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Abstract. Neutrino oscillation observations are used to compare two competing theories of 3-

flavor neutrino oscillations. The two theories considered here are the standard model of neutrino 

oscillations, and parametrized Relativistic Quantum Theory (pRQT). pRQT is a manifestly 

covariant quantum theory with invariant evolution parameter. Recent data and a neutrino mass 

model from each theory are used to calculate neutrino masses. The models yield significantly 

different predictions of neutrino masses. 

1.  Introduction 

Experiments with solar neutrinos, atmospheric neutrinos, reactor neutrinos, and accelerator neutrinos 

have demonstrated that flavor mixing can occur between neutrino flavors composed of neutrino mass 

states. Observations of neutrino oscillations can be used to assess the validity of two theories of 

transitions between three neutrino flavor states {|𝑣𝛼⟩; 𝛼 =  𝑒,  𝜇,  𝜏} given the assumption that neutrinos 

are composed of up to three mass states {|𝑣𝑗⟩; 𝑗 =  1,  2,  3}. Models of neutrino flavor oscillations based 

on the standard theory [1] and the parametrized Relativistic Quantum Theory (pRQT) show that 

significant differences exist between model results. 

Parametrized Relativistic Quantum Theory (pRQT) is a manifestly covariant quantum theory with 

invariant evolution parameter. Introductions to pRQT are presented by Fanchi [2,3], Pavšič [4,5], and 

Horwitz [6]. A review of relativistic classical mechanics and electrodynamics in the parametrized 

framework is given by Land and Horwitz [7]. 

A model of neutrino oscillations by mass state mixing was developed within the context of pRQT by 

Fanchi [8-10]. The difference between the standard model of vacuum flavor mixing and the pRQT model 

of vacuum flavor mixing was studied by Rusov and Vlasenko [11]. Results of their model are analyzed 

here and updated using 2020 data [1]. 

Mass-state transitions in pRQT provide a mechanism for modeling neutrino oscillations. The single-

body and N-body formulations of pRQT are outlined in Sections 2 and 3, respectively.  An 𝑠-clock for 

quantifying the invariant evolution parameter 𝑠 is constructed in Section 3 for use in the pRQT model 

of neutrino oscillations. The mass basis and flavor basis for three flavors are introduced in Section 4 and 

the form of the neutrino mass matrix used in the neutrino oscillation models is presented in Section 5.  

An algorithm for calculating neutrino masses is presented in Section 6. Results of the standard and pRQT 

models are updated and compared using 2020 data from the Particle Data Group [Zyla, et al., 2020] in 

Section 7. Conclusions are presented in Section 8. 

2.  Probabilistic Formulation of Parametrized Relativistic Quantum Theory 

The probabilistic formulation of pRQT begins with the assumption that a physical system can be 

represented by a conditional probability density 𝜌(𝑥|𝑠). The position four-vector 𝑥 has components 
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{𝑥𝜇: 𝜇 = 0,1,2,3} where index 0 signifies the time component and by indices 1, 2, 3 signify three space 

components. The probability density 𝜌(𝑥|𝑠) is conditioned by invariant evolution parameter 𝑠. 

According to probability theory, the conditional probability density  𝜌(𝑥|𝑠) must be positive definite 

and normalizable. The Born representation of the positive definite requirement is used to express the 

probability amplitude 𝛹 as 

 

 𝜌(𝑥|𝑠) = 𝛹∗(𝑥, 𝑠)𝛹(𝑥, 𝑠) ≥ 0 (1) 

 

with normalization condition 

 

 ∫
𝐷
𝜌(𝑥|𝑠)𝑑4𝑥 = 1 (2) 

 

and 𝐷 denotes spacetime volume. The probability amplitude 𝛹 is also referred to as the field or wave 

function of the system. It is specified to within the gauge transformation 

 

 𝛹(𝑥, 𝑠) = √𝜌(𝑥|𝑠) 𝑒𝑖𝜉(𝑥,𝑠) (3) 

 

where ξ is a scalar function. 

Equation (2) implies that a single particle is observable somewhere in space at some point in time. 

On the other hand, Equation (2) does not imply that the particle exists at all times. The conditional 

probability density 𝜌(𝑥|𝑠) for a single particle can be expressed as the product of two conditional 

probabilities: 𝜌(𝑥|𝑠) = 𝜌(𝑥1, 𝑥2, 𝑥3|𝑥0, 𝑠)𝜌(𝑥0|𝑠). The distribution 𝜌(𝑥0|𝑠) is the marginal probability 

density in time and is conditioned by the evolution parameter 𝑠. The particle cannot be detected 

anywhere in space when 𝜌(𝑥0|𝑠) is zero because the probability 𝜌(𝑥0|𝑠) of observing a particle at time 

𝑥0 given parameter 𝑠 is zero. By contrast, when 𝜌(𝑥0|𝑠) is nonzero, there is a nonzero probability of 

observing a particle at time 𝑥0 given parameter 𝑠 [2,3,12]. 

The continuity equation for conservation of probability is 

 

 
𝜕𝜌

𝜕𝑠
+

𝜕

𝜕𝑥𝜇
(𝜌𝑉𝜇) = 0 (4) 

 

Equation (4) can be combined with Equation (1) to give the probability flux 

 

 𝜌𝑉𝜇 = −
𝑖ℏ

2𝑚
[𝛹∗

𝜕𝛹

𝜕𝑥𝜇
− 𝛹

𝜕𝛹∗

𝜕𝑥𝜇
] −

𝑒𝐴𝜇

𝑚𝑐
𝛹∗𝛹 (5) 

 

for a particle with mass 𝑚, charge 𝑒, four-velocity 

 

 𝑉𝜇(𝑥, 𝑠) =
ℏ

𝑚

𝜕𝜉(𝑥, 𝑠)

𝜕𝑥𝜇
−

𝑒

𝑚𝑐
𝐴𝜇(𝑥, 𝑠) (6) 

 

and electromagnetic four-vector potential 𝐴𝜇. 

