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Abstract. Neutrino oscillation observations are used to compare two competing theories of 3-
flavor neutrino oscillations. The two theories considered here are the standard model of neutrino
oscillations, and parametrized Relativistic Quantum Theory (pRQT). pRQT is a manifestly
covariant quantum theory with invariant evolution parameter. Recent data and a neutrino mass
model from each theory are used to calculate neutrino masses. The models yield significantly
different predictions of neutrino masses.

1. Introduction

Experiments with solar neutrinos, atmospheric neutrinos, reactor neutrinos, and accelerator neutrinos
have demonstrated that flavor mixing can occur between neutrino flavors composed of neutrino mass
states. Observations of neutrino oscillations can be used to assess the validity of two theories of
transitions between three neutrino flavor states {|v,); @ = e, u, t} given the assumption that neutrinos
are composed of up to three mass states {|vj) ;j=1, 2, 3}. Models of neutrino flavor oscillations based
on the standard theory [1] and the parametrized Relativistic Quantum Theory (pRQT) show that
significant differences exist between model results.

Parametrized Relativistic Quantum Theory (pRQT) is a manifestly covariant quantum theory with
invariant evolution parameter. Introductions to pRQT are presented by Fanchi [2,3], Pavsic [4,5], and
Horwitz [6]. A review of relativistic classical mechanics and electrodynamics in the parametrized
framework is given by Land and Horwitz [7].

A model of neutrino oscillations by mass state mixing was developed within the context of pRQT by
Fanchi [8-10]. The difference between the standard model of vacuum flavor mixing and the pRQT model
of vacuum flavor mixing was studied by Rusov and Vlasenko [11]. Results of their model are analyzed
here and updated using 2020 data [1].

Mass-state transitions in pRQT provide a mechanism for modeling neutrino oscillations. The single-
body and N-body formulations of pRQT are outlined in Sections 2 and 3, respectively. An s-clock for
quantifying the invariant evolution parameter s is constructed in Section 3 for use in the pRQT model
of neutrino oscillations. The mass basis and flavor basis for three flavors are introduced in Section 4 and
the form of the neutrino mass matrix used in the neutrino oscillation models is presented in Section 5.
An algorithm for calculating neutrino masses is presented in Section 6. Results of the standard and pRQT
models are updated and compared using 2020 data from the Particle Data Group [Zyla, et al., 2020] in
Section 7. Conclusions are presented in Section 8.

2. Probabilistic Formulation of Parametrized Relativistic Quantum Theory
The probabilistic formulation of pRQT begins with the assumption that a physical system can be
represented by a conditional probability density p(x|s). The position four-vector x has components
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{x*:u = 0,1,2,3} where index 0 signifies the time component and by indices 1, 2, 3 signify three space
components. The probability density p(x|s) is conditioned by invariant evolution parameter s.

According to probability theory, the conditional probability density p(x|s) must be positive definite
and normalizable. The Born representation of the positive definite requirement is used to express the
probability amplitude ¥ as

p(x|s) = ¥*(x,s)¥(x,s) =0 (1)
with normalization condition

J o p(xls)d*x =1 )

and D denotes spacetime volume. The probability amplitude ¥ is also referred to as the field or wave
function of the system. It is specified to within the gauge transformation

Y(x,s) = +/p(x]s) e¥®9) (3)

where & is a scalar function.

Equation (2) implies that a single particle is observable somewhere in space at some point in time.
On the other hand, Equation (2) does not imply that the particle exists at all times. The conditional
probability density p(x|s) for a single particle can be expressed as the product of two conditional
probabilities: p(x|s) = p(x?, x2, x3|x°, 5)p(x°]s). The distribution p(x°|s) is the marginal probability
density in time and is conditioned by the evolution parameter s. The particle cannot be detected
anywhere in space when p(x°|s) is zero because the probability p(x°|s) of observing a particle at time
x% given parameter s is zero. By contrast, when p(x°|s) is nonzero, there is a nonzero probability of
observing a particle at time x° given parameter s [2,3,12].

