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Abstract Rotating black hole solutions in theories of mod-
ified gravity are important as they offer an arena to test these
theories through astrophysical observation. The non-rotating
black hole can be hardly tested since the black hole spin is
very important in any astrophysical process. We present rotat-
ing counterpart of a recently obtained spherically symmetric
exact black hole solution surrounded by perfect fluid in the
context of Rastall theory, viz, rotating Rastall black hole that
generalize the Kerr—Newman black hole solution. In turn,
we analyze the specific cases of the Kerr—Newman black
holes surrounded by matter like dust and quintessence fields.
Interestingly, for a set of parameters and a chosen surround-
ing field, there exists a critical rotation parameter (a = ag),
which corresponds to an extremal black hole with degener-
ate horizons, while for a < ag, it describes a non-extremal
black hole with Cauchy and event horizons, and no black
hole for a > ap with value ag is also influenced by these
parameters. We also discuss the thermodynamical quantities
associated with rotating Rastall black hole, and analyze the
particle motion with the behavior of effective potential.

1 Introduction

Einstein theory of general relativity (GR), which is con-
sidered as the most beautiful and simplest theory of grav-
ity, admits the covariant conservation of matter energy-
momentum tensor. However, since it’s formulation people
are searching for the alternative theory of gravity and have
developed several modified theories of gravity. In this expe-
dition, one of the potential modification to the general the-
ory of relativity was introduced by Rastall [1,2], where the
usual conservation law of the energy momentum tensor, i.e.
7", = 0,is not obeyed. Indeed a non-minimal coupling of
matter field to spacetime geometry is considered such that,
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T',.0 =AR, (1)

where A quantify the deviation from the Einstein theory of
GR, and called the Rastall coupling parameter. Thus, the
divergence of T is proportional to the gradient of the Ricci
scalar and that the usual conservation law is recovered in
the flat spacetime. This can be interpreted as an immediate
consequence of Mach principle suggesting that the inertia of
a local mass depends on the global mass and energy distri-
bution in the universe [3]. Indeed, with this generalization,
Einstein could get his famous tensor and thus the correspond-
ing second order equations of motion [4,5]. The Rastall field
equation reads [1],

Guv +krguR =«Ty,y, 2)

where k is modified gravitational coupling constant in the
Rastall theory. Standard theory of GR can be traced back
from Eqgs. (1) and (2) in the limit of A — 0. It is one of the
most interesting non-conservative theory of modified gravity
because it provides an explanation of the inflation problem, as
the simplest modified gravity scenario to realize the late-time
acceleration and other cosmological problems [6—16]. Some
attention has also been devoted to produce the static spheri-
cally symmetric solutions of the gravitational field equations
in the Rastall gravity that includes the neutron star, black hole
and worm-holes solutions [17-21]. In Rastall theory of grav-
ity, the spherically symmetric black hole solution surrounded
by perfect fluid was obtained in [22], and a non-commutative
inspired black hole solution in [23]. The generalization of the
black hole solution sourced by a Gaussian matter distribution
was considered in [24], while the thermodynamic properties
of black hole solutions in the Rastall gravity were discussed
by [25], and demonstrate how the presence of these matter
sources may amplify effects caused by the Rastall parameter
in the thermodynamical quantities.
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In this paper, we wish to obtain the rotating counterpart
of the spherically symmetric black hole solution obtained in
Rastall theory surrounded by a perfect fluid [22]. We begin
with a general static, spherically symmetric spacetime,

1

dr® +r*d6* + r*sin> 0d¢*, (3)
f@)

ds®> = —f(r)dt®> +

where f(r) is a generic metric functional to be obtained by
solving Eq. (2), for the energy momentum tensor [22],

T =E* +TH, “)

where E", is Maxwell’s stress tensor of electromagnetic
field, given by,

1 1
o — [FWF; - —nﬂ”F“ﬁFaﬁ} . (5)
o 4
Assuming the anti-symmetric nature of electromagnetic field
tensor F,,, the Maxwell’s equations F” U'u = 0 and
Fluv:y) = 0 leads to,
Fr =2 ©)
,

where Q is electrostatic charge, with field tensor in Eq. (6) the
Maxwell’s tensor (5) leads to the following traceless tensorial
form,

QZ

o=
EV_kr4

[-1,—-1,1,1]. )

The energy momentum tensor must obey the symmtery prop-
erty of modified Rastall tensor in Eq. (2) and Schwarzschild
like symmetry in (3), therefore the stress tensor of surround-
ing perfect fluid reads [26,27],

760 = ,Tll = —Ps>
1
7—22 = 733 = 5(1 + 3ws) ps. ®)

Solving the modified Einstein’s equation (2) with energy-
momentum tensor Eq. (4), we obtain [22],

2M Q* N
fr)y=1—-—+—5——, 9)
r r r
with,
1 4+ 3w, — 6xcA(1 )
£ = + 3wy — 6k A (1 + wy) (10)

1 —3kA(1 4+ wy)

Here, M and N, are integration constant representing the
black hole mass and structure parameter for surrounding

@ Springer

field, respectively. The energy density of surrounding fluid
has a form [22],

3Wi Ny
pS(r) = _K}’(2€73wV+1) ) (11)

where WV is a geometric constant define as,

(1 — 4 ) (kA (1 + ) — wy)
(1= 3kh(l +wy))?

