International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 052027 doi:10.1088/1742-6596/119/5/052027

Use of Cfengine for deploying LCG /gLite
middle-ware

Colin Morey

E-mail: Colin.Morey@manchester.ac.uk

Abstract. Cfengine is a middle to high level policy language and autonomous agent for
building expert systems to administrate and configure large computer clusters. It is ideal
for large-scale cluster management and is highly portable across varying computer platforms,
allowing the management of multiple architectures and node types within the same farm. After
brief introduction to Cfengine, the rest of this paper will focus on deployment of common
middleware components utilizing various parts of Cfengine.

1. Introduction

A number of sites within the GridPP [1] collaboration and across the wider EGEE project are
using Cfengine for the deployment and maintenance of their clusters and LCG/gLite middleware
installations. This paper will collect together the experiences of both the initial setup and the
ongoing maintenance of Cfengine installations. This paper will also discuss some of the common
implementation scenarios that may be encountered. This paper will also provide some solutions
to issues that the various sites have faced.

2. What is Cfengine?

Started in 1993 by Professor Mark Burgess as a research project at the Oslo University College
into network unix configuration [2], Cfengine is a powerful configuration manager capable of
scaling from a single laptop to a large heterogeneous deployment across company-wide IT
infrastructures and runs on a wide-range of operating systems and dialects from AIX through to
Microsoft Windows via cygwin. Cfengine is under active development and in use at a number
of sites around the world and across the EGEE collaboration. Utilizing a flexible class system,
coupled with a simple language for describing actions, Cfengine operates on an ideal-state basis,
rather than a pre-described list of tasks to be undertaken. For example, to ensure that all
compute nodes should have a specified minimal version of a package, you would say, ”local-
site.pkg version=2.4 install” rather than "rpm -Uvh local-site.pkg-2.4.rpm”. A number of actions
are predefined within Cfengine, from tidying directories, mounting remote filesystems, to an
inbuilt alerting mechanism for system anomalies.

(© 2008 IOP Publishing Ltd 1



International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 052027 doi:10.1088/1742-6596/119/5/052027

3. Classes within Cfengine

Much of cfengine’s power and flexibility comes from its use of classes. Classes can be broken
down into 2 main types: hard classes, which typically do not change between execution runs, for
example, node OS type or release, and soft classes, which are defined at the start of an execution
run, and can be modified during execution, e.g. service type, package list, memory sockets, disk
usage etc; Compound classes, e.g. sunos.nameserver, can be used to restrict actions to certain
machines, allowing the re-use of one configuration file for many systems, and the inclusion or
exclusion of specific tasks for other hosts.

4. Components of Cfengine

There are 4 main components to a Cfengine installation: cfagent - the workhorse of Cfengine;
cfexecd - the automated wrapper around cfagent; cfservd - the fileserving daemon; and cfenvd
- the anomaly monitor. cfagent is normally executed either from ’cron’ or by an existing
cfexecd daemon, on a schedule determined by cfagent.conf. Communication between cfagent
and cfservd is via 2-way public key verification, both client and server verifying their identities
with each other. File transfers can be done either in the clear for trivial files or via SSL encrypted
connections for more sensitive data. The remaining persistent process, cfenvd builds up a profile
of a host, and can define classes within cfagent when certain metrics increase dramatically over
their norm, for example, load, network throughput or number of active sessions to a network
socket.

5. Typical site Installation

Usually the Cfengine configuration files will be stored within a local site CVS or SVN repository,
which the primary cfservd(s) will extract from on a periodic basis. Clients will then update their
local copies from the cfservd before continuing on with their execution run. Larger sites may
have more cfservd instances, with some dedicated to serving different classes of client. Simple
balancing of load between cfservd instances can be obtained through the use of ’schedules’ and
weightings.

6. An Overview of the LCG/gLite Middleware deployment

The most common scenario for installing the gLite Middleware within GridPP [1], is via YAIM
[3] on top of Scientific Linux [4], so will be the focus of this paper. After the installation of the
base OS, a mirror of the glite repository needs to be added to the yum [5] configuration file. As
this file is relatively simple, a copy of a pre-modified file from a CVS repository using Cfengine’s
copydirective will suffice. Then the installation of YAIM [3], along with the relevant meta-rpm to
pull in all the dependancies for the node-type can be accomplished using the packages directive.
Before the invocation of the configure_node command, a copy of the site_info.def file needs to
be copied over from CVS via cfservd. A simple shellcommands statement is then all that is
sufficient to run configure_node and complete the installation. As there is no human interaction
after the initial boot stage, this method is reproducible and highly scalable.

