Application of contemporary renormalization group

techniques to strongly-coupled field theories

by
Curtis Taylor Peterson
B.S., Arizona State University, 2019

M.S., University of Colorado Boulder, 2022

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Physics

2024

Committee Members:
Anna Hasenfratz, Chair
Ethan Neil

Thomas DeGrand

John Bohn

Markus Pflaum



i
Peterson, Curtis Taylor (Ph.D., Physics)
Application of contemporary renormalization group techniques to strongly-coupled field theories

Thesis directed by Professor Anna Hasenfratz

I explore the infrared properties of massless SU(3) gauge-fermion systems with Ny = 0, 8, and
12 Dirac fermions in the fundamental representation of SU(3) using non-perturbative Wilsonian
renormalization group (RG) techniques. From an infinite volume massless RG scheme based upon the
gradient flow transformation, I calculate the non-perturbative RG S-function for all three systems. I
verify my determination of the RG S-function by calculating the A-parameter of the Ny = 0 system
and the leading irrelevant critical exponent at the infrared fixed point of the Ny = 12 system; both
are in reasonable agreement with the literature. The Ny = 8 S-function exhibits tantalizing signs of
upward curvature, which could indicate that the Ny = 8 system is either infrared conformal or slowly
walking. Additionally, I develop a finite size scaling method based on radial basis function neural
networks. This method is tested on the finite-temperature phase transition of various two-dimensional
classical spin systems. It is then applied to a potential quantum (zero-temperature) phase transition
that the Ny = 8 appears to undergo in transiting from a weakly-coupled conformal phase to a

strongly-coupled symmetric mass generation phase.
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number of connections between the input nodes (green circles on left; a.k.a., input
features) and hidden nodes (blue circles). The number of weights is equal to the
number of connections between the hidden nodes and output nodes (green circles on
right; a.k.a., output features). . . . . . ...
From Ref. [292]. Example of an interpolation over the marginal likelihood in Eqn.
6.12 with a cubic spline (red line). Each black circle represents the marginal likelihood
calculated from a curve collapse fit of the 2-state Potts model Binder cumulant at
a particular value of A. The minimum of the surrogate spline A* is the value for A
suggested by the empirical Bayes procedure. . . . . . . . ... ...
From Ref. [292]. BFN-based curve collapse analysis of the 2-state Potts (Ising) model
using the Binder cumulant U, ZJE?I:)’otts (top panel) and the magnetic susceptibility ngtts
(bottom panel). The curve collapse uses Ny = 64 (pink), 96 (blue), 128 (purple), and
256 (red) volumes in the coupling range 0.87 < Kgo)tts < 0.90. Data used in the curve
collapse are marked with an open x (fit data); otherwise, they are marked with an
open o (other data). The scaling function Fp predicted by the RBFN is plotted as a
grey band. The width of the band corresponds to the predicted error. The RBFN in
the top panel has two nodes in its hidden layer and the RBFN in the bottom panel

has three. . . . . .
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6.4

6.5

From Ref. [292]. RBFN-based curve collapse analysis of the 3-state Potts model using

the Binder cumulant U (3) (3)

A Potts (top panel) and order parameter susceptibility xpo

(bottom panel). The curve collapse uses Ny = 64 (pink), 96 (blue), 128 (purple),

196 (tan), 256 (red), and 512 (cyan) volumes for Uﬁzotts and Ny = 128,196, 256,
(3) (

Potts (same scheme as U ). The K

A Potts Potts values used in

and 512 volumes for x

< 1.018 for U(3) and

: 3)
both curve collapse analyses are in the range 1.005 < K A Potts

Potts

1.005 < K&

Potts = 1.026 for X(g) Data used in the curve collapse are marked with

Potts*

an open X (fit data); otherwise, they are marked with an open o (other data). The
scaling function Fp predicted by the RBFN is plotted as a grey band. The width
of the band corresponds to the predicted error. The RBFN in both panels has two
nodes in its hidden layer. . . . . . . . . . .. ..
From Ref. [292]. RBFN-based curve collapse of the 4-state clock model using the

Binder cumulant U, flc)lock (top panel) and connected magnetic susceptibility xfﬂck

(bottom panel). The curve collapse uses Ny = 96 (blue), 128 (purple), 196 (tan),
256 (red). The K c(ﬁ))ck values used in the curve collapse of U, ii)lock are in the range

0.870 < K, < 0.893 and the K\, values used for 1), are in the range 0.870 <

clock

K SLO) o < 0.885. Data used in the curve collapse is marked with an open x (fit data);
otherwise, it is marked with an open o (other data). The scaling function Fp predicted
by the RBFN is plotted as a grey band. The width of the band corresponds to the

predicted error. The RBFN in both panels has three nodes in its hidden layer. . . . .
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6.6

6.7

6.8

From Ref. [292]. RBFN-based curve collapse analysis of the co-state clock (XY) model
using the Binder cumulant Uiﬁi o (top panel) and connected magnetic susceptibility
ngjc)k (bottom panel). The curve collapse uses Ny = 128 (purple), 196 (tan), 256
(red), 320 (yellow), and 512 (cyan). The K values used for both curve collapse

clock

analyses between 1.005/1.0 for U, , /x(o) and 1.1, 1.1, 1.102, 1.102, and 1.105 for
Ng =128, 320,256,160 and 512, respectively for both observables. Data used in the
curve collapse is marked with an open x (fit data); otherwise, it is marked with an
open o (other data). The scaling function Fo predicted by the RBFN is plotted as a
grey band. The width of the band corresponds to the predicted error. The RBFN in
both panels has two nodes in its hidden layer. . . . . . . .. ... .. ... ... ...
From Ref. [292|. RBFN-based interpolation of the helicity modulus T(K(Sl?c)kv Ny)
for the oco-state clock (XY) model at fixed Ng. Data included in fit is shown as an
errorbar with an open “x” marker. RBFN-based interpolation is shown as a colored
band. Interpolation performed on Ny = 128 (purple), 160 (dark green), 256 (red), 320
(yellow), and 512 (cyan). The RBFN-based fits are shown as a colored bands, with
the width of the band indicating the error. The color of each band indicates the Ny
at which the fit was performed. The helicity modulus at K C(ﬁ)oc)k -(Ns) given by Eqn.
6.29 is indicated by a dotted black line. The RBFN has 2 nodes in its hidden layer. .
From Ref. [292]. Extrapolation of the pseudocritical temperature C(i)oc)k7c(N s) calcu-
lated from the intersection of our RBFN-based interpolation (colored bands in Fig.
6.7) with the universal jump condition (dotted line in Fig. 6.7) to 1/Ns — 0 using
Eqn. 6.30. The pseudocritical temperatures are indicated by multi-colored errorbars
with open diamond markers “¢” and utilize the same color scheme as Fig. 6.7 for

different N (see caption). Result of fit to Eqn. 6.30 is shown as a grey band and the

central value of the fit prediction is shown as a dotted black line. . . . . . . ... ..
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7.1

7.2

7.3

7.4

7.5

The gradient flow coupling g&r (¢ L,g3) at 8t/a? = (cL/a)? (¢ = 0.45) for each
By = 6/9(2) at fixed 16 < L/a < 40. The coupling on each volume is indicated by
multicolored error bars. See legend for color coding. . . . . ... ... ... ... ..
2nd-order curve collapse (Eqn. 7.3) for g2 at ¢ = 0.45. Scaling function normalized by
N = 12872/(3N? — 3) for visualization purposes. Prediction from RBFN indicated
by a gold band with the width of the band indicating the error. Data entering the
curve collapse indicated bu multicolored error bars for L/a = 16 (blue), 20 (orange),
24 (green), 32 (purple). Percent on RBFN label indicates the p-value of the fit.
oo-order curve collapse (Eqn. 7.4) for g2 at ¢ = 0.45 with fixed v = 1/2 (top panel)
and v = 1 (bottom panel). Scaling function normalized by N = 12872/(3N? — 3)
for visualization purposes. Prediction from RBFN indicated by a gold band with the
width of the band indicating the error. Data entering the curve collapse indicated
bu multicolored error bars for L/a = 16 (blue), 20 (orange), 24 (green), 32 (purple).
Percent on RBFN label indicates the p-value of the fit. . . . . .. .. ... ... ...
Example of infinite volume extrapolation of g2 (t; L, g%) (left panels) and Bgp (t; L, gg)
(right panels) for P11W (WW in previous chapters) flow/operator combination at
By = 8.85 (top panels), 9.00 (middle panels), and 9.90 (bottom panels). Extrapolation
shown at only ¢/a? = 5.0 (red) and 6.5 (purple) for visualization purposes. . . . . . .
Example of infinite volume extrapolation of géF (t; L, gg) (left panels) and Bgr (t; L, g%)
(right panels) for PI6W flow/operator combination at 8, = 8.85 (top panels), 9.00
(middle panels), and 9.90 (bottom panels). Extrapolation shown at only t/a? = 5.0

(red) and 6.5 (purple) for visualization purposes. . . . . . .. ... ... ... ...
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7.6

7.7

7.8

7.9

Example of interpolation of Sgp (t; g%) in géF (t; gg) for P11W (WW, top left), P23W
(top right), P13W (bottom left), and P16W (bottom right). Result of interpolation
indicated by multicolored bands at fixed t/a? = 5.0 (red), 5.5 (green), 6.0 (cyan), and
6.5 (purple). Data entering interpolation indicated by multicolored error bars with
corresponding colors for each t/a?. Interpolation juxtaposed against 1- (dashed), 2-

(dotted), and 3-loop (dashed-dotted) continuum S-function from perturbation theory

Example of interpolation of Sgp (t; g%) in géF (t; g(Q]) for P11C (WC, top left), P23C
(top right), P13C (bottom left), and P16C (bottom right). Result of interpolation
indicated by multicolored bands at fixed t/a? = 5.0 (red), 5.5 (green), 6.0 (cyan), and
6.5 (purple). Data entering interpolation indicated by multicolored error bars with
corresponding colors for each t/a?. Interpolation juxtaposed against 1- (dashed), 2-

(dotted), and 3-loop (dashed-dotted) continuum S-function from perturbation theory

Sample of continuum extrapolation for W (left panel) and C (right panel) operator at
fixed g&p = 6.0 (teal), 10.0 (orange), and 22.0 (magenta). Different flows indicated
by different symbols: P11 (circle), P23 (box), P13 (diamond), and P16 (x). Data
entering continuum extrapolation indicated by filled symbols and data not entering
continuum extrapolation are open. . . . . . .. ...
Continuum N¢ = 8 S-function from W (top panel) and C (bottom panel) operators for
each flow: C11 (blue), C23 (orange), C13 (green), and C16 (red). Width of band for
continuum S-function indicates the error. Juxtaposed against continuum prediction
from domain wall simulations using the same RG scheme [192] and 1- (dashed), 2-

(dotted), and 3-loop (dashed-dotted) continuum [-function from perturbation theory
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8.1

8.2

8.3

8.4

8.5

(Top left panel) Comparison of plaquette from gex_staghmc (teal) against KS_nHYP_FS
(QEX, magenta) for (amy,ampy) = (0.0,0.75) with (L/a, Npy) = (24,32) and 8.8 <
By < 9.9. (Top right panel) comparison of gex_staghmc with smearing parameters
a = (0.4,0.5,0.5) (magenta) against gex_staghmc with smearing parameters o =
(0.5,0.5,0.4) (maroon) and KS_nHYP_FS (MILC, cyan) for (L/a,amys, ampy, Npy) =
(8,0.0,0.75,32) and S, = 11.0. (Bottom left panel) Comparison of pure gauge against
(L/a, N¢, Npy,amg,ampy) = (8,8,8,0.5,0.5), both using qex_staghmc. (Bottom
right panel) Comparison of (Npy,amy) = (0,0.0) against (Npy,amys) = (32,0.0)
with ampy € {0.5,1.0,2.0,5.0} and (L/a, Nt) = (8,8), both using qex_staghmc.

Strong scaling plot gex_staghmc’s performance (normalized to the first data point) as

XXiv

. 174

a function of the number of computing cores on Fermilab’s Cascade Lake cluster (LQ1).175

Pseudoscalar mass anomalous dimension 7, (t, :2“4;L,gg) at fixed (L/a, Nt,Bp) =
(24,10,4.2) and 1.5 < t/a? < 5.0 (blue to red) against &4. . . . . . . ... ... ...
Sample of infinite volume extrapolation of gy (t; L, gg) (left panel) and mass pseu-
doscalar anomalous dimension v, (t, 43 L, gg) at fixed (L/a, Nt, By) = (24,10, 4.2) and
1.5 < t/a? < 5.0 (blue to red). Extrapolation indicated by multicolored bands with
the width of the band indicating the error and data entering interpolation indicated
by corresponding multicolored error bar. . . . . .. ... ..o
Sample of quadratic interpolation of pseudoscalar anomalous dimension -, (t, T4; gg) in
gradient flow coupling g&p (t,ﬁz;;g%) at fixed (Ng,#4) = (10,23) and 1.5 < t/a? < 5.0.
Interpolation indicated by multicolored bands with the width of the band indicating
the error and data entering interpolation indicated by corresponding multicolored
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8.6

8.7

B.1

Continuum extrapolation (left panels) and final continuum result (right panels) for
pseudoscalar (top panels), tensor (middle panels), and proton (bottom panels). Left
panels show multiple fixed 2.0 < géF < 9.0 (red to purple). Right panels show the final
result from multiple Z4 (see color bar on right). Continuum prediction for pseudoscalar
juxtaposed against 1-, 2-; and 3-loop perturbative mass anomalous dimension from
Ref. [23]. Tensor and proton are only compared against their corresponding 1-loop
perturbative results. . . . . . ... L
Continuum prediction for the pseudoscalar (pink), tensor (maroon), and proton (dark
yellow) operator anomalous dimension. Pseudoscalar juxtaposed against 1- and 2-loop
mass anomalous dimension from Ref. [23]. Tensor and proton are only compared

against their corresponding 1-loop perturbative results. . . . . . . . . ... ... ...

Renormalization group flow diagram of the 2-dimensional Ising model in the (K7, K5)

subspace (left panel) and (K, K3) subspace (right panel). . . . ... ... ... ...
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Chapter 1

Introduction

Renormalization is a practice which used to be widely regarded as
distasteful, and so was largely done in the privacy of one’s own

home. That has all changed.

C. P. BURGESs [59]

Our modern understanding of quantum field theories (QFTs), be it effective or fundamental,
rests upon the bedrock ideas of renormalization. This is especially true for SU(N) gauge-fermion
systems, which are often so strongly coupled at low energies that non-perturbative renormalization
techniques are one of the only means by which one can hope to understand their low-energy properties.
The primary objective of this thesis is to explore various aspects of SU(3) gauge-fermion systems with
Ny fermions in the fundamental representation of SU(3) using non-perturbative renormalization group
techniques that have been developed roughly over the past decade. This journey will take us through
a variety of interesting topics, such as the physics of confinement, conformal systems, Standard Model
physics (and beyond), quantum/classical phase transitions, symmetric mass generation, spin models,
machine learning, optimization algorithms, Bayesian statistics/methods, Monte Carlo algorithms,

high-performance computing, and much more, so sit back, relax, and enjoy the ride.



1.1 Gauge-fermion systems and renormalization

The classical Minkowski space action of a four-dimensional massless SU(N) gauge-fermion

system with Ny fermions in the fundamental representation of SU(N) is

N

1 _
S[2,, W, 7] = / d“x[— 52 e (B (2)8" ()] + Y 0@, (1.1)
0 =0
where
Dy Eiy”@u—méf) (1.2)
with Dirac matrix v* and
D, =0, — iUy, (x) (1.3)

the gauge covariant derivative. The non-Abelian vector potential 2, (x) € su(N) enters the field
strength tensor §,.,(x) as

Fuw(x) =i[D,,D,] € su(N). (1.4)

For the purpose of brevity, I shall refer to such systems as gauge-fermion systems. The méf )
parameters are the “bare mass”. The fermion field U(Y)(z) of “Aavor” f is Grassmann-valued
and transforms under the fundamental representation of SU(N); likewise, @(f)(x) = UlH)(z)T40.
Furthermore, “Tr.” denotes a trace over the “color indices” of either elements of SU(N) or its Lie
algebra su(N). For now, the bare gauge coupling g% is just a dimensionless parameter. In the
quantized system on a (Euclidean) hypercubic lattice, gg controls the lattice spacing and hence
the continuum limit. Quantization of the gauge-fermion system defined by Eqn. 1.1 proceeds

schematically by defining the Minkowski space path integral

ZE/[dQlud\IJd\Il~-] exp (iS[Ay, U, 7, ...]), (1.5)



where [dQlud\Ifd@- . ] is a formal “measure” (not actually a measure) that leaves room for additional
unphysical “ghost” fields in § [Qlu,@, v, ] that take care of ambiguities in the path integral arising
from gauge freedom.

Essentially all of the difficulties pertaining to understanding the quantum properties of gauge-
fermion systems arise from Eqn. 1.5. Perhaps the most egregious sin of Eqn. 1.5 is that the integral
itself is not well-defined as it stands. In essence, the purpose of renormalization is to give expressions
like Eqn. 1.5 meaning. In the early days of quantum field theory (roughly, 1930s-1950s), issues with
the definition of quantum field theories (QFTs) like that of Eqn. 1.5, quantum electrodynamics (QED),
revealed themselves through divergences that appear in perturbative expansions of observables at
next-to-leading-order in the bare gauge coupling gg. Due in large to the work of Richard Feynman,
Julian Schwinger, Freeman Dyson, and Sin-Itiro Tomonaga in the 1950s, it became apparent that
divergences appearing in perturbative calculations of QED observables could be removed by the

procedure of renormalization as follows.

(1) Introduce a cutoff A in fluctuations of the QFT.

(2) Redefine (renormalize) the couplings {g%,m((]f)} — {gQ,m(f)} in Eqn. 1.1 by defining

{92, m(f)} in terms physical observables {O1, Oq, ...}.

3) Take the A — oo limit wit m xed.
(3) Take the A 1 h {g?,mD} fixed

The latter three step procedure not only removed divergences from observables in QED, it also
opened the door to performing calculations of the Lamb shift and anomalous magnetic moment of
the electron with unprecedented accuracy. At about the same time, Murray Gell-Mann and Francis
Low noted that the renormalized coupling ¢%(y) in a massless (m'Y) = 0) renormalization scheme
can be expressed in terms of a renormalization scale p? [143]. The running of g?(u) with p? was
later characterized in the 1970s by Curtis Callan and Kurt Symanzik in terms of the renormalization

group (RG) B-function 5(92) as [65, 349]

i 5(s). (16)



Almost in parallel with the work of Callan and Symanzik, Kenneth Wilson reformulated the
renormalization procedure in terms of Leo Kadanoff’s block spin transformation [216], for which
Wilson won the Nobel prize [372-374].

According to the perspective of Wilsonian RG, a continuum quantum field theory defined at
a scale y and parameterized by the renormalized coupling g?(j) is obtained from a sequence of
effective field theories (EFT) that approach the continuum QFT in the A — oo limit at fixed p
(equivalently, fixed ¢%(p)). Each EFT comes with its own cutoff A > y and is hence well-defined,
at least in the eyes of the common physicist. In the parlance of high-energy physics, each EFT
is said to be “defined at the scale A”, meaning that the EFT is unable to describe physics that
occurs at scales > A. Each EFT can be made to better approximate its corresponding continuum
QFT by integrating out fluctuations (degrees of freedom) between p and A while imposing that the
integration procedure does not disturb physical properties of the EFT at scales < p. This is achieved
by performing a series of renormalization group transformations on the EFT, which are discussed
at length in Chapter 2. Performing the same procedure for a continuous sequence of EFTs defined
at A approaching infinity, the continuum QFT defined at u is reached. Alternatively, one need not
even take a continuum limit in the first place, as each EFT is a well-defined approximation of a
continuum QFT that exists up in the high heavens. So long as a sufficiently low p can be reached
from the EFT, it can be used to probe the low-energy properties of the continuum QFT with a
systematic error that goes as (u/A)Plog(u/A)? for some p,q € Z at leading order. The modern view
of the Standard Model is that it is such an EFT; however, whether or not the Standard Model EFT

(SMEFT) has a well-defined continuum limit is up for debate.

1.1.1 The zero-temperature phase diagram

Bringing ourselves back down to the task at hand, Wilsonian RG, and the many decades
of research that lead up to it, tells us how to access the low-energy properties of the quantized
gauge-fermion system defined by Eqns. 1.1-1.5 from a sequence of RG transformations and continuum

A — oo limits. Given an RG transformation, the renormalized coupling g?(u) defined by the RG



transformation characterizes the scale-dependent behavior of the continuum gauge-fermion system.
The B-function for ¢g2(u) can be calculated in renormalized perturbation theory. Famously, the 1-loop

[B-function
4

2 g
~ —b _—
5(9 ) 0 ( 477)2
was first calculated in 1974 by David Gross and Frank Wilczek, along with David Politzer indepen-

dently, which earned all three of them the Nobel prize [154, 155, 301].! The 1-loop coefficient
1
bo =< (11N - 2Nf) (1.7)

is greater than zero when Ny < 11N/2, which implies that the renormalized coupling g — 0 when
 — o0; in other words, the system is weakly interacting a high energies (short distances). The
latter property is referred to as asymptotic freedom. The two-loop perturbative S-function for the
gauge-fermion system defined by Eqn. 1.1 with m(()f ) = 0 was calculated by William Caswell in 1974

[75], yielding

4 2
5(92) ~ — (49 )2 bo + blMQTr)Q] (g2/47T — 0), (1.8)
where
_ 2N(17N —5N;) (N2 —1)N;
b = 3 — N . (1.9)

In a massless RG scheme, the by and by coeflicients are universal, meaning that they are independent
of the RG transformation (or scheme) used to calculate them. RG scheme dependence in the
perturbative RG p-function enters at 3-loops and beyond. In what follows, I am going to focus on

the massless N = 3 case unless stated otherwise.

1.1.1.1 The quantum electrodynamics-like phase

According to the 2-loop S-function, massless SU(3) gauge-fermion systems lose asymptotic

freedom at N =~ 16.5. In other words, the system exists in a quantum electrodynamics (QED-like)

!Supposedly, Gerard 't Hooft had discovered asymptotic freedom a year before, but never published the result [1].



phase with a positive B-function when ¢%/4r < 1 for Ny > N¢. In Chapter 3.4, we will learn that
the existence of a repulsive fized point (3 (gf) = 0) in the RG flow dictated by the S-function implies
that a continuum limit from a collection of EFTs can be defined. Such fixed points are referred to as
a ultraviolet fized points (UVEPs). Attractive fixed points are referred to as infrared fized points

(IRFPs), such as the IRFP of the QED phase at

9> =0 (IRFP, Nt > N}). (1.10)

Should a UVFP exist in the QED phase, the value of the non-trivial fixed point coupling g2 at

leading order in 1/Nt is expected to go as

g2 o< 1/ Ny (hypothesized UVFP, N; > N}) (1.11)

in any RG scheme [203]. However, it should be noted that evidence for presence of a UVFP in the
QED phase is few and far between. Closer to N/, it is possible that the fixed point is simply not
accessible from perturbation theory and it instead arises non-perturbatively, as was hoped for QED

and is still hoped for asymptotically safe approaches to quantum gravity [311].

1.1.1.2 The conformal phase

Below N{, the two-loop -function possesses both a UVFP at

> =0 (UVFP, Nt < Nf). (1.12)

It also possesses an IRFP for some range of N < Ny < 16. The Ny = 16 IRFP at

92 ~ —(4m)%by /by ~ 0.523 (IRFP, N; = 16) (1.13)



is accessible from perturbation theory. This is the Caswell-Banks—Zaks fized point |28, 75]. Though
it had been noted before [75], Tom Banks and Alex Zaks were the first to explore it systematically
[28]. The existence of an IRFP at some g2 # 0 has interesting consequences for the low-energy
dynamics of the system. Most notably, deep within the infrared, the system is conformal; in other

words, it is invariant under coordinate transformations x# — x* + e satisfying [138, 314|
1 ag
Opey + Opey = 5(806 ' (e /M < 1), (1.14)
where g, is the metric tensor. Such a coordinate transformation changes the metric as

G — QZ(x)gW, (1.15)

where

%(@Lep + 8,,ea>g’“’gpg ~ 0% (z)—1 (e /xt < 1). (1.16)

The transformations generated by infinitesimal e” are described by the conformal group. According
to Eqn. 1.15, the group of diltations (2% independent of z) is a subgroup of the conformal group.
As such, conformally invariant field theories are also scale invariant. Conformal invariance implies

that the correlation function of any operator O(z) transforms under x — Az as
(O(A)0(0)) = A~220(O(2)0(0) (1.17)

for Ap a constant that is referred to as the scaling dimension of @. This implies that the correlation

function of a field ® (e.g., a gauge or fermion field) decays as

(B(2)®(0)) = |z 7?22, (1.18)



where Ag is the scaling dimension of ®. Additionally, the expected trace of the stress tensor TH
vanishes

(Th) =0. (1.19)

Egns. 1.17-1.18 imply that the spectrum is continuous; as such, the low-energy dynamics does
not permit the existence of a particle spectrum. Furthermore, if conformal invariance is broken
explicitly by introducing a fermion mass, the corresponding hadron spectrum will exhibit conformal
hyperscaling. Deriving conformal hyperscaling follows along the same line of reasoning that leads
to finite size scaling, which I describe in Chapter 2.5. In the language of RG, the fermion mass
is a relevant deformation that repels any RG flow away from the critical surface. Therefore, the

zero-momentum correlation function
Go(Ea;m) = /d3x (O(x,24)0(0)) (1.20)
of any operator O in an EFT of the mass-deformed conformal system is expected to scale as [100]
Go(ws;1i) o< Fo (@am!/(10) (< 1) (1.21)

where 24 = Axzy is the source/sink separation along the time direction and m = my/A is the
degenerate fermion mass. Both are expressed in units of the cutoff A. The constant ~;, is the mass
anomalous dimension at the IRFP. The function Fp is a universal scaling function. Eqn. 1.21

implies that any hadron mass of the mass-deformed EFT must scale as
Mo /A oc it/ F7m) (< 1). (1.22)

In other words, ratios of hadron masses from the mass-deformed EFT should be flat in /m. Such
hyperscaling relations have been used extensively to test for conformality in lattice gauge theory

simulations of many-flavor gauge-fermion systems. See, for example, references provided in overview



of Chapter 5. The range in N over which massless SU(/N) gauge-fermion systems are both
asymptotically free and conformal is referred to as the conformal window. The lower boundary of

the conformal window Nf in Nt is referred to as the conformal sill.

1.1.1.3 The confined phase

For Ny < INf, the low-energy dynamics is drastically different than it is for Ny > NNf; however,
it is much more familiar. The confined phase is characterized by the generation of an infrared scale,
the confinement scale, that is associated with the phenomenon of confinement; i.e., the inability
to separate fermions in a hadron without putting so much energy into the system that the act of
pulling them apart simply creates more hadrons. The confined phase exists between 0 < Ny < Nf.
For Nt > 1, the confined phase is also characterized by spontaneous chiral symmetry breaking, which
I shall now describe.

The classical action of Eqn. 1.1 in the my = 0 limit is symmetric under U € SU(Ng)r X SU(N¢)1,

transformations of the form
U =exp (z’a . T) or U = exp (z”y5a . T), (1.23)

where T' = (Tl, T2, ..., TNfQ'l) is a collection of generators for su(Nt), a € RNfQ'l, and ° = iyly2y3y2

is the standard chirality operator that separates any Dirac fermion into left-handed components (L)

n_1 5\ ()
vl =2 (1 v )\I/ (1.24)
and right-handed components (R)
n_1 5\ g
vl = 2(1+7 ) (1.25)

in four dimensions. Elements of SU(N¢)r x SU(Nt)1, act on an extended space of spinors involving

all flavors ¥ = <\I'(0), VORI @(Nf'1)>. Note that there are also two additional U(1) “axial” and



10

“vector” symmetries; however, the U(1) axial symmetry is broken due to quantum effects. The
transformations U € SU(N;)g x SU(Nt)L, involving the chirality operator 4%, otherwise known as
azial vector transformations, mix both flavors U(f) and chiral components \Ilif ) / \Ifg ). In the confined

phase, this chiral symmetry is spontaneously broken, taking
SU(Np)r x SU(Ng)L — SU(Ng),, (1.26)

where SU (Nf)v is the “vector subgroup” of SU(N¢)r x SU(NVg)1; it is the isospin symmetry that is
approximately realized in the light quark sector of QCD. This spontaneous chiral symmetry breaking
(xSB) has profound consequences for the low-energy dynamics of gauge-fermion systems in the
confined phase. For one, it produces Goldstone bosons w = (77_, 79, 7T+), which are identified with
the pseudo-Goldstone pions of QCD. Without pions, the nuclear force that keeps nuclei together
would not be strong enough to keep them from falling apart. As Goldstone bosons, the pions
are also the lightest states of QCD. Therefore, they have a dominant effect in just about every
low-energy QCD process. xSB also has important consequences for the spectrum of baryons in
QCD; for example, it is responsible for the non-degeneracy of nucleons with their parity partners,
which are significantly heavier [142]. Quite frankly, it is hard to overstate the importance of ySB. In
the isospin symmetric limit, the masses of the pions follow the famous Gell-Mann-Oakes-Renner

(GMOR) relation [141, 144, 368]
M? o Aymy (mg/Ay < 1), (1.27)

where A, is the “chiral symmetry breaking scale”. This is to be juxtaposed against the hyperscaling

prediction of Eqn. 1.22 in the conformal phase.
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1.1.14 Quantum phase transition at the conformal sill

The difference between the low-energy dynamics of the confined and conformal phase is quite
astonishing. Below the conformal sill, the system is confining, chirally broken, and full of hadrons.
Above the conformal sill, the system is interacting (and thereby non-trivial), chirally symmetric,
and there are no particles in sight. Something quite dramatic must be happening at N¢. Such a
transition is referred to as a quantum phase transition (QPT), as it is not a consequence of thermal
fluctuations. Already, we expect two things to happen when crossing the conformal sill from the
confined phase. For one, we of course expect that S-function in any RG scheme to pick up an

infrared fixed point. Additionally, we expect the chiral condensate
= \If(f) ) 8
> f< (x) (x)> (1.28)

to vanish. The position argument is suppressed because the chiral condensate expectation is
translationally invariant. Because on the main focuses of this thesis is on the calculation non-
perturbative S-functions, I shall not dwell too much on the relevance of the chiral condensate.

The -function is expected to either “jump” or “walk” within the vicinity of N¢. In the jumping
scenario, the 3-function depends on g2 and Ny like [323, 324]

—94[1 — k1% — 5(Nf)]
1 — kag?

B(gQ) o (jumping), (1.29)

where

0(N¢) = 0 as Ny — Ny (1.30)

and k1, ko are free parameters. In the walking scenario, the B-function goes with g2 and Ny as [323]

6(92) x —g* [(92 — k:)2 - (5(Nf)] (walking), (1.31)

where k is a free parameter and 0(N¢) is defined by Eqn. 1.30. In Figs. 1.1-1.2, I illustrate the shape
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Figure 1.1: Illustration of the S-function in the jumping dynamics scenario just below the conformal
sill (Vy < N§, blue line), at the conformal sill (Nf = Nf, red line), and just below the conformal sill
(Nf > N§, blue line).

of the S-function in a jumping scenario (Fig. 1.1, Eqn. 1.29) and walking scenario (Fig. 1.2, Eqn.
1.31) for Nt just below, at, and just above the conformal sill with k = ky = k2 = 1 for the purposes
of illustration.

[B-functions of the form of Eqn. 1.29 have appeared in literature on supersymmetric Yang-Mills
[279, 333] and non-supersymmetric Yang-Mills |77, 315]. As is illustrated in Fig. 1.1, the S-function
runs into a pole at g2 ~ 1/ky below Nf (blue line). Past the pole, it runs into a UVFP. Above Nf
(green line), the S-function exhibits an IRFP on the weak coupling side of the pole and does nothing
exciting on the other side of the pole. Only at Ny = Nf (red line) is the S-function on one side of the
pole connected to the other side of the pole. As jumping dynamics is associated with a first-order
conformal QPT, the system on the weak coupling side of the pole is not connected to the strong
coupling side, except at Ny = Nf.

The walking scenario has received much more attention in the literature due to its relevance
to beyond Standard Model (BSM) model building. Similar behavior has also been observed in a

variety of systems [136, 221, 261]. When Ny > Nf (green line), the S-function runs from the UVFP
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Figure 1.2: Illustration of the S-function in the walking dynamics scenario just below the conformal
sill (Vy < N§, blue line), at the conformal sill (Nf = Nf, red line), and just below the conformal sill
(Nf > Nf, blue line).

at g2 = 0 to an IRFP at some g2,. In addition to g2,, the RG flow also possesses another UVFP
at some gg* >g2,. As Ny — Ny from the conformal phase, g2, increases, while gg* decreases. The
conformal QPT occurs when g2, and g7, merge (red line). Below Nf, g2, and g7, move away the
complex plane. Once the system is in the confined phase, chiral symmetry is broken and the system
confines. From the confined phase and just below N¢, the A-parameter Ax, which characterizes
the scale of non-perturbative observables calculated within any particular RG scheme X from the

confined phase (see Chapter 4.6), scales with Ny as [323]

—-1/2

Ax oc (Nf = Ne) exp | = 2 (Nf = Np) (1.32)

Eqn. 1.32 is the famous Miransky scaling [261]. Such scaling is reminiscent of the oco-order phase
transition of the two-dimensional XY model (explored in Chapter 6); as such, the picture posited
by Miransky scaling is that the conformal QPT is co-order; i.e., due to an essential singularity in

log Z. Corrections to Miransky scaling have been explored in Ref. [50]; see also Ref. [221] for more
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information on the relevance of Miransky scaling to the picture of merging fixed points.

1.2 Relevance to beyond Standard Model physics

1.2.1 The conformal window and beyond Standard Model physics

The pattern of chiral symmetry breaking (Eqn. 1.26) in the confined phase of a gauge-fermion
system 1is similar in structure to the pattern of symmetry breaking that occurs in the electroweak

sector. The symmetry breaking pattern for spontaneous electroweak symmetry breaking (EWSB) is

SU(2)r, x SU(2)gr — SU(2)y. (1.33)

More precisely, because the U(1)y subgroup of SU(2)g is gauged, the symmetry breaking pattern is

SU@2)L x U(L)y — U(1)g, (1.34)

where U(1)q is the Abelian electromagnetic gauge symmetry [287, 323|. As an aside, note that this
standard realization of EWSB appears to be in conflict with Elizur’s theorem, which states that a
gauge symmetry cannot be spontaneously broken [116, 153|; as such, the interpretation of EWSB in
the Standard Model must be more subtle than the standard approach that is expounded by most
physicists, including the author. The formal similarity between the symmetry breaking pattern of
XxSB and that of EWSB led to the development of technicolor models (TC), which aimed to deliver
EWSB from a form of xSB by extending the Standard Model with a new SU(N) gauge-fermion
sector possessing Ny < Nf fermions in some representation of SU(N) (or some other Lie group) [119,
200, 236]. The technicolor Higgs arises from the formation of a non-zero chiral condensate (Eqn.
1.28) due to xSB, which generates of mass for the W+ and Z bosons. Extended technicolor (ETC)
models additionally aim to address the EWSB-induced generation of fermion masses in the Standard
Model [119, 220]. While the foundations of early TC/ETC models were sound, they ultimately failed

to meet the following experimental criteria [200, 236].
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(1) TC/ETC models fail to pass electroweak precision tests.

(2) ETC models fail to suppress effects from flavor changing neutral currents (FCNCs) while

also accommodating for the heaviness of the top quark? [236].

Interest in TC(ETC) models was revived with the advent of walking technicolor (WTC) (85, 121,
297], which is founded on the same xSB-induced EWSB principles as TC(ETC) models; however,
the B-function of the strongly-coupled sector is of the walking type described in Sec. 1.1.1.4 and
illustrated in Fig. 1.2. Defining urc to be the scale at which chiral symmetry breaks and ugpc to be
the scale at which the fermions acquire their mass (possibly from additional spontaneous symmetry

breaking), the chiral condensate X (,uTc) at prc is related to Xy (METC) in WTC models as [323]

*

'Ym
5 (usre) ~ log (“ETC> 2S¢ (wre); (1.35)

HuTC

in other words, the condensate at the ugrc scale is logarithmically enhanced. The fixed point mass
anomalous dimension 7}, determines the size of the logarithmic enhancement. If the enhancement is
large enough, then it is possible for WTC to evade the problems introduced by electroweak precision
observables and FCNCs, so long as ~}, is at least O(1). WTC models built on top of conformal
phases that are sufficiently close to the boundary of the conformal window, so that 7y, ~ O(1),
could additionally evade the issue that are posed by needing to produce the top quark mass [64,
85]. Though, to the best of the author’s knowledge, the latter statement has yet to be established
conclusively; see, also, Refs. [64, 218| for workarounds involving fermion partial compositeness. Many
of the modern BSM models that are WTC-adjacent are constructed from systems that are barely
below the conformal sill. This allows them to utilize the approximate conformal invariance that is
potentially realized by near-conformal systems to deliver EWSB from an approximate breakdown of
conformal invariance. In such models, the Higgs is a pseudo-Nambu-Goldstone (pNGB) boson of

spontaneous conformal symmetry breaking; i.e., it is a dilaton. Such models have been investigated

2The top quark is incredibly massive as far as Standard Model fermions are concerned, with a rest mass of m; ~ 173
GeV. That is close to the mass of rhenium (= 173 GeV), which has an atomic number of 75.
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extensively using dilaton effective chiral perturbation theory (dyPT) to describe potential candidates
for such models using lattice simulations [14, 20, 149-151, 208|. I will discuss some of these attempts
at describing the (N, Nt) = (3, 8) system using dyPT in Chapter 7. See Refs. |86, 287| for extensive

reviews of many other pNGB models.

1.2.2 Symmetric mass generation

Before signing off on this section, let me briefly mention ideas from condensed matter physics
that could have implications for the problem of dynamically generating fermion masses. Roughly over
the past two decades, a mechanism for mass generation in interacting systems has been discovered
and investigated extensively. Such symmetric mass generation (SMG) can occur if the system is
free of quantum anomalies. It is also intimately connected to the physics of chiral edge modes [156,
366, 386). For a review of SMG, see Ref. [367|. Recently, it has been realized that 4-dimensional
systems of Kéahler-Dirac fermions, or multiples of 4 Dirac fermions, could possess just the anomaly
cancellation needed to realize SMG [62, 76]. The same result has also been interpreted in the
context of chiral edge modes by realizing 4-dimensional Kéhler-Dirac fermions as edge states of a
5-dimensional symmetry protected topological phase [156]. Lattice simulations of the (N, Nf) = (3, 8)
gauge-fermion system show some signs of an SMG phase [170], though much more scrutiny is needed;
this is explored further in Chapter 7. The existence of a strongly-coupled SMG phase that is
continuously connected to some other weakly coupled phase (likely conformal) could open up exciting
opportunities for BSM model building. It has been even put forth by Ref. [170] that the existence
of such a continuous phase transition could signal the beginning of the conformal window. If not,
it could at least be an interesting example of an SMG phase that is induced by strong dynamics,

which, to the best of the author’s knowledge, has yet to be realized.

1.3 Synopsis of key results

This thesis focuses upon two approaches to extracting information about properties of massless

SU(3) gauge-fermion systems using tools from Wilsonian RG. The first approach utilizes non-
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Figure 1.3: Gradient-flow-based continuum [-function for Ny = 0 (blue), 8 (red), and 12 (green).
Non-perturbative continuum S-function indicated by multicolored bands with the width of the band
indicating the error. Perturbative 1- (dashed), 2- (dotted), and 3-loop [-function indicated by
multicolored lines [161].

perturbative S-functions, which are calculated from Monte Carlo simulations of the Ny = 0, 8, and 12
system in Chapters 4, 7, and 5, respectively. The second approach utilizes finite-size scaling (F'SS).
In Chapter 6, I describe a neural-network-based method for FSS and apply it to various spin systems.
In Chapter 7, the same neural-network-based FSS method is applied to the zero-temperature phase

of the N = 8 system.

1.3.1 Non-perturbative g-functions

Fig. 1.3 shows the prediction for the continuum S-function (gz) for Ny = 0 (blue, Chapter 4),
8 (red, Chapter 7), and 12 (green, Chapter 5) as multicolored bands. The width of the band indicates
the error. The continuum S-function is calculated from an infinite-volume/massless RG scheme that
utilizes the continuous gradient flow smearing transformation of Ref. [252], as described in Chapter
4 [181, 189, 190, 293]. All simulations utilize the Hamiltonian (hybrid) Monte Carlo algorithm

described in Chapter 8.1.1. The simulations of Chapters 5 and 7 additionally utilize Pauli-Villars
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improvement, which is described Chapter 5.2. The continuum S-function in Fig. 1.3 is juxtaposed
against the universal 1- (dahsed) and 2-loop (dotted) perturbative [-functions, along with the
3-loop (dashed-dotted) perturbative S-function that is calculated from the same gradient flow-based
RG scheme as the non-perturbative continuum S-functions [161]. The color of the perturbative
(B-function indicates the corresponding value of Nt.

The behavior of the S-function in the weak coupling region (g2 /41 < 1) for each N; approaches
its respective perturbative counterpart, as expected. On the other hand, the strong coupling behavior
from different Nt is very different. For the Ny = 0 system (blue band in Fig. 1.3), the S-function
increases in magnitude without bound; eventually, it becomes asymptotically linear in ¢g2. Most of
the Ny = 0 S-function is cut off in Fig. 1.3 for the purposes of visualization. The full continuum
[B-function is shown in either Fig. 4.8 or Fig. 4.12. In Chapter 4, I verify the calculation of the Ny =0
B-function by calculating from it the MS A-parameter. The calculation yields v/8tgAnms = 0.622(10),
which is consistent with the most recent determinations based on gradient flow [92, 380] (see Fig.
4.16). The scale tg is used in modern-day scale setting calculations® and is defined by ¢%(ug) =~ 15.8
at p3 ~ 1/8ty in the aforementioned infinite-volume/massless gradient flow RG scheme [252].

The N¢ = 8 S-function (red band in Fig. 1.3) initially decreases, then begins to show signs of
turning around around 15 < ¢? < 23. If the Ny = 8 system is below the conformal window, then
such behavior could be indicative of walking (Fig. 1.2). If Ny = 8 is instead inside the conformal
window, then the turnaround is a sign of the S-function running into an IRFP. In any case, the
[B-function for the Ny = 8 system is very different asymptotically from that of Ny = 0 and even the
N; = 2 -function of Ref. [177] calculated from the same RG scheme.

The Ny = 12 system (green band in Fig. 1.3) is likely in the conformal phase, which is
supported by a majority of investigations probing its infrared behavior properties. Indeed, the
Nt = 12 RG S-function of this thesis exhibits an IRFP at g2 = 6.60(62). To verify the calculation

of the Ny = 12 S-function in Chapter 5, I calculate from it the leading irrelevant critical exponent

3Slight correction: the wo scale is often preferred over to for scale setting because w2 > to; hence, cutoff effects in
wo are suppressed relative to to.
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Figure 1.4: Result of finite size scaling analysis of the gradient flow renormalized coupling g2 for
the Nt = 8 system using a radial basis function network. oo-order scaling with v = 1/2 is shown
in top left panel and ¥ = 1 in the top right panel. 2nd-order scaling shown in bottom panel.
The prediction for the scaling function F,» from the radial basis function (RBFN) is indicated by
a gold band with the width of the band indicating the error. Scaling function is normalized by
N =1287%/(3N? — 3) (N = 3) for visualization purposes. Data entering the curve collapse analysis
is indicated by multicolored error bars for L/a = 16 (blue), 20 (orange), 24 (green), and 32 (purple).

7y = 0.199(32). I find that the estimate for v} is consistent with the literature at the 10-20 level

[106, 186, 321] (sce Fig. 5.8).

1.3.2 Finite size scaling with neural networks

The renormalized coupling ¢? is a scaling variable in the vicinity of an RG fixed point.
Therefore, it can be used to probe the properties of phase transitions that occur as the bare gauge

coupling B, = 6/g3 — By in infinite volume. In a finite volume, the RG coupling ¢*(L, ) = ¢* (,u; L)
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with p = ¢/L for some ¢ € (0,1/2] is expected to scale with 3, and L in the vicinity of F. as

9> (L, B) = Fpa(w) (Bb ~ Be),

where

2(L, By) = (By/Boec — 1)LM" (2nd-order)

for a 2nd-order phase transition or

J)(L, 51)) = Lexp [ - C(Bb/ﬁbc - 1)_V] (oo—order)

for an oo-order phase transition (like the BKT transition of the XY model). First-order phase
transitions also scale as & = (8y/B8p — 1)L, but with v = 1/d [96, 120]. The function Fpo is
a universal scaling function. It is similar to the scaling function of Eqn. 1.21 for the two-point
correlation function of some operator in a mass-deformed conformal field theory. The parameters
Bre, v and ( of the phase transition can be extracted by requiring that ¢?(L, ;) = Fp2 () forms a
unique a one-dimensional curve in . Once the correct critical parameters have been identified, the
individual curves of g?(L, 3) in 3y at fixed L collapse onto Fq2(z); hence, this method is referred to
as curve collapse. One of the particularly tricky road bumps encountered by curve collapse analyses
is the need to estimate the scaling function Fg., which is typically done by replacing it with some
parametric ansatz; i.e., a polynomial. The parameters of the parametric ansatz for Fg are then
estimated simultaneously with the critical parameters as part of the curve collapse. It is desirable
to have on hand a collection of expressive functions that are capable of representing Fg . I show
in Chapter 6 that a type of single-layer artificial neural network known as a radial basis function
network (RBFN) can be very useful for this purpose, as RBFNs are specially-designed for function
approximation. I test the RBFN-based curve collapse on the finite-temperature phase transition of
various two-dimensional spin systems in Chapter 6. I then apply the same curve collapse analysis to

the zero-temperature phase transition of the Ny = 8 system into an SMG-like phase in Chapter 7
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In Fig. 1.4, I summarize the result of the Ny = 8 curve collapse for oco-order scaling with
v=1/2,1 (top left and right panels, respectively) and 2nd-order scaling (bottom panel). In each
panel of Fig. 1.4, the scaling function F is rescaled by N = 12872/(3N? — 3) ~ 53.6 for the
purposes of visualization and set ¢ = 0.45. The prediction for Fg2 from the radial basis function
network is shown as a gold band. The width of the band indicates the statistical error. Individual
volumes at different 3, are shown as colored markers with error bars. The prediction for Sy, v and ¢
is shown in the top left corner of each panel. Though it is not shown in Fig. 1.4, 1st-order scaling
is strongly disfavored compared to 2nd-order and oc-order scaling. For reasons that I discuss in
detail in Chapter 7, this does not necessarily imply that the transition is not 1st-order. Outside of
1st-order scaling, no one scaling is unambiguously preferred over another according to the simple
statistical tests that are applied to the curve collapse analysis of each scaling scenario (x? and
marginal likelihood). If the correlation length, defined in Chapter 2.2.2, can be determined, then it
will be possible determine whether the curve collapse analysis strongly disfavoring 1st-order scaling
hold water. If so, then there is a real possibility that the Ny = 8 system could possesses an SMG

phase with a consistent continuum limit.*

1.4 Road map

The core chapters of this thesis are Chapters 4-7. Readers that are interested only in the main
results of this thesis are advised to read just those chapters. Subleading developments are discussed
in Chapter 8. Relevant background material is given in Chapters 2-3. Below, I provide a road map

for navigating the material of this thesis.