Ws = 12)

W; depends on the Rastall geometric parameter kA as well
as on the field state parameter w;. The aim of this paper is to
obtain and study the rotating counter part of the static solu-
tion Eq. (3), i.e. to obatin the Kerr—Newman (KN) metric
like solution of Rastall theory. The KN black hole is one of
the most extraordinary solution of Einstein—-Maxwell equa-
tion that represents the prototype charged black hole that
can result from the gravitational collapse [28]. The rotating
black hole enjoy many interesting properties differ from it is
non-rotating counterpart [29-31]. It turns out that spin plays
important role in astrophysical process, and non-rotating
black hole can not be tested by astrophysical observations
[32]. This motivated us to seek generalization of Rastall black
hole obtained in [22] to axially symmetric case or to KN-like
solution surrounded by perfect fluid in Rastall theory. The
obtained rotating black hole solution revert back to Kerr and
KN solution in appropriate limits.

2 Kerr-Newman solution in Rastall theory

In order to obtain a four parameters regulated axially sym-
metric black hole metric in Rastall theory that has mass
(M), electric charge (Q), spin parameter (a), and the Rastall
parameter (A); which is a rotating counterpart of static,
spherically symmetric black hole solution of the Rastall
theory of gravity, we employ the standard Newman—Janis
algorithm [33] on solution (3). Firstly, we perform the
Eddington—Finkelstein Coordinate (EFC) transformation
du = dt — f(r)~'dr, such that the metric can be written
down in terms of advance null coordinates, which takes the
following form,

ds®> = — f(r)du® — 2dudr + r?dQ>. (13)

Furthermore, we can write the inverse metric in terms of
complex null tetrad Z* = (I*, n*, m*, m"), as,

gtV =1"n" +1"n"* —m*m" — m"m", (14)

where null tetrad are,
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1
nt =8l — Ef(r)(Sﬁ‘,

1 i

W= — 8+ —=684 ).
" ﬁ,<9+sin9 ¢>
The null tetrad are orthonormal and obey the following defin-
ing conditions, namely that all the vectors of the tetrad have
zero magnitude,

lal® = ngn® = (m)a(m)* = (m)q(m)* =0,
la(m)* = 1,(m)" = ng(m)* =ng(m)* =0,

lan® =1, (m)a(m)* = 1. 15)
Following the Newman—Janis prescription [33], we allow

coordinates to have complex values, whereas in order to get
real /* and n** we can choose the following transformation,

u' =u—iacosb,
r' =r4+iacosé,
M = xPtia(8*—8*) cosh — (16)
0 =0,
¢ =¢.
where “a” is a newly introduced parameter, which will be fur-
ther related to spin of black hole. The null tetrad transforms as

a vector and undergoes a transformation Z'¢ = Zb9x"® /9x?,
thus we obtain,

" =3st,
1 -~
}'lM = I:(Sg —_ Ef(r, 9)5%] .
U
\/f(r +iacosf)
. . l
X (la(&’f —8/)sin6 + 8 + m&g) ) 7

mt

where f (r,0) is the complexified form of function f(r).
Using tetrad Eq. (17) and following Eq. (14), the non-zero
component of the inverse of new metric can be written as,

we a? sin2(6) w 4
O X(ne) S E(n o)
gl = 1 — a?sin?(0)
X(r, 0)
a?sin? 0 ~ a
r_ 220 7 : 0 , ro - _
S T B S T
1 1
g =0, = —.
X(r, 0) > (r, 0) sin*
where,
- 2M 2 Ny
ooy =1- 2y 2 “ a8)

X, 6) + X(r,0) X(r,0)52

From the transformed tetrad the new line element takes the
following form,

ds? = — f(r, 0)du® — 2dudr — 2 (1 — o 9)) asin? 0dudé
+ 2asin® 0drdg + X (r, 0)do>
+sin2 6 [Z(r,@) + @2~ f(r,6)a> sin® 9] d¢.  (19)

To write the metric in the Boyer-Lindquist coordinates
(BLC) form, we make further coordinate transformation,

du =dt + ¥ (r)dr, dé =de + x(r)dr, (20)

where the two functions ¥ (r) and x(r) are chosen as to
eliminate the g, and g4 components. Thus plug Eq. (20)
into Eq. (19) and demanding all off-diagonal component to
be zero except g;4 (to preserve axial symmetry), its turn out
that ¥ (r) and y (r) are now functions of both » and 6, and
have following form,

X(r,0) + asin®6
(E(r, 0) f(r, 6) + a sin2 9) ’
—dad

(z(r, 6) f(r, 0) + a sin® 9) '