The parametrized field equation 

 

 𝑖ℏ
𝜕𝛹

𝜕𝑠
= 𝐾𝛹 (7) 

 

is constructed from Equations (1) to (6). The mass operator 𝐾 has the form 
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 𝐾 =
𝜋𝜇𝜋𝜇

2𝑚
+ 𝑉 (8) 

 

with potential energy 𝑉 and 𝜋𝜇 is the four-momentum operator with minimal coupling 

 

 𝜋𝜇 =
ℏ

𝑖

𝜕

𝜕𝑥𝜇
−

𝑒

𝑐
𝐴𝜇 (9) 

 

The term 𝐴𝜇 is the four-vector potential. Equation (7) is called the Stueckelberg equation for a single 

particle. An alternative construction of an 𝑠-dependent field equation in terms of a set of fundamental 

postulates is known as the Stueckelberg-Horwitz-Piron (SHP) theory. The SHP theory is described by 

Horwitz [6].  

In the pRQT formulation, the definition of the expectation value of an observable 𝛺 is 

 

 ⟨𝛺⟩ = ∫𝛹∗𝛺𝛹𝑑𝑥 (10) 

 

with the uncertainty principle over spacetime 

 

 |𝛥𝑥𝜇| |𝛥𝑝𝜇| ≥
ℏ

2
 (11) 

 

Summation over repeated indices is not implied in Equation (11). The uncertainty principle for both 

energy and three-momentum is a consequence of the manifestly covariant probabilistic formulation. 

3.  Formulation of pRQT for an N-Body System 

Extension of the probabilistic formulation for the single-particle system outlined in Section 2 to an N-

body system makes it possible to combine an experimental system with a system that can function as an 

𝑠-clock, that is, a system for monitoring the invariant parameter 𝑠. Field equations for the N-body system 

can be written as 

 

 𝑖ℏ
𝜕𝛹

𝜕𝑠
= 𝐾𝑁𝛹 = {∑

𝜋𝑎
𝜇
𝜋𝑎𝜇

2𝑚𝑎

𝑁

𝑎=1

𝐼 + 𝑉}𝛹 (12) 

 

where 𝛹 is a column vector with elements 𝛹𝑇 = [𝜓1, 𝜓2, … , 𝜓𝛬] and Λ labels associated internal 

variables. The Hermitian operator 𝐾𝑁 is interpreted as an N-body mass operator with a "minimal 

coupling" electromagnetic interaction, 𝐼 is the identity matrix, and 𝑉 represents non-electromagnetic 

interactions. The four-momentum operator in the bracketed term is 

 

 𝜋𝑎
𝜇

= 𝑝𝑎
𝜇

−
𝑒

𝑐
𝐴𝑎

𝜇
 (13) 

 

with  

 

 𝑝𝑎
𝜇

=
ℏ

𝑖

𝜕

𝜕𝑥𝑎𝜇
 (14) 

 

and subscript 𝑎 labels particle 𝑎 for 1 ≤ 𝑎 ≤ 𝑁. Particle 𝑎 exists at some time and some place within a 

4𝑁 hypervolume 𝐷𝑁. The expectation value of an observable 𝛺 in the N-body formalism is 
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 ⟨𝛺⟩ = ∫ 𝛹+𝛺𝛹𝑑𝑥
𝐷𝑁

 (15) 

 

where 𝛹+ is the conjugate transpose of 𝛹 and the integral is over 𝐷𝑁. 

The N-body formulation can be used to quantify parameter 𝑠 by constructing an invariant evolution 

parameter 𝑠-clock. The system in Figure 1 consists of an experimental system with 𝑁𝑒  bodies and an 𝑠-

clock with 𝑁𝑐 bodies. The experimental system should not significantly interact with the 𝑠-clock. 

Spacetime {𝑥, 𝑡} coordinates of experimental system 1 and the s-clock system 2 are used to determine 

parameters 𝑠1, 𝑠2 for system 1 and system 2, respectively. The procedure. is summarized below and 

discussed in more detail in the literature [3,13].  

An N-body system consisting of an 𝑠-clock and a model of neutrino oscillations is constructed by 

considering a system with two particles. The experimental system consists of Particle 1 interacting with 

potential 𝑉𝐼. Particle 2 is a free, scalar particle that serves as a simple 𝑠-clock. Particles 1 and 2 do not 

interact with each other. The two-particle system is represented by the field equation 

 

 {𝑖ℏ
𝜕

𝜕𝑠
− [

𝑝1
𝜇
𝑝1𝜇

2𝑚1
+

𝑝2
𝜇
𝑝2𝜇

2𝑚2
+ 𝑉𝐼]}𝜓(1,2, 𝑠) = 0 (16) 

 

where the 𝑠-dependent eigenfunction 𝜓(1,2, 𝑠) of the two-particle system applies to both particles 1 and 

2. The eigenfunction 𝜓(1,2, 𝑠) has a set of 4-space components 𝑦1
𝜇
, 𝑦2

𝜇
 for each particle. 

A solution to Equation (16) is obtained by writing 𝜓(1,2, 𝑠) as the product of single particle 

eigenfunctions 
 

 𝜓(1,2, 𝑠) = 𝜓(1, 𝑠)𝜓(2, 𝑠) (17) 

 

Substituting Equation (17) into Equation (16) lets us separate Equation (16) into the two equations 

 

 {𝑖ℏ
𝜕

𝜕𝑠
− [

𝑝1
𝜇
𝑝1𝜇

2𝑚1
+ 𝑉𝐼 + 𝛼𝑅]}𝜓(1, 𝑠) = 0 (18) 

 

and 

 

 {𝑖ℏ
𝜕

𝜕𝑠
− [

𝑝2
𝜇
𝑝2𝜇

2𝑚2
− 𝛼𝑅]}𝜓(2, 𝑠) = 0 (19) 

 

with separation constant 𝛼𝑅. Particles 1 and 2 are physically independent so 𝛼𝑅 = 0. 