(1) Chapter 2 (Wilsonian renormalization group): I introduce the Wilsonian renormal-
ization group tools that are used throughout this thesis, such RG transformations, RG
B-functions, running anomalous dimensions, and finite size scaling. The content of this
chapter is relevant to Chapters 4-8. It is also used in Chapter 3.4 to discuss the notion of

continuum limits.

“Pending confirmation that the SMG-like phase observed by Ref. [170] is a legitimate SMG phase.
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Chapter 3 (Lattice gauge theory): I introduce the the basic tools and language of lattice
gauge theory with an emphasis on staggered fermions. The content of this chapter is relevant

to Chapters 4, 5, 7, and 8.

Chapter 4 (N¢ = 0): I first introduce the continuous B-function method (CBFM) for
calculating the infinite-volume RG S-function from gradient flow. I then apply the CBFM
to the Ny = 0 system. The A-parameter of the Ny = 0 system is calculated and a method
for matching S-functions non-perturbatively is introduced. The CBFM is also deployed in

Chapters 5, 7, and 8.3.

Chapter 5 (INy = 12): I calculate the continuum gradient flow S-function for the Ny = 12
system using the CBFM of Chapter 4. From the S-function, I calculate the leading irrelevant
critical exponent 7. The Bayesian model averaging procedure introduced in this chapter is

deployed in Chapter 7.

Chapter 6 (Finite size scaling with neural networks): I both introduce the radial-
basis-function-network (RBFN-based) curve collapse method and apply it to curve collapse
analyses of the g-state Potts model and p-state clock model for ¢ = 2,3 and p = 4, cc.
I speculate on other applications of radial basis function networks to lattice field theory
analyses and exemplify one such method by determining the critical temperature of the
oo-state clock (XY) model from a direct interpolation of helicity modulus using an RBFN.

The RBFN-based curve collapse method is used in Chapter 7.

Chapter 7 (N¢ = 8): I first analyze the zero-temperature phase transition of the Ny = 8
system using the RBFN-based curve collapse method of Chapter 6. I then calculate the
continuum gradient flow S-function using the CBFM of Chapter 4. Error estimates for the
continuum S-function are improved by deploying the Bayesian model averaging procedure

introduced in Chapter 5.

Chapter 8 (Other Developments): I first discuss the high-performance code development
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that went into creating the Quantum EXpressions (QEX-based) gex_staghmc suite [284].
gex_staghmc is used for most of the large-volume simulations and gradient flow measurements
of Chapters 5 and 7. I then discuss the code development that went into creating the SwissFit
library, which implements many of the Bayesian-statistics-inspired analysis tools that are
deployed in Chapters 5-7. I end by briefly discussing a calculation of operator anomalous

dimensions in the Ny = 10 system using domain wall fermion simulations.

Chapter 8 (Conclusions): Summarizes the main technical results of this thesis and

discusses future research directions.



Chapter 2

The Wilsonian renormalization group

In The Renormalization Group method you take a structure you
don’t understand and convert it to another structure you don’t

understand. You keep doing it until you finally understand.

MICHAEL BERRY [40]

Broadly speaking, the Wilsonian renormalization group (RG), or just “renormalization group”,
refers to a formal collection of ideas and techniques that aid in the investigation of scale-dependent
properties of a physical system. Though the focus of this thesis is on gauge-fermion systems, this
chapter aims to treat the renormalization group in as broad of terms as possible. In doing so, we
can appreciate what the renormalization group tells us about field theories on a lattice in general
and we can directly apply what we have learned to other systems throughout this thesis.

To this end, let us consider a generic collection of fields {¢5(n)} indexed by f that are defined
over a d-dimensional hypercubic lattice with lattice spacing a. For notational simplicity, we suppress
any additional indices that each ¢; may possess. The fields in {¢j(n)} interact according a classical

action S[y| that is a sum of terms

Slel = > _ KiOil¢l, (2.1)

where each O; respects the symmetries of S| and each K; is a coupling constant that renders

the combination K;O;[p] dimensionless. Quantum fluctuations of this system are captured by the
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partition function

2, = [ TTiden) exp (S0, (2:2)
f

from which we define the vacuum expectation value of a generic observable O[y] as

(O] = 25! / TTlder) Ole] exp (-S[e]). (2.3)
f

The key theoretical tool of the renormalization group is the renormalization group transformation,
which systematically removes irrelevant short-distance fluctuations while preserving physical long-
distance properties of the system under investigation. One can learn quite a bit about the properties of
field theories in general by understanding how the couplings K; vary under repeated renormalization

group transformations.

2.1 Renormalization group transformations

A generic renormalization group proceeds via the following two step procedure; see Refs. [222,

230, 255, 356| for more details and applications to specific systems.

(1) Coarse grain: It is common to define the coarse graining step of an RG transformation
either in real space or in wave number (dual) space. Both achieve the task of eliminating

short-distance fluctuations.

e Real space: Eliminate short-distance fluctuations by defining a new set of coarse-
grained fields {@} that are some local average over the original fields {¢5}. If the
average is performed over fields that fluctuate on scales less than or equal to ba, then
the new coarse-grained fields live on a lattice with lattice spacing ba. The local average
should be defined in such a way that the symmetries of the original action are preserved;
this makes implementing a real space coarse-graining step in a gauge-fermion system

quite difficult, but not impossible [99, 194, 204].

e Dual space: Eliminate short-distance fluctuations by integrating out wave number
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fluctuations in the 7/ba < |k| < m/a shell. More precisely, let the Fourier-transformed
fields be {¢j(k)}. We can then eliminate modes in the 7/ba < |k| < 7/a shell by
integrating over them in the partition function. This defines a new action gﬁf} for the

low wave number fields {Ef(k:)} that is related to the original action S[p;] as

~8[3;] = log / II II [43k)] exp (-S[2)). (2.4)

f w/ba<l|k|<7/a

The inverse Fourier transformed low wave number fields {;} now live on a new lattice
with lattice spacing ba. For complicated systems, coarse graining in wave number space

can be more efficient computationally than coarse graining in real space.

(2) Renormalization: If necessary, restore the contrast of the fields of the original lattice by

rescaling the coarse-grained fields as cpg = Zpy.

Depending on your familiarity with RG, you may now be wondering why I have not included
the rescaling step, whereby all dimensionful scales [ are rescaled as | — [/b. The latter step is
usually included in treatments of RG that are geared toward condensed matter physics, where the
lattice spacing is held fixed and the rescaling step is necessary to restore the original lattice spacing
(resolution) [222, 230, 356]. However, the perspective in high-energy physics is quite different. The
lattice spacing, or ultraviolet cutoff, changes under an RG transformation, but all dimensionful scales
below the cutoff are held fized [70]. As far as dimensionless quantities are concerned, this difference
in perspectives does not matter. However, it is worth keeping in mind because it can lead to a whole
array of confusions, as it had for me.

For the renormalization group transformation to preserve the long-distance properties of the

original set of fields, it must be the case that it preserves the partition function; that is,

2y = / [Tldes] exp (-Sle]) = / [1lde}] exp (-S'[¢]) = 2. (2.5)
i j

This condition imposes a set of constraints on the steps of the renormalization group transformation.
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The action S8'[¢'] is composed of two sets of terms. The first set of terms are the same as the original
action S[y], but they are composed of the renormalized fields {¢{(n)} and they are expressed in
terms of a new set of renormalized couplings K]({K;}). The second set of terms are generated by
the coarse-graining procedure of the renormalization group transformation (if they were not already
present in S[y]). There are usually an infinite number of such terms. Due to the condition of Eqn.
2.5, iterating the renormalization group transformation induces a flow on the infinite-dimensional

space of couplings K’ = (K7, K}, ...) defined by each S'[¢’]. This flow is the renormalization group

flow.

2.2 Renormalization group flow

Consider now a map Ry that takes any initial set of couplings K to a new set of couplings
K’ = Ry(K)) via an RG transformation. The coarse graining step of the RG transformation ensures

that R, does not have an inverse. It must also be the case that [230, 255]

Ry (K') = Ryy(Ko). (2.6)

This where I must insert the obligatory statement that Eqn. 2.6 combined with Ry lacking an inverse
implies that a renormalization group transformation does not actually form a group. It forms a
semi-group. Hence, the name renormalization group is a misnomer; such is the way of science. We
can think about the flow that is induced by Ry using the language of dynamical systems. Namely,
the topology of the flow over the entire set of initial couplings Ky is completely specified by the

action of Ry on K that are within the local vicinity of a fized point K* of Ry, which is defined by

Ry (K*) = K*. (2.7)

If we know what the local behavior of couplings K starting near every fixed point K* looks like

under an RG transformation, then we can qualitatively determine what the global topology of the
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flow must look like.

2.2.1 The S-function and characterizing fixed points by their local topology

Let us take b to be a dimensionless quantity that can be varied continuously. This is most easily
realized by a RG transformation in dual space, though it is possible to define RG transformations
with continuous b in real space. We can cast the flow of the couplings K; under an infinite number

of infinitesimally small RG transformations in terms of a differential equation

dK;(b) _
2 = Bi(K), (2.8)

—p?

where (;(K) is referred to as the renormalization group S-function of coupling K;. As it contains
all of the information about the RG flow, it is only a function of the couplings K. In Appendix
A, T present a perspective of what is to follow in a form that may be more comfortable to folks
in the condensed matter community. If you have never been introduced to the concepts of the
renormalization group, I recommend reading Appendix A before continuing. Fixed points K*

correspond to points in K-space where the RG [-function is zero; that is,

Bi(K*) =0 (2.9)

for all 4. Let 0K = K — K*. Then, for §K;/K} < 1, we can approximate the RG flow by linearizing
the B-function as

Bi(K) =BJK + O(6K?), (2.10)
where B is a linear operator with components

B, — 9Bi(K)

. (2.11)
aKJ K=K~
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The principal axes of B completely characterize the local topology of the RG flow about K*.
(cx)

Denoting e; ' as a normalized left eigenvector (principal axis) of B, we have
elB = el (2.12)

Along the principal axes, the RG equation is decoupled with S-function

—b? dld{ng) = Ba(Ky) = NYK, + O(0K?) (2.13)

within the vicinity of K*. The component K, is obtained from K via the projection K, = eia)K ;
0K, is referred to as a scaling variable. The sign of A(%) indicates whether K, flows into the fixed
point (irrelevant), out of the fixed point (relevant), or if higher-order in terms in 0 K are needed to
determine if K, flows into or out of the fixed point (marginally irrelevant or marginally relevant).
The eigenvalues A(®) are universal in the sense that they do not depend on the RG transformation
used to calculate them. This is our first instance of universality coming into play. Physical systems
with the same RG eigenvalues A(® are said to belong to the same universality class; here, equivalent

“physical systems” can mean different lattice discretizations of a continuum field theory.

2.2.2 Characterizing fixed points by the correlation length

Aside from the local topology the RG flow about a fixed point K*, fixed points are also
characterized by the minimum length £(K) (in units of the lattice spacing) over which the fields
@j(n) at lattice site n are correlated with another lattice site m that is separated from n by a vector
of length & (K). After an RG transformation, the correlation length in units of the lattice spacing

£(K) at K = Ry(K) is related to (Kj) at Ko before the RG transformation as

§(K) = £(Ko)/b. (2.14)
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Therefore, once the fixed point K* is “reached”, the correlation length transforms as

E(K*) = E(K™) /b (2.15)

under an RG transformation. The only way that Eqn. 2.15 can be true is if £ (K™) is either zero
or infinite. A fixed point is called a critical fived point if € (K™) is infinite; otherwise, it is called
a trivial fized point. The collection of couplings that flow into a critical fixed point form what is
called the critical manifold or critical surface. Since the correlation lengths up to the fixed point
are related to one another by Eqn. 2.14, it must be the case that each of the correlation lengths on
the critical surface are infinite. In Appendix B, I use the Ising model to describe how the global
topology of an RG flow can be characterized by the local topology and correlation length at all fixed

points of an RG transformation.

2.3 Connection to -functions in high energy physics

At this point, you may be wondering how the notion of a renormalized coupling in this
chapter is related to the renormalized coupling that you may be familiar with from the Review
for Particle Physics, the Flavor Lattice Averaging Group report, or whatever your favorite source
of information about high energy physics is [6, 381|. In the high energy physics literature on
quantum chromodynamics (QCD), it is common to define a renormalized coupling in terms of some
observable O(p) at an energy scale u that is related to the renormalized coupling in the MS scheme

gI%TS(u) = 4dmag(p) in perturbation theory as

O(1) ~ 104 (1) + azxs(1)? + O (o) (2.16)

for constants aj,as, and so forth. For the perturbative calculations that take up much of the
particle physics literature, such a practical definition is perfectly reasonable and allows for important

Standard Model calculations to be carried out at energy scales that are relevant to the Large Hadron
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Collider (LHC). I delve into calculations of ag in slightly more detail in Chapter 4.6. The connection
between the procedure of defining a renormalization coupling by relations like Eqn. 2.16 and the
RG-based definition that I have discussed already in this chapter is subtle and, from the author’s
perspective, not well-understood. Nonetheless, I shall make an argument that will convince some,
but not all. Given that renormalization is an infamously difficult subject to understand and different
sub-disciplines have varying notions of RG that are tailored to fit their idea of what RG is useful for,
both reactions are quite frankly within reason.

Suppose that [ have defined a renormalization group transformation that preserves the partition
function Z, of some physical system as in Sec. 2.1. The expectation value of an RG-transformed
observable O'(b) in the “bare system” is related to the expectation value of O before the RG

transformation in the “renormalized system” as [74, 256|

(O'(b) ko = Zo(b)(O) k(1) (2.17)

where (- --)k, is an expectation value in the bare system, (---) (s is an expectation value in the
renormalized system, Zp(b) is the wave function renormalization of O, and I have neglected any
potential operator mixing. Note that Eqn. 2.17 states that expectation values of RG blocked
observables O(b) in the bare system are equivalent to expectation values of unblocked observables in

the renormalized system; i.e.,

(0(0)) k, = (O) k), (2.18)

as O'(b) = Zo(b)O(b) by definition [73, 157, 347].
Suppose now that the RG transformation that we are performing has a fixed point. Additionally,
suppose that there exists some set of relevant observables {O,} with Zp_ (b) = 1 about the fixed

point; in other words,

(O'(b)) Ky = (O) k(1)- (2.19)

If the number of O, is equal to the number of relevant couplings of the fixed point, then Eqn. 2.19
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implies that there is a one-to-one relation between the set {O4} and the relevant couplings {K,} as
far as mapping out the relevant directions of the RG flow about the fixed point is concerned [258].

As such, the {O,} can be used to define a set of renormalized couplings

9a(b) ~ (O4(b)) Ko (2:20)
and corresponding S-functions
dga(b)
W (g2) = —b* 22 2.21

that characterize the relevant directions of the RG flow. To the best of the author’s knowledge,
there is no reason to expect Zp(b) to diverge away from unity as the flow evolves away from the
local vicinity of the fixed point; hence, the { gz(b)} should map out the entire RG flow that emerges
from the fixed point. Moreover, Eqn. 2.19 ensures that the couplings { gi(b)} are also regular if the
couplings of the Wilsonian effective action are regular; this is always the case. As such, if the RG
flow emerging out of one fixed point runs into another fixed point, the relevant couplings { gi(b)}
of the former fixed point must evolve into irrelevant couplings of the latter fixed point. There are
often many different choices for the {O,} from which one can define {g2(b)} to map out the RG
flow. As far as calculations for QCD are concerned, defining a running coupling in terms of some
observable O(u) about the ultraviolet fixed point of QCD (see Sec. 3.4), where asymptotic freedom
reigns supreme, is similar to the procedure of picking out a coupling g?(u) that maps out the RG
flow of QCD. Note, however, that perturbatively-defined RG couplings like those of Eqn. 2.16 can
lead to certain pathologies where the coupling appears to be well-defined pertubatively, but it does
not actually track the RG flow outside of the local vicinity of the fixed point. In such cases, one
is advised to refer to the non-perturbative definition motivated by Eqn. 2.19. Even so, because
there are no proofs of any of the statements that I have made about Wilsonian RG in this chapter,
it is possible that even the couplings based on Eqn. 2.19 break down. To this end, high energy
physics is really in need of a constructive approach to non-perturbative quantum field theory and

renormalization. Nonetheless, one has to start somewhere and check that what they’re doing along
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the way is sane.

2.4 Running operator anomalous dimensions

The correlation function of an operator O(n) in the bare system Kj is related to the expectation

value of the same observable O(n) in the renormalized (blocked) system K as [74]
(O(n)O(0)) K, = Z5(5){O (1) O(0)) K (1), (2.22)

where ny = n/b. Eqn. 2.22 is the Wilsonian RG version of the Callan-Symanzik equation [65, 349,

350]. Combining Eqns. 2.17 and Eqn. 2.22 yields the following string of identities (n;, > 1)
(O(n)0(0)) K, = (O' (1) 0"(030)) rey = Z5(0){O (3 6)O(030)) (2.23)

where O'(ny;b) and O(np;b) denote the renormalized and blocked O(n), respectively. The first
equality states that correlations in O are identical to those of O’ as far as fluctuations in the bare
system at scales ny > 1 are concerned. In other words, renormalized observables preserve the
long-distance properties of their unrenormalized counterparts. Eqn. 2.23 also hints at a method for
determining Zo(b) in terms of the expectation value of the RG blocked observables O(ny;b) in the

bare system
(O(ny; HYO(0; b))
(O(n)O(0)) K,

Z2(b) = Ko (2.24)

Note again that Eqn. 2.24 requires np > 1. Eqn. 2.24 can be taken as a non-perturbative definition of
the wave function renormalization for O for the RG transformation (scheme) that takes Ko — K (b).

The wave function renormalization Zo is not physical in the sense that its running depends
upon the RG transformation that it is defined from. However, like the renormalized coupling, its
behavior in the vicinity of a RG fixed point K* is universal. Supposing then that the abstract RG

flow we are working with exhibits an RG fixed point at K*, the wave function renormalization runs
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with b in the vicinity of K* as
Zo(b) ~ bR (K — K*), (2.25)

where

Ao = do + 16 (2.26)

is the scaling dimension, do is the canonical dimension, and 7, is the anomalous dimension of O.
The anomalous dimension 77, is universal and characterizes various properties of the system close
to or at K*; it is a critical exponent. If O is dimensionless, as is the case for any observable that
is measured from lattice simulations before scale setting, and the RG flow is nonlinear, then Eqns.
2.24-2.26 can be used to define a running operator anomalous dimension in terms of Zp as

b% log Zo(b) = v0(K). (2.27)

Furthermore, if one defines |74, 177]

O(ny; b)O(0;b
Ro(b) = (Oms; YO )>K0, (2.28)
(O(n)O(0)) K,
then Eqn. 2.24 implies that
Y0 (K) = —21% log Ro(b). (2.29)
In any case,
Y0 (K) = 5. (2.30)

If the RG flow is linear, then v» can be calculated similarly by extending the definition of Ro(b). T

will use the ideas of this section, specifically Eqn. 2.29, in Chapter 8.3.
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2.5 Phase transitions and finite size scaling

A phase transition for a system living on a lattice is generally characterized by a non-analyticity

in the reduced Helmholtz free energy per site, defined as

A (K) = ~N""log Z,, (2.31)

at some critical value K = K, of the couplings K. For notational convenience, I have defined
N = L/a, such that the volume in units of the lattice spacing is N¢. Such non-analyticities exist only
in the infinite volume limit. The phenomenology of any particular phase transition depends strongly
on its order. Discontinuities in any of the first-order partial derivatives of A,(K) are associated
with first-order transitions, which exhibit phenomena such as phase coexistence, hysteresis, and
the release of latent heat. Second-order phase transitions are associated with discontinuities in any
of the second-order derivatives of A,(K) and most notably exhibit a diverging correlation length,
leading to phenomena such as scale invariance and power law scaling. The continuum limit of the
gauge-fermion systems that we have been exploring in this thesis is a second-order phase transition.
Non-analyticities in A, (K) that are due to an essential singularity are categorized as oo-order
phase transitions. The correlation length at an infinite-order phase transition also diverges; however,
the manner in which it diverges is not characterized by a power law like it is for a second-order
phase transition. First-order phase transitions are fascinating in their own right; however, they
are extremely difficult to simulate using conventional canonical Monte Carlo techniques due to
hysteresis.! As such, I will only explore 2nd- and infinite-order phase transitions in this chapter,
which I collectively refer to as continuous phase transitions. All statements that follow hold for
continuous phase transitions unless stated otherwise.

According to the definition for an RG transformation that I gave in Sec. 2.1, A, (K) transforms

1One way to get around the hysteresis-induced problems that canonical algorithms experience when simulating
first-order phase transitions is to use the beautiful multicanonical sampling technique; see Refs. [33, 38, 39].
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under an RG transformation (K — K') as
A (K) = Fo(K) + b4 A,(K") (infinite volume), (2.32)

where F,(K) is a “constant” that originates from averaging over the short-distance (a <1 < ba)
degrees of freedom in the coarse graining step; it does not contribute any singularities to A, (K)
[70]. Therefore, it is common to define singular part of A,(K) by its behavior under an RG
transformation:

S —d A(s : :
AS(K) =b""AB)(K) (infinite volume). (2.33)

Eqn. 2.33 is the famous scaling hypothesis, first posited on phenomenological grounds by Widom in
1965 and put to work soon after for the Ising system by Kadanoff [216, 371]. In a finite volume, the
infinite volume non-analyticities in AS )(K ) are smoothed out. From the perspective of RG, this is
because N~! = a/L acts as a relevant variable that pushes the system off of any critical surface.

The transformation for the singular part of the free energy is modified in a finite volume as [69, 70]
AS(K, N1 =b77AL) (K bN ) (finite volume). (2.34)

From Eqn. 2.34, all of the well-known FSS relations for a 2nd-order phase transition follow. Infinite-
order phase transitions have to be treated with care, though the overall structure of the FSS relations
are similar. Both for the purposes of simplicity and concreteness, let us now focus on a system with
one relevant parameter (with respect to some fixed point). Moreover, let us focus specifically on
the one-dimensional subspace of the full set of couplings, so the K = (K,0,0,...) with K the single
relevant coupling. For example, we could be studying the Ising model with no external magnetic
field and no nearest-neighbor coupling; the RG flow in this case is demonstrated in Fig. B.1 for
Ky = K3 =0 (as defined in that appendix).

Define k = K/K. — 1 for K, the critical coupling of the infinite volume phase transition. The
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singular part of the free energy transforms under an RG transformation in a finite volume as
AS (b, N7 =b72AE) (b7 k,bN 1) (2nd-order) (2.35)

at leading order (no corrections to scaling) for a 2nd-order phase transition. The 1/v exponent is the
conventional renormalization group eigenvalue of K; it is also the critical exponent of the correlation

length (in units of the lattice spacing)
E(K) ~ |k (2nd-order). (2.36)

Eqn. 2.35 implies that the singular part of the free energy is a homogeneous function of k and N~

The homogeneity of AEPS ) (k, N~') around K ~ K, implies that it can be rewritten as [148, 230]
AG) (k,N71) = N9® (|k|N') (2nd-order), (2.37)

where @4 is a universal scaling function that could differ for K+ — K. (above, ®,) or K~ — K,
(below, ®_). The scaling behavior of any observable that is derived from AS ) (k‘, N _1) will depend
upon the dimensionless combination |k|N 1/v within the vicinity of K ~ K, due to the presence of
the scaling function in Eqn. 2.37. Interestingly enough, the scaling of Eqn. 2.37 also holds for a
first-order phase transition, but with v = 1/d [96, 120]. Assuming that the correlation length is
known, this makes Eqn. 2.37 a good test for distinguishing a 2nd-order phase transition from a
1st-order phase transition. However, it is absolutely crucial to stress that this test only holds any
weight if the correlation length in units of the lattice spacing is known at each K; otherwise, it is
possible to misidentify a phase transition as 2nd-order due to the pseudocritical behavior that is
observed for first-order phase transitions with large (but not infinite) correlation lengths.

Similar behavior is observed for co-order phase transitions; however, the argumentation is
more challenging. A heuristic way to arrive at the scaling form of the free energy for an infinite-order

phase transition is to first note that the argument of the scaling function for a 2nd-order phase
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transition is related to the correlation length £ of the infinite volume system as [70]
K|NYY ~ (E(K)/N) (2nd-order). (2.38)
As such, I could have also written Eqn. 2.37 as
AD (k, N71) = N (§(K)/N), (2.39)

which holds for any continuous phase transition of a single variable. Note that I am sloppily still
referring to the scaling function as @ despite changing its argument; for this I have no remorse and
I will continue this practice for the sake of notational brevity. The infinite-volume correlation length

of an co-order phase transition diverges as
E(K) ~ exp (ClkI™Y) (occo-order), (2.40)

where v is a universal critical exponent and ( is a non-universal constant. Therefore, AS ) (k, N _1)

scales in the vicinity of an co-order phase transition as
AS (k,N71) = N9®, (N exp (-¢[k[™)) (co-order) (2.41)

after some rearranging of the arguments. As is the case for a 2nd-order phase transition, all
observables derived from Eqn. 2.41 will scale with the combination N exp (—C ]k|_”) around K =~ K,

in some manner. I will use the ideas of this section in Chapters 6 and 7.



Chapter 3

Gauge-fermion systems on a lattice

[Lattice gauge theory] is merely a corner of quantum field theory,
and the techniques lattice theorists use are simply decorated
versions of techniques used across the board by physicists studying
problems with many degrees of freedom in particle, condensed

matter, and nuclear physics.

THOMAS DEGRAND AND CARLETON DETAR [98]

In this chapter, I introduce the lattice discretization of SU(N) gauge-fermion systems on a
hypercubic Euclidean spacetime lattice. In Secs. 3.1-3.2, I discuss the classical aspects of discretizing
gauge and fermion fields. I then discuss the quantization of lattice-discretized gauge-fermion systems
in Sec. 3.3 and end in Sec. 3.4 by treating the notion of continuum limits with the tools of the
renormalization group that I introduced in Chapter 2. For further reading, see Refs. [88, 142, 227,
265|. For mathematically-rigorous treatments of gauge-fermion systems in the continuum and on a

lattice, see Refs. [105, 159, 270] and Refs. [26, 107-109, 329, respectively.

3.1 Classical pure Yang-Mills on a lattice

The classical SU(V) Yang-Mills system in the continuum is described by a vector potential

2,(x) € su(N), from which the field strength tensor

S (x) = 0,2, (z) — 0,2, (z) +i[A,(z), Ay (z)] € su(N). (3.1)
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is specified. Under a local gauge transformation A(z) € SU(N), §u (x) transforms as
B (@) = A@)F (1) A(2)

As such, the simplest local action that we can construct from 2(,(z) that satisfies both (Euclidean)

Poincaré invariance and local gauge invariance is

‘SYNHQHJ::-—Q;g e Tre [0 ()3 (2)], (3.2)

where Tr. denotes a trace over color indices and g3 is a dimensionless parameter that we shall identify
with the bare gauge coupling once we quantize the classical Yang-Mills system. Eqn. 3.2 is referred
to as the Yang-Mills action.

The key mathematical object that will allow us to transcribe the continuum Yang-Mills action
onto a lattice is the parallel transporter. Given a curve C in R?, the parallel transporter associated
to C is

WQ—P%pPAM@M@, (3.3)

where P is the path ordering operator [265]. Taking C to form a closed boundary of a 2-dimensional

surface 2 (C = 012), a generalization of Stokes’ theorem implies [142, 265]

U(C) = Pexp

z/ dx“dy“&w(:ﬂ)]. (3.4)
Q

Eqn. 3.4 forms the basis of Wilson’s discretization of Eqn. 3.2 [375].
Pass now from the continuum to a d-dimensional hypercubic lattice Z¢ with uniform lattice
spacing a. We take the discretized parallel transporter of a curve C connecting any lattice site

n = z/a to the next lattice site n + i to be

logU,,(n) = ia2,,(an). (3.5)
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We refer to U, (n) as a gauge link; the gauge links play the role of the continuum vector potential.

Under a local gauge transformation, gauge links transform as
Uy, (n) — Alan)Uy(n)A(an + afp)'. (3.6)

Now defining a curve C that starts at n and traverses the smallest possible square loop in the u-v

plane, the lattice discretization of Eqn. 3.4 is
log Uy (n) = log Uy, (n)Uy, (n + @)U, (n + D) Uy (n)T = ia*F,u (an) + O(a?), (3.7)

which is referred to as a plaquette. The simplest discretization of Eqn. 3.2 that we can construct

from the gauge links U, (n) that is invariant under gauge transformations is

Swl,) = % DY RTre[1 = Uy (n)], (3.8)

n pu<v

where 3, = 2N/g3. The action Sy is referred to as the Wilson action, as it was first written down
by Kenneth G. Wilson in 1974 [375]|. The classical continuum limit of Eqn. 3.8, taken by driving

a — 0 directly, yields

a4
Sw [Z/{#] - _% [Z Z Tre [gull(an)guy(an)] + (’)(a4)
n v

~ —% d?z Tr, [Fu(an)F* (an)]  (a — 0),
290

which follows from Eqns. 3.7-3.8.
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3.2 Classical fermions on a lattice

Free classical Dirac fermions in continuum Euclidean space are described by Grassmannn-valued

spinor fields W(f)(z) that are endowed with the action

N
Sp[0] = / ddmzf\lf(f (@), 9D (), (3.9)
f=1

where © y = y#0, + my is the Euclidean Dirac operator with Euclidean Dirac matrices satisfying
{n" 7"} = 20"

Ny is the number of fermion flavors, and o) (z) = U (2)T40. Discretizing Eqn. 3.9 is a formidible
task due to the infamous Nielsen—Ninomiya no-go theorem. For simplicity, consider just one of the

flavors in Eqn. 3.9, with action
sPw) = / d%e T ()0, 90 (2). (3.10)

Discretizing Eqn. 3.10 amounts to discretizing the Dirac operator ©;. Consider the Fourier-

transformed lattice Dirac operator © #(p) with Fourier transformed action
~ d¥p = <~ ~
SO = [ 5o TR 0)T0)

and take the following conditions on © to hold [227].
e Translational invariance: for a generic Dirac spinor a(p), D reP*u(p) = 55f(p)eipxa(p).
e Locality: D #(p) is both an analytic and periodic function of p.
e Proper continuum limit: 5f(p) = iv'p, + O(alpl).

The Nielsen—Ninomiya theorem then states that the following cannot hold simultaneously in four

dimensions for a discretized massless Dirac operator [227].
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e No species doubling: 5f(p) is invertible for all non-zero p.

2,}/3,}/47 {©f775} =0.

o Strict continuum chiral symmetry: for 5 = iyly
In other words, we either have more fermions in the continuum than we intended or we have
strict chiral symmetry. Any lattice fermion formulation in four dimensions must contend with the
Nielsen-Ninomiya theorem. I discuss in detail only the lattice fermion formulations that are utilized

in the present thesis. From here on, I shall bring back the flavor index f only when necessary.

Moreover, I distinguish lattice fermions 1 from continuum fermions W notationally by

Y(n) = ¥(an). (3.11)

3.2.1 Staggered lattice fermions

Let us begin with the simplest discretization of © that fully preserves chiral symmetry. Define

a forward difference operator d, as

adup(n) = Y (n+ i) —P(n) (3.12)

and a backward difference operator 8; as
adlb(n) = $(n) — v(n — j1). (3.13)

In tems of J,, and 9y, we can write down a discretization of the Dirac operator that preserves chiral

symmetry when m = 0 as

1 .
DN =3 %}w (0 + ;) +m. (3.14)

The discretized Dirac operator Dy is often referred to as the naive Dirac operator; as is the case for
many names in the physical sciences, this is quite unnecessarily disparaging. In any case, @N(p)
is not invertible when all p, = 0 or 7/a. There are sixteen such momenta. Therefore, Dy yields

sixteen degenerate continuum fermions. This is despite the fact that we discretized the © for only a
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single flavor. That is the price we pay for enforcing chiral symmetry.
Staggered fermions reduce the number of doublers from sixteen to four while retaining a
residual U(1) chiral symmetry by mixing lattice indices n with spinor indices . Consider the local

transformation

P(n) = Qn)(n), (3.15)

where

Qn) =" g2 v5% (3.16)

for n = (n1,na,ng,nq) |98, 142|. Performing the staggered transformation of Eqn. 3.15 on the naive
lattice fermion action with naive lattice Dirac operator ®n produces a new action that, when written

in terms of the transformed lattice fermions fields, has a new lattice Dirac operator

D = % S a(n) (0 + 1) +m, (3.17)
I

where

ai(n) =1and ay(n) = (=1)" 1oy for p > 1. (3.18)

The new action with staggered Dirac operator ®g is diagonal in spin; in other words, the components
of the Dirac spinor have been decoupled. We call these decoupled components staggered fermions x.

The action for a single staggered fermion is

Ssrlx] = a* > X(n)Dsx(n). (3.19)

n

Staggered fermions were first introduced in a seminal paper by Leonard Susskind and John Kogut in
1975 [228]. Therefore, they are sometimes referred to as Kogut-Susskind fermions. Note that there
also exists a beautiful differential geometric formulation of staggered fermions that starts in the

continuum with K&hler-Dirac fermions [35]. The staggered fermion action of Eqn. 3.19 with m =0
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is invariant under the U(1) transformation [98|

x(n) — exp (iF5(n)9)1/)(n), (3.20)

where I's(n) = 1 for n even and —1 for n odd. This U(1) transformation is a remnant of chiral
symmetry.

One staggered fermion is equivalent to four Dirac fermions. The four degenerate Dirac fermions
are referred to as tastes because physicists think they’re funny. To see how one gets four Dirac

fermions out of one staggered fermion, consider the unitary change of basis [98, 265]
1
U) = ¢ 3 Qhmx(n + ), (321)
n

where 7, = 0 or 1. Each 1f)(n) is a four-component Dirac fermion. The matrix (2 is the same as
Egn. 3.16, but one index is for spin and the other is for flavor. With the change of basis in Eqn.

3.16, the staggered action of Eqn. 3.19 reads

Sselu] o at 3000 |50 @ D@4+ 03) = a5 9970, [000) + o' Bl (322

where the “®” denotes a tensor product “spin” ® “taste” and

46’0, (n) = 4&23;8M¢(n) =¢Yn+p)+¢(n—in) —2¢(n). (3.23)

The v-matrices on the flavor side are understood to act on the flavor components of the Dirac spinor

in Eqn. 3.21. The term

ap(n) (s @ viys) Ot (n)

in Eqn. 3.22 breaks taste symmetry at non-zero lattice spacing. The massless Dirac operator in this



46

new “spin-taste” basis

1
Dssr o 5 (9 @ 1)(0p + ) — a(75 ®1575) Op (3.24)

has a Fourier transform that is not invertible only at four momenta due to the appearance of the
taste-breaking term. The four momenta at which :DS_SlT has a pole correspond to four “tastes” of
Dirac fermion in the continuum. This reduction in the number of doublers comes at the cost of
explicitly breaking taste symmetry. However, there is still a residual U(1) chiral symmetry, and

when this U(1) chiral symmetry is spontaneously broken, it produces a Goldstone boson [98].

3.2.2 Other lattice fermions

Staggered fermions are only one of a whole zoo of lattice fermion contenders. I have focused
on staggered fermions because they are the primary formulation that is utilized in this thesis. In Sec.
8.3, I use another formulation of lattice fermion known as domain wall (DW) fermions. For the sake
of completeness, let me briefly discuss DW fermions by starting with Wilson fermions.

Wilson fermions reduce the number of fermion doublers in four dimensions from sixteen to

one by explicitly breaking chiral symmetry [375]. The Wilson Dirac operator is

Dw = 1 Z [”yﬂ (O + 8;) - aD#} + m. (3.25)

2 Iz
The —all, term is responsible for explicitly breaking chiral symmetry in Eqn. 3.25. Notice that the
chiral symmetry breaking term for the Wilson Dirac operator is similar to the taste breaking term
in the staggered Dirac operator in the spin-taste basis. Domain wall fermions are five-dimensional
Wilson fermions with a topological defect in the fifth-dimension that separates left-handed modes
from right-handed modes on the four-dimensional boundary [217, 219, 331, 363|. Denote the size
of the fifth dimension as N5. When N5 — oo, DW fermions are equivalent to a formulation of

lattice fermion that obeys a lattice analogue of chiral symmetry that is expressed by the famous
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Ginsparg-Wilson equation [146, 195, 196, 275|

{Dpw, 15} ~ aDpwrsDpw (N5 — 00), (3.26)

where ®pw denotes the domain wall discretization of the Dirac operator. The N5 — oo limit of a
DW fermion is known as an overlap fermion [276]. Both overlap fermions and DW fermions possess
no doublers at the cost of explicitly breaking chiral symmetry according to Eqn. 3.26. When Nj is
finite, there are corrections to Eqn. 3.26. For an explicit form of the DW Dirac operator ®pw, see
Ref. [142]. Note that modern simulations with DW fermions, including those in Sec. 8.3, typically

utilize a generalization of DW fermions known as Mdbius domain wall fermions [54].

3.2.3 Coupling lattice fermions to lattice gauge fields

When one says that a continuum fermion field ¥ “transforms under the fundamental represen-
tation of SU(INV)”, they are asserting that ¥ is smooth map x — ¥(z) € V,,, where x € R* and V, is
a vector space that furnishes the fundamental representation of SU(N).! Because the vector spaces
Vz and Vy, for z,y € R* are different vector spaces, there is no meaning to comparing ¥(z) € V; to
U(y) € V, without some mathematical device that transports vectors in V,, to vectors in V,, (and
vice-versa). That device is the parallel transporter that I briefly introduced in Sec. 3.1.

Take C to be a curve that connects any two points =,y € R%*. The action of the parallel
transporter U(C) on ¥(y) is to transport it to V,; e.g., U(C)¥(y) € V,. By transporting ¥(y) € V,,
to V;, one can now compare ¥(y) to ¥(x).? In Sec. 3.1, I introduced the gauge link U,,(n) as a
discretization of the parallel transporter that links n — n + . To make the forward and backward
difference operators in Eqns. 3.12-3.13 well-defined when the lattice field 1 transforms under

the fundamental representation of SU(N) at each lattice site, one uses the gauge link to connect

!Many of the following statements readily generalize to any other spacetime manifold and Lie group representation.

2It is worth noting that one can also easily define the gauge covariant derivative without reverting to arguments
from gauge invariance, which I always found to be unsatisfying.
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neighboring lattice sites as

adup(n) = U (n)ip(n + i) — ¥ (n) (3.27)

and

adyyp(n) = ¢(n) — Uu(n) e (n — f). (3.28)

By redefining the forward- and backward-difference operators in Eqns. 3.12-3.13 as 3.27-3.28, one
has coupled the lattice gauge field U, (n) to a generic lattice fermion field 1. That is all there is to

it. All expressions involving d,, and 9, remain the same.

3.3 Quantization of gauge-fermion systems on a lattice

Quantum fluctuations of a gauge-fermion system on a Euclidean space-time lattice Z* are

captured by the partition function

2= [ ][00 xp (St W 7). (3.20)

where Si,t. a lattice discretization of the continuum gauge-fermion action. No Faddeev-Popov ghost

fields are needed to fix up the gauge integration measure. The integration measure for the gauge

fields

=[] Hdu (3.30)

neZ4 p=1

is a Haar measure. The integration “measure” for the fermion fields

[dpde] o [T J]dva(n)dva(n) (3.31)

nezZt o

indicates notationally that we are performing a Berezin integral. It is not a true Lebesgue measure.

The integration measure for the fermions is normalized such that

/ [dydy] exp< Z% > =1. (3.32)
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Figure 3.1: Illustration of an RG flow for a gauge-fermion system with a single relevant coupling
that emerges from a critical fixed point. The left panel shows the critical surface of the critical fixed
point as a bounded surface with purple lines. The flows starting on the critical surface are indicated
by dashed arrows. The renormalized trajectory emerging from the critical fixed point is indicated by
a solid green arrow. The right panel shows the RG flow of systems starting off of the critical surface,
which are indicated by a thick dashed line marked as “bare action”. The RG flows of such systems
are indicated by dashed arrows. As in the left panel, the renormalized trajectory is indicated by a
green arrow.

For naive, Wilson, and domain wall fermions, o € {1,2,3,4}. For staggered fermions, I drop the
« index. Let us assume that physical observables derived from Z have a well-defined continuum
limit. T’ll discuss this in the next section. I also assume that the continuum limit satisfies the
Osterwalder-Schrader axioms [285|, which implies that the Wick-rotated continuum limit defines
a Minkowski space quantum field theory in the sense of the Wightmann axioms [344|. Rather
infamously, this has yet to be proven, but you can win one million dollars from the Clay Mathematics

Institute if you're the lucky one to figure it out; hence, this is left as an exercise to the reader.

3.4 Renormalization and the continuum limit

In Chapter 2, I introduced the renormalization group. In this section, I shall apply the ideas

and language that we learned in that chapter to understand the continuum limit in gauge-fermion
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systems with Ny < 11N/2. To start, recall that the gauge-fermion system defined by the partition
function of Eqn. 3.29 is formally a classical statistical mechanical system with reduced Hamiltonian
Stat. Uy, ¥, ). In Sec. 2.2.2, I briefly discussed the notion of a correlation length g(gg), which is the
shortest distance over which the fields of such systems are correlated with one another. Specifically,
we learned that the correlation length in units of the lattice spacing diverges at a critical fixed point.
If we are to keep all scales that are greater than the lattice spacing fixed along the continuum limit,
then the correlation length & (g%) must also diverge in the continuum limit. Therefore, the existence
of a continuum limit in a gauge-fermion system is tied to the existence of a critical fixed point in
the renormalization group flow of the underlying system. This is also true in general. Even more,
the RG trajectory that emerges from the critical fixed point furnishes a definition of the continuum
gauge-fermion system at any length scale [193, 194|. This special trajectory is referred to as the
renormalized trajectory (RT).

In Fig. 3.1, I illustrate the RG flow for a system with a critical fixed point and a single
relevant coupling. Such a critical fixed point is referred to as an ultraviolet fixed point (UVEP).
The RT is shown as a green arrow that emerges from the critical fixed point. Consider that any
point along the RT is connected to the fixed point by an infinite number of infinitesimally small RG
transformations. Within the vicinity of the fixed point, the system is completely free of any cutoff
effects; this includes any and all long-distance properties of that system. Since RG transformations
preserve the long-distance properties of the system, it must be the case that any point along the RT
is completely free of cutoff effects [193]. Each point of the RT therefore furnishes a definition of the
continuum system at any length scale that we may observe it at. Returning to the flow diagram
of Fig. 3.1, the surface that is bounded by purple lines is the critical surface. Any RG trajectory
starting on the critical surface, but not at the fixed point, flows to the fixed point, as indicated by the
dashed lines in the left panel of Fig. 3.1. A massless gauge-fermion system with a particular lattice
action and bare gauge coupling g2 defines a set of starting points in couplings space, as indicated
by the thick dashed line that is marked with “bare action” in the right panel of Fig. 3.1. Each RG

trajectory of such a system, indicated by thin dashed lines in the right panel of Fig. 3.1, converges
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to the renormalized trajectory. This is merely reflecting the fact that the gauge-fermion system
defined over a spacetime lattice with lattice spacing a approximates the continuum gauge-fermion
system well over distance scales [/a > 1. The idea that the RG trajectory of any lattice action at
any gg converges onto the RT is a consequence of universality. Each and every action defines its
own line of starting points in the space of couplings illustrated in the right panel of Fig. 3.1. A
classically improved lattice action defines a line of starting points that is close to the RT within the
vicinity of the critical surface (see Appendix F).

The flow diagram in the right panel of Fig. 3.1 tells us how to take the continuum limit. Each
point along the RT is parameterized by a renormalized coupling g?(b) with a B-function defined as
in Eqn. 2.8. As the bare gauge coupling is tuned closer to the critical surface, the RG flow converges
onto the RT earlier because it is a better approximation of the continuum system at distances scales
of increasing length. By fixing g2(b), one is picking a point along the renormalized trajectory. Once
the RG flows that start off of the critical surface reach the scale b, one can collapse them onto the
RT by tuning g2 to the critical surface [205]. Hence, one takes the continuum limit by fixing ¢*(b)
and tuning gg to the critical surface. In principle, it is not even necessary to that the continuum
limit. If one is far enough along the the RG flow in the sense that one is close to the RT, then cutoff
effects are suppressed and they are able to access long-distance observables of the continuum system.
As T describe in Appendix C, this is achieved by tuning the bare gauge coupling in a gauge fermion

system to zero (g3 — 0).

3.4.1 Connection to quantum chromodynamics

The notion of a continuum limit that I have described may not be familiar to many lattice
field theory practitioners, especially those that work on quantum chromodynamics (QCD) at the
physical point. Namely, where is the fixed renormalized coupling in a calculation of the hadronic
contribution to the muon’s anomalous magnetic moment or hadronic spectroscopy calculations (e.g.,
Ref. [115]), for example [12, 122]? The answer is that it is hidden in the scale setting component of

many lattice calculations, whereby some observable O(1) is fixed is fixed to some value O(ly) = ¢
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to estimate a reference scale [p/a that all dimensionful quantities, such as hadron masses, can be
expressed in terms of [6, 31, 43, 336].> As has been described in Chapter 2.3, the observable O(1)
can be used to define a renormalized coupling that runs with [ and has the same global properties as
the couplings g?(b) of the RG transformation if it obeys certain conditions under a renormalization
group transformation. Hence, by fixing O(ly) = ¢ along the continuum limit, one is indeed fixing
a renormalized coupling. The bare masses {m;} in such calculations are typically, but not always,
fixed by requiring that the same number of hadron masses {M;} are fixed to their physical values.
This is particularly evident in spectroscopic calculations.* For example, the massess of the up my,
and down mg quarks in the isospin-symmetric limit (m, = mq) are often fixed by requiring that the

pion mass M, is equal to the mass of the neutral pion Mo ~ 135 MeV [381].°

3As of the writing of this thesis, the most recent Flavor Lattice Averaging Group (FLAG) review contains up-to-date
information on scale setting calculations in lattice gauge theory [6].

“See Fig. 3 of Ref. [115] and note which meson masses are fixed.

5See Refs. [32, 42, 93] for an example in the context of calculations of the hadronic vacuum polarization contribution
to the muon’s anomalous magnetic moment, especially Table 1 of Ref. [93].



Chapter 4

The p-function of the pure Yang-Mills system

In this chapter, we get our feet wet with calculating RG S-functions on the lattice using the
pure SU(3) Yang-Mills system. Gradient flow and its connection to the renomalization group is
discussed in Secs. 4.1-4.2. The continuous f-function method (CBFM) for extracting the continuum
B-function from gradient flow is outlined in Sec. 4.3. I calculate the continuum RG S-function for
the Ny = 0 system using the CBFM in Sec. 4.5. From the S-function, I calculate the pure Yang-Mills
A-parameter in Sec. 4.6. I end this chapter with a proposal for matching S-functions from different
RG schemes non-perturbatively in Sec. 4.7. The main results of this chapter are based on the works

of Refs. [181, 294].