W(r, 9) =

x(r,0) =

2

This 6 dependence in EFC to BLC transformation can be
attributed to the fact that we are dealing with non-vacuum
surrounding and a modified theory of gravity [34,35]. Hence-
forth, we will omit writing the dependency on 6 and r in the
functions X as well as in A (which is defined further). Hav-
ing these two expressions for ¥ (r, #) and y (r, 6), we finally
obtain the rotating KN-like black hole in the BLC form in
the context of Rastall theory, which reads as,

g5t — — <A—a2sin29>dt2

>
A —a?sin? 0 >
2 (1 - “fsm) asin® dide + L dr®
A —a?sin? 6
+ 3d6% +sin® 6 [2 + (2 - %) a? sin® 9] dé?,

(22)

with & = r2 + a?cos?0, and A = r2 + 4% — 2Mr +
Q2 — ﬁ Note that the metric Eq. (22) matches with the
various known black hole solutions in the suitable limits. It
include the KN spacetime [36] as the special case when the
black hole is surrounded by the vacuum (Ny; — 0), and per-
fectly reduces to Kerr solution [37] in the limit (Ng, O — 0).
Even in the GR limit of rotating Rastall black hole spacetime,
i.e., vanishing Rastall coupling (A — 0), Eq. (22) mimic
the KN black hole solution in the presence of quintessence
(& = 3wy + 1), while the well known rotating quintessential
black hole in GR [26] can be obtained by further choosing

@ Springer
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0 = 0. Reissner-Nordstrom (RN) solution can be obtained
on further restricting both (N5, a — 0).

It is well known in GR that the spherically symmetric static
black hole and its rotating counterpart have the same source,
if it exit, i.e., vacuum for both Schwarzschild and Kerr black
hole while charge for RN and KN black holes. Butin modified
theories or black holes with non-trivial source an additional
stress generates corresponds to rotating fluid. Hence, the
source for the static and rotating black hole solution are dif-
ferent with rotating solution has additional stresses [38,39].
Further, the Newman—Janis algorithm is well defined for
GR, it can be applied to the Rastall gravity as well. This is
because the Rastall gravity is identical to the GR through a
redefined energy momentum tensor [40]. In order to calculate
the explicit form of the energy-momentum tensor compatible
with the modified Einstein equation (2) and for mathematical
simplicity we consider a locally non-rotating observer with
following orthonormal tetrad of 4-vectors [41],

\/_(gtt - (gt¢)2/g¢¢) 0 0 0

@ — 0 grr 0O 0

" 0 0 g O
819/ /89 0 0 /80

The components of the energy momentum tensor in the
orthonormal frame read 7@ ®) = e,(f‘)e,(,b) (G"™ +kARg"").
The expressions for the components of the energy momen-
tum tensor for rotating Rastall black hole are clumsy although
finite. In particular, at equatorial plane (0 = m/2) they took
considerably simple form as follow,

2K A 202 + a®)?m’ — a’rAm”
T(O)(O) - _ "4 om') +
r2 (rm " ) 33 + a%r + 2a2m)
(H(1) 2rKA.mN+2(K)\.— 1)m/
T = ) ,

T(2)(2) _ r(ZK)» - l)m” + 4K}\,m/
= ) ,
2K\ 2a%2Am’ — r(r2 + a2)2m”
T(3)(3) _ "4 om') +
r2 (rm " ) 33 4+ a2r + 2a2m)
T(O)(3) _ —a(r2 + 02)(7'1’”” — Zm’)\/K
- r3(r3 + a%r + 2a2%m)

(23)

withm = (M — Q?/2r + Ns/2r2)(5’2)/2)|0:n/2 and’ rep-
resents derivative with respect to . We have demonstrated
that the rotating black hole solution in the Rastall gravity is
supported by the energy momentum tensor, the components
of which die off very rapidly at large r. This happens to all
rotating black hole solution where source is non-trivial, e.g.
[38,39]. The non-vanishing off-diagonal component T (©®®
represents the matter tangential flow at equatorial plane,
which is as expected clearly zero for non-rotating case. In
the GR limit (A = 0) for black hole surrounded by vacuum
(Ns = 0), the components of energy momentum tensor at
pole along symmetric axis take the following form,

@ Springer

2./
TOO _ _2Tm_ ra0),
2 +a2)?
ro@ _ _reram’ +2aim’ )
- (r2 + a2)? - ’

which are in full consistent with the results shown in [42];
T@®) are diagonal in this case.

Likewise standard KN metric in the BLC form, the modi-
fied metric Eq. (22) is also independent of ¢ and . Therefore,
the metric admits two Killing vectors associated with the time
translation invariance and rotational invariance defined as
TIZ) =6/ and né‘ = 8(’; respectively. Thus, by definition of
Killing vectors, momentum associated with translation along
t and ¢ coordinates are constant of motion. Unlike the Kerr
spacetime, the spacetime geometry of metric (22) is not Ricci
flat and henceforth the black hole (22) will be called rotating
Rastall black hole. We start in the next section with the hori-
zons structure of the rotating Rastall black hole, which make
them distinguishable from their GR counterparts.