The continuity equation for conservation of probability is

ap+ g V=0 4
ds (')xu(p )= )

Equation (4) can be combined with Equation (1) to give the probability flux

Vb= —— | — - —-—yry 5
P 2m axﬂ axu mc )

ih oY 6‘1’*] eAH

for a particle with mass m, charge e, four-velocity

_ Ef)f(x,s) e

VH(x,s) - %A”(x, s) (6)

ax,

and electromagnetic four-vector potential A*.
The parametrized field equation

ov
ih— = K¥ (7
ads

is constructed from Equations (1) to (6). The mass operator K has the form
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mThT
K=—2>%+vV ®)
2m

with potential energy V and m# is the four-momentum operator with minimal coupling
Tt =—————AH (9)

The term A* is the four-vector potential. Equation (7) is called the Stueckelberg equation for a single
particle. An alternative construction of an s-dependent field equation in terms of a set of fundamental
postulates is known as the Stueckelberg-Horwitz-Piron (SHP) theory. The SHP theory is described by
Horwitz [6].

In the pRQT formulation, the definition of the expectation value of an observable (2 is

<ny:fwwmux (10)

with the uncertainty principle over spacetime

h

|42, | |4py| 2 2 (11)

Summation over repeated indices is not implied in Equation (11). The uncertainty principle for both
energy and three-momentum is a consequence of the manifestly covariant probabilistic formulation.

3. Formulation of pRQT for an N-Body System

Extension of the probabilistic formulation for the single-particle system outlined in Section 2 to an N-
body system makes it possible to combine an experimental system with a system that can function as an
s-clock, that is, a system for monitoring the invariant parameter s. Field equations for the N-body system
can be written as

al TL'MT[
Z—“ Lr+v
2m, = =

a=1

b (12)

where ¥ is a column vector with elements YT = [11,15,, ...,1,] and A labels associated internal
variables. The Hermitian operator Ky is interpreted as an N-body mass operator with a "minimal

coupling" electromagnetic interaction, / is the identity matrix, and V represents non-electromagnetic

interactions. The four-momentum operator in the bracketed term is

e
Ta = Pa ~;Aa (13)
with
wh 9 14
pa - laxa” ( )

and subscript a labels particle a for 1 < a < N. Particle a exists at some time and some place within a
4N hypervolume DV . The expectation value of an observable 2 in the N-body formalism is
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(Q)=.[ YroWdx (15)
DN

where ¥'* is the conjugate transpose of ¥ and the integral is over DV,

The N-body formulation can be used to quantify parameter s by constructing an invariant evolution
parameter s-clock. The system in Figure 1 consists of an experimental system with N, bodies and an s-
clock with N, bodies. The experimental system should not significantly interact with the s-clock.
Spacetime {x, t} coordinates of experimental system 1 and the s-clock system 2 are used to determine
parameters s, S, for system 1 and system 2, respectively. The procedure. is summarized below and
discussed in more detail in the literature [3,13].

An N-body system consisting of an s-clock and a model of neutrino oscillations is constructed by
considering a system with two particles. The experimental system consists of Particle 1 interacting with
potential V;. Particle 2 is a free, scalar particle that serves as a simple s-clock. Particles 1 and 2 do not
interact with each other. The two-particle system is represented by the field equation

d f 1u g 2p
. p,p p2p _ 16
{lh—as — [ 2m, +—2 3 + V| t(1,2,s) =0 (16)

where the s-dependent eigenfunction (1,2, s) of the two-particle system applies to both particles 1 and
2. The eigenfunction 1(1,2, s) has a set of 4-space components /", yzu for each particle.

A solution to Equation (16) is obtained by writing ¥ (1,2,s) as the product of single particle
eigenfunctions

Y(1,2,5) =91, )9(2,5) (17)
Substituting Equation (17) into Equation (16) lets us separate Equation (16) into the two equations
L0 [P
{m%—[;J+m+% Y(1,5) =0 (18)
and
0 pg P2yu
{lh s [ 2m, ag| ¥ (2,5) =0 (19)

with separation constant ag. Particles 1 and 2 are physically independent so ap = 0.
Equation (19) with ay = 0 is the free particle equation

51/),:(2, S) hz 62
ih =|- 2,s 20
as Zmz axgaxzﬂ lpf( ) ( )
with the particular solution
2,5) =n/? A ikey, 21
Yr(2,8) =1, "exp _Z_mz( Skou)s + ikzyxy (21)

and normalization constant 7 5.