4.1 Gradient flow

The S-function in this chapter relies upon the gradient flow transformation [252, 253, 272]
and its connection to renormalization group transformations [72-74]. Using the notation of Chapter
2, the gradient flow transformation is a continuous smearing operation on the elementary fields {¢;5}
along the gradient of some flow action St [@f] 1

The gradient flow equation for a pure Yang-Mills system is [253, 254]

d2u(z,t) 5 0Sym[Ay]

_ _g2oovmlPhl 4.1
at 90590, (w, t) (4.1)

!Sometimes, it is preferable to include extra terms in the gradient flow equation that force the gradient flow to
preserve some symmetries of Sf [gof]; as a simple example, I derive a gradient flow equation for the XY model in
Appendix E.
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where Qlu(:n’t)‘t:o = Ay, (x), Sym[RA,] is defined in Eqn. 3.2, and dSym[2A,] /62, (x,t) is a somewhat
sloppy notation for a distributional derivative of Syn with respect to 2, (x,t). A lattice discretization

of the continuum Yang-Mills gradient flow is [253, 254|

d

auu(n,t) = — 8 (00 ST UL Uy (0, 1), (4.2)

with U, (n, t)‘tzo = U,(n) and the action St{,] some lattice discretization of Synm[RA,,] (such as the

Wilson action of Eqn. 3.8). I call S'[i4,] the flow action. The differential operator

Op = TOL, (4.3)

is defined by the action of J;; , on a differentiable function F' of the SU(NV) links U,,(n, ...) as [252]

a _ i sX*(m,v)
On U, ) = —F (e Uy(n, ..)) = (4.4)
where
X%m,v)=T*if (m,v) = (n,u) else 0. (4.5)

I have intentionally not specified the co-domain of F'. Note that the basis for the Lie algebra that 9y, ,
is defined with respect to is arbitrary. For this thesis, I follow Ref. [253] and choose the conventional
basis {7'*} normalized as

1

—gab (4.6)

Tr [T°T"] = -5

and satisfying the structure equation

[Ta7 Tb] _ fabcTc’ (47)

along with various other relations that follow from the completeness of the {7} basis. See Chapter

8.1.2 for a description of numerically integrating the gradient flow equation of Eqn. 4.2.
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4.2 Renormalization and gradient flow

The gradient flow equation is a dissipative Langevin equation without noise [72, 389]. The
latter realization bears a fruitful connection between gradient flow and stochastic renormalization
that was worked out in Refs. |72, 73|; however, there is still more work that could be done along
this direction. Though the construction of Refs. [72, 73] is more rigorous, it is conceptually simpler
to parse out the connection between gradient flow and renormalization by thinking in terms of the
real-space RG transformation that I briefly touched upon in Sec. 2.1 [74]|. Note that there are also
many wonderful works that discuss the connection between gradient flow and the renormalization
group at length in terms of ezact renormalization group transformations [263, 264, 337-339|, along
with various other perspectives |2, 68, 238, 256, 257, 345|.

The gradient flow transformation suppresses wave number fluctuations in the 7/a < |k| < 7/bia
shell for b; oc /8t /to with o some dimensionful constant that makes b dimensionless [250]. Returning
to the notation of Chapter 2, define the RG blocked fields {@%bt)(nbt)} (np, = n/by) in terms of the

gradient flowed fields {¢j(n,t)} as [74]

2" (my,) = gy(n. 1), (4.8)

From the RG blocked fields, define the rescaled (renormalized) fields as

" () = Zi(b)p"™ (), (4.9)

where Zj(b;) is the wave function renormalization of ¢;. The wave function renormalization Zj(b;) is
fixed by requiring that the correlation functions of {5} are preserved at long distances (compared to
the lattice spacing of the unblocked lattice). Assuming that the definitions in Eqns. 4.8-4.9 describe
an RG transformation for local operators at asymptotically large b;, one can define a renormalized

coupling g?(by) in terms of the expectation value of a local operator O(b;) that does not renormalize;
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ie.,
9°(be) ~ (O(br)). (4.10)
The corresponding S-function is
dgz (b)
2\ — 123
Bal9a) = =0 =5 (4.11)

Note that I have been careful to state that gradient flow describes an RG transformation, as the
definitions of Eqns. 4.8-4.9 cannot fully specify a true RG transformation on their own. This is
evident from the fact that the GF equations are reversible; gradient flow suppresses short-distance
fluctuations, but it does not remove them completely. Nonetheless, gradient flow is capable of

describing an RG transformation for (expectation values of) local operators at asymptotic by [72, 73].

4.3 Introduction to the continuous g-function method

Consider the Yang-Mills energy density
1
E(z,t) = —§%Trc (B (2, )T (2, )] (4.12)

at GF flow time ¢. The observable t?(E(x,t)) has no wave function renormalization [250]. Hence, I

can use it to define a renormalized coupling in infinite volume as
g&r(t) = N(PE()) (4.13)
and corresponding renormalization group S-function as
Bar (gér) = _t%QéF(t)- (4.14)

The normalization N’ = 12872 /(3N? — 3) is chosen such that g&p matches giTS at tree-level [252].
The renormalized coupling of Eqn. 4.13 tracks the renormalized trajectory that emerges from the

UVFP of the gauge-fermion system, should it exist [256]. Note that I have not once referred to
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perturbation theory in defining géF outside of the choice for A/. That is not meant to say that

perturbation theory will not be useful for either improving or modifying the definition of géF.

4.3.1 Defining the gradient flow renormlized coupling in a finite volume

I wish to calculate the RG S-function of Eqn. 4.14 from finite-volume lattice simulations. To
this end, one must start out by defining the renormalized coupling in a finite volume. This is more
tricky than it may sound. The low-energy dynamics of an interacting gauge-fermion system in a
finite volume with periodic boundary conditions is dominated by gauge zero modes [247|. The effect
of the gauge zero-modes on the finite-volume Yang-Mills energy density (E(t; L)) must be treated
exactly when defining the renormalized coupling. The details of properly treating the gauge zero

modes were worked out in Ref. [130]. At leading order in the renormalized coupling of the MS

scheme gI%TS, the Yang-Mills energy density is related to gl%/TS as [130]
(PE(t L) = N o) (1+6(t, L)), (4.15)
where
o1/, 5
(t, L) = —3 <L2> + 9 <eXp (-St/L )) 1 (4.16)
and ¥(-) is the Jacobi elliptic function
U (z) = Z . (4.17)
As
dars = ger + O(96r) (3g/4m < 1) (4.18)

at tree level, a suitable definition of the gradient flow coupling in finite volume is

Be(ts) = 15 (P ) (4.19)
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Crucially, as t/L? — 0, so too does 6(t, L) — 0. Therefore, the definition of Eqn. 4.19 approaches
the infinite volume definition of the renormalized coupling in Eqn. 4.13 as t/L? — 0. Note, also,

that Eqns. 4.15-4.19 imply that the leading finite-volume effects in g&p(¢; L)/4m <1 are

gar(t; L) ~ gap(t) + r(t/L?)° (gér/Am < 1), (4.20)

where k is a constant whose dependence on ¢ is revealed through non-perturbative simulations. One
could have guessed the latter scaling of g4 (t; L) in ¢/L from the mass dimension of E(t, L); such

scaling is likely to hold outside of the weakly-coupled perturbative regime.

4.3.2 Discretization of the Yang-Mills energy density and tree-level improvement

In this chapter, I discretize E(t) with the Wilson discretization (W), the Symanzik discretization
(S), and the clover discretization (C). I have described the Wilson and Symanzik discretization of the
Yang-Mills energy density in Chapter 3.1 and Appendix F, respectively. The clover discretization of

the Yang-Mills energy density is obtained from a direct discretization of §,,(z) as [142]

I;Sf/lov')(n) ~ (Quu(n) — Quu(n)) ~ aFu(an) (a — 0), (4.21)

where

Quv(n) = U (n) +Uy,—p(n) + U—p—o(n) + U—p,u(n) (4.22)

and the plaquette U, (n) is defined in Chapter 3. The negative indices are to be interpreted as

reversing the direction of the gauge links that make up a particular plaquette via the prescription

U_p(n) =U,(n— ). (4.23)
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To this end, I calculate the lattice-discretized renormalized coupling in finite volume as

g&r (L, gp) = (PE(t: L)) g, (4.24)

1+0(t, L)

where E(t; L) is discretized with the Wilson, Symanzik or Clover discretization. I refer to these
discretizations as different “operators” to follow the language used in the literature. In fact, one can
do better than Eqn. 4.24. By redefining (¢, L) in Eqn. 4.16, one can correct tree-level discretization
effects in géF (t; L, g%). The manner in which this is done is similar to the tree-level improvement

that I briefly discuss in Appendix F and it is outlined clearly in Ref. [123]. Defining

ap, = 2sin (apM/Z) and

apy, = sin(apy),

one can express the kernel S, for an improved lattice action as [123, 139, 248, 369, 370|

S =0 (ﬁQ —a’c Zﬁﬁ — aZCIﬁiﬁ) — Puby (1 — azclﬁi — aZCIﬁz) (Symanzik)  (4.25)
p

Dup )ap”% (clover), (4.26)

or (5uyﬁ2 — Pubv % apu

where ¢ is an improvement coefficient similar to ¢p/¢; in Appendix F. In terms of S,,,, for the flow

wa, action Sjj,,, and E(t) operator S, the tree-level improved 46(t, L) is [123]

2 L/a—1
5(t, L) = ;(?f) (2 +Tr Y e [—t(Sf + g)] (S* +G) L exp [-t(sf + g)]se> —1, (4.27)
n,=0,n270
where
L.
guu = ap,upl/ (428)

is a gauge fixing factor. Despite the Eqn. 4.27 involving G, the correction §(t, L) is gauge-invariant.

The tree-level correction (¢, L) from Eqn. 4.27 is included in the definition of 9(2}F (t; L,g%) by
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calculating §(t, L) numerically with a = 1.

4.3.3 Extracting the continuum gS-function from finite-volume simulations

I wish to calculate the infinite-volume gradient-based RG S-function in the continuum from
the finite-volume gradient flow coupling defined in Eqn. 4.19 with §(¢, L) given by either Eqn. 4.16
or Eqn. 4.27. One way to do this is by the method of step-scaling [130, 254, 307|, whereby one

defines a renormalized coupling that runs with the volume L as [130]

92(L. g5) = g (t; L,gg)‘ (4.29)

8t=(cL)? ’

As such, each value of ¢ defines a renormalization scheme. From g2 (L, 9(2)), one typically either

calculates the discrete S-function

92(sL,g3) — ¢*(L. g3)

2, 2\ —
BC,S (gc7 L7gO) - log 82 (430)
or its closely-related cousin, the step-scaling function
Ses(wsLygg) = gz (sLig)| , - (4.31)
92(L.g5)=u

Note that the difference between the discrete S-function and step-scaling function is superficial. Once
one has either of the two, a continuum extrapolation to the a/L — 0 limit at fixed g2 is performed.
Step-scaling has been applied with great success to a variety of important gauge-fermion systems;
see, for example, Refs. [56, 66, 91, 92, 124, 125, 130, 132-134, 183-187, 244, 245, 269, 306]. However,
there is one issue that step-scaling cannot overcome: it requires that the volume L is the only
dimensionful scale that is available to the system [131, 294]. As such, step-scaling is not applicable to
large-volume confined regime of a lattice gauge-fermion system, where confinement introduces another
infrared scale; namely, the confinement scale. In the lattice gauge theory literature, the “large-volume

confined regime” is referred to the p-regime; usually, “large volume” means M oL > 1, where M o is
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the mass of the neutral pion. This is to be juxtaposed against the small-volume deconfined regime;
i.e., the e-regime (M oL < 1). To get around the latter shortcoming of step-scaling, a method for
extracting the infinite-volume gradient flow S-function was proposed independently by the authors
of Ref. [131] and the authors of Refs. [189, 190].

The method by which the infinite volume S-function of Refs. [131, 189, 190] is calculated is
referred to in the literature as either the continuous B-function method (CBFM) or infinite volume
B-function. In this thesis, I follow the convention of Refs. [189, 190] and refer to it as the CBFM.

For a massless gauge-fermion system, the CBFM proceeds conceptually in three steps.

(1) Finite-volume coupling and S-function: Calculate géF (t; L,gg) using Eqn. 4.24 and

Bar (t; L,gg) = —tdgip (t; L,gg)/dt, where 0(, L) is given by either Eqn. 4.16 or Eqn. 4.27.

(2) Infinite volume limit: There are many ways that this can be done. The two that have

been explored for massless systems thus far are as follows.

e Extrapolate Sar (t; L,g%) linearly in a*/L* at fixed t/a® and gy (t; L,gg) [189, 190].

e Extrapolate both gy (t; L, g3) and Bar (t; L, g3) linearly in a*/L* at fixed ¢/a? and g3.
This was first explored in Ref. [294] and subsequently deployed in Refs. [180, 181, 235,
294, 380]. This approach avoids potential systematic uncertainties that are associated

with finite-volume effects in g2y (t; L, gg).

In Ref. [131], another method for extracting the infinite volume [-function for massive
gauge-fermion systems has been explored. This method corrects for finite-volume effects using
a generic ansatz for Goldstone-boson-induced round-the-world effects. The Goldstone boson
masses are then extrapolated to the chiral limit using information from chiral perturbation
theory applied to gradient flow observables [29]. See Ref. [177] for recent developments
regarding the CBFM for massive systems. If finite-volume effects are small, then extrapolating
to the infinite volume limit may not be strictly necessary, depending on the desired precision;

see, for example, Refs. [178, 179].
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(3) Continuum limit: In Sec. 3.4, I stated that the continuum limit of a gauge-fermion system
is taken by fixing the renormalized coupling and tuning gg to a critical surface. This is
accomplished by extrapolating infinite-volume-extrapolated S-function Bag (t; gg) linearly in
a®/t at fixed géF = géF (t) Extrapolating in a?/t — 0 automatically tunes g(% — 0. Each
géF(t) specifies a point on the renormalized trajectory in the right panel of Fig. 3.1. Hence,
the continuum extrapolation can be thought of as projecting the RG flows that start off of

the critical surface onto the renormalized trajectory.

Since its inception is Refs. [131, 189, 190], the CBFM has been applied to a variety of massless
SU(3) gauge-fermion systems with Ny = 0 [181, 294, 380|, N¢ = 2 [177, 189, 190], N¢ = 10 [179, 235],
and Ny = 12 [180, 189] fermions in the fundamental representation of SU(3). In Chapters 5 and 7,
I shall apply it to the Ny = 12 and 8 systems, respectively. The CBFM has also been applied to
the massless SU(4) gauge-fermion system with four fermions in the fundamental respresentation of

SU(4) and another four fermions in the two-index antisymmetric representation of SU(4) [178].

4.4 Simulation details

The continuum S-function in this chapter is extracted from Hamiltonian (hybrid) Monte Carlo
(HMC) simulations that utilize a tree-level improved Symanzik (Liischer-Weisz) gauge action [112,
248, 251], as implemented in the GRID C++ mathematical object library [47]. If the reader is unfamiliar
with the HMC algorithm, consider reading Chapter 8.1.1. For a description of tree-level improved
gauge actions, see Appendix F. All lattices used in this chapter are symmetric and possess periodic
boundary conditions in all four directions. In Table 4.1, I list the full set of volumes 20 < L/a < 48
(five total) and bare gauge couplings 4.3 < B, = 6/g2 < 9.5 (nineteen total), along with the total
number of thermalized samples “No.” and the acceptance rate “Acc.” for each statistical ensemble
(L/a, Bp). The molecular dynamics trajectory length (see Chapter 8.1.1) is set to 7 = 2 and each
statistical sample is separated by a total of 20 molecular dynamics time units (MDTU). Integration

of the gradient flow equations (see Chapter 8.1.2), along with the measurement of gradient flow
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L/a
20 24 28 32 48

B Acc. No. Acc. No. Acc. No. Acc. No. Acc. No.
430 87.9% 451 86.6% 467 853% 297 80.7% 165
435 86.5% 451 84.8% 458 82.0% 277 788% 171
440 86.6% 451 80.8% 460 83.7% 272  82.3% 167
450 85.1% 451 84.2% 501 86.2% 1391 81.0% 250
460 86.1% 451 85.2% 490 83.3% 1040 84.9% 202
470 84.2% 451 84.1% 490 80.5% 681  82.1% 201
480 86.5% 451 88.0% 469 80.5% 681  78.9% 140
490 85.0% 451 85.3% 491 82.7% 701 83.4% 163

5.00 82.6% 451 85.5% 456 81.0% 772 77.3% 211 80.8% 124
5.30 84.4% 451 88.3% 534 82.9% 911  18.4% 656 81.8% 139
550 83.6% 451 87.6% 456 81.8% 701  77.8% 608 782% 149
6.00 84.4% 451 84.6% 476 84.6% 661 79.2% 472 T76.8% 227
6.50 81.1% 451 80.7% 486 82.8% 661 85.0% 563 T7.4% 233
7.00 81.3% 451 792% 461 81.7% 701  84.6% 527 T4.7T% 241
750 82.6% 451 81.3% 466 80.5% 661  83.7% 489 73.6% 224
8.00 81.3% 451 783% 456 76.1% 701  85.0% 487 73.3% 211
850 788% 451 T7.4% 461 79.5% 661 81.6% 462 T74.6% 211
9.00 782% 451 76.8% 581 78.0% 524 81.6% 531 T1.7% 208
950 774% 621 77.5% 481 T7.7% 547 81.7% 541  69.2% 208

Table 4.1: From Ref. [181]. Total number of configurations “No.” and acceptance rate “Acc.” for
each volume (L/a)* and bare gauge coupling 3, = 6/¢32 that is used to extract the continuum renor-
malization group S-function for the pure Yang-Mills system. Each statistical sample (configuration)
is separated by 20 molecular dynamics time units (see Chapter 8.1.1).

observables is performed using the QLUA software library [300].
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Figure 4.1: From Ref. [181]|. The (direction-averaged) gradient-flowed Polyakov loop magnitude at
flow time 8t = (L/2)? against the bare gauge coupling on different volumes (indicated by different
colors; see legend).

4.4.1 Physical regimes of the pure Yang-Mills system in a finite box

As the coupling [ increases at fixed L/a, the pure Yang-Mills system transitions from
exhibiting signs of confinement to being deconfined. It is important to note, however, that there is
no zero-temperature deconfinement phase transition in the pure Yang-Mills system. Instead, the
smooth transition between the two regimes reflects a difference in the physics that occurs at short
distances (small physical volumes, e-regime), where the system is asymptotically free, and the physics
that occurs at long distances (large physical volumes, p-regime), where the system is confining. As a
consequence of center symmetry breaking, the temporal Polyakov loop (a.k.a. thermal Wilson line)

[36]
L/a—1

1

Pp=—— ST [u } 4.32

17 N(L/a)3 Z Te H 4(n) n=(nm4) (4.32)
n na=0

is an order parameter for the first-order deconfinement phase transition that the pure Yang-Mills

system exhibits at finite-temperature |55, 153, 310]. One can define the Polyakov loop similarly in

any direction; therefore, I will refer to it as P; for x = 1,2, 3,4 henceforth. At zero-temperature,
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the expectation value of the Polyakov loop magnitude (|P;|) is ezactly zero in the infinite volume

limit. In a finite volume, the zero temperature (|P;|) approaches zero as the size of the volume
increases. Because small physical volumes? probe only short-distance properties of the Yang-Mills
system, they are governed by asymptotic freedom. The physics of confinement should be manifest
in the large physical volume regime; hence, the expectation value of the Polyakov loop magnitude
should approach zero in this regime. Because the Polyakov loop expectation is merely reflecting
the infrared properties of the zero-temperature pure Yang-Mills system that are accessible from a
particular physical volume, the transition between the two regimes must be smooth. Moreover, the
infinite volume limit of observables that are measured in either regime must be consistent over the
physical scales that they are capable of capturing. Put another way, there is no phase transition
that separates one finite-volume zero-temperature regime from another in the infinite volume limit;
therefore, the phase of their zero-temperature thermodynamic limit must be consistent.

Estimating the Polyakov loop from lattice simulations can be quite difficult, as it exhibits
considerable statistical noise. Luckily, gradient flow can be used to dramatically reduce the statistical
noise in the Polyakov loop [295]. In Fig. 4.1, I plot the magnitude of the gradient-flowed Polyakov
loop averaged over all four directions at gradient flow time 8t = (L/2)2. As expected, the Polyakov
loop increases with fy at fixed L/a and varies inversely with L/a at fixed 8 < 4.0, where all volumes
are safely in the confined regime. Moreover, because the simulations in this chapter are performed
in a finite box, the Polyakov loop is never exactly zero. There is a sudden, yet smooth, jump in
the Polyakov loop on all volumes around 5.0 < 8, < 6.0. The region about which the jump occurs
corresponds to the range in gg over which the volumes that have been simulated in this chapter
traverse the confinement scale.

The physics of confinement could be intimately tied to the presence of instantons in the vacuum

of gauge-fermion systems® [326]. Lending support to this idea is the observation of an increase in

2By “physical”, I am referring to the size of the volume expressed in units of the scale at which confinement kicks in.

3To a physicist, instantons are particle-like local optima of the classical action. See Ref. [326] for a classic overview
of instanton physics and Ref. [138] for more modern treatment. For a more mathematically precise treatment of
instantons, see Refs. [41, 270].
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statistical fluctuations of the topological charge once the physical volume crosses the confinement

scale. According to the Atiyah-Singer index theorem [24], the continuum topological charge

cont. 1
ngp,t) = 3271_26;11/,00/(1455 Tre [Suu(x)gpa(x)] (4.33)

is related to the number of instantons ny and anti-instantons n_ as
(cont.)
Qtop.  =n4 —n_ €Z (4.34)

Different integral values for @) are referred to as topological sectors. An analogue of the topological
charge on a hypercubic spacetime lattice can be defined in terms of the clover discretization of § ., ()

in Eqn. 4.21 as

Q(lat.) o 1

top. = 353 hveo > Tre [FLo) (n) Fidov) (n)] (4.35)

or any other lattice discretization of F,, () [4]. As was the case for the Polaykov loop, measuring the
topological charge from lattice simulations is extremely difficult without the use of noise reduction
techniques. Moreover, since the Atiyah-Singer index theorem applies to continuum gauge fields, the
lattice discretization of the topological charge is not necessarily an integer. Once again, gradient
flow comes to the rescue, as it acts to suppress the short-distance fluctuations that give rise to
the statistical noise in QELaPt) and which prevent individual gauge configurations from at least
approximately realizing the index theorem [252]. Note that this is not because gradient flow is
somehow reducing the lattice spacing. Rather, the gradient flow takes the topological charge closer
to the renormalized trajectory (“longer distances”), where cutoff effects are suppressed and the lattice
discretization of the topological charge converges to its integral continuum counterpart.
Corroborating the onset of confinement in the simulations of this chapter is the presence of
fluctuations in gradient-flowed topological charge at 8t = (L/2)? for 8, < 5.0. As S, decreases, the
frequency and magnitude of tunneling events between different topological sectors increases. For

the purposes of illustration, I have plotted Monte Carlo time history of the topological charge on a
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Figure 4.2: The Monte Carlo time history of the gradient-flowed topological charge at flow time
t = (L/2)? on a box of size (L/a)* = 32* at 3, = 4.3 (top left panel), 4.6 (top right panel), and 7.0
(bottom panel).

(L/a)* = 32% volume at 3, = 4.3,4.6 and 7.0 in Fig. 4.2. At the strongest coupling 8, = 4.3, the

lat.)

op. S 40. Closer to the region where L/a = 32

topological charge fluctuates in the range —40 < QE
traverses the confinement scale at £, = 4.6, the topological charge only fluctuates in the range
—10 < Qgﬁ;ﬂ_‘) < 10 and it takes longer for the topological charge to tunnel between sectors. The
increase in the Monte Carlo time that it takes for the system tunnel between topological sectors
as [ increases is a consequence of critical slowing down. Well within the deconfined regime at

Ega;..) ~ 0. Due to the fast running of the pure Yang-Mills

By = 7.0, the topological charge stays at Q
system, the impact of a non-zero topological charge is not resolved statistically. This is quite different
from what is observed in slow-running systems, where tunneling between topological sectors can

have a significant impact on géF (t; L, g%) [191]. Furthermore, following the recommendation of

the step-scaling study of Ref. [92], I have estimated gZp (t; L, gg) from filtered configurations with
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Qgi;’) ~ 0 and no significant impact on the resulting estimate for géF (t; L, gg) is observed, aside

from a significant increase in the statistical error.

4.5 Calculation of the continuum S-function

Following the first step of the CBFM laid out in Sec. 4.3, I calculate the renormalized coupling
géF (t; L, 9(2)) using Eqn. 4.24 with 6(¢, L) given by either Eqn. 4.16 or Eqn. 4.27. The operator &¢
from which I estimate the Yang-Mills energy density E(t; L) is either the Wilson operator of Eqn.
3.8 (8¢ = W), the Symanzik operator defined in Appendix F' (S§¢ = S), or the clover operator defined
in terms of Eqn. 4.21 (8¢ = C).The flow action S’ is either Wilson flow ST = W or Zeuthen flow
S = 7, which is defined in Chapter 8.1. I refer to a specific combination of flow St and E(t, L)
operator S¢ as “STS®”; e.g., the Zeuthen flow action for S¢ with Symanzik action for S is “ZS”. If
tree-level corrections are included in 6(¢, L) (Eqn. 4.24), then an “n” is prepended to “S'S®”; e.g.,

“nZS”. From géF (t; L, gg), I calculate the RG S-function in a finite volume as

d
Bar (t: L, g5) = —t7-96r (L, 93) (4.36)

where the derivative d/dt is discretized using a 5-point stencil [302]; explicitly,

d
1251@9& (t:L,g3)

~ —gap (t +20t; L, g3) + 8g&p (t + 0t; L, g3) — 8g&r (t — t; L, g3) + g&r (t — 26t; L, g3). (4.37)

I set value for 6t = 0.04 by the time step “€” that is used to integrate the gradient flow equations (see
Chapter 8.1.2). T have checked to ensure that the estimate of Sgp (t; L, gg) from Eqns. 4.36-4.37 does
not change significantly if I use a high-order stencil. I have also checked that lower-order stencils
converge comfortably to the 5-point stencil of Eqn. 4.37. A time step of ¢ = 0.01 has also been
run on select ensembles as a crosscheck of the choice for € used in this chapter and no significant

change in E(t, L) is observed. Correlated statistical uncertainties are estimated and kept track of
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using the automatic error propagation tools of the gvar library [241]. All fits in the rest of this
chapter are performed using the 1sqfit library [240], which utilizes the robust trust region reflective
algorithm implemented in the SciPy library to estimate fit parameters via mazimum a posteriori
(MAP) estimation [49, 361]. Correlated uncertainties in fit parameters are estimated via Laplace
approximation of the posterior distribution over the fit parameters about their MAP estimate; see

Appendix D and Chapter 8.2 for further details.

4.5.1 Infinite volume extrapolation

As the Yang-Mills energy density is a dimension-4 operator, finite-volume effects in géF (t; L, g%)
and Bgr (t; L,gg) are expected to be O(t2/L4). By fixing both 8, = 6/¢3 (i.e., the lattice spacing)
and the flow time in lattice units #/a?, both géF (t; L,gg) and Bgp (t; L,g%) scale with the linear

extent of the lattice L/a according the generic ansatz

FV(t; L, g5) = k1 (t; g5) + k2 (t;gg)(a/L)4 (fixed t/a® and Sy), (4.38)

at leading order in ¢/L. The “constants” k; (t; gg) and ko (t; gg) are fixed for any specific (t/a?, By)
pair. I extrapolate géF (t; L, gg) and Bgr (t; L, gg) to the a/L — 0 limit by independently fitting both
of them to the ansatz of Eqn. 4.38. In Fig. 4.3, I illustrate typical infinite volume extrapolations
for géF (t; L, gg) (left panels) and Bgr (t; L, g%) (right panels) at one “weak coupling” 3, = 6.00, two
“intermediate couplings” f, = 5.5,4.9, and one “strong coupling” 5, = 4.35 (top panel to bottom
panel). The renormalized couplings and correspond S-functions in Fig. 4.3 are derived from the
“nZS” combination. Each panel shows the infinite volume extrapolation at five fixed flow times
t/a® = 2.0 (yellow), 2.52 (green), 3.0 (blue), 3.52 (purple), and 4.0 (red).

In the strong coupling regime, confinement introduces an additional infrared scale. As such,
finite volume effects in the strong coupling regime are suppressed. Therefore, I utilize the full set
of volumes 20 < L/a < 32 over 4.3 < (3, < 4.9 (see Table. 4.1), as illustrated in the bottom two

panels of Fig. 4.3. In the weak coupling regime, where the volume furnishes the only infrared
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Figure 4.3: From Ref. [181]. Illustration of the infinite volume extrapolation of gy (¢; L, g3) (left

70

panels) and Bgr (t; L,g%) (right panels) at 5, = 6.00,5.50,4.90,4.35 (top to bottom). Colored bands
indicate the statistical error of the extrapolating curve and the central value is indicates the central
value. Black markers (with error bars) contribute to the fit, whereas grey markers are not included
in the fit and are shown for the purposes of illustration.
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scale, finite-volume effects are more pronounced. This can be seen in the top panel of Fig. 4.3,
where it is clear that the L/a = 20 simulations deviate significantly from the linear trend in a*/L*.
Therefore, I drop the L/a = 20 volumes and utilize an additional set of L/a = 48 volumes in the
weak coupling regime (6.0 < 5, < 9.5, with the exception of 8, = 6.0 on L/a = 20). In the transition
region (4.6 < B, < 6.0 for 20 < L/a < 40), the integrated autocorrelation time for g2p (t; L, gg) and
BaF (t; L, gg) increases significantly from a maximum for 80 MDTU outside of the transition region
to a maximum of 300 MDTU within the transition region. Such long integrated autocorrelation
times likely lead to underestimated statistical errors, even after they have been explicitly taken into
account via binning.

Overall, most fits have acceptable p-values (p 2 10%). See Chapter 8.2 for a refresher on
goodness-of-fit; namely, the notion of a p-value. Notable exceptions occur at 8, = 5.0,5.3 and 5.5,
which are well within the transition region. The p-values for extrapolations at 8, = 5.0 are in the
1.4% < p < 3.1% range. The infinite volume extrapolations at 5, = 5.0 are the only extrapolations
that utilize all five volumes; however, the extrapolations at 5, are dominated by the largest volumes.
Infinite volume extrapolations at 5, = 5.3 possess nearly vanishing p-values. Significantly increasing
the number of statistical samples for each ensemble at 8, = 5.3, especially those that are solidly within
the transition region, does not improve the p-value for the extrapolations at 8, = 5.3. Therefore,
By = 5.3 likely suffers from sitting on top of the transition region and is dropped from the central
analysis. The p-values for infinite volume extrapolations at 8, = 5.5 are in the 0.14% < p < 0.4%
range. The extrapolation at 8, = 5.5 is illustrated in the second-to-top panel of Fig. 4.3. Such small
p-values are possibly attributable to underestimated errors on L/a = 32, as it generally deviates

from the linear trend in a*/L* at the ~ 20 level.

4.5.2 The effect of tree-level improvement

Including corrections for tree-level cutoff effects in 0(¢, L) (Eqn. 4.27) has a significant impact
on the consistency of estimates for géF (t; L, gg) from different S'S® combinations in the weak

coupling regime, and, surprisingly, in the strong coupling regime, though to a lesser extent. Fig.
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Figure 4.4: From Ref. [181]. Infinite-volume-extrapolated gradient flow coupling géF (t; 9(2)) at
By = 6.0 without tree-level corrections (left panels) and with tree-level corrections (right panels)
against t/a?. Wilson operator indicated by blue back, Symanzik by red, and clover by green. Zeuthen
flow shown in top panels and Wilson flow shown in bottom panels.

4.4 illustrates the effect of tree-level corrections on the infinite-volume-extrapolated GF coupling
G (t;gg) at weak coupling (8, = 6.0) for ST = Z (top panels) and S = W (bottom panels).
Different colors indicate different operators §¢, with §¢ = W (Wilson, blue), 8¢ = S (Symanzik,
red), and S¢ = C (clover, green). Similarly, Fig. 4.5 illustrates the effect of tree-level corrections on
G (t; gg) at strong coupling (8, = 4.35) for the same set of flow/operator combinations SfS¢ as in
Fig. 4.4.

At weak coupling, where the perturbatively calculated tree-level corrections should have the
most significant impact on the estimate of géF (t; gg), there is a substantial gain in consistency
between different S'S¢ (right panels of Fig. 4.4) in comparison to unimproved estimates of géF (t; gg)

(left panels of Fig. 4.4). This is holds for the entire range of ¢/a? that I use in the continuum
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flow shown in top panels and Wilson flow shown in bottom panels.

extrapolations of Sec. 4.5.3, though there is a slight gain in consistency as t/a? increases. Tree level
corrections also improve the consistency of different SfS® combinations at strong coupling, though
the improvement is less dramatic than it is at weak coupling. It also degrades with increasing t/a?.
That tree-level corrections provide any considerable level of improvement at such strong couplings
(6 < géF (t; gg) < 20) is surprising, though the observation a degradation of the improvement as
t/a® increases is less so. In any case, the significant effect that tree-level corrections on the estimate
of géF (t; gg) over the entire range of renormalized couplings that I explore in this chapter justifies
their exclusive use throughout the rest of this chapter. Henceforth, all estimates of géF (t; 9(2)) will
utilize tree-level corrections. It has been checked that unimproved géF (t; gg) yield consistent results

for the continuum S-function (though with a considerable increase in error). Furthermore, based
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Figure 4.6: From Ref. [181]. Interpolation of Sar(t; 93) in g&p (£ 93) at fixed t/a® = 2.0 (yellow),
2.52 (green), 3.0 (blue), 3.52 (purple), and 4.0 (red). Different colored symbols correspond to
(95 (t;93), Bar(t;93)) pairs at 2.0 < t/a® < 4.0. Colored bands indicate the interpolated S-function

from Eqn. 4.42. In the lower panel, I plot Sgp (t; gg) / géF (t; gg) to enhance the weak coupling
regime.

on the improvement from tree-level corrections observed in Figs. 4.5-4.5, the central results of this
chapter will be based on the nZS combination; however, I will return to the systematic uncertainty

that is associated with choosing a particular S'S® combination in Sec. 4.5.4.
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4.5.3 Continuum extrapolation

The continuum extrapolation at a particular géF is taken by fixing géF = géF(t) and
extrapolating Bgr (t; gg) to the a?/t — 0 limit. As the leading discretization effects in Bgp (t; gg) are
O(a2 / t), achieving the latter goal requires obtaining a collection of pairs (BGF (t; gg),t/ a2) at each
fixed géF over which the continuum extrapolation is performed. For each fixed 9(2}}?7 the S-function
Bar (t; gg) is extrapolated to the continuum a?/t — 0 limit by fitting the (BGF (t; gg),t/aQ) at that

géF to the ansatz

Bar (t: 95) = Bar (9&r) + K(t)(a®/t) (fixed g&p), (4.39)

where £(t) is a t-dependent “constant” and Sgp (géF) is the continuum S-function at géF. Note that
there is a hidden assumption here, being that the leading discretization effects in géF (t; gg) are
suppressed compared to those in Bgp (t; g%) or, at least, that they can be absorbed into x(t) when
extrapolating Bgr (t; g%) to the continuum limit with Eqn. 4.39. If this is not the case, then there is
an ambiguity in the a?/t — 0 limit due to ¢ not necessarily being fixed along the continuum limit.
In practice, this potential issue does not appear to affect the continuum extrapolation, so long as

there is sufficient control over cutoff effects; though it should be kept in mind in any application of

the CBFM.

4.5.3.1 Intermediate interpolation

To obtain the (BGF (t; gg),t / a2) pairs that are required to take the continuum limit at any
fixed géF, I must interpolate Sgp (t; gg) in géF (t; gg) over available t/a? entering the continuum
limit. Obtaining the necessary (BGF (t; gg),t / a2) pairs then follows by choosing a set of t/a? over
which one wishes to perform the continuum extrapolation, fixing géF, then obtaining Baw (t; gg) at
that fixed g&p = gép (t; gg) from each fixed ¢/a® interpolation. The interpolation at each fixed t/a?
must be capable of accommodating the differing curvatures of Sgp (t; gg) in géF (t; gg) in the weak

coupling regime (g&p (t; 9(2)) < 4r) and the strong coupling regime (g2 (t; gg) 2 4m).
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Once t/a? is large enough to have reached the vicinity of the renormalized trajectory, the
dependence of the weak coupling S-function Sgp (t; gg) on géF (t; gg) should converge asymptotically

to its one-loop counterpart (see Chapter 1) as

Bar (1 95) ~ —bo (géF (t;fﬁ)/47r)2 (g2r (t:93) = 0) (4.40)

up to discretization effects. See Eqn. 1.9 for a definition of the one-loop universal constant by. In

the strong coupling regime, the S-function is observed empirically to be linear in géF (t; gg); that is,

Bar(t 93) < g&r (t: 95) (g&r (t: g3) = 4m). (4.41)

See, for example, the top panel of Fig. 4.6, which I will discuss in detail soon. This linearity in the
[B-function survives the continuum limit and I will discuss it further in Sec. 4.5.5. A simple polynomial
is not capable of describing such desperate regimes in the curvature without also introducing a
number of systematic effects that are difficult to control for. A better approach is to construct an
interpolating function that matches onto Eqn. 4.40 at weak coupling, Eqn. 4.41 at strong coupling,
and everything else in-between. This is achieved with an N-order ratio of polynomials Zy of the

form

N A
—pogép (1 + Zizl pig%fF)
NESY;
1+ 37000 4593k

In(gtr) = (4.42)

The leading power of géF in the numerator of Eqn. 4.42 explicitly forces Zy (géF) — —pog4GF as
géF — 0. The order of the polynomial in the denominator forces Zn (géF) x géF when géF J4m > 1.
Because discretization effects affect the asymptotic behavior of the S-function, the ansatz of Eqn. 4.42
may have the effect of cutting off the smallest values of ¢/a? that could viably enter the continuum
extrapolation. Nonetheless, the lowest order IV that reasonably fits the data is N = 4, which yields
p-values in the 17% — 32% range for 2.0 < t/a? < 4.0.

In the top panel of Fig. 4.6, I show the result of the intermediate interpolation over the
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Figure 4.7: From Ref. [181]. Continuum a?/t — 0 extrapolation between g4 = 1.2 to 15.8. The
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the different operators overlap and are barely distinguishable in the plot. The open symbols are not
included in the extrapolation fit. They are shown to illustrate the linear behavior of the data even
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Figure 4.8: From Ref. [181]. The predicted S-function (salmon colored band) overlayed with the
infinite volume extrapolated data at different bare coupling g, (colored data points) for our main
analysis based on nZ$ for flow times t/a? € [2.0,4.0], separated by At/a? = 0.2. The insert magnifies

the weak coupling region. The nZS combination shows very little cutoff dependence and the raw
lattice data sit on top of the continuum extrapolated value.

entire range of géF (t; gg) that the simulations of this chapter are capable of covering. I focus in

78
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on the weak coupling region in the bottom panel of Fig. 4.6. Following the suggestion of Ref.
[92], T normalize Bgp (t;gg) by géF (t;g%). Focusing first on the top panel of Fig. 4.6, I show the
result for the interpolation as multicolored bands with the same color scheme for the flow time
as in Fig. 4.3. Data points entering any interpolation at a particular ¢/a? are marked with “x”
markers with an error bar. The subpanel shows the weak coupling S-function. Grey lines correspond
to the perturbative 1- (dashed) and 2-loop (dotted) universal S-function, along with the 3-loop
(dashed-dotted) GF S-function from Ref. [161]|. Qualitatively, the S-function appears to converge
onto its perturbative counterpart as géF (t; gg) reaches deeper into the weak coupling regime. Any
mismatch between Sgp (t; g(Q)) and its perturbative counterpart in the weak coupling regime are
better visualized by inspecting Sgr (t;g%)/géF (t;gg), as is done in the bottom panel of Fig. 4.6.
Qualitatively, Bgp (t; g%)/géF (t; g(Q]) appears to approach the 3-loop GF curve as a?/t — 0 at fixed
géF (t; g%) < 2.0. In the strong coupling regime, the interpolated g-function becomes increasingly
linear in géF (t; g%), as | have already alluded to. Over the entire range of géF (t; gg), the scale of
the cutoff effects are much smaller than the absolute scale of Sgp (t; gg). Hence, one may expect a
fairly mild continuum extrapolation throughout the range of investigated renormalized couplings
géF (t; gg). We will see in Sec. 4.5.3 that the continuum extrapolations indeed support the latter

observation.

4.5.3.2 Continuum extrapolation

Now that I have interpolated Bgp (t; gg) in géF (t; g%) over a set of fixed ¢/a?, I can take the
continuum extrapolation at any géF that is covered by the fixed-t/a? interpolations using Eqn. 4.39.
The minimum flow time ¢,/ a? and maximum flow time tpax / a® over which the extrapolation is
performed must be chosen with care. If ¢,/ a® is too small, then the flow may not be close enough
to the renormalized trajectory for the linear scaling in Eqn. 4.39 to be realized. If tyay/a® is too
large, then the continuum extrapolation will pick up residual finite-volume effects due to the presence
of higher-order corrections to the finite-volume scaling of géF (t; L, gg) and Bar (t; L, g%) with ¢2/L%.

Because the S-function obtained from different flow /operator combinations must be consistent in the
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Figure 4.10: Continuum SBgp (géF) / géF over region where Bap (géF) / géF changes curvature. Colored
maroon band indicated continuum prediction for Sgr (géF) / géF from nZS combination. Grey lines
indicate 1- (dashed), 2- (dotted) and 3-loop (dashed-dotted) perturbative S-function [161].

continuum limit, [ use the consistency of the continuum extrapolation of g%F (t; gg) from operators

S€ to set the tmin/a?, tmax/a’ over which the continuum extrapolation is performed. The range
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Figure 4.11: From Ref. [181]. Systematic uncertainties with respect to our main analysis based on
nZS. By varying different parts of our analysis one after the other, we calculate the relative changes
of the central value and compare the size of the different systematic uncertainties (colored lines) to
our statistical uncertainty (salmon-colored band).

[tmin, tmax] /@ = [2.0,4.0] achieves a reasonable degree of consistency over 1.2 < g&p < 20; hence,
this is the range that is chosen for the central analysis. In Sec. 4.5.4, I estimate the systematic
uncertainty that is associated with different choices for i,/ a?, tmax / a’.

In Fig. 4.7, I illustrate the continuum extrapolation at fixed 1.2 < géF < 0.3N =~ 15.8 over
[tmin, tmax]/a? = [2.0,4.0] for 8¢ = W (Wilson, blue), S (Symanzik, red), and C (clover, green). The
multicolored bands correspond to the extrapolation and circular markers (with error bars) are the

data points used in the fit (filled) and left out of the fit (open). Note two interesting observations:

(1) relative to the absolute scale of the continuum limit, the Sgp (t; g(z)) from different S€ are

fairly close to one another and

(2) the continuum extrapolation for all §¢ are indeed quite mild in comparison to the absolute

scale of Sgp (t; gg).

Both of the latter observations are attributed primarily to the tree-level improvement discussed in

Sec. 4.5.2. The closeness of Bgr (t; g%) from different §¢ was already noted in Sec. 4.5.2, as it was
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the primary motivation for choosing only tree-level-corrected géF (t; L, g%) for the central analysis.
Without tree-level corrections, the slope for the continuum extrapolation from different S€ is generally
larger than those with tree-level corrections, which increases the statistical error in the continuum
extrapolation. To emphasize the latter point, I juxtapose the ﬁ(t;gg) at 4.3 < B < 9.5 (colored
markers with error bars) and 2.0 < t/a? < 4.0 from the nZS combination against its continuum
prediction B(géF) (maroon band) in Fig. 4.8. For better visibility, I spread out fixed /3, data points
in steps of dt/a? = 0.2. For the vast majority of 1.2 < géF < 27, the values for B(t;gg) at fixed Sy
either overlap with or are within the local vicinity of their continuum counterpart.

Note that the flow time is actually a continuous variable, as the gradient flow is a continuous
stochastic process. The discrete t/a? that enter the continuum extrapolation are highly correlated
with one another, which makes the covariance matrix for the data points that enter the continuum
extrapolation poorly conditioned (see Appendix D). One way out is to approximate the covariance
matrix by its diagonal components; however, the resulting x? and p-value lose their meaning. Even
worse, this “fix” can lead to underestimating the statistical error. To obtain Bgp (géF) with a reliable
statistical error, I first estimate the central value for Sap (géF) from a continuum extrapolation with
a diagonal covariance matrix. I then repeat the latter fit with data shifted by +1c. The statistical
error in Sgr (géF) is estimated from the half difference of the central value for Sgp (géF) from the
Bar (t; gg) + 1o fits. This ensures that I am able to perform the continuum extrapolation without
running into issues with the poorly conditioned covariance matrix and/or underestimated statistical
errors, as it essentially assumes that the data are 100% correlated.

The authors of Ref. [57] recently (as of the writing of this thesis) devised a method for
estimating the x? and p-value of “uncorrelated fits” (those that must approximate the covariance
matrix by its diagonal components) in such a way that both goodness-of-fit measures retain their
original meaning. I was not aware of this method at the time that I performed the analysis in this
chapter; however, I intend to include it in future analyses of the continuous S-function. Doing so
could open the door to using Bayesian model averaging as a means to estimate the various systematic

uncertainties that are present in the continuum extrapolation step of the continuous S-function
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method directly [210, 273, 274, assuming that the notion of subset select for continuous Gaussian
variables (i.e., a Gaussian process) can be defined unambiguously. I explore the use of Bayesian
model averaging for the infinite volume extrapolation step of the Ny = 12 continuous S-function
method in Chapter 5. It is also applied to the infinite volume extrapolation step of the Ny = 8

system in Chapter 7.

4.5.4 Systematic errors in the g-function

I estimate the combined statistical (Fig. 4.8) and systematic error in the continuum Sgp (géF)
from the nZS combination by first considering variations in the analysis that I have presented in
Secs. 4.5.1-4.5.3. The percent shift ABgp (géF) in the central value for continuum prediction for
Bar (géF) resulting from each variation is summarized in Fig. 4.11. Note that, as géF increases,
different SfS® begin to lose a2/t values over which the continuum extrapolation discussed in Sec.
4.5.3 can be performed. This results is small discontinuities in the central value for the continuum
B-function as géF crosses such thresholds. The values Bgr (géF) on either side of the discontinuity
are consistent within their respective statistical errors; however, they result in small discontinuities
in the estimate for the systematic error, as is observed in Fig. 4.11. The variations considered in

this chapter are as follows.

e Including B,= 5.3: Data at 8, = 5.3 sits in the middle of the transition region. As such, the
autocorrelation time is quite large and obtaining a reliable estimate for the statistical error is
challenging. This results in a nearly vanishing p-value for the infinite volume extrapolation
at Oy = 5.3 and it is hence dropped from the central analysis. Unfortunately, it also lies in a
sensitive region of the g-function, where Bap (géF) / géF is observed to change curvature. I
illustrate the change in curvature in Fig. 4.10. [, = 5.3 is therefore added back into the
analyses to estimate the impact that it has on the S-function in that region. Unsurprisingly,

it is the largest systematic effect (O(1.3%)) around gy ~ 5.0.

e Infinite volume extrapolation: Two variations are considered.
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(1) Drop the smallest volume and perform a linear fit to all three volumes.

(2) Repeat the analysis with only the largest volume.

Both effects yield similar shifts in Sgp (géF), but using just the largest volume has the largest
effect. Hence, it is what is used to estimate the systematic uncertainty that is associated
with the infinite volume extrapolation. According to Fig. 4.11, it is the dominant source of

systematic uncertainty for géF 2 11.

Intermediate interpolation: The value for the order N of the interpolating function
in Eqn. 4.42 is chosen based on the stability of the S-function against increasing V. The
intermediate interpolation is varied by choosing N = 2 and 6. The largest effect is observed
in going from N = 4 to 2; hence, it is taken as an estimate for the systematic error that is

associated to the intermediate interpolation.