3 Properties of horizons

In this section, we discuss the physical properties of rotating
Rastall black hole obtained in the previous section. Likewise
the KN metric, the rotating Rastall black hole metric (22) is
also singular at ¥ = 0 and at A = 0. The solution of ¥ =0
is a ring shape physical singularity at the equatorial plane of
the center of rotating black hole with radius a. On the other
hand, A = 0 is a coordinate singularity which determines
the horizon associated with spacetime, horizon in terms of
(t,r, 0, @) is a null hypersurface of constant r, i.e.,

g ord,r =0 or g =A=0, 24)

where 0,7 is the normal to the said hypersurface. Thus, hori-
zons are zeros of A = 0,

Ny
=0, (25)

2 2 2 s
r+a°—2Mr + Q =Y

which are 6 dependent and different from the KN black hole
horizon, where it is 6 independent. This 6 dependency is
due to the non-minimal coupling of surrounding field with
geometry. The Eq. (25) admits some real solutions which
corresponds to the radial coordinate of Cauchy horizon (r_),
event horizon (ry) and cosmological horizon (r, if present)
with r_ < ry < r,, whereas each horizon radius depend on
a, Q, Ng,kA,6 and M.
It must be noted from Eq. (10) that (§ = 2) is not allowed
for any value of Rastall parameter except for surrounding
radiation field (ws; = 1/3).

A Killing horizon of a rotating black hole is the null hyper-
surface where the linear combination of Killing vector for
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Fig. 1 Plot showing the variation of g;; with r for different values of parameter « A for black hole (M = 1, Q = 0.2) surrounded by dust field

time translation and rotation symmetry is null, x*x, = 0
with y* = UZ) + Qné). The outer edges of ergosphere cor-
responds to the timelike hypersurface where the time trans-
lational Killing vector become null, i.e. g, = 0 . A pri-
ori, ergosphere and event horizon are distinct hyper-surfaces
[26] and for the standard KN black hole these surfaces
reads,

M2 — a2 — Q2
re8 = M + /M2 — a2 cos? 0 — Q2.

(26)

For rotating Rastall black hole the radial coordinates of static
limit surface are the zeros of,

27)

A —a?sin? 6
S .

Iz o —
NNy = 8t = — (
Next, in the context of Rastall gravity, we are examining
the two special cases of surrounding fields, namely the dust

and quintessence.

3.1 The rotating Rastall black hole surrounded by dust field

In the case of dust, the state parameter is w; = 0 and the &

reduces to,
£ = 1—6kA (28)
1 =3k

Next, we compare this rotating Rastall black hole sur-
rounded by dust with the KN black hole surrounded by
quintessence [43]. In the limiting case A — 0 one
obtain,

A=r’4+a>—2Mr+ Q> — N,x'/?; (29)
Unlike, the non-rotating case where one obtain the RN solu-

tion in the limit A — 0, we do not get the KN black hole
due to presence of extra term N;. Demanding the positivity

of surrounding field energy density (weak energy condition),
from Eq. (11) we must have W, Ny < 0. Thus, positive field
structure constant (Ng > 0) restrict the value of deviation
parameter by 0 < kA < 1/4, otherwise kA will be out of this
range for negative structure constant. On the other hand, to
obtain the rotating Kiselev metric [26,27], the effective state
parameter for the surrounding dust field modified in Rastall

theory reads as,
1 n 1 —6kA
Cell =3 1—3kx )

This effective state parameter is always non-zero unless
we reach in GR limit kA = 0. Starting with the surrounding
dust field (w; = 0) in GR we end up with black hole solu-
tion surrounded by effectively different field of state param-
eter wery in Rastall theory. Surprisingly, depending upon
the numerical value of deviation parameter « X, the effec-
tive parameter dictates various surrounding field and this is
extensively discuss in [22]. The horizon radius of a KN black
hole in vacuum is less than the radius of KN black hole sur-
rounded by dust field,

(30)

_ @M +Ny) £/ 2M + N,)> — 4> + 0?)
- ) ,

even in the limit A — 0. Clearly, the surrounding dust field
increase the horizon radius of isolated black hole subject to
the choice of positive structure parameter, e.g., for particular
valuesof M = 1,a = 0.8, and Q = 0.2, horizon radii of KN
black hole are (r— = 0.434315, r; = 1.56569) whereas for
the KN black hole surrounded by dust field with Ny = 2,
the horizon radii become (r— = 0.177913, ry = 3.82209).
Furthermore, if we consider a non-minimal coupling between
geometry and surrounding field then it is difficult to get the
analytic solutions of Eq. (25). However, from numerical anal-
ysis we can check that for fixed values of M, a and Q, the
horizon radius depends upon the field structure parameter N;
and modified gravitational coupling «A. In Fig. 2, we have

F'KN

@ Springer
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a=0.9,0=n/4
1.5 [

1
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1
1
1
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-1.0 1 1 1 i i
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r
kKA=1/2,0=nr/2
1.0p ; .
¥ a=0.40
0.8p ———-a=0.60 ]
0.6: a=0.76 / ]
b — — a=090| »
0.4F ]
< 0.2F ]
0.0F
-0.2f ]
—-0.4F ]

KA=1/10 |1
---- kA=3/10 |{
-0.5¢ A=2/5 |1
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0.0 0.5 1.0 1.5 2.0 2.5
r
kA=1/5,0=m/3
4f a=0.60 = .
[ |=-=---a=0.70
sf a=0.8458 ]
[ a=0.90