Equation (19) with 𝛼𝑅 = 0 is the free particle equation 

 

 𝑖ℏ
𝜕𝜓𝑓(2, 𝑠)

𝜕𝑠
= [−

ℏ2

2𝑚2

𝜕2

𝜕𝑥2
𝜇
𝜕𝑥2𝜇

]𝜓𝑓(2, 𝑠) (20) 

 

with the particular solution 

 

 𝜓𝑓(2, 𝑠) = 𝜂𝑓
1/2

𝑒𝑥𝑝 [−
𝑖ℏ

2𝑚2
(𝑘2

𝜇
𝑘2𝜇)𝑠 + 𝑖𝑘2𝜇𝑥2

𝜇
] (21) 

 

and normalization constant 𝜂𝑓. 
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The most probable trajectory of particle 2 in the classical limit of negligible dispersion is 

 

 (𝛿𝑠)2 = (𝑠 − 𝑠0)
2 =

1

𝑐2 𝛿〈𝑥2
𝜇〉𝛿〈𝑥2𝜇〉 (22) 

 

where 𝑠0 is the invariant evolution parameter when the rest frame clocks of particles 1 and 2 are 

calibrated. If we synchronize the clocks at 𝑠0 = 0, Equation (22) becomes 

 

 𝑠2 =
1

𝑐2 𝛿〈𝑥2
𝜇〉𝛿〈𝑥2𝜇〉 (23) 

 

Now assume the motion of the free particle is linear and neglect statistical variations to obtain  

 

 𝑠2 = 𝛿𝑡2 −
𝛿𝑥2

𝑐2 = 𝛿𝑡2[1 − 𝛽2] (24) 

 

where {𝑥2
0, 𝑥2

1} = {𝑡, 𝑥}, and 

 

 𝛽 =
𝑣

𝑐
 with 𝑣 ≡

𝛿𝑥

𝛿𝑡
 (25) 

 

The distance 𝛿𝑥 traveled by particle 2 in the interval 𝛿𝑡 can be written as 𝐿 so that Equation (24) becomes 

 

 𝑠 =
𝐿

𝑣
 [1 − 𝛽2]1/2 =

𝐿

𝑐

[1 − 𝛽2]1/2

𝛽
 (26) 

 

The invariant evolution parameter 𝑠 is quantified by measuring the spacetime trajectory of particle 2 

and using the resulting value of 𝑠  in Equation (18) associated with particle 1. This 𝑠-clock has been 

used to model neutrino oscillations [8,11]. 

4.  Mass Basis and Flavor Basis 

Two theories of transitions between three neutrino flavor states {|𝑣𝛼⟩; 𝛼 =  𝑒,  𝜇,  𝜏} composed of up to 

three mass states {|𝑣𝑗⟩; 𝑗 =  1,  2,  3} are compared here. The basis of mass states {|𝑣𝑗⟩; 𝑗 =  1,  2,  3} is 

related to the basis of flavor states {|𝑣𝛼⟩; 𝛼 =  𝑒,  𝜇,  𝜏} by a unitary transformation: 

 

 [

|𝜈𝑒⟩

|𝜈𝜇⟩

|𝜈𝜏⟩

] = 𝑈  [

|𝜈1⟩

|𝜈2⟩

|𝜈3⟩
] (27) 

 

where the mass and flavor states are written as 3-component column vectors. The elements of the unitary 

matrix are written as 

 

 𝑈 = [

𝑢𝑒1 𝑢𝑒2 𝑢𝑒3

𝑢𝜇1 𝑢𝜇2 𝑢𝜇3

𝑢𝜏1 𝑢𝜏2 𝑢𝜏3

] (28) 

 

The inverse of the unitary matrix U is the conjugate transpose of 𝑈, thus 

 

 𝑈−1 = (𝑈∗)𝑇 (29) 
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with elements 

 

 𝑢𝛼𝑗
−1 = 𝑢𝑗𝛼

∗  ;  𝑗 = 1,2,3 and 𝛼 = 𝑒, 𝜇, 𝜏 (30) 

 

The expanded form of the unitary transformation is 

 

 

|𝜈𝑒⟩ = 𝑢𝑒1|𝜈1⟩ + 𝑢𝑒2|𝜈2⟩ + 𝑢𝑒3|𝜈3⟩ 

|𝜈𝜇⟩ = 𝑢𝜇1|𝜈1⟩ + 𝑢𝜇2|𝜈2⟩ + 𝑢𝜇3|𝜈3⟩ 
|𝜈𝜏⟩ = 𝑢𝜏1|𝜈1⟩ + 𝑢𝜏2|𝜈2⟩ + 𝑢𝜏3|𝜈3⟩ 

(31) 

 

A mass basis state satisfies the temporal evolution equation 

 

 𝑇|𝜈𝑗⟩ = 𝑖ℏ
𝜕

𝜕𝜏
|𝜈𝑗⟩ = 𝑇𝑗|𝜈𝑗⟩ (32) 

 

where 𝑇𝑗 is the eigenvalue of the temporal operator 𝑇 = 𝑖ℏ
𝜕

𝜕𝜏
, and 𝜏 is the temporal evolution parameter. 

In the standard model, (𝑇𝑗)𝑆𝑡𝑑
= 𝐸𝑗  where 𝐸𝑗  is the energy of state 𝑗, and (𝜏)𝑆𝑡𝑑 = 𝑡 with coordinate 

time 𝑡. In the pRQT model, (𝑇𝑗)𝑝𝑅𝑄𝑇
= 𝐾𝑗 where 𝐾𝑗  is the eigenvalue of state 𝑗 for the mass operator 

𝐾, and (𝜏)𝑝𝑅𝑄𝑇 = 𝑠 with invariant evolution parameter 𝑠. Equation (32) has the formal solution 

 

 [

|𝜈1⟩

|𝜈2⟩

|𝜈3⟩
] =

[
 
 
 𝑒

−𝑖
𝑇1𝜏
ℏ 0 0

0 𝑒−𝑖
𝑇2𝜏
ℏ 0

0 0 𝑒−𝑖
𝑇3𝜏
ℏ ]

 
 
 

[

|𝜈1(0)⟩

|𝜈2(0)⟩

|𝜈3(0)⟩
] (33) 

 

where 𝜈𝑗(0) is mass state 𝑗 at 𝜏 = 0. 

