

RECEIVED: August 8, 2023

ACCEPTED: August 11, 2023

PUBLISHED: September 4, 2023

NEW FRONTIERS IN LEPTON FLAVOR
PISA, ITALY
15–17 MAY 2023

2023 JINST 18 C09004

The STRONG2020 and Radio MonteCarLow activities

L. Cotrozzi on behalf of the Strong2020 and Radio MonteCarLow collaborations

Department of Physics, University of Pisa,

Largo B. Pontecorvo 3, Pisa, Italy

INFN, Sezione di Pisa,

Largo B. Pontecorvo 3/Edificio C, Pisa, Italy

E-mail: lorenzo.cotrozzi@phd.unipi.it

ABSTRACT: For over 15 years, the “Radiative Corrections and Monte Carlo Generators for Low Energies” Working Group (Radio MonteCarLow WG) has been providing valuable support to the development of radiative corrections and Monte Carlo generators for low energy positron-electron data and tau-lepton decays. The Radio MonteCarLow WG held 20 meetings in which theorists and experimentalists, experts working in the field of positron-electron physics and partly also from the tau community, produced the highly-cited report “Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data”. Recently, parts of the program have been included as a Joint Research Initiative in the group application of the European hadron physics community, STRONG2020, to the European Union. A specific goal of the working group is to create the annotated “PrecisionSM database” for low-energy hadronic cross sections in positron-electron collisions. The database will contain information about the reliability of the data sets, their systematic errors, and the treatment of Radiative Corrections. This proceeding reviews the results published by the Radio MonteCarLow WG and describes the status of the PrecisionSM database.

KEYWORDS: Analysis and statistical methods; Performance of High Energy Physics Detectors

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the [Creative Commons Attribution 4.0 licence](#). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

<https://doi.org/10.1088/1748-0221/18/09/C09004>

Contents

1	Introduction	1
2	The Radio MonteCarLow WG activities	1
3	The annotated PrecisionSM database in the Strong2020 Project	1
4	Conclusions	3

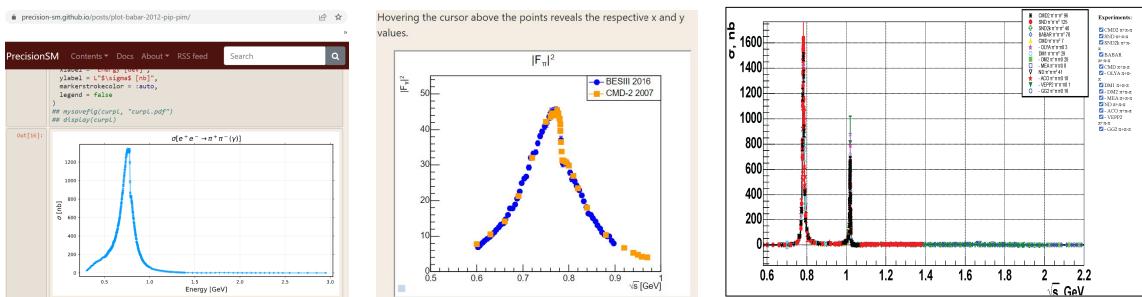
1 Introduction

The efforts of the Radio MonteCarLow Working Group (see <http://www.lnf.infn.it/wg/sighad/>) have recently been revived. In 2021, the first results of the Muon $g - 2$ experiment at Fermilab confirmed the long-standing discrepancy between the experimental value of the muon anomalous magnetic moment (a_μ) and the Standard Model prediction based on the dispersive data-driven approach, bringing its significance to 4.2σ [1, 2]. In 2021, using the lattice QCD approach, the BMW collaboration presented a prediction of a_μ^{HVP} which was in tension with the prediction from the dispersive approach, and which stands 1.5σ away from the experimental value [3]. The recent measurement of the $e^+e^- \rightarrow \pi^+\pi^-$ cross section with the CMD-3 detector evaluated the hadronic contribution to the muon anomalous magnetic moment that was significantly larger than the value obtained from previous measurements [4], and hence it was less in tension with the experimental measurement of a_μ .

2 The Radio MonteCarLow WG activities

During 20 meetings from 2006 to 2019, the synergetic cooperation between experimentalists and theorists of the Radio MonteCarLow WG focused on technical details and on the progress of radiative corrections and Monte Carlo generators, and produced a final report divided in 5 sections [5]: high-precision luminosity measurements at low energies meson factories; aspects of the direct R measurement performed at $e^+e^- \rightarrow \text{hadrons}$ experiments with energy scans; Initial State Radiation; τ -lepton physics; calculation of vacuum polarization with emphasis on the hadronic contributions. The report contained overviews of experimental results and the status of Monte Carlo generators for each section, as well as the achievements in hadronic cross section measurements and in τ -lepton physics, and finally it outlined the future prospects for the following years.

3 The annotated PrecisionSM database in the Strong2020 Project


The European Union Strong2020 Project (see <http://www.strong-2020.eu/>) recently incorporated parts of the Radio MonteCarLow WG, with the aim of studying strong interactions by combining

knowledge from many frontiers: high and low energy physics, instrumentation and research infrastructures. Within this project, the PrecisionSM activity focuses on the hadronic contribution to the anomalous magnetic moment of the muon: R measurements, Radiative Corrections and Monte Carlo generators for time-like and space-like processes (see the report in ref. [6]). One of the goals is to compile an annotated database for low-energy hadronic cross sections in e^+e^- collisions, which involves several steps: we collect inputs from experiments published on [InspireHEP](#); the Point-of-Contact of a published experiment submits data (tables of cross sections and/or form factors as a function of the energy) to the public repository [HepData](#); a reviewer is appointed for cross checks, to make sure there are no mistakes and that the data follows the HepData prescriptions; when the data is validated, it is catalogued in the PrecisionSM database <https://precision-sm.github.io/>. As shown in figure 1, we have catalogued $e^+e^- \rightarrow \pi^+\pi^-$ measurements, a particularly important channel for the calculation of the Hadronic Vacuum Polarization diagram to the Muon $g - 2$, and we are in the process of reviewing other channels.