Fig. 2 Plot showing the variation of A with r for different values of parameter «A and a for black hole (M = 1, Q = 0.2) surrounded by dust

field. (Red solid curve) corresponds to the extremal black hole

plotted the A with radial coordinate r for a set of parameter,
for both with and without cosmological horizon. In this case,
the numerical analysis of A = 0 implies the existence of
upto three roots which correspond to the horizons of a rotat-
ing Rastall black hole spacetime (22). An extremal black
hole occurs when A = 0 has a double root, corresponds to
the degenerate horizon, i.e., two horizons coincide. When
A = 0 has no root, i.e., no horizon exists, which mean there
is no black hole (cf. Fig. 2). We have explicitly shown that,
for each kA, one gets two horizons for a < ag (subject
to suitable «A), and when a = ag the two horizons coin-
cide, i.e., we have an extremal black hole with degenerate
horizons (Fig. 2). Indeed we have degenrate horizons for
extremal value of a(= ag) or kA. From Egs. (25), (28), we
calculate the horizon radii of charged-rotating black hole in
Rastall theory and comparison with the corresponding radius
in GR is shown in Table 1. This is evident from Eq. (30)
that for a suitable choice of kX, the effective state parameter
may leads to the violation of SEC and a de-Sitter type outer
cosmological horizon (r4) will be present e.g., kA = 1/5
leads to the w.ry < —1/3 and a cosmological horizon is
present even in the case of surrounding dust field (cf. Fig.
2).

@ Springer

Table 1 Table showing horizon radii of a charged rotating black hole
(M = 1,a = 0.8, O = 0.2) surrounded by dust in Rastall theory for
various gravitational coupling strength x A. The outermost cosmological
horizon (r,) is present for those values of «A which leads to the SEC
violation

KA & Ny r_ ry q

o 4 +2 0.239092 6.29064 -

: z +2 0.258577 9.79379 -

3 -8 -2 04347412 0.824133 -

1 -4 402 0.4150 2.5445 20.4153
z 1 +0.1 0.4274 2.140 7.43207
1 -2 4005 - - 0.432767

3.2 The rotating Rastall black hole surrounded by
quintessence field

The rotating Kiselev black hole solution has been ana-
lyzed by Ghosh [26] which is a Kerr black hole sur-
rounded by quintessence and later it was extended for charged
case in [43]. The rotating Rastall black hole surrounded
by quintessence field is characterized by equation of state
parameter (—1 < wg; < —1/3), in particular we choose

ws = —2/3 [27,43]. In the presence of such field, the
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a=0.9, 0=n /4

3 T T

8it

a=04,0=n/3
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2 ]
°:0 S
_at —_— kA==3/2
S e A=-1/2 |
_af — — — =110
KA=2
70.0 0.5 1.0 1.5 2.0 2.5 3.0

7

Fig. 3 Plot showing the variation of g;; with r for different values of parameter « A for black hole surrounded by quintessence field

spacetime is no longer asymptotically flat and inflating Uni-
verse has a cosmological horizon due to negative pressure
of quintessential field. The field parameter and effective sate
parameter for quintessence surrounded black hole in Rastall
theory take the form,

_ —1—=2ka 1 (_ 31)

. _ 1+ 2c)
Tk YT T3

1—«X

By comparing the corresponding solution in GR [26], we can
easily see the distinction between these two solutions. In the
zero Rastall coupling limit (A — 0), we can traced back the
GR solution. The geometric parameter W, takes the form,

(=402 + )
3(1 — kh)2

Wy = (32)

Condition to the validation of weak energy condition, N;
takes different values corresponding to the choice of differ-
ent values of xA. If we compute effective equation of state
parameter then we can realize that it will never be —2/3
unless kA = 0. For —1/2 < kA < 1, surrounding field (with
werr < —1/3) violating SEC, will contribute to the acceler-
ating expansion of the universe but with different strength as
compare to quintessence field. On contrary, for kA < —1/2
or kA > 1 the surrounding quintessential field in Rastall
theory will respect the SEC, and will regulate the deceler-
ating expansion of Universe and eventually play a role in
it’s contraction. Behavior of ergosurface for different Rastall
coupling strength is shown in Fig. 3.

The free quintessential background generates a cosmo-
logical horizon of de Sitter type with radius r, = 1/N;. In
presence of this field, a Schwarzschild black hole (of radius
2M in vacuum) has two horizons,

1 — /1 —-8MN;

ro=———

2N,

1+ JT=
2N,

8M N

r+ = (33)

Table2 Table showing horizon radii of charged rotating black hole sur-
rounded by quintessence in Rastall theory for various coupling strength.
A suitable coupling strength may wipe out the quintessential horizon

KA & N re Iy ry
&3 4005 0431635 1.83602  7.61504
i =0 4005 0431829 1.86018  6.35694
§ = 4005 0432167 191653 4.78257
Z —3  —005 04333637 0435003 133209
1 -4 -005 - - 0.434019
5 3 +0.05 0418964  1.64076 -

3 4 —0.05 0583745 1546904

provided (I > 8MNy). For small mass black hole, r_
approaches the isolated black hole radius and for extremal
black hole (8M Ny = 1) two coincide. An observer which
has not fallen into the black hole, and which can still see the
black hole despite the inflation, is sandwiched between the
two horizons, which is a static.

