
Graphical Calculi and their

Conjecture Synthesis

Hector Miller-Bakewell

Wolfson College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Hilary 2020





Abstract

Categorical Quantum Mechanics, and graphical calculi in particular, has proven to

be an intuitive and powerful way to reason about quantum computing. This work

continues the exploration of graphical calculi, inside and outside of the quantum

computing setting, by investigating the algebraic structures with which we label

diagrams. The initial aim for this was Conjecture Synthesis; the algorithmic process

of creating theorems. To this process we introduce a generalisation step, which itself

requires the ability to infer and then verify parameterised families of theorems. This

thesis introduces such inference and verification frameworks, in doing so forging novel

links between graphical calculi and fields such as Algebraic Geometry and Galois

Theory. These frameworks inspired further research into the design of graphical

calculi, and we introduce two important new calculi here. First is the calculus RING,

which is initial among ring-based qubit graphical calculi, and in turn inspired the

introduction and classification of phase homomorphism pairs also presented here.

The second is the calculus ZQ, an edge-decorated calculus which naturally expresses

arbitrary qubit rotations, eliminating the need for non-linear rules such as (EU) of

ZX. It is expected that these results will be of use to those creating optimisation

schemes and intermediate representations for quantum computing, to those creating

new graphical calculi, and for those performing conjecture synthesis.
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Chapter 1

Introduction

Whether or not researchers have achieved quantum supremacy is disputed [Aru+19]

[IBM19], but it is undeniable that the power and complexity of quantum computers

is increasing. In the words of Ref. [Pre18]: ‘Now is a privileged time in the history

of science and technology, as we are witnessing the opening of the NISQ era.’ 1 The

ability to run wider and deeper quantum circuits brings with it the desire to design more

complicated quantum algorithms. Diagrams allow researchers to express these algorithms

more clearly, and different types of diagram have different strengths. For an example see

Figure 1.1, with the authors of that paper noting that ‘the ZX calculus graph is more

amenable to verification than the 3D diagram’. Graphical calculi go a step beyond simply

being diagrams in that they come with rules for manipulating the graphical data directly.

Graphical calculi are not new. The ones we discus in this thesis flow, conceptu-

ally, from Roger Penrose’s diagrammatic representations of tensor networks, but as

Ref. [CK17] points out ‘many similar diagrammatic languages were invented prior to

this or reinvented later’. Here we shall be using these diagrams to consider Categorical

Quantum Mechanics in the sense introduced in Ref. [AC09], a paradigm that lead to the

introduction of what would become the ZX calculus [CD08]. In the words of Ref. [AC09]:

‘The arguments for the benefits of a high-level, conceptual approach to designing and

reasoning about quantum computational systems are just as compelling as for classical

computation.’ The ZX calculus has grown over time, in appearance, generators, scope

and rules, with Figure 1.2 showing some of the changes in appearance. (The debate as to

whether there is ‘a’ or ‘the’ ZX calculus is still ongoing2, but we shall cover the different

varieties in §2.2.) The story behind the development of the ZX calculus is probably best

told by the titles of the various papers in Figure 1.3. In that list of titles we can see

issues of ‘incompleteness’ highlighted, and then resolved, for different fragments of the

calculus. With each challenge the calculus has grown, changed, and created off-shoots.

ZX, although probably the best known of the graphical calculi discussed here, is not

1NISQ devices are noisy, and have ‘a number of qubits ranging from 50 to a few hundred’.
2Private communication during a ZX-calculus workshop

1



2 Chapter 1 Introduction

the only calculus built for qubit quantum computing. The completeness result ‘A Com-

plete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics’ [JPV18a]

is constructed from the completeness result of another calculus called ZW [Had17]. ZX

is built from the Z and X rotations of the Bloch Sphere; ZW is built from the W and

GHZ states (it was originally called the GHZ/W calculus [Had17, p ii]). ZH, introduced

in 2018 [BK19], is built from Z spiders and H-boxes. There is no need to stop here, and

indeed this thesis introduces two new graphical calculi of its own. All these calculi are

built to be powerful and intuitive ways of reasoning about a chosen domain. The util-

ity, compared to standard matrix notation, is down to three factors: dimension, scale,

and connectivity [Bac16, §2.1.2]. It is doubtless for these reasons that we see the use

of graphical calculi spread not just into wider academia [BH20; GF19] but also into in-

dustry, with papers such as Refs. [BBW20] and [Cow+20] appearing with support from

the company Cambridge Quantum Computing [CQC19].

Example 1.1 (Interchange Law [Mac13, p43]). The Interchange Law (given below) ex-

emplifies the way that a graphical notation can convey meaning. Although we have yet

to give precise meanings for the diagrams below we hope the reader can appreciate the

way that the algebraic equation on the right is a tautology inherent in the notation on

the left.

c

a b

d

≡
c

a b

d

∼ (a⊗ b) ◦ (c⊗ d) = (a ◦ c)⊗ (b ◦ d) (1.1)

An analogy would be the way that the expression f ◦ g ◦ h expresses the associativity of

the composition by virtue of the lack of brackets.

There is a second strand to this thesis, and that is Conjecture Synthesis. Isabelle

Conjecture Synthesis (IsaCoSy) was created with the ‘[...] aim to automatically produce

a useful set of theorems’ [JDB09]. What made IsaCoSy, expanded upon in Ref. [JDB11],

different from previous theory formation systems is that of method. Previous examples

had used a deductive approach (from the known facts make more facts) whereas IsaCoSy

uses a generative approach (generate all hypotheses, weed out false ones). While this

method is, on the face of it, intractable, the authors of Ref. [JDB09] realised that they

only needed to generate hypotheses that didn’t reduce to any other hypothesis. As

a simple example the hypothesis ‘x = 1 + 0’ is automatically redundant if you are

also going to generate the hypothesis ‘x = 1’. We shall get into the graphical calculus

version of conjecture synthesis in more detail in §3, but it was this idea that spurred

the research presented in this thesis: ‘Can we make conjecture synthesis work well for

graphical calculi?’

The implicit first part of the question (‘Can we make conjecture synthesis work at all

for graphical calculi?’) had been answered by Kissinger [Kis13] in a working algorithm

written as a module for Quantomatic [KZ15]. Quantomatic then went through a rebirth
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Figure 1.1: A representation of a CCZ factory in 3D (left) and (something similar to) the ZX calculus
(right), as presented in Ref. [GF19, Figure 9].

=

Figure 1.2: The stylistic change in the ZX calculus between 2008 [CD08] (left), 2011 [CE11] (middle), and
this thesis (right). The colours used in this thesis have been chosen to be easier to distinguish between
for anyone with red / green colour vision deficiency, or when printed in greyscale, with the green node
appearing lighter than the red. [Mil19]
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from ML into Scala and a Scala-based implementation of a similar algorithm was im-

plemented by Kissinger and the author of this thesis. While this produced many results

(over the course of the research for this thesis there were over 100,000 files produced, all

with conjecture synthesis in mind) it did not produce, to the author’s knowledge, any

particularly useful results. The reason for this is that even after running the algorithm

for two weeks on the group’s computing cluster the algorithm was still only producing

theorems that a researcher could have shown by hand, of at most four vertices per

diagram.

The theorems produced by QuantoCoSy (as this program had now been named)

often showed high levels of similarity between them. These were not redundancies like

the aforementioned ‘x = 1+ 0’ reducing to ‘x = 1’. Instead these similarities represented

‘higher’ structure inherent in the phase group or in repeated sections of the diagrams.

The direction of the research then became ‘how can we infer and verify conjectures in

this higher structure?’

This thesis comes in two parts. In the first we generalise on, investigate, and create

new graphical calculi, exhibiting new ways of comparing and relating these calculi, and

examining diagrammatic maps that preserve equational soundness. In the second we dis-

cover a deep link between phase algebras and algebraic geometry, allowing us to infer and

then verify parameterised equations. Perhaps the clearest example of these strands com-

ing together is in §8.3, where we use what we have learned about soundness-preserving

maps, the geometric structure of parameter spaces, and some Galois Theory, to show

that a ZX, ZW, ZH, or ring diagram with phase variables can be verified by a single

equation without phase variables. This single, simple equation implies and is implied

by the large, parameterised family of equations. Our choice of phase algebra directly

dictates the geometry of the parameter space, which in turn dictates the generalisations

of our theorems.

As quantum computing algorithms get steadily more complicated, and as the dia-

grams get larger we shall need to be able to automatically produce the useful set of

theorems that conjecture synthesis promises us. We shall need a toolbox of useful the-

orems for proof assistants (like Quantomatic or PyZX [KW20a]), or for intermediate

representations and optimisers of quantum algorithms [Mur+19; Cow+20; Bac+20]. Our

researchers will also need new tools and new calculi. This thesis provides advances in

all of these areas. The more efficiently we can reason about quantum computing the

more efficient we can make our circuits, and the faster we shall achieve the world where

quantum computing is directly helpful.
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Reference Published Title

[Sch13] 2013 The ZX calculus is incomplete for non-stabilizer quantum
mechanics

[Bac14a] 2014 The ZX-calculus is complete for stabilizer quantum mech-
anics

[DP14] 2014 Pivoting makes the ZX-calculus complete for real stabilizers

[SZ14] 2014 The ZX-calculus is incomplete for quantum mechanics

[Bac14b] 2014 The ZX-calculus is complete for the single-qubit Clifford+T
group

[Bac15] 2015 Making the stabilizer ZX-calculus complete for scalars

[BPW17] 2017 A Simplified Stabilizer ZX-calculus

[Jea+17] 2017 ZX-Calculus: Cyclotomic Supplementarity and Incomplete-
ness for Clifford+T Quantum Mechanics

[JPV18a] 2018 A Complete Axiomatisation of the ZX-Calculus for Clif-
ford+T Quantum Mechanics

[NW17] 2017 A universal completion of the ZX-calculus

Figure 1.3: A table detailing the path towards the completeness results for several fragments of the ZX
calculus. The year shown is the year of publication, but it should be noted that the work of [NW17]
builds on the work of [JPV18a], despite being published beforehand.
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1.1 The contributions of this thesis

The author hopes that the reader finds the entirety of this thesis useful, but this section

exists to draw attention to the most likely candidates of interest, grouped loosely by

theme. The main results chapters come after two background chapters: §2 for graphical

calculi, and §3 for conjecture synthesis. The author would like to highlight the applic-

ations of Algebraic Geometry and Galois Theory as particularly novel to the study of

graphical calculi or quantum circuits, as well as the construction of the two new calculi

ring and ZQ.

1.1.1 The calculus RING

ring is a universal, sound, complete graphical calculus built just from ring operations

and compact closure. As such it acts like a unifier: Any graphical calculus with a similar

phase ring structure contains a copy of ring. Examples of such calculi are ZW and ZH.

ring and ZX form the bulk of the examples used in this thesis.

. The calculus ringR is introduced and shown to be complete (§4)

. We justify referring to the calculus ringC as ‘the’ generic phase ring quantum

graphical calculus (Remark 5.36)

1.1.2 Parameterised rules as geometric surfaces

We demonstrate how to present parameterised rules as geometric surfaces, preserving

existing ideas of rule linearity from the literature and introducing an algebraic geometric

approach to graphical calculi and conjecture inference.

. We provide a geometric framework for parameterised rules (§7.2.1)

. We demonstrate how to convert linear rules to this geometric framework and back

again (§7.2)

. We use this link to infer the existence of linear rules for conjecture synthesis (§7.2.4)

1.1.3 Phase homomorphism pairs

Phase homomorphisms are maps that act on the phases of diagrams. We define here

phase homomorphism pairs; phase homomorphisms paired with an additional functor

that then commutes with the interpretation. An example of a phase homomorphism pair

negates phases in the ZX calculus, and in doing so creates the complex conjugate of the

corresponding matrix. In this thesis we codify, explore, and classify this notion, showing

that phase homomorphism pairs preserve soundness, and even preserve proofs, in some

of the calculi we consider.