IARD 2022 IOP Publishing
Journal of Physics: Conference Series 2482 (2023) 012010  doi:10.1088/1742-6596/2482/1/012010

The most probable trajectory of particle 2 in the classical limit of negligible dispersion is
5 2 2 1 5 3 6 (22)
(6s)* = (s —sp)* = = (x5 )0(x2,)

where s is the invariant evolution parameter when the rest frame clocks of particles 1 and 2 are
calibrated. If we synchronize the clocks at s; = 0, Equation (22) becomes

L S0 5(x3) (23)

s?==
c

Now assume the motion of the free particle is linear and neglect statistical variations to obtain
Sx?
s? =6t2_C_2:6t2[1_'82] (24)
where {x?,x2} = {t, x}, and

v ox
=— withv =— 25
B C with v 5 (25)

The distance &x traveled by particle 2 in the interval §t can be written as L so that Equation (24) becomes

L £[1 —,82]1/2

s=-1 - BV = R (26)

The invariant evolution parameter s is quantified by measuring the spacetime trajectory of particle 2
and using the resulting value of s in Equation (18) associated with particle 1. This s-clock has been
used to model neutrino oscillations [8,11].

4. Mass Basis and Flavor Basis

Two theories of transitions between three neutrino flavor states {|v,); @ = e, u, T} composed of up to
three mass states {|vj);j =1, 2, 3} are compared here. The basis of mass states {|Uj>;j =1, 2, 3} 18
related to the basis of flavor states {|v,); @ = e, u, T} by a unitary transformation:

|Ve> |V1)
lva)| = U [Iv2) 7)
vz lv3)

where the mass and flavor states are written as 3-component column vectors. The elements of the unitary
matrix are written as

Uer Uez Ues
U=|Uy Uuz Uys (28)
Urr Uz Ugs
The inverse of the unitary matrix U is the conjugate transpose of U, thus
ut=W"HT 29)
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with elements

u&} =wjy;j=123anda=enu1 (30)

The expanded form of the unitary transformation is
[Ve) = Uer|v1) + Uez|V2) + Ues|Vs)
|Vu> = uulh’l) + uyzh/z) + uu3lv3) (€29)

[ve) = Urq|[ve) + uplvy) + ugslvs)

A mass basis state satisfies the temporal evolution equation
i _6 32
Tlv;) = ih——|v;) = Tjv;) (32)

where T; is the eigenvalue of the temporal operator T = ih %, and 7 is the temporal evolution parameter.
In the standard model, (T]) o Ej where Ej is the energy of state j, and (7)s;q = t with coordinate
time t. In the pRQT model, (Tj)pRQT

K, and (7),ror = s with invariant evolution parameter s. Equation (32) has the formal solution

ol e 0 0 [
v =| o e‘i% 0 lv2(0)) (33)
lvs) _iIsT lv3(0))

0 0 e h

= K; where K; is the eigenvalue of state j for the mass operator

where v;(0) is mass state j at T = 0.

5. Neutrino Mass Matrix Model

An analysis of the competing formalisms for vacuum-favor mixing of neutrinos within the context of
the standard and pRQT models requires a basis for comparison. In this case, we seek estimates of
neutrino masses based on current experimental data. To achieve this goal, we present a procedure for
estimating neutrino masses from a 3 X 3 neutrino mass matrix M, using a procedure introduced by
Damanik [14]. Damanik’s procedure is a method for obtaining phenomenological estimates of neutrino
masses from experimental estimates of mass-squared differences and mixing parameters.

Damanik [14] constructed an unperturbed neutrino mass matrix M,

P Q Q
My =|Q P Q (34
Qe Q P

that is non-singular and invariant with respect to a cyclic permutation of neutrino states, that is, v; =
vy = V3 = v;. Damanik used the seesaw mechanism [Gell-Mann, et al., 1979; Yanagida, et al., 1979]
to help motivate the form of M,,. The presentation here focuses on mathematical arguments rather than
theoretical motivations to minimize the dependence of the form of the neutrino mass matrix on a specific
paradigm.

Damanik [14] determined the matrix elements P, Q by finding the eigenvalues of M,,, relating the
eigenvalues to neutrino masses, and then showing that the resulting masses did not correctly predict
observed mass squared differences Amizj where Aml-zj =m? — mjz, (i,j = 1,2,3). To resolve these
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problems, Damanik introduced a parameter § as a perturbation of diagonal elements of the neutrino
mass matrix M,,:

P+25 0Q Q
M,=| Q@ P-65 Q (35)
Q Q P-§

The form of the perturbed neutrino mass matrix M,, includes the requirement that M,, has the same trace
as the unperturbed neutrino mass matrix M,q, thus Tr(M,,) = Tr(M,) = 3P. The eigenvalues
{ B1, B2, B3} of the perturbed neutrino mass matrix M, are