5.  Neutrino Mass Matrix Model 

An analysis of the competing formalisms for vacuum-favor mixing of neutrinos within the context of 

the standard and pRQT models requires a basis for comparison. In this case, we seek estimates of 

neutrino masses based on current experimental data. To achieve this goal, we present a procedure for 

estimating neutrino masses from a 3 × 3 neutrino mass matrix 𝑀𝜈 using a procedure introduced by 

Damanik [14]. Damanik’s procedure is a method for obtaining phenomenological estimates of neutrino 

masses from experimental estimates of mass-squared differences and mixing parameters. 

Damanik [14] constructed an unperturbed neutrino mass matrix 𝑀𝜈0 

 

 𝑀𝜈0 = [
𝑃 𝑄 𝑄
𝑄 𝑃 𝑄
𝑄 𝑄 𝑃

] (34) 

 

that is non-singular and invariant with respect to a cyclic permutation of neutrino states, that is, 𝜈1 →
𝜈2 → 𝜈3 → 𝜈1. Damanik used the seesaw mechanism [Gell-Mann, et al., 1979; Yanagida, et al., 1979] 

to help motivate the form of  𝑀𝜈0. The presentation here focuses on mathematical arguments rather than 

theoretical motivations to minimize the dependence of the form of the neutrino mass matrix on a specific 

paradigm. 

Damanik [14] determined the matrix elements 𝑃,𝑄 by finding the eigenvalues of 𝑀𝜈0, relating the 

eigenvalues to neutrino masses, and then showing that the resulting masses did not correctly predict 

observed mass squared differences ∆𝑚𝑖𝑗
2  where ∆𝑚𝑖𝑗

2 = 𝑚𝑖
2 − 𝑚𝑗

2, (𝑖, 𝑗 = 1,2,3). To resolve these 
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problems, Damanik introduced a parameter 𝛿 as a perturbation of diagonal elements of the neutrino 

mass matrix 𝑀𝜈: 

 

 𝑀𝜈 = [
𝑃 + 2𝛿 𝑄 𝑄

𝑄 𝑃 − 𝛿 𝑄
𝑄 𝑄 𝑃 − 𝛿

] (35) 

 

The form of the perturbed neutrino mass matrix 𝑀𝜈 includes the requirement that 𝑀𝜈 has the same trace 

as the unperturbed neutrino mass matrix 𝑀𝜈0, thus 𝑇𝑟(𝑀𝜈0) = 𝑇𝑟(𝑀𝜈) = 3𝑃. The eigenvalues 
{ 𝛽1,  𝛽2,  𝛽3} of the perturbed neutrino mass matrix 𝑀𝜈 are 

 

 

 𝛽1 = 𝑃 +
𝑄

2
+

𝛿

2
−

√9𝛿2 − 6𝑄𝛿 + 9𝑄2

2
  

 𝛽2 = 𝑃 +
𝑄

2
+

𝛿

2
+

√9𝛿2 − 6𝑄𝛿 + 9𝑄2

2
 

 𝛽3 = 𝑃 − 𝑄 − 𝛿 

(36) 

 

The value of 𝛿 is obtained by finding the angle 𝜃 that diagonalizes 𝑀𝜈. 

The angle 𝜃 is the angle that relates the mass basis {|𝑣𝑗⟩; 𝑗 =  1,  2,  3} to the flavor basis 

{|𝑣𝛼⟩; 𝛼 =  𝑒,  𝜇,  𝜏} by the unitary transformation in Equation (27). The unitary matrix used by 

Damanik [14] to relate the mass basis to the flavor basis is 

 

 𝑈 =

[
 
 
 
 
𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃

√2

𝑐𝑜𝑠𝜃

√2
−

1

√2
𝑠𝑖𝑛𝜃

√2

𝑐𝑜𝑠𝜃

√2

1

√2 ]
 
 
 
 

 (37) 

 

with the inverse 

 

 𝑈−1 =

[
 
 
 
 
 
 𝑐𝑜𝑠 𝜃

𝑠𝑖𝑛𝜃

√2

𝑠𝑖𝑛𝜃

√2

−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃

√2

𝑐𝑜𝑠𝜃

√2

0 −
1

√2

1

√2 ]
 
 
 
 
 
 

 (38) 

The perturbation parameter 𝛿 is obtained from the relation 

 

 𝑡𝑎𝑛2(2𝜃) =
8𝑄2

(𝑄 − 3𝛿)2 (39) 

 

where the angle 𝜃 and the associated unitary matrix 𝑈 diagonalize 𝑀𝜈. The solution of Equation (39) 

for 𝛿 gives 

 

 𝛿 = 𝜀𝑄, 𝜀 =
[𝑡𝑎𝑛(2𝜃) − √8]

3𝑡𝑎𝑛(2𝜃)
 (40) 
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The term 𝜀 is calculated given a value of 𝜃. In this case, the perturbation parameter 𝛿 is proportional to 

𝜃. 