The horizon of quintessential KN black hole (kA = 0) is
dictate by (at 0 = 7 /2),
Nerd —r? +2Mr — (@® + Qz) =0, (34)
for parametric values of M = 1, a = 08,0 = 0.2
and N; = 0.05, quintessential KN black hole in standard
GR has three horizons with radii r— = 0.430792, ry =
1.77406, r, = 17.7951. A quantitative description of hori-
zon radii for various choices of parameter is shown in Table
2.1t 1is clear that quintessential horizon radius decrease in the
presence of non-zero Rastall coupling, however black hole
event horizon radius surprisingly increase. A detailed behav-
ior of A with r is shown in Figs. 4 and 5. Depending upon
the values of parameter (M, a, Q, Ny) the number of hori-
zon may vary from three, two or one. However, cosmological
quintessential horizon never vanishes unless Ny — 0. There-
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Fig. 4 Plot showing the variation of A with r for different values of parameter xA and a for rotating black hole surrounding by quintessence in

Rastall theory. (Red solid curve) corresponds to the extremal black hole

fore, if only one horizon exists, then spacetime describes the
quintessential rotating naked singularity. Therefore, a sur-
rounding quintessence field around black hole will behave
like a different effective surrounding field whose equation of
state parameter depends extensively upon the choice of KA.

4 Thermodynamics

Wheeler [44,45] seems to have been the first to notice that
a physical system having black hole violates the law of non-
decreasing entropy. This necessitate, to assign temperature
and entropy to black hole. Having this assertion, we can con-
clude that a body falling into black hole not only transfer its
mass, angular momentum and charge (if any) but its entropy
as well. In past 30 years, it has been found that the analogy of
black hole physics to thermodynamics is quite far reaching
[46-50]. Thermodynamical quantities associated with black
hole depends only upon the geometrical properties of event
horizon.

Thermodynamics of black hole in the presence of sur-
rounding field has been widely studied in literature [51-54].
Next, we calculate the thermodynamical quantities associ-
ated with rotating Rastall black hole described by Eq. (22).

@ Springer

kA=1/6, 0=m/2

Fig. 5 Plot showing the variation of A for charged rotating black hole
in Rastall theory with r for different values of parameter surrounded by
a field of state parameter we s (< —1/3). (Solid black curve) represent
the extremal black hole with inner horizon r_ and outer horizon ry =
74. (Dashed purple curve) represent the black hole with inner horizon
r_, outer horizon r; and cosmological horizon r,. (Solid red curve)
also represent an another extremal black hole with horizon r— = ry
and cosmological horizon r,. (Dot dashed brown curve) represent the
spacetime with naked singularity and cosmological horizon 7,

An extended form of zeroth law of black hole mechanics
implies that the surface gravity «, the angular velocity €2
and the electrostatic potential are all locally defined on the
horizon and are always constant over the horizon of any sta-
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tionary black hole. Bekenstein noticed that one of the prop-
erty associated with black hole surface (area A) resemble the
thermodynamical property (entropy), which is a crucial dif-
ference between black hole and other thermal system. Area
of the black hole horizon can be calculated by the metric
components,

2 T
Ay = /0 do /O Nzl 35)

It must be noted that the horizons are govern by A = 0,
it is clear from Eq. (25) that horizon radii have a atypical
dependency upon 6, however still upon integration we can
write the horizon area as,

Ap =402 +ab), (36)

where, r is outer horizon radius. The universal area law of
black hole mechanics gives the entropy of black hole as,

A 2 2

S:Tzn(q—i—a). 37

In the limiting case of a = 0, Q = 0, and Ny = 0 the
entropy expression reduces to S = 47 M2, which is the value
for Schwarzschild black hole. Using the null property of
Killing vector x* = n* + 9775 at null hypersurface (event
horizon), we can calculate the rotational velocity of black
hole horizon,

[ixﬂ+ asinf(L — A +a? sin29)]
[a*sin* 0 — a?(—2% + A)sin? 6 + £2]sin6’

(38)

at horizon A = 0, we get the horizon rotational frequency
reads as,

a

Qy = ———.
2 2
r++a

(39)

Based on the discussion in previous section, the event hori-
zon radius increase in Rastall theory subject to the condition
of positive structure coefficient as compare to that in GR, thus
the horizon rotational velocity decrease in the Rastall theory.
Since, black hole behaves as a thermodynamical entity whose
temperature 7' can be calculated from surface gravity « eval-
uated at Killing horizon through,

1 .
K2 = _EXM'UXM;U' (40)

Hawking showed that the black hole temperature is deter-
mined by,

A/
- )

K = s, 41
2 2(r2 +a?) “1)

where, A’(r) is spatial derivative of A(r). In this way, the
horizon temperature yields as