The contributions of this thesis 7

. We show that the space of equational theorems is closed under the action of phase

homomorphisms for ring, ZW, and ZH (Theorem 5.42)

. We classify the phase homomorphism pairs for ring, ZW, ZH, and the finite frag-

ments of ZX containing π/4 (§5.4)

. We link phase homomorphism pairs to geometric symmetries of parameter spaces

(§7.2.5)

1.1.4 !-box verification

We introduce a method for verifying equations containing !-boxes by verifying a finite

number of equations without !-boxes. This verification depends on a property we call

separability. This is possible thanks to a new way of presenting successive !-box iterations

in a manner that depends on ◦ rather than ⊗ products.

. We define the notion of separability in §8.4.1

. Series !-box form is defined in §8.4.2

. Finite verification of !-boxes is shown in Theorem 8.51

1.1.5 Phase variable verification

We show how to verify families of equations parameterised by phase variables using a

method built on polynomial interpolation. This method requires checking a finite number

of sample values for the variables.

. Phase variables and !-boxes can be verified in a finite manner without reference to

either (Theorem 8.58)

1.1.6 Applications of Galois Theory

For certain languages we can encode automorphisms of field extensions as phase homo-

morphism pairs. In doing so we can use the machinery of Galois Theory to manipulate

certain phases in a quantum circuit while preserving others. This is combined with the

symmetries provided by phase homomorphism pairs to further reduce the number of

equations needed for verification.

. Over qubits we can verify all the phase variables in a diagram using a single

equation containing no phase variables (§8.3)
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1.1.7 The generalisation step

Conjecture synthesis saw a recent advancement with the generative model discussed in

§3. In this thesis we introduce an new step to this process; generalisation of theorems at

the point of synthesis. This step requires a conjecture inference framework such as the

one introduced in this thesis in order to be possible.

. We alter the generative conjecture synthesis method with the addition of a gener-

alisation step (Remark 3.3)

1.1.8 The graphical calculus ZQ

The foundation of the calculus ZX is the Z and X spiders that represent rotations of

the Bloch Sphere. These rotations generate all possible rotations of the sphere via Euler

angles. Rather than take a generating subset of these rotations as vertex-labels, ZQ allows

arbitrary rotations (expressed as quaternions) as edge-labels. This leads to a calculus

that the author feels is clearer and more intuitive than ZX.

. The calculus ZQ is introduced and shown to be complete (§6)

. The spiders of ZX are shown to not be viable for representing a non-commutative

group (Corollary 6.11)

. ZQ is the first qubit graphical calculus to use a non-commutative phase group

. The rules of ZQ are linear, whereas the rules of ZX are not (Remark 7.31)

1.1.9 Generalising ZH

The calculus ZH treats phase-free Z spiders and generalised Hadamard nodes as funda-

mental building blocks [BK19]. It was announced in 2018 and was shown to be complete

via the construction of a normal form. For the rest of this thesis we shall refer to this

version as ZHC, because the phases of these generalised Hadamard nodes are elements

of C. It can be shown, however, that by simply changing this parameterisation to any

commutative ring with a half, R, that a complete and universal calculus is then exhibited

for R-bits.

. The calculus ZHR is generalised from ZHC and shown to be complete (§4.4)

1.2 Overview

The eventual conclusion of this thesis is that phase algebras are a powerful and important

aspect of a graphical calculus, allowing us to apply techniques and knowledge from

previously unrelated disciplines to the field of quantum graphical calculi. We will use
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this knowledge, among other new results, to also further the field of conjecture synthesis

with the introduction of a new ‘generalisation’ step. Along the way we will introduce new

calculi, novel links to algebraic geometry, and novel inference and verification methods.

Following the two background chapters we will introduce the complete, universal

calculus ring in §4, which will serve as an important example in later chapters. §5 will

then discuss the place of ring in the wider context of phase-ring graphical calculi, and

the ways in which phase algebra homomorphisms interact with diagram equations.

The thesis will then explore another new calculus in §6, explaining the necessity

behind its novel presentation, and the way in which it solves the issues with the (EU)

rule of ZX. §7 establishes the novel link between parameter spaces and geometric surfaces,

building on the phase homomorphism pairs from §5. We also cover why this framework

works for ZQ and not ZX. This link forms the core of our conjecture inference and is

directly linked to the verification methods of §8. §8 introduces new verification results

and then brings these together with the phase homomorphism pairs of §5 and some Galois

Theory in what the author feels is quite a beautiful way. This allows the verification of

an equation involving phase variables by verifying a single equation not involving phase

variables. In §9 we conclude the thesis.

1.2.1 An Algebraic Preview

Given that quantum graphical calculi exist at the intersection of mathematics, physics,

and computer science it is likely that some readers may have never encountered the

topics of Algebraic Geometry, Galois Theory, or Laurent Polynomials. Since we mention

these ideas before giving a proper treatment of them an overview may be appreciated.

In their broadest terms:

• Algebraic Geometry is based on the idea that there is no difference between a

geometric surface in some space, and the collection of polynomial equations that

define that surface. For example the points of the circle described by x2+y2−1 = 0

are still solutions to the equation x3 + xy2 − x = 0. This observation allows us to

switch between considering collections of polynomials and the surface itself.

• Galois Theory concerns pairs of fields, one inside the other, and the homomorph-

isms of the larger field that act as the identity on the smaller. A clear example is

complex conjugation acting on the fields R and C: The real numbers are unaffected

by complex conjugation, but the elements of C \ R are moved. We will use Galois

Theory to construct maps that fix certain phases in a diagram, but move others.

• Laurent Polynomials are a generalisation of traditional polynomials by allowing

positive and negative powers of the indeterminants. Importantly they can still be

added, multiplied, and factorised in the same manner as traditional polynomials.

Once we introduce them we will be working to convert our equations involving

Laurent polynomials into equations using traditional polynomials instead.
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These topics are covered in far more detail when their uses arise in this thesis.

1.2.2 Ethical considerations

There is justified concern about the impact of quantum computing on humanity. The

impact on classical cryptography is probably the most important [Sho94], but the author

hopes that, as with classical computing, the net effect will be undoubtedly positive. An

example of a near-term positive is advances in chemical synthesis and protein folding for

medical research [Per+12].

1.2.3 Chapter dependencies

Each of the results chapters contain a short introduction and gives an indication of

which earlier chapters they are dependent upon. We also include a dependency diagram

in Figure 1.4. Although §6 is not strictly a dependency for §7 there are examples and

remarks beyond the core results that will require knowledge of ZQ.

§4

§5

§6 §7

§8

Figure 1.4: The dependency structure of the chapters in this thesis.

Before embarking on any new results we will spend the next two chapters covering

the motivation and context for this thesis. The final note for this introduction is that

unless stated otherwise all results were the work of the author.



Chapter 2

Graphical Calculi

In this chapter:

. We cover graphical calculi, graph rewriting and reduction systems

. We cover the calculi ZXG, ZWR, and ZHC, among others

. We cover phase variables and !-boxes

Graphical calculi, in the context of quantum computing, stem from Penrose’s dia-

grammatic notation for tensors [Pen71; CK17]. The benefit of graphical notation for

tensors is that these diagrams are inherently two-dimensional, in contrast to the single

dimension used for writing out algebraic terms. This allows us to use one dimension (ho-

rizontal composition) to represent ⊗ and the other (vertical composition) to represent

◦. Since Penrose’s work the idea of tensors has been generalised to that of a monoidal

category [JS91], and with this generalisation has come a host of graphical calculi [Sel11].

Graphical calculi are not just representations to help intuition, but are powerful tools

for reasoning about monoidal categories (see the coherence theorems of Ref. [Sel11]).

We present the desiderata of a graphical calculus in Remark 2.1, with a concrete

definition and many examples to follow. Importantly, graphical calculi need to be both

graphical (i.e. based on diagrams) and calculi (i.e. can be used for calculation). The

second part is the interesting one; we use the diagrams to represent some other object

of study, and then manipulate the diagrams to represent manipulations of the object of

study. The important properties of calculi, which will receive formal definitions in a mo-

ment, are soundness (the calculus can only show things that are true) and completeness

(anything that is true and can be stated can also be shown). The ‘and can be stated’

part introduces a third property: A graphical calculus is universal with regards to some

collection of objects if every one of those objects can be represented in the graphical

calculus.

Almost certainly the best known example of a graphical calculus in quantum com-

puting is simply that of quantum circuit diagrams (see Ref. [NC10]). Probably the best

11
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known example of the calculi considered here is the ZX-calculus (Definition 2.16) which

uses diagrams built from red and green vertices to represent matrices. It differs from

quantum circuit diagrams not just in terms of generators, but also because ZX repres-

ents morphisms in a compact closed, dagger, symmetric monoidal category, compared

to the ‘plain’ monoidal category of circuit diagrams. In a very real sense the power of

ZX comes from this extra structure.

Remark 2.1 (Desiderata for Graphical Calculi). We desire the following aspects for a

graphical calculus:

• A description of valid diagrams to be used in the calculus

• An interpretation from diagrams into some object of study

• Rules for manipulating these diagrams

Every graphical calculus we consider in this thesis will be presented in the form of

a PROP1, an idea that originated with Maclane [Mac65, §5], and neatly described as

a symmetric monoidal category where the objects are the natural numbers, and the

tensor product is addition. Diagrams in our graphical calculi are morphisms in such a

PROP. For our diagrams this means we have a single wire-type, and boxes (representing

morphisms) that take some number of wires as inputs and some number of wires as

outputs. Because we are dealing with PROPs we can cross wires over, but we cannot

always bend wires around: Every wire flows from an output of a box (or boundary) to

an input of a box (or boundary).

Definition 2.2 (Graphical Calculus). For this thesis, a graphical calculus is a PROP

with additional morphisms called generators. Diagrams are morphisms in this PROP.

The calculus comes equipped with a set of rules which extend to an equivalence relation∼
on diagrams. This PROP has an interpretation into some symmetric monoidal category

C, which is a strict symmetric monoidal functor J · K that sends a diagram D to a

morphism in C.

Definition 2.3 (Morphisms of graphical calculi). A morphism of graphical calculi is

a strict symmetric monoidal functor from one PROP of diagrams to the other. There

are no requirements on the interpretations of the two calculi, and it will be made clear

whether the functor respects the equivalence relation ∼.

The rules of a graphical calculus come in two types. There are rewrite rules which

are expressed as ‘replace this subdiagram with this other diagram’ (see §2.1) and there

are meta rules, for example ‘only topology matters’ in ZX. Meta rules are often used to

reflect extra categorical structure that we impose on the PROP; for example the wire-

bending rules implicit in the cups and caps of ZX are just reflections of compact closed

structure on the PROP. The ‘all these rewrite rules hold with the colours red and green

1A PROducts and Permutations category
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swapped’ meta-rule from the early versions of ZX is not a rewrite rule itself but a rule that

constructs rewrite rules. When we consider rules as equivalence relations we really mean

the smallest equivalence relation containing all the rewrite rules and the meta rules.

Meta rules are usually made explicit once (e.g. the (T) rule of Ref. [SZ14]) and then

used implicitly from then on. Two diagrams are often referred to as being isomorphic if

they are equivalent using only the meta rules. By contrast the rewrite rules are (ideally)

explicitly mentioned every time they are used. In this thesis we indicate the rewrite rules

used by the notation A =
R
B, indicating that the rule R was used in transforming A into

B.

Definition 2.4 (Soundness [Sel11]). A graphical calculus is sound if the interpretation

J · K respects the equivalence relation ∼. That is:

A ∼ B =⇒ J A K = J B K (2.1)

Definition 2.5 (Syntactic and semantic entailment). We will have cause in this thesis to

consider multiple versions of a graphical calculus with the same generators (and therefore

the same diagrams) but with different rules. For a graphical calculus G with a given set

of rules R we may write:

R ` A = B or, if unambiguous, just G ` A = B (2.2)

for when A is equivalent to B using the rules R (syntactic entailment). Likewise we may

write:

G � A = B (2.3)

if J A K = J B K using the interpretation of G (semantic entailment). Note that semantic

entailment is independent of any choice of rules, and syntactic entailment is independent

of any choice of interpretation.

Soundness can therefore be seen as the idea that the rules (syntax) preserve the

interpretation (semantics): If R ` A = B then J A K = J B K. The converse of this is

completeness: If the semantics of two diagrams are equal, then they should also be equal

from the point of view of the syntax.