Neutrino masses are given by the equations 

 

 

 𝑚1 = 𝑃 +
𝑄

2
+

𝛿

2
−

√9𝛿2 − 6𝑄𝛿 + 9𝑄2

2
  

 𝑚2 = 𝑃 +
𝑄

2
+

𝛿

2
+

√9𝛿2 − 6𝑄𝛿 + 9𝑄2

2
 

 𝑚3 = 𝑃 − 𝑄 − 𝛿 

(41) 

 

Damanik’s procedure yields a set of neutrino masses that is an inverted hierarchy, thus 

 

 |𝑚3| < |𝑚1| < |𝑚2| (42) 

6.  Algorithm for Calculating Neutrino Masses 

The equations in Damanik’s [14] procedure presented above can be combined with experimental 

measurements of mass squared differences and mixing angles to provide a phenomenological estimate 

of the variables {𝑃, 𝑄, 𝛿} and corresponding neutrino masses {𝑚1, 𝑚2, 𝑚3}. We begin by writing a 

simplified form of the neutrino mass equations. If we use the proportionality relationship between 𝛿 and 

𝜃 in Equation (40), neutrino masses may be written in the form 

 

 

 𝑚1 = 𝑃 + 𝑎1𝑄  
 𝑚2 = 𝑃 + 𝑎2𝑄 

 𝑚3 = 𝑃 + 𝑎3𝑄 

(43) 

 

where  

 

 

 𝑎1𝑄 =
𝑄

2
+

𝛿

2
−

√9𝛿2 − 6𝑄𝛿 + 9𝑄2

2
  

 𝑎2𝑄 =
𝑄

2
+

𝛿

2
+

√9𝛿2 − 6𝑄𝛿 + 9𝑄2

2
 

 𝑎3𝑄 = −𝑄 − 𝛿 

(44) 

 

Substituting 𝛿 = 𝜀𝑄 into Equation (44) gives {𝑎1, 𝑎2, 𝑎3} as functions of 𝜀: 

 

 

 𝑎1 =
1

2
[1 + 𝜖 − √9𝜀2 − 6𝜀 + 9]  

 𝑎2 =
1

2
[1 + 𝜖 + √9𝜀2 − 6𝜀 + 9]  

 𝑎3 = −(1 + 𝜀) 

(45) 

 

We use the mass squared differences ∆𝑚𝑖𝑗
2  and the relations in Equation (43) to solve for 𝑃,𝑄. 

The mass squared differences are 

 

 
∆𝑚21

2 = 𝑚2
2 − 𝑚1

2 = (𝑃 + 𝑎2𝑄 )2 − (𝑃 + 𝑎1𝑄 )2 

∆𝑚32
2 = 𝑚3

2 − 𝑚2
2 = (𝑃 + 𝑎3𝑄 )2 − (𝑃 + 𝑎2𝑄 )2 

(46) 

 

with the simplified forms 
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 ∆𝑚21
2 = 2𝑄𝑃(𝑎2 − 𝑎1) + 𝑄2(𝑎2

2 − 𝑎1
2) (47) 

 

and 

 

 ∆𝑚32
2 = 2𝑄𝑃(𝑎3 − 𝑎2) + 𝑄2(𝑎3

2 − 𝑎2
2) (48) 

 

The variable 𝑄 is obtained by rearranging Equations (47) and (48) so that the 𝑄𝑃 term is on the right-

hand side: 

 

 ∆𝑚21
2 − 𝑄2(𝑎2

2 − 𝑎1
2) = 2𝑄𝑃(𝑎2 − 𝑎1) (49) 

 

and 

 

 ∆𝑚32
2 − 𝑄2(𝑎3

2 − 𝑎2
2) = 2𝑄𝑃(𝑎3 − 𝑎2) (50) 

 

Dividing Equation (49) by (50), rearranging and solving for 𝑄2 gives 

 

 𝑄2 =
∆𝑚21

2 −
(𝑎2 − 𝑎1)
(𝑎3 − 𝑎2)

∆𝑚32
2

(𝑎2
2 − 𝑎1

2) −
(𝑎2 − 𝑎1)
(𝑎3 − 𝑎2)

(𝑎3
2 − 𝑎2

2)
 (51) 

The variable 𝑃 is obtained by rearranging Equations (47) and (48) so that the 𝑄2 term is on the right-

hand side: 

 

 ∆𝑚21
2 − 2𝑄𝑃(𝑎2 − 𝑎1) = 𝑄2(𝑎2

2 − 𝑎1
2) (52) 

 

and 

 

 ∆𝑚32
2 − 2𝑄𝑃(𝑎3 − 𝑎2) = 𝑄2(𝑎3

2 − 𝑎2
2) (53) 

 

Dividing Equation (52) by (53), rearranging and solving for 𝑃 gives 

 

 𝑃 =

∆𝑚21
2 −

(𝑎2
2 − 𝑎1

2)

(𝑎3
2 − 𝑎2

2)
∆𝑚32

2

2𝑄 [(𝑎2 − 𝑎1) −
(𝑎2

2 − 𝑎1
2)

(𝑎3
2 − 𝑎2

2)
(𝑎3 − 𝑎2)]

 (54) 

 

An algorithm for calculating neutrino masses using the above relationships is summarized in Table 

1. It assumes that values of ∆𝑚21
2 , ∆𝑚32

2 , 𝜃 are available.  

 

Table 1 Algorithm for Calculating Neutrino Masses 

Calculate Using Equation 

𝜀 𝜃 40 

{𝑎1, 𝑎2, 𝑎3} 𝜀 45 

𝑄2 {𝑎1, 𝑎2, 𝑎3}, ∆𝑚21
2 , ∆𝑚32

2  51 

P 𝑄, {𝑎1, 𝑎2, 𝑎3}, ∆𝑚21
2 , ∆𝑚32

2  54 

{𝑚1, 𝑚2, 𝑚3} 𝑃,𝑄, {𝑎1, 𝑎2, 𝑎3} 43 
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7.  Comparison of Neutrino Mass Models Using 2020 Data 

Table 2 validates the algorithm using the data in the Rusov-Vlasenko [11] neutrino mass calculation. 

Rusov and Vlasenko [11] compared the standard and pRQT models by writing 

 

 𝛼𝑝𝑅𝑄𝑇 ≈ 2𝛼𝑆𝑡𝑑 (55) 

 

The angle 𝜃 is given by 𝜃 = 𝜃12. The masses are inverted, that is, |𝑚3| < |𝑚1| < |𝑚2|. The sum of the 

absolute values of the neutrino masses is less than 0.6 eV. 