7. Cfengine at the Lancaster University HEP Grid farm

Lancaster University runs Cfengine across its Compute and 200 worker node farm, along with
the dcache[8] Storage Elements and a few of their departmental machines. As a site, the biggest
benefit of running Cfengine is the reassurance that all of their worker nodes are running the same
software releases with the same configuration, cutting down administrative overheads. Recently
they have been migrating their cluster from SL3[4] to SL4[4], and in the process identified a
number of extra packages that needed to be added to support glite3.1[6] running on SL4/64[4].
Due to the simple language that Cfengine configuration files are written in, this work has been



International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 052027 doi:10.1088/1742-6596/119/5/052027

trivial to share and to integrate within the configurations for other sites, even though the layout
may be drastically different.

8. Cfengine at the Glasgow University Tier2

Glasgow University’s Cfengine install spans 140 Worker nodes, with 10 DPM][7] based Storage
Elements and a range of 8 service machines from a Compute Element through a Resource Broker
to a local User Interface. Mostly simple tasks are managed with Cfengine, from the distribution
and installation of new RPMs across the cluster, e.g. lcg-CA, to the maintenance of symbolic
links to the latest java installation. Ownership and permissions of the DPM filesystems within
the Storage Elements is also handled from within Cfengine. Another common task performed
is the centralization of the user databases, i.e. /etc/passwd, /etc/shadow and /etc/group,
maintaining a consistent view across the cluster to all users, and avoiding the overhead of
managing a site-wide NIS or ldap authentication system.

9. Cfengine at the Manchester University HEP Tier2 Facility

Due to the size of the Manchester cluster (900 worker nodes split evenly across 2 clusters), they
have 2 cfservd instances serving both logical clusters and their associated servers, from d-cache
[8] head nodes running Scientific Linux 3[4], service machines running Gentoo Linux[9] and an
SL4[4]/glite3.1 testbed. Currently Cfengine is used to augment the site nagios[10] network and
host monitoring system by configuring alerts when free space falls below an acceptable threshold.
Also local daemon processes for example, pbs_mom, and ntpd, are monitored, restarting as
required. Package management is a now handled almost exclusively by Cfengine, enabling the
fixing of software at specific releases, and also to ensure daemons and configuration files remain
in place after middleware upgrades. Coupled with the kickstart architecture, re-installation and
configuration of a node or an entire cluster is possible within 20-40 mins, and ensures that all
nodes are at the same state and configuration. VO (Virtual Organisation) administration has
also been made significantly smoother by centralizing the configuration, and having Cfengine
invoke YAIM[3] to setup the node whenever a new VO is added, or an existing VO configuration
changes. Other uses of Cfengine have included the upgrade of both dcache[8] Storage Elements
from 1.6 to 1.7, and the automated rollout of an XrootD[11] instance for local users.

10. Problems Common to all Sites

All of the sites have expressed concerns about the helpfulness of the error messages, with the
two most common ones being SIGPIPE issues, mainly caused by load on the server, fixable with
an increased ’splay_time’. And the 'Host authentication failed. did you forget the domain?’
message often due to keys being out-of-align. Most of the helpful information is hidden in the
debug messages beyond the -d2 level, requiring wading through a lot of extra information.

11. Conclusion

The benefits of Cfengine on large clusters are mainly due to offloading a lot of the trivial day-
to-day maintenance work of rpm deployment, file distribution and service monitoring, freeing
time up for system development and user support. The amount of time saved is dependent
on the size of cluster and in part to how much of the system is under Cfengine control, at
Manchester Cfengine saves in order of a few hours of work a week, more when systems need to
be re-built following hardware replacements. Without Cfengine, or any other scripts, a typical
system administrator may be able manage 10s of machines on a day-to-day basis, with scripts
and automated file distribution tools like dsh[12], the number of manageable systems rises to
the low 100s. Success stories include AMD[13] with a company-wide install across 9 sites, with
the three largest having over 10,000 CPU cores and over 500 workstations[14] each.



International Conference on Computing in High Energy and Nuclear Physics (CHEP’07)

IOP Publishing

Journal of Physics: Conference Series 119 (2008) 052027

12. References

http://www.gridpp.ac.uk

http://www.iu.hio.no/ mark/papers/cfengine_history.pdf
http://en.wikipedia.org/wiki/Yaim
https://www.scientificlinux.org/
http://en.wikipedia.org/wiki/Yellow_dog-Updater
http://glite.web.cern.ch/glite/packages/R3.1/
https://twiki.cern.ch/twiki/bin/view/LCG/DpmAdminGuide
http://www.dcache.org/

http://www.gentoo.org/

http://www.nagios.org

http://xrootd.slac.stanford.edu/

http://www.netfort.gr.jp/ dancer/software/dsh.html.en
http://www.amd.com/
https://cfengine.org/pipermail /help-cfengine /2007-December /002563.html

doi:10.1088/1742-6596/119/5/052027