Definition 2.6 (Completeness [Sel11]). A graphical calculus is complete if the equival-

ence relation ∼ reflects any equality under the interpretation. That is:

J A K = J B K =⇒ A ∼ B (2.4)

Combined theorems showing both soundness and completeness of a graphical calculus

may be referred to as coherence theorems [Sel11], but we will just refer to soundness and

completeness as separate properties in this work. The final property mentioned in the
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introduction to this chapter is that of universality, the ability for a graphical calculus to

represent everything it needs to. The idea is analogous to that of a universal gate set in

computer science [NC10].

Definition 2.7 (Universality). A graphical calculus is called universal for a collection

of morphisms if each of those morphisms can be represented by a diagram. I.e. for a

collection of morphisms F :

∀f ∈ F ∃Df such that J Df K = f (2.5)

Note that just because we require a diagram to exist does not mean we have an efficient

method of constructing it.

The origin of these languages was for them to be graphical calculi for categorical

quantum computing [CD08]. The ZX calculus was created as a representation of manip-

ulations of qubits (the qubits themselves represented as points in C2). Since then there

has been some generalisation both beyond qubits (e.g. a qudit version of ZX [Ran14], a

qudit being a point in Cd) and into systems over rings other than C (e.g. ZWR in §2.2.3).

This work remains focussed on the ‘-bit’ case, but is not restricted to qubits:

Definition 2.8 (R-bits and qubits [Had17, Definition 5.1]). Let R be a commutative

ring. The PROP of R-bit is the full monoidal subcategory of RMod whose objects are

tensor products of a finite number of copies of R⊕R. Morphisms are complex matrices

with 2n columns and 2m rows. The category of qubits is simply C-bit and written Qubit.

When talking about R-bit we will sometimes use bra-ket notation (also called Dirac

notation) to save space, as it allows us to clearly express the interpretations of those

generators with arbitrary arity.

Definition 2.9 (Bra-kets [NC10, p62]). A ket | · 〉 is used to indicate a (column) vector,

with a bra 〈 · | used to indicate the dual linear functional. Tensor products of the vectors

and functionals is shown by concatenation: 〈xy | = 〈x | ⊗ 〈 y | and |xy 〉 = |x 〉 ⊗ | y 〉,
and the composition (inner product) of the vector and functional is shown as 〈x | y 〉. In

our work over R-bit we will sometimes refer to the following two bases:

| 0 〉 :=

(
1

0

)

| 1 〉 :=

(
0

1

) and

|+ 〉 :=

 1√
2

1√
2


| − 〉 :=

 1√
2
−1√

2

 (2.6)

R-bit sets the scene for the calculi presented in this thesis. When considering quantum

computing it is tempting to just look at qubits, but it turns out that this more general

setting of R-bit still has relevance to quantum computing. For example the fragment of
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Clifford+T quantum computing represents a subcategory of C-bit. Also, when talking

about the morphisms in R-bit, we will use the term matrix rather than morphism or

tensor to indicate that we have an ordering on the inputs and outputs of each linear

map, which allows us to explicitly write out the matrix (using the choice of basis implied

by R ⊕ R). Every diagram that is interpreted into R-bit therefore represents a matrix

with elements from the ring R.

Remark 2.10. There is a graphical calculus called scalable ZX (SZX from here on)

[CHP19] that is notable here because one can view SZX as a graphical calculus that

represents (potentially enormous) ZX diagrams. That is to say that one can view SZX

as a graphical calculus with diagrams and diagrammatic rules as laid out in Ref. [CHP19],

with an interpretation that turns a SZX diagram into a ZX diagram. We highlight this

because all the other graphical calculi considered in this thesis have interpretations that

turn diagrams into matrices, as indeed SZX does in its original presentation.

2.1 Rewriting and reduction

First we shall establish notation. We will use horizontal, side-by-side placement to indic-

ate the tensor product ⊗, and vertical composition (with appropriate edge connections)

to indicate the usual ◦ composition. We shall be working bottom-to-top in this thesis.

I.e. inputs will be at the bottom of the diagram, and outputs will be at the top. In fact

there are good reasons2 for any choice of direction, but in this thesis we are using bottom

to top.

All the diagrams we will be considering in this thesis will (implicitly) be in the

form of pattern graphs [KMS14]. Pattern graphs evolved from string diagrams [Pen71],

via open graphs [DK13] (later renamed to string graphs). The benefit of string graphs

over string diagrams is that string graphs give a combinatoric representation that is

amenable to Double Pushout Rewriting (Definition 2.13). The benefit of pattern graphs

over string graphs is that pattern graphs allow for !-boxes (Definition 2.23). While pattern

graphs and double pushout rewriting are the backbone of graphical calculi for quantum

computing, pattern graphs will not be used explicitly beyond this section of the thesis. We

will instead favour the representation of !-boxes as the blue boxes found in Ref. [BK19].

We will also use ellipses to indicate repeated structure where clear. Ref. [Kis12] contains

a wealth of information and results about string diagrams, string graphs and rewriting,

and the following definitions are all in the style of Ref. [Kis12, §4.2].

Definition 2.11 (Rewrite Rule). A graphical rewrite rule (with fixed boundary) is a

pair of string graphs L and R, with a third graph I, called the invariant subgraph and

monomorphisms I ↪→ L and I ↪→ R. In this thesis we will insist that the image of I is

2Admittedly the author seems to be alone in believing that the argument for using the right-to-left
direction for SZX or ZQ qualifies as a good reason
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the boundary (i.e. inputs and outputs) of L and R. In particular this means that L and

R have isomorphic boundaries.

Definition 2.12 (Matching). Given a rewrite rule L ← I → R we say that L matches

onto a graph G if there is a monomorphism m : L ↪→ G such that the set of vertices m(I)

disconnects m(L) \m(I) from G \m(L). This is called the no dangling wires condition.

The purpose of rewriting is to cut out an instance of the graph L (found by matching

L onto G) and then replace it with an instance of the graph R. We can make this idea

rigorous in the following way:

Definition 2.13 (Double Pushout Rewriting [EPS73]). A Double Pushout Rewriting

(DPO rewriting) of the rule L ← I → R, with L matched onto G by m produces H in

the below diagram. Both squares are pushouts.

L I R

G G′ H

m

q p
(2.7)

The existence and uniqueness of such a rewrite is covered in Ref. [KMS14], based on the

results of Ref. [DK13].

Now that we can rewrite graphs we shall touch on how to perform reductions. This

idea originates in that of term rewriting, see Ref. [BN98]. Term rewriting combines

logic and algebra to give a system of applying modifications to an algebraic term (e.g.

X2 + 2 + 2X2 − 1) in order to find an equivalent term with certain properties (e.g.

3X2 + 1, which has grouped similar monomials together). Term rewriting is an essential

part of conjecture synthesis, but this work does not make use of any notable changes to

the term reduction system already present in earlier work [Kis13; Kis12].

Definition 2.14 (Graphical reduction and reducibility [Kis12]). Given an ordering ω

on the diagrams of a graphical calculus we say a rule application A 7→ B is a reduction

if ω(A) > ω(B). A diagram A is called reducible (or a redex ) by a set of rules R if a

single application of one of the rules in R yields a reduction of A.

2.2 A zoo of calculi

We will now define the generators and interpretations of the families of graphical calculi

we will use in this thesis. We will not provide all the rules for each calculus here, just

the ones we will have reason to reference on occasion. This is because several different

rulesets exist for each calculus, but also because any time we will need a particular

ruleset we will state the rules explicitly. Note that the calculi ZQ and ringR (introduced

in this thesis) are not covered in this background chapter, and are instead given their

own chapters (§4 and §6).
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2.2.1 Wires

Definition 2.15 (Wires, cups, and caps [CK17, §4, §5]). (with thanks to Ref. [Sel07] for

the standardisation of much of the language and notation). All of the calculi considered

here are based on the same underlying structure of wires. These wires represent the

structure of a compact closed PROP over R-bit without any additional morphisms.

There will be a section in this thesis that does not assume compact closure, but we have

sign-posted this clearly (see Definition 5.1). In ZX, ZW and ZH (and, when we get to

them, ring and ZQ) we have the following graphical elements:

wire
J · K7−→

(
1 0

0 1

)
(2.8)

swap
J · K7−→


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (2.9)

cap
J · K7−→

(
1 0 0 1

)
(2.10)

cup
J · K7−→

(
1 0 0 1

)T
(2.11)

empty
J · K7−→

(
1
)

(2.12)

Note that the swap, in bra-ket notation, has the action of |xy 〉 7→ | yx 〉, and that

our cups and caps obey the snake equations:

= = (2.13)

For the rest of this section we won’t mention the wires when defining the calculi.
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2.2.2 ZX

Officially ZX is called ‘the ZX-calculus’ but since there is no risk of ambiguity, and it is

common to hear people do so, we shall just use the short form (likewise ‘ZW’ and ‘ZH’).

We shall, however, indicate fragments of each calculus using either words or subscripts.

For example ‘Clifford+T ZX’, or ‘ZXπ/4’. ZX originated in Ref. [CD08], and since then

has flourished into the most recognisable of the calculi presented here. We covered part

of its story in §1, and given the range of definitions and fragments there is still debate

as to whether there is ‘a’ or ‘the’ ZX calculus, or even what requirements a graphical

calculus would need to fulfil to count as a ZX calculus3.

Definition 2.16 (ZX). The ZX-calculus comes in several fragments. Each fragment is

determined by the phases (labels) allowed on the nodes. In all cases the phases form

a group that is a subgroup of [0, 2π) under addition. Certain special subgroups have

special names (given below) and only certain subgroups have been the subject of study.

Group Name Shorthand Completeness reference

[0, 2π) Universal ZXU [NW17]

< π/2 > Stabilizer ZXπ/2 [Bac16]

< π/4 > Clifford+T ZXπ/4 [JPV18a]

G - ZXG [JPV19]

Note that Ref. [Bac16] combines the scalar and scalar-free completeness proofs by

the same author. The interpretation of a ZX diagram is understood as a complex matrix,

even though only the Universal fragment of ZX is universal onto all complex matrices.

When a generic group G is considered it is always assumed to contain π/2, and usually

assumed to contain π/4. We now present the generators, interpretation and sample rules

for ZX:

• Green (Z) and red (X) spiders with any number of inputs and outputs (including

0):

α

. . .

. . .

J · K7−→ | 0 . . . 0 〉〈 0 . . . 0 |+ eiα| 1 . . . 1 〉〈 1 . . . 1 | (2.14)

α

. . .

. . .

J · K7−→ | + · · ·+ 〉〈+ · · ·+ |+ eiα| − · · · − 〉〈− · · · − | (2.15)

Phases of 0 are instead left blank.

3Private communication with Niel de Beaudrap and Harny Wang
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• Hadamard gates [NC10, p19] have one input and one output:

J · K7−→ 1√
2

(
1 1

1 −1

)
(2.16)

There is a trend, welcomed by the author for its clarity, to draw edges decorated

with Hadamard gates as dashed, blue lines (in situations where there is neither

ambiguity nor loss of rigour).

:= (2.17)

Hadamard gates are derivable from red and green spiders [DP09] but, as we shall see

below, red spiders can be constructed from green spiders and Hadamard gates. It

has become a matter of authorial preference whether a given paper will consider ZX

to be constructed from red and green spiders, or from green spiders and Hadamard

gates (in a manner similar to that of graph states), or even all three.

• Meta-rules:

– Only topology matters (the underlying structure is an open graph)

– All rules hold with red and green swapped

• Example rewrite rules. We present them here using !-boxes, as is standard, and a

formal definition is given later as Definition 2.23. These light blue boxes indicate

‘0 or more copies of the subdiagram’, requiring the same number of copies for

the matching box on the other side of the equation. For example if the !-box

surrounding the input wire on the left hand side of the rule Spider 1 is expanded

as having 3 copies, then the box around the inputs on the right hand side of Spider

1 is also understood to indicate 3 copies.

α

β

=
Spider 1 α+ β =

Spider 2
(2.18)

=
Bialgebra

=
Hopf

(2.19)



20 Chapter 2 Graphical Calculi

α =
Colour swap

α (2.20)

2.2.3 ZW

The ZW calculus [Had15; Had17] was created for manipulating the GHZ and W en-

tanglement states, representing the two classes of connected entanglement available for

three qubits. The W state (generalised to any arity) is represented as a black spider.