Continuum fit range: The continuum extrapolation is varied by changing the ¢, /a? and

tmax/ a? over which the continuum extrapolation is performed as follows.

(1) Fix tin/a? = 2.0 and vary 4.0 < tyay/a? < 5.0.

(2) Fix tmax/a? = 4.0 and vary 1.52 < tyin/a? < 2.0.

The systematic error is estimated from the maximum of the latter variations at each géF.

The maximum systematic effect from varying the flow time range is 0(0.3%).

Flow /operator combination: In Fig. 4.9, I show the continuum Sgp (géF) from each
S'Se combination. Taken together, the continuum curves nearly form a uniform curve. In
Fig. 4.11, one observes ever-so-slight variations in the central result for Sgr (géF), most of
which are either well within 1o of the central nZS statistical error or just outside of 1o. The
largest variations are observed from the clover operator, which are O(0.8%-1.0%). Because
varying the flow/operator combination is the dominant systematic effect for 7.5 < géF <11,
the largest flow /operator deviation at each géF is taken as an estimate for the systematic

error that is associated with choosing a particular S'S¢ in the central analysis.
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Figure 4.12: From Ref. [181]. Final result for Sgp (géF) as a function of g4y for the coupling range
relevant to determine the A parameter. The yellow inner band shows only the statistical uncertainty,
whereas the red outer band shows the combined statistical and systematic uncertainties.

The latter systematic errors are included in the combined statitsical/systematic error by adding
them to the statistical error in quadrature. In Fig. 4.12, I compare the continuum Bgp (géF) with
just statistical errors (yellow) against Sgr (géF) with both statistical and systematic errors (red)

over the range of géF that will enter the A-parameter calculation of Sec. 4.6.

4.5.5 The continuum S-function

The continuum prediction for the S-function illustrated in Figs. 4.8 and Fig. 4.12 exhibits a
number of expected and unexpected features. In the weak coupling region, it appears to converge to
the 1-, 2- and 3-loop perturbative S-function [161], as one should expect. This will be discussed
further in Sec. 4.6, where matching onto the perturbative regime will be crucial for estimating
the A-parameter. I have also alluded many times already to the linearity of the S-function in the

strong coupling regime. The slope of Sgp (géF) in géF in the linear region predicts directly how the
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continuum gradient-flowed Yang-Mills energy depends on the gradient flow time ¢. First, take

Bar (géF) = co + clgéF (géF/llw > 1) (4.43)

as an ansatz. Then the solution to the RG equation for the continuum g2 (Eqn. 4.14) is

clgéF(t) ~ co + (A1) o t2(E(t)) (gép/llw > 1), (4.44)

where A is an integration constant that fixes the dimension of At. Early literature on gradient flow
observed that —cp is O(1) [252]. More recent literature posits that —c; = 1 ezactly [271, 328], albeit
from simulations that have been performed on a single bare gauge coupling and gradient flow times
that extend well beyond 8¢ = (L/2)? on their largest volume (L/a = 32). At such large flow times,
statements based on gradient flow regarding infinite volume properties of Yang-Mills systems lose
their meaning because the smearing radius now wraps around the lattice and finite-volume effects
are manifest. The dependence of ¢1 on g&p is illustrated in Fig. 4.13.

Over 20 < gép < 27, the slope (derivative) of the continuum S-function from the simulations
of this chapter levels off at ¢; &~ —1.32. The spikes in ¢; that are occasionally observed for géF 215
in Fig. 4.13 are due to occasional discontinuities in the continuum S-function that occur when the
continuum extrapolation loses a?/t values over which to extrapolate Sgr (t; gg) to a?/t — 0 at larger
fixed géF. The discontinuities have a small effect on the Sgp (géF), but they lead to occasional
numerical spikes in the derivative that do not reflect the slope in the strong coupling region. Their
effect is also observed as discontinuities is the systematic error estimates reported in Fig. 4.11. They
also do not affect the estimate for ¢; = —1.32(1) reported in Ref. [181], which is shown as a grey
line in Fig. 4.13. Note that value for ¢; in Ref. [181] is obtained from a cubic spline interpolation
of Bgr (géF) in géF using the Steffen algorithm provided by gvar [241, 342].* The spline-based
estimate was crosschecked against a simple linear fit of Sgp (géF) in géF over the region where

dﬁGF/dgéF levels off. The slope in Fig. 4.13 is obtained from a naive estimate of the slope over a

4Using a spline is justified by the high degree of statistical correlation in Bgr (gép) amongst neighboring g&p.
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Figure 4.13: Slope of continuum Sgp (géF) predicted from clégéF = Bar (géF + 5géF) — Bar (géF)
for 6g%p = 0.25 (maroon band). See text in Sec. 4.5.5 for a description of the numerical spikes that
occasionally occur when g4 > 15. These spikes do not affect the central estimate ¢; = —1.32(1)
from Ref. [181] is shown as a grey line. The value for ¢; = —1 is shown as a black dashed line for
visualization purposes.

coarser set of S-function values and is shown for the purposes of visualization. As such, the estimate
from Ref. [181] is slightly lower than the slope in Fig. 4.13, but it is consistent nonetheless. In any
case, the slope obtained from the numerical simulations of this chapter is not consistent with unity,
which implies that ¢?(F(t)) is not linear in At over the largest range of investigated flow times in this
chapter. As the linearity of t2(E(t)) in At discussed in Refs. [252, 271, 328| is merely an observation
and not a rigorous result, there is no good reason to believe that the slope reported in this chapter
is incorrect based on the commonly-held notation that it should be consistent with unity. It is also
possible that the slope has a mild dependence on géF at strong coupling and slowly converges to
unity. If this is the case, then the simulations of this chapter are simply not capable reaching large
enough géF to detect such dependence of ¢; on géF.

As of the writing of this thesis, a rigorous explanation for the linearity of the continuum
B-function strong coupling regime does not exist. Moreover, it is not evident that such linear

strong coupling behavior should be universal in confining systems. Nonetheless, there exists a small
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literature on the behavior of non-perturbative S-functions in the confining regime [77, 271, 315, 32§|,
all of which exhibit some form of linearity in the confined regime. Even the textbook S-function

that is defined in terms of the static ¢ “quark”® potential V(R) as

2
G} (R) o RV(R) = By (g}) = ~r2 1) (4.45)

is linear in its respective renormalized coupling g% (R) in the confining regime, where V(R) ~ o R
with o the string tension [313].5 The slope of the B-function is such a scheme is ch) = —-3/2,
which is slightly higher in magnitude, but not statistically consistent with, the slope obtained in the
gradient-flow-based scheme of this chapter. There is no reason to expect that such a slope should
be universal without more theoretical input; moreover, the coupling 9‘2, may not properly furnish a
proper definition of the renormalized coupling in the pure Yang-Mills system. The proposal in Ref.
[315] for the pure Yang-Mills system is based on the Novikov-Shifman-Vainshtein-Zakharov (NSVZ)
B-function of N' = 1 supersymmetric Yang-Mills systems [279, 333|. A similar S-function is obtained
in Ref. [77]. However, the S-function obtained from both methods has a pole singularity that it must
cross before the S-function becomes linear. Moreover, the slope is positive in both Refs. [77, 315],
which is the opposite of what is predicted from the GF S-function. Refs. [271, 328] claim that the
linearity of GF-based S-functions is a consequence of confinement; as such, its linearity is attributed
to the same source of the linearity of the S-function defined in Eqn. 4.45. It is also plausible that
the linearity of the S-function can be attributed to Yang-Mills instantons, as they are all that is left
after gradient flow suppresses all other high-wavenumber fluctuations. Unfortunately, the source of
the observed asymptotic linearity in the S-function is unknown. The same can be said for whether

or not they asymptotic linearity has some universal component to it in a confined system. However,

there are plenty of directions for research that could be explored along the same vein.

SMore precisely, V(R) is the potential between any source/anti-source of color flux; hence, it is well-defined for the
pure Yang-Mills system [265].

SNote using V(R) to defined a B-function is valid only in the pure Yang-Mills system, where there is no string
breaking due to the presence of fermions.
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4.6 The A-parameter and strong coupling constant

The continuum S-function Sgp (géF) that I calculated in Sec. 4.5 characterizes the running of

géF(t) with 8¢ oc 1/u? according to Eqn. 4.14. More generally, in any renormalization scheme X,

2
w2 = i (g%) (1.46)
for g% (u) the renormalized coupling of renormalization scheme X. It is assumed that g% () is
either a genuine renormalized coupling appearing in some Wilsonian effective action or, equivalently,
defined in terms of an observable Ox that does not renormalize under some RG transformation.
There are two equivalent ways that one could solve Eqn. 4.46 assuming that Sx (g%) is known over

the desired range of g% = g% (u).

4.6.1 Initial value problem: the strong coupling constant

Assuming that one knows gg( (o) = 4max for some constant ax, they can use Eqn. 4.46
to evolve ggf(uo) at uo to gg( (1) at some other scale . This is what is done in many studies of
the Standard Model that need input from quantum chromodynamics (QCD) at scales that are
well above the pole mass of the Z boson, where QCD is pertubative. In such studies, ax in the
X = MS scheme is defined in terms of the MS running coupling giTS(,uo) at ug = Mz, where My
is the pole mass of the Z boson. The value of agpg is often called the “strong coupling constant”
«s, though there is nothing special about «g outside of being deep enough in the perturbative
regime of QCD that giTS(u) = 4drag(p) for any p > My can be determined from the perturbative
B-function in the MS scheme.” The value of ay is therefore considered to be an important Standard
Model parameter, entering a variety of perturbative QCD processes; calculations of the t quark
mass and decay constants; Higgs production processes; hadronic Z widths; and much more [89, 90,
95]. See the most recent Flavor Lattice Averaging Group (FLAG) report for more information on

contemporary «, determinations based on lattice field theory. Currently, lattice-based determinations

"The MS S-function is known to a whopping 5-loop order [198]
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of g = 0.1184(8) (N; = 4) are the most precise.®

4.6.2 Direct integration: the A-parameter

One can also just integrate Eqn. 4.46 directly using separation of variables. In the “log by”

convention, the solution is

= o Yo () e [T (6 g - )]
_— = b bO - X - d + - 39 9 447
/.L2 ( 09 x (M)) exXp bOgX (,U)Q exp 0 T B(x) b0$2 b%x ( )

where by, by are universal 1- and 2-loop coefficients of the S-function defined in Chapter 1 [173, 227,
335]. Strictly speaking, the A-parameter is an integration constant that fixes the dimension of Ay /p.
As an integration constant, knowing Ax is equivalent to knowing any initial value of gg( (o) as far
as solving Eqn. 4.46 is concerned. The A-parameter possesses a number of theoretical properties

that tend to make it easier to calculate than ax. For one, it is a RG invariant, meaning

dAx
dp?

= 0. (4.48)

This is already evident from the fact that it is an integration constant. Conveniently, the A-parameter

in any other scheme Y is related to Ax by an exact one-loop relation

A% /A% = exp(dy/bo), (4.49)

where d; is the one-loop coefficient relating g% to ggf as

9y = g% +digk +0(g%) (9% 9y < 4m) (4.50)

and by is the one-loop universal S-function coefficient [92]. Eqn. 4.49 follows directly from Eqns.

4.47 and 4.50. That it is exact appears to be a consequence of asymptotic freedom, though it is

8Compare to the current global average s = 0.1179(9) from the most recent Particle Data Group (PDG) Review
of Particle Physics [381].
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Figure 4.14: From Ref. [181]. Bar(9ér)/gdr in the weak coupling region. The salmon-colored band
shows our nonperturbatively determined Sgp with combined statistical and systematic uncertainties.
We match to the 3-loop GF function using Eq. (4.52) in the range g2 € [1.4,1.8] indicated by
the grey hatched area. Shifting our nonperturbative values by +1o, we obtain the magenta bands
providing the upper and lower limits of the resulting matched function shown in blue.

plausible that there is a better and/or more fundamental explanation for it being exact. In principle,
if the A-parameter is known in one scheme, then is known in any other scheme, so long as d; is
calculable. For example, Ay is related numerically to the A-parameter of the infinite volume

gradient-flow-based scheme of this chapter Agr as [92, 161]
Agrs/Acr = 0.534162960405763... (4.51)

In principle, if one can calculate fAéF in terms of some known hadronic scale ¢, then Ajzg, and hence
«is, i1s determined. Calculating tNAéF at the ¢ = 8t scale defined by géF(to) = 0.3\ is the objective
of the next section [252]. Note that ¢ty (and its counterpart from the S-function wy) is used most

modern scale setting studies [6, 31, 43, 336], though wq has largely superseded it.
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Figure 4.15: From Ref. [181]. Systematic uncertainty in our perturbative matching procedure due to
choosing 912 or gj%. The value for our preferred choices for 91'2 and gj% is highlighted in red.

4.6.3 Calculation of the pure Yang-Mills A-parameter

The definition of the A-parameter in Eqn. 4.47 hints at a method for determining tAgr in
terms of the Sg-function that I calculated in Sec. 4.5: simply throw SBgr in for Sx and integrate
up to géF(t). However, this requires that I am able to determine the continuum S-function for
géF < 1.2, where the non-perturbative simulations in this chapter no longer cover the S-function.
Deep within the weak coupling regime, one can use the 3-loop perturbative S-function from Ref.
[161]; however, in-between it is necessary to match the non-perturbative S-function to the 3-loop
perturbative S-function. To this end, first define the following ansatz for the S-function in the weak

coupling regime

g¢ g2
Ba(géy) = — S (bo + b1~ 4 by

4
9GF 6
b 452
(47)? (4m) amp ngF)’ (4.52)

(47)

where by, by, and by are the one-, two-, and 3-loop coefficients for the perturbative S-function [161]

and by, is a free parameter [161]. I determine b, by requiring that

JREIVEE
g

2
2
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is the same for 8 = 4 and 8 = Bgr over g%F € [92-2, gj%] for some choice of 91'2 , gJ%. Because different
Bar (géF) are correlated with one another and I no longer have access to the covariance matrix,
I estimate the error in (4 (géF) from this procedure by repeating this exercise with Sgr £+ 10 and
estimating the error in b, from the half difference. The error in b, is then propagated directly into
B4 (géF) at any géF using the automatic error propagation tools provided by the gvar library. I
choose gg, gj% = 1.4, 1.8, respectively, and show the result of the matching procedure in Fig. 4.14.
The maroon band in Fig. 4.14 is the non-perturbative Bgr (géF) that I calculated in Sec. 4.5. The
blue band indicates the estimate for 84 from the matching procedure described above, with errors
bounded by the matching procedure performed at Sgr + 1o (purple bands). The region over which
the matching is performed (gf < géF < gj%) is shown as a crosshatched band in Fig. 4.14.

With B4 (géF) determined, I am able to extend the non-perturbative g-function down to
géF — 0. To calculate 8t0A2GF, I use B4 (géF) in place of Bx in Eqn. 4.47 for géF < 1.4 and
ﬁGF(QéF) for 1.4 < géF < 0.3N. To determine the integral in Eqn. 4.49, I interpolate over

Bar (géF) using a fine grid of géF so that I can represent Bgp (géF) as a continuous variable, then

& (to) 1 1 by
/ d$ < + P - 2>
0 Bar(xz)  box?  bix

numerically via an adaptive 4th-order Runge-Kutta integration algorithm [302, 342|. Note that the

perform the integral

error in Bgr (géF) is the combined statistical/systematic error from Sec. 4.5.4. Both the spline
algorithm and the Runge-Kutta integration are performed using the numerical analysis tools provided
by gvar, which ensures that all errors are properly propagated back into 8t0A2GF [241]. T have checked
to ensure that the central value and error of 8t0AéF does not change if I make the grid in géF finer
for the spline interpolation over Sgp (gép)

In Fig. 4.15, I demonstrate the effect varying the g2, g]% in the matching procedure used to
obtain £4 has on the estimate of 8t0A§TS. Keeping g]% = 1.8 fixed (left panel), the central value for
8t0A12\/Ts settles around g2 = 1.4. Keeping g; = 1.4 fixed (right panel), the central value for settles

around gJ% = 1.8, though the central value changes much less when varying gj% < 1.8 at fixed g7 = 1.4
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than it does when varying 92'2 < 1.4 at fixed gj% = 1.8. Increasing gi2 beyond 1.4 at fixed gJ% =18or

2 .

gJ% beyond 1.8 at fixed 91‘2 = 1.4 only decreases the error on 8t0AMS,

therefore, gf,gj% =14,18is
chosen, so as to be as conservative with the error as possible. Taken together, I get the following

estimate for the A-parameter

V8toAgr = 1.164(19), (4.53)
which yields
V8toAzrg = 0.622(10). (4.54)

using the relation between Agr and Agpg in Eqn. 4.51.

4.6.4 Comparison of the A-parameter against the literature

Calculations of the A-parameter for the pure Yang-Mills system have a long history going all
the way back to 1980 with derivation/standardization of Eqn. 4.49 [173]. A variety of methods have
been both proposed and deployed to calculate the A-parameter from lattice simulations. In Fig.
4.16, I juxtapose the determinations of the A-parameter that have met the Flavor Lattice Averaging
Group (FLAG) criteria against the value for tOAi/TS that I obtain from the S-function in this chapter
[6]. Such studies utilize Schrodinger functional methods [67, 209], Wilson loops [147, 226], and the
short-distance static quark potential V(R) 48], and gradient-flow-based step-scaling [92]. Note that
the gradient flow result of Ref. [92] was reanalyzed with a better method for controlling systematic
errors in Ref. [269], from which a consistent estimate of t0A12\/TS was obtained. Just a few weeks
before the the result for 8t0A12\/TS presented in this chapter was announced, the group of Ref. [380]
announced their value for 8t0A12\/TS using the same CBFM method discussed in this chapter. Values
for the A-parameter that are not based on gradient flow are expressed in terms of the Sommer

scale ¢, defined as F(rg)rg = 1.65 in terms of the force F((R) that is derived from the static quark
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Figure 4.16: From Ref. [181]. Comparison of our result for v/8tgAgr (maroon star) to the preliminary
result by Wong et al. [380] (orange pentagon) and Dalla Brida/Ramos [92] (green triangle). In addition
we show values for 79Agg which enter the FLAG 2021 averages: ALPHA 98 [67], QCDSF/UKQCD
05 [147], Brambilla 10 [48], Kitazawa 16 [226], and Ishikawa 17 [209]. These values are converted to
V8toAgr using /8ty /ro from [252] (open symbols) or Ref. [92] (filled symbols).

potential V(R) 4.5.5. Therefore, such results for roAyg must be converted to 8t0A§4—S using the value
for \/8to/ro = 0.948(7) for Ref. [252] (open symbols in Fig. 4.16) or /8y/ro = 0.9414(90) from Ref.
[92] (closed symbols in Fig. 4.16).

The estimate for 8t0A12\TS compares well with the other gradient-flow-based estimates from the
literature [91, 380]. However, there is a gap between estimates based on gradient flow and estimates
that utilize the Sommer scale ry. It is plausible that the discrepancy between the two is simply due
to the estimate for /8ty /rq itself, as 79 can be a difficult quantity to calculate precisely. Regardless,
given the spread in 8t0A12\/TS observed in Fig. 4.16, much scrutiny is needed. This especially rings true
given that the pure Yang-Mills system is supposed to be fairly well-understood. The authors of Refs.
[92, 269] have even called for a revision of the FLAG criteria for the A-parameter altogether, given
the precision of their gradient-based-result. Hopefully, the resolution to this discrepancy will lead to

a better understanding of lattice-based determinations of 8t0A12\/TS and their associate systematics.
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4.7 Scheme transformations and non-perturbative matching

I wrap this chapter up with a brief discussion of renormalization scheme transformations.
Additionally, T propose a method for matching the g-function of one RG scheme to another non-
perturbatively. One of the largest sources of systematic error in the calculation of StOAi/TS in this
chapter is the matching procedure discussed in Sec. 4.6.3. This is due in part to the size of the 3-loop
correction to the S-function, which causes the 3-loop GF S-function to exhibit poor convergence
compared to other RG schemes [91, 161|. This was already pointed out in the gradient-flow-based
step-scaling study of 8t0A12\/TS from Ref. [92] (green triangle in Fig. 4.16). An alternative to matching
the non-perturbative continuum S-function to its continuum perturbative counterpart (in the same
RG scheme) could be to match the GF S-function of this chapter to a S-function from another RG
scheme that has either better convergence properties at weak coupling. Consider that, for any two

renormalized couplings g%, g% defined as in Sec. 4.2, there is some bijection G' € C! such that [322]

9y = Gxv (%) (4.55)

The Jacobian of Gxy (just the derivative with respect to g% in this case) and its inverse cannot be

singular. To see why, note that the corresponding S-functions Sx, Sy are related as

_ 9Gxy
=

By (9%) Bx (g% )- (4.56)

For the RG (S-functions to have the same number of fixed points and the same slope at those fixed
points, Eqn. 4.56 requires that 0G xy/ Ogg( (and its inverse) is not singular; otherwise, the existence
of a fixed point could be scheme-dependent. Eqn. 4.56 also hints at a method for matching the RG

B-function in one scheme to another non-perturbatively. Taking, for example, the ansatz

Np-1
Gxy(z) =z + 2* Z cnz™, (4.57)
=0
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it is plausible that Gxy () could be determined approzimately over some range of g§( by requiring

Bx (9%) = By (Gxv (2))/G'yy (z) o (4.58)
T=g%
where
Ny (z) = W- (4.59)

If such a procedure could be performed in a controlled manner, it would allow for lattice calculations
to utilize different schemes for different parts of the calculation by patching them together where the
overlap. This could be especially useful for the calculation of 8t0A12\Ts in this chapter, where being
able to utilize calculations based on Schrodinger functional methods could significantly improve
the control that I have over the weak coupling region. See Refs. [317, 318, 322, 334] for more
information on the properties of Gxy, which are currently not well-understood in the high-energy

physics community as a whole.



Chapter 5

The p-function of the massless twelve flavor system

In the last chapter, I calculated the renormalization group S-function within the Ny = 0
extreme of the Ny < Ny side of the conformal window. In this chapter, I am going to take you to
the Ny = 12 extreme on the Ny > N side of the conformal window. Nevertheless, the techniques
that I used to calculate the S-function of the pure Yang-Mills system shall carry over directly to
the twelve-flavor system. This chapter is laid out as follows. In Sec. 5.1, I briefly review the
last several decades of research into the infrared properties of the Ny = 12 system. I discuss an
improvement technique in Sec. 5.2 that allows for the simulations in this chapter to reach deep into
the infrared regime of the twelve flavor system. I summarize the simulations that are used to extract
the pg-function for this system in Sec. 5.3. In Sec. 5.4, I calculate the continuum renormalization
group S-function using the methods that I introduced in Chapter 4. The continuumm S-function in
Sec. 4 strongly suggests that the twelve-flavor system exhibits an infrared fixed point. I wrap up
by calculating the leading irrelevant critical exponent at the infrared fixed point in Sec. 5.5. The

content of this chapter is based on Ref. [293].

5.1 Overview of the twelve-flavor system

The massless twelve-flavor system was one of the first systems to be targeted by investigations
of the SU(3) conformal window. As such, a variety of analytical and numerical techniques have
been deployed to understand both the properties of this system and where it lies with respect to

the conformal window. Along the vein of analytical techniques, groups have utilized perturbation
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theory [106, 298, 316, 319-321], the gap equation [22, 30|, functional renormalization group methods
[50, 51], conformal expansion 237, conformal bootstrap [243|, the background field method [152],
perturbative non-relativistic quantum chromodynamics [81], and large-N expansion [312]. As a
whole, analytical investigations tend to predict that the twelve flavor system is infrared conformal,
though a sizeable chunk of such investigations are taken up by perturbative approaches that are
more or less likely to agree with one another in the first place. Taking perturbative calculations out
of the picture, which also includes investigations that combine perturbation theory with the gap
equation, analytical studies still tend to lie on the side of infrared conformality, though the margin
is quite a bit smaller. Numerical studies deploying techniques that are based on non-perturbative
lattice simulations also tend to lean toward the twelve-flavor system being infrared conformal. Such
studies have utilized finite-volume step-scaling [18, 19, 126, 132, 134, 167, 182, 186, 244, 245]| (see
Sec. 4.3), Monte Carlo renormalization group methods [168, 169|, hadron mass and decay constant
spectroscopy [9, 11, 16, 78, 97, 102, 128, 129, 246|, and the Dirac eigenmode spectrum [79, 127]. Of
these studies, some of the most convincing evidence has come from the large-scale studies of the
Lattice Kobayashi-Maskawa Instutute (LatKMI) collaboration, which collectively observe evidence
for conformal hyperscaling and the presence of a light scalar boson at non-zero fermion mass |9, 11].
The latter studies are to be juxtaposed against the detailed study from Ref. [128], which concluded
that the twelve-flavor is consistent with being chirally broken based multiple observables, such as
the chiral condensate and the pseudoscalar spectrum. However, various claims made in Ref. [128§]
have been refuted using the same dataset [16, 97|. The debate surrounding infrared conformality in
the twelve-flavor system morphed from being centered around spectroscopy and chiral symmetry
breaking to non-perturbative determinations of the RG S-function, of which Refs. [126, 167, 182,
186, 244] claim to find evidence of an infrared fixed point and Refs. [126, 132, 134, 245| do not.
Taken as a whole, the majority of investigations that probe the infrared properties of the twelve

flavor system conclude that it is infrared conformal,! while a minority conclude that it is confining,

!See Refs. [9, 11, 16, 18, 19, 22, 30, 78, 79, 97, 102, 106, 167-169, 182, 186, 237, 243, 244, 246, 298, 316, 319, 321]
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chirally broken, or are inconclusive.?

5.2 Bulk phase transitions and Pauli-Villars improvement

The debate surrounding infrared conformality in the twelve flavor system, as approached
from the perspective of non-perturbative S-functions, is largely due to the presence of unphysical
first-order bulk phase transitions that prevent simulations from reaching far enough into the infrared
regime to observe to observe an infrared fixed point [80, 103, 280, 327, 340]. Bulk first-order phase
transitions are triggered by unphysical ultraviolet fluctuations [188]. Such fluctuations get worse as
Nt increases. Recently, it has been proposed to utilize heavy Pauli-Villars (PV) fields to cancel off
the ultraviolet fluctuations that trigger bulk first-order phase transitions [188].

Heavy staggered Pauli-Villars fields ¢(*) with species index s and action

Spv [, dT] ZCD (n ) (n) (5.1)

induce an effective action of the form

Sina [Uy] = sPVZ m)] ZZECZTYC Ue,(n)], (5.2)

where Ngpy = 8 Npy is the number of staggered species of Pauli-Villars fields and Npvy is the total
number of Pauli-Villars fields, ampy is the mass of the degenerate Pauli-Villars fields, C; is closed a
loop of size I (in units of the lattice spacing), Uc,(n) is the lattice-discretized parallel transporter
starting at n and traversing C; (defined in terms of a produce of links U, as in Eqn. 3.7), and
&, = iTr [7“1 e ’y“l] is a pure sign factor that is determined by the geometry of C; [171, 172, 174,
188]. Note that Ngpy can be halved by using “half fields”, which are described in Chapter 8.1.1.
The staggered Dirac operator ’Dés) was defined in Chapter 3. Note that the form of Eqn. 5.2 with

smeared gauge links (see Appendix G) could be slightly more complicated. At leading order in 1/am,

observables calculated from fluctuations in the induced action of Eqn. 5.2 are equal to observables

2See Refs. [126, 128, 129, 135, 152, 245, 312]
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Figure 5.1: From Ref. [293]. The gradient-flowed Polyakov loop expectation value at flow time
8t/a? ~ (L/2a)? versus the bare gauge coupling 3, on each volume in Table 4.1. The absolute value
of the Polyakov loop is shown by colored error bars: L/a = 24 (blue), 28 (yellow), 32 (green), 36
(orange), and 40 (pink).

generated by fluctuations in the Wilson action (Eqn. 3.8), but with a coupling [188]

Nspv
(Zampv)4

Bind = — (5.3)

In other words, heavy Pauli-Villars felds have an anti-screening effect. The anti-screening of the
PV fields can be used to cancel off the ultraviolet fluctuations that trigger first-order bulk phase
transitions. Moreover, by keeping the mass of the PV fields constant in units of the lattice spacing
along the continuum limit, the PV fields decouple. As such, the leave the infrared properties of the
target system untouched in the continuum limit. PV-improvement was first tested in the four-, eight-,
and twelve-flavor system in Ref. [188], which yielded promising results. Pauli-Villars fields have
since been deployed in simulations using Wilson fermions (briefly discussed in Sec. 3.2.2) with great
success [178, 179]. I have implemented PV improvment in the Quantum EXpressions (QEX-based)

gex_staghmc Monte Carlo suite.® I describe gex_staghmc in detail in Chapter 8.

3My fork of the QEX library is publicly available at https://github.com/ctpeterson/qex.


https://github.com/ctpeterson/qex
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B L/a

24 28 32 36 40
9.20 340 253 188 188 133
9.40 347 262 215 273 186
9.60 244 233 251 203 166
9.80 275 329 250 297 280
10.0 271 246 312 151 134
10.2 184 209 217 221 133
10.4 283 241 299 221 142
10.8 246 220 288 208 306
11.0 236 288 156 151 156
11.4 188 194 223 193 183
12.0 182 248 200 254 167
12.8 180 179 204 254 209
13.6 251 183 168 254 228
14.6 253 191 178 251 226

Table 5.1: The number of thermalized configurations analyzed at each bare coupling 5, and volume
L/a. The configurations are separated by 10 MDTUs.

5.3 Simulation details

The simulations in this chapter utilize an adjoint-plaquette gauge action (see Appendix F), a
massless (amy = 0) nHYP-smeared staggered fermion action (see Appendix G for details on nHYP
smearing), and an nHYP-smeared Pauli-Villars action with Npy = 48 PV fields and ampy = 0.5.
Both the PV and fermion files have completely anti-periodic boundary conditions in all four directions.
All simulations are performed either using a modified version of the MILC library (KS_nHYP_FS)* or
gex_staghme (see Sec. 8.1 for details). The same is true for all gauge flow measurements. Details
of how gauge flow measurements are performed are discussed in Chapter 8.1.2. In Table 5.1, I list

the total number of thermalized configurations for each (L/a, ) pair that I use to extract the

4The modified MILC library can be found at https://github.com/daschaich/KS_nHYP_FA


https://github.com/daschaich/KS_nHYP_FA
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B-function in this chapter.

In Fig. 5.1, I plot the gradient flowed temporal Polyakov loop magnitude (Eqn. 4.32) P; = P
at 8t = (L/2)? for all ensembles in Table 5.1 against 3. The statistical error in the Polyakov loop is
estimated using the I'-method implemented in the pyerrors library, which automatically accounts
for autocorrelation [214, 215, 308, 325, 378]. However, the statistical errors in Fig. 5.1 are still
likely underestimated. As I discussed in Chapter 4.4.1, the Polyakov loop indicates the onset of
confinement, as was evident from the sharp drop in the Polaykov loop observed in the Ny = 0 system
in Fig. 4.1. For the N; = 12 simulations of this chapter, the Polyakov loop is showing no such signs
over the investigated (3. In fact, if the simulations were to show any signs of confinement (or even
fluctuations in the topological charge), then it would not be possible to perform them with am; = 0.
The reason for this is that the Dirac operator develops a zero-mode at amy = 0 in a confined system;
such a zero more prevents the Dirac operator from being invertible and hence the fermion sector
from being simulations using pseudofermions. Hence, the simulations in this chapter show no signs
of confinement over the range of investigated volumes and couplings. That, or they somehow only

cover the e-regime, which is unlikely.

5.4 Calculation of the g-function

As in Chapter 4, I calculate the continuum RG S-function Sgp (gép) using gradient flow and
the continuous S-function method (CBFM). The steps of the calculation are the same; however,
some details differ by improving upon the analysis presented in Chapter 4. The present study utilizes
only Wilson flow (ST = W) and either the Wilson or clover operator (S¢ = W, C) to discretize
the Yang-Mills energy density E(t,L). The finite-volume renormalized coupling géF (t; L, gg) is
calculated from the Yang-Mills energy density using Eqn. 4.19 with 6(¢, L) defined by Eqn. 4.16;
i.e., I do not consider any tree-level corrections in 0(¢, L). Moreover, I denote the calculation of
géF (t; L, g%) from a specific flow /operator combination as “SfS®”; e.g., “WC” for Wilson flow and
clover operator. The finite-volume S-function Sgp (t; L, gg) is calculated from the renormalized

coupling numerically using Eqn. 4.36 and the 5-point stencil of Eqn. 4.37.
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Figure 5.2: From Ref. [293]. Result of our infinite volume extrapolation of g2GF (t; L, gg) (left panels)
and Bar (t; L, g3) (right panels) for the Wilson (W) operator at 8, = 9.60 (top panels), 9.80 (middle
panels) and 10.2 (bottom panels). Black (x) markers with error bars are the data included in
our extrapolation. Extrapolations with errors that are predicted from Bayesian model averaging
are indicated by multi-colored bands at t/a? = 2.5 (red), 3.5 (light green), 4.5 (cyan), and 6.0
(light purple). We do not show the infinite volume extrapolation of Sgp (t; L, g%) at t/a? = 4.5 for
visualization purposes.

Correlated errors are calculated and kept track of using the automatic error propagation tools
provided by the gvar library [241]. Autocorrelation is accounted for by binning. Moreover, any
fits to data utilize either 1sqfit or my Python-based fitting library, SwissFit 240, 290|. Both

1sqfit and SwissFit are integrated with gvar so as to ensure that any statistical correlations are
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Figure 5.3: From Ref. [293]. Result of our infinite volume extrapolation of g&p (¢; L, g3) (left panels)
and fgp (t; L, gg) (right panels) for the clover (C) operator at 8, = 9.60 (top panels), 9.80 (middle
panels) and 10.2 (bottom panels). Black (x) markers with error bars are the data included in
our extrapolation. Extrapolations with errors that are predicted from Bayesian model averaging
are indicated by multi-colored bands at t/a? = 2.5 (red), 3.5 (light green), 4.5 (cyan), and 6.0
(light purple). We do not show the infinite volume extrapolation of Sgp (t; L, gg) at t/a? = 4.5 for
visualization purposes.

estimated and kept track of throughout the fitting process. See Chapter 8.2 for more information

about SwissFit.
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5.4.1 Infinite volume extrapolation with Bayesian model averaging

The first step of the CBFM is to take the infinite volume limit. In this chapter, I extrapolate
both gép (t; L,gg) and Agr (t; L,g%) to a/L — 0 at fixed B, and t/a® using the ansatz of Eqn. 4.38,
as was done in Chapter 4. However, I improve upon the error estimation by leveraging Bayesian
model averaging (BMA) [210, 273, 274] to include the systematic error that is associated with fitting
over subsets of volumes into the combined statistical /systematic error automatically. In Appendix
D, I discuss the background of BMA in detail. In practice, I implement the BMA procedure for the

infinite volume extrapolation at each fixed By,t/a? as follows.

(1) Fit over subsets: For each subset 7 of the full set of available volumes L/a € {24, 28, 32, 36,40}
with at least three volumes, I perform a fit over the subset n using Eqn. 4.38. I further
denote the estimate for k; (t; gg) in Eqn. 4.38 from fit n as kgn) (t; gg). From the x? of fit n

(see Chapter 8.2 for a refresher on the x?), I associate a model weight wy, to subset n as
L. o
Wy X exp —5()(,7 + an) , (5.4)

where X727 is the x? of fit n and d,, is the number of volumes not included in fit 7 from the full
set of available volumes. The extra 2d,, term acts as a penalty in the model weight w;, for

not including data 210, 274]. The model weights w;, are normalized such that > w, = 1.

(2) Estimate of the mean: Denote the posterior mode of k;(¢; g3) from fit 7 as EZ(-W) (t; 93).

Then the Bayesian-model-averaged mean k; (t; gg) is estimated from the weights w,, as

i(t; 95) Zk (t; 93)w (5.5)

In other words, the mean of k; (t; gg) is estimated from a weighted sum over the posterior

mode of Eg’” (t; g%) from each fit 7.

(3) Estimate of the covariance: Denote covariance of {kz(n) (t; gg)} from fit n as Ci(?) (t; gg).
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Then the covariance suggested by BMA is estimated from C’Z-(Jn) (t; g%) as

Cij (t: 95) Z D)y + S R (6 )R (5 93)wy — Fi (b gk (93). (5.6)

n
The total error for k; is Cy;. It includes both the statistical error C’i(:) from each fit n via a
weighted sum and an additional two terms that collectively represent the contribution from

the model uncertainty.

The BMA procedure above is repeated over each (8, t/a?) pair for both g&p (¢; L, g3) and Sar (t; L, g3 ).

In Fig. 5.2, I illustrate the infinite volume extrapolation of gZp (t; L, g%) (left panels) and
Bar (t; L,g%) (right panels) at 8, = 9.6 (top panels), 9.8 (middle panels), and 10.2 (bottom panels)
for the S'S® = WW combination. I show the same information in Fig. 5.2, but for the S'S® = WC
combination. The bare gauge couplings shown in both figures are chosen such the the géF (t; a8 ) from
the infinite volume extrapolation are within the vicinity of the continuum predictions for géF .. For
all three B, the L/a = 24 volume deviates from the linear trend in a*/L*. As such, its contribution
to the model average is negligible. The four largest volumes generally fit the linear trend in a*/L*

well and any minor deviations result in a larger model uncertainty.

5.4.2 Continuum extrapolation

The continuum extrapolation at each fixed géF is performed by fitting (BGF (t; gg),t / a2) to

Egn. 4.39. As was the case in Chapter 4, doing so at any fixed géF requires first interpolating
Bar (t;g%) in géF (t;gg) at fixed t/aQ.
5.4.2.1 Intermediate interpolation

The S-function for the twelve flavor system is slowly running and its curvature in géF does

not change as dramatically as it had for the pure Yang-Mills system. Therefore, the interpolating
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Figure 5.4: From Ref. [293|. Illustration of our interpolation of Sgp (t;g%) in Bgr (t;gg) for the
Wilson operator (top panel) and clover operator (bottom panel). Interpolations at fixed t/a? are
indicated by colored bands, with t/a? = 2.5 (red), 3.5 (light green), 4.5 (cyan), and 6.0 (light
purple). The width of the band indicates the error. The data contributing to each interpolation
is indicated by an open circular marker with both x- and y-errors. We compare our interpolation
against the continuum 1- (dashed), 2- (dotted), and 3-loop (dashed-dotted) gradient flow 5 function
from perturbation theory [161].

function need not be overly complicated and a simply polynomial ansatz of the form

N-1

In(9&r) = 9&r Y Pngtt (5.7)
=0
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Figure 5.5: From Ref. [293]. Illustration of our continuum extrapolation of Sgr (t; g%) at fixed
gép = 2.0 (teal), 4.0 (dark orange), 6.0 (magenta), and 8.0 (forest green). Data contributing to
our extrapolation with the W operator are shown as error bars with triangular markers and the C
operator are shown as error bars with circular markers. Our extrapolations are shown as colored
bands, where the error is indicated by the width of the band.

is sufficient to capture the curvature for all intents and purposes. The leading O(géF) term in Eqn.
5.7 forces the known weak coupling behavior of the S-function up to discretization effects. As was the
case for the pure Yang-Mills system, forcing such behavior at weak coupling may cut off otherwise
viable small t/a? for use in the continuum extrapolation. Unlike the analysis presented in Chapter
4, T include the statistical error in géF (t; gg) by treating it as a Gaussian prior (see Appendix D).

Moreover, I put a prior on each p, with a mean of zero and a width of unity to stabilize each fit.
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Figure 5.6: From Ref. [293]. Our continuum prediction for Sgp (géF) as a function of géF for
the W operator (gold band) and C operator (maroon band). The width of the band indicates
the error. The nonperturbative results are juxtaposed against the 1- (dashed), 2- (dotted), and
3-loop (dashed-dotted) gradient flow 8 function from perturbation theory [161]. Also shown is the
step-scaling 8 function in the ¢ = 0.25 scheme from Ref. [186] as a grey band.

The order N of the polynomial is chosen to be the smallest value that reasonably fits the data. This
turns out to be N =4, as N < 3 are unable to accommodate for slight variations in the curvature
and hence possess poor p-values. In Sec. 5.5, I explore the systematic effect associated with the
order N of the interpolating polynomial in my estimate of the fixed point coupling géF , and leading
irrelevant critical exponent 7.

If Fig. 5.4, I illustrate the intermediate interpolation of Sgr (t; gg) in géF (t; gg) using the
ansatz of Eqn. 5.7 at fixed t/a? = 2.5 (red), 3.5 (green), 4.5 (blue), and 6.0 (purple) for the WW
combination (top panel) and the WC combination (bottom panel). The interpolation is juxtaposed
against the 1-, 2-, and 3-loop continuum S-function from perturbation theory [161]. Over the t/a?
that will enter the continuum extrapolation, the p-values tend to be quite high. This indicates that I
could be overfitting. However, it may also be the case that the estimate for the error from the BMA
is an overestimate. As I have already noted, reducing the order makes the intermediate interpolation

significantly worse. As a remedy for potentially overfitting, I could decrease the width of the prior
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on the p,; however, this has little effect on the outcome of the continuum extrapolation, so I leave

the prior on p,, as is.

5.4.2.2 Continuum extrapolation

With the intermediate interpolation taken care of, we are ready to take the continuum limit.
No improvements over the analysis in Chapter 4 are made to the continuum extrapolation. The
B-function Bgw (t; g(Q)) is again extrapolated to the continuum limit over a set of fixed géF and the
issue of strong correlations in each fit persist. Issues with such such correlations are again remedied
by first performing an uncorrelated fit of Sgp (t; g(Q]) in a?/t to estimate the central value. Then
uncorrelated fits to Bgr (t; g(Q]) + 1o are used to estimate the statistical uncertainty from the half
difference of the central value for Sgp (géF) from the shifted fits.

In Fig. 5.5, I illustrate the result of the continuum extrapolation for both WW and WC at
gép = 2.0 (blue), 4.0 (yellow), 6.0 (pink), and 8.0 (green). For t/a® 2 6.0, the data begins to deviate
from the linear trend, indicating the the infinite volume extrapolation is no longer reliable beyond
t/a? ~ 6.0. The same is true for t/a® < 3.5, which indicates that cutoff effects are not sufficienly
suppressed until ¢/a? ~ 3.5. The choice [tmin, tmin]/a® = [3.5,6.0] lies between these two regimes;
hence, it is chosen as the preferred flow time range for the central analysis of this chapter. In Sec.
5.5, I will explore the effect of varying tmin/a?, tmin/a? on the estimate of the fixed point coupling

géF . and leading irrelevant critical exponent .

5.4.3 The continuum S-function

The continuum prediction for Sgr (géF) from the WW and WC combinations is shown in Fig.
5.6. I once again juxtapose the continuum prediction for Sgp (géF) against its 1-, 2-, and 3-loop
continuum counterparts from perturbation theory [161]. Also shown for the purposes of comparison
is the continuum step-scaling S-function from Ref. [186]. The continuum prediction for Sgr (géF)
from both flow/operator combinations is consistent, overlapping well within error. At weak coupling

(géF < 4m), the S-function shows signs of converging to the 1-, 2-, and 3-loop perturbative S-function.
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The S-function crosses the origin in géF around géF , ~ 6.6 for both operators. The prediction for
géF . from the step-scaling S-function in Ref. [186] differs from the latter prediction; however, the
step-scaling B-function is obtained from a different RG scheme. Therefore, the prediction for the

fixed point coupling need not agree with the step-scaling prediction.

5.5 Leading irrelevant critical exponent

The renormalized coupling géF at the IRFP is irrelevant. The renormalized coupling géF
is also a scaling variable of the IRFP. According to the discussion in Chapter 2, the S-function
Bar (géF) depends on géF within the vicinity of géF L, s

*
2 \ . Jg2 2 2 2
Bar (98r) = ?g (9&F — 9&rs) (9GF ~ 9Gre); (5.8)
where ~y; is the leading irrelevant critical exponent. The factor of 1/2 in Eqn. 5.8 is conventional. In
Chapter 2, I stated that the critical exponent of scaling variables are universal. That is, they are a
property of the physical system that must be independent of the RG scheme used to extract them.
The solution to the RG equation within the vicinity of the fixed point is

/2

9ar(t) = Gér, + (At) s (9&r ~ Gérs): (5.9)

where A is an integration constant that sets the dimension of . Eqn. 5.9 shows explicitly that the
B-function for positive vy describes the running of an irrelevant coupling, as the solution to the
RG equation within the vicinity of the fixed point indicates that géF (t) — géF , as 't — 0o. The
rate at which géF(t) decays to géF . 1s characterized by the size of ~j, which enters as a potentially
non-integral exponent in Eqn. 5.9. Note that 7 is also often referred to as the anomalous dimension
of (Tr, [SMV&W] ), which is somewhat coincidentally quite clear already from the definition of géF in

terms of the gradient-flowed Yang-Mills energy F(t) density in Eqn. 4.13.
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Figure 5.7: From Ref. [293]. Comparison of our estimated g2, and v, for different #p,/ a? (x-axes)
and tmax/a? = 5.0 (green), 5.5 (gold), 6.0 (navy) from the continuum extrapolation.

5.5.1 Calculation of the leading irrelevant critical exponent

Because the continuum extrapolation in Sec. 5.4.2.2 approximates the covariance matrix of
BaF (t; g%) by its diagonal component, I no longer have access to the correlation matrix for Sgp (géF)
among the chosen géF. To ensure that the statistical error is not underestimated, I take Sgr (géF)

among each géF to be 100% correlated and estimate both géF . and v} via the following procedure.

(1) Interpolation: I first interpolate the central value for Sgr (géF) among a grid of géF using
the “Steffen” monotonic spline algorithm provided by the gvar library [241, 342|. The latter
spline interpolation is also repeated for the central value of Sgp (géF) 4+ 1o. The grid of géF
for all three spline interpolations has dg2p = 0.1. The resulting estimate for g&p, and Yy

from Steps 2-4 is not sensitive to the choice of dg&p within their statistical uncertainty.

(2) Central value of géF .+ I estimate the central value for géF , by applying a derivative-free
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root finding algorithm on the spline interpolation of Sgr (géF) from Step 1 [52]. The root

finding algorithm is provided by the gvar library [241].

(3) Central value of 7;: The central value of 75 is obtained from the prediction for 9(2}}? L, in

Step 1 by evaluating the natural derivative of the monotonic spline at géF . [342].

(4) Statistical error of géF . and ~7: [ estimate the statistical error for both géF . and 77 by
repeating Steps 2-3 for the spline interpolation over the central value of Sgw (géF) + 1o from
Step 1 and taking the statistical error to be the half difference in the central value obtained

from both, respectively.

The latter steps yield a prediction of g4, = 6.69(35),6.60(36) and v, = 0.206(19),0.199(18) for
WW and WC, respectively. Globally, results from the WC flow/operator combination appear to be
more stable against variations in analysis than the WW combination. As such, I take WC to be the

preferred flow /operator combination.

