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Abstract. By performing full Particle-In-Cell simulations, we examined the transient response
of electrons released for the charge neutralization of a local ion beam emitted from an ion
engine which is one of the electric propulsion systems. In the vicinity of the engine, the mixing
process of electrons in the ion beam region is not so obvious because of large difference of
dynamics between electrons and ions. A heavy ion beam emitted from a spacecraft propagates
away from the engine and forms a positive potential region with respect to the background.
Meanwhile electrons emitted for a neutralizer located near the ion engine are electrically
attracted or accelerated to the core of the ion beam. Some electrons with the energy lower than
the ion beam potential are trapped in the beam region and move along with the ion beam
propagation with a multi-streaming structure in the beam potential region. Since the locations
of the neutralizer and the ion beam exit are different, the above-mentioned bouncing motion of
electrons is also observed in the direction of the beam diameter.

1. Introduction
As an interplanetary flight system, electric propulsion has been used for many spacecraft. lon engine
which is one of the typical electric propulsion systems gains the thrust by emitting heavy ions such as
Xenon and Argon as an ion beam accelerated through grids in the electrostatic manner. To avoid the
space-charge effect by excess emission of ions near the engine [1] and mitigate the spacecraft charging,
thermal electrons are simultaneously released from a neutralizer attached in the vicinity of the ion
engine location.

lon beam emission and its neutralization by thermal electrons in electric propulsion is one of the
most fundamental problems in spacecraft-plasma interactions. By emitting the same amount of
electrons as the beam ions, the charge neutralization can be basically achieved in the spacecraft
environment. However, because of large difference between electron and ion mass and dynamics, the
charge neutralization between the two species does not simply occur outside the engine and the
understanding of the neutralization process still remains at a rather primitive level. Although the
previous works handled uniform ion beam which has an infinite cross section [2,3], we consider a
situation in which an ion beam is emitted with a finite radius from a spacecraft [4-8] and
simultaneously thermal electrons for the charge neutralization are released from a different position
from the ion emitter [4]. Our focus is on the transient process of electron mixing to the ion beam in the
very vicinity of the ion engine. To examine the transient process of the electron response in detail, we
performed Particle-In-Cell [9,10] simulations in which both electrons and ions are treated as macro-
particles and their dynamics are coupled with the electromagnetic field through electric current. In the
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current study, we considered the electrostatic fields only in the simulations. In section 2, we introduce
our simulation model and parameters used in the simulations. In section 3, we show some results
obtained in the simulation in terms of electron behavior in the ion beam region. Section 4 contains the
conclusion.

2. Simulation model

To examine the detail of electron behaviors in the ion beam region in the vicinity of a spacecraft, we
performed three-dimensional full Particle-In-Cell (PIC) simulations by using our original software
called “EMSES”[11], which we developed for the analysis of spacecraft-plasma interactions. Like
other conventional PIC simulation codes, EMSES basically solves Maxwell’s equation to update the
electromagnetic fields defined at spatial grid points by using the Finite-Difference Time-Domain
(FDTD) method. In addition to the field components, dynamics of a large number of macro-particles
representing electrons and ions which are distributed in the simulation space are updated by solving
the equation of motion for each particle at each time step [9,10]. One of the unique features of EMSES
is that it can define some internal conduction boundaries which represent to spacecraft conducting
surfaces and solve the interactions with the surrounding plasma such as sheath formation near the
surface and the spacecraft charging.

Figure 1 shows the three-dimensional simulation model used for the current study. An ion beam
emitter and a neutralizer which releases thermal electrons are separately located on the spacecraft
surface which is indicated in the figure as the injection plane. The location of the electron emitting
neutralizer is set at the upper side of the ion emitter which is located in the middle of the injection
plane. To shorten the calculation time in the simulation, we assumed protons as ions which are much
lighter than the actual propellant such as Xenon. To keep the charge neutrality inside the spacecraft,
total fluxes of the beam ions and thermal electrons are set to be the same to each other. We provide the
beam velocity for the ions only and the electrons are thermally released from the neutralizer. We set
the ratio of the electron thermal velocity v, to the ion beam velocity Vipeam as 1.25. The ion thermal
velocity vy is much smaller than viseam. Since the density of the background space plasma is small
enough in comparison with that of the ion beam, we assumed no background plasma for simplicity. No
interplanetary magnetic field is concerned in the current simulation. Since our aim is to examine
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Figure 1. Simulation model.
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electron response to the ion beam, we used EMSES in the electrostatic regime in which Poisson’s
equation is solved to update the electrostatic fields defined at the spatial grid points in the simulation
space. The potential of the injection plane is treated as floating while the potential of the boundary
surrounding the simulation space is fixed. To avoid the influence of the boundary potential to the
plasma dynamics, we elongated the simulation space along the beam direction. We performed
simulations up to the time when the beam reaches the simulation boundary.