The GHZ state, too, is generalised in terms of arity, but also given a phase, becoming a

Z spider similar to the Z spider of ZX. We will introduce a convention of drawing nodes

that never contain a phase (e.g. the black, rounded spider of ZW) smaller than nodes

that can contain a phase (e.g. the white, rounded spider of ZW).

In contrast with ZX, which aims to represent only qubit quantum computing, ZW

has more freedom. By allowing the phases of the Z spider to come from some choice

of ring R, the diagrams in ZWR (as that fragment is then called) are universal over

R-bit. Not only that, but the rules of ZWR remain sound and complete, independent of

the choice of R. To recover qubit quantum computing one simply sets R to C, but it

should be noted that completeness of the Clifford+T [JPV18a] and Universal [NW17]

fragments of ZX were shown by equivalences with two different fragments of ZW. ZW’s

own completeness comes from the existence of a normal form [Had15].

Definition 2.17 (ZW [Had17]). The ZW calculus is generated by Z (white) and W

(black) spiders. It is parameterised by a choice of commutative ring R, with an inter-

pretation into R-bit.

• The Z (white) spider, parameterised by r ∈ R, and the W (black) spider:

r

. . .

. . .

J · K7−→ | 0 . . . 0 〉〈 0 . . . 0 |+ r| 1 . . . 1 〉〈 1 . . . 1 | (2.21)

n. . .

J · K7−→
n∑
k=1

| 0 . . . 0︸ ︷︷ ︸
k−1

1 0 . . . 0︸ ︷︷ ︸
n−k

〉 (2.22)

When the phase on the white node is 1 it is left blank.

• The Crossing x is a non-commutative, derived generator of fixed arity used in the

rules:
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J · K7−→


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

 (2.23)

• Meta-rules:

– Only topology matters (the underlying structure is an open graph)

• Example rewrite rules:

. . .

. . . . . .

. . .

=
cut W

. . .

. . . . . .

. . .

r

. . .

. . .

s

. . .

. . .

=
cut Z

rs

. . .

. . . . . .

. . .

(2.24)

=
Reidemeister 3

r s =
Plus r+s (2.25)

(2.26)

2.2.4 ZH

The ‘Z’ of ZW, ZX, and ZH (and indeed ZQ) are all minor modifications on the same

theme. The ‘H’ of ZH refers to the H-box; a generalisation of the Hadamard gate in both

arity and phase. One important notational aspect is that the Hadamard node of ZX (a

yellow rectangle with no phase) is represented in ZH as a white rectangle with a phase

of −1, which can feel counter-intuitive when moving between the calculi. Similar to ZW,

the completeness of ZH was proven via the existence of a normal form for its diagrams.

Definition 2.18 (ZH [BK19]). The ZH calculus is generated by phase free Z spiders

and generalised (in both arity and phase) Hadamard nodes called ‘H-boxes’ [BK19]. The

original paper only allows the H-boxes to have phases from the complex numbers, but

one of the results in this thesis (§4.4.1) is that this can be extended to any commutative

ring containing the element 1
2 , preserving soundness and completeness. We will give the

version of ZH from Ref. [BK19] below, our only modification being that we refer to it as

ZHC:
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• The Z (white) spider and H-box (rectangle with m inputs and n outputs) generate

ZHC:

. . .

. . .

J · K7−→ | 0 . . . 0 〉〈 0 . . . 0 |+ eiα| 1 . . . 1 〉〈 1 . . . 1 | (2.27)

c

. . .

. . .

J · K7−→
∑

bitstrings

ci1...imj1...jn | j1 . . . jn 〉〈 i1 . . . im | (2.28)

The sum in the interpretation of the H-box is over all bitstrings i1 . . . imj1 . . . jn.

The reader may find it easier to view this interpretation as a matrix where every

entry is 1, with the exception of the bottom right entry which is c. In the case

where this matrix only has one row and one column (i.e. a scalar) the sole entry is

1 + c. When the phase is −1 it is left off the H-box.

• The derived generators of ZH include the grey spider and the NOT gate:

. . .

. . .

:=

. . .

. . .

1
2

(2.29)

¬ := 1
2

(2.30)

• Meta-rules:

– Only topology matters (the underlying structure is an open graph)

• Example rewrite rules:

. . .

. . .

a

=
H spider

. . .

a

. . .

2
=

Unit 1
(2.31)

a b

¬

=
Addition

a+b
2

2

a b

=
Multiplication

a× b
(2.32)

2.3 Decorated and simple diagrams

The presentation of the calculi above (§2.2) already involved using variables to indicate

arbitrary phases. The meaning of this is usually considered to be so clear that it is not

worth remarking upon: The calculus ZHC was introduced in Ref. [BK19] using variables



Decorated and simple diagrams 23

on the phases. We will, however, have cause to be rather pedantic about this nuance in

this thesis. Our reason for caring about this nuance is that when we later try to generate

and generalise theorems it is important to be able to introduce and verify these useful

components (see §3). First we will clearly define phase variables and !-boxes, and then

declare a diagram to be simple if it does not use them.

Definition 2.19 (Phase Algebra). The phase algebra for a vertex in a graphical calculus

is the collection of terms allowed to be written as a phase for that vertex.

Example 2.20 (ZX Phase Algbera). ZX uses a phase group algebra, which reflects the

fragment of the calculus (Definition 2.16). For example, Universal ZX has phase group

[0, 2π) under addition, and the red and green spiders can be decorated with terms from

that algebra. The following are therefore valid Universal ZX diagrams:

π/2

. . .

. . .

π/4 + π/6 + 12π/3

. . .

. . .

(2.33)

The following equation is not a Universal ZX diagram, because the group algebra does

not contain the symbol ‘×’:

π/2× π/6

. . .

. . .

(2.34)

Definition 2.21 (Phase variables). A phase variable is a formal variable introduced to

the phase algebra. For ZX (i.e. phase group variables) we tend to use α, β, . . . , and for

ZH and ZW (i.e. phase ring variables) use a, b, c, . . . or r, s, . . . . We can evaluate a phase

variable to some element of the phase algebra by replacing all instances of that phase

variable in the diagram with that element.

Example 2.22 (ZX Phase Variable). The following are considered to be Clifford+T ZX

diagrams but with the phase variable α:

α

. . .

. . .

π/2− 3α

. . .

. . .

(2.35)

Note that this is indistinguishable from a ZX diagram where the phase group is generated

by π/4 and α. We will use this observation when talking about parameter spaces in §7.

Now that we have covered phase variables let us look at !-boxes. !-boxes indicate

repeated elements in a diagram, and are notational sugar4 for the concept of pattern

graphs introduced in Ref. [KMS14].

4The region indicated by a !-box is less visually cluttered than drawing out the !-vertices and directed
edges of a pattern graph.
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Definition 2.23 (!-box [KMS14]). A !-box (pronounced ‘bang box’) indicates a collec-

tion of nodes (potentially including wire vertices) in a diagram. By an instantiation of a

!-box we mean choosing a number n ∈ N and making n copies of those nodes, preserving

their connectivity. A !-box is drawn as a blue box surrounding the nodes inside the !-box.

Example 2.24 (!-boxes in ZH [BK19, §2.3]). The diagram below represents an entire

family of ZH diagrams:

↔

 , , , , . . .

 (2.36)

Definition 2.25 (Simple and decorated). A diagram that does not contain any phase

variables or !-boxes is called simple.

Any diagram that isn’t simple represents a family of simple diagrams, and it is

important to be able to recover any particular simple diagram from this family. When

talking about these families we will use the term ‘parameterised family’, and be explicit,

where possible, about what these parameters are. This isn’t just to say ‘parameterised by

!-boxes and phase variables’, but to give each of these a name; phase variables are simply

referred to by their own name (e.g. the phase variable α is still referred to as α) and for

!-boxes we just ascribe to each !-box the name δ1, δ2, . . . . With explicit names for the

parameters we can recover a simple diagram by instantiating each !-box some number

of times, and evaluating each phase variable to some element of the phase algebra. We

will use the notation α|α = π to indicate that α is a parameter, and that it should be

evaluated to the value π. When we are talking about equations it is understood that the

evaluation and instantiation is to be applied to both the left and right hand side of the

equation.

Example 2.26 (An explicit evaluation and instantiation). The (slightly simplified) spider

law in Universal ZX is parameterised over:

• !-boxes: δ1 ∈ N inputs and δ2 ∈ N outputs

• phase variables: α1, α2 ∈ [0, 2π)

We write this parameterised family of equations as:
α1

α2

δ1

δ2

= α1 + α2

δ1

δ2


α1,α2,δ1,δ2

(2.37)
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We now instantiate some of the parameters of the spider law, resulting in what is still

an infinite, parameterised family:
α1

α2

δ1

δ2

= α1 + α2

δ1

δ2


α1,α2,δ1,δ2|α1=π,δ1=2

(2.38)

=


π

α2

δ1

δ2

= π + α2

δ1

δ2


α2,δ1,δ2|δ1=2

(2.39)

=


π

α2

δ2

= π + α2

δ2


α2,δ2

(2.40)

When the topic of verification comes up later (§8) the goal is to be able to say that

some family of equations holds true, just by checking whether some subset of that family

holds true.

Definition 2.27 (Soundness for an equation). An equation of diagrams D1 = D2 is

sound if J D1 K = J D2 K. A family of equations is sound if every equation in the family

is sound.

Definition 2.28 (Verifying family). A family of equations S is said to verify the family

of equations S′ if S being sound implies that S′ is sound:

e sound ∀e ∈ S =⇒ e′ sound ∀e′ ∈ S′ (2.41)

One of the questions considered later in this thesis is ‘when can a parameterised

family of equations be verified by a small set of simple equations?’ Our reasons for

wanting to answer this will hopefully be made clear in the next chapter, where we give

the background for conjecture synthesis.





Chapter 3

Conjecture Synthesis

In this chapter:

. We discuss conjecture synthesis for terms and string graphs

. We introduce a novel step in the conjecture synthesis process

. We discuss the difficulties associated with our graphical calculi

. We give an example from a conjecture synthesis run

It was mentioned in the introduction that IsaCoSy (the Isabelle Conjecture Synthesis)

was created with the ‘[...] aim to automatically produce a useful set of theorems’. The

full quotation, however, is:

Given a set of initial definitions of recursive datatypes and functions, we

aim to automatically produce a useful set of theorems, that will be useful

as lemmas in further proofs, by either a human or an automated theorem

prover. (IsaCoSy: Synthesis of inductive theorems [JDB09])

Where this thesis deviates from that work is in the data structures considered (for

us it will be diagrams rather than recursive datatypes) and in the introduction of a gen-

eralisation step (to be discussed later). Where that work deviated from its predecessors

was in terms of method. IsaCoSy follows a generative approach, where hypotheses are

generated and then assessed, compared to a deductive approach where new theorems are

deduced from old (see Figure 3.1 for a diagram indicating the deductive approach).

The generative approach relies on the concept of reduction, a concept that was briefly

covered in §2.1. For IsaCoSy this meant term reduction, but for this work it will mean

string graph reduction. The key in the generative approach is to not generate (or to

generate and immediately discard) any reducible objects, be they terms or string graphs.

27
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Figure 3.1: A diagram captioned ‘The construction of new knowledge’ from Ref. [Amm93], indicating
the deductive approach to automated theorem generation

Example 3.1 (Adding 0 is pointless [JDB09, Example 1]). The following is a term reduc-

tion describing part of the nature of + acting on the natural numbers:

0 + x x (3.1)

We therefore know that if we generate an expression containing 0+x it would have been

both simpler and equivalent to generate the same expression just containing x instead.

While Example 3.1 feels entirely obvious this simple idea works for any abstract

reduction system. What’s more, conjecture synthesis can generate new reductions: Every

orientable theorem results in a new reduction that will then further limit the space

that needs to be searched. In contrast to the deductive model of Figure 3.1 we can

therefore use the generative model of Figure 3.2. This model has been implemented in

the QuantoCoSy part of Quantomatic [KZ15]. The test for how well the model works is

(counter-intuitively) to see how many fewer theorems it creates for a given system. Any

theorems it doesn’t provide to the user as output were theorems that were reducible.