5.5.2 Systematic errors

I consider additional estimates for the systematic error on vy by varying the analysis presented

in Secs. 5.4-5.5.1 as follows.

e Order of the intermediate interpolation: The highest order polynomial that I can use
for the intermediate interpolation ansatz of Eqn. 5.7 before I lose control over the continuum
extrapolation due to overfitting is N = 6. Therefore, I vary the intermediate interpolation
by choosing N = 6, which results in a shift of dy; ~ 0.001. The latter shift is taken as
an estimate for the systematic error that is associated with the order of the intermediate

interpolation.

e Flow time range for the continuum extrapolation: In the bottom panel of Fig. 5.7, I
illustrate the dependence of v} on tmin/a® € [3.0,4.0] at fixed tyax = 5.0 (green), 5.5 (tan),

and 6.0 (blue) for the WW combination (bottom left) and WC combination (bottom right).
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Though the central value for 7; is consistent across all variations in tmyi,/ a?, tmax / a?, it
stabilizes around ¢y / a? 2 3.5 at tmax ~ 6.0, lending further justification for the choice of
flow time range taken in Sec. 5.4.2.2. I estimate the systematic error that is associated with
the continuum flow time range as the difference between the most extreme values for 73 in

the bottom panel of Fig. 5.7, yielding dv; ~ 0.006.

e Choosing the W operator over C: The final variation is simply to choose the WW
combination over the WC combination. This yields an estimate for the systematic uncertainty

from the choice of flow /operator combination d+; ~ 0.007.

As a conservative estimate for the combined statistical/systematic error, I estimate the total error

by combining the latter variations with the statistical error linearly. This yields an estimate of

i = 0.199(32) (5.10)

for the leading irrelevant critical exponent. Repeating the latter variations for géF , vields a systematic
error of =~ 0.12 from the interpolation order, =~ 0.05 from the continuum flow time range, and ~ 0.09
from the flow /operator combination. Combining the latter systematic errors for g4y, linearly with

its statistical error yields an estimate of

gép, = 6.60(62) (5.11)

for the fixed point value of the renormalized coupling géF.

5.5.3 Comparison against the literature

There is a small, but non-negligible, literature on calculations of 7 from studies that conclude
the twelve flavor system to be conformal on the basis of observing a zero of the RG S-function. The
4-loop B-function in the MS scheme produces the estimate vy ~ 0.282 without utilizing resummation

techniques [298], while lower orders in the loop expansion tend to yield larger estimates and are
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Figure 5.8: From Ref. [293]. Comparison of our value for 7 (maroon errorbar) against Ref. [186]
(teal error bar) and Ref. [106] (dark gold error bar). The smaller error bar on our result indicates
the error without accounting for systematic effects; the larger error bar indicates our error after
accounting for systematic effects. We indicate our total error with a grey band for visualization.

fairly unreliable. After applying Borel resummation to the perturbative 5-loop S-function, Ref. [106]
estimates v; = 0.23(6), where the error is purely systematic. The “scheme-independent” approach
of Ref. [321] also estimates vy ~ 0.228 at 5-loop order. The only non-perturbative estimate of v}
that the author of this thesis is aware of comes from Ref. [186], which yields v = 0.26(2) using the
gradient-flow-based step-scaling method that I briefly touched upon in Chapter 4.3. In Fig. 5.8, 1
compare the estimate for 7 from Secs. 5.5.1-5.5.2 to the step-scaling estimate 73 = 0.26(2) from
Ref. [186] (Hasenfratz2016, blue point) and the Borel-resummed perturbative estimtae v} = 0.23(6)
from Ref. [106] (DiPietro2020, dark gold point). The estimate in this chapter is not consistent with
the step-scaling estimate in Ref. [186] within the combined uncertainty of both approaches, but it
is consistent with the Borel-resummed perturbative estimate of Ref. [106] (within the combined
uncertainty). The “scheme-independent” estimate 7, ~ 0.228 of Ref. [321] is also consistent with

vy = 0.199(32); however, it lies on the edge of the combined statistical /systematic error, which I
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have already stated could be an overestimate. Overall, one can confidently state that the estimate

for 75 in this chapter is consistent with the available literature at the 1-20 leve.



Chapter 6

Interlude: Finite size scaling with radial basis function networks

All models are wrong, but some are useful

GEORGE E. P. Box [45]

After having explored the use of renormalization group techniques in systems well outside of
the conformal window (Nf = 0, Chapter 4) and likely well inside of the conformal window (N¢ = 12,
Chapter 5), the latter part of this thesis is dedicated to trying to understand a system (INy = 8,
Chapter 7) that could be on, or at least close to, the edge of the conformal window. This is going to
be an extremely difficult task, so before embarking on this journey we shall make a pit stop and
explore some techniques that have been developed for tackling the Ny = 8 system. This will take
us into a world of well-understood two-dimensional spin systems, which may be just what we need
before we jump deep into the unknown.

Finite size scaling (FSS, Chapter 2.5) by the method of curve collapse is a simple, yet powerful
theoretical tool for probing the properties of a given phase transition, but it must be wielded with
care. Assuming that the FSS dataset that one is working with is up to snuff, the primary hurdle to
get over when working curve collapse is choosing an appropriate parametric ansatz for the scaling
function. This chapter is dedicated to exploring the use of radial basis function networks (RBFNs),
a special type of single-layer artificial neural network, are capable of doing the job. To start, Sec.
6.lintroduces the method of curve collapse. Sec. 6.2 introduces radial basis function neural networks

and how to deployed them in a curve collapse analysis. The RBFN-based curve collapse is tested
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on the two-dimensional p-state Potts model for p = 2,3 in Sec. 6.3 and the ¢-state clock model
for ¢ = 4,00 in Sec. 6.4. I end this chapter by speculating other uses of the RBFNs in lattice field
theory analyses in Sec. 6.5; as an example, I explore a method for extracting the critical temperature
of the co-state clock (XY) model from a direct interpolation of the helicity modulus using an RBEN.

The content of this chapter is based on Ref. [292].

6.1 Curve collapse

In Chapter 2.5, I discussed the general idea of finite size scaling (FSS) in terms of how the
singular part of the free energy AS ) (K , Ns_l) transforms under an RG transformation in a finite

volume N¢ = (L/a)?. As a corollary to that discussion, finite-volume observables O(K, Ny) derived

from AS ) (K, Ng ') scale within the vicinity of a continuous phase transition as [69, 303]
O(K, Ns) = NJ°Fo (€(K)/Ns) (K ~ Ko), (6.1)

where 7o is the leading anomalous dimension of O at K., Fo is a universal scaling function, and
£(K) is the infinite volume correlation length in units of the lattice spacing. I have also assumed that
the scaling behavior does not differ depending on the direction that we approach K. from; this will

be the case for the systems that I study in the rest of this thesis. For a 2nd-order phase transition
E(K) ~ |k (2nd-order),
where k = K/K. — 1; therefore,
O(K, Ny) = NJOFo (|k|N¥) (K ~ K., 2nd-order). (6.2)

Note that the Fp from Eqn. 6.1 differs from that of Eqn. 6.2 because I have manipulated its

arguments; however, I am referring to them as the same function for notational brevity. Meanwhile,
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for an oo-order phase transition,

§~(K) ~ exp ({|kz|_”) (oc-order);

therefore,

O(K, Ns) = NJ° Fo(Nsexp (-¢|k]™")) (K ~ K., oo-order), (6.3)

again after a little rearrangement of the argument.

Eqns. 6.2 and 6.3 hint at a method for extracting the critical parameters K., v and possibly
(depending on the order of the phase transition) from a series of finite volume simulations at various
(K, N5) pairs. By simulating the system on multiple volumes Ny and couplings K that are in the

vicinity of K., one may estimate the critical parameters by requiring that

O(K, Ny) /NJ° = Fo(x) (6.4)
is a unique function of
2(K,Ny) = |k|NM" (2nd-order) (6.5)
for a 2nd-order phase transition or
2(K, Ns) = Nyexp (-([k[ ) (cc-order) (6.6)

for a oo-order phase transition. When the critical parameters have been identified correctly, the
individual curves for O(K, Ns) in K at fixed Ny are said to collapse onto one another when re-
expressed in terms of z(K, Ny) and rescaled by Ny 7©. The latter method is therefore referred to as
curve collapse.

As the scaling function Fp(x) is a priori unknown and (usually) not determined by a finite
number of parameters (i.e., it is non-parametric), it is typically estimated from a parametric ansatz

whose parameters are determined as part of the curve collapse analysis; for example, a polynomial
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Figure 6.1: From Ref. [292|. Illustration of a radial basis function network (RBFN). The total
number of center parameters c,, counting the components of each c,, is equal to the number of
connections between the input nodes (green circles on left; a.k.a., input features) and hidden nodes
(blue circles). The number of weights is equal to the number of connections between the hidden
nodes and output nodes (green circles on right; a.k.a., output features).

or ratio of polynomials. With so much freedom in choosing the ansatz for Fo(x), it would be nice to
have on hand a family of interpolating functions that generally perform well at interpolating over
a variety of curves. As universal function approximators, radial basis function networks could be
just the right tool for the job. The rest of this chapter is therefore dedicated to exploring the use of

radial basis function networks in various finite size scaling problems.
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6.2 Radial basis function networks and finite size scaling

A radial basis function network is a special type of single-layer artificial neural network that
is specially designed for the purposes of function approximation [145]. In Fig. 6.1, I illustrate the
general structure of an RBFN. The inputs x € R” (left green nodes in Fig. 6.1) of the network are
connected to the nodes of the hidden layer (center blue nodes) by the center parameters c, € R¥.
The output of each hidden node is then passed through a radial basis function p and aggregated
linearly into the output nodes (right green nodes) via matrix multiplication with the network weights

Wpn. The output of the full network is

RBFNp (%) = Y winnp(-B2l|% = €nl|) + b, (6.7)

where ¢, and w,,, are the aforementioned center parameters and network weights, respectively;
{b,,} are the network biases; and {5, } are the radial basis function bandwidths. In this chapter, the

radial basis functions are exponential

p(-) = exp(:) (6.8)

and the norm || - || is the standard Euclidean norm; as such, the output of each hidden node has a
Gaussian profile. The total number of free parameters OrprN = {Cn, Bn, Wmn, bm } for an RBFN is
the same as for a standard feedforward neural network.

According to the universal approzimation theorem for RBFNs, an RBFN with exponential
activation units in its hidden layer is capable of approximating any continuous function on a compact
subset of RM with an accuracy that scales with the number of hidden nodes [288]. For problems
involving large, complicated datasets, RBFNs have been largely phased out by various kinds of
deep neural networks; however, such neural networks are completely unnecessary for the small-scale
parameter estimation problems that are needed for most lattice field theory analyses. For such

small-scale problems, the simplicity and approximation power of RBFNs could be of great benefit.
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6.2.1 Finite size scaling with radial basis function networks

For the purposes of FSS by the method of curve collapse, I estimate the scaling function Fp ()
defined by Eqns. 6.4-6.6 by parameterizing it with an RBFN that possesses as single input node and

a single output node. In other words, I take
O(K, Ny)/NJ° = Fo(x) ~ RBFN(z) = Y " wpexp [-B(z — c)?] +b, (6.9)
n

where the input « is given by either Eqn. 6.5 or 6.6 and center parameters ¢, are scalar. Because the
multi-dimensional hidden layer is collapsed onto a single node in the output layer, I denote the weights
in Eqn. 6.9 as wy,. The full set of free parameters for the RBFN is then OgprN = {cn, B, wn, b}. The
parameters of the RBFN Ogrppy are estimated alongside the critical parameters O, = { K., v,v0,(}
(€ € Ogit, only for oo-order transitions) by fitting Eqn. 6.9 to data for O(K, NS) via maximum a
posteriori (MAP) estimation. For the types of problems that are encountered in lattice gauge theory,
MAP estimation reduces to the problem of minimizing an augmented Xgug., which is the sum of
the x2 of the data Xc21ata and the y? of the prior X[2)rior' Estimating the “mean” (posterior mode)
of ©® = OrprN U Ocit. Will therefore be done in this chapter by minimizing Xgug.; uncertainties in
the posterior mode of © are estimated from a Laplace approximation of the posterior. Details of
MAP estimation, the definition of Xgug., and uncertainty estimation about MAP estimates are all

described in detail in Appendix D and Chapter 8.2.

6.2.2 Fitting with the basin hopping optimization algorithm

The landscape of qug.(e) in © can be very rich in structure. Due in part to the symmetries
of RBFNS, qug.(G) often possess many (possibly degenerate) local optima with their own basins of
attraction, along with steep barriers that separate regions of © space. MAP estimation assumes that
the parameters © have been estimated from the global optimum of Xgug.(@). If one wishes to use a
local optimization algorithm, finding the global optimum requires using an extremely clever (or lucky)

procedure for initializing ©; however, this is difficult to do in practice and by no means efficient.
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Algorithm 1: From Ref. [292]. The basin hopping global optimization algorithm, as
implemented in Ref. [364|. The LocalOptimization step utilizes the trust region reflective
local optimization algorithm [49]. We use the SciPy library’s implementation of both
optimization algorithms [361].
Input: g, a, T
© < LocalOptimization(Oy);
@best — @;
while Oyt not converged do
©' + RandomPerturbation(0, «);
©' <+ LocalOptimization(©');
© < MetropolisCriterion(©,0' T) ;
if new Opest then
‘ C'-)best +— 0O
end

end
Output: Opegt

In the machine learning literature, the Adam variant of stochastic gradient descent optimization
algorithms is the industry standard [225|, along with its Nesterov-accelerated counterpart [111].
Because it is stochastic, it can achieve the task of finding global optima, though it is not guaranteed
to. It is also specially designed to be efficient for problems involving large datasets. As such, it
can be very inefficient for the small-scale problem of fitting a model to data with even less than a
few hundred data points. One way out is to utilize a global optimization algorithm; however, many
global optimization algorithms tend to be fairly inefficient for one reason or another. After all, there
is no free lunch. This is precisely true for optimization algorithms, which perform equally well when
averaged over the set of all optimization problems [379]. Unfortunately, this means that one often
has to settle with the algorithm that generally works best for a particular class of problems.
Typically, I find that utilizing a global optimization algorithm is more efficient for finding
even just stable local optima than cleverly engineering a good initial condition for kick-starting a
local search. Though I will not go through the details in this thesis, I have exhaustively tested a
variety of popular global optimization algorithms, such as dual simulated annealing [357, 383, 384];
various metaheuristic genetic/evolutionary algorithms such as differential evolution (343, 387| and

particle swarm [223|; Bayesian optimization [140]; basin hopping [364]; and many others. Of the
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global optimization algorithms that I have tested, the basin hopping (BH) algorithm combined with

the trust region reflecitve (TRF) local optimization algorithm tends to perform the best at finding

global optima, or at least stable local optima, in the smallest number of iterations [49, 364].

Conventional BH algorithms combine the benefits of local search strategies via gradient-based

optimization techniques, random perturbations in © space (hops), and Metropolis acceptance criteria

to guide the algorithm’s exploration through rugged, potentially funnel-like, Xgug.(G) landscapes

[364]. Each iteration of BH performs the following steps (see Algorithm 1).

(1)

(4)

RandomPerturbation: Pick a random unit direction © and update © — ©" as ©' = © + a®
for step size «. I find that choosing « from a uniform distribution can help the algorithm

move around O space more efficiently.

LocalOptimization: Update ©' — ©’ by running a local optimization algorithm on ©'.
In this thesis, I use the trust region reflective algorithm for the local optimization [49].
The TRF algorithm is a fantastic general-purpose algorithm, and I typically find that it
vastly outperforms other popular local optimization algorithms, such as L-BFGS-B [63],

Levenberg-Marquardt {242, 259], and nonlinear conjugate gradient methods [341].

MetropolisCriterion: Accept the optimized ©’ from Step 2 with probability

acc. prob. = exp [—max(O,Xfmg_(@') - qug_(e)))} I/T, (6.10)

where T' is a temperature hyperparameter that should not be confused with the physical
temperature. A good choice for T is the average separation in Xgug. among local optima
[361]; however, I typically find that simply setting 7' = 1 suffices for all intents and purposes.

If ©' is accepted, then © — ©.

Global optimum test: If Xgug.(@) is lower than X?Lug,(ebest)a set Opest = O.

Unfortunately, the BH algorithm for 7" # 0 is not guaranteed to converge. Therefore, the termination

criterion for BH is often set by the maximum number of iterations that Oy has not been improved.



126

Furthermore, I typically chain runs of the BH algorithm with different o to ensure that I have
reached as stable of an optimum as a I can. As there is no test of global optimality without knowing
what the global optimum explicitly, this is unfortunately the best that one can do. Despite the
downsides of the BH algorithm, it nonetheless performs surprisingly well at finding stable optima
of Xgmg.(@) in comparison to any other algorithm that I have used. It is no wonder that it is the
industry standard for many problems that involve finding the lowest energy state of atomic clusters,
crystals, and biological macromolecules |27, 110, 233, 281, 364, 365, 388]. Moreover, in a recent
comparative analysis, BH was found to generally outperform many popular evolutionary strategies on
various challenging opimization tasks, save for the covariance matrix adaptation evolution strategy
(CMA-ES) [160], which slightly outperformed BH [25|. It would be worth looking into CMA-ES in

the future as a better alternative to BH.

6.2.3 Empirical Bayes estimation via surrogate-based optimization

One advantage of using MAP estimation over, say, maximum likelihood estimation, is the
control that it provides for overfitting through the use of priors. In this chapter, I put a prior on the

network weights w,, with a mean of zero and a width A; such a prior enters Xgug.(@) as

1
X?idge(e) = ﬁ sz“ (611)

which I refer to as a ridge regression prior in this chapter because it first appeared in the literature
on ridge regression [201, 296, 354|. In the machine learning literature, adding terms like Eqn. 6.11
to the loss function of a neural network is referred to as L2-regularization or weight decay |60, 118,
268|. It is not immediately clear how A should be set, so as to avoid overfitting. One criterion
could simply be to tune A such that x3,, /d.o.f. ~ 1 (see Chapter 8.2); however, this could lead to
bias. Another approach could be to set a prior on A itself, to which A would be estimated from
a doubly-augmented x? via MAP estimation. Such an approach is called hierarchical Bayesian

modelling [268]. Of course, this only shifts the ambiguity in A to an ambiguity in its prior. A nice
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automated procedure for setting A that is an approximation to hierarchical Bayesian modelling is
the empirical Bayes procedure [71, 239)|.

In Appendix D, I briefly defined the marginal likelihood (ML). In short, it is the normalization
factor in Bayes’ theorem that is proportional to the probability Pr (D|M) of the data D given some
model M for the data. The empirical Bayes procedure follows by choosing any unknown priors by
extremizing the marginal likelihood. What this means for the goals of this chapter is that we should
calculate A by optimizing the marginal likelihood in A. In practice, the marginal likelihood can be

estimated from a Laplace approximation of the posterior about the MAP estimate ©* as

(27T)d'0'f' det EY det 26
detE@* ’

—2log ML & X2, (©%) + log (6.12)

where Y is the covariance (of the mean) of the data, ¥ is the covariance of the priors, Yo~ is the
covariance of the MAP-estimated parameters ©*, and “d.o.f.” is the number of degrees of freedom of
the fit, all of which are defined in Chapter 8.2.

Each value of the approximate marginal likelihood is estimated from a fit at a particular A.
Therefore, extremizing the marginal likelihood (equivalently, minimizing —log ML) with a gradient-
based local optimization algorithm could be prohibitively expensive. A nice way to get around this

is via the following surrogate-based optimization procedure.
(1) Calculate ML: Calculate log ML over a grid of A.

(2) Interpolate: Interpolate the estimate for log ML in A from Step 1 with a spline. The
monotonic interpolating spline that I've used many times throughout this thesis already will

do just fine [342].

(3) Optimize: Optimize —log ML in A using a gradient-based local optimization that treats
the spline as a surrogate for the actual marginal likelihood. The gradient can be calculated

easily from the natural derivative of the spline.

The initial grid of log ML estimates in A need not be very fine; ten to twenty or even less often works
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Figure 6.2: From Ref. [292]. Example of an interpolation over the marginal likelihood in Eqn. 6.12
with a cubic spline (red line). Each black circle represents the marginal likelihood calculated from
a curve collapse fit of the 2-state Potts model Binder cumulant at a particular value of A\. The
minimum of the surrogate spline A* is the value for A suggested by the empirical Bayes procedure.

well. Most important for having the latter procedure work is to make sure that the initial estimates
of log ML are robust. In practice, this is achieved by calculating log ML from one fit at a particular
A at the lower end of the grid, then calculating log ML for all other A by sequentially initializing
each fit with the result of the previous fit. As long as the first fit in the sequence is robust, all
other fits typically fall in line how they should. Note that, for less complicated fit functions, the
surrogate-based empirical Bayes procedure of this section can be implemented in an embarrassingly
parallel fashion, which could significantly reduce the amount of time that it takes to go through the
entire empirical Bayes procedure. This method could also be improved upon if accuracy is a great
concern by embedding it in a bisection algorithm for finding the root of dlog ML/dA.

In Fig. 6.2, I illustrate what the a spline interpolation of —log ML in A looks like for one
of the example problems that we will encounter in Sec. 6.3. Specifically, the curve in Fig. 6.2 is
from a fit of the RBFN-based scaling function for the Binder cumulant of the 2-state Potts (Ising)
model. The black circles labelled “representative fits” are from a RBFN-based curve collapse fit at a

particular X\. The red curve is the spline-based interpolation over the representative fits. The value
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Figure 6.3: From Ref. [292]. BFN-based curve collapse analysis of the 2-state Potts (Ising) model
using the Binder cumulant U, éi?lz‘otts (top panel) and the magnetic susceptibility Xgo)tts (bottom panel).
The curve collapse uses Ny = 64 (pink), 96 (blue), 128 (purple), and 256 (red) volumes in the
coupling range 0.87 < Kgo)tts < 0.90. Data used in the curve collapse are marked with an open x (fit
data); otherwise, they are marked with an open o (other data). The scaling function Fo predicted
by the RBFN is plotted as a grey band. The width of the band corresponds to the predicted error.
The RBFN in the top panel has two nodes in its hidden layer and the RBFN in the bottom panel

has three.

of the optimum A* =~ 1.776 from the surrogate spline is the prior width that is suggested by the

empirical Bayes procedure.
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Figure 6.4: From Ref. [292]. RBFN-based curve collapse analysis of the 3-state Potts model using

the Binder cumulant U, ﬁlotts (top panel) and order parameter susceptibility Xg’o)tts (bottom panel).

The curve collapse uses Ny = 64 (pink), 96 (blue), 128 (purple), 196 (tan), 256 (red), and 512 (cyan)

volumes for Uzi gotts and Ng = 128,196, 256, and 512 volumes for ngtts (same scheme as Uﬁgotts).
The K

Potts
U fﬁ)otts and 1.005 < Klg?;)tts < 1.026 for Xg)o)tts Data used in the curve collapse are marked with an
open x (fit data); otherwise, they are marked with an open o (other data). The scaling function
Fo predicted by the RBFN is plotted as a grey band. The width of the band corresponds to the

predicted error. The RBFN in both panels has two nodes in its hidden layer.

values used in both curve collapse analyses are in the range 1.005 < Ké)g’)tt < 1.018 for



131

2-state Potts model 3-state Potts model
Param. Ui,qlzotts Xg]o)tts Exact Ui,qlzotts X%’qo)tts Exact
Kgf))tts 0.881363(15) 0.881363(28) log (1 -+ ﬂ) 1.00518(15) 1.005007(48) log (1 + \/§)
v 0.9995(27) 0.9979(40) 1 0.833(34) 0.820(23) 5/6
n — 0.2496(29) 1/4 — 0.2713(80) 4/15

Table 6.1: From Ref. [292|. Comparison of our RBFN-based estimates of Kl(qu)tts? v and 7 critical
(9)

parameters for ¢ = 2, 3 from a curve collapse analysis of U, iqllotts and xpo- Exact critical parameters
are from Ref. [382|. Predicted critical parameters from Figs. 6.3-6.4.

6.3 Application: The ¢-state Potts model for ¢ = 2,3

I first test the RBFN-based method that I introduced in Sec. 6.2 on the two-dimensional
isotropic p-state Potts model, which is a generalization of the two-dimensional isotropic Ising model

(¢ = 2) to g > 2 discrete spins. The reduced Hamiltonian for the g-state Potts model is

Hl(;lo)tts = _ng))tts Z 6(si, 55), (6.13)
(i)

where s; € {1, ..., ¢} and the Kronecker delta d(s;,s;) =1 when s; = s; and d(s;, sj) = 0 otherwise.

The notation (ij) denotes a sum over sites ¢ and nearest-neighbors j. In this section, I consider both

g = 2 (the Ising model) and ¢ = 3. For all ¢ > 2, the ¢g-state model exhibits a phase transition at

Kl(:’%)tts,c = log (1 + \/a) (614)

that is 2nd-order for ¢ < 4 and first-order for ¢ > 4 [113, 114, 382].! The order parameter that

distinguishes one phase from another is the magnetization

1
M,(K9. N = 7 > 6(si 1) —1/g. (6.15)
S 4

2)

!Note that the critical coupling for ¢ = 2 differs from the conventional Ising model coupling as Kéotts’c = 2Kising,c
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The critical exponents for ¢ = 2,3 are known exactly [382], which makes the ¢ = 2,3 system a great
test bed for the RBFN-based curve collapse of this chapter. I simulate both systems using the Wolff
cluster algorithm implemented in the beautiful Julia-based SpinMonteCarlo library [267, 377|. See
Appendix J for a brief description of cluster algorithms.

I test the RBFN-based curve collapse of this chapter on the 2- and 3-state Potts model by

q)

determining Ké’otts o v and n? from a curve collapse analysis of the Binder cumulant

4
(a) _1 (M)
U4:1P0tts (KP(%)tts’ NS) 9 [3 - <M2q>2 (6-16)
q
and the connected magnetic susceptibility
Xgo)tts(Kl(D%)tts’NS) = Kg))ttst2<(|MQ| - <|Mq|>)2>v (6.17)

where M, (K (@)

PottS,NS) is defined in Eqn. 6.15. The Binder cumulant and connected magnetic

susceptibility scale as Eqn. 6.4 for a:(K @ N, ) = }kl()qo)tts‘Nsl/ ” (2nd-order scaling) with Ty =0

Potts? '8
4,Potts
and T = 2 — 1, respectively [69, 303]. In Fig. 6.3, I illustrate the result of the curve collapse
Potts
for the Binder cumulant (top panel) and connected magnetic susceptibility (bottom panel) for the
2-state Potts (Ising) model. I show the same information for the 3-state Potts model in Fig. 6.4.
They grey band in both figures in the prediction for the scaling function Fp for the Binder cumulant
(top panels) and the connected magnetic susceptibility (bottom panels). The multicolored error bars
illustrate the data that entering the curve collapse, with each color representing a fixed volume Ny
(see the respective legends). In Table 6.1, I compare the prediction for the critical parameters from
the RBFN-based curve collapse against their exact values from Ref. [382]. From the range of Ny and
Kl(;i)tts entering the curve collapse analysis of both models, the prediction for the critical parameters

listed in Table 6.1 agree with their exact counterparts at the 1o level and the p-values for all fits are

in the 36%-62% range.

2y is the anomalous dimension of the wave function.
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Perhaps the most interesting observation of the curve collapse analysis summarized in Figs.
6.3-6.4 is the exceedingly small number of nodes in the hidden layer; each RBFN possesses a mere
2-3 hidden nodes, depending on the observable. Nonetheless, the RBFN manages to accommodate
both the S-shaped profile of three out of four of the observables, along with the peaked profile of
the connected magnetic susceptibility of the 2-state Potts model. This is to be contrasted with
the feedforward-neural-network-based curve collapse of Ref. [385], which deployed neural networks
containing two internal layers with twenty nodes per layer. Even using the feedforward neural
networks provided by SwissFit [290], I find that such a massive neural network is completely
unnecessary for the purposes of curve collapse. Even worse, such a model has a negative number of
degrees of freedom without the imposition of priors; as such, the y? and p-value are meaningless.

The approach advocated in this chapter does not run into such issues.

6.4 Application: The p-state clock model for p =4,

The two-dimensional isotropic p-state clock model is a discrete version of the two-dimensional
isotropic XY model. The discrete spin variables are described by angles 6; = 27n;/p that live at

each lattice site 7 for 1 < n; < p. The reduced Hamiltonian for the p-state clock model is
7_[((:1170)61( = _Kvgﬁ))ck Z Cos (01 - 0]) : (618)
(ig)

As was the case for the ¢-state Potts model, p = 2 is equivalent to the two-dimensional Ising model.
In contrast, the p — oo limit is equivalent to the famous two-dimensional XY model. It is generally
accepted that the p-state clock model exhibits one or more phase transitions for all p > 2 and that
there is some p for which one of the phase transitions switches from being 2nd-order or co-order.
In this chapter, I investigate the 4- and oo-state clock model. Unknown to the author before
I started present investigation of this system, the 4-state clock model is in the Ising universality
class [117]; that is, it possesses ezactly the same leading-order critical exponents as the 2-state Potts

(Ising) model. As such, it is 2nd-order. Even more, it possesses exactly the same critical temperature
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Figure 6.5: From Ref. [292]. RBFN-based curve collapse of the 4-state clock model using the Binder

cumulant U4(4c)10 « (top panel) and connected magnetic susceptibility X((;ilgck (bottom panel). The

curve collapse uses Ny = 96 (blue), 128 (purple), 196 (tan), 256 (red). The Kéfgck values used in
the curve collapse of U, 44) are in the range 0.870 < Kggck < 0.893 and the K C(ﬁ)) o Vvalues used

clock
for XS‘g « are in the range 0.870 < Kc(fo) o < 0.885. Data used in the curve collapse is marked with
an open x (fit data); otherwise, it is marked with an open o (other data). The scaling function
Fo predicted by the RBFN is plotted as a grey band. The width of the band corresponds to the

predicted error. The RBFN in both panels has three nodes in its hidden layer.

[283]

K@

clock,c

— log (1 + \/é) (6.19)
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Figure 6.6: From Ref. [292]. RBFN-based curve collapse analysis of the oo-state clock (XY) model
o0)

using the Binder cumulant U, Af clock (top panel) and connected magnetic susceptibility Xilfc)k (bottom
panel). The curve collapse uses Ny = 128 (purple), 196 (tan), 256 (red), 320 (yellow), and 512 (cyan).

The K (c0 )k values used for both curve collapse analyses between 1.005/1.0 for Ui d()j a/ Xglogk and 1.1,
1.1, 1. 102 1.102, and 1.105 for N, = 128,320, 256, 160 and 512, respectively for both observables.
Data used in the curve collapse is marked with an open x (fit data); otherwise, it is marked with an
open o (other data). The scaling function Fp predicted by the RBEN is plotted as a grey band.
The width of the band corresponds to the predicted error. The RBFN in both panels has two nodes
in its hidden layer.

The phase transition of the oo-state clock (XY) model is much more interesting. Because it is a two-

dimensional system with continuous spins, it cannot exhibit a phase transition in the “conventional”
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4-state clock model oo-state clock (XY) model
Param. U 481)1 ock X((fl) 3 ok Exact U ﬁ:)l ock Xg) 3 ok Literature/Exact
KP_0.831379(17) 0.881430(66) log (1 ++/2) 1.126(10) 1.1160(86) 1.1199...
¢ — — — 1.6(1.2)  1.45(62) 15...
v 0.9976(41)  1.001(11) 1 0.55(20)  0.526(92) 1/2
0 — 0.2510(39) 1/4 —0.2513(85) 1/4

Table 6.2: From Ref. [292]. Comparison of our RBFN-based estimates of K (»)

clock?
parameters for p = 4,00 from a curve collapse analysis of Uzi,pc)lock and Xcll)ock' The exact critical

o0)

lock,c

v, 1, and ( critical

parameters are from Refs. [231, 382]. Values from the literature for K C(
[166, 229, 232, 277]. Predicted critical parameters from Figs. 6.5-6.6.

and ( are from Refs.

sense (a byproduct of spontaneous symmetry breaking) due to the Mermin-Wagner theorem [260].
The phase transition of the XY model is not such a phase transition. The transition is triggered by a
sudden transition from a phase that is dominated by spin-wave dynamics to a phase that is dominated
by interacting vortices [222, 231]; in other words, the phase transition is induced by topology and not
the spontaneous breakdown of some symmetry. This is the Berezinsky-Kosterlitz-Thouless (BKT)
transition [37, 231, 232]. Even more, the transition is oo-order [231]. The transition temperature is
not known exactly; however, a multitude of studies spanning many decades in the literature have
pinned it down to

1/K)  ~0.893 (6.20)

clock,c

with a global uncertainty in 1/K(°O) that is roughly O(0.001) [166, 229, 277|. This amounts to

clock,c
Kéloc?c)k,c ~ 1.12. RG analysis of the co-state clock model yields v = 1/2 and ¢ ~ 1.5 |231].

I simulate the 4-state clock model using the cluster algorithm provided by the SpinMonteCarlo
library [267, 377]. On the other hand, I simulate the oco-state clock model using the heatbath
algorithm provided by the Quantum EXpressions (QEX) library [284]|. The author’s reason for using
the heatbath algorithm is historical. One the original goals of this project was to use the GF-based

renormalized coupling for FSS, as I do in Chapter 7. At the time, I wanted to utilize the tools
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provided by QEX library to accomplish this goal. Conveniently, QEX also had an implementation
of the heatbath algorithm that allowed me to simultaneously generate heatbath samples and run
gradient flow measurements. As little came out of my investigation of the renormalized coupling,
I regret not simulating the oco-state clock model with the cluster algorithm, which is superior to
the heatbath algorithm for spin systems near criticality. In any case, I briefly discuss the heatbath
algorithm in Appendix J.

As in Sec. 6.3, I test out the RBFN-based curve collapse on the 4- and co-state clock model by
considering the Binder cumulant and magnetic susceptibility. To this end, I define the magnetization

vector

M(Kﬁﬁ)ck, N2 Z cos(6;),sin(6;)) (6.21)

in place of the magnetization defined in Eqn. 6.15 for the Potts model. The Binder cumulant is

calculated from the magnitude of the magnitization as

1 (IM]%)
UAE c)lock(K(E{)o)ch) = 5 [3 - <|M|2>2 : (622)

For the magnetic susceptibility of the 4-state clock model, I calculate the connected magnetic
susceptibility as

(4 4)
Xclgck (K

clock”

No) = KQL N2((IM] — ([M])2), (6.23)

clock

while for the magnetic susceptibility of the co-state clock model, I use the estimator

XETsc)k(K(OO) N) = K N2<’M clo(:)k’N)’2> (6.24)

clock? clock

suggested by Refs. [158, 286]. The Binder cumulant and connected magnetic susceptibility

scale as Eqn. 6.4 with x(K(A‘) /v

ClOCk’

for the 4-state model and :L‘(K(OO) N) =

clock?

| kclock ‘ N

N exp (—dkéf:c)k‘_y) for the oco-state clock model. Moreover, for both models VW =V () = =2-7

clock Xclock

with n = 1/4 [232, 382]. In Fig. 6.5, I illustrate the result of the curve collapse for the Binder



138

cumulant (top panel) and connected magnetic susceptibility (bottom panel) for the 4-state clock
model. I show the same information for the co-state clock (XY) model in Fig. 6.6. In Table 6.2,
I compare the prediction for the critical parameters from the RBFN-based curve collapse against
what is known from the literature [166, 229, 232, 277|.

The RBFN-based curve collapse for the p-state clock model yields predictions for the critical
parameters of both models that are consistent with either their exact values or their estimates from

the literature over the range of Ng and K®

clock Used in each analysis. The p-values for the 4-state

clock model curve collapse are 54% and 83% for the Binder cumulant and connected magnetic
susceptibility, respectively. For the co-state clock model, they are 100% and 94%. Such high p-values
indicate either that the model overfits or the errors on the data are overestimated. Given that the
size of the error bars appear to be much larger than the fluctuations in the central values of the data,
it is much more likely that the errors have been overestimated. As with the g-state Potts model, the
RBFN has only 2-3 hidden nodes. The RBFN’s ability to accommodate for the differing curvatures
of the scaling function while producing estimates for the critical parameters that agree with the

literature with such a small number of hidden nodes is quite impressive.

6.5 Other uses of radial basis function networks in lattice field theory

Though I have introduced radial basis function networks in this chapter for the purpose of
extracting the critical parameters of a model, there are a variety of problems in lattice field theory
and the broader scientific domain that could exploit the expressivity and simplicity of RBFNs.
One such class of problems are those which require estimating the non-parametric component of a
semi-parametric model. The curve collapse analysis that we have explored in this chapter belongs to
the latter category: to estimate the critical parameters of the model, it is necessary to estimate the
non-parametric and a priori unknown scaling function Fp. Another familiar example appears in
hadron spectroscopy. Spectroscopy calculations often involve estimating the ground state energy E

and amplitude Aj (in units of the lattice spacing), along with any excited state energies/amplitudes,
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Figure 6.7: From Ref. [292]. RBFN-based interpolation of the helicity modulus Y (K (o) "N s) for

clock?
the oco-state clock (XY) model at fixed Ns. Data included in fit is shown as an errorbar with an

44 7

open “x” marker. RBFN-based interpolation is shown as a colored band. Interpolation performed
on Ny = 128 (purple), 160 (dark green), 256 (red), 320 (yellow), and 512 (cyan). The RBFN-based
fits are shown as a colored bands, with the width of the band indicating the error. The color of each

band indicates the N4 at which the fit was performed. The helicity modulus at Kc(lcf C)k o(Ns) given by

Eqn. 6.29 is indicated by a dotted black line. The RBFN has 2 nodes in its hidden layer.

from a fit of two-point function data to the ansatz

G(%4) = Ay exp (-Eoa) + Z A;exp (-E;is), (6.25)
i=1

where T, is the temporal extent of the lattice in units of the lattice spacing. The excited state sum is
non-parametric in the sense that requires knowledge of an infinite number of A;, E;. Estimating E,
and Ay requires truncating the excited state sum, and the stability of the estimate is assessed by the
observation of a stable plateau of the ground state parameters in the number of states contribution
to the sum. The need to choose a cutoff in the number of excited states can introduce an additional
source of systematic uncertainty. Parameterizing the excited state sum with a radial basis function
network could improve the estimate of at least the ground state energy /amplitude by removing this

ambiguity; however, one of course still needs to choose how many parameters the RBFN should
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Figure 6.8: From Ref. [292]. Extrapolation of the pseudocritical temperature K - (c0) (N;) calculated

clock,c
from the intersection of our RBFN-based interpolation (colored bands in Fig. 6.7) with the universal

jump condition (dotted line in Fig. 6.7) to 1/Ny — 0 using Eqn. 6.30. The pseudocritical
temperatures are indicated by multi-colored errorbars with open diamond markers “¢” and utilize
the same color scheme as Fig. 6.7 for different Ny (see caption). Result of fit to Eqn. 6.30 is shown
as a grey band and the central value of the fit prediction is shown as a dotted black line.

posses.

A more trivial class of problems are those that require directly interpolating some observable.
We have already encountered these kinds of problems many times in this thesis; see, for example,
Chapters 4.5.3.1 and 5.4.2.1. Let’s now end this chapter with an example calculation that utilizes
an RBFN as a tool for direct interpolation. From the RBFN-based interpolation, I will extract the

critical temperature of the co-state clock model.

6.5.1 Example: The critical temperature of the co-state clock model

My goal in this section is to estimate the critical temperature K (10 )k c of the BKT transition

from the helicity modulus, defined as

—_

clock7

[\

2
T(KESGN:) = =Y ey — N2KD), 52, (6.26)
=1
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with

Nz Z cos(6 (6.27)

<ZJ>H

8= N—Sz Z sin(6; — 6;), (6.28)

where (ij), denotes a sum of lattice sites ¢ along the p-direction and their nearest-neighbors j {229,

277, 358, 359]. Next, I interpolate T(K( ?) Ns) in Ké;oc)k at fixed Ny with an RBFN possessing two

clock?

hidden nodes. In Fig. 6.7, I show the result of the interpolation at Ny = 128, 160, 256, 320, and 512

as multicolored bands. The p-values for the fits are in the 27% — 83% range. At K. . () there is a

clock,c?

universal jump condition

T(K§o oo Ns) = 2 /TK S (NG, (6.29)

clock,c?

where f, = 1 — 16mexp(-4m) [277]. The jump condition is shown as a dotted black line in Fig.

(co) (Ng) from the intersection of T(K(p)

clock,c clock,c?

6.7. I calculate the pseudocritical temperature K\ . NS)

intersects the right hand side of Eqn. 6.29. At leading order, the pseudocritical temperature

K (Ng) depends upon Ny as

clock,c

I(—(oo)7 (N) K(oo 1/1/.

clock,c + C L log (KN ) (630)

from Eqn. 6.30 using the pseudocritical coupling K (lo c)k C(NS) extracted from
(c0)

clock,c

I then extract K. (00)

clock,c

the universal jump condition. The data is not precise enough to determine both K-, _and v, so I

fix v = 1/2. I illustrate the extrapolation in Fig. 6.8. The estimate K(Sloc)k . = 1.124(14) is consistent
with the result that I obtained from the RBFN-based curve collapse and the literature (see Table
6.2). It is clear from Fig. 6.8 that the error in K(loc)kc( N;) fans out as 1/Ng — 0 because the data
entering the extrapolation are situated far away from the infinite volume limit. The large distance

over which the extrapolation must be performed is a consequence of the logarithmic scaling of certain

observables with Ny for oo-order transitions. Unfortunately, one must simulate large volumes.



Chapter 7

Finite size scaling and [S-function of the massless eight flavor system

Up to this point, we have explored a variety of renormalization group methods and physical
systems. My goal in this chapter is to apply the methods that we have developed and subsequently
deployed to study the infrared properties of the massless SU(3) gauge-fermion system with Ny = 8
fermions in the fundamental representation of SU(3). The Ny = 8 system is the least well-understood
and, consequentially, the most controversial /challenging system that I explore in this thesis. As
such, the content of this chapter reflects an ongoing effort to understand its infrared behavior. In
Sec. 7.1, I review the literature on N¢ = 8. I summarize the simulations that have been performed
for the content of this chapter in Sec. 7.2. The rest of this chapter is dedicated to understanding
the zero-temperature phase structure of the Ny = 8 using the radial basis function network-based
finite size scaling method described/deployed in Chapter 6 (Sec. 7.3) and the renormalization group

B-function using the methods described/deployed in Chapters 4 and 5 (Sec. 7.4).

7.1 Overview of the eight flavor system

Much of the literature on Ny = 8 system suggests that it could be close to the edge of the
conformal window. Early investigations of this system were partially motivated by the presence
of an IRFP in the perturbative two-loop f-function (see Chapter 1), which predicts an IRFP for
8.05 < Nt < 16.5 [346]. However, the two-loop fixed point at Ny =~ 8.05 is observed at such an
absurdly large renormalized coupling that it cannot be described by perturbation theory. The

most recent non-perturbative determinations of the g-function from lattice simulations of the
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N; = 8 system have not observed an IRFP over the range of renormalized couplings that have been
investigated thusfar |18, 19, 124, 185, 187]. As the value of the fixed point coupling gg(* in any RG
scheme X increases as Nt — Ny from the conformal phase, it is possible that such studies simply
could not reach large enough gg( to see signs of an IRFP. Interestingly enough, the few studies that

< 16.0 using gradient-flow-based

~

have managed to reach renormalized couplings in the range 8.0 < g2
step-scaling schemes (see Chapter 4.3) do observe signs of an inflection point in the continuum
B-function [185, 187|; however, the presence of a bulk phase transition (see Chapter 5.2) in such
studies prevented them from reaching further into the infrared regime. Note additionally that an
observation of the S-function turning around could indicate either that the S-function possesses an
IRFP or that there is some range of renormalized couplings over which the renormalized coupling
is slowly walking; without a conclusive observation of either behavior, it is impossible to tell from
the turnaround of the S-function alone. It is also possible that the S-function turning around, or at
least exhibiting an inflection point, is due to some scheme-dependent quirk, unlike the existence of
an infrared fixed point.

As investigations of the non-perturbative RG S-function have thus far been largely inconclusive,
much of what is known about the Ny = 8 system from the literature has been obtained by other
means. Finite-temperature investigations tend to suggest that the system is chirally broken; however,
such investigations have largely been unable to conclusively establish the existence of chiral symmetry
breaking due to the presence of bulk first-order phase transitions that prevent a reliable extrapolation
to the chiral limit [15, 104, 262]. The Monte Carlo RG calculation of Ref. [168] indicates that the
N¢ = 8 system is QCD-like, while the Dirac eigenspectrum of Ref. [79] suggests that the mass
anomalous dimension is O(1), which could indicate either the presence of an IRFP or walking.
Of the various observables/methods that have been deployed to understand the Ny = 8 system,
investigations of the hadron spectrum have arguably revealed the most useful /interesting results.

Large-scale studies of the Ny = 8 hadron spectrum tend to conclude that it is very close to the
confined /chirally-broken side of the conformal sill |7, 8, 10, 13, 15, 17, 53, 127]. The Lattice Strong

Dynamics (LSD) and Lattice Kobayashi-Maskawa Institute (LatKMI) collaborations are the big
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dogs on this front. Both have observed that the lightest scalar meson appears to be nearly degenerate
with the lightest pseudoscalar meson, possibly even all of the way down to the chiral limit. This
is to be contrasted with QCD, where the mass of the broad ¢ resonance (=~ 500 MeV) is certainly
not degenerate with the mass of the neutral pion (~ 135 MeV). Moreover, many of the qualitative
features of the hadron spectrum appear to be described well by dilaton effective chiral perturbation
theory (dxPT) [14, 20, 149-151, 208|, such as possible approximate conformal hyperscaling away
from the chiral limit [21, 332]. See also Refs. [101, 390] for an emerging alternative to dyPT.
While a sizeable portion of the high energy physics community has been arguing over low-
energy behavior of the Ny = 8 system, the condensed matter community has been working on a
separate development that could be relevant to the Ny = 8 system and BSM model building as a
whole. Roughly over the last two decades, a new mechanism for generating fermion masses without
spontaneous symmetry breaking has been discovered and subsequently understood in terms of
anomaly cancellation. Such symmetric mass generation (SMG) is possible if the system of fermions
is strictly free of quantum anomalies [367]. It is becoming increasingly clear that SMG is intimately
related to the physics of chiral edge modes, which underlies the domain wall discretization of the
Dirac operator that I briefly described in Chapter 3.2.2; see, for example, Refs. [366, 386|. In
fact, SMG has even been proposed as a machanism for evading the Nielsen—-Ninomiya theorem (see
Chapter 3.2) altogether [355]. As far as the Ny = 8 system is concerned, it is now understood
that 4-dimensional systems with Ny = 8 continuum Dirac fermions, or two species of Khéler-Dirac

fermion,!

are free of anomalies; hence, they are capable of exhibiting SMG [62, 76]. Such anomaly
cancellation can also be understood by identifying 4-dimensional Kéhler-Dirac fermions with the
boundary of a 5-dimensional bosonic symmetry-protected topological phase [156]. This opens up
the fascinating possibility that the Ny = 8 system could possess an SMG phase that is triggered by
strong dynamics.