1
T——
27 (r2 +a?)
_ 1
N 4yrr+(r_% +a?)

Nsr+($ - 2)
23%6/2 ’

|:7‘+—M+

N
X |:rJ2r —a’ - Q2 + ﬁ(ﬁ + ri(%‘ — 2)):| . 42)

This expression leads to the Schwarzschild black hole tem-
perature in the limiting case of a = 0, Q = 0, Ny = 0, and
electrically charged KN black hole for Ny = 0 which reads
as

- M
Ten — (r4 )

=+ 77 4
27 (r? +a?) “43)

From the classical electrodynamics we can calculate the
electrostatic potential associated with black hole, which reads
as

Ory

o=t
ri—}—az

(44)

Recently, some authors suggest to regard the field struc-
ture parameter Ny as a variable and promote it to black hole
thermodynamics [51,52]. Therefore, the differential form of
the first law of black hole thermodynamics can be written as

dM =TdS + QdJ + ®dQ + OdNg; (45)

where ©® = (dM/dNy)s,s,0) is generalized force corre-
sponds to the field variable Ny. Furthermore, using this
we can calculate the extensive quantity associated with
black hole i.e. temperature, angular velocity and electrostatic
potential through

M M
7= (%22 Ca=(%22 ,
dS ) (1.0.ny) dJ J)(s.0.n)

® = (d—M> : (46)
dQ (S,J,Ny)

It is a matter of straightforward calculation to show that
these quantity satisfy the first law of black hole thermody-
namics. Now, to test the thermodynamical stability of black
hole, we need to check the behavior of specific heat of black
hole, which is defined as
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Fig. 6 Plot showing the variation of Hawking temperature 7 with horizon radius r. for different values of Rastall coupling « X for rotating Rastall
black hole (@ = 0.5, Q = 0.1) surrounded by dust (left) and quintessence field (right). (Black solid curve) represent the temperature profile for KN

black hole in vacuum

21 (ry +a?)? (rf —a® — 0*)(r +a®)f 2+ Ny(ri (€ — 1) +a?))

dM dM\ [dry
C = — = _— —_— , = .
dT (dr+) (dT ) (r3 4+ a?)8/2 (a(@® + Q%) + (4a® + 30} — ry) — Ny (a* + 4a2r + (82 — Dry)

(47)

The calculated temperature and specific heat are in nor-
malized units. In Fig. 6 we plotted the temperature profile
of black hole surrounded by dust and quintessential matter.
During evaporation black hole temperature increase gradu-
ally as it shrink, attain a maximum value and then finally
falls to absolute zero. It can be easily noticed from Fig. 6
that this finite maximum temperature that the black hole can
reach depends explicitly upon «A. At zero temperature state
black hole evaporation stops completely and a finite sized
thermodynamically stable black hole remnant remains. This
is well known that black hole local thermodynamical stabil-
ity is directly related to the sign of specific heat capacity.
Indeed, black hole is locally thermodynamical stable only
in the region where specific heat is non-negative whereas it
is thermodynamical unstable if specific heat is negative. A
second order phase transition occur at a point where C is dis-
continuous and changes it sign abruptly, and it is evident that
during evaporation horizon temperature attains its maximum
value exactly at the same point (cf. Fig. 7). From Figs. 6 and
7, we can see that rotating Rastall black hole is thermody-
namically stable in the region where its horizon temperature
decreases with decreasing horizon radius.

5 The equation of motion and the effective potential
Particle motion around black hole surrounded by perfect fluid

or quintessence has been discuss in various context in litera-
ture [55,56]. Here, we would like to investigate the equations

@ Springer

of motion of a test particle with rest mass m falling into

the background of rotating Rastall black hole. To calculate
the center of mass (CM) energy of the collision on the hori-
zon of the concerned black hole, we must have to derive the
4-velocity, u*, of the colliding particle. For the ongoing dis-
cussion of the particle motion we shall restrict ourselves to
the equatorial plane (i.e. # = /2, £ = r?). Since the two
Killing vectors of space-time (22) ¢, and 1, correspond
to time translational and rotational symmetry, therefore we
have two conserved quantities associated with them. Let E
and L be energy and angular momentum per unit mass of the
particle respectively. Thus the defining condition of these
conserved quantities are:

E = guvng)”v = g”ut + gl¢u¢v (48)
—L = g,uvné;)uv = gtd)ut + g¢¢’4¢- (49)

By solving Egs. (48) and (49) simultaneously we can eas-
ily calculate the velocity components u’ and u®, which
reads as

ut:i E}'2—|—Ea2 2_A—a2 — La I—A_a2
A r2 r2 ’
1 A — a2 A —d?

u? = X |:Ea (1— 3 )-I—L( = )i| (50)

Furthermore, using the velocity normalization condition
utu, = —1, the radial velocity component " comes up
as
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Fig. 7 Heat capacity behavior in terms of horizon radius for rotating Rastall black hole. (Top) surrounded by dust and (bottom) surrounded by

quintessence field

1
u" = :l:—z\/E2 (a* +r* +a?(2r> — A)) +2aEL(A — r? — a?) — L*(A — a?) + Ar?
r

D

The’+’ sign corresponds to outgoing and incoming geodesics
of the test particles. To calculate the effective potential one
must take [57]