 

Table 2 Verify Algorithm with Rusov-Vlasenko [11] Results 

 Algorithm Results 

Rusov-Vlasenko [11] Data Standard Model pRQT Model 

∆𝑚21
2 × 105 , 𝑒𝑉2 7.50 15.00 

∆𝑚32
2 × 105 , 𝑒𝑉2 -2.32 -4.64 

𝑡𝑎𝑛2(𝜃) 0.452 0.452 

Neutrino Masses Standard Model pRQT Model 

|𝑚1|, 𝑒𝑉 0.130855 0.185056 

|𝑚2|, 𝑒𝑉 0.131141 0.185461 

|𝑚3|, 𝑒𝑉 0.121975 0.172499 

|𝑚1| + |𝑚2| + |𝑚3|, 𝑒𝑉 0.38397 0.54302 

Table 3 repeats the Rusov-Vlasenko [11] calculations of neutrino mass using updated data from Zyla, 

et al. [1]. The angle 𝜃 is given by 𝜃 = 𝜃12 and the masses are inverted. The sum of the absolute values 

of the neutrino masses is less than 0.6 eV. 

 

Table 3 Rusov-Vlasenko [1] Calculations Updated with Zyla, et al. [1] Data 

 Algorithm Results  

Zyla, et al. [1] Data Standard Model pRQT Model 

∆𝑚21
2 × 105 , 𝑒𝑉2 7.53 15.06 

∆𝑚32
2 × 105 , 𝑒𝑉2 -2.546 -5.092 

𝑡𝑎𝑛2(𝜃) 0.443 0.443 

Neutrino Masses Standard Model pRQT Model 

|𝑚1|, 𝑒𝑉 0.125714 0.177787 

|𝑚2|, 𝑒𝑉 0.126013 0.178210 

|𝑚3|, 𝑒𝑉 0.115470 0.163300 

|𝑚1| + |𝑚2| + |𝑚3|, 𝑒𝑉 0.36720 0.51930 

The relationship in Equation (55) used by Rusov-Vlasenko [11] is not the same as the pRQT result 

summarized in Appendix A. The ratio 

 

 
𝛼𝑆𝑡𝑑

𝛼𝑝𝑅𝑄𝑇
≈

𝑚2
2 − 𝑚1

2

𝑚𝜈(𝑚2 − 𝑚1)
=

𝑚1 + 𝑚2

𝑚𝜈
≈ 2 (56) 

 

is simplified by assuming that 𝑚𝜈 ≈ 𝑚1 ≈ 𝑚2 so that 

 

 𝑚𝜈 ≈
𝑚1 + 𝑚2

2
 (57) 
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Equation (57) becomes  

 

 

𝛼𝑝𝑅𝑄𝑇 =
𝑚𝜈(𝑚2 − 𝑚1)𝑐

4

4ℏ𝐸𝜈

𝐿

𝑐

1

𝛽

≈
(
𝑚1 + 𝑚2

2
) (𝑚2 − 𝑚1)𝑐

4

4ℏ𝐸𝜈

𝐿

𝑐

1

𝛽

=
1

2

(𝑚2
2 − 𝑚1

2)𝑐4

4ℏ𝐸𝜈

𝐿

𝑐

1

𝛽
 

(58) 

 

Recognizing that 𝛽 ≈ 1 for an ultrarelativistic neutrino and 𝛼𝑆𝑡𝑑 =
(𝑚2

2−𝑚1
2)𝑐4

4ℏ𝐸𝜈

𝐿

𝑐
 from Equation (A.8) 

gives 

 

 𝛼𝑝𝑅𝑄𝑇 =
1

2
𝛼𝑆𝑡𝑑 (59) 

 

This can be related to observations by halving the mass squared difference ∆𝑚𝑗𝑖
2 = 𝑚𝑗

2 − 𝑚𝑖
2, thus 

 

 (∆𝑚𝑗𝑖
2)

𝑝𝑅𝑄𝑇
=

1

2
(∆𝑚𝑗𝑖

2)
𝑆𝑡𝑑

 (60) 

 

By contrast, Rusov-Vlasenko [11] doubled the mass-squared difference. 

Table 4 presents neutrino mass results obtained using Equation (60) and updated data from Zyla, et 

al. [1]. The angle 𝜃 is given by 𝜃 = 𝜃12 and the masses are inverted. The sum of the absolute values of 

the neutrino masses is less than 0.6 eV. 

 

Table 4 Neutrino Masses Updated with Equation (60) and Zyla, et al. [1] Data 

 Algorithm Results  

Zyla, et al. [1] Data Standard Model pRQT Model 

∆𝑚21
2 × 105 , 𝑒𝑉2 7.53 3.77 

∆𝑚32
2 × 105 , 𝑒𝑉2 -2.546 -1.27 

𝑡𝑎𝑛2(𝜃) 0.443 0.443 

Neutrino Masses Standard Model pRQT Model 

|𝑚1|, 𝑒𝑉 0.125714 0.088893 

|𝑚2|, 𝑒𝑉 0.126013 0.089105 

|𝑚3|, 𝑒𝑉 0.115470 0.081650 

|𝑚1| + |𝑚2| + |𝑚3|, 𝑒𝑉 0.36720 0.25965 

8.  Discussion 

The inclusion of two temporal variables in parametrized Relativistic Quantum Theory (pRQT) yields a 

theory that is significantly different from theories that rely on a single temporal variable, namely the 

time coordinate of spacetime. The pRQT temporal variables are the time coordinate of spacetime, and 

an invariant evolution parameter. The difference between the temporal dependence of the standard 

model and the pRQT model can be directly observed in models of neutrino oscillations. This paper used 

2020 data to compare neutrino mass results from the standard model of three-flavor neutrino oscillations 

and the pRQT model of three-flavor neutrino oscillations. Standard model neutrino masses shown in 
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Table 4 are in the range 0.11 eV to 0.13 eV, while pRQT neutrino masses are in the range 0.08 eV to 

0.09 eV. 