Earlier work with an earlier version of QuantoCoSy [Kis13] claimed that it produced

exponentially fewer rules when considering GHZ/W (later to become ZW) diagrams up

to a certain size:

The results there were promising, as we demonstrated an exponential drop-off

in the number of extraneous rules generated when using [a reducible object]-

eliminating routine as compared to a naive synthesis routine (Synthesising

Graphical Theories [Kis13])

The starting point for this research was clear: Use QuantoCoSy to generate theorems

in ZX or ZW. The big question remaining was ‘how should we measure success?’ For this
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found equivalence

no

yes

Generator

Check for equivalence

New theorem

Reductions

Irreducible? Discard

Database

feedback

Figure 3.2: The generative model, as used in QuantoCoSy. The database stores the matrix representation
of every irreducible diagram generated. This is then used for comparison with each newly generated
diagram to determine whether a new equivalence has been found.

the author took the goal of designing a system that could ‘feasibly discover a complete

ruleset for ZX or ZW, given elementary domain knowledge’. This goal was chosen before

the complete rulesets for Clifford+T or Universal ZX were discovered, but this goal,

together with the question of implementation, led to the research in this thesis.

One final note is that in our conjecture synthesis runs we usually considered two

diagrams to be equivalent if they agreed up to non-zero scalar. This is because scalars

are comparatively easy to keep track of using a single complex number rather than a

diagram.

3.1 Generating diagrams

As research for this thesis started, the ZX-calculus (see §2.2.2) was already gaining at-

tention. The book Ref. [CK17] was finished, focussing almost exclusively on ZX, and the

quantum computing lectures at the University of Oxford (attended by the author) were

lectured using ZX. ZX had already been shown to be complete for stabilizer quantum

mechanics, although not for the other fragments, and the expectation and hope was

that it would be shown to be complete for Clifford+T and universal quantum computa-

tion soon (see Table 1.3). ZX, for our purposes, is generated by red and green spiders,

and these spiders are very relevant for CoSy. We shall take the following as our initial

‘elementary domain knowledge’:



30 Chapter 3 Conjecture Synthesis

• Spiders have arbitrary arity

• Adjacent spiders of the same colour fuse

• If two edges join a pair of spiders, then those spiders either fuse by the spider law,

or the edges disconnect by the Hopf law

Combining these three points results in the realisation that ZX diagrams can be

reduced by the spider and Hopf laws to a labelled, bipartite graph. Since any reducible

diagram will be ignored by the model in Figure 3.2 we can instead simply generate

labelled bipartite graphs (the label just contains the information on the colour and

angle of the spider). For this QuantoCoSy uses the algorithm given by Ref. [CR79]. ZW

also contains two colours of spider, but crucially we cannot use the spider laws of ZW

(Equation (2.24)) to reduce all diagrams to bipartite graphs. Likewise when the calculus

ZH (Definition 2.18) was introduced it too had spider laws, similar to ZW’s, that do not

provide us with a reduction to bipartite graphs. For this reason the first implementations

focused on ZX.

Remark 3.2. Thanks to the combinatoric model of pattern graphs it is possible to gen-

erate diagrams containing !-boxes. One of the contributions of this thesis is that we can

now verify equations involving !-boxes without needing to directly reason with !-boxes,

see §8.4. This verification depends on a property called ‘separability’, covered in §8.4.1,

which is a condition one could build into the pattern graph generator.

3.2 Generalising theorems

Figure 3.3 contains one of the first ZX rules generated by QuantoCoSy running on Duvel.1

Note that at this point the feedback loop from Figure 3.2 had not been implemented,

and scalars were still being considered. This theorem was, however, towards the upper

end in terms of the size of diagram considered for those runs.2

= π/2

Figure 3.3: An early example of a theorem generated by Duvel. In this case the theorem is ‘-1001866680 -
1614245455.qrule’ from run ‘18-04-04-10-55-19-duvel’, chosen because it is first in the list when displayed
by Quantomatic.

1The computing cluster made available for this research, with 24 cores at 2.9MHz.
2The results of these QuantoCoSy runs can be found as additional files provided along with this

thesis, although we do not rely upon them for any of the results in this thesis. Results are in folders
labelled by a date and target hardware, and there is a file ‘summary.txt’ in each folder recording the
notes for that run.
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Remark 3.3 (The generalisation step). The first contribution of this thesis is that of

adding a generalisation step to the method of generative conjecture synthesis. It is per-

formed during the feedback step of Figure 3.2, and during this step we take our newly

synthesised result and try to generalise it as much as possible before creating new re-

ductions from it. This inner generalisation algorithm could itself be deductive (we cover

examples in §7.1) or produce informed guesses which are then verified (see §7.2.4). In

both cases the processes are novel to this thesis, and the non-deductive process is only

possible due to a novel link between phase algebras and algebraic geometry.

Example 3.4 (Spotting a generalisation). the theorems in Figure 3.4 form part of a wider

pattern, illustrated by the use of !-boxes in Figure 3.5. Likewise the two ‘π-commutations’

exhibited in Figure 3.6 are both instances of the more general rule shown in Figure 3.7.

This question of how to generalise theorems is not new. The philosophical ‘Problem

of Induction’ of creating ideas from evidence dates back to Hume in 1739 [Hum03].

Example 3.5 gives a more recent example from the field of conjecture synthesis, where

the task of term generalisation is handled by attempting to replace existential quantifiers

with universal quantifiers, and if that proves to be too general then successively greater

restrictions are placed on the universal quantifier. For graphical calculi we have two ways

to generalise. We can generalise these graph patterns with !-boxes (as in Figure 3.5) and

generalise the phase patterns with ‘phase variables’ (as in Figure 3.7).

Example 3.5 (Term generalisation using quantifiers [Amm93, p416]). The progression

of first attempting to generalise the variable n to universal quantification, and then to

restricted universal quantification in a conjecture about natural numbers and primes.

∃n, p, q(n ∈ N ∧ p ∈ P ∧ q ∈ P ∧ n = p+ q) (3.2)

∀n(n ∈ N → ∃p, q(p ∈ P ∧ q ∈ P ∧ n = p+ q)) (3.3)

∀(n(n ∈ N ∧ is-even(n)→ ∃p, q(p ∈ P ∧ q ∈ P ∧ n = p+ q)) (3.4)

The question of how to introduce phase variables (and, to a lesser degree, !-boxes) is

covered in §7, and relies on a novel link between phase algebras and algebraic geometry.

We will discuss how to then verify these conjectures in §8. One of the interesting results

of combining these two ideas arises in §8.3, where we note that some phases can, almost

automatically, be replaced with more general phase variables. In terms of Example 3.5

this would amount to saying that certain existential quantifiers could automatically be

replaced with universal quantifiers. The operational mantra for this is that there is a

bound on the algebraic complexity for the phases in an equation; if a phase appears

less often than the degree of its minimal polynomial then it can be replaced by a phase

variable (Remark 8.36).

The framework of §7 is, however, limited by the choice of phase algebra. For ZX

the framework can infer all the rules in the complete ruleset of Stabilizer ZX from

Ref. [Bac14a] and Clifford+T ZX in Ref. [JPV18a], but it cannot reason about the rules

needed for completeness of Universal ZX: The original completeness result contained the



32 Chapter 3 Conjecture Synthesis

(AD) rule [NW17] which requires the user to compute the magnitude and argument of

λ1e
iβ + λ2e

iα. With considerable work that ruleset was reduced to that of Ref. [Vil19],

which requires the user to compute the following:

In rule (EU’), β1, β2, β3 and γ can be determined as follows: x+ := α1+α2
2 ,

x− := x−α2, z := − sin(x+) + i cos(x−) and z′ := cos(x+) − i sin(x−), then

β1 = arg z+ arg z′, β2 = 2 arg(i+ |z|
|z′|), β3 = arg z− arg z′, γ = x+− arg(z) +

π−β2

2 where by convention arg(0) := 0 and z′ = 0 =⇒ β2 = 0. (Figure 2,

A Near-Minimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum

Mechanics [Vil19])

Since we are always striving to find more refined, or even just different, complete rule-

sets for these calculi it is possible that there will exist some complete ruleset for ZX where

every rule does fit into the framework presented in §7. The authors of Ref. [JPV18b],

however, are pessimistic about this in their comment: ‘Notice however that [SZ14] and

[Jea+17] are two different kinds of evidence that such a finite complete axiomatisa-

tion [using linear rules] may not exist’. (See Remark 7.20 for how the linear rules of

Ref. [JPV18b] coincide with the framework for ZX described in §7.)

Constructing a framework that allows the direct inference of the (EU’) rule’s external

computations, also called side conditions, seems infeasible to the author. This in no small

part prompted the wider research of this thesis. Fortunately another avenue opened up,

for despite the apparent complexity of the (EU’) rule of Ref. [Vil19] it actually hints at

something far simpler: It is analogous to the Euler angle decomposition of rotations in

3D space (this is the origin of the name (EU)). In response to this the author constructed

a new, complete, graphical calculus called ZQ (Definition 6.14) which took all rotations

to be primitive, and not just the Z and X rotations of ZX. In contrast to Universal ZX it

is possible to express a complete ruleset of (the equally universal and complete calculus)

ZQ using the linear framework of §7.
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= and =

Figure 3.4: Two examples of (scalar-free) copying

=

Figure 3.5: The more general version of (scalar-free) copying, using !-boxes

π/2

π = −π/2

π
and

π

π = π

π

Figure 3.6: Two examples of (scalar-free) π-commutation

α

π = −α

π

Figure 3.7: The more general version of (scalar-free) π-commutation
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3.3 Generalising ring calculi

By this point in the narrative the paper introducing ZH (Ref. [BK19]) had been pub-

lished. The author was then presented with the question of which of ZH and ZW, both

being ring-based, spider calculi, would be better to investigate. Both ZH and ZW are

built from two types of spider, with the rules of ZH involving a third, derived, type of

spider. Neither calculus relies on side conditions for its complete ruleset. ZW, unlike ZH,

had the advantage of having been used directly for the completeness results for Clif-

ford+T and Universal ZX, but the completeness results of both ZH and ZW were shown

via normal forms.

It struck the author that the similarities between ZH and ZW were more interesting

than their differences, and so at this point the research diverted from synthesising con-

jectures in these ring-based languages to trying to find a unifying system for discussing

them. From this came the ringR graphical calculus (§4.1); a calculus designed to be as

generic a phase ring calculus as possible. By construction it is easy to translate ringR
diagrams into ZW or ZH diagrams, but by considering the category of phase ring graph-

ical calculi we can actually say that ringR is essentially initial for graphical calculi with

phase ring R (Corollary 5.14). ringC has even been described as ‘solving the field’ for

phase ring qubit graphical calculi3.

The investigation of ringR and its categorical context (§5) gave rise to the idea of

phase homomorphisms and phase homomorphism pairs; structures that acted directly on

the phase of the diagrams while also commuting with the interpretations. These phase

homomorphism pairs also arise as symmetries in the framework introduced in §7, and

are instrumental in the finite verification result of §8.3. At the end of §5 we look at the

corresponding structures for phase group calculi, and then generalise further to Σ-calculi.

This ends our introductory chapters, and so we shall begin by introducing the calculus

ring.

3Aleks Kissinger, private communication



Chapter 4

The Graphical Calculus RING

In this chapter:

. We introduce a complete, universal phase ring calculus, ringR

. We extend ZHC to the more general ZHR

. We exhibit translations between ZWR, ZHR, and ringR

. The calculus ringR introduced in this chapter is both a motivation and an example

used throughout the rest of this thesis

The results of this chapter were born from the idea of a generic phase ring calculus

for conjecture synthesis. The ZW calculus ‘contains rational arithmetic’ in the words

of Ref. [Coe+11], meaning that one can use the W and GHZ states of ZW to perform

addition and multiplication. This is not to say that ZW is the only way of encoding

a ring-like structure in a graphical calculus, or even that there are not other ways of

presenting ring-like structures inside ZW. Just because ZW contains rational arithmetic

does not mean in embodies rational arithmetic.

ZW is not the only calculus with a phase ring. We were introduced to ZHC in Defini-

tion 2.18, which is universal and complete for Qubit [BK19], but there is also the newly

introduced Algebraic ZX1 [Wan19], which coerces the phase group of ZX into a phase

ring.