Q & +/952-6Q6 +9Q2

hr=Prgtg- 2 y
2 2
ﬁ2=P+g+§+J96 605 + 90Q (36)
22 2
Bs=P—-Q—46

The value of § is obtained by finding the angle 6 that diagonalizes M,,.
The angle 6 is the angle that relates the mass basis {|vj>; j=1, 2, 3} to the flavor basis

{lve);a = e, u, t} by the unitary transformation in Equation (27). The unitary matrix used by
Damanik [14] to relate the mass basis to the flavor basis is

cos 8 —sin@ 0

sind  cos@ 1
u=|v2 2 V2 (37)
sinf  cos@ 1
vz vz V2l
with the inverse
i P sinf  sin01
cos —_ —
V2 2
U1 ind cosO cosf (38)
=|—sin
Z 2
1 1
i V2 V2
The perturbation parameter § is obtained from the relation
8Q?
220) = ———— 39
tan?(20) Q=307 (39)

where the angle 6 and the associated unitary matrix U diagonalize M,,. The solution of Equation (39)
for & gives

_ B [tan(29) — \/§]
§=eQe= 3tan(20)

(40)
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The term ¢ is calculated given a value of 8. In this case, the perturbation parameter & is proportional to
6.

Neutrino masses are given by the equations

Q & +/962—6Q68 +9Q2

m1=P+5+§— 5
B Q & +/982—6Q6 +9Q2 (41)
mZ_P+E+E+ 5
m3:P_Q_5

Damanik’s procedure yields a set of neutrino masses that is an inverted hierarchy, thus

Im3| < Imy| < Imy] (42)

6. Algorithm for Calculating Neutrino Masses

The equations in Damanik’s [14] procedure presented above can be combined with experimental
measurements of mass squared differences and mixing angles to provide a phenomenological estimate
of the variables {P,Q,d} and corresponding neutrino masses {m,,m,, ms}. We begin by writing a
simplified form of the neutrino mass equations. If we use the proportionality relationship between § and
0 in Equation (40), neutrino masses may be written in the form

my =P+ aQ
m2:P+a2Q (43)
m3=P+a3Q
where
Q & +/962—6Q68 + 9Q>2
M@= +5- 2
5§ /982 —605 + 902 (44)
aZQ:g+_+\/ Q5 +9¢Q
2 2 2
azQ=-Q-9

Substituting § = €Q into Equation (44) gives {a4, a,, az} as functions of :

a1=%[1+e—\/9£2—6£+9]
a2=%[1+6+\/982—68+9] (43)

az;=—(1+¢)

We use the mass squared differences Aml-zj and the relations in Equation (43) to solve for P, Q.
The mass squared differences are

Am5; =m5 —mf = (P4 a,Q )? — (P + a,Q )?

AmZ, =m2 —m? = (P +a30 )% — (P + 4,0 )’ (46)

with the simplified forms
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Am3, = 2QP(ay — ay) + Q*(a3 — af) 47)
and
Am3, = 2QP (a3 — ap) + Q*(a3 — a5 (43)

The variable Q is obtained by rearranging Equations (47) and (48) so that the QP term is on the right-
hand side:

Am3;, — Q*(ai — af) = 2QP(a; — ay) (49)
and
Am3, — Q*(af — a3) = 2QP(az — az) (50)
Dividing Equation (49) by (50), rearranging and solving for Q2 gives
Am2. — (az — a1)

217 (as —a)

(az —aq)

(az - al) m(flg - a%)

The variable P is obtained by rearranging Equations (47) and (48) so that the Q2 term is on the right-
hand side:

Q%=

€Y

Am3; — 2QP(az — a;) = Q*(a3 — af) (52)
and

Am3, — 2QP(az — az) = Q*(a3 — a3 (53)
Dividing Equation (52) by (53), rearranging and solving for P gives

Am3, — g 23
h= Cre) ey
2Q [(az —ay) - (aéT%) (az —ay)

An algorithm for calculating neutrino masses using the above relationships is summarized in Table
1. It assumes that values of Am3,, Am3,, 8 are available.