3. Transient Response of Electrons

Figure 2 shows a bird's-eye view of spatial distribution of beam ions and thermal electrons measured
at wpet =400 where w, denotes the electron plasma frequency at the neutralizer. The ions and electrons
emitted from the injection plane located near the left boundary of the simulation space are indicated in
a large number of red and blue dots, respectively. Although the neutralizer which releases the thermal
electrons is located at the upper side of the plane with respect to the ion beam emitter, the electrons are
overall distributed in the ion beam region shown in red. If one carefully sees the electron distribution
shown in blue, however, the distribution is not uniform particularly at the beam front as well as near
the beam emitter.

In figure 3, we show temporal evolution of the ion beam and the thermal electrons in terms of
density contour maps measured on an x-z plane including the center axis of the ion beam. Spatial
scales and density values in the figure are normalized to the local Debye length A5 and the maximum
density nnax Measured at the exit of the electron neutralizer, respectively. As clearly shown in the
figure, the ion beam simply propagates away from the emitter as time elapsed. Although some
diffusion of ions is seen at the beam front as in the bottom panel, the signature of the ion beam
propagation is very straightforward because of ion's large inertia.

On the contrary, the emitted electrons show very complex signatures as shown in the right panels
of figure 3. Thermal electrons are emitted from the upper side of the yellow body representing an ion
engine. Note that the highest density is shown in blue in the right panels. It seems that the emitted
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Figure 2. Spatial distribution of beam ions and thermal electrons emitted from a neutralizer measured
at w pet =400.
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Figure 3. Contour maps for densities of ion beam and thermal electrons measured on an x-z plane
including the center axis of the ion beam at different times.

electrons are overall attracted to the ion beam which has positive charges and they propagate along
with the ion beam in the x direction to neutralize the positive ion charges. However, the electrons are
not uniformly distributed in the beam region and the profile at each time seems asymmetric with
respect to the ion beam direction. As shown in the third and fourth panels from the top, the electron
density values become locally high at the surface surrounding the ion beam in the radial direction. The
highest density region is constantly indicated at the location of the neutralizer attached at the upper
side of the injection plane. In the beam region, however, the electron densities drastically change in
time.

Figure 4 also shows density contour maps for the thermal electrons in different planes
perpendicular to the ion beam propagation. Panels show the maps measured at x/4p=80, 160, 240, and
320, respectively. As previously shown in the profiles along the beam direction, the electrons are
overall distributed in the beam region also in the radial direction. The profiles are symmetric with
respect to the center line of the y-axis. However, they are asymmetric between the upper and lower
regions with respect to the center line of the z-axis. The maximum density is found at the lower side of
the beam surface at x/Ap=160 while it is around the top surface of the beam at x/45=320 as shown in
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Figure 4. Contour maps for the electron densities measured on a y-z plane at the different locations
along the x direction.

the most right panel. From these snapshots of the density profiles, it can be speculated that the thermal
electrons released from the neutralizer make a kind of meandering or bouncing motion in the radial
direction of the beam.

To understand the complex dynamics of the electrons shown in the previous figures, we examined
the relation of the electrons to the electrostatic potential. In figure 5, we show a contour map of
normalized electrostatic potential and the corresponding electron dynamics in an x-V, phase space. The
upper panel shows a snapshot of electrostatic potential measured on a x-z plane including the center
axis of the ion beam measured at at =300. The potential values are color-coded and the high
potential with respect to that of the vacuum region is shown in red. The potential values are plotted in
terms of energy and they are normalized to the initial thermal energy of electrons. Because of large
thermal velocity of the electrons the ion beam region is not perfectly neutralized and a positive
potential region remains in the beam region as shown in the upper panel. Since the potential energy in
the beam region is much larger than the initial electron thermal energy, most of the electrons released
from the neutralizer are electrostatically trapped in the positive potential region.

In the lower panel of figure 5, we focus on the electron dynamics along the beam direction by
showing an x-V, phase diagram in which electrons are plotted in blue dots. The electrons emitted from
the neutralizer are quickly accelerated along the beam direction and some fast electrons escape from
the beam front, which is shown beyond x/15=320 in the panel. However, the most electrons are
quickly decelerated at the beam front and are reflected back to the opposite direction to the beam
propagation with negative velocities. They move toward the injection plane and are reflected back
again toward the ion beam propagation with positive velocities. This bouncing motion of the electrons
seems to be repeated multiple times in the beam region along the propagation direction. Although not
displayed, as time elapses, the bouncing regions are elongated along the x direction in accordance with
the ion beam propagation.