Our aim for this chapter is to introduce a phase ring calculus that lays bare the ring

structure of the phase algebra. This will allow us to explore the uses and limitations of

such a phase algebra, especially over qubits, in later chapters.

We introduce our own calculus ringR in §4.1, which is designed with the ring opera-

tions first and foremost, and to work for any commutative ring R. We exhibit a complete

ruleset for ringR in §4.2, found via a translation with ZWR. We then extend ZH to work

for arbitrary commutative rings with 1
2 in §4.4.1, and also a translation between ringR

1The author would have suggested a different name, such as ‘Ring ZX’.

35
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and this more general version of ZH. Although the translation with ZHR is covered in far

briefer terms than the translation with ZWR we use it to produce a different, complete,

ruleset for ringR in §4.4.3 (provided the ring R contains 1
2).

As mentioned earlier the calculus ring is used as both motivation and example

throughout the rest of this thesis, but the only knowledge required for those future

chapters is familiarity with the definition and main results of §4.1, and awareness of the

rules in Figure 4.3.

4.1 The definition of RING

The graphical calculus ringR is created to be ‘as generic a phase ring graphical calculus

over states as possible’. With this in mind our generators are precisely the ring operations

of some ring R, a set of states representing the elements of R, and the ambient wires,

swaps, cups and caps of a compact closed graphical calculus. There are complete rulesets

available via translation from both ZWR (§4.2) and also the extended ZH calculus, ZHR,

which we introduce in §4.4.

Definition 4.1 (ringR). The graphical calculus ringR for a commutative ring R is a

(compact closed) PROP with generators and interpretation given by Figure 4.1, with

derived generators given in Figure 4.2, and rules given in Figures 4.3 and 4.4.

Let’s unpack this definition a little. The generators in Figure 4.1 form the core of the

calculus. Every diagram in ring is built from these three components. Since we allow

wire bending (i.e. this is a compact closed calculus) these generators can be plugged

together with no regard for concepts of ‘input’ or ‘output’. The multiplication gate is

the familiar (phase-free) Z spider from ZX, ZW, and ZH, and so retains all of its spider-

like qualities (commutativity, associativity, etc.). Where ring differs from some of the

other calculi is that the addition gate has a distinguished wire, drawn at the top in

Figure 4.1. This means that addition in ring forms a ‘one-sided’ spider: wires connected

to the rounded side of the gate act like wires connected to a spider, but the distinguished

wire (attached to the flat, bold side) does not.

Readers familiar with monoids should note that the multiplication gate forms a

monoid with the state 1 as a unit, and the addition gate forms a monoid with the state 0

as a unit. Knowing this allows us to create the derived generators of Figure 4.2. Derived

generators are built from our core generators, and represent motifs that appear often

enough in our diagrams to warrant creating these shorthand notations. The Hadamard

Gate in ZX is a derived generator: It is derivable from Z and X spiders, and so is

technically redundant, but is so common and useful a gate that it is afforded the same

status as a generator. In ring the multiplication gate can be generalised as the familiar,

phased Z spider (as in ZW or ZX), and the addition gate as a phased, one-side spider. In

either case the label on the derived generator is an element of the ring S. To summarise:
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Remark 4.2 (Topology matters a bit). The white multiplication node is indeed a spider,

in the sense of Ref. [CD08], but addition has a distinguished output indicated by the

bold, flat edge.

The two other derived generators in Figure 4.2 are the NOT gate and Hadamard

gates respectively. These derived generators use the ‘flipped’ version of the addition

gate, drawn upside down. This is simply a space-saving convention: The distinguished

wire comes from below, and so the bold, flat edge of the gate is drawn at the bottom.

To calculate the interpretation we would use bent wires to allow us to draw the addition

gate the same way up as it is in Figure 4.1.

Now that we have defined our language we shall explore its important properties:

Completeness, Soundness and Universality.

Theorem 4.3 (ring is complete). The language ringR is complete for any commutative

ring R.

Proof. We include in Figures 4.5 and 4.6 a translation between the generators of ringR
and ZWR that preserves the interpretation. In §4.3 we derive, in ringR, each equality

FringL = FringR for each rule L = R in [Had17; Had15]. In Lemma 4.37 we derive

the equation g = FringFZW(g) for each generator g of ringR. Therefore for each sound

diagrammatic equation D1 = D2 we will be able to derive:

ZWR `FZWD1 = FZWD2 (4.1)

ringR `FringFZWD1 = FringFZWD2 (4.2)

ringR `D1 = FringFZWD1 and D2 = FringFZWD2 (4.3)

∴ ringR `D1 = FringFZWD1 = FringFZWD2 = D2 (4.4)

Theorem 4.4 (ring is sound). The rules presented for ring are sound

Proof. This is can be checked directly, made simpler when combined with the knowledge

that the translation preserves the interpretation.

Theorem 4.5 (ring is universal). ring is universal over R-bit.

Proof. The same interpretation-preserving translation from ZW used in Theorem 4.4

shows that any matrix expressible in ZWR is expressible in ringR, and since ZWR is

universal for R-bit so is ringR.

Remark 4.6 (Comparison to Quantum Arithemtic). Quantum Arithmetic refers to per-

forming elementary arithmetic operations to numbers stored as registers of qubits. For

example one can store the number six, 110 in binary, using three qubits represented in

the computational basis as:

| 1 〉 ⊗ | 1 〉 ⊗ | 0 〉 (4.5)
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states
a

(
1

a

)

multiplication

(
1 0 0 0

0 0 0 1

)

addition

(
1 0 0 0

0 1 1 0

)

Figure 4.1: The generators of ringR

r

. . .

:=

r

. . .

:=

1

-1

1

-1

r

. . .

. . .

:=

r

. . .

. . .

:= −2

1

1

Figure 4.2: Derived generators of ringR: The one-sided spider for addition, the NOT gate, the multi-
plication spider and the Hadamard gate .
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A demanding part of Shor’s algorithm [VBE96; Sho94] requires being able to perform

the following elementary arithmetic operation:

Ua,N : |x 〉 ⊗ | 0 〉 7→ |x 〉 ⊗ | ax mod N 〉 (4.6)

While ring is constructed from the two ring operations and compact closure, its native

way of handling numbers is fundamentally different to that of quantum arithmetic. For

example the state bearing the label 6 represents a single qubit, expressed as follows in

the computational basis:

s

6

{
= | 0 〉+ 6| 1 〉 (4.7)

The state representing the bit-string 110 is more complicated:

u

wwww
v

1

-1

1

-1

1

-1

1

-1
0

}

����
~

= | 1 〉 ⊗ | 1 〉 ⊗ | 0 〉 (4.8)

Since ring is universal it is still capable of representing (and reasoning about) quantum

arithmetic operations, but the use of complex numbers as labels in ring should not be

confused with the presentation of numbers as bitstrings in bra-ket notation.

Remark 4.7 (The power of Compact Closure). Compact Closure was a fundamental

property highlighted in Ref. [AC09], the seminal work on Categorical Quantum Mechan-

ics. That work also highlighted the importance of algebraic considerations in the design

of process systems:

In particular, we have in mind the hard-learned lessons from Computer Sci-

ence of the importance of compositionality, types, abstraction, and the use of

tools from algebra and logic in the design and analysis of complex informatic

processes. (Categorical Quantum Mechanics, [AC09])

This new calculus demonstrates that it is possible to construct a sound, universal and

complete diagrammatic calculus for quantum computing using just a single algebraic

structure and compact closure. Indeed ring could be seen as further evidence of the

power of compact closed structures, since without cups and caps the calculus ring is

less expressive than open term-trees of rings. This idea is explored further in §5.1.

4.2 The rules of RING

We break the rules of ring into two parts. The first part are the rules relating to

addition and multiplication; in particular multiplication forms a spider (the familiar Z
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spider). The addition gate does not form a spider, although since it is associative and

commutative on inputs we use the rounded side of the gate to indicate the inputs, and

use the straight, bold edge to indicate the single output. These are found in Figure 4.3.

We label these rules as simply + or ×, since these are the effects the gates have on states.

· ·
·

s

r

· · ·

· · ·
· · ·

· · ·
=
× rs

. . .

. . .

r

. . . . . .

. . .

=
× r

. . . . . .

. . .

r

. . . . . .

. . .

=
× r

. . . . . .

. . .

1
=
×

s

r

· · ·· · ·

=
+ r + s

. . . r s

=
+ r + s

r =
+

r
0

=
+

Figure 4.3: The rules of ring concerning addition and multiplication.

In Figure 4.4 we show the remaining rules of ring. These can be considered as rules

containing the NOT gate (A) and (N), the distributive law (D), scalar identity (I), the

Hopf law (Hopf), a law for forming a loop with addition and multiplication (L), two

rules for the interactions between addition and Controlled Z (CZA1) and (CZA2), and

three bialgebra laws (B1), (B2) and (CP).
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Figure 4.4: The remaining rules of ring.

The first thing we must do with our rules is justify the notational symmetry used in

defining the NOT derived generator.

Lemma 4.8. The derived generator NOT (Figure 4.2) is justified in its graphical sym-

metry.

Proof.

=
N

0

=
+

0

=
N

(4.9)
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7→ ,

. . .

7→

. . .

0

,
r

. . .

7→
r

. . .

Figure 4.5: Translation from ZWR to ringR.

a

. . .

. . .

7→ a

. . .

. . .

7→

Figure 4.6: Translation from ringR to ZWR

4.3 Completeness via ZW

We construct a complete ruleset for ringR by exhibiting a translation to and from ZWR.

This translation acts as the identity on bare wires, swaps, cups and caps. This means

that the diagram components in (4.10) are considered to be the same in both calculi:

 , , , ,

 (4.10)

The translation is given in Figures 4.5 and 4.6. We will now apply the translation to

each of the rules of ZW then derive these translated rules using the rules given in §4.2.

In order to ease this process we shall first show that three commonly used components

of ZW are translated into simple ring counterparts, namely the NOT gate, plus gate

and negation. The visual similarities between the two languages can make it hard to tell

at a glance which language is being considered. In this section the notation 7→ indicates

the translation of a ZW diagram or equation (on the left) to a ring diagram or equation

(on the right).

Lemma 4.9. The ruleset ring entails that the translation of the binary w spider is the

NOT gate with an input wire bent upwards:

7→

0

= (4.11)
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Proof. This is just the rule N

From here on we will use Lemma 4.9 to translate the binary w spider. This NOT

gate is involutive:

Lemma 4.10. The ruleset ring entails the translated rule inv from ZW:

= 7→ = (4.12)

Proof.
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1

−1

=
D

1

−1

−1

−1

1

−1 =
+,×

1

−1

=
+

(4.13)

Having shown that the NOT gate is involutive we now use this lemma to show that

the commonly appearing combination of a binary w spider following a larger w spider is

in fact the plus gate:

Lemma 4.11. The translation of the commonly appearing ZW diagram below is equal

to the plus gate in ring:

· · ·

7→
0

· · ·

=

. . .

(4.14)

Proof.

0

· · ·

=
+

0

· · ·

=
N

· · ·

=
4.10

. . .

(4.15)



44 Chapter 4 The Graphical Calculus RING

From here on we will use Lemma 4.11 to translate that composition of the 1 → 1

and 1→ 2 w spiders. To show that the traced crossing is equal to negation we will first

need the following lemmas:

Lemma 4.12. The following equations are derivable in ring:

= a =
a

0

(4.16)

Proof.

=
N 0

=
+

0

=
N

(4.17)

a =
4.10

a

=
N

a
0

=
+ a

0

(4.18)

Lemma 4.13. The following equation is derivable in ring:

a1 an· · · = Π a1 . . . an (4.19)

Proof.

a1 an· · · =
4.12, A

a1 an· · ·

0 0

=
B2

a1 an
· · ·

0 0

=
4.12

a1 an
· · ·

0 0

(4.20)
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=
+, A

· · ·a1 an

=

· · ·a1 an

=
inv,×,+ Π a1 . . . an (4.21)

Lemma 4.14. The ruleset ring entails the translation of the traced crossing is multi-

plication by −1:

7→ = −1 (4.22)

Proof.