Database for $e^+e^- \rightarrow \pi^+\pi^-$ channels					
Experiment	Year	Reference [link to INSPIRE-HEP]	Link to HepData	Details	Status
BESIII (BEPIC, Beijing)	2016	Phys.Lett.B 753(2016) 629-638 [errata: Phys.Lett.B 812 (2017) 135982]	ins1385603	details	Finalized
Babar (SLAC, Stanford U.)	2016	Phys.Rev.D 86 (2012) 032013		details	In Preparation
CLEO (CERN, Cornell U.)	2018	Phys.Rev.D 97 (2018) 3. 032012	ins1643020	details	Finalized
CLEO (CERN, Cornell U.)	2013	Phys.Rev.Lett. 110 (2013) 2. 022002	ins1189556	details	Finalized
CLEO (CERN, Cornell U.)	2005	Phys.Rev.Lett. 95 (2005) 261803	ins693873	details	Finalized
KLOE (DAPHNE, Frascati)	2017	JHEP 03 (2018) 173		details	In Preparation
KLOE (DAPHNE, Frascati)	2012	Phys.Lett.B 720 (2013) 336-343		details	In Preparation
KLOE (DAPHNE, Frascati)	2010	Phys.Lett.B 700 (2011) 102-110		details	In Preparation
KLOE (DAPHNE, Frascati)	2008	Phys.Lett.B 670 (2009) 285-291	ins797438	details	In Review
KLOE (DAPHNE, Frascati)	2004	Phys.Lett.B 606 (2005) 12-24	ins555225	details	In Review
MEA (ADONE, Lab. Naz. Frascati)	1980	Lett.Nuovo Cim. 28 (1980) 337-342	ins158083	details	Finalized
MEA (ADONE, Lab. Naz. Frascati)	1977	Phys.Lett.B 67 (1977) 239-242	ins124109	details	Finalized
BCF (ADONE, Lab. Naz. Frascati)	1975	Lett.Nuovo Cim. 14 (1975) 418	ins100180	details	Finalized
NA007 (CERN)	1984	Phys.Lett.B 138 (1984) 454-458	ins195944	details	Finalized
ACO (Orsay)	1976	LAU-1287	ins109771	details	Finalized
(download)					

Figure 1. Screenshot of the table from the PrecisionSM website that lists all published measurements in the $e^+e^- \rightarrow \pi^+\pi^-$ channel. The up-to-date version of the table is accessible from the following link: <https://precision-sm.github.io/2pi-db/>.

Ultimately, users will be able to access responsive plots of hadronic cross sections and form factors, like the ones that are currently present for a selection of channels. Some examples are shown in figure 2: these tools allow users to toggle on/off different experiments or channels when displaying the physics plots.

Figure 2. Example of responsive plots of hadronic measurements stored in HepData.

4 Conclusions

The Radio MonteCarLow and the Strong2020 Working Groups have been facilitating the collaboration between the experimental and theoretical groups with the goal of understanding the status of Monte Carlo generators for low energy hadronic e^+e^- processes. The PrecisionSM activity is contributing with a database for low-energy hadronic cross sections with relevant information (e.g. Radiative Corrections treatment and systematic errors). All these efforts have been recently revived by the new high-precision measurement of the anomalous magnetic moment of the muon at Fermilab [7], and by the measurement of the $e^+e^- \rightarrow \pi^+\pi^-$ cross section with the CMD-3 detector.

Acknowledgments

This work was supported by the European Union STRONG2020 project under Grant Agreement Number 824093.

References

- [1] MUON $g - 2$ collaboration, *Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm*, *Phys. Rev. Lett.* **126** (2021) 141801 [[arXiv:2104.03281](https://arxiv.org/abs/2104.03281)].
- [2] T. Aoyama et al., *The anomalous magnetic moment of the muon in the Standard Model*, *Phys. Rept.* **887** (2020) 1 [[arXiv:2006.04822](https://arxiv.org/abs/2006.04822)].
- [3] S. Borsanyi et al., *Leading hadronic contribution to the muon magnetic moment from lattice QCD*, *Nature* **593** (2021) 51 [[arXiv:2002.12347](https://arxiv.org/abs/2002.12347)].
- [4] CMD-3 collaboration, *Measurement of the $e^+e^- \rightarrow \pi^+\pi^-$ cross section from threshold to 1.2 GeV with the CMD-3 detector*, [arXiv:2302.08834](https://arxiv.org/abs/2302.08834).
- [5] WORKING GROUP ON RADIATIVE CORRECTIONS and MONTE CARLO GENERATORS FOR LOW ENERGIES collaborations, *Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data*, *Eur. Phys. J. C* **66** (2010) 585 [[arXiv:0912.0749](https://arxiv.org/abs/0912.0749)].
- [6] G. Abbiendi et al., *Mini-Proceedings of the STRONG2020 Virtual Workshop on “Space-like and Time-like determination of the Hadronic Leading Order contribution to the Muon $g - 2$ ”*, [arXiv:2201.12102](https://arxiv.org/abs/2201.12102).
- [7] MUON $g - 2$ collaboration, *Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm*, [arXiv:2308.06230](https://arxiv.org/abs/2308.06230) [[INSPIRE](https://inspirehep.net/search?p=find+EPRINT+arXiv:2308.06230)].