regarding the choice of ci and di; in particular, it may be

parameterized by a set of free variables that are constrained to depend on ci, di and k in such a way

that the error is minimized.

A popular choice of integrator, first explored by Omelyan et. al in Ref. [282], is the 2nd-order

minimum-norm (2MN) integrator I2MN(δt) :M→M, defined by

I2MN(δt) ≡ exp
(
λδtT

)
exp

[
1

2
δtV

]
exp

[
(1− 2λ)δtT

]
exp

[
1

2
δtV

]
exp

(
λδtT

)
, (H.5)

where λ is obtained by minimizing the error, resulting in

λ =
1

2
− (2
√
326 + 36)1/3

12
+

1

(6
√
326 + 36)1/3

≈ 0.1931833... (H.6)

The 2MN integrator requires twice as many force evaluations as the 2LF integrator; however, the

error on the 2MN integrator is approximately eleven times smaller, meaning that the total number

integration steps is reduced by a factor of the square root of eleven such that the total computational

cost of the 2MN integrator is approximately half as expensive as the 2LF integrator.

In implementing the 2MN integration, one must make a choice of starting variables (either

first update q, the gauge fields, or p, the momenta). Different choices of starting variables can affect

2Symplecticity and time-reversibility are sufficient to ensure that the molecular dynamics update in an HMC
simulation obeys the detailed balance condition.
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the performance of the integrator; however, the 2MN integrator is typically insensitive to this choice.

We choose to update q (that is, Uµ) first, such that

U (1)
µ (n) = exp

[
δtP(0)

µ (n)
]
U (0)
µ (n), (H.7)

where Pµ is the momentum of the gauge variable. The momentum is then updated as

P(1)
µ (n) = P(0)

µ (n)− δt
∑

f=G,F,PV

F(f)
µ (n), (H.8)

where F
(G)
µ (n) is the force from the gauge fields, F(F)

µ (n) the pseudofermion fields, and F
(PV)
µ (n) the

Pauli-Villars fields (see Chapter 8). The latter sequence of updates is repeated once more with the

addition of a final Uµ update at each step of the trajectory.

Higher-order minimum norm integrators often exhibit a higher degree of sensitivity to the

starting variables. Therefore, higher-order integrators are typically differentiated by their starting

variables (ending with “FP” if the U update is done first and “FV” if the P update is done first) and

number of force evaluations. For example, the fourth-order minimum norm integrator starting with

the Uµ update and being composed of five force updates is given the name “4MN5FP”. I shall not

delve further into these higher-order integration schemes. Nonetheless, I have included options in

qex_staghmc based off of the example codes contained in QEX to utilize these higher-order integrators

as the user desires.

H.1 Tuning the 2MN integrator

In this subsection, I follow Ref. [353]. Take a unit time trajectory. If we split such a trajectory

into N steps, such that δt = 1/N , then the error in the Hamiltonian produced by an nth-order

integrator is O
(
δtn
)
. That is, δH ∼ δtn. From Creutz’s equality ⟨exp(δH)⟩ = 1 (or Jansen’s

inequality) [87],

⟨δH⟩ = 1

2

〈
δH2

〉
+O

(
δH3

)
∼ CnV δt2n, (H.9)
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where Cn is a coefficient that depends upon the order of the integrator and details of the Hamiltonian

and V is the volume of the simulation. The acceptance ⟨Pacc.⟩ of an HMC algorithm in a sufficiently

large volume is given by

⟨Pacc.⟩ ≈︸︷︷︸
V/a4≫1

erfc

[
1

8

〈
δH2

〉1/2
]
≈︸︷︷︸

⟨δH2⟩≪1

exp

[
− 1√

2π

〈
δH2

〉1/2
]
. (H.10)

By considering the work per accepted trajectory, the optimal acceptance turns out to be dependent

only upon the order n of the integrator, such that

⟨Pacc.⟩ ∼ exp(−1/n), (H.11)

which yields an optimal acceptance of ∼ 61% for the 2MN integrator. In practice, we do not typically

concern ourselves if the acceptance is ∼ 80%− 95%, as it does not affect the simulation and merely

indicates that our simulations are not being performed as efficiently as they could be. Simulations

monitoring
〈
δH2

〉
tend to find that the optimal λ from Eqn. H.6 is slightly higher than ∼ 0.193

[353]. More information about tuning the HMC integrators can be found in Refs. [61, 83].