(") + Vepp = E? (52)

D —

Therefore, the form of the effective potential looks like
1
Vers(r) = =5 [E? (a* +7* 4 a2@r? - o))
+2aEL(A —r? —a®) — L*(A —a*) + Arl] +E2
(53)

In Fig. 8 we compare the effective potential of test particle in
vicinity of black hole surrounded by dust and quintessence.
Penrose [58] in 1969 suggested that energy can be extracted
from a rotating black hole. Rotating black hole has a unique
surface called ergosphere(SLS), which plays a significant
role in turning time-like Killing vector into space-like inside
its boundary. The region between event horizon and SLS is

called ergoregion, which is the key for extracting energy from
black hole. The SLS for metric (22) can be determined from
the null property of 7 at SLS

(77(1))# (U(z))u =g =0
QMr — Q%) N,
B > R E-9)2

1 =0 (54)
Two physical solutions of Eq. (54) are r;'L gandrg; ¢, where
r;'L g > r'sys-Regionbetweenr and r;'L g called ergoregion.
Unlike in the KN metric, the ergoregion in this metric (22)
depends upon k 1. Using Egs. (50), (51) and the normalization
property of test particle four velocity in ergoregion, we can
write the equation of motion as:

aE>—2BE+y =0 (55)

with

a=r*+a* - a2(A — 2r2), B = La(r2 +a%— A),
y =r’A—L*(A —d®) —r*wh)?. (56)
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Fig. 8 Plot showing the variation of effective potential with r for different values of parameter a for charged rotating black hole (Q = 0.3). (Left)
Surrounded by dust field (A = 1/8) and (right) surrounded by quintessence field (kA = —3/2)

Inside SLS, g;; change its sign and hence it is possible that
energy of particle defined from E = —g;;n’u’ becomes nega-
tive as perceived by the observer at spatial infinity. In Penrose
energy extraction process, a particle splits into two particles
in ergoregion, one with negative energy which falls into the
black hole (called injected particle), while another with posi-
tive energy comes out of ergosurface. Absorption of negative
energy particle by rotating black hole is the only requirement
for energy extraction. From Egs. (55) and (56), it is clear that
for negative energy state (E = (8 + /B2 +ay)/a), we
must have @« > 0, 8 < 0 and y > 0, which as a result turns
out as a condition La < 0. Thus, in order to extract energy
from rotating black hole we must have a injecting particle
with L < 0, which simply means the retrograde motion in
ergoregion.

6 Conclusion

The Rastall theory [1,2] questions the validity of covari-
ant conservation of energy-momentum tensor atleast in the
curved spacetime, and proposed that covariant derivative of
stress tensor depends upon the gradient of Ricci scalar. This
theory is in full agreement with the standard GR in the lim-
iting case of vanishing coupling between matter field and
geometry. As a result of Rastall coupling, a field described
by stress tensor 7}, in GR behave differently as Tp’w and
so does with different state parameter in Rastall theory, i.e.
a fluid respecting the strong energy condition in GR may
violate it in Rastall theory and can account for accelerat-
ing expansion of universe. Interestingly, a single surround-
ing quintessential field may regulate either the expansion or
contraction depending upon the choice of Rastall coupling
parameter. In this paper, we obtained and analyze the solu-
tion of Einstein equation for stationary axially symmetric
charged rotating black hole surrounded by perfect fluid in
the context of Rastall theory, i.e., rotating Rastall black hole.

@ Springer

We extensively discussed the case of dust and quintessence
surrounding the rotating Rastall black hole. In the limit of
vanishing Rastall coupling (A — 0) we obtain the rotating
Kiselev like black hole in GR. By comparing the solution
in Rastall theory with that in standard GR, we realized that
effective state parameter depends upon the values of x A. For
different values of state parameter w; we study the horizon
structure. Non-minimal coupling between gravity and sur-
rounding matter field modified the black hole horizon prop-
erties. The spacetime geometry in Rastall theory is different
from that in standard GR. In the case of quintessential black
hole apart from the black hole horizon an extra horizon is also
present in spacetime. Depending upon the numerical value
of black hole parameter M, a, Q and Rastall coupling A of
surrounding fluid characterize by structure parameter N the
number of horizon in spacetime may vary from three, two
or one. However, in such field cosmological horizon will
never vanish unless surrounding field itself does not fade
away. Various possibilities for extremal black hole are also
studied. It is noted that quintessential cosmological horizon
radius surprisingly decrease in the Rastall theory, however
event horizon radius increase as compare to that in standard
GR, unless the extremal condition reach, subject to the pos-
itive structure parameter. Interestingly, the charged rotating
black hole in Rastall theory also respect the first law of ther-
modynamics. Explicit expression for horizon temperature,
entropy and specific heat are also obtained, which in the lim-
its of k1. — 0 matches with that of Kiselev like black hole.
It can be noted that horizon temperature declined in the pres-
ence of non-zero Rastall coupling.
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