Neutrino mass model differences are significant for neutrino oscillation measurements. For example, 

the Karlsruhe Tritium Neutrino (KATRIN) Collaboration has a direct method of measuring neutrino 

mass based on beta decay of tritium into helium-3, an electron, and an electron antineutrino [17,18]. The 

KATRIN direct method has the advantage of being model independent, which makes it suitable for 

comparing neutrino mass predictions based on the standard model and pRQT model of three-flavor 

neutrino oscillations. One possible problem is that KATRIN is not currently sensitive to neutrino masses 

less than 0.2 eV [19,20]. The 0.2 eV limit is greater than the neutrino masses estimated here. 

The neutrino mass differences shown here are dependent on the specified neutrino mass matrix and 

choice of variables used to conduct calculations. A more definitive comparison of competing models 

will depend on future studies of alternative mass matrices and associated algorithms to further 

incorporate all observations from all relevant experiments. 

Appendix A. Outline of the Two-Flavor pRQT Model of Neutrino Oscillations 

The two-flavor pRQT model of neutrino oscillations [8] is outlined here. The evolution equation in 

pRQT for a state may be written in terms of the evolution parameter 𝑠 as 

 

 𝑖ℏ
𝜕

𝜕𝑠
|𝑣𝑗⟩ = 𝐾𝑗|𝑣𝑗⟩ (A.1) 

 

where 𝐾𝑗  is the eigenvalue of the mass operator for mass state 𝑗. The evolution parameter dependent 

solution of Equation (A.1) in the mass basis for two mass states is 

 

 [
|𝑣1(𝑠)⟩

|𝑣2(𝑠)⟩
] = [𝑒

−𝑖𝐾1𝑠 ℏ⁄ 0
0 𝑒−𝑖𝐾2𝑠 ℏ⁄

] [
|𝑣1(0)⟩

|𝑣2(0)⟩
] (A.2) 

 

where 

 

 𝐾𝑗 = ℏ2𝑘𝑗
𝜇
𝑘𝑗𝜇 2𝑚𝑗⁄ = ℏ2 [(𝜔𝑗 𝑐⁄ )

2
− 𝑘𝑗 ⋅ 𝑘𝑗] 2𝑚𝑗⁄  (A.3) 

 

In pRQT, the components of the energy-momentum four-vector 𝑘𝑗
𝜇

 are observables and the mass 𝑚𝑗  is 

a function of statistical values of 𝑘𝑗
𝜇

.  

In the flavor oscillation process 𝜈𝑒 → 𝜈𝜇, we begin with a pure beam of electron neutrino 𝜈𝑒 particles 

and calculate the probability for forming muon neutrino 𝜈𝜇 particles. The pRQT result for the probability 

of forming the final state 𝜈𝜇 from the initial state 𝜈𝑒 is 

 
𝑃𝑝𝑅𝑄𝑇(𝑣𝑒 → 𝑣𝜇) = 𝑠𝑖𝑛2 2 𝜃 𝑠𝑖𝑛2 {

(𝑚2 − 𝑚1)𝑐
2

4ℏ
𝑠} 

≡ 𝑠𝑖𝑛2 2𝜃 𝑠𝑖𝑛2 𝛼𝑝𝑅𝑄𝑇 

(A.4) 

 

where 𝑠 is temporal duration measured by an 𝑠-clock.  

Flavor oscillations may be described by quantifying the behavior of two particles as outlined in 

Section 3. One particle propagates without interaction or oscillation from the source to the detector and 

serves as a “clock” for the scalar evolution parameter s. The other particle is the oscillating particle. In 

this application, the source and detector are separated by a distance 𝐿. The most probable trajectory of 

the non-interacting s-clock particle is 
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 𝑠2 = (𝛿𝑡)2 −
(𝛿𝑥)2

𝑐2 = (𝛿𝑡)2[1 − 𝛽2], 𝛽 =
𝑣

𝑐
, 𝑣 =

𝛿𝑥

𝛿𝑡
 (A.5) 

 

The distance 𝛿𝑥 traveled by the s-clock particle in the interval 𝛿𝑡 is 𝐿, so we obtain 

 

 𝑠 =
𝐿

𝑐

[1 − 𝛽2]1/2

𝛽
, 𝛿𝑥 = 𝐿 (A.6) 

 

Substituting Equation (A.6) into Equation (A.4) gives 

 

 

𝑃𝑝𝑅𝑄𝑇(𝑣𝑒 → 𝑣𝜇) = 𝑠𝑖𝑛2 2 𝜃 𝑠𝑖𝑛2 𝛼𝑝𝑅𝑄𝑇 , 

𝛼𝑝𝑅𝑄𝑇 =
(𝑚2 − 𝑚1)𝑐

2

4ℏ

𝐿

𝑐

[1 − 𝛽2]1/2

𝛽
 

(A.7) 

The result for the standard theory is 

 

 

𝑃𝑆𝑡𝑑(𝑣𝑒 → 𝑣𝜇) = 𝑠𝑖𝑛2 2𝜃 𝑠𝑖𝑛2 𝛼𝑆𝑡𝑑 

𝛼𝑆𝑡𝑑 =
(𝑚2

2 − 𝑚1
2)𝑐4

4ℏ𝐸𝜈

𝐿

𝑐
 

(A.8) 

 

where 𝐸𝜈 is the energy of the ultrarelativistic incident neutrino 

 

 𝐸𝜈 =
𝑚𝜈𝑐

2

[1 − 𝛽2]1/2 (A.9) 

 

We combine Equations (A.7) and (A.9) and rearrange to simplify comparison with Equation (A.8): 

 

 