The bouncing period of the trapped electrons changes as the ion beam propagates away from the
spacecraft. According to the conventional linear theory on the dynamics of electrons trapped in a

potential well, the bouncing frequency wj is approximately given as ve®k’/m where e, m, ¢, and k
denote the electron charge, mass, the electrostatic potential and its wavenumber, respectively. Since
the potential region is elongated as the ion beam propagates, k becomes smaller and smaller as time
elapses. Then @, becomes correspondingly small and eventually the bouncing period becomes long. ¢
is another factor which determines w,. ¢ is basically determined by the ion beam profile and may be
slightly modified by the electron thermalization in the potential well. As shown in figure 5, the
electron thermalization is caused by multiple bouncing motions in the potential well. These heated
electrons may affect the potential structure as well as the ion beam propagation. However, as far as the
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current simulation results are concerned, no influence on the ion beam propagation is observed. It may
be because the simulation space and time is so limited and we could just focus on the initial stage of
the ion beam emission.

Since the electron bouncing motions occur in the three-dimensional potential structure, which is
unlike the conventional one-dimensional ideal situation, the bouncing motions are not so simple.

The potential region is also finite in the direction of the beam diameter and the potential has a peak
at the core of the ion beam. Therefore, the electrons are also trapped in the radial direction of the beam.
Non-uniform density profiles of electrons as shown in figure 3 and figure 4 are caused by the dynamic
electron response to the ion beam potential. As soon as electrons are emitted from the neutralizer they
are quickly attracted to the core of the ion beam and are initially accelerated to the negative z direction.
Then most of them penetrate the core part of the ion beam with the maximum velocity. However,
when the electrons pass through the beam core, they start to be decelerated and finally stagnate at the
other side of beam surface in the radial direction. This stagnation can cause relatively high density
found near the surface of the ion beam as shown in figure 3 and 4. The electrons again start to be
accelerated back to the beam core by the electric field and this process seems to be repeated multiple
times before the electrons reach the beam front.

Back to the electron motion along the beam propagation, we display a profile of velocity
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Figure 5. A contour map for electrostatic potential measured on a x-z plane including the ion beam
propagation (upper panel) at wpt =300 and the corresponding electron dynamics in a Xx-Vy phase
space (lower panel).
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distribution function of the electrons measured near the ion beam front in figure 6. As clearly shown,
the function does not consist of a single Maxwellian but of two major components. One component
has a peak which is located at positive velocity three times larger than Vipeam. The other component
which has a peak of negative velocity is owing to the electron reflection at the ion beam front. The
velocity difference between the two peaks seems larger than the width of each distribution function. In
such a situation, electron two-stream type instability may occur near the beam front and causes the
local enhancement of the electric field which eventually heats electrons. Moreover, there may be some
current-driven interactions between a cold ion beam and the accelerated electrons stated above.
However, since the trapped electrons basically move back and forth along the beam direction in the
potential well multiple times, the electron distribution overall tends to be smeared out and the clear
velocity function which has two peaks can be seen only near the beam front as shown in figure 6. In
other words, as shown in the lower panel of figure 5, the electron velocity distribution is not spatially
uniform and rather varies much depending on the location along the beam direction. In such a situation,
it may be difficult to observe electron two-stream instabilities because, according to the linear theory,
the most unstable electrostatic mode has a wavelength which is much longer than the local region
where the above velocity distribution is formed. This result basically agrees with the previous work [8]
treating a local and finite beam emission. Meanwhile, the possibility of current-driven instabilities due
to the difference between the cold ion beam and the accelerated electron component is not examined
yet, which is left as a future work.
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Figure 6. A distribution function of electron velocity along the ion beam propagation. F in the
vertical axis is a normalized distribution function and the velocity v is normalized to Vipean.
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4. Conclusion

We have examined the transient behavior of electrons released for ion beam neutralization in electric
propulsion by performing full PIC simulations with EMSES. Unlike simple signature of ion beam
propagation, we found that the behavior of thermal electrons emitted from the neutralizer is very
complex. They basically propagate along with the ion beam to neutralize the positive charges of the
ions. The electrons, however, are electrostatically trapped in a positive potential structure formed by
the ion beam. The potential energy in the ion beam region is much larger than the initial thermal
energy of electrons. The electrons released from the neutralizer are accelerated at the boundary of the
potential well and move back and forth in the both directions parallel and perpendicular to the
direction of the beam propagation. Although two major electron beam components are found
particularly near the ion beam front, they are not uniform enough to cause electron two-stream
instabilities. The electrostatic heating of electrons or the increase of the electron temperature is rather
caused by the macroscopic trapping in the potential structure created in the whole region of the ion
beam, not by the local beam instabilities. To examine the influence of electron trappings on the ion
beam propagation, we need a much longer simulation space and time, which is left as a future work.
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