=
×

=
1

1

−2 =
×

1

1

−2
=

4.13 1

−2

=
+,× −1

(4.23)

From here on we will use Lemma 4.14 to translate the traced crossing from ZW

to ring. Having derived these implicit simplifications in the translation we will now

translate and derive the rules of ZW in the order presented in [Had17], with the exception

of the inv rule, which was shown in Lemma 4.10.

Lemma 4.15. The ruleset ring entails the wire bending rules of ZW:

= = = = (4.24)

Proof. This is just the requirement that ringR is compact closed.

Lemma 4.16. The ruleset ring entails the translated rule reix2 from ZW:

= 7→ = (4.25)
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Proof. Apply rules × and Hopf .

Lemma 4.17. The ruleset ring entails the translated rule reix3 from ZW:

= 7→ = (4.26)

Proof. After applying rule × both sides are isometric to:

(4.27)

Lemma 4.18. The ruleset ring entails the translated rule reix1 from ZW:

= 7→ −1 = −1 (4.28)

Proof. Tautological, thanks to Lemma 4.14.

Lemma 4.19. The ruleset ring entails the translated rule natηx from ZW:

= 7→ = (4.29)

Proof. This is identical to rei2x from Lemma 4.16.

Lemma 4.20. The ruleset ring entails the translated rule natεx from ZW:

= 7→ = (4.30)
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Proof. This is identical to rei2x from Lemma 4.16.

Lemma 4.21. The ruleset ring entails the translated rule natwx from ZW:

= 7→ = (4.31)

Proof. This is just rule CZA1.

Lemma 4.22. The ruleset ring entails the translated rule cutw from ZW:

. . .

. . . . . .

. . .

=

. . .

. . . . . .

. . .

7→

. . .

0

. . .

. . .

0

. . .

=

. . .

0
. . .

. . .

. . .

(4.32)

Proof.

LHS =
+

. . .

0. . .

. . .

0

. . .

=
N

. . .

. . .

. . .

0

. . .

=
4.10

. . .

. . .

. . .

0
. . .

=
+
RHS

(4.33)

The next rule to translate (Lemma 4.24) requires us to be able to apply a cup as an

input to the plus gate. We will first provide a quick lemma to show that this results in

the zero state:

Lemma 4.23. The following is derivable in ring:

= 0 (4.34)

Proof.

=
×

=
×

=
L

0

0 =
×, I

0 (4.35)
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Lemma 4.24. The ruleset ring entails the translated rule trw from ZW:

. . . . . .

=

. . . . . .

7→

. . . . . .

0

=

. . . . . .

0

(4.36)

Proof.

. . . . . .

0

=
+

. . . . . .

0

=
4.23

. . . . . .

0

0

=
+

. . . . . .

0

(4.37)

Lemma 4.25. The ruleset ring entails the translated rule symw from ZW:

. . . . . .

=

. . . . . .

7→

. . . . . .

0

=

. . . . . .

0

(4.38)

Proof. This is symmetry of addition in +.

The rule baw from [Had17] is, frankly, too visually complicated once translated.

Instead we rely on the fact that baw can be derived from 2a, 5a, 5b and 5c of [Had15] as

shown in [Had15, proposition 4]. Rule 2a of Ref. [Had15] happens to be the same as the

rule inv of Ref. [Had17], and the translation of inv was already derived in Lemma 4.10.

The remaining three rules we modify slightly and take as axioms B1, CP and I in ring.

Lemma 4.26. The translations of three rules 5a, 5b and 5c of Ref. [Had15] into ring

are derivable:

= 7→ = (4.39)
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= 7→ = (4.40)

= 7→ = (4.41)

Proof.

=
B1

(4.42)

=
+

0

=
CP

0 0

=
+, 4.23

(4.43)

=
+,× 0

=
I

(4.44)

Before our next derivation we need a lemma that shows the interaction between the

NOT and H derived generators.

Lemma 4.27. The composition of the NOT and H derived generators in ring gives the

equality:

=
−1

(4.45)
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Proof.

=

1

-1

1

-1

1

-2

1

=
+

1

-1

1

-2

1

=
×

1

-1

1

2

1

-1

=
D

1

-1

2

2

-1

-1

=
+,×

1

-2

1

-1

=
H −1

(4.46)

Lemma 4.28. The ruleset ring entails the translated rule antnx from ZW:

= 7→ = -1 (4.47)

Proof.

=
A

=
4.27 −1

=
×

-1 (4.48)

Lemma 4.29. The following rules are translated verbatim from ZW, and are all derivable

in ring:

r

. . .

. . .

s

. . .

. . .

= rs

. . .

. . . . . .

. . .

. . . . . .

=

. . . . . .

(4.49)

. . . . . .

=

. . . . . .

= (4.50)

Proof. These are all derivable from ×.

Lemma 4.30. The ruleset ring entails the translated rule bazw from ZW, noting there
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must be at least one output (boundary at the top of the diagram):

r

. . .

. . .

rr

=

. . .

. . .

r

7→

r

= r (4.51)

Proof. This is rule B2

Lemma 4.31. The ruleset ring entails the translated rule loop from ZW:

r

= 7→
r

=
0

0

(4.52)

Proof. This is rule L and ×.

Lemma 4.32. The ruleset ring entails the translated rule ph from ZW:

r

= r 7→
r

−1 = r

−1
(4.53)

Proof. This is spider fusion and un-fusion from rule ×.

Lemma 4.33. The ruleset ring entails the translated rule natnc from ZW:

= 7→ = (4.54)

Proof. This is rule A.
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Lemma 4.34. The ruleset ring entails the translated rule unx from ZW:

= 7→ = (4.55)

Proof.

=
×

=
CZA2

(4.56)

Lemma 4.35. The ruleset ring entails the translated rule rng−1 from ZW:

= −1 7→ −1 = −1 (4.57)

Proof. This is tautological, because of Lemma 4.14.

Lemma 4.36. The ruleset ring entails the translated rule rngr,s+ from ZW:

r s = r+s 7→ r s = r+s (4.58)

Proof.

r s =
×

1 1

r s

=
B2

r s

1
=

+,× r+s (4.59)
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Lemma 4.37. The equality J J g KZW KringR = g is derivable in ring for each generator

g.

Proof.

u

v

u

v

}

~

ZW

}

~

ringR

=

u

v

}

~

ringR

= (4.60)

u

v

u

v

}

~

ZW

}

~

ringR

=

u

w
v

}

�
~

ringR

=
4.11

(4.61)

t s

a

{

ZW

|

ringR

=

s

a

{

ringR

=
a

(4.62)

This concludes our collection of proofs showing that ringR is complete.

4.4 Extending ZH, and relating it to RING

The calculus ZHC was shown to be complete via the existence of its own normal form,

rather than via equivalence with ZW [BK19]. In this section will give a generalisation

of ZH, called ZHR, and we will then exhibit translations between ZHR and ringR. It

must be noted that while ZWR exists and is well defined for any commutative ring R,

the calculus ZHR is only defined for commutative rings R with a half.

Although we have already provided a complete ruleset for ringR from ZWR in §4.2,

ZW and ZH have very different rulesets of their own [BK19; Had17]. The translations

of these rulesets into ring remain distinct, and therefore one may be more useful than

the other in different situations. The translation from ringR to ZHR was rather easy to

find; one simply had to find a ring substructure in ZH (an idea continued in §5), which

required looking at the rules of ZH to see where addition and multiplication were used.

Translating from ZH to ringR was similarly easy; since we have access to elementary

matrices it was simple enough to find a translation for low-arity H-boxes, and then

generalise from there.

Since ZHR has the additional requirement on R that it be a commutative ring with 1
2

(compared to ZWR, where R simply needs to be a commutative ring) we simply state

here a smaller ruleset (§4.4.3) for ring and translation to and from ZHR (Figure 4.9),

relegating the proof of completeness to Appendix B.
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4.4.1 The graphical calculus ZHR

The graphical calculus ZHR is almost identical to that of ZHC, with the exception that

the labels of the H-boxes are now from some arbitrary commutative ring with a half,

R. Explicitly this means that R has a characteristic other than 2, and that there is an

element 1
2 which is the multiplicative inverse of 2.

Definition 4.38 (Generalised ZH). ZHR has generators and interpretation as given in

Figure 4.7, and a ruleset given in Figure 4.8.

Theorem 4.39 (ZHR is complete). The rules presented in Figure 4.8, are sound and

complete for the universal calculus ZHR, where R is a commutative ring with a half.

Proof. The proof is given in Appendix A, because it follows an almost identical proof to

that of [BK19].

Theorem 4.40 (ring is complete, via ZHR). The rules of §4.4.3 are complete for the

graphical calculus ringR, where R is a commutative ring with a half.

Proof. The proof is given in Appendix B.

Z spiders Z : m→ n

. . .

. . .

| 0 〉⊗n〈 0 |⊗m + | 1 〉⊗n〈 1 |⊗m

H-boxes Hr : m→ n r

. . .

. . .

∑
ri1...imj1...jn | j1 . . . jn 〉〈 i1 . . . im |

Figure 4.7: The generators and interpretation of ZHR
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(ZS1)

. . .

. . .

m

n

. . .

n

m

. . .

= (HS1)

. . .

a

. . .

m

n

. . .

n

m

. . .

a

= 2

(ZS2) = (HS2) = 2

(BA1)

. . .

. . .

m

n

. . .

n

m

. . .

= . . .. . . (BA2)

. . .

. . .

m

n

. . .

n

m

. . .

= . . .. . .

(M)

a b

=

ab

(U)
1

=

(A)
a b

=

a+b
2¬

2
(I) a a

=
¬

a

(O) =¬

2

¬

Figure 4.8: The rules for ZHR, note that these are almost identical to the rules for ZHC as presented in
[BK19]. Throughout, m,n are non-negative integers and in the original paper a, b were arbitrary complex
numbers. In ZHR we allow a, b to be arbitrary elements of the ring R, where R is commutative with a
half. The right-hand sides of both bialgebra rules (BA1) and (BA2) are complete bipartite graphs on
(m + n) vertices, with an additional input or output for each vertex. The horizontal edges in equation
(O) are well-defined because only the topology matters and we do not need to distinguish between inputs
and outputs of generators. The rules (M), (A), (U), (I), and (O) are pronounced multiply, average, unit,
intro, and ortho, respectively.
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4.4.2 Translation between RING and ZH

The translation between ringR and ZHR is given as Figure 4.9. This translation preserves

the interpretation into R-bit.

ZHR → ringR

. . .

. . .

7→
. . .

. . .

a

. . .

. . .

7→ a− 1

1 1. . .

1 1. . .

ringR → ZHR a

. . .

. . .

7→ a

. . .

. . .

7→ ¬
1
2

2

1
2

1
2

Figure 4.9: Translations between ringR and ZHR

4.4.3 A small, complete ruleset of RING from ZH

This ruleset is the result of translating the rules from ZH into ring. We have taken

some effort to remove redundant rules from the list below, although we do not make

any claims as to necessity of individual rules. This list is included to provide a contrast

against the rules of §4.2. We have also left the redundant ring rules in since they are a

foundational aspect of ringR. We present these somewhat reduced rules here, divided

into sections:

• Ring Rules. These rules have clear interpretations as the ring operations in ringR.

a b

=
× a× b

=
+c

a b

=
+a

a b

=
×c

a b

=
+ a+ b

a b

=
×a

a b
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0

=
+0

=
×1

a b

=
D

b a× b

• The multiplication spider, scalar multiplication, and Hadamard. As always the

diagonal dots indicate one or more wires, and the horizontal dots indicate zero or

more wires.

a

b
...

. . . . . .

. . . . . .

=
S a× b

. . .

. . .

, − 1
2

=
sc

,

1

-2

1

1

-2

1

=
H

(4.63)

• Bialgebra rules.

. . .

. . .

− 1
2

=
BA1

. . .

. . .

. . .. . .

− 1
2

− 1
2

,

. . .

. . .

−1 =
BA2

. . .

. . .

. . .. . .
1

11

1

−1 −1

−1 −1

(4.64)

• The intro and ortho rules.

a

=
I 1− a a− 1

a 1

11
−1 1 1 1

1 =
O

1

−1 11 1
(4.65)

• Finally the rule that links the plus gate with its image after being translated into
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ZHR and back again.