𝑃𝑝𝑅𝑄𝑇(𝑣𝑒 → 𝑣𝜇) = 𝑠𝑖𝑛2 2 𝜃 𝑠𝑖𝑛2 𝛼𝑝𝑅𝑄𝑇 , 

𝛼𝑝𝑅𝑄𝑇 =
(𝑚2 − 𝑚1)𝑐

2

4ℏ

𝐿

𝑐

𝑚𝜈𝑐
2

𝐸𝜈𝛽
=

𝑚𝜈(𝑚2 − 𝑚1)𝑐
4

4ℏ𝐸𝜈

𝐿

𝑐

1

𝛽
 

(A.10) 

 

The ratio of the dynamical factors 𝛼𝑝𝑅𝑄𝑇 , 𝛼𝑆𝑡𝑑  is 

 

 
𝛼𝑆𝑡𝑑

𝛼𝑝𝑅𝑄𝑇
=

𝑚2
2 − 𝑚1

2

𝑚𝜈(𝑚2 − 𝑚1)
𝛽 =

𝑚1 + 𝑚2

𝑚𝜈
𝛽 (A.11) 

 

The ratio of probabilities in Equations (A.8) and (A.10) is 

 

 
𝑃𝑆𝑡𝑑

𝑃𝑝𝑅𝑄𝑇
=

𝑠𝑖𝑛2 𝛼𝑆𝑡𝑑

𝑠𝑖𝑛2 𝛼𝑝𝑅𝑄𝑇
 (A.12) 

 

Comparing 𝑃𝑝𝑅𝑄𝑇 , 𝑃𝑆𝑡𝑑 and the dynamical factors 𝛼𝑝𝑅𝑄𝑇 , 𝛼𝑆𝑡𝑑 shows that the pRQT model and the 

conventional theory have the same dependence on the flavor mixing angle 𝜃, but their dependence on 

dynamical factors differs significantly. If the mass difference between neutrino mass and flavor states 

is very small and the neutrinos are ultrarelativistic, then (𝑚1 + 𝑚2)/𝑚𝜈 ≈ 2 and 𝛽 ≈ 1. The ratio of 

dynamical factors 𝛼𝑆𝑡𝑑/𝛼𝑝𝑅𝑄𝑇 ≈ 2 in this case. 



IARD 2022
Journal of Physics: Conference Series 2482 (2023) 012010

IOP Publishing
doi:10.1088/1742-6596/2482/1/012010

14

 

 

 

 

 

 

References 

[1] Zyla, P.A., et al. Review of Particle Physics, Particle Data Group, Prog. Theor. Exp. Phys. 2020, 

083C01 (2020) and 2021 update; website https://pdg.lbl.gov/ accessed October 9, 2021 

[2] Fanchi, J.R. Parametrized Relativistic Quantum Theory; Kluwer: Dordrecht, The Netherlands, 

1993 

[3] Fanchi, J.R. Manifestly Covariant Quantum Theory with Invariant Evolution Parameter in 

Relativistic Dynamics, Found. Phys. 2011, 41: 4–32, DOI 10.1007/s10701-009-9371-0 

[4] Pavšič, M. The Landscape of Theoretical Physics: A Global View; Kluwer Academic Publishers: 

Dordrecht, 2001 

[5] Pavšič, M. Stumbling Blocks Against Unification, World Scientific: Singapore, 2020 

[6] Horwitz, L.P. Relativistic Quantum Mechanics, Springer: Dordrecht, 2015 

[7] Land, M., Horwitz, L.P. Relativistic Classical Mechanics and Electrodynamics, Morgan 
& Claypool, 2020: Williston, Vermont; www.morganclaypool.com 

[8] Fanchi, J.R. The Mass Operator and Neutrino Oscillations, Found. Phys. 1998, 28, 1521-
1528 

[9] Fanchi, J.R. Parametrized Relativistic Dynamical Framework for Neutrino Oscillations, J. Phys.: 

Conf. Series 2017, 845, 1-13, doi : 10.1088/1742-6596/845/1/012027 

[10] Fanchi, J.R. Neutrino Flavor Transitions as Mass State Transitions, Symmetry 2019, 11(8), 948-

956 

[11] Rusov, V.D., Vlasenko, D.S. Quantization in relativistic classical mechanics: the Stueckelberg 

equation, neutrino oscillation and large-scale structure of the Universe, J. Phys.: Conf. Series 

2012, 361, 1-15, doi:10.1088/1742-6596/361/1/012033 

[12] Rusov, V.D., Vlasenko, D.S. Quantization in relativistic classical mechanics: the Stueckelberg 

equation, neutrino oscillation and large-scale structure of the Universe, J. Phys.: Conf. Series 

2012, 361, 1-15, doi:10.1088/1742-6596/361/1/012033 

[13] Fanchi, J.R. Parametrizing relativistic quantum mechanics, Phys. Rev. A 1986, 34, 1677-1681 

[14] Damanik, A. Perturbed invariant under a cyclic permutation with trace of neutrino mass matrix 

remain constant, Mod. Phys. Lett. A 2011, 26 (08), 567-574 

[15] Gell-Mann, M., Ramond, P., Slansky, R. Complex Spinors and Unified Theories, in Supergravity, 

P. van Nieuwenhuizen and D.Z. Freeman eds., North-Holland Publ. Co., Amsterdam, 315-

321, 1979 

[16] Yanagida, T. Horizontal Gauge Symmetry and Masses of Neutrinos, in Proceedings of the 

Workshop on Unified Theory and the Baryon Number of the Universe, O. Sawada and A. 

Sugamoto eds., KEK, Tsukuba, Japan, 95-99, 1979 

[17] Brugnera, R. Homing in on the neutrino mass, Viewpoint, 25 November 2019, Physics 12, 129 

[18] KATRIN Collaboration. The design, construction, and commissioning of the KATRIN 

experiment, J. Inst. 2021, 16, T08015  

[19] Nucciotti, A. Still too small to be measured, Nature Physics Februa ry 2022, 18, 124-136 

[20] KATRIN Collaborationl. Direct neutrino-mass measurement with sub-electronvolt sensitivity. 

Nat ure Physics February 2022, 18, 160–166 

 

https://pdg.lbl.gov/
http://www.morganclaypool.com/