Appendix I

Conjugate gradient

Multiple stages of a single Hamiltonian Monte Carlo step require the solution to the Dirac

equation, with

Dφ = ϕ. (I.1)

In Sec. 8.1.1, I discussed the even/odd preconditioning procedure, which cuts the size of the inversion

problem down considerably. In this appendix, I shall gather the algorithmic details of the inversion

process together.

Let us begin by describing the beautiful method by which the solution x to the generic linear

system of equations of the form

Ax = b (I.2)

may be acquired, assuming A : CN → CN is a Hermitian (and positive-definite) linear operator and

x, b ∈ CN (as implicitly stated in the definition of A). Solving Eqn. I.2 is equivalent to finding the

unique minimum of the functional f : CN → C defined by

f(x) ≡ ⟨x,Ax⟩ − ⟨x, b⟩, (I.3)

where ⟨·, ·⟩ : CN × CN → R is the familiar Hermitian inner product on CN defined by

⟨y, z⟩ ≡ y†z, (I.4)
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for any x, y, z ∈ CN . Furthermore, the solution x may be decomposed into a basis {pk} as

x =

N−1∑

k=0

αkpk, (I.5)

which, by imposing the orthogonality constraint

⟨pi, Apj⟩ = 0 for any i ̸= j, (I.6)

further allows the αk coefficients to be easily solved for using Eqn. I.2.1 With some preliminary

details out of the way, I am able to state the overarching goal of the conjugate gradient method.

The conjugate gradient method for finding the solution x to the linear system of Eqn. I.2 consists of

iteratively finding the minimum of the functional defined by Eqn. I.3 by updating the solution x

expressed in the basis {pk} defined by the constraint of Eqn. I.6 in order of decreasing significance.

What I mean by “order of decreasing significance” is that the error (which we must quantify) of the

solution projected onto the subspace defined by the basis {pk}J ≡ {pk|k < J − 1 and J < N} is

smaller in magnitude than the error of the solution projected onto the subspace defined by the basis

{pk}K if J > K. That is, as we update the solution x with more αkpk (subject to the constraint of

Eqn. I.6), the approximation error decreases.

Now that we have an idea of the objective of conjugate gradient, let’s fill in the details of its

execution. Assume first that we have some initial guess for the solution x0 and define the residual

r(x0) as

r(x0) ≡ b−Ax0 = A(x− x0). (I.7)

The magnitude of the residual quantifies the error in x0, since, roughly, |r(x0)| ∼ |x− x0|. We can

update our guess x0 to a more accurate estimate x1 of x by following the gradient of the functional

1In the jargon of the literature, the vectors pi, pj ∈ CN for i, j ≤ N − 1 are said to be conjugate to one another
with respect to A if they satisfy the orthogonality constraint of Eqn. I.6.
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defined in Eqn. I.3, such that

x1 = x0 − α0∇f(x)
∣∣
x=x0

= x0 + α1r(x0) ≡ x0 + α0p0.

At this point, the coefficient α0 is a free parameter. We can constrain it completely simply by

minimizing f(x1); that is, by imposing

∂

∂α0
f(x1) = 0,

which yields

α0 =
⟨r0, p0⟩
⟨p0, Ap0⟩

.

With α0 completely determined by known quantities, we can then further update the residual

r(x1) = r0 −Ax1 = r0 − α0Ap0.

To summarize the first step, we started out with an initial guess x0. Due to the equivalence of

solving the linear system defined by Eqn. I.2 and minimizing the functional defined in Eqn. I.3, we

were able to update our guess by following the gradient of f and enforcing that our new solution x1

is as close to the minimum of f as is possible. This process gives the following set of updates

p0 ≡ r(x0) (I.8)

α0 =
⟨r0, p0⟩
⟨p0, Ap0⟩

=
⟨r0, r0⟩
⟨p0, Ap0⟩

(I.9)

x0 → x1 = x0 + α0p0 (I.10)

r(x0)→ r(x1) = r(x0)− α0Ap0. (I.11)

The next update will essentially follow the same sequence of updates; however, at this point (and in
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subsequent steps), we must now satisfy the constraint imposed by Eqn. I.6. Taking

pn = rn+1 + βnpn

as an initially mysterious ansatz [98], Eqn. I.6 is satisfied if, in all subsequent updates,

βn =
⟨rn+1, rn+1⟩
⟨rn, rn⟩

.