=
+′

1

-1

− 1
2

-1

− 1
2

-1

-1 1

2

-1 (4.66)

4.5 Summary

In our first results chapter we have introduced the new graphical calculus ring, showed

its completeness using ZW, and extended ZH. ring itself is generated only by ring

operations (acting on states) and compact closed structure. This sparsity of generators

will allow us to use ring as a ‘generic’ phase ring calculus in the next chapter, and so

investigate the limitations and uses of phase ring graphical calculi. The focus of the next

chapter is on the category of phase ring graphical calculi, more precisely the category of

graphical calculi that model ring structure in the manner of ZW, ZH and ring, and the

morphisms that preserve soundness.



Chapter 5

Phase Ring Graphical Calculi and

Phase Homomorphisms

In this chapter:

. We describe the category of phase ring graphical calculi

. We justify ringR being ‘initial, up to ring isomorphism’

. We justify ringK being ‘the generic phase field calculus’

. We investigate when algebra homomorphisms lift to soundness- and proof- pre-

serving maps

. This chapter requires knowledge of the calculus ring from §4, and the idea of

phase algebra homomorphisms will be key to parts of §7 and §8.

The calculus ringR, introduced in §4, resulted from investigating the topics we shall

cover in this chapter. We would like to know what extra structure we achieve by de-

scribing a calculus as having a phase ring (or phase algebra in general) over just a set

of labels. We shall phrase this as a category of phase ring graphical calculi, and then

investigate the morphisms of this category that arise from morphisms of rings. We will

only be looking at phase rings that act as monoids on states of arity 0→ 1, i.e. situations

where elements of arity 0→ 1 act like elements in a ring, with some gates of arity 2→ 1

acting like monoids on those states. This is how ZW and ZH act as phase rings, with

ZX acting analogously but on a phase group instead. The phase group calculus ZQ (§6)

does not act in this manner, for reasons covered in that chapter.

In §5.1 we look at the category of Phase Ring Graphical Calculi as Monoids before

exhibiting the calculi ringR, ZWR and ZHR as objects in this category. This is compared

to the earlier work performed in Ref. [DK13], which also looked at models of algebraic

structures in graphical calculi. We then investigate how ring homomorphisms φ : S → S′

59
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relate to morphisms out of ringS in this category, laying the groundwork for §5.2 and

§5.3.

In §5.2 we look at the calculus ringK where K is a field, showing that ringK has

an essential uniqueness in its interpretation, as well as the property of being ‘initial,

up to field automorphism’ for K-phase-field calculi into K-bit. In §5.3 we look at how

ring morphisms can lift to morphisms of certain graphical calculi, and how ring homo-

morphisms can lift to soundness- and proof- preserving maps of theorems. Finally in

§5.4 we give a similar treatment to phase group homomorphisms, classifying the phase

group endomorphisms available in certain finite fragments of ZX, and then show how to

generalise these ideas to Σ-algebras.

We derive these results in the generality afforded to us by the ring structure of both

the phase ring and the category R-bit. For quantum graphical calculi, however, we only

need to work over C-bit, and we shall show later on that this severely restricts the phase

ring structure of the graphical calculus as well. The effect of this is that the calculus

ringC will embed naturally into any universal qubit graphical calculus with a phase

ring. ringC therefore acts as a common (universal and complete) core for all phase ring

qubit graphical calculi.

5.1 The category of phase ring graphical calculi

We begin this chapter with an intention of finding a ‘generic’ phase ring calculus. In

order to tackle this problem we build on the idea of models of PROPs from Ref. [Mac65]

and introduce a category of Phase Ring Graphical Calculi (Definition 5.5). From there

we show that ringR has certain desirable properties, such as the fact that given any

graphical calculus G with phase ring structure R there is exactly one map from ringR
to G that preserves that structure (Corollary 5.14).

The author did not feel they could justify calling ringR ‘the’ generic phase ring

calculus; there are too many ways to model phase ring structure over R-bits. They do,

however, feel justified in calling ringK ‘the’ generic phase field calculus over K-bit for

reasons that we show in §5.2. The idea of a phase ring homomorphism that we begin in

this section (Definition 5.16) is continued in §5.3, and then generalised to other algebras

in §5.4.

5.1.1 Objects in Ring-GC (R)

We begin with as generic a notion of phase ring structure as we can. Consider a commut-

ative ring which is a set S equipped with multiplication × : 2→ 1, addition + : 2→ 1,

and with the distinguished elements 0 and 1.

Definition 5.1 (ring-propS). We construct our generic ring PROP ring-propS for
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the ring (S,+,×) with the following generators:

∀s ∈ S the element
s

0→ 1 (5.1)

addition gate + 2→ 1 (5.2)

multiplication gate × 2→ 1 (5.3)

We then quotient out these two rewrite rules:

×

a b

=
multiplication a× b

+

a b

=
addition a+ b

(5.4)

There is a category of all such PROPs, defined by being the image of the functor

from the category of rings that sends S to ring-propS , and sends a ring homomorphism

φ to a strict symmetric monoidal functor φ̄:

φ̄ : ring-propS → ring-propS′ (5.5)

s
7→

φ(s)
+ 7→ + × 7→ × (5.6)

Remark 5.2. These two rewrite rules in (5.4) imply that our addition and multiplication

gates are commutative and associative when applied directly to states, purely because

those properties are already present in the ring S. For example:

×

a b

=
multiplication a× b

=
b× a

=
multiplication

×

b a

(5.7)

This is a weaker property than saying that these gates are commutative etc. in general.

Definition 5.3 (Models of ring-prop). A model for ring-propS in some graphical

calculus G is a morphism of PROPs ring-propS → G.

A model of ring-propS into a graphical calculus can be seen as choosing diagrams

{gs}, g+ and g× to represent states, an addition gate, and a multiplication gate with the

syntactic behaviour suggested by their names.

Example 5.4 (Degenerate model). We construct the graphical calculus zero as having

generators Onm, one for each arity m→ n, interpreted as the zero matrix of size 2m → 2n,
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and the following rewrite rules:

Onm ◦Oml = Onl (5.8)

Oba ⊗Odc = Ob+da+c (5.9)

For any PROP P there is a strict symmetric monoidal functor from P to zero; in

particular there is a unique model of ring-propS in zero for any S, but it is not

faithful.

Definition 5.5 (Ring-GC (R)). The category of Phase Ring Graphical Calculi (as

monoids) into R-bit, shortened to Ring-GC (R), has as objects graphical calculi over

R-bit that contain a model of ring-propS for some S, and morphisms that preserve

this ring-propS structure. Specifically:

• Objects are pairs (G,MS), where G is a (compact closed) graphical calculus given

as a collection of generators, an interpretation J · KG, and rewrite rules, and MS

is a model of ring-propS in G.

• A morphism

f : (G,MS)→ (G′,MS′) (5.10)

is a strict symmetric monoidal functor fD : G→ G′ and also a ring homomorphism

fR : S → S′ such that the right hand diagram commutes:

S ring-propS G

S′ ring-propS′ G′

fR f̄R

MS

fD

MS′

(5.11)

Proposition 5.6. The above definition of Ring-GC (R) is indeed a category.

Proof. We just need to show the following properties:

• Identity morphisms f are given by the identity morphism fD of compact closed

PROPs and fR of commutative rings respectively, and this satisfies the condition

of preserving the distinguished diagrams {gs} , g+, g×

• Composition of morphisms exists for fD and fR, and the commutative diagram of

(5.11) composes vertically

• Associativity of composition of morphisms follows from the associativity of com-

position of the functors fD and the ring homomorphisms fR
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Remark 5.7. In this thesis we are using a syntactic version of the models of ring-propS .

In Definition 5.1, where we stated that addition and multiplication should be rules

(i.e. equivalences) in ring-propS we could instead have given a requirement on the

interpretation of any model, such as:

u

w
vMS

 ×

a b


}

�
~ =

s
MS

(
a× b

) {
(5.12)

u

w
vMS

 +

a b


}

�
~ =

s
MS

(
a+ b

) {
(5.13)

The author feels that this semantic version better reflects the way these calculi are

researched: First by constructing generators with certain interpretations and then finding

rules. The syntactic version we use, however, is far neater. All the results in this chapter

can be adapted to semantic versions with little effort.

Definition 5.8. We will regard the calculus ringS as being an object of Ring-GC (R)

whenever S is a subring of R, exhibited as ringS with interpretation J · K : ringS →
S-bit naturally extending to J · K : ringS → R-bit, and with modelMS the identification

of the ring structure inherent in ringS :

s
7→

s
+ 7→ × 7→ (5.14)

The addition and multiplication rules of ringS are the image of the addition and mul-

tiplication rules of ring-propS under MS .

Remark 5.9. Definition 5.8 shows that whenever S ⊂ R we have a model of ring-propS
in Ring-GC (R-bit). It could well be the case that there are faithful models of some

ring-propS in Ring-GC (R-bit) where R ( S, but we will show in §5.2 that this cannot

be the case when R is a field.

Lemma 5.10. The calculi ZWS and ZHS (with the usual phase ring structure) can be

exhibited as objects of Ring-GC (R-bit) whenever S is a subring of R

Proof. For ZWS we extend its interpretation to be into R-bit, and use the model MS

given by:

MS : ring-propS → ZWS (5.15)

s
7→

s
∀s ∈ S (5.16)
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+ 7→ (5.17)

× 7→ (5.18)

Likewise for ZHS we extend the interpretation and use the model given by:

MS : ring-propS → ZHS (5.19)

s
7→

s
∀s ∈ S (5.20)

+ 7→ ¬
1
2

2

1
2

1
2

(5.21)

× 7→ (5.22)

Since these are the ‘obvious’ models of ring-propS suggested by the addition and multi-

plication rules of ZW and ZH we shall simply refer to these objects of Ring-GC (R-bit)

as ZWS and ZHS . The requirements of Definition 5.5 are shown by checking:

ZW `

a b

=
cutz , bazw, rng+ a+ b

ZW `
a b

=
cutz a× b

(5.23)

ZH `

a b

¬
1
2

2

1
2

1
2

=
HS1, A,M ! a+ b

ZH `
a b

=
M a× b

(5.24)

Definition 5.11 (Generic object in Ring-GC (R-bit)). We will simply write GS to

indicate a generic object (G,MS) in Ring-GC (R-bit). We will also distinguish the
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image of the generators of ring-propS under MS as:

gs :=MS

(
s

)
g+ :=MS


+

 g× :=MS

 ×

 (5.25)

The idea behind the definition we give for Ring-GC (R-bit) is similar to that of

MacLane’s definition of algebras for a PROP (Definition 5.12). In the usual definition

a PROP was held fixed and all possible models of that PROP were considered. In this

work we want to be able to consider multiple phase rings (i.e. a related family of PROPs)

while also restricting the models into only graphical calculi over R-bit, and only those

models that are the identity on objects.

Definition 5.12 (Algebras for a PROP [Mac65, §5]). For a PROP P representing an

algebraic theory A an algebra of type A is a product-preserving functor from P to the

category of sets.

5.1.2 Some morphisms in Ring-GC (R)

Now that we know the objects in this category, let us give some example morphisms. Of

the phase ring graphical calculi we have discussed ringS has the least ‘extra’ structure

beyond that which is necessary for phase rings. It is perhaps unsurprising that the

morphisms out of ringS are determined by the ring morphisms out of S.

Proposition 5.13 (Morphisms out of ringS).

HomRing-GC (R-bit)[ringS , GS′ ] ∼= HomRing[S, S
′] (5.26)

Proof. We first note that every map φ in HomRing[S, S′] lifts to the map

ringS
(φD,φ)−−−−→ GS′ (5.27)

where

φD : ringS → G (5.28)

a
7→ gφ(a) + 7→ g+ × 7→ g× (5.29)

which satisfies the conditions of Definition 5.5. Next we note that for a generic morphism

f = (fD, fR) of HomRing-GC (R-bit)[ringS , GS′ ], the diagram map fD is uniquely

determined by fR, because ringS is generated by

a
, + , × , (5.30)
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and the conditions of Definition 5.5 determine fD as:

fD : ringS → G (5.31)

s
7→ gfR(s) + 7→ g+ × 7→ g× (5.32)

Therefore every map out of ringS in Ring-GC (R-bit) is of the form f = (φD