Table 1 Algorithm for Calculating Neutrino Masses
Calculate Using Equation
€ 0 40
{ay,a;, a3} € 45
Q° {ay, az, a3}, Am3,, Am3, 51
P Q. {ay, az, as}, Am3,, Am3, 54
{my, my, ms} P,Q,{ay,a; a3} 43
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7. Comparison of Neutrino Mass Models Using 2020 Data
Table 2 validates the algorithm using the data in the Rusov-Vlasenko [11] neutrino mass calculation.
Rusov and Vlasenko [11] compared the standard and pRQT models by writing

AproT = 2stq (55)

The angle 0 is given by & = 6;,. The masses are inverted, that is, |m3| < |m,| < |m,|. The sum of the
absolute values of the neutrino masses is less than 0.6 eV.

Table 2 Verify Algorithm with Rusov-Vlasenko [11] Results
Algorithm Results
Rusov-Vlasenko [11] Data Standard Model pRQT Model
Am3; x 105,eV? 7.50 15.00
AmZ, x 10°,eV? -2.32 -4.64
tan?(09) 0.452 0.452
Neutrino Masses Standard Model pRQT Model
|m4|, eV 0.130855 0.185056
|m,|, eV 0.131141 0.185461
|ms|, eV 0.121975 0.172499
|mq| + |my| + |ms], eV 0.38397 0.54302

Table 3 repeats the Rusov-Vlasenko [11] calculations of neutrino mass using updated data from Zyla,

et al. [1]. The angle 8 is given by 8 = 6, and the masses are inverted. The sum of the absolute values
of the neutrino masses is less than 0.6 eV.

Table 3 Rusov-Vlasenko [1] Calculations Updated with Zyla, et al. [1] Data
Algorithm Results
Zyla, et al. [1] Data Standard Model pRQT Model
Am3; x 105, eV? 7.53 15.06
Am3, x 105, eV? -2.546 -5.092
tan?(9) 0.443 0.443
Neutrino Masses Standard Model pRQT Model
|m4|, eV 0.125714 0.177787
|m,|, eV 0.126013 0.178210
|ms|, eV 0.115470 0.163300
Imq| + |my| + |ms|, eV 0.36720 0.51930

The relationship in Equation (55) used by Rusov-Vlasenko [11] is not the same as the pRQT result
summarized in Appendix A. The ratio

2 2
Asta m; —my my +m;
~ = ~ 2 (56)
ApRQT my (mz - ml) my
is simplified by assuming that m,, ® my = m, so that
m; +m
m, ~ —=2 (57)

2

10
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Equation (57) becomes

m,(m, —my)c*L 1

%roT = 4hE,  cB
my+m
(%) (mZ - ml)c4 L1 (58)
4hE, cp
_1(mj-mf)c*L1
2 4hE, cp
.. C . . (m3-m2)c* L .
Recognizing that f =~ 1 for an ultrarelativistic neutrino and agq = —aE  Z from Equation (A.8)
gives
1
AprQT = Ea’sm (59)

This can be related to observations by halving the mass squared difference Am]-zi = mjz — m?, thus

1
2 —— 2
(Amﬁ PRQT ~ 2 (Am” std (60)

By contrast, Rusov-Vlasenko [11] doubled the mass-squared difference.

Table 4 presents neutrino mass results obtained using Equation (60) and updated data from Zyla, et
al. [1]. The angle 0 is given by 6 = 6, and the masses are inverted. The sum of the absolute values of
the neutrino masses is less than 0.6 eV.

Table 4 Neutrino Masses Updated with Equation (60) and Zyla, et al. [1] Data
Algorithm Results
Zyla, et al. [1] Data Standard Model pRQT Model
Am3; x 105, eV? 7.53 3.77
Am3, x 105, eV? -2.546 -1.27
tan?(9) 0.443 0.443
Neutrino Masses Standard Model pRQT Model
|m4|, eV 0.125714 0.088893
|m,|, eV 0.126013 0.089105
|ms|, eV 0.115470 0.081650
Imq| + |my| + |ms|, eV 0.36720 0.25965

8. Discussion

The inclusion of two temporal variables in parametrized Relativistic Quantum Theory (pRQT) yields a
theory that is significantly different from theories that rely on a single temporal variable, namely the
time coordinate of spacetime. The pRQT temporal variables are the time coordinate of spacetime, and
an invariant evolution parameter. The difference between the temporal dependence of the standard
model and the pRQT model can be directly observed in models of neutrino oscillations. This paper used
2020 data to compare neutrino mass results from the standard model of three-flavor neutrino oscillations
and the pRQT model of three-flavor neutrino oscillations. Standard model neutrino masses shown in

11
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Table 4 are in the range 0.11 eV to 0.13 eV, while pRQT neutrino masses are in the range 0.08 eV to
0.09 eV.