One can then repeat the procedure leading to α0 in the first step to get αn in all subsequent steps

using rn = b−Axn for the residual and pn from the previous update. The solution is updated in

exactly the same fashion as in the first step, and the same is true for the residual.

To summarize, once we have updated our initial guess x0 to x1, all subsequent solutions xn

are obtained via the following chain of updates [98]

βn =
⟨rn+1, rn+1⟩
⟨rn, rn⟩

(I.12)

pn → pn+1 = rn+1 + βnpn (I.13)

αn =
⟨rn, rn⟩
⟨pn, Apn⟩

(I.14)

xn → xn+1 = xn + αnpn (I.15)

r(xn)→ r(xn+1) = r(xn)− αnApn. (I.16)

As n increases, each αnpn contributes less to xn+1, since each pn is constructed out of the residual

rn of the previous step. The latter sequence of updates is repeated until

δ(xn) ≡ ⟨x− xn, x− xn⟩A ≡ ⟨x− xn, r(xn)⟩ (I.17)

reaches some desired precision, at which point the updating procedure is terminated and the solution

xn+1 is returned. Note that, because A is positive-definite, so is δ(xn). Moreover, because A is
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Hermitian,

δ(xn) = ⟨A−1r(xn), r(xn)⟩ ∼︸︷︷︸
roughly

⟨r(xn), r(xn)⟩. (I.18)

Strictly speaking, δ(xn) determines the size of the approximation error; however, because A−1 is

constant, Eqn. I.18 implies that one can also use the norm of the residual, as one might have guessed

intuitively. In practice, it is the norm of the residual |r(xn)| that is often used to set the precision of

the conjugate gradient solve.



Appendix J

Monte Carlo algorithms for spin systems

In Chapter 6, I explore various spin systems for the purposes of testing out the neural-network-

based finite size scaling method of that chapter. The data for the spin systems of that chapter is

generated from Markov Chain Monte Carlo algorithms that work especially well for classical spin

systems. This appendix briefly summarizes the two Monte Carlo algorithms used in that chapter.

J.1 The cluster algorithm

Cluster algorithms have been around for some time now. The first widely-used cluster algorithm

was the Swendsen-Wang algorithm, which updates configurations by finding many clusters of spins

and flipping them [348]. The Wolff cluster algorithm that is applied to the 2-/3-state Potts model

and the 4-state clock model in Chapter 6 works similarly; however, instead of grabbing multiple

clusters, it grabs one big cluster and flips it [377]. Take the reduced Hamiltonian of the spin system

under consideration to be

H = −K
∑

⟨ij⟩

si · sj , (J.1)

where ⟨ij⟩ denotes a sum over all sites and their nearest neighbors j. All of the Hamiltonians in

Chapter 6 can be written as Eqn. J.1, even if the spin degrees of freedom are discrete. The first step

of each iteration of the Wolff cluster algorithm is to pick a random site i and a random direction n̂,

then flip si along n̂ as

si → si − 2
(
si · n̂

)
n̂. (J.2)
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With si flipped, a cluster is constructed recursively by visiting all neighboring sites, flipping them

along n̂ with some probability, then visiting the neighbors of the flipped site until there are no more

sites to update. The probability of flipping a neighboring site j is

α = 1− exp
[
min

(
0, 2K(si · n̂)(sj · n̂)

)]
. (J.3)

These steps are repeated until the desired precision is met. Because cluster algorithms flip entire

clusters of spins, they suffer far less from critical slowing down than local update algorithms do.

Hence, cluster algorithms are to this day considered the state-of-the-art when it comes to simulating

spin systems close to criticality.

J.2 Heatbath algorithms

Heatbath algorithms operate by selecting individual spins, flipping them, then accepting the

new spin-flipped configuration with probability α = (1 + exp(−δH))−1. Note that this is different

than the standard Metropolis-Hastings update, which has a different acceptance probability. As

the updates are local, heatbath algorithms tend to be inefficient within the vicinity of a 2nd-order

phase transition without the help of additional overrelaxation. The heatbath algorithm is utilized to

simulate the XY model in Chapter 6 for historical reasons that are discussed in that chapter. For

the XY model, it is much more optimal to utilize the cluster algorithm discussed in Chapter J.1.
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