Evidence for the existence of a strongly-coupled SMG phase in the Ny = 8 system has been

presented in Ref. [170], though it had been known for some time already that lattice simulations of

Lattice-discretized Khiler-Dirac fermions are equivalent to free staggered fermions [35].
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L/a (weak coupling)

B 16 20 24 30 32 36 40
8.80 252 238 211 250 115 129 151
8.85 263 219 196 246 185 142 150
8.90 211 212 180 201 121 281 151
9.00 286 203 230 242 248 445 158
9.10 182 169 197 213 213 177 -
9.20 306 187 215 275 160 185 151
9.30 249 176 182 205 182 164 -
9.40 171 178 250 207 183 175 150
9.60 247 141 281 210 206 132 151
9.90 - - 241 236 229 168 151
10.4 - - 252 172 197 127 -
11.0 - - 181 202 232 176 -

Table 7.1: The number of thermalized configurations analyzed at each bare coupling 5, and volume
L/a. The configurations are separated by 10 MDTUs.

the Ny = 8 system possessed a very strange strong coupling phase [80]. Staggered simulations refer to
the latter phase as an “$, phase” because it is identified in staggered simulations from a spontaneous
breakdown of single-site shift symmetry. The system in the $, phase exhibits confinement, but not
chiral symmetry breaking. In the confined/chirally-broken phase of a QCD-like system (that is,
below the conformal window), it is impossible to simulate at zero bare fermion mass amy because
the Dirac operator develops a zero mode; however, in the $4 phase of the Ny = 8 system, nothing
prevents simulating at amy = 0 because chiral symmetry is preserved. Some other mechanism must
be responsible for generating confinement with am; = 0 in this phase, and a plausible candidate
could be SMG. The 8, phase was originally identified as a bulk phase (see Chapter 5.2), as the
transition into the 84 phase appeared to be first-order and had been observed in both the N; = 8
and N; = 12 systems. However, with the advent of Pauli-Villars improvement, which I have already

discussed in Chapter 5.2, it was soon realized that the transition into the 84 phase in the Ny = 8
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system could be continuous, at least from the perspective of a gradient-flow-based finite size scaling
(FSS) analysis of the transition [170]. Such extraordinary claims require extraordinary evidence,
so I will scrutinize the results of Ref. [170] with an updated dataset using the RBFN-based curve
collapse of Chapter 6 (Sec. 7.3). This will be followed up to a non-perturbative determination of the
[B-function using the method described in Chapter 4 and subsequently deployed in the Ny = 0 and

N¢ = 12 systems in Chapters 4 and 5, respectively (Sec. 7.4).

7.2 Simulation details

The simulations in this chapter utilize an adjoint-plaquette gauge action (see Appendix F), a
massless (amy = 0) nHYP-smeared staggered fermion action, and an nHYP-smeared Pauli-Villars
(PV) action with Npy = 64 staggered PV fields (8 PV fields per fermion field) with mass ampy = 0.75.
Both the PV and fermion files have completely anti-periodic boundary conditions in all four directions.
The same action was deployed in the finite size scaling study of Ref. [170]. All simulations are
performed either using a modified version of the MILC library (KS_nHYP_FS)? or gex_staghmc (see
Sec. 8.1 for details). The same is true for all gauge flow measurements. Details of how gauge flow
measurements are performed are discussed in Sec. 8.1 and Chapter 8.1.2.

The datasets in this chapter are split into two categories: weak coupling and strong coupling;
see Tables 7.1 and 7.2 for the total number of thermalized configurations at each (8, L/a) pair
making up both, respectively. The weak coupling ensembles (Table 7.1) are used to determine the
continuum S-function from the weak coupling phase (Sec. 7.4); though the ensembles for this dataset
have been generated from a mix of KS_nHYP_FS and gex_staghmc, all gauge flow measurements
utilize gex_staghmc. Many of the strong coupling ensembles with 16 < L/a < 24 were utilized in
Ref. [170], though a number of L/a = 24 volumes are either new or have been updated and the
L/a = 32 volumes are completely new. The statistical errors in the strong coupling dataset are
likely underestimated due to not properly accounting for the autocorrelation time. As such, the

statistical errors have been increased by a factor of two on all strong coupling ensembles. A more

2KS_nHYP_FS can be found at https://github.com/daschaich/KS_nHYP_FA


https://github.com/daschaich/KS_nHYP_FA
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L/a (strong coupling)

B 16 20 24 30 32 36 40
8.470 168 - - - - _ -~
8.500 129 - - - - _ -~
8.540 - 111 - - - _ _
8.525 257 - - - - _ _
8.550 221 — — - - _ -~
8.560 - 145 - - - - _
8.575 171 - 61 - _ _ -~
8.580 - 156 — - 125 _ _
8.590 238 139 - - 100 - _
8.600 488 131 90 - 80 - -
8.610 457 293 164 - - _ _
8.620 — - — — 145 _ _
8.625 717 388 107 - - - -
8.630 - - 172 - - _ -~
8.640 - 190 142 - 121 — -
8.650 410 321 117 - - - -
8.660 - - 114 - 114 - -
8.670 — — - - 107 _ _
8.680 - - — - 60 _ _
8.700 132 277 85 - - _ -~
8.750 291 216 117 - 38 - -

Table 7.2: The number of thermalized configurations analyzed at each bare coupling 5, and volume
L/a. The configurations are separated by 10 MDTUs.

careful scrutiny of the statistical errors is underway.

In Fig. 7.1, I illustrate the dependence of

9:(L, 95) = g&r (6 L, 95) L:(CL)Q/s
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Figure 7.1: The gradient flow coupling g4y (¢; L, g3) at 8t/a? = (cL/a)? (c = 0.45) for each B, = 6/g3
at fixed 16 < L/a < 40. The coupling on each volume is indicated by multicolored error bars. See
legend for color coding.

at ¢ = 0.45 on [ at fixed 16 < L/a < 40 in both the weak and strong coupling phases. The

gradient flow coupling géF (t; L,g%) is defined in Eqn. 4.24 with §(¢, L) set by Eqn. 4.16. I already

defined g2 (L, g%) in Chapter 4.3, where it was introduced in the context of gradient-flow-based

determinations of the RG S-function that utilize step-scaling. The coupling g2 (L, gg) in Fig. 7.1
f

is determined from Wilson flow (S' = W) and the operator (S°) is the following combination of

S°=W,C:

DO o

1 .
90 (L. 95) = 592w (L. 95) — 59¢.0(L:0) (this chapter), (7.1)

where gg’w (L, g%), gic (L7 9(2)) are g2 from the S'fS® = WW, WC combinations, respectively. The
combination of Eqn. 7.1 is observed empirically to reduce cutoff effects and was utilized in Ref. [170].
The same combination with ¢ = 0.45 will be deployed in Sec. 7.3 for the purposes of finite size scaling.
The dependence of g2 (L, g%) on [ is much more mild in the weak coupling phase than it is in the
strong coupling phase. Once the simulations cross the phase boundary from weak to strong coupling,

g2 (L, gg) sharply increases in magnitude. As discussed at length in Ref. [170], the onset of the strong
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coupling phase is also characterized by a sudden increase in fluctuations of the topological charge
(see Chapter 4.4.1). As I have already mentioned in Sec. 7.1, the strong coupling phase is confining,
which explains both the strong dependence of g2 (L, gg) on [ and the observation of fluctuations
in the topological charge. Nonetheless, all simulations in the strong coupling phase have am; = 0,
which is made possible by the apparent preservation of chiral symmetry in the strong coupling phase.
Large-scale spectroscopy calculations in the strong coupling phase are currently being performed by
the LSD collaboration using qex_staghmc. These should reveal more information about the chiral
properties of the strong coupling phase. All simulations in the weak coupling phase have am; = 0

as well.

7.3 Finite size scaling in the eight flavor system

The coupling g2 (L, 9(2)) is a dimensionless scaling variable; as such, it is expected to scale as

Eqn. 6.4 within the vicinity of a phase transition (8, ~ ) with Vg2 =0 and Ny = L/a. In other

words,
gg (La 9(2]) ~ ]:gg (x) (Bb ~ /Bb,C)’ (7'2)
where
(B, L) = |Bb/Bb,c — 1\(L/a)1/” (2nd-order) (7.3)
or
az(By, L) = Lexp (-¢|Bv/Bpc — 117) (oc-order). (7.4)

Note that the phase transition, should it exist, is not a finite-temperature phase transition. It is a
zero-temperature phase transition, also referred to as a quantum phase transition (QPT). Without
PV fields, FSS predicts v ~ 1/d (d = 4), which is consistent with the discontinuity fixed point
prediction resulting from a first-order phase transition [120, 278]. Introducing PV fields has the
effect of smoothing out the transition; scaling with Eqn. 7.3 yields a prediction for v that is not

consistent with a first-order transition and the data is even consistent with co-order scaling (Eqn.
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7.4) [170].

It is important to note that the non-observation of ¥ = 1/d does not necessarily imply that the
phase transition is not first-order. If the correlation length & (Bp) is much greater than the volumes
L/a deployed in an FSS analysis of the phase transition, then FSS can predict a v that is not
consistent with first-order scaling, even if the phase transition is first-order. Such pseudo-critical
scaling can only be detected by either simulating on volumes L/a > £ (Bp) or establishing that the
correlation length diverges as 3, — . First-order transitions with large correlation lengths are
referred to as weakly first-order because the infinite volume discontinuity is smoothed out significantly
for L/a < 5 (K). For an example of such a potentially dangerous situation, one need not look
further than the g-state Potts model already explored in Chapter 6.3. The finite-temperature phase
transition of the g-state Potts model is first-order for ¢ > 5 [113, 114]. The correlation length at

the first-order phase transition of the 5-state Potts model is an incredible é (Kl()i)tts .

) ~ 2512 and
decreases to E(Kl()t)?tsyc) ~ 11 by ¢ = 10 [58, 207]. If L/a < é(Kl(;?))ttS), a F'SS analysis of the 5-state
Potts model will predict v that reflects the pseudo-critical behavior of the model, which can lead to

wncorrectly concluding that it is continuous if caution is not taken.

7.3.1 Finite size scaling with radial basis function networks

I explore the zero-temperature phase transition of the Ny = 8 system by approximating the
scaling function Fgz(z) in Eqn. 7.2 with a radial basis function network (RBFN). Finite size scaling
with an RBFN has already been explored extensively in Chapter 6 for the 2nd-order transition of
the ¢ = 2,3 state Potts model and the p = 4 state clock model, along with the co-order (BKT)
transition of the oco-state clock (XY) model. The RBFN-based FSS analysis of this chapter is carried
over verbatim, save for the imposition of priors on the RBFN centers (0(100)), bandwidths (0(100)),
and bias (0(100)) for the purposes of stabilizing the curve collapse. The width A of the prior on the
weights of the RBFN is determined by the surrogate-based empirical Bayes analysis described in
Chapter 6.2.3. I perform the FSS with a variety of scaling ansatz. I test for 2nd-order scaling using

Eqn. 7.3 with v free, while 1st-order scaling is tested similarly using Eqn. 7.3 with v = 1/4 explicitly.
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Figure 7.2: 2nd-order curve collapse (Eqn. 7.3) for g2 at ¢ = 0.45. Scaling function normalized
by N = 12872 /(3N? — 3) for visualization purposes. Prediction from RBFN indicated by a gold
band with the width of the band indicating the error. Data entering the curve collapse indicated bu

multicolored error bars for L/a = 16 (blue), 20 (orange), 24 (green), 32 (purple). Percent on RBFN
label indicates the p-value of the fit.

The data is not precise enough to be able to determine ( and v simultaneously for oo-order scaling
without introducing a dangerous amount of bias into the prior for . Hence, I compare BKT-like
scaling using Eqn. 7.4 with v = 1/2 against “walking” scaling using Eqn. 7.4 with v = 1. The prior
for B for all four fit ansatz is 8.7(7), based on the results of Ref. [170]; such a wide prior is chosen
to stabilize the fit while reducing bias as much as possible. The prior for v from 2nd-order scaling
is 1(1); the same is true for the prior on ¢ for the two oco-order ansatz with v = 1/2 and v = 1.
Priors on the critical parameters Sy, v and ¢ are enforced logarithmically, so as to explicitly enforce
positivity. The RBFN that fits the data best with the least number of parameters possesses two
nodes in its internal layer. Curiously, the width A\* that maximizes the marginal likelihood (Eqn.
6.12) is close to A* ~ 0.529 for all four scaling ansatz. In Table 7.3, I summarize the result of the
RBFN-based FSS at A* for each of the aforementioned scaling ansatz.

According to Table 7.3, 1st-order scaling is strongly disfavored compared to both 2nd-order
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Figure 7.3: oc-order curve collapse (Eqn. 7.4) for g2 at ¢ = 0.45 with fixed v = 1/2 (top panel)
and v = 1 (bottom panel). Scaling function normalized by N' = 1287%/(3N? — 3) for visualization
purposes. Prediction from RBFN indicated by a gold band with the width of the band indicating

the error. Data entering the curve collapse indicated bu multicolored error bars for L/a = 16 (blue),
20 (orange), 24 (green), 32 (purple). Percent on RBFN label indicates the p-value of the fit.

scaling and oo-order scaling. The augmented x? (Xgug.) and the x? of the data x3,,, per their
respective degrees of freedom are =~ 20x larger for 1st-order scaling than all three continuous scaling

ansatz. The marginal likelihood for the 1st-order scaling ansatz is also significantly lower. As I have
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stated already, it is nevertheless impossible to completely rule out 1st-order scaling based on very
poor fit quality alone; more information from & (Bp) is needed.

In Fig. 7.2, I illustrate the result of the RBFN-based FSS with 2nd-order scaling. The scaling
function F2 is plotted as a dark gold band and the width of the band indicates the statistical error
of Fy2. The (Bp, L/a) pairs entering the curve collapse are shown as multi-colored error bars, with
the color indicating the volume. The prediction for §p. is just above the strongest /3, entering the
B-function analysis of Sec. 7.4. The prediction for v = 1.115(88) is ~ 10% away from unity in
central value and statistically consistent with unity at the ~ 1.350 level. Note additionally that
the critical parameters 5, v = 8.819(16), 1.115(88) are not consistent with those of Ref. [170] and
the Xgug. /d.o.f. is much more reasonable. The reason for this discrepancy is likely attributed to the
improved analysis procedure of this chapter: I do not have to rely on matching to a single bare
gauge coupling, the RBFN is a better interpolator than the smoothing spline used in Ref. [170],
I am using a global optimization algorithm, I am controlling for overfitting with empirical Bayes,
and the error estimation is more reliable. Moreover, removing the L/a = 32 data yields a consistent
prediction for the critical parameters; therefore, it is unlikely that the discrepancy can be attributed
to an improvement in the underlying dataset.

Similarly, the result of the RBFN-based oo-order curve collapse with v = 1/2 and v = 1
are shown in the top and bottom panels of Fig. 7.3, respectively. The prediction for £, =
8.913(23),9.018(32) from v = 1/2, 1, respectively, is weaker (smaller g2) than it is for 2nd-order
scaling and increases in magnitude with v. Moreover, the prediction for ( is negatively correlated
with v; ¢ =0.598(69) from v = 1/2 and ¢ = 0.099(15) from v = 1. As was the case for 2nd-order
scaling, the prediction for [, from either co-order ansatz is both higher than and not consistent with
the value for 3, reported in Ref. [170].

From Xgug., X3ata» and log ML (listed in Table 7.3) alone, it is not possible to determine if
any one continuous scaling ansatz is unambiguously preferred over the others. The oo-order ansatz
with v = 1/2 is slightly preferred by Xgug. and log ML, while co-order scaling with v = 1 is slightly

preferred by Xg,ug.' The lead that oco-order scaling with v = 1/2 has over 2nd-order scaling as far as
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Fit result
Fit Bb.c v ¢ Xoug. /d-0f. XFua/dof* logML
Ist-order 8.65101(20) 1/4 - 20.77 28.12 -267.70
2nd-order  8.819(16) 1.115(88) - 1.05 1.44 30.20
co-order  8.913(23) 1/2 0.598(69) 1.01 1.38 30.74
oo-order  9.018(32) 1 0.099(15) 1.16 1.34 27.04

Table 7.3: Juxtaposition of 1st-, 2nd-, and oo-order scaling ansatz. See Chapter 8.2 and Appendix
D for definition of Xgug., X2atar and marginal likelihood (ML). d.o.f. = “# data — # parameters +
# priors” and d.o.f.* = “# data — # parameters”. “# data = 30” fixed for all fits, “# parameters =
# priors = 9” for 2nd-/oo-order and 8 for Ist-order.

the marginal likelihood is concerned is so small that even stating that it is “preferred” over 2nd-order
scaling generous at best. Taken together, the best that one can state is that oo-order scaling is
slightly preferred over 2nd-order scaling; however, the possibility of 2nd-order being preferred over
oo-order cannot be confidently ruled out with the dataset and analysis of this chapter. The most
definitive statement that can be made is that continuous scaling is strongly preferred over lst-order
scaling, which indicates that the phase transition is likely not lst-order if subsequent measurements

of the correlation length support that it is not finite at .. Such investigations are underway.

7.4 Calculation of the continuum S-function

In Chapters 4 and 5, I calculated the continuum gradient flow S-function for the Ny = 0
and Ny = 12 systems, respectively. In both cases, I was able to calculate some quantity from the
B-function that more or less verified the legitimacy of the infinite volume RG scheme that I have
been using throughout this thesis, up to irregularities in the literature and systematic effects in
the analysis. In this section, I will apply the same methods to extract the continuum S-function
of the Ny = 8 system. As such, statistical uncertainties are estimated and kept track of using the
automatic error propagation tools provided by the gvar library [241]. Fits are performed using either

the SwissFit library (see Sec. 8.2) or the 1sqfit library [240, 290]. I have also tested using the
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I'-method to account for accounting for autocorrelation in correlated uncertainties [378]. This is
accomplished by first calculating the ordinary correlation matrix, then calculating the covariance
matrix from the correlation matrix by rescaling it with the statistical error estimated from the
I'-method, as suggested by Ref. [215]. However, doing so introduces numerical noise into the analysis
that is difficult to control for, so I continue the practice of accounting for autocorrelation by binning.

In the CBFM analysis of Refs. [178, 179]|, multiple flows were used to cover the entire
renormalized trajectory from the UVFP to the IRFP of the models investigated in those works. The
flows deployed in Refs. [178, 179] are parameterized by the plaquette ¢, and rectangle ¢, coefficient

of the Liischer-Weiss action briefly discussed in Chapter F [248, 369, 370|, which are constrained by

cp+8c =1 (7.5)

For example, the Wilson action is obtained from ¢; = 0, while the tree-level improved Liischer-Weiss
action is obtained from ¢, = —1/12. In this chapter, I utilize different flows for the same purpose.
I refer to each flow as ST = PXY, where X is the numerator and Y is the denominator of the Cp
coefficient; e.g., “P11=W" (Wilson flow) has ¢, = 1, while “P13” has ¢, = 1/3. The continuum
B-function in this chapter utilizes four flows: P11=W (¢, = 1), P23 (¢, = 2/3), P13 (¢, = 1/3),
and P16 (¢, = 1/6). As in Chapters 4 and 5, I refer to the S-function determined from a specific
flow /operator combination as “S'S®”; e.g., P13 flow with the clover operator is “P13C”. For each
flow /operator combination, I calculate géF (t; L,gg) using Eqn. 4.24 with 6(¢, L) set by Eqn. 4.16.
The corresponding finite-volume S-function Sgp (t; L, gg) is calculated from géF (t; L, gg) using the

5-point stencil of Eqn. 4.37 with §t/a? = 0.05.

7.4.1 Infinite volume extrapolation

I extrapolate both géF(t;L,gS) and ng(t;L,gg) to the a/L — 0 limit at fixed £, and
t/a® using Eqn. 4.38, as in Chapters 4 and 5. The uncertainty in k; (t; gg) coefficients of Eqn.

4.38 includes both the statistical uncertainty in géF (t; L, gg) and Bgr (t; L, g%), respectively, along
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Figure 7.4: Example of infinite volume extrapolation of g&p (¢; L, g3) (left panels) and Bar (¢; L, g3)
(right panels) for P11W (WW in previous chapters) flow /operator combination at 5, = 8.85 (top
panels), 9.00 (middle panels), and 9.90 (bottom panels). Extrapolation shown at only t/a® = 5.0
(red) and 6.5 (purple) for visualization purposes.
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Figure 7.5: Example of infinite volume extrapolation of géF (t; L, gg) (left panels) and Bgr (t; L, gg)
(right panels) for P16W flow /operator combination at 3, = 8.85 (top panels), 9.00 (middle panels),
and 9.90 (bottom panels). Extrapolation shown at only t/a? = 5.0 (red) and 6.5 (purple) for
visualization purposes.
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with the systematic uncertainty that is associated with extrapolating over any subsets of volumes
L/a € {24,30,32,36,40} using the Bayesian model averaging procedure outlined /deployed in the
CBFM analysis of the Ny = 12 system in Chapter 5. All model variations contain at least three
volumes, so that the linear extrapolation in a*/L* have at least one degree of freedom left.

I illustrate the infinite volume extrapolation with SfS¢ = P11W (WW) in Fig. 7.4 and
S'S® = P16W in Fig. 7.5 for G (t; L,g%) (left panels) and Sgp (t; L, g%) (right panels) at 3, = 8.80
(top panels), 8.85 (middle-top), 9.00 (middle-bottom), and 9.90 (bottom). For the purposes of
illustration, I only show the extrapolation at t/a? = 5.0, 6.5, which are the lower/upper bound on
the flow time entering the continuum extrapolation in Sec. 7.4.2. As [, decreases, finite volume
effects become more pronounced, perhaps due to being within the vicinity of the phase transition.
Nonetheless, finite volume effects at the strongest couplings (8.8 < 8, < 8.9) appear to be described
quite well by a linear dependence on a*/L*. See, for example, the extrapolation at 8, = 8.80 and
8.85 in Figs. 7.4 and 7.5. As (3, increases, finite-volume effects tend to be comparatively mild;
however, statistical fluctuations in the ensembles at different L/a tend muddy the appearance of
any particular trend in a*/L*, perhaps because the extrapolation tends to be fairly flat. As such,
the combined statistical /systematic error predicted by Bayesian model averaging can, and often
does, cover the spread in the central values of the data entering the infinite volume extrapolation for

9.00 < By < 11.0. See, for example, the extrapolations at 8, = 9.00,9.90 in Figs. 7.4 and 7.5.
7.4.2 Continuum extrapolation

I extrapolate Sgp (t; gg) to the a?/t — 0 limit at fixed géF using the ansatz of Eqn. 4.39. As
in Chapters 4 and 5, doing so requires first interpolating Sgr (t; gg) in géF (t; gg) at fixed t/a?.
7.4.2.1 Intermediate interpolation

The fast running S-function of the Ny = 0 system in Chapter 4 required the use of an
interpolating function that is able to accommodate different asymptotic behaviors of the S-function

in the weak/strong coupling regime (Eqn. 4.42). The intermediate interpolation for the slow running
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Figure 7.6: Example of interpolation of Sgp (t; gg) in géF (t; gg) for P1I1IW (WW, top left), P23W
(top right), P13W (bottom left), and P16W (bottom right). Result of interpolation indicated
by multicolored bands at fixed t/a? = 5.0 (red), 5.5 (green), 6.0 (cyan), and 6.5 (purple). Data
entering interpolation indicated by multicolored error bars with corresponding colors for each t/a?.
Interpolation juxtaposed against 1- (dashed), 2- (dotted), and 3-loop (dashed-dotted) continuum
B-function from perturbation theory [161].

B-function of the Ny = 12 system in Chapter 5 is described well by a perturbative ansatz (Eqn. 5.7).
The B-function of the Ny = 8 system does not run as fast as the Ny = 0 system, nor does it exhibit
signs of asymptotic linearity in géF for géF /4w > 1. However, the running of the S-function in the
N; = 8 system is fast enough so as to prevent it from being described well by a perturbative ansatz
over the entire range of renormalized couplings explored in this chapter. As such, the interpolating

function Zy is chosen to be a generic polynomial

N Z Pngeih- (7.6)
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Figure 7.7: Example of interpolation of Sgp (t;gg) in géF (t;gg) for P11C (WC, top left), P23C
(top right), P13C (bottom left), and P16C (bottom right). Result of interpolation indicated by
multicolored bands at fixed t/a? = 5.0 (red), 5.5 (green), 6.0 (cyan), and 6.5 (purple). Data
entering interpolation indicated by multicolored error bars with corresponding colors for each t/a?.
Interpolation juxtaposed against 1- (dashed), 2- (dotted), and 3-loop (dashed-dotted) continuum
B-function from perturbation theory [161].

As in Chapter 5, the statistical error in géF (t;g(Q]) is accounted for by treating géF (t;gg) as a
Gaussian prior (see Appendix D). Moreover, a prior of 0.0(0.1) is imposed on the p,, coefficients to
stabilize the fit. The lowest order N that fits the data well is N = 4; i.e., a cubic polynomial. In Fig.
7.6, I illustrate the intermediate interpolation for P11W (top left panel), P23W (top right panel),
P13W (bottom left panel), and P16W (bottom right panel) at t/a? = 5.0,6.0,5.5 and 6.0 (different
colors). The same information for PXYC is illustrated in Fig. 7.7. In all cases, the p-values are
typically quite high. This was also the case in the Ny = 12 system and likely indicates that the
combined statistical /systematic error is overestimated. At the weakest couplings (g&p/4m < 1),
discretization effects appear to be quite mild. As géF enters the strong coupling géF /4w 2 1 regime,

discretization effects appear to increase; see, for example, the bottom right panel of Fig. 7.6 (P16W).



161

PXYW $ 4% P PXYC
S R =) )
$ 4 ¢ P13
x
S $ ¢ 4 P16
N T m = x X x
* T * & B
M I m
T ® g
T
3
L
=
k3
x F F
gt
3
(LR
T 538
3¢
§i§§ géF:&O §§§} géF:GO
4] gap=10.0 ] gep =10.0
S8 gir =220 PEPE g2r =220
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
a’/t a’/t

Figure 7.8: Sample of continuum extrapolation for W (left panel) and C (right panel) operator at fixed
g2y = 6.0 (teal), 10.0 (orange), and 22.0 (magenta). Different flows indicated by different symbols:
P11 (circle), P23 (box), P13 (diamond), and P16 (x). Data entering continuum extrapolation
indicated by filled symbols and data not entering continuum extrapolation are open.

7.4.2.2 Continuum extrapolation

With the intermediate interpolation on hand, the continuum limit is taken by extrapolating
Bar (t; gg) to the a?/t — 0 limit over a set of fixed géF by fitting Bar (t; g%) linearly in a2/t at each
géF. The values for [tmin., tmax.|/ a® over which the continuum extrapolation is performed is chosen
based upon the overlap of the continuum prediction for Bgp (géF) from different flow/operator
combinations; the choice of [tmin., tmax.]/a® = [5.0, 6.5] yields reasonable agreement over the range of
accessible renormalized couplings 5 < géF < 24. The same issues with statistical correlations that
had to be dealt with in Chapters 4 and 5 are also present in the continuum extrapolation of this
chapter. As before, they are dealt with by estimating the central value of the continuum S-function
Bar (géF) from an “uncorrelated” fit and the error in Sgp (géF) from the half difference of the central

value of fits to Bgw (t; gg) + 1o.
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In Fig. 7.8, I illustrate the continuum extrapolation for PXYW (left panel) and PXY W (right
panel) at g&r = 6.0 (blue), 10.0 (orange), 22.0 (pink). The raw data for each flow is indicated by its
own marker: P11 (o), P23 (0), P13 (¢), P16 (x). The continuum prediction for Sgr(g&p) from the
W operator is consistent for all flows between 5.0 < géF < 15.0 and 5.0 < géF < 12.5 from the C
operator. The P11 flow peels off first, followed by P23; the P13 and P16 flows remain consistent over
the entire range of géF. The point in géF at which flows with larger ¢, peel off is accompanied by
nonlinear effects of Sgp (t; gg) in a?/t. At first, the observation of flows with different cp peeling off
earlier in géF appears to be a cause for concern; however, it may be the case that different flows tend
to confidently cover different sections of the renormalized trajectory as far as the CBFM is concerned.
The same phenomenon has been observed in the CBFM analysis of the Ny = 10 system in Ref.
[179] and the CBFM analysis of the massless SU(4) system with four fermions in the fundamental

representation and four fermions in the two-index antisymmetric representation of Ref. [178].

7.4.3 The continuum S-function

In Fig. 7.9, I show the result for the continuum S-function from PXYW (top panel) and
PXYC (bottom panel). The continuum S-function is juxtaposed against the 1-, 2-; and 3-loop
perturbative S-function and the continuum S-function from the CBFM applied to simulations of
domain wall fermions (DWF, briefly discussed in Chapter 3.2.2) [161, 192]. For 5.0 < g&p < 7.5, the
prediction for Sap (géF) from each flow/operator combination overlaps with the DWF prediction.
The continuum S-function extends past the DWF prediction up to géF ~ 24. As I have already
mentioned, the continuum prediction from the P11 and P23 flows peels off earlier in géF, while the
P13 and P16 flows are consistent over the entire range of géF.

Intriguingly, the P13/P16 flows predict that the continuum S-function could curve upwards.
If the upward curvature is not either a systematic effect or an artefact of the RG scheme, then
the upward curvature could indicate either the presence of an IRFP or that the S-function will
eventually exhibit slow walking. If the results of the F'SS analysis in Sec. 7.3 are to be believed, then

it is a bit surprising that the continuum S-function of this section is not already showing stronger
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Figure 7.9: Continuum N; = 8 S-function from W (top panel) and C (bottom panel) operators for
each flow: C11 (blue), C23 (orange), C13 (green), and C16 (red). Width of band for continuum j3-
function indicates the error. Juxtaposed against continuum prediction from domain wall simulations
using the same RG scheme [192] and 1- (dashed), 2- (dotted), and 3-loop (dashed-dotted) continuum
p-function from perturbation theory [161].

signs of an IRFP or slow walking. With the current action, it is unlikely that flows with smaller ¢,
will significantly extend the reach of the continuum S-function in géF, as they had for the Ny = 10

system in Ref. [179]. As is evident from Ref. [188], adding more PV fields is also not likely to extend



164

the reach in géF, as the current action already saturates the PV improvement. Nonetheless, if the
continuum S-function of this chapter is to be taken seriously, or, even better, reproduced by another
group, then it is likely that simulations of the Ny = 8 system that have been performed up to the
date of writing this thesis have only probed the “weakly coupling” region of the Ny = 8 system.
The best that one can say now is that the Ny = 8 system likely has many surprises in store for the

future.



Chapter 8

Other developments

The topics covered in this chapter can generally be considered as “bonus content”, as they are
not core to the primary objective to this thesis, which has been covered in Chapters 4-7. I discuss
the important software development that made the results of Chapters 5-7 possible; namely, the
Quantum EXpressions (QEX-based) staggered Hamiltonian Monte Carlo code qex_staghmc software
suite (Sec. 8.1) and the SwissFit library (Sec. 8.2) [284, 290], both of which I wrote and am
currently responsible for maintaining. In Sec. 8.3, I discuss the extraction of running operator
anomalous dimensions in the Ny = 10 system using the RG scheme/methods deployed in Chapters
4-7. The latter project will likely never make it past preliminary results; hence, what has been

achieved is summarized in this chapter.

8.1 The Quantum EXpressions-based gex_staghmc suite

Chapters 5 and 7 utilize Pauli-Villars (PV) improved Hamiltonian Monte Carlo simulations
with Ny = 2 and 3 species of staggered fermion, respectively. The first simulations of both systems
with PV improvement utilized a modified version of the MILCv7 library [170, 188].! For the small
volume (8 < L/a < 24) simulations that were targeted by such studies, the modified MILC library was
efficient enough for all intents and purposes. However, simulating larger volumes (L/a = 36,40) over
a reasonable amount of both human and computer time on modern machines required a more modern

code that is capable of fully utilizing the innovations in hardware/algorithms that have been made

'The modified MILC library can be found at https://github.com/daschaich/KS_nHYP_FA


https://github.com/daschaich/KS_nHYP_FA
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over the last decade. A natural target in the modern era of lattice calculations was to implement PV
improvement in the beautiful, highly-optimized GRID library 47|, which was used in Chapter 4 to
simulate the pure Yang-Mills system. Even better, GRID was designed around domain wall fermions,
which implement Pauli-Villars fields already for a different purpose. However, I eventually came
to learn that modifying the GRID library to fit the needs of the calculations performed in Chapters
5 and 7 would be fairly difficult to achieve over a reasonable time frame. Instead, I decided to
implement PV improvement in the Quantum EXpressions (QEX) library, which already had many of
the foundational tools that I needed for the specific action that I intended to simulate [284|. Even
more, QEX was already in use by the Lattice Strong Dynamics (LSD) collaboration and is actively
supported by its developers at Argonne National Laboratory.

QEX? is a high-level framework for performing lattice field theory computations using the
beautiful Nim programming language [284, 299|. QEX supports a combination of task-based parallelism,
thread-based parallelism, and single instruction/multiple data (SIMD-based) parallelism. It is also
capable of utilizing graphics processing units (GPUs) when deployed with QUDA as a backend [82].3
Nim is a high-level, multi-paradigm systems programming language that supports a variety of
meta-programming features that make it an extremely powerful /versatile tool for high performance
computing (HPC) [299]. gex_staghmc* builds upon the extensive tools of QEX to provide a staggered
HMC suite that is both modular and readily/easily deployed with or without PV improvement.
gex_staghmc also ships with a production-ready code for integrating gradient flow equations and

measuring gradient flow observables with any Liischer-Weiss gauge flow [248, 369, 370].

2QEX is available at https://github.com/jcosborn/qgex.
3QUDA is available at https://github.com/lattice/quda
4qex_staghme is available at https://github. com/ctpeterson/qex_staghmc.


https://github.com/jcosborn/qex
https://github.com/lattice/quda
https://github.com/ctpeterson/qex_staghmc
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8.1.1 Hamiltonian Monte Carlo

After integrating out the staggered fermion fields using the properties of Berezin integrals, the

partition function of Eqn. 3.29 can be written for certain flavor numbers as [227]

Ngp.—1
z= / [d2d,] exp (-Sc [U]) 51:[0 det (D§'D41), (8.1)

where Sg is some lattice discretization of the pure Yang-Mills action (Eqn. 3.2) and @és) is the
staggered Dirac operator of staggered species s defined by Eqn. 3.17. The operator @éS)CD(SS)T is
positive-definite. Working with CD(SS)@S)T as opposed to CD(SS) directly will not be a problem, as
number of fermion species represented by Eqn. 8.1 can be halved by using staggered “half” fields,
which I will discuss in Sec. 8.1.1.2. The coupling of the fermions to the gauge fields is contained
within CD(SS), as I have discussed in Sec. 3.2.3 already. Note, also, that Dés) typically includes smearing;

see Appendix G for details. The determinant in Eqn. 8.1 can be represented by pseudofermion fields

¢(n) € C as

det (9§D / [défag] [Texv (- %qb(s) ()| 2§28 g (). (8.2)

which follows from the properties of Gaussian integrals. Combining Eqn. 8.1 with Eqn. 8.2, the

lattice-discretized staggered action can be represented in terms of purely bosonic fields as

2 = [ [d24,][46146] exp (-Su. [y .97, (8.3)
where
Stat. [U, 6,0'] = Sc U] + % > om0 6 ) (8.4)

The state-of-the-art algorithm for sampling from the joint distribution

Pr Uy, 6,9") = Z7 exp (-Stas. [Up, 6, ¢']) (8.5)
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since the late 1980s is the Hamiltonian (hybrid) Monte Carlo (HMC) algorithm [112].

HMC is a Markov chain Monte Carlo algorithm for sampling from an arbitrary continuous
multi-dimensional probability distribution Pr. Each iteration of the HMC algorithm updates the
variables of the distribution Pr via discretized molecular dynamics evolution followed by a Metropolis

accept/reject test [142, 213, 227, 268|. Suppressing the species index, the field

p(n) = Dg'é(n) (8.6)

is distributed as

Pr (p.61) o [Jexp ( — oo )

in other words, it is Gaussian-distributed. Therefore, sampling from the pseudofermion fields is
as simple as drawing samples from Pr ((p, (pT) using an efficient algorithm for sampling from multi-
dimensional Gaussian distributions, such as the Box-Muller algorithm [46], and multiplying each
sample p(n) by Dg to obtain a sample for ¢(n). Once the sample for ¢(n) has been obtained
according to the latter procedure, updating the gauge field U, follows by first generating momenta

B € su(N) from the distribution,

log Pr(B,) o %Trcmi, (8.7)

then evolving U,, — L{/; via discrete Hamiltonian evolution (molecular dynamics). The proposed

gauge configuration U;IL is then accepted with probability

o = exp ( ~ max [0, W) - ”H(Z/{H)} ) (8.8)

where

H(U,) = %Trcmi + Stat. (U, 6, 0] (8.9)

is the “Hamiltonian” that governs the molecular dynamics evolution. Because the evolution of U, is
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discretized, « is not necessarily equal to unity; instead, it is largely governed by a combination of
the molecular dynamics trajectory length 7, the number of molecular dynamics time steps Nyp,
and the order of the molecular dynamics integration algorithm. The optimal acceptance rate « also
depends upon the molecular dynamics integration algorithm, which I discuss next.

The HMC algorithm combined with the sampling algorithm for ¢ yields (U, ¢, ¢') that are
distributed according to Pr (L{H, o, (;ST) if the molecular dynamics (MD) algorithm preserves the
volume of phase space and the dynamics is time-reversible; in other words, it is symplectic [227].
Symplectic MD integration algorithms were explored extensively in Ref. [282]. The latter integrators
are often referred to in the lattice gauge theory literature as Omelyan integrators as an homage
to the lead author of Ref. [282]; note, however, that there are many other symplectic integrators
that do not fall under the umbrella of Omelyan integrators. To the best of the author’s knowledge,
higher-order Omelyan integrators were first explored in the context of lattice gauge theory in Ref.
[353]. The lowest-order Omelyan integrator is the famous leap frog algorithm, which had been used
for decades before higher-order integrators were systematically introduced. All QEX-based simulations
of this thesis utilize a 2nd-order Omelyan integrator. Further details regarding Omelyan integrators,

particularly 2nd-order Omelyan integrators, can be found in Appendix H.

8.1.1.1 Even/odd decomposition

The staggered Dirac operator (Eqn. 3.17) connects only even sites to odd sites (and vice

versa). As such, it admits a decomposition into even/odd subspaces as [98, 227]

Dee D
os=1| = |, (8.10)
DOG DOO

where

Dee = Do =m and D = Dye = —Do, . (8.11)
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Furthermore, the expression for ®g in Eqn. 8.10 admits a Schur decomposition of the form [98, 227]

Dee  Deo m D 1 D/m||m+DD'/m 0 1 0 (8.12)
Doe Do Dt m 0 1 0 m| =Dt /m 1| '
A corollary to the decomposition of Eqn. 8.12 is
D 0
DLDg = |, (8.13)
0 D
where
D=m?+ DD and D=m?+ D'D. (8.14)

Another corollary of Eqn. 8.12 is that, for any two pseudofermion fields related by D¢ = ¢, the

following relations hold [227]

ﬁgoe =moe — Dp, and my, = ¢, + DTcpe, (8.15)

where

© = (Pes o) and ¢ = (¢e, Po)

is the decomposition of ¢ and ¢ into their respective even/odd subspaces. The even/odd decomposi-
tion, which I stress again is a consequence of having a nearest-neighbor Dirac operator, is extremely
useful, as we shall learn in Secs. 8.1.1.2-8.1.1.3. Note also that the Dee/Doo components of Dg
are not always equal to the mass. For example, the Dirac operator for Wilson fermions Dw (Eqn.
3.25) admits the decomposition of Eqn. 8.10; however, the Dee/Doo components are slightly more

complicated due to the explicit presence of the d’Alembertian.

8.1.1.2 Hamiltonian Monte Carlo with staggered half fields

Egns. 8.13 and 8.15 make staggered fermions, or, really, any fermion formulation with a

nearest-neighbor Dirac operator (e.g., Wilson fermions), incredibly nice to work with as far as HMC
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is concerned. For one, Eqn. 8.12 combined with Eqn. 8.13 implies that setting ¢, = 0 and integrating

over ¢, in Eqn. 8.3 yields

/ [dgidge] exp ( - %q{)T [@S@;} 71¢) o det D = det Dg. (8.16)

In other words, the action of Eqn. 8.4 restricted to just the even sites is equivalent to the action of a
single staggered field at the level of expectation values. This does not change if ®g is smeared. The
pseudofermion field ¢ restricted to just its even components is referred to as a half field. qex_staghmc
works exclusively with half fields.

So that we can better understand the differences between simulating with fermion fields and
Pauli-Villars fields, let us consider the force S,(ferm')(n) € su(N) that is derived from the half field

action of Eqn. 8.16. From the definition of the link derivative 0, , in Sec. 4.1, the force takes the

form (up to factors of 2)
Zm&(ferm’)(n) ox —T*RTr, [(8,‘;#@5)@ Eq (m #0), (8.17)

where

=036 (8.18)

for ¢ = (¢pe,0) and T are the conventional su(N) generators defined in Sec. 4.1. The components of
@ are obtained from the even/odd reconstruction of Eqn. 8.15. For massless fields, no reconstruction

is needed and the force takes the equivalent form

25010 (n) oc ~T*RTr | (5,05 )7 7] (m = 0), (8.19)
where
o= % (8.20)
_DT¢e

with @, the even component of ¥ = (@, ¥,) defined in Eqn. 8.18. In gex_staghmc, the fermion
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force for any massive field is calculated using Eqn. 8.17; for massless fields, it is calculated with Eqn.
8.19. In both cases, it is necessary to invert D to obtain ©. Because D is positive definite, this is
done using the conjugate gradient algorithm [199]. More information about conjugate gradient can
be found in Appendix I. The reader may be concerned that I am inverting the Dirac operator for
two half fields when I could be inverting for one full field (N; > 8); however, half fields are typically
half as expensive as full fields. Therefore, the computational cost of simulating two half fields is
typically as expensive as simulating one full field. Note, also, that the molecular dynamics evolution

of U,, keeps the original ¢ field (Eqn. 8.6) fixed.

8.1.1.3 Including Pauli-Villars fields

In some very real sense, Pauil-Villars fields are the opposite of pseudofermion fields. As far

as HMC is concerned, for any operation applied to the pseudofermions ¢, the inverse operation is

applied to the PV fields ¢. The action for the PV half fields is

Sov (6,01 = J0"DLDs, (5.21)

where ¢ = (e, 0). As was the case for the pseudofermion fields,

/ [ddedd]] exp (-Spy[d, dT]) oc det D! = det DL, (8.22)

The @(n) = Dgd(n) fields are distributed as

Pr(o.0") x [Jexp = g0t o) (5.23)

therefore, sampling the PV fields ¢ is as simple as drawing ¢ from a multi-dimensional Gaussian

distribution and inverting ®g to obtain a sample of ¢.
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2 nodes 4 nodes 8 nodes
(L/a)* I6] hr. | cr.-hr. || hr. | cr-hr. || hr. | cr.-hr.
324 8.8 1.67 | 106.9 || 0.94 | 120.3 || 0.48 | 122.9
324 94 0.39 | 25.0 0.20 | 25.6 0.11 | 28.2
40% 9.4 1.21 | 96.8 0.60 | 96.0 0.32 | 1024

Table 8.1: Timing (in hours and core-hours) for a single unit molecular dynamics trajectory on two
volumes (L/a)* = 32* (8 = 8.8,9.4) and 40* (8 = 9.4) on 2, 4 and 8 Fermilab Cascade Lake LQ1
nodes.

For updating the gauge fields, the force S,(LPV) (n) from the Pauli-Villars fields is of the form

25PV)(n) o T*RTr, [(ag,ugs)&) qﬂ, (8.24)
where
$ = e | (8.25)
—DTd)e

That is all there is to it. The addition of PV fields incurs a negligible additional cost to the HMC
simulation, as the Dirac operator only needs to be inverted when obtaining ¢ from the distribution
of Dg¢; this pales in comparison to the cost of inverting ®g O(10-100) times to calculate the fermion
force along the MD trajectory. In fact, PV fields have been observed empirically to improve the
condition number of the Dirac operator quite dramatically; as such, the cost of including PV fields
could be offset dramatically by the effect that they have on reducing the number of conjugate gradient
iterations needed to invert g on the fermion fields [188]. For readers familiar with Hasenbusch
preconditioning, this is perhaps not too surprising [163, 165]. In fact, the first implementation of PV
improvement in KS_nHYP_FS simply modified the Hasenbusch preconditioning that was present in

MILC at the time.
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Figure 8.1: (Top left panel) Comparison of plaquette from gex_staghmc (teal) against KS_nHYP_FS
(QEX, magenta) for (amy,ampy) = (0.0,0.75) with (L/a, Npy) = (24, 32) and 8.8 < 8, < 9.9. (Top
right panel) comparison of gex_staghmc with smearing parameters o = (0.4,0.5,0.5) (magenta)
against qex_staghmc with smearing parameters o = (0.5,0.5,0.4) (maroon) and KS_nHYP_FS (MILC,
cyan) for (L/a,amys, ampv, Npy) = (8,0.0,0.75,32) and 3, = 11.0. (Bottom left panel) Comparison
of pure gauge against (L/a, Ng, Npy,amys,ampy) = (8,8,8,0.5,0.5), both using qex_staghmc.
(Bottom right panel) Comparison of (Npy,amy) = (0,0.0) against (Npy,ams) = (32,0.0) with
ampy € {0.5,1.0,2.0,5.0} and (L/a, N¢) = (8,8), both using qex_staghmc.

8.1.1.4 Simple tests

Fig. 8.1 illustrates simple tests verifying some expected behaviors of the PV-improved HMC
simulation performed by qex_staghmc using the plaquette (Eqn. 3.4). These tests are not exhaustive
by any means and the plaquette can only reveal so much; gex_staghmc has undergone much more

testing than what is shown in Fig. 8.1. Perhaps the most important test is to check that gex_staghmc
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Figure 8.2: Strong scaling plot qex_staghmc’s performance (normalized to the first data point) as a
function of the number of computing cores on Fermilab’s Cascade Lake cluster (LQ1).

reproduces PV-improved KS_nHYP_FS simulations. The top left panel of Fig. 8.1 compares the
plaquette from a simulation with the action of Chapter 7 on L/a = 24 for 8.8 < /3, < 9.9 produced
by gex_staghme (“QEX”, magenta) and KS_nHYP_FS (“MILC”, dark cyan). The central value for the
plaquette from both codes is consistent within their combined statistical precision. Additionally,
the order in which the nHYP smearing parameters a = (aq, g, ag) are specified is reversed in
gex_staghme relative to KS_nHYP_FS (see Appendix G). The top right panel of Fig. 8.1 verifies
that the reversed ordering of « in qex_staghmc (“QEX”, magenta) reproduces the plaquette from the
regular ordering of o in KS_nHYP_FS (“MILC”, cyan) on (L/a, 8y) = (8,11.0).

According to Eqn. 5.2, the effective action induced by heavy PV fields should exhibit the

following easily-verifiable properties.

e If Nt = Npy and am; = ampy, then expectation values of observables drawn from the
joint distribution Pr (Z/{M, b, 0!, b, d)T) should agree with observables generated from the pure
Yang-Mills distribution Pr (Ll#). In other words, the ensembled-averaged effective action

induced by the pseudofermion fields should cancel out the ensemble-averaged effective action
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induced by the PV fields. What’s left is a pure Yang-Mills system.

e If ampy > 1, then observables drawn from the joint distribution Pr (Z/IM, o, 0%, b, d)T) should
agree with observables generated from the joint distribution Pr (Uﬂ, o, ¢T) up to finite-ampy

effects. In other words, the PV fields decouple in the ampy — oo limit.

The ensemble-averaged cancellation of the pseudofermion/PV effective actions is illustrated in the
bottom left panel of Fig. 8.1 for Ny = Npy = 8 and amy = ampy = 0.5 (L/a = 8). The plaquette,
0.636731(88), from 800 samples of Pr (14,) is consistent with the plaquette, 0.63679(11), from the
same number of samples from Pr (Z/{M, NN d)T), verifying the latter expectation. The decoupling
of the PV fields in the ampy — oo limit is illustrated in the bottom right panel of Fig. 8.1, which
compares the expectation value of a (L/a, B) = (8,9.0) simulation with (Nf,amy) = (8,0.0) and no
PV fields (“No PV”, magenta line) against a series of (L/a, 8p) = (8,9.0) with (NV¢, amy) = (8,0.0)
simulations and Npy = 32 with ampy = 0.5, 1.0,2.0, and 5.0. Indeed, the plaquette for simulations
with increasing ampy are observed to converge upon the simulation with no PV fields, as expected
from decoupling.

Table 8.1 summarizes the result of timing tests on 2, 4 and 8 nodes of Fermilab’s Cascade Lake
cluster (48 cores/node) from a single HMC trajectory on (L/a, 8) = (32, 8.8), (32,9.4), and (40,9.4)
using the action of Chapter 7. In the context of high-performance computing, parallel software is said
to exhibit strong scaling if its performance is linear in the number of cores at fixed “problem size” (in
our case, fixed L/a, ). Fig. 8.2 shows the result of a strong scaling test of qex_staghmc using the
information from Table 8.1. The “performance” in Fig. 8.2 is the time taken to complete a single MD
trajectory, normalized by the performance of the lowest core count at each fixed L/a, 8p; moreover,
the simulations in Fig. 8.2 only utilizes task- and SIMD-based parallelism (i.e., no multithreading).
The vector length for SIMD-based parallelism is set to 8 by default. All three test cases exhibit
a reasonable degree of linearity of the performance in the number of cores; hence, gex_staghmc
exhibits favorable properties under strong scaling, at least without multithreading, which deserves

its own scrutiny.
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8.1.1.5 Performing Hamiltonian Monte Carlo simulations with gex_staghmc

I designed gex_staghmc around the solid foundation of QEX with ease-of-use and portability
in mind, even if doing so incurred minor penalties to performance. I wanted gqex_staghmc to be
both flexible and performant, so as to address the needs of researchers working on small-medium
(and some large) scale lattice calculations that tackle problems in field theory and beyond Standard
Model physics. This is opposed to the large-scale collaborative efforts targeting precision QCD
observables, which require every bit of optimization that they can get, even if at the cost of making
software difficult to understand /modify by non-professionals. The massive amount of effort that the
developers of QEX have poured into it makes this possible, and their example QEX-based HMC codes
made the task of designing qex_staghmc much less painful than it could have been.

Compiling qex_staghmc is simple. After building/installing QEX according to the information

provided in the main Git branch of QEX (see Footnote 2), compilation proceeds by running
make staghmc_spv :FUELCompat=1

under the build directory that is created as part of build /installation process. The :FUELCompat=1
flag ensures backwards compatibility with the FUEL (QHMC) code.” Specifying :FUELCompat=1 is
recommended, as all gex_staghmc features that have been tested from binaries that have been
compiled with the FUEL compatibility flag. If one wishes to change the number of colors N, simply
add the :nc flag to the make command; e.g., :nc=2 for SU(2). As much of QEX is N-agnostic, the
HMC code of gex_staghmc is as well (including the nHYP smearing).

Running the gex_staghmc HMC binary requires only an XML file, which is read in by
gex_staghmc to determine important properties of the HMC simulations, such as the number
of MD integration steps for each field (gauge, fermion, and PV); the MD trajectory length; the
Omelyan integrator for each field (gauge, fermion, and PV); the gauge action (Wilson, Liischer-
Weiss, or adjoint-plaquette); the number of fermions and their masses; the number of PV fields

and their masses; the lattice geometry (L/a for any direction in any number of dimensions); the

PQHMC is available at https://github.com/jcosborn/qghme.
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boundary conditions for the fermion/PV fields (periodic or anti-periodic in any direction); the nHYP
searing parameters; and much more, such as the observables to be measured (and the measurement
frequency), along with any tests that should be performed (such as reversibility tests). A sample
XML file can be found under src/stagg_pv_hmc/input_hmc.xml in the Git development branch of

gex_staghme (see Footnote 4). To run the gex_staghmc HMC binary, simply execute

<parallel_executor> <path_to_binary> -start_config=<start_config>
-end_config=<end_config> -config_space=<config_space> -save_freq=<save_freqgq>
-xml=<path_to_xml> -rank_geom=<rank_geom> -filename=<filename_convention>

-path=<path_to_read_write>

where <parallel_executor>=“mpiexec -n <n_tasks> -bind-to user:0,1”, “srun -mpi=pmi2”,
etc.; <path_to_binary> is the global path to the staghmc_spv binary; <start_config> is the start-
ing configuration number and <end_config> is the ending configuration number; <config_space> is
the number of full HMC iterations between configurations; <save_freq> is the frequency (in configu-
ration number) at which configurations are to be saved; <path_to_xml> is the path to the aforemen-
tioned configuration file; <rank_geom> is the geometry of the MPI ranks; <filename_convention>
is the default tag for naming configuration files; and <path_to_read_write> is the directory that
gex_staghmc is directed to read/write from. The files that are read/written from disk are the gauge
configurations (<filename_convention>_<configuration_number>.lat), parallel random number
generator files (<filename_convention>_<configuration_number>.rng), and serial random num-
ber generator files (<filename_convention>_<configuration_number>.global_rng). With all
three files, it is possible to easily checkpoint the HMC and regenerate each configuration for

measurements, up to ordering differences in parallel reductions.

8.1.2 Gradient flow

gex_staghmc lightly extends the gradient flow code already present in QEX to allow for inte-

grating flow equations with arbitrary Liischer-Weiss gauge actions (see Chapter 7.4 or Appendix F)
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and ease-of-deployment in production running. Numerical integration of the gradient flow equation
(Eqn. 4.2) is performed using the 5th-order Runge-Kutta (RK5) scheme suggested in Ref. [252]. In

brief, the gradient flow equation of Eqn. 7.4 is of the form

du,
th = Z(Uy)Uy, (8.26)

2

where U; € SU(N) is a generic gauge variable. Define the integration step € = 6t/a”. Then, following

Ref. [252], the RK5 integration proceeds recursively as

WO :Z/[t7
e
Wi =exp [420 Wo,
8 17 ]
W2 = exp |:921 - %ZO_ Wl,
3 8 17 ]
e = —Zo — =21+ —Zy| Wa, 8.27
Uy exp[42 91+36 0_ 2 (8.27)
where
Z; = eZ(W;) (1=0,1,2). (8.28)

The RK5 scheme proposed by Eqns. 8.1.2-8.28 generally works well for 0.05 < € < 0.1 at early
flow times. It is possible to achieve a considerable speed up by switching to a larger € at late flow
times, where the transient effects are suppressed. In the future, I wish to test out the geometric
integration scheme proposed in Ref. [34]. T also intend to implement “Zeuthen flow” [305], which
amounts choosing Z(U,,) in Eqn. 8.26 as

CL2 "
Z(U) = —93 (1 + 12%%) O Sew [Uy] (8.29)

where 0, and 9); have are defined in Eqn. 3.27 and Eqn. 3.28, respectively, and Spw is the tree-
level-improved Liischer-Weiss gauge action (see Appendix F). Zeuthen flow was used in Chapter 4

with great success.
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8.1.2.1 Running gradient flow with gex_staghmc

Compiling qex_staghmc’s gradient follows as in Sec. 8.1.1.5. After installing/building QEX,

simply execute
make gauge_flow :FUELCompat=1

in the build directory created by the build /installation process. Running the gauge flow also requires
specifying an XML file, which tells qex_staghmc which ¢, to use; the value of € to be used over any
arbitrary range of flow times; the lattice geometry; and various specifications for measuring gradient
flow observables, such as E(t) (§¢ = W, C), the Polyakov loop (Eqn. 4.32), and the topological
charge (Eqn. 4.35). A sample XML file can be found under src/flow/input_gf.xml in the Git
development branch of qex_staghmc (see Footnote 4). Executing the gauge flow is as simple as

running

<parallel_executor> <path_to_binary> -start_config=<start_config>
-end_config=<end_config> -xml=<path_to_xml> -filename=<filename_convention>

-rank_geom=<rank_geom>

where <parallel_executor>=“mpiexec -n <n_tasks> -bind-to user:0,1”, “srun -mpi=pmi2”,
etc.; <path_to_binary is the global path to the gauge_flow binary; <start_config> is the starting
configuration number and <end_config> is the ending configuration number; <path_to_xml> is the
global path to the aforementioned XML file; <rank_geom> is the geometry of the MPI ranks; and
<filename_convention> is the name convention for the gauge configurations to be flowed (e.g.,

<filename_convention>_<configuration_number>.lat).

8.2 The SwissFit library

For the neural-network-based fits of Chapters 6-7, I needed both an efficient, but not overly-
optimized, implementation of feedfoward and radial basis function neural networks that I could easily

modify. T also needed the freedom to choose the optimization algorithm for MAP estimation (see
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Appendix D) freely while retaining the ability to utilize the powerful tools of the gvar library for
propagating correlated uncertainties of MAP estimates ©* for model parameters into both derived
quantities and the underlying dataset [241]. Preferably, the neural networks would also support gvar
data types. SwissFit was developed to meet these needs; however, over time it morphed into the
early workings of a fully-fledged scientific library written in Python. In this section, I will describe
the numerical details of features that SwissFit currently supports, though some minor details are

subject to change in future versions of SwissFit [290].°

8.2.1 Maximum a posteriori estimation by nonlinear least squares

In Appendix D.2, I introduce maximum a posteriori estimation (MAP) from the perspective
of Bayesian statistics and information theory. In short, the most probable constrained estimate for
the parameters ©* of a model M that describes a dataset X = (g, ..., zps-1) with mean (X) = X

and covariance of the mean X+ is given by the maximum a posteriori estimate (MAP)
_ 2
0" = arg(;mn Xaug.(e))a

where

Xiug.(g) = Xﬁata(@) + X?)rior(@)

is the augmented x? with

X(Qiata(@)
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defined by Eqn. D.26 and

Yorior(©) = (€(0) - é)ngl (ce)-¢)

SswissFit is available at https://github.com/ctpeterson/SwissFit. Future versions of SwissFit will be avail-
able for installation via pip through PyPI [304].
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define by Eqn. D.27. See Appendix D.2 for a discussion of individual terms in X?lata and Xfmor. For

the sake of notational simplicity, define

and
4(0) = d4ata(©) & prinr (O), (8.31)
where
5data(@) = M(G) - X (832)
and
Oprior (©) = C(O) — C. (8.33)

In terms of the notation of Eqns. 8.30-8.33, the augmented x? reads

Xang.(0) = 8(0)TE714(0)

and the leading-order statistical uncertainty in ©* from Eqn. D.24 is

T
[Zo-],; = 3‘2(33 zlaggj) .
if 3 is independent of ©. Note that X could depend on © in the case of hierarchical Bayesian
modelling; as SwissFit does not currently fully support hierarchical Bayesian modelling, such cases
are not considered in this section.

Before optimizing Xgug.(@)7 it is both numerically advantageous and computationally cost

1/2

effective to calculate the inverse square root X~/ of the covariance . Because X is positive-definite,

»~1/2 is well-defined in terms of the singular value decomposition (SVD) of ¥

»=UTsU (8.34)
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as

»2 = 5712y, (8.35)

where S is a diagonal matrix of singular values and U is an orthogonal matrix. The problem of

optimizing Xgug.(@) is then recast completely in terms of

5(0) = 2725, (0), (8.36)
whereby
Xoug.(©) = 6(©)16(0) (8.37)
and
26(0)T 96(O)

—1 o
el =56, 90, |oe. (8.38)

SwissFit utilizes the SVD algorithm implemented in NumPy to calculate $~1/2 [162]. NumPy itself
utilizes the _gesvd routine provided by LAPACK, which implements a generalized (quotient) singular
value decomposition algorithm [5]. On the other hand, the parameter covariance Yo+ of Eqn. 8.38 is
calculated from the Moore-Penrose pseudoinverse provided by SciPy [361], which is little more than
a repackaged SVD decomposition [289].

SwissFit supports the trust region reflective |49|, dogbox [362|, and Levenberg-Marquardt
[242, 259] local optimization algorithms and the basin hopping global optimization algorithm [364],
all of which are provided by the SciPy library [361]. Gradients are calculated using the automatic
differentiation tools provided by the gvar library [241]; hence, all that the user needs to provide
SwissFit is the model function in the form of a Python function that accepts gvar data types. Most
standard NumPy functions are compatible with gvar data types. gvar itself contains a variety of
wrapper functions for most standard functions. gvar also provides infrastructure for creating custom
gvar-compatible functions, so long as the derivative of the desired function is directly accessible

(analytically or numerically) [241].
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8.2.2 Quality of fit and model selection criteria

From the MAP estimate ©*, SwissFit calculates a number of standard measures for the

quality of fit. Directly accessible from the fit is the “Bayesian” x3,, /d.o.f. with

dotf. = |[X|— 6]+ ] (8.39)

and the “frequentist” x3 . /d.o.f.* with

dot* = |X| - 0|, (8.40)

where | X| is the number of data points, |©| is the number of model parameters, and |C| is the

number of priors (constraints). The standard criterion for a “good” fit is

qug./d.o.f. ~1and x3,.,/d.o.f.* ~ 1. (8.41)

A x? per the respective degrees of freedom that is much less than unity suggests either that the
model overfits the data or the uncertainty from ¥ is much greater than the actual fluctuations in
the data (i.e., the uncertainties are overestimated). On the other hand, if the x? per the respective
degrees of freedom is much greater than unity, then the model either overfits or the uncertainty from
¥ is much smaller than the actual fluctuations in the data (i.e., the uncertainties are underestimated).

The Bayesian p-value

1 0 d.o.f.
-value = ———— dt ¢ ~let B i 8.42
p-value T(dof./2) /Xgug'/2 2 e (Bayesian) ( )

is the probability that Xgug. could have by larger by chance and is easily calculated from SciPy’s
implementation of the regularized upper incomplete gamma function [361]. A “good” fit is con-

ventionally considered to have a p-value that is 2 10%, assuming that the statistical error is not
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overestimated. The corresponding “frequentist” p-value is

1 > .o.f.*
p-value = F(dof*/2)/x , dt t55 et (frequentist). (8.43)

2
data/

The interpretation of the frequentist p-value is slightly more complicated in the presence of priors.
Without priors, it of course equivalent to the Bayesian p-value. SwissFit calculates both p-values.

The marginal likelihood (Eqn. D.16) and Akaike information criterion (Eqn. D.33) are
useful for the purposes of model selection. Given a finite collection of candidate models M =
{M(l), M M(NM)}, the model MW e M with the highest marginal likelihood Pr (X|M(’7))
is more likely to have given rise to the data X than any other model M) € M. The Laplace-

approximated marginal likelihood (Eqn. 6.12) about the MAP estimate ©* is

.o.f.
(27T)d o1 det EY det EE

-9 log Pr (X‘M(n)) ~ Xiug.((—)*) + log detZQ*

It should be noted that the Laplace-approximated marginal likelihood is a point estimate. As such,
it could be a very poor estimate of the actual marginal likelihood, especially if the distribution
possesses many (possibly degenerate) peaks. In any case, the full marginal likelihood can be used for
the purposes of model selection if it is known that the correct model (i.e., the model that X arises
from) exists in M. As I have discussed in Chapter 6.2.3, the marginal likelihood is also useful for
inferring priors from data via the empirical Bayes procedure. Empirical Bayes is useful both for
estimating priors in the face of uncertainty and controlling for overfitting. If the correct model is not
in M and one simply wishes to select the model that best describes the data with the least number
of fit parameters, then the marginal likelihood is not appropriate. Instead, one should use a quantity

that weights fit quality against information loss, such as the Akaike information criterion

AIC =2, (©%) +2/0|. (8.44)

As is briefly discussed in Appendix D.2.4 and derived explicitly in Ref. [210], the AIC arises
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naturally from the posterior probability Pr(X|M), which is related to the marginal likelihood by
Bayes’ theorem (Eqn. D.17). The model with the lowest AIC fits the data best with the least
number of parameters (information loss); in other words, it is preferred by Occam’s razor. Both the

AIC and the Laplace-approximated marginal likelihood are estimated by SwissFit.

8.2.3 Consistent uncertainty propagation

Ensuring that all uncertainties are accounted for in algebraic operatations of Gaussian random
variables with ©* using gvar is a surprisingly difficult task. Luckily, the 1sqfit library has
implemented an ingenious solution that SwissFit utilizes to achieve the same goal [240]. The idea
is to utilize the estimate [44]

Vx©* = Te- [v@S(@)]TZ*l/Q(eze* (8.45)

for the derivative Vx©®* to both propagate the uncertainty of ©* into derived quantities and
automatically account for correlations that any Gaussian random variable has with ©* through
X; see Appendix D.1.3 for a brief discussion of Gaussian error propagation. For example, gvar
calculates the uncertainty in the scaling function of Chapters 6-7 using Eqn. 8.45. Similarly, Eqn.
8.45 also allows gvar to account for the correlation between vo and O(K, Ny) in estimating the

uncertainty of O(K, Ng)/Ns7© in the curve collapse of magnetic susceptibilities in Chapter 6.

8.2.4 Incorporating neural networks

SwissFit provides utilities from implementing gvar-compatible radial basis function net-
works (RBFN, Chapters 6-7) and feedforward neural networks (FNN) in fit functions through
the RadialBasisNeuralNetwork and FeedforwardNeuralNetwork class, respectively. Both classes
inherit methods from the NeuralNetwork class. The topology and activation function for each
layer of either neural network is specified as a Python dictionary when instantiating a child of the

NeuralNetwork class. Exponential, multi-quadratic, inverse-quadratic, and multi-inverse-quadratic
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activations are supported for RBFN layers, along with both L1 and L2 norms for the argument of
the RBFs of each layer. The FeedforwardNeuralNetwork class supports linear, rectified linear unit
(ReLU), Gaussian error linear unit (GELU), exponential linear unit (ELU), hyperbolic tanh, and
sigmoidal activations, along with user-provided custom activations [84, 197]. Examples are provided

under the examples folder in the development branch of SwissFit (see Footnote 6).

8.3 Non-perturbative running anomalous dimensions in the ten flavor system

In Chapter 2.4, I discussed running operator anomalous dimensions in the context of Wilsonian
RG. In Chapter 1, I briefly touched upon the relevance that the fixed point value of running operator
anomalous dimensions has for beyond Standard Model physics phenomenology. In this section, I am
going to apply the gradient-flow-based methods of Chapters 4, 5, and 7 to calculate the running
pseudoscalar, tensor, and proton anomalous dimension of the Ny = 10 system over 2.0 < géF <85
from the running of the wave function renormalization (Eqn. 2.24) of all three operators. If the
N; = 10 system indeed lies within the conformal window, then the recent CBFM-based prediction
for the fixed point GF coupling géF . ~ 15.0 of Ref. [179] unfortunately indicates that the range of
couplings covered in this section is too small to be able to estimate any of the fixed point operator
anomalous dimensions for the Ny = 10 system. Similar calculations for the Ny = 2 system are
currently underway by collaborations that I am not currently involved in; see, for example, the work

of Ref. [177]. See also Ref. [74] for an early development of similar ideas.

8.3.1 Including fermions in gradient flow

In Chapters 4, 5, and 7, only the gradient flow of the gauge field was needed. Correlation
functions for fermionic observables are required to extract the running anomalous dimension of the
pseudoscalar, tensor and proton; hence, the gradient flow equation must be extended to include the
fermion fields. Including fermions in the gradient flow equations turns out to be fairly simple and is

laid out clearly in Ref. [249]. In short, the evolution equation for the gauge field is left untouched
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(Eqn. 4.2), while the lattice fermion field v is evolved according to

dip(n, t)
I
where the box operator U, has been defined in Eqn. 3.23 and is coupled to the flowed gauge field
U, (n,t) as in Chapter 3.2.3. The gradient flow is them performed by evolving Eqns. 4.2 and 8.46
simultaneously. In this section, the fermion fields are flowed alongside the gauge fields using the

“adjoint flow” first discussed in Ref. [249] and implemented in the QLUA library [300].

8.3.2 Operator anomalous dimensions from gradient-flowed correlation functions

Note that, unlike the GF equation for the gauge fields, the GF equation for the fermion fields
is linear. Because it is linear, the wave function picks up an additional contribution from the wave
function renormalization of the fermion fields Z,, that needs to be cancelled off in the definition of
Rp in Eqn. 2.28. Additionally, it is numerically advantageous to flow only one of the operators O
in any given two-point function. As such, define the partially-flowed two-point function in infinite

volume as

Go(t, &4;95) = /d?’fc (O(%, 24,1)O(%,0)), (8.47)

where the operator O(f{, T4, t) is composed of “GF-blocked” fermion fields (Chapter 4.2), O(f{, 0)
is composed of unblocked fermion fields, and I've changed notation slightly to (fc, i"4) =2 =nto
remain consistent with the noation of Ref. [177]. The integral over the spatial components x of
I projects the two-point function onto zero spatial momentum. Eqn. 2.23 in Chapter 2.4 for the

partially-flowed two-point function then takes the form
Go(to, #4; 95) = Z,° (0)Zo(b)Go (t, #4; g5, (8.48)

where b? = t/ty and ne is the number of fermion fields in O. To calculate the running of Zp from

Y0, the contribution of Zzo to Eqn. 8.48 needs to be cancelled off. Because the vector current
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is exactly conserved in the Ny = 10 system, it only picks up a contribution from Z,; hence, the

definition of Rp in Eqn. 2.28 can be modified to cancel off the contribution of ZZZO as

GO (ta £'47 98)
Gyt i3 g3)"™

Ro (to, #45 93) = (8.49)

where Gy (t,§:4; gg) is the two-point function of the vector current. Though unflowed two-point
functions were included in the definition of Eqn. 2.28, they do not contribute to yp; hence, they are
not included in the definition of Ry in Eqn. 8.49. From Rp, the calculation of o follows as (see
Eqn. 2.29 in Chapter 2.4):

d
—2t 7 log Ro (to, 243 93) = Yo (t, 245 G5)- (8.50)

For #3 > 8t/a?, the logarithmic derivative should be indepndent of 4, as should vo. Note that the
factor of two in Eqn. 8.50 arises from a different source as in Eqn. 2.28. With the finite volume
version of the running anomalous dimension o (t; L, gg) determined by Eqns. 8.48-8.50, calculating
the continuum prediction for vo (géF) follows exactly the same steps as the continuous S-function

method that I have deployed exhaustively in Chapters 4, 5, and 7.

8.3.3 Simulation details

The results of this section utilize a tree-level improved Liischer-Weiss gauge action (Appendix F)
for the gauge sector [248, 251] and a stout smeared Mobius domain wall (DWF, Chapter 3.2.2) fermion
action for the fermion sector [54]. The stout-smeared pseudofermion action utilizes six levels of stout
smearing with p = 0.1; see Appendix G.2 for an overview of stout smearing [266]. Gauge configurations
are generated using the Hamiltonian Monte Carlo algorithm provided by the GRID library [47, 112].
Gauge/fermion flow measurements are performed using the QLUA library [300]. The flow is Wilson flow.
The full dataset is composed of six bare gauge couplings g = 6/9(2) =4.05,4.10,4.20, 4.60, 5.00, 6.00

on two volumes (L/a)? x (T'/a) = 243 x 64 and 323 x 64. The length of the fifth dimension is N5 = 16
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Figure 8.3: Pseudoscalar mass anomalous dimension 7, (t,@;L,g&) at fixed (L/a, Nt By) =
(24,10,4.2) and 1.5 < t/a? < 5.0 (blue to red) against 4.

(Chapter 3.2.2), which yields a residual mass amyes, < 1076.7

8.3.4 Calculation of operator anomalous dimensions

I start by calculating the finite volume renormalized coupling géF (t; L, gg) using Eqn. 4.19
with 0(¢, L) chosen to include tree-level corrections for cutoff effects using Eqn. 4.27. The Yang-
Mills energy density E(t; L) is estimated from Wilson flow the tree-level-correct clover operator
(SfS¢ = WC). T then calculate the finite volume anomalous dimension o (t,:%4;L, 98) for the
pseudoscalar, tensor, and proton operator using the finite-volume version of Eqns. 8.47-8.50. The
derivative in Eqn. 8.50 is calculated using the 5-point stencil of Eqn. 4.37 and has been crosschecked
against improved finite-difference schemes for logarithmic derivatives of logarithmic functions.

Fig. 8.3 illustrates the variation of the finite-volume pseudoscalar anomalous dimension with
#4 at fixed 1.5 < t/a? < 5.0 (different colors), L/a = 24, and 3, = 4.2. The pseudoscalar anomalous
dimension is denoted as “~,, (t, Zq4; L, gg)” because the preservation of chiral symmetry in the system

forces the scalar and pseudscalar to be degenerate. As such, the pseudoscalar anomalous dimension

"The size of the residual mass indicates the degree of chiral symmetry breaking.



2
t/a o t/a®
— 5.0
S 7
6.6 — —E 45 B =420,%, =23 —‘ 45
6 5 4.0 0 30_ | 40
S 1 5 --
Y
£ 641 B[ g 0281 T 35
= T & ®
T 3.0 )N 1 3.0
Né 631 1 = 0.261 2
s
25 &
6.2 o it T |25
0.24 1
2.0 |20
6.1 fm— ————
T T T T T T 0.22 - - ' T T T T
00 05 10 15 20 25 30 9 o 1 2 3 4 5 6 71 9
—6 -5
(a/L)4 x10 (a/L)3 x10

Figure 8.4: Sample of infinite volume extrapolation of géF (t; L, g%) (left panel) and mass pseudoscalar
anomalous dimension vy, (¢, 24; L, g3) at fixed (L/a, N, By) = (24,10,4.2) and 1.5 < t/a® < 5.0 (blue
to red). Extrapolation indicated by multicolored bands with the width of the band indicating the
error and data entering interpolation indicated by corresponding multicolored error bar.

is the mass anomalous dimension. For each t/a?, there is a plateau over which yo (t, Z4; L, gg) is
independent of 2;. As t/a? increases, the region in #4 over which the anomalous dimension is flat
decreases because the short-distance overlap between the flowed and unflowed operators in the
partially-flowed two point function increases with #/a?. Such overlap distorts the correlation function

over distances &4 < 8t/a.

8.3.4.1 Infinite volume extrapolation

The infinite volume extrapolation is performed in the same manner as the infinite volume
extrapolation step of the continuous S-function method in Chapters 4, 5, and 7, only with a
minor modifications to the finite volume scaling of v» (t, T4 L, gg) as compared to géF (t; L, gg). I
extrapolate g&p(t; L, g3) to a/L — 0 limit at fixed By, t/a® by fitting the L/a = 24, 32 volumes to
the ansatz of Eqn. 4.38. The operator anomalous dimension is extrapolated to the infinite volume

limit via the same procedure; however, the finite volume ansatz is taken to be

FVo(t: L, g3) = ki (t:93) + ka2 (t; 93) (a/ L)%/ (fixed t/a® and f) (8.51)
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Figure 8.5: Sample of quadratic interpolation of pseudoscalar anomalous dimension ~,, (t, Z4; g%) in
gradient flow coupling g&p (t,i4;g(2)) at fixed (Ng,#4) = (10,23) and 1.5 < t/a? < 5.0. Interpolation
indicated by multicolored bands with the width of the band indicating the error and data entering
interpolation indicated by corresponding multicolored error bar.

based on the mass dimension of @. For mesonic operators, dp ~ 3 (e.g., the pseudoscalar), while
for baryonic operators 0p ~ 9/2 (e.g., the proton). I illustrate the infinite volume extrapolation for
géF (t; L, gg) in the left panel of Fig. 8.7 and v, (t, Z4; L, gg) (pseudoscalar) in the right panel of
Fig. 8.7 for 1.5 < t/a? < 5.0 (different colors) and 8, = 4.2. Because there are only two volumes
to do the extrapolation over, the resulting fit unfortunately has zero degrees of freedom. Though
the finite-volume effects appear to be mild, little can be said about the control that I have over the

infinite volume limit without at least one more volume.

8.3.4.2 Continuum extrapolation

As with the S-function, taking the continuum a?/t — 0 limit at fixed géF requires first

interpolating vo (t, 2q; gg) in g%F (t; L,g%) at fixed t/a? for each O. The interpolating function is
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X4 =25
X4 =124
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Figure 8.6: Continuum extrapolation (left panels) and final continuum result (right panels) for
pseudoscalar (top panels), tensor (middle panels), and proton (bottom panels). Left panels show
multiple fixed 2.0 < géF < 9.0 (red to purple). Right panels show the final result from multiple
Z4 (see color bar on right). Continuum prediction for pseudoscalar juxtaposed against 1-, 2-, and
3-loop perturbative mass anomalous dimension from Ref. [23]. Tensor and proton are only compared

against their corresponding 1-loop perturbative results.
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Figure 8.7: Continuum prediction for the pseudoscalar (pink), tensor (maroon), and proton (dark
yellow) operator anomalous dimension. Pseudoscalar juxtaposed against 1- and 2-loop mass anoma-
lous dimension from Ref. [23]. Tensor and proton are only compared against their corresponding
1-loop perturbative results.

chosen to be the simple polynomial ansatz of Eqn. 7.6 with NV = 3. In other words, the interpolating
function is quadratic in géF. No priors are imposed on the fit parameters. The interpolation
is illustrated in Fig. 8.5 for 7m(t,§:4;g8) at 24 over 1.5 < t/a® < 5.0 (different colors). The
interpolation fits through most of the data well, save for 8, = 4.2 and 4.6, which fluctuate away from
the interpolating band. It is reasonable to suspect that such fluctuations are be attributed to a lack
of control over the infinite volume extrapolation.

The continuum extrapolation is performed by fitting vo (t, Zq; gg) to the linear a?/t ansatz
of Eqn. 4.39 at each fixed géF. The continuum extrapolation is illustrated in the left panels of
Fig. 8.6, while the continuum prediction for o (géF) from various 24 is illustrated in the right
panels of 8.6. The latter information is shown for the pseudoscalar in the top panels, tensor in the

middle panels, and proton in the bottom panels. The pseudoscalar (mass) anomalous dimension is
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juxtaposed against the 1-loop universal and 2-/3-loop gradient flow prediction from Ref. [23] in the
top right panel of Fig. 8.6, while the tensor (middle right) and proton (bottom right) are juxtaposed
only against their corresponding 1-loop perturbative anomalous dimension. Finite volume effects
are observed to heavily distort the trend of vp (t, Zq; gg) in a2/t for t/a® > 1.5. Moreover, nonlinear
cutoff effects in a?/t appear to be suppressed for t/a? > 3.0, though they are not as harsh as they
can be for the S-function. Hence, there is a small region of linearity between 1.5 < t/a? < 3.0 over
which the continuum extrapolation is performed and the continuum prediction from various Z4 are
consistent. Note that different operators can have different regions in Z4 over which the anomalous
dimension of the corresonding operator is observed to plateau; e.g., the pseudoscalar anomalous
dimension reasonably plateus about 21 < 4 < 25, while the proton plateaus about 16 < x4 < 20,

though with more variation in the continuum prediction from different z,4.

8.3.4.3 The continuum operator anomalous dimensions

In Fig. 8.7, I show the continuum prediction for the pseudoscalar (pink), tensor (maroon),
and proton (dark yellow). The pseudoscalar is juxtaposed against the 1-loop universal and 2-loop
gradient flow prediction from the perturbative calculation of Ref. [23], while the tensor and proton
are juxtaposed against only their 1-loop values. To little surprise, the continuum prediction for the
pseudoscalar is the most well resolved and exhibits the least significant systematic effects from the
choice in Z4. In the other hand, the tensor and proton anomalous dimensions exhibit a considerable
degree of uncertainty in 4. Both correlation functions tend exhibit a considerable degree of statistical
noise; hence, the latter observation is also not particularly surprising. In any case, all three operator
anomalous dimensions indicate that they are approaching their perturbative counterparts in the
géF — 0 limit, with the proton most significant deviating from the 1-loop universal curve. It is
reasonable to suspect that the latter deviation is due to finite volume effects and that the combined
statistical /systematic error of the proton is much higher than the statistical error that is shown in
Figs. 8.6-8.7. On the other hand, the pseudoscalar (mass) anomalous dimension both converges

nicely onto the 1- and 2-loop curves as géF — 0 and closely follows the 2-loop curve up to, and
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possibly beyond, géF ~ 10. Ref. [177] has also calculated the mass and tensor anomalous dimension
using a Pauli-Villars improved Wilson fermion action. The results of this section appear to agree
reasonably well with Ref. [177], though the mass anomalous dimension in Ref. [177] appears to
converge onto the 1-loop curve much earlier in géF and the upward curvature in the tensor is less
dramatic about 6 < géF < 8.5. Of course, as I have already mentioned, it is not possible to tell if the

infinite volume limit in this section is controlled without more information from larger volumes.



Chapter 9

Recapitulation and an eye toward the future

We have covered quite a bit of ground in this thesis. Unfortunately, due to constraints from
time, space, and relevance, I was not able to cover my contributions to muon g,-2 [32, 94|, nor have
I covered the long list of failed projects, such as my investigation of the thermodynamic properties
of the 4 4+ 6 mass-split system and its relevance to stochastic gravitational wave production [376];
Markov Chain Monte Carlo sampling of field theories with affine invariant Monte Carlo; including
effects from Pauli-Villars fields and fermion loops into corrections for discretization effects in the
gradient flow coupling; gradient flow renormalization applied to the BKT transition of the XY
model; the application finite size scaling with radial basis function networks to first-order phase
transitions simulated with multicanonical Monte Carlo algorithms; the application of feedfoward
neural networks to finite size scaling; and much more. In any case, I hope that you enjoyed the
journey as much as I have enjoyed both working on the content of this thesis and writing about it.
Before we sign off, let me summarize the lessons have been learned from this thesis and where they
might take us in the future.

I have calculated the continuum/infinite-volume renormalization group S-function of the
massless SU(3) gauge-fermion system for Ny = 0, 8, and 12 fermions in the fundamental representation
of SU(3) in Chapters 4, 7, and 5, respectively. All g-function calculations in this thesis utilize
gradient flow and deploy the continuous S-function method (CBFM). I have also developed a method
for finite size scaling by the method of curve collapse that utilizes a radial basis function network to

approximate the scaling function. The latter method has been tested on the finite-temperature phase
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transition of various classical spin systems in Chapter 6. In Chapter 7, I applied the RBFN-based

curve collapse to the zero-temperature phase transition of the Ny = 8 system.

9.1 Non-perturbative S-functions

The state-of-the-art determinations of the S-function in this thesis have achieved unprecedented
reach into the infrared regime of each system investigated. In the Ny = 0 system, this is attributed to
the CBFM itself, which allows the g-function to be calculated in the confined regime; such is not true
for determinations of the S-function based on step scaling. The considerable reach into the infrared
regime of the Ny = 8 and 12 systems is attributed to the use of Pauli-Villars improvement, which
dampen the ultraviolet fluctuations that typically trigger first-order phase transitions in simulations
of many-flavor systems.

The Ny = 0 pB-function exhibits interesting features in the strong coupling regime. For one, it is
linear in the renormalized coupling géF for sufficiently large géF J4m > 1; ie., Bgr (géF) ~ co+cy géF
at strong coupling. The slope ¢; of the S-function in the strong coupling regime determines the
dependence of the expected Yang-Mills energy density t2(F(t)) on the flow time as t?(F(t)) oc t~¢1.
The expectation for ¢; from the literature is ¢; = —1, which is merely empirical; however, I calculate
a slope for the S-function of ¢; = —1.320(10), which is not consistent with the latter expectation.
The linearity of the S-function in the strong coupling regime could be due to instantons or even
a universal feature of asymptotic RG S-functions (based on Wilsonian RG) in confined systems.
Note, additionally, that tree-level corrections are used to determine the Ny = 0 S-function. At weak
coupling, they work as expected. They are also surprisingly effective in the strong coupling regime,
where they are not expected work as well, if at all.

As the Ny = 0 S-function of Chapter 4 has been determined between 1.2 < g&p < 27.0, I
am able to extract from it the A-parameter in the MS using an exact relation between the MS
A-parameter and the A-parameter of the infinite volume GF scheme of this thesis. Unfortunately,
doing so requires matching the non-perturbative S-function at the weakest accessible couplings to

the perturbative S-function, which is known up to 3-loops. The matching procedure is performed by
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appending onto the 3-loop S-function an additional O(géOF) term with a coefficient that is determined
by the matching procedure. An alternative non-perturbative matching procedure is proposed but
not deployed. The S-function is then determined from géF =0 to géF(to) = 0.3N where the scale
setting parameter ¢y is defined. From the full S-function, I determine the MS A-parameter of the
Nt = 0 to be /8tgAyg = 0.622(10), which is in fantastic agreement with the most high-precision
recent gradient-flow-based determinations, but in tension with other methods appearing in the
results compiled by the Flavor Lattice Averaging Group (FLAG) report. The reason for this tension
is unknown at the moment; however, it is reasonable to speculate that it could be due to a poor
determination of the ratio of ¢y to the Sommer scale g, which can be quite difficult to calculate
accurately. In the near future, the method deployed in Chapter 4 for calculating the A-parameter
could be utilized for high-precision determinations of the strong coupling constant c.

The N¢ = 12 S-function reported in Chapter 5 exhibits a clear infrared fixed point (IRFP) at
géF , = 6.60(62). Additional systematic effects from the finite volume extrapolation are accounted for
with Bayesian model averaging. The leading irrelevant critical exponent at the IRFP ~ = 0.199(32)
is calculated from the slope of the continuum S-function at géF , and is in reasonable agreement with
estimates from perturbation theory at the 1o level and the only other non-perturbative estimate at
the 20 level. Though this calculation is the second non-perturbative S-function to have exhibited a
fixed point, it extends far beyond what has been calculated previously and is far more controlled
due to Pauli-Villars improvement.

Determination of the Ny = 8 S-function in Chapter 7 was by far the most challenging on a
technical level. As with Ny = 12, Bayesian model averaging is deployed to account for additional
systematic effects from the infinite volume extrapolation automatically. Multiple flows are deployed
and a reasonable degree of consistency between different flows is observed. Even better, the S-function
in the weak coupling agrees with determinations based on simulations with domain wall fermions
using the same RG scheme. The S-function initially decreases, then begins to show signs of turning
around around 15 < géF < 22. There are a number of reasons that the S-function could begin to

turn around. The least exciting reason is that it is an artefact of the RG scheme; though it is not
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possible to rule this out completely, it is unlikely. If the Ny = 8 system sits either below or at the
edge of the conformal window, the such a turn around could be indicative of slow walking. On the
other hand, if the Ny = 8 system is in the conformal phase, then the turnaround is likely a sign of
the B-function beginning to flow into an IRFP. In any case, such a turnaround could indicate that
large-scale simulations of the Ny = 8 system have yet to probe is behavior outside of the “weakly
coupling” region.

When combined with the Ny = 8 results of Ref. [179] obtained from the same RG scheme
and the Ny = 16 S-function that is accessible from perturbation theory, a consistent picture of the
conformal window of SU(3) gauge-fermion systems begins to take shape. For one, the value of géF N
increases with decreasing Ny toward the location of the conformal sill at V. Should the results of
this thesis and that of Ref. [179] be replicated by other lattice gauge theory collaborations, this puts
a probable location for Nf at Nf <9 from Ref. [179] and possibly Nf 2 8 from the calculation of
Chapter 7, though the lower bound imposed by the Ny = 8 calculation of Chapter 7 is certainly up
for debate. I have taken steps toward aiding in replication efforts by making all gradient flow data
for the Ny = 12 system publicly available at Ref. [291]. Data for the Ny = 8 system will be made
available upon publication.

Further developments of the CBFM that offer refined control over systematic errors and
estimates of statistical errors in the infinite volume and continuum extrapolations are needed.
Though the analysis of the S-function after the infinite volume extrapolation in Chapters 5 and
7 benefits immensely from implementing Bayesian model averaging (BMA) in the infinite volume
extrapolation, it is not immediately clear how to keep track of correlations between BMA quantities
and the quantities that they are derived from. This is needed to consistently keep track of correlations
throughout the interpolation step and the continuum extrapolation step. Otherwise, one has to settle
with taking the diagonal approximation of the covariance matrix in the continuum extrapolation
and estimate the statistical error from the 1o bands of the data (assuming 100% correlation).

Additionally, treating the data of the continuum extrapolation as discrete is a fiction that

introduces a number of systematic effects into the continuum extrapolation that would better be
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rid of. For one, individual data points are highly-correlated with one another and it is typically
impossible to perform reliable correlated fits. By taking the diagonal approximation, the x? and
p-value lose their meaning. As I have already mentioned in Chapter 4, the latter problem could be
partially alleviated by estimating the y? and p-value in the diagonal approximation as suggested
by Ref. [57]; however, it remains unclear to how properly estimate the statistical error without
reverting to ad-hoc methods, such as assuming 100% correlation and fitting above/below the 1o band.
Additionally, it is not possible to implement conventional BMA for the continuum extrapolation,
where it could be very useful, because there is no immediately obvious meaning to subset selection
for continuous data. Note that continuous Gaussian variables are well-defined as Gaussian processes.
Hence, it may be possible to instead leverage methods deployed for analyzing Gaussian processes in

the continuum extrapolation; however, where to start with that is not yet clear.

9.2 Finite size scaling with radial basis function networks

In Chapter 6, I develop a method for finite size scaling curve collapse based on radial basis
function networks (RBFN), which are a type of single-layer artificial neural network that is specially-
designed for function approximation. Curve collapse fits with the RBFN utilize the basin hopping
global optimization algorithm paired with the trust region reflective local optimization algorithm
to get around the issue of having to either engineer initial conditions or utilize local optimization
algorithms that are not guaranteed to converge to reasonable optima. The parameters of the RBFN
are constrained using the empirical Bayes method, which proceeds by optimizing the marginal
likelihood. Optimization of the marginal likelihood is efficiently achieved using a surrogated-based
optimization algorithm that I develop in Chapter 6. The empirical Bayes procedure takes care of
issues introduced by overfitting automatically and is extensible to higher-dimensional problems.

The RBFN-based curve collapse is tested on curve collapse analyses of the finite-temperature
phase transition of the two-dimensional ¢-state Potts model and p-state clock model for ¢ = 2,3 and
p = 4,00. The critical parameters estimated from the Binder cumulant and magnetic susceptibility

of each model agree with either their exact values in the case of p = 2,3 and ¢ = 4 or their estimates
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from the literature for the case of ¢ = co. Intriguingly, the size of the RBFN need not be unreasonably
large, with 2-3 internal nodes performing just fine. Such a network is incredibly small compared to
the networks deployed in larger and obviously much more difficult problems; however, there seems to
be a pervasive mode of thought that that network should be much larger than is actually required
by the complexity of the problem at hand. I wrap Chapter 6 up by speculating on other uses of
RBFNs for analyses of lattice field theory data; as an example, I extract the critical temperature of
the oo-state clock (XY) model from a direct interpolation of helicity modulus using an RBFN.

The RBFN-based curve collapse method of Chapter 6 is applied to the Ny = 8 system in
Chapter 7 to scrutinize claims of a possible continuous phase transition into a symmetric mass
generation phase made in Ref. [170]|. The finite size scaling data in Chapter 7 extends the dataset of
Ref. [170] by including extra L/a = 24 volumes and a new set of L/a = 32 volumes. In agreement
with Ref. [170], 1st-order scaling is strongly disfavored by the curve collapse; however, it is not
possible to distinguish a preference for co-order scaling (v = 1/2,1) over 2nd-order scaling using
standard statistical tests. Moreover, the predictions for the critical parameters in Chapter 7 are in
tension with those of Ref. [170]; however, the curve collapse analysis of Chapter 7 is more reliable
on many levels due to both an improved dataset and an improved method. It is absolutely crucial to
stress that, despite first-order scaling being strongly disfavored by the curve collapse, it cannot be
ruled out without measurements of the correlation length over the same region of parameter space.
This will hopefully be possible with future investigations of the spectroscopy of the SMG-like phase
in the Ny = 8 system.

There much room for improvement in the RBFN-based FSS method. For one, it would be
highly desireable to have on hand a better global optimization algorithm than basin hopping for
the maximum a posteriori estimation. Though basin hopping vastly outperforms every other global
optimization algorithm that I tried, it is still not guaranteed to converge and coaxing the algorithm
into the global optimum can be a pill for the analyst. Improvements could also come in the way of
implementing basin hopping steps that are better tailored to neural networks. The empirical Bayes

procedure also leaves much room for improvement. For one, it is easily improved in one dimension
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by embedding the surrogate-based optimization procedure into a bisection method for finding the
optimum of the marginal likelihood. Though it is also possible to extend the surrogate based method
to more than one dimension, as would be desired for implementing the empirical Bayes procedure
for more than just the network weights. It may be more efficient to simply utilize the full machinery
of Bayesian optimization, which is able to implement more intelligent moves for surrogate-based

sampling of the objective function in question.
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Appendix A

Characterizing a fixed point by its local topology under an RG flow

Defining 0 K = K — K* and taking 6K;/K} < 1, we can linearize R;, about K* as

Ry(6K) = R0 K + O(6K?), (A1)
where
i — Mol (A.2)
OKj |g_k~

is a linear operator. The left normalized eigenvectors eia) of My, defined by
eia)i)ﬁ{b = eéa)Al()a), (A.3)

characterize the local topology of the flow within the vicinity of K*, as they are the principal axes
of Ry. The component K, of § K along any one of the principal axes is referred to as a scaling

variable. Due to the semi-group composition law of Eqn. 1,
() y(a) _ (@)
)‘b? )\ba = )\b,O;), (A.4)

which implies

A = ppa, (A.5)
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for some b-independent variable y,, which is imprecisely called a renormalization group eigenvalue.

Therefore, the scaling variables § K, transform under an RG transformation as

§K), = b 0K, + O(K2). (A.6)

Whether or not the component K, of 6 K along the principal axis e(,) flows into or out of the fixed
point K* is completely determined by the sign of y,. If y, > 0, then it is repelled; in this case, we
say that 0 K, is relevenat. On the other hand, if y, < 0, it is attracted to 6 K, = 0, and we refer to
0K, as irrelevant. If y, = 0, we refer to 0K, as marginal and higher-order terms in Eqn. A.6 are

required to determine whether or not K, is marginally relevant or marginally irrelevant.



Appendix B

Global topology of an RG flow
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Figure B.1: Renormalization group flow diagram of the 2-dimensional Ising model in the (K7, K3)
subspace (left panel) and (K1, K3) subspace (right panel).

Let us now explore the global topology of an RG flow by examining the Ising model. In
terms of the notation that we have set up in Chapter 2, the fields of the Ising model take values in

@i(n) = ¢(n) € {—1,+1} and interact via the action

Slel =K1 Y pm)p(m) + Kz > p(n)e(m) + K> o(n) + ... (B.1)

(nmyn (nm)nn

where (nm), denotes a sum over lattice sites n and nearest-neigbors m, while (nm)y, denotes a
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sum over lattice sites n and next-nearest-neighbors m. The interested reader is advised to consult
Refs. [70, 148, 230] for a treatment of constructing RG transformations for the Ising model. In
Fig. B.1, I show the flow diagram of the Ising model in the (K7, K2) subspace with K3 = 0 and
the (K7, K3) subspace with Ko = 0. The green dots in both diagrams represent critical fixed points.
The critical fixed point in the Ky = K3 = 0 subspace represents the famous ferromagnetic phase
transition of the Ising model, and the value of K7 at the fixed point is proportional to the inverse
of the Curie temperature. In the (K71, K3) subspace, the critical fixed point at the center of the
diagram on the right panel of Fig. B.1 possess a critical surface that extends to the critical fixed
points on the K- and Ks-axes. The orange dots represent trivial fixed points, which occur at infinite
temperature, where the system is non-interacting. The purple fixed point in the (K7, K3) subspace
diagram represents what is known as a discontinuity fixed point; these generally describe first-order
phase transitions and lie on a phase boundary [69, 148, 278|. Finally, the red circles indicate sinks,

which have no relevant directions.