Neutrino mass model differences are significant for neutrino oscillation measurements. For example,
the Karlsruhe Tritium Neutrino (KATRIN) Collaboration has a direct method of measuring neutrino
mass based on beta decay of tritium into helium-3, an electron, and an electron antineutrino [17,18]. The
KATRIN direct method has the advantage of being model independent, which makes it suitable for
comparing neutrino mass predictions based on the standard model and pRQT model of three-flavor
neutrino oscillations. One possible problem is that KATRIN is not currently sensitive to neutrino masses
less than 0.2 eV [19,20]. The 0.2 eV limit is greater than the neutrino masses estimated here.

The neutrino mass differences shown here are dependent on the specified neutrino mass matrix and
choice of variables used to conduct calculations. A more definitive comparison of competing models
will depend on future studies of alternative mass matrices and associated algorithms to further
incorporate all observations from all relevant experiments.

Appendix A. Outline of the Two-Flavor pRQT Model of Neutrino Oscillations
The two-flavor pRQT model of neutrino oscillations [8] is outlined here. The evolution equation in
pRQT for a state may be written in terms of the evolution parameter s as

.0
ih~[v;) = Kj|v;) (A1)

where K; is the eigenvalue of the mass operator for mass state j. The evolution parameter dependent
solution of Equation (A.1) in the mass basis for two mass states is

[v1($))] _ [e~iKas/h 0 |v1(0))
g Bl RN | (4.2)
where
K; = R2kl'kj, /2m; = 12 [(w;/c)” — k; - k] /2m, (A3)

In pRQT, the components of the energy-momentum four-vector k}‘ are observables and the mass m; is
a function of statistical values of k}l.

In the flavor oscillation process v, = v, we begin with a pure beam of electron neutrino v, particles
and calculate the probability for forming muon neutrino v, particles. The pRQT result for the probability
of forming the final state v, from the initial state v, is

Pyror (ve - U#) = sin? 2 6 sin® {

(m, — ml)cz
4h S} (A.4)

= sin® 2 0 sin® ayper

where s is temporal duration measured by an s-clock.

Flavor oscillations may be described by quantifying the behavior of two particles as outlined in
Section 3. One particle propagates without interaction or oscillation from the source to the detector and
serves as a “clock” for the scalar evolution parameter s. The other particle is the oscillating particle. In
this application, the source and detector are separated by a distance L. The most probable trajectory of
the non-interacting s-clock particle is

12
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(6x)* v ox
2: Stz— =6t21— 2, = -, = — AS
$2 = (82 - == (M 1- LB =< ,v = (AS)
The distance dx traveled by the s-clock particle in the interval §t is L, so we obtain
LT1— 271/2
s = —ﬁ,&c =1L (A.6)
c B
Substituting Equation (A.6) into Equation (A.4) gives
Pyror (Ve = v,) = sin? 26 sin? aypor,
. (my —my)c? L[1— B*]Y/? (A.7)
RO ST ¢ B
The result for the standard theory is
Psq(ve = v,) = sin? 20 sin® agey
_ (mf—mi)c*L (A.8)
Ot = TTURE, ¢
where E), is the energy of the ultrarelativistic incident neutrino
2
o mye
AT RE "

We combine Equations (A.7) and (A.9) and rearrange to simplify comparison with Equation (A.8):

(my, —my)c?Lmyc® m,(m, —my)c*L1
a = - = —_—
pRQT 4h ¢ E,B 4hE, cB

The ratio of the dynamical factors ay,pqr, @stq 18

2 2
Astg Mz —mj _mypt+my
ApRQT m,(my; —my) my

B

The ratio of probabilities in Equations (A.8) and (A.10) is

.2
Psta SIN™ Astq

= —
Ppror  SIN® Qppror

(A.10)

(A.11)

(A.12)

Comparing Ppror, Pstq and the dynamical factors apgror, @seq shows that the pRQT model and the
conventional theory have the same dependence on the flavor mixing angle 8, but their dependence on
dynamical factors differs significantly. If the mass difference between neutrino mass and flavor states
is very small and the neutrinos are ultrarelativistic, then (m; + m,)/m, = 2 and 8 = 1. The ratio of

dynamical factors asqq/@prer = 2 in this case.
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