Appendix C

Tuning the bare gauge coupling to a critical surface

I stated in Sec. 3.4 that the existance of a continuum limit is intimately tied to the existence
of a critical fixed point; we call such fixed point an ultraviolet fized point. As the correlation length
in units of the lattice spacing depends on the bare gauge coupling g%, one should be able to tune
gg to a critical surface where the correlation length diverges. Assuming that this relationship is
invertible, one expects the bare gauge coupling to depend on the correlation length and therefore
on the lattice spacing. Close to a critical surface, any physical quantity Q(a) with a well-defined

continuum limit scales with the lattice spacing as [227],

_cﬁ%cz(a) = (2382 - (gé)f)ig)@(a) = O((ap)? In(ap)*) (C.1)

for some p,k € Z. The O((au)p ln(a,u)k) terms are called scaling violations. Eqn. C.1 is a lattice

version of the Callan-Symanzik equation and

0 oh(@) = B(a}) (€2)

is the B-function of the bare coupling; it characterizes the dependence of the bare gauge coupling

gi(a) on the lattice spacing a. One can calculate the S-function B(gg) in the weak bare gauge
coupling limit using perturbation theory [88, 227, 313, 335|. The S-function at two-loop order is
4
2 9

B (90) (47T)2

bo + by (4‘95)2] (93/471' — 0), (C.3)
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where

3by = 11N — 2NNy,

2N(17TN —5Ng)  (N? = 1)V
3 N

by =
which were already defined in in Chapter 1. In terms of by, by, the solution to Eqn. C.2 is

1 b
—2In(alra) = bt " éln (bogd) + O(g2). (C.4)

where Ap,t. is an dimensionful integration constant known as the lattice A-parameter. Eqn. C.4 tells
us that we should take the continuum limit aAp.s. — 0 by tuning g2(a) to zero when N > 2Ny /11.
Note that the above solution is not unique; the form that I have chosen is referred to as the “In by”

convention [335].



Appendix D

Important ideas from statistics

Most modern lattice field theory calculations, including those in this thesis, are done by
running “computer experiments” using Monte Carlo algorithms. As such, making/testing predictions
from lattice data requires using statistical methods. The goal of this appendix is to briefly describe

some of the foundational ideas/methods from statistics that are applied throughout this thesis.
D.1 Estimating observables from Markov chains
Consider a collection of random variables X = {x, x1, ...} and samples

X, € S(X) = {Xj: <xgj),x§j),...)‘1 < gM—1} (D.1)

of X that have been generated from some Markov chain Monte Carlo (MCMC) algorithm. From
S(X), we wish to estimate the mean X and covariance of the mean Y5 (uncertainty) of X. As the

samples X; are members of a Markov chain, the optimal estimate for the mean is simply
=
X=— z; X (D.2)
1=

Because the samples in S(X) are not necessarily statistically independent, the standard sample

covariance, defined as

Y (Xi-Xi)® (X - X)) (D.3)
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where “®” is the dyadic (tensor) product, underestimates the statistical uncertainty in X. Accounting
for autocorrelation is crucial for properly estimating statistical errors from Markov chain Monte

Carlo data.

D.1.1 Autocorrelation time

The autocorrelation time 7(zy) of some observable x;, € X is defined as the average separation
between statistically independent samples 29 x,(cj +7(@)) of the Markov chain. The effect of

autocorrelation is to modify the variance

1 ; 2
2 _ @) _ =
Moj, = 71 Z (ik; - xk> (D.4)
as
2 2
oj, — T(Tk) 0%, (D.5)

thereby reducing M as

Megr. — M/7(2y). (D.6)

Mg is referred to as the effective sample size. There are a number of methods for estimating 7(zy);

I will outline two that I utilize regularly.

D.1.1.1 Batch means

One way to estimate 7(xy) is from the effective sample (ESS) size itself. For a sufficiently long

Markov chain, the effective sample size can be estimated reliably from the variance

1 : 2
~2 (=) =
gj. = N1 jz;) B; (xk xk> (D.7)
of batch means
) Bj-1
) = — % gl (D.8)
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over batches of size B; satisfying

Ny,
M=) "B, (D.9)
j=0
From 52, the effective sample size is
2
ESS; = &, (D.10)
Ok

from which the autocorrelation time is estimated as

M
ESSy

(D.11)

7(x)) ~

The asymptotically optimal batch size is B; = M /3. for a multivariate definition of the effective
sample size, see Ref. [360]. The ESS method for estimating 7(xy) is particularly useful when more
robust methods are not available or as a crosscheck of other methods.

D.1.1.2 Integrated autocorrelation time

The integrated autocorrelation time

M—
_ " Ti(7)
Tt (k) =142 =5 (D.12)
7=0 Tk

defined in terms of the autocorrelation function

M) = e 30 (o) ) (o7 — ) (D.13)

is an estimator for the autocorrelation time. Note that I'y(0) = o7. The noise in the estimate for
Tint. (Z)) increases with incresing 7. Therefore, the upper bound on the sum in Eqn. D.12 is typically
cut off at some value W that is calculated from an automatic windowing procedure [378|. The
statistical error in 7ine () can also be directly estimated [378]. A particularly efficient alternative
method for calculating 7y, (x) from I'y(7) is by fast Fourier transform; see the autocorr module of

Ref. [137] for details.
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D.1.2 Accounting for autocorrelation

From an estimate of the autocorrelation time 7(xy) for zj of interest, the covariance can be

estimated by rescaling the covariance matrix as
(S5, = @) ? (S5, @) (D.14)

Note, however, that Eqn. D.14 is not guaranteed to be positive semi-definite and can introduce a
considerable degree of noise into X. Alternatively, one can simply use the estimate for 7(z}) to
estimate bin size from which ¥+ is estimated by binning [142]. Past 7(x}), the statistical error should
stabilize up to finite sample size effects. If no plateau in the statistical error is observed about 7(zy),
then the size M of the dataset is too small to reliably estimate the statistical error. Unfortunately,
binning cannot account for autocorrelation in the full covariance matrix, as each observable has
its own autocorrelation time. Hence, if binning is used to account for autocorrelation for multiple

observables, the bin size should be chosen to be at least as large as the largest autocorrelation time.

D.1.3 Propagation of uncertainties

From the uncertainty of primary observables zj € X, the uncertainty of an observable f(X)
derived from X is easily estimated from the derivative [0f(X)/0Z)] and covariance Y using

standard Gaussian error propagation

2 _ -
0 = oz, Ex] 4 A (D.15)

The derivative [0 f (Y) /O0Ty] can easily be calculated using automatic differentiation. This opens
the door to automatic error propagation by automatic differentiation, which is implemented in the

beautiful gvar and pyerrors libraries [215, 241].
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D.2 Inference with Bayesian statistics

Throughout this thesis, probability distributions Pr are interpreted as representing the degree
to which a hypothesis taking the form of a model M with model parameters © is to be believed.
In other words, probabilities represent beliefs. A hypothesis (model) M is tested by confronting it
with data X. Prior beliefs regarding M and its parameters © before being confronted with data are
represented by the joint distribution Pr(M, ©) (prior). Ezpectations regarding the data X given the
model M and its parameters © are represented by the conditional joint distribution Pr(X| M, ©)

(likelihood). Given the prior Pr(M, ©) and likelihood Pr(X|M, ©), the marginal likelihood
Pr(X|M) = /[d@] Pr(X|M, ©) Pr(M, ©) (D.16)

represents expectations regarding X given M taking all © into consideration. The integration
measure [dO)] is a multidimensional integration measure over each ©; € ©. The marginal likelihood
is also referred to as the evidence, and it plays an important role in both model selection when
confronted with competing models and prior selection when an appropriate choice for the prior is
unknown. Expectations regarding © given X and M are inferred from the prior, likelihood, and
marginal likelihood according to Bayes’ theorem

Pr(X|M,©)Pr(M,0)
Pr(X|M) ’

Pr(0]X, M) = (D.17)

which follows from elementary properties of conditional distributions [268]. The distribution

Pr(0]|X, M) is referred to as the posterior.

D.2.1 Principle of maximum entropy

Let X be a collection of random variables. Given the first M central moments of X

px = {/&) =X.u{ =Tx, '-',M&M)}» (D-18)
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where X = (X) is the mean of X and Xy is the covariance of X, the distribution Pr (X|ux) that

maximizes the differential entropy functional
Spg[Pr] = — /[dX] Pr (X|px) log Pr (X|ux) (D.19)

is the best representation of the current state of knowledge about X from the perspective of
information theory [211, 212]. It is interesting to note that the differential entropy is the diagonal
component of the cross entropy entering the Kullback-Liebler divergence [234].

In lattice field theory calculations based on Markov chain Monte Carlo (see Sec. D.1), it is
often the case that one wishes to estimate the parameters © of a model M from an estimate of
the mean X and covariance of the mean Y+ that is derived from a finite number of samples for X.
Defining M;(©) to be an estimate for the estimate of 7; € X from the model M, the principle of

maximum entropy suggests that we should model the likelihood in Eqn. D.17 as
_ ~1/2 1 S -
Pr(X|M,0) = (21)" X1/ det () ™ exp [— 3 <M(@) - x) by (M(e) - X)} . (D.20)

where | X| is the size (cardinality) of X, X = (T, Z1, ...) is the collection of Z; € X represented as a
vector that is ordered according to the entries of Y+, and the same is true of the respective model
estimates M(0) = (M(6), M;(©),...). Suppose also that any prior beliefs (e.g., constraints,
domain-specific knowledge, etc.) C(©) about the parameters © of M can be represented by their
mean C (expectation) and covariance of the mean ¥ (uncertainty). Then the principle of maximum
entropy suggests that the prior Pr(M, ©) should be chosen as

Pr(M,©) = (2m) /2 det (55) /% exp [ - % (C(@) - é)ngl (C(@) - c)} , (D.21)

where |C| is the cardinality of C, C = (Co,C1, ...) is the collection of C; € C represented as a vector
that is ordered according to the entries of ¥z, and C(0©) = (Co(©),C1(O),...) is the respective

estimate for the constraints C at a particular value of ©.
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D.2.2 Maximum a posteriori estimation

The posterior derived from Eqns. D.20-D.21 yields the expected value
©) =8 - /[d@] O Pr(0]X, M)

for ©. However, it is quite often the case that the expected value © is difficult to estimate, as it
requires numerically evaluating an integral over all ©. What is typically done instead is to calculate

the posterior mode ©* of © as
©* = argmax [ Pr(6©|X, M)]. (D.22)
(S

If most of the posterior mass of Pr(©|X, M) is concentrated about the posterior mode ©*, then ©*

may be a good estimate for ©. About the posterior mode ©*,
1
log Pr(6]X, M) = log Pr (6*| X, M) — 5(©@- ©*)'25l (@ - ©) +O((® - 6%?%), (D.23)

where

[2_1} _ 9?log Pr(6]|X, M)
o i o 8@1‘8@]‘ =0+

(D.24)
is an estimate of the posterior covariance matriz and ©;,0; € ©. The approximation of Eqn. D.23 is
referred to as a Laplace approzimation. If the O((@ — @*)3) terms in Eqn. D.23 are negligible, then
Pr(©|X, M) about ©* is approximately Gaussian and Yo« is a good estimate for the covariance.
Note that the estimate for the marginal likelihood Pr(X|M) in Eqn. 6.12 of Chapter 6 is obtained
by directly plugging Eqn. D.23 into the definition of the marginal likelihood (Eqn. D.16) with
O((® — ©*)%) terms dropped.

Unfortunately, real world posterior distributions are not always the nicely-peaked, unimodal

distributions that practitioners of statistical methods dream of in their sleep. For example, the model
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M could possess symmetries that show up in Pr(©|X, M) as degenerate extrema® or Pr(0]X, M)
itself could possess a variety steep valleys, flat directions, sharp “cliffs” separating disparate regions
of © space, etc. for a variety of reasons. In such cases, all that one can state is that the mazimum
a posteriori (MAP) estimate ©* is a probable estimate for ©* with an uncertainty g+ that is
estimated from the local curvature of log Pr(0©|X, M) about ©*. Still, many statistical practitioners,

including the author, will loosely refer ©* as the central value of © estimated from fitting M to X.

D.2.3 The augmented x>

Obtaining the MAP estimate ©* of Eqn. D.22 is typically achieved by minimizing an augmented

x? [239], defined as

-2 IOg PI‘(@’X, M) & Xiug.(e) = X?lata(@) + X%rior(@)v (D25)
where
—2log Pr(X|M, ©) (M(@) - X)TE; <M(6) - X) = \2...(0) (D.26)
and
—2log o Pr(M, 0) « (C(@) — 6)T251 (C(@) - 5) = X%rior(@)' (D.27)

The factors of log 27, log Pr(X | M), log det ¥+, and log det X5 typically do not enter the x? definitions
of Eqns. D.25-D.27 because they do not depend upon ©. Note, however, that a modified definition
of Xgug. is needed if one wishes to implement hierarchical Bayesian modelling. The problem of

estimating ©* is then recast as a problem of finding the © that minimizes Xgug.(g); in other words,
©* = arg min Xgug. (©). (D.28)
S}

The term “augmented x?” is a little bit silly, as it refers to idea of augmenting onto the frequentist

x? (i-e., x3,;,) an additional term that is meant to constrain © (as in the case of ridge regression,

!Sometimes, such symmetries can broken explicitly with priors.
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see Chapter 6). We see now from our short discussion in this appendix that the definition of X?}ug.
is founded in combining ideas of Bayesian statistics with those of information theory. Chapter 8.2
discusses the optimization of Xgug. to obtain ©*, along with measures of goodness of fit and model

selection criteria in the context of the open source SwissFit software written by the author.

D.24 Bayesian model averaging

The problem of inferring a set of parameters © that are common to a collection of competing

models M and/or data subsets X" C X is achieved by extending Bayes’ theorem as [202]
Pr(0|X) = ZPr (6| MM, x M) pr (MM X M), (D.29)

where the posterior probability Pr (./\/l () | X (’7)) is related to the marginal likelihood Pr (X () |./\/l(’7))

according to Bayes’ theorem as

Pr (X(n)‘M(n)) Pr (M(n))
>, Pr (X(@|M@) Pr (M)

Pr (M™|x M) = (D.30)

The leading-order, bias-corrected estimate for the posterior probability Pr (/\/l () ‘X (’7)) about the

MAP estimate ©* has been derived in Ref. [210], yielding
—2log Pr (M®|XM) = —21og Pr (M™) 12, (0%) +2[] + 2d,, + .., (D.31)

where

d, = |X| - |[x™]. (D.32)

The last three terms in Eqn. D.31 make up the Akaike information criterion (AIC)

AIC = X3, (07) + 26| + 24, (D.33)
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Assuming that all models M are equally probable before being confronted with data X, the

model-averaged posterior mode © is

0 => 6;Pr(M|xM), (D.34)
n

while the model-averaged posterior covariance ¥g is
So =Y _ Ye: Pr(MW|XM) + Y 0re;Pr(M7|Xx") -6 886, (D.35)
n n

with Pr (M(")|X(77)) given by Eqn. D.31; ©F the MAP estimate for ©" from model /subset 7; e
the corresponding vector of map estimates ordered according to the covariance Z@; of ©7; and [2)
the vector of model-averaged MAP estimates (Eqn. D.34). The first term in Eqn. D.35 is merely
the posterior covariance averaged against Pr (M(”) ‘X (’7)), while the latter two terms contribute an
additional uncertainty to Yo from variations in the models/subsets. In other words, if the posterior
probability Pr (M(")|X (77)) is the same for all models/subsets, then the latter two terms in Eqn.

D.35 do not contribute to the total uncertainty.



Appendix E

Gradient flow equation for the XY model

E.1 Gradient flow equation with an explicit constraint

In this section, I am going to derive a gradient flow equation for the XY model that builds in
some set of constraints. I briefly introduce the XY model as the “oco-state clock model” in Chapter

6.4. First, define the rescaled reduced Hamiltonian 7 [n] as

clock
A ] = HG )/ K5 = = S i (@)nd (@ + ) (E.1)
T,

where z € A CZ x Z, p,j € {0,1}, and, according to Eqn. 6.18 in Chapter 6.4,

n(r)®> =1Vze € A. (E.2)

To write down a gradient flow equation that respects the constraint of Eqn. E.2, I use the Lagrange
multiplier method. Computing the gradient of the rescaled Hamiltonian with respect to the flowed

spin nt(y) (not yet taking into account the constraint), I get

O S @i+ ) =3 [y — i) + (v + )] = i), (£3)

where I've defined f{(y) as the value of the (negative) gradient for convenience. The gradient flow

equation with a Lagrange multiplier taking into account the constraint will have a constraint force
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of the form

Ab) 6 . o
i 2 (e -1) = xwni

J
where the Lagrange multiplier was defined with a factor of 1/2 out front for convenience. We

therefore have the following equations

THY) _ i) + Aomitw), (5.4
and '
S i) W) g, (85)

J
where Eqn. E.5 is obtained by differentiating Eqn. E.2 with respect to the gradient flow time t.

Plugging the right hand side of Eqn. E.4 into Eqn. E.5, we obtain A(¢) as

At) ==Y nl)f ),
J
so that the full gradient flow equation is

T _ fito) i) Yl ) = X (59— mitund ) 5 o), E6)

J

which is of the same form as the O(N) model gradient flow equations obtained in Refs. [224, 258| by

different methods. Explicitly, we have for the XY model

n nt(y)?  —ndy)niy)| | L)
o) — ML ()6 (). )
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E.2 Gradient flow equation with an implicit constraint

Define

2(y) = nf(y) +ing (y) and fuly) = f2(y) +if (). (E8)

Also, just to set up notation, zZ = z* = 2. Then from the explicit form of the gradient flow equation

given by E.7, we have

P w5+ ) = 5 (AW AW) — 2002 ) = i (2) i) 2 (w).

This is nice and compact. Let’s write this result down in its final form.

L =i (W) fi(y)) 2 ). (£.9)

Now let’s take the GF equation expressed as Eqn. 4.2 and see what we get out of that. First, I have

to write down a quick rule for taking derivatives with respect to U(1) group elements. This rule is

a,
ayzt(y) = 'L&e szt(y) 5:1?,3/ = _Zt(y)éa:,y- (E.lO)

s=0

Egn. E.10 is just a specialization of the natural derivative on Lie groups from the left-invariant

vector field, which I discuss in Chapter 4.1. The derivative satisfies

Oyzi(y) = Z(y). (E.11)
Now, the U(1) analogue of Eqn. 4.2 reads

dz y (00 _
) — 0, o ) ), (E12)
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where the XY Hamiltonian ﬁgfggk [zt, Zt] is derived from Eqn. E.1 using the reparameterization in

Sec. E.1 as

Ho [z 2] = —RY ze(2)z(x + ). (E.13)
T,0

Working the derivative out with our rule from Eqn. E.10, I get

0, iz, 7] = =ilm Y 2(y) (4 y + ) + (y — ) = —itm (%(0)£i(v) ).
"

so that Eqn. 4.2 turns into

dZt(y)
d¢

= ilm (%) fi(1)) 2 (y). (E.14)

Therefore, we see that these two equations are exactly the same. I have implemented the gradient
flow equation of Eqn. E.14 in the Quantum EXpressions (QEX)-based gex_staghmc library with the

help of the beautiful Arraymancer library in Nim [284, 309].



Appendix F

Improved actions

Perturbative on-shell (classical) improvement attempts to remove cutoff effects explicitly.
Improvement of the action and the observables derived from the action tend to be intertwined. As
such, if one wishes to implement classical improvment, it is often the case that both the action and
target observables must be considered. In the RG picture of this thesis, namely that of Fig. 3.1 in
Chapter 3.4, classical improvement can be thought of as moving actions that are in the vicinity of
the critical surface closer to the renormalized trajectory. Far away from the critical surface, quantum
effects can kick in and one must consider quantum effects in their improvement programme; see, for
example, the Symanzik effective field theory approach of Ref. [206]. In this appendix, I am going to

describe only the gauge action improvement used in this thesis.

F.1 Liischer-Weiss (Symanzik) actions

Classical improvement is outlined beautifully in the seminal work of Ref. [251] by Martin
Liischer and Peter Weisz, though many of the details of classical improvement had been worked out
already by Peter Weisz and Kurt Symanzik [351, 352, 369|. To start, consider that the classical

gauge field A, (x) can be approximated arbitrarily well by a link variable U,(n) as

iad,(an) ~ logU,(n) (a — 0),
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as in Eqn. 3.5 of Chapter 3.1. As such, any gauge-invariant observable O that is also invariant
under the lattice equivalent of rotations and reflections can be expanded asymptotically in the lattice
spacing a as

O~ Y d0; (a — 0), (F.1)

even k>0

where, schematically,

Oy=r Z Tre [Suuguu] (2)7

v
O =11 Z Tre [guguugug,uz/] ) Z Tre [gugupgugup] +r3 Z Tre [Qu%’upgyg’u;}]
v pvp pivp

+“contractions over Tr, [SWCDpSm;] " (3), (F.2)

with

gpguu = 8/)3/11/ + [Q[,mguu] . (FS)

Now take

3
Salts] =8> D> D Tre[Ue,(n)] (F.4)

as a generic ansatz for the gauge action and define U¢,(n) to be a product [ of gauge links ¢, that
form a closed curve C;. The notation for the ansatz of Eqn. F.4 differs from that of Ref. [251] to
remain consistent with the notation for the Pauli-Villars effective action in Eqn. 5.2 of Chapter 5.2.

The coefficients ¢; are conventionally normalized as
co + 8¢y + 8¢y + 16¢c3 = 1. (F5)

Note that ¢; could depend on g%; however, for the purposes of classical improvement, this does

not matter. By expanding each ). Trclic,(n) term in Eqn. F.4 according to Eqns. F.1-F.2 and
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imposing that all O(aQ) terms vanish, one arrives at the following general constraint for ¢

|x| < 1/16,
5
co = g — 241‘,
Ccl = 12 x,
C2 = 07
c3 = x, (F.6)

which represents the most general on-shell improved action that one can construct out of Eqn. F.4
[251]. The choice

x=0 (tree-level Luescher-Weiss)

is computationally the most convenient; hence, it is often referred to as the tree-level improved
Liischer-Weiss (Symanzik) gauge action, as in Chapters 4 and 8.3.
In Chapter 7, I use different Liischer-Weiss gauge actions for the gauge flow. Because the goal

there is not classical improvement, it is not necessary to set ¢; according to Eqn. F.6. Rather, I set

co=c3=0 (flow action)

and redefine

co=c¢pand ¢ = ¢ (flow action),

which is consistent the constraints imposed by tree-level improvement of the action only when
¢ = —1/12. The notation for ¢, /¢, refers to the fact that each Cp in Eqn. F.4 is a plaquette, while

each C; is a planar rectangle.
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F.2 Mixed fundamental /adjoint action

Though throughout this thesis I have assumed that the gauge links ¢/, (n) live in the fundamental
representation of SU(N') by definition, such a restriction is actually not necessary, so long as the gauge
action that is constructed from some non-fundamental representation is in the same universality
class as the fundamental one. In fact, one can even consider mixing representations within the same
action. A natural question, then, is whether using mixed representation actions can reduce lattice

artefacts. In Ref. [164], the mixed action

Salth] = > % SN RTr[1 - U (n)] (F.7)

a=FA % n p<v

with fundamental (F') and adjoint (A) terms was observed to reduce cutoff effects in spectral
measurements of the glueball mass as compared to its pure fundamental (Wilson) counterpart

B4 < 0. In Eqn. F.7, d, represents is the dimension of the representation, such that
dp =N and dy = N? — 1. (F.8)

Note that, even though the gauge action has both fundamental and adjoint link variables, we can

work exclusively with the fundamental link variables as a consequence of the identity
Tre [UN] = Tre [UD] Tr [UOT] — 1, (F.9)

which reproduces d4 in Eqn. F.8 on the identity. Since the work of Ref. [164], Eqn. F.7 has become
a fan favorite action in the beyond Standard Model (BSM) physics community. Modern studies

using Eqn. F.7, such as those of Chapters 5 and 7, typically choose

Ba/Br = —1/4, (F.10)
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where
B4 = Br and 5{458714. (F.11)
1—-1/N?
At tree-level, the corresponding “equivalent Wilson bare gauge coupling” is
B =Br(1+28a/Br). (F.12)

Though the action of Eqn. F.7 has been used for many decades in the BSM literature, very little has
been done in the way of systematically exploring its cutoff effects in other observables. Nonetheless,
it has been deployed in this thesis for the purposes of remaining consistent with simulations that
were already present and available for use. In future studies, the author would prefer to utilize

improved gauge actions that are better motivated.



Appendix G

Gauge smearing

Broadly speaking, the RG flow diagram of Fig. 3.1 in Chapter 3.4 suggests that there are three
“simple” ways that one can reduce lattice artefacts. One method is to tune g(Q] closer to the critical
surface (g(Q] — 0) while keeping all relevant scales | > a fixed. This is just the continuum limit.
Another method is to explicitly cancel off cutoff effects via classical improvement or its extension
including logarithmic corrections that arise from quantum effects. This is the classical improvment
described in Appendix F. The last method is to average out short-distance fluctuations in such
a way that long-distance observables are unaffected by the averaging procedure. This is what an
RG transformation does, and it is in essence what gauge smearing does; it brings the action closer
to the renormalized trajectory by non-perturbatively smoothing out ultraviolet fluctuations. Note
that ideas that underpin smearing are similar, but not strictly equivalent, to those that underpin
so-called perfect actions, which attempt to utilize RG transformations to construct lattice actions
that are so close to the renormalized trajectory that they are devoid of any lattice artefacts [99,
193]. Unfortunately, perfect actions are not practically realizable; see, however, Ref. [204] for some
interesting recent work on constructing perfect actions using machine learning. There are many
kinds of gauge link smearing, and just about every large-scale lattice collaboration hails the gauge
smearing that it uses as “optimal” in some sense. In this appendix, I shall briefly describe only the

two types of gauge link smearing that have been deployed in this thesis.
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G.1 Normalized hypercubic smearing (nHYP)

Every simulation that utilizes staggered fermions in this thesis deploys hypercubic smearing
(nHYP) to smear out the gauge links in the pseudofermion action or the Pauli-Villars action (see
Chapter 8.1) [175, 176]. The basic ingredient of nHYP smearing is the APE smearing, which takes

the form (3]

(0}

. G.1
Nstp. K ( )

U, (n) — Proj, [(1 — Q) (n) +

where Proj;[U] is a projection operator that takes U € GL(NV) to some group G, X, is a local
sum over “staples” (products of three gauge links that are one link away from forming a closed
loop), and Ngp. is the number of staples entering ,,. Note that Pg does not have to project U
back into SU(NN). As long as the resulting action is in the same universality class and the new “fat”
link transforms under gauge transformations as U, does, all is fine and dandy. nHYP smearing is
constructed from three levels APE smearing that forces all contributing gauge links to exist only

within neighboring hypercubes of the fat link and has

—-1/2

Projy(ny(U) = U (U'D) (G.2)

Explicitly,

. o ~ N
Viwp = PTOJU(N) [(1 —a)Uu(n) + ?1 Z Uy (n)Uy (n + 0Uy(n + M)T} (1),
EnFp.v,p

<I

- ) o'
V,u;l/ = Pro.]U(N) l:(l - OQ)uﬂ(n) + ZQ Z

o (M) Vs (4 PV (1 + /l)ﬂ (2),
Lp#p.v

V() = Proiugn (1= () + 5 3 Vol Vpuln+ 0yt 0] @) (G3)
TrAp

Because the projection onto U(N) is differentiable, the full collection of smearing steps comprising
the nHYP smearing transformation of Eqn. G.1 can be implemented in HMC. Note that the ordering

on a = (a1, az,a3) in Eqn. G.1 is the convention in QEX [284], which differs from Ref. [175] by
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an exchange of a; with a3. Details of calculating the force from the fermion sector when using

nHYP-smeared links can be found in Ref. [175]. The force is heroically implemented in QEX [284].

G.2 Stout smearing

The gradient flow transformation (see Chapter 4.1) is an infinitesimal stout smearing. To see
how, note that the first-order solution to the gradient flow equation for the gauge fields (Eqn. 8.26,

alternatively Eqn. 4.2) by Euler integration is
Uy (n,t+€) ~ exp [eZ,(n, t)|U,(n,t) (G.4)

for e < 1 (in lattice units). Eqn. G.4 is equivalent to the stout smearing introduced in Ref. [266]

with the identification [227]

Eu(n7 t) = Z ul/(na t)uu(n + ﬁ7 t)uu(n + /)'7 t)Tv
TrAp

QN (n’ t) = EN (n’ t)uu (n’ t)T - u,u (n’ t)EM(TL, t)T’

Z(n,t) = %Qu(n,t) - %Trc [Q,(n, 1)] € su(N). (G.5)

The staple sum X, is the same as we already encountered in Sec. G.1 for APE smearing and nHYP
smearing [3, 175|. Because Z,(n,t) € su(N), the stout-smeared link stays in SU(N), as is the
case for gradient flowed links. The exponential can be accurately evaluated numerically using the
Cayley-Hamilton theorem. Moreover, the stout smearing transformation is differentiable; as such,
it can be implemented in HMC. See Ref. [266] for details regarding the force from pseudofermion
actions involving stout-smeared links. Note, also, that future implementations of stout smearing
could benefit from a version of automatic differentiation adapted to group derivatives; see the

appendix of Ref. [204] and the beautiful Julia-based Gaugefields. j1 library.! Usually, many levels

!Gaugefields. j1 can be found at https://github.com/akio-tomiya/Gaugefields. jl.


https://github.com/akio-tomiya/Gaugefields.jl
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of stout smearing are performed on the gauge links. For example, the simulations of Chapter 8.3 are

performed with six levels of stout smearing with p = 0.1.



Appendix H

Symplectic Integrators

QEX, specifically Xiaoyong Jin’s MDevolve,' uses a symplectic Omelyan integrator with various
options for including higher-order terms, which I shall now describe. Following Ref. [353], let ¢ and
p be generalized coordinates and let f stand for either g or p. Furthermore, define a linear operator

L(H) (with H the Hamiltonian) acting on f via the Poisson bracket as [330, 353]

L(H)f = {f,H} = |. (1L1)

Written explicitly in terms of ¢ or p, Eqn. H.1 gives Hamilton’s equations of motion, with the formal
(approximate) solution

f(t+dt) ~exp (6tL(H)) f(t). (H.2)

Assuming that L(H) can be decomposed as L(H) =T + V', where T is the kinetic part (involving

only p) and V is the interaction part (involving only ¢), we have
1 1
exp (6tL(H)) = exp [26tT} exp(0tV) exp [25tT] + O(6t%) = Go(At) + O(5t?). (H.3)

Eqn. H.3 gives the well-known leapfrog (2LF) integrator. The mapping G2(0t) : M — M, where

M is the symplectic manifold that p and ¢ live on, is symplectic and time reversible. Hence, G2(dt)

!MDevolve is available at https://github. com/jxy/MDevolve.


https://github.com/jxy/MDevolve
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may be used to update the fields in an HMC simulation.?

Higher-order integrators Gok12(0t) may be generated recursively from lower-order integrators
Gor(9t); however, the performance of such integrators may be sub-optimal [353|. An alternative to
the recursive approach, famously explored by Omelyan et al. in Ref. [282], starts by decomposing
exp (6tL(H)) as

k
exp (6tL(H)) = H exp (¢;0tT) exp (d;6tV) + O(5t" 1), (H.4)

i=1
where c¢;,d; are constrained to obey ZZ ci = Zl d; = 1. Time-reversibility imposes additional
constraints on ¢; and d; [353]. For a fixed choice of n (the order of the integrator), the error depends
on the choice of k and additional details regarding the choice of ¢; and d;; in particular, it may be
parameterized by a set of free variables that are constrained to depend on ¢;,d; and k in such a way

that the error is minimized.

A popular choice of integrator, first explored by Omelyan et. al in Ref. [282], is the 2nd-order

minimum-norm (2MN) integrator Ionn(0t) : M — M, defined by
1 1
Iovn(6t) = exp (AStT) exp [2&\/] exp [(1 - 2)\)5tT} exp [26tV] exp (AGtT), (H.5)

where A is obtained by minimizing the error, resulting in

1 (2v32 1/3 1
yo L (V326 + 36) ~ 0.1931833... (H.6)
2 12 (6v/326 + 36)1/3

The 2MN integrator requires twice as many force evaluations as the 2LF integrator; however, the
error on the 2MN integrator is approximately eleven times smaller, meaning that the total number
integration steps is reduced by a factor of the square root of eleven such that the total computational
cost of the 2MN integrator is approximately half as expensive as the 2LF integrator.

In implementing the 2MN integration, one must make a choice of starting variables (either

first update ¢, the gauge fields, or p, the momenta). Different choices of starting variables can affect

2Symplecticity and time-reversibility are sufficient to ensure that the molecular dynamics update in an HMC
simulation obeys the detailed balance condition.
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the performance of the integrator; however, the 2MN integrator is typically insensitive to this choice.
We choose to update ¢ (that is, U,) first, such that

U (n) = exp [5tPQ (n)| U (n), (H.7)

where ‘B, is the momentum of the gauge variable. The momentum is then updated as

B () =RD () -5t Y F(n), (H.8)
f=G,F,PV
where SELG) (n) is the force from the gauge fields, gf)(n) the pseudofermion fields, and gLPV) (n) the
Pauli-Villars fields (see Chapter 8). The latter sequence of updates is repeated once more with the
addition of a final ¢/, update at each step of the trajectory.

Higher-order minimum norm integrators often exhibit a higher degree of sensitivity to the
starting variables. Therefore, higher-order integrators are typically differentiated by their starting
variables (ending with “FP” if the & update is done first and “FV” if the P update is done first) and
number of force evaluations. For example, the fourth-order minimum norm integrator starting with
the U, update and being composed of five force updates is given the name “4MNSEFP”. I shall not
delve further into these higher-order integration schemes. Nonetheless, I have included options in
gex_staghmc based off of the example codes contained in QEX to utilize these higher-order integrators

as the user desires.

H.1 Tuning the 2MN integrator

In this subsection, I follow Ref. [353]. Take a unit time trajectory. If we split such a trajectory
into N steps, such that 6t = 1/N, then the error in the Hamiltonian produced by an nth-order
integrator is O(0t™). That is, 6H ~ 6t". From Creutz’s equality (exp(0H)) = 1 (or Jansen’s
inequality) [87],

(0H) = %<5H2> + O(0H?) ~ C, V6", (H.9)
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where C), is a coefficient that depends upon the order of the integrator and details of the Hamiltonian
and V' is the volume of the simulation. The acceptance (Pycc.) of an HMC algorithm in a sufficiently

large volume is given by

1 1/2 1 2\ 1/2
(Paee.) =~  erfc [<5’H2> } A exp [— —<57—l > . (H.10)
~— 8 ~— /
V/at>1 (HD) <1 2m

By considering the work per accepted trajectory, the optimal acceptance turns out to be dependent

only upon the order n of the integrator, such that

(Pace.) ~exp(—1/n), (H.11)

which yields an optimal acceptance of ~ 61% for the 2MN integrator. In practice, we do not typically
concern ourselves if the acceptance is ~ 80% — 95%, as it does not affect the simulation and merely
indicates that our simulations are not being performed as efficiently as they could be. Simulations
monitoring <57—[2> tend to find that the optimal A from Eqn. H.6 is slightly higher than ~ 0.193

[353]. More information about tuning the HMC integrators can be found in Refs. [61, 83].



Appendix 1

Conjugate gradient

Multiple stages of a single Hamiltonian Monte Carlo step require the solution to the Dirac
equation, with

Dy = ¢. (I.1)

In Sec. 8.1.1, I discussed the even/odd preconditioning procedure, which cuts the size of the inversion
problem down considerably. In this appendix, I shall gather the algorithmic details of the inversion
process together.

Let us begin by describing the beautiful method by which the solution = to the generic linear
system of equations of the form

Az =b (I.2)

may be acquired, assuming A : CV — C¥ is a Hermitian (and positive-definite) linear operator and
xz,beCN (as implicitly stated in the definition of A). Solving Eqn. 1.2 is equivalent to finding the

unique minimum of the functional f : CV — C defined by

f(x) = (z, Az) — (x,b), (1.3)

where (-,-) : CN x CV — R is the familiar Hermitian inner product on CV defined by

(y,2) = y'z, (L4)
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for any z,y, z € CV. Furthermore, the solution x may be decomposed into a basis {py} as
N—

v=3" ap, (L5)
k=0

[asry

which, by imposing the orthogonality constraint

(pi, Apj) = 0 for any i # j, (1.6)

further allows the oy, coefficients to be easily solved for using Eqn. 1.2.! With some preliminary
details out of the way, I am able to state the overarching goal of the conjugate gradient method.
The conjugate gradient method for finding the solution x to the linear system of Eqn. .2 consists of
iteratively finding the minimum of the functional defined by Eqn. 1.3 by updating the solution x
expressed in the basis {py} defined by the constraint of Eqn. 1.6 in order of decreasing significance.
What I mean by “order of decreasing significance” is that the error (which we must quantify) of the
solution projected onto the subspace defined by the basis {pr}; = {pr|k < J —1and J < N} is
smaller in magnitude than the error of the solution projected onto the subspace defined by the basis
{pr} K if J > K. That is, as we update the solution = with more aypy, (subject to the constraint of
Eqn. 1.6), the approximation error decreases.

Now that we have an idea of the objective of conjugate gradient, let’s fill in the details of its
execution. Assume first that we have some initial guess for the solution zy and define the residual
r(xg) as

r(xg) =b— Az = Az — x0). (1.7)

The magnitude of the residual quantifies the error in g, since, roughly, |r(z¢)| ~ |z — xo|. We can

update our guess xy to a more accurate estimate x1 of x by following the gradient of the functional

'In the jargon of the literature, the vectors p;,p; € CV for i,j < N — 1 are said to be conjugate to one another
with respect to A if they satisfy the orthogonality constraint of Eqn. I.6.
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defined in Eqn. 1.3, such that

z1 =20 — oV f(2)] = 9 + a17(20) = o + opo-

r=x0

At this point, the coefficient g is a free parameter. We can constrain it completely simply by

minimizing f(x1); that is, by imposing

0
%f(xl) =0,
which yields
<T07p0>
g = ————.
™ {po, Apo)

With ag completely determined by known quantities, we can then further update the residual

r(x1) =19 — Axy = rog — 9 Apo.

To summarize the first step, we started out with an initial guess xg. Due to the equivalence of
solving the linear system defined by Eqn. 1.2 and minimizing the functional defined in Eqn. 1.3, we
were able to update our guess by following the gradient of f and enforcing that our new solution x1

is as close to the minimum of f as is possible. This process gives the following set of updates

po = 7(20) (1.8)
_ {ro,po) _ (ro,m0)
a0 (po, Apo) — (po, Apo) (1.9)
To — T1 = T + QPo (1.10)
r(wo) = r(z1) = r(xo) — aApo. (L.11)

The next update will essentially follow the same sequence of updates; however, at this point (and in
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subsequent steps), we must now satisfy the constraint imposed by Eqn. 1.6. Taking

Pn =Tn+1 + Bnpn

as an initially mysterious ansatz [98], Eqn. 1.6 is satisfied if, in all subsequent updates,

o <Tn+1’rn+1>
Brn=-—F—""—"
<Tn7 rn)
One can then repeat the procedure leading to «g in the first step to get a,, in all subsequent steps
using r, = b — Ax, for the residual and p,, from the previous update. The solution is updated in
exactly the same fashion as in the first step, and the same is true for the residual.
To summarize, once we have updated our initial guess xg to x1, all subsequent solutions x,,

are obtained via the following chain of updates [98]

(P41, Tna1)
=N nrl/ 1.12
P = ) (112)
Pn = Pn+l = Tnt1 + /Bnpn (1.13)

<Tn7 Tn>

ap = ————— 1.14
Ty — Tpgl = T + apPp (I.15)
T'(l'n) - T($n+1) = r(xn) - anApn' (1.16)

As n increases, each a,p, contributes less to z,1, since each p,, is constructed out of the residual

ry, of the previous step. The latter sequence of updates is repeated until

0(xn) =(x —xp,x —2p)a = (& — 2p,7(20)) (I.17)

reaches some desired precision, at which point the updating procedure is terminated and the solution

Zn41 18 returned. Note that, because A is positive-definite, so is d(x,). Moreover, because A is
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Hermitian,

8(zn) = (A7 (), () < (r(xn),r(xn)). (I.18)

roughly
Strictly speaking, d(z,) determines the size of the approximation error; however, because A~! is
constant, Eqn. .18 implies that one can also use the norm of the residual, as one might have guessed
intuitively. In practice, it is the norm of the residual |r(z,)| that is often used to set the precision of

the conjugate gradient solve.



Appendix J

Monte Carlo algorithms for spin systems

In Chapter 6, I explore various spin systems for the purposes of testing out the neural-network-
based finite size scaling method of that chapter. The data for the spin systems of that chapter is
generated from Markov Chain Monte Carlo algorithms that work especially well for classical spin

systems. This appendix briefly summarizes the two Monte Carlo algorithms used in that chapter.

J.1 The cluster algorithm

Cluster algorithms have been around for some time now. The first widely-used cluster algorithm
was the Swendsen-Wang algorithm, which updates configurations by finding many clusters of spins
and flipping them [348]. The Wolff cluster algorithm that is applied to the 2-/3-state Potts model
and the 4-state clock model in Chapter 6 works similarly; however, instead of grabbing multiple
clusters, it grabs one big cluster and flips it [377]. Take the reduced Hamiltonian of the spin system

under consideration to be

’H:—KZSZ’-SJ', (Jl)
(ij)

where (ij) denotes a sum over all sites and their nearest neighbors j. All of the Hamiltonians in
Chapter 6 can be written as Eqn. J.1, even if the spin degrees of freedom are discrete. The first step
of each iteration of the Wolff cluster algorithm is to pick a random site ¢« and a random direction 7,
then flip s; along n as

S; — 8; — 2(si . fz)ﬁ (J.2)
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With s; flipped, a cluster is constructed recursively by visiting all neighboring sites, flipping them
along n with some probability, then visiting the neighbors of the flipped site until there are no more

sites to update. The probability of flipping a neighboring site j is

a=1—exp [min(0,2K(s; - n)(s; - 7))]. (J.3)

These steps are repeated until the desired precision is met. Because cluster algorithms flip entire
clusters of spins, they suffer far less from critical slowing down than local update algorithms do.
Hence, cluster algorithms are to this day considered the state-of-the-art when it comes to simulating

spin systems close to criticality.

J.2 Heatbath algorithms

Heatbath algorithms operate by selecting individual spins, flipping them, then accepting the
new spin-flipped configuration with probability o = (1 + exp(—dH))~!. Note that this is different
than the standard Metropolis-Hastings update, which has a different acceptance probability. As
the updates are local, heatbath algorithms tend to be inefficient within the vicinity of a 2nd-order
phase transition without the help of additional overrelaxation. The heatbath algorithm is utilized to
simulate the XY model in Chapter 6 for historical reasons that are discussed in that chapter. For

the XY model, it is much more optimal to utilize the cluster algorithm discussed in Chapter J.1.



	Introduction
	Gauge-fermion systems and renormalization
	The zero-temperature phase diagram

	Relevance to beyond Standard Model physics
	The conformal window and beyond Standard Model physics
	Symmetric mass generation

	Synopsis of key results
	Non-perturbative -functions
	Finite size scaling with neural networks

	Road map

	The Wilsonian renormalization group
	Renormalization group transformations
	Renormalization group flow
	The -function and characterizing fixed points by their local topology
	Characterizing fixed points by the correlation length

	Connection to -functions in high energy physics
	Running operator anomalous dimensions
	Phase transitions and finite size scaling

	Gauge-fermion systems on a lattice
	Classical pure Yang-Mills on a lattice
	Classical fermions on a lattice
	Staggered lattice fermions
	Other lattice fermions
	Coupling lattice fermions to lattice gauge fields

	Quantization of gauge-fermion systems on a lattice
	Renormalization and the continuum limit
	Connection to quantum chromodynamics


	The -function of the pure Yang-Mills system
	Gradient flow
	Renormalization and gradient flow
	Introduction to the continuous -function method
	Defining the gradient flow renormlized coupling in a finite volume
	Discretization of the Yang-Mills energy density and tree-level improvement
	Extracting the continuum -function from finite-volume simulations

	Simulation details
	Physical regimes of the pure Yang-Mills system in a finite box

	Calculation of the continuum -function
	Infinite volume extrapolation
	The effect of tree-level improvement
	Continuum extrapolation
	Systematic errors in the -function
	The continuum -function

	The -parameter and strong coupling constant
	Initial value problem: the strong coupling constant
	Direct integration: the -parameter
	Calculation of the pure Yang-Mills -parameter
	Comparison of the -parameter against the literature

	Scheme transformations and non-perturbative matching

	The -function of the massless twelve flavor system
	Overview of the twelve-flavor system
	Bulk phase transitions and Pauli-Villars improvement
	Simulation details
	Calculation of the -function
	Infinite volume extrapolation with Bayesian model averaging
	Continuum extrapolation
	The continuum -function

	Leading irrelevant critical exponent
	Calculation of the leading irrelevant critical exponent
	Systematic errors
	Comparison against the literature


	Interlude: Finite size scaling with radial basis function networks
	Curve collapse
	Radial basis function networks and finite size scaling
	Finite size scaling with radial basis function networks
	Fitting with the basin hopping optimization algorithm
	Empirical Bayes estimation via surrogate-based optimization

	Application: The q-state Potts model for q=2,3
	Application: The p-state clock model for p=4,
	Other uses of radial basis function networks in lattice field theory
	Example: The critical temperature of the -state clock model


	Finite size scaling and -function of the massless eight flavor system
	Overview of the eight flavor system
	Simulation details
	Finite size scaling in the eight flavor system
	Finite size scaling with radial basis function networks

	Calculation of the continuum -function
	Infinite volume extrapolation
	Continuum extrapolation
	The continuum -function


	Other developments
	The Quantum EXpressions-based qex_staghmc suite
	Hamiltonian Monte Carlo
	Gradient flow

	The SwissFit library
	Maximum a posteriori estimation by nonlinear least squares
	Quality of fit and model selection criteria
	Consistent uncertainty propagation
	Incorporating neural networks

	Non-perturbative running anomalous dimensions in the ten flavor system
	Including fermions in gradient flow
	Operator anomalous dimensions from gradient-flowed correlation functions
	Simulation details
	Calculation of operator anomalous dimensions


	Recapitulation and an eye toward the future
	Non-perturbative -functions
	Finite size scaling with radial basis function networks

	References
	Characterizing a fixed point by its local topology under an RG flow
	Global topology of an RG flow
	Tuning the bare gauge coupling to a critical surface
	Important ideas from statistics
	Estimating observables from Markov chains
	Autocorrelation time
	Accounting for autocorrelation
	Propagation of uncertainties

	Inference with Bayesian statistics
	Principle of maximum entropy
	Maximum a posteriori estimation
	The augmented 2
	Bayesian model averaging


	Gradient flow equation for the XY model
	Gradient flow equation with an explicit constraint
	Gradient flow equation with an implicit constraint

	Improved actions
	Lüscher-Weiss (Symanzik) actions
	Mixed fundamental/adjoint action

	Gauge smearing
	Normalized hypercubic smearing (nHYP)
	Stout smearing

	Symplectic Integrators
	Tuning the 2MN integrator

	Conjugate gradient
	Monte Carlo algorithms for spin systems
	The cluster algorithm
	Heatbath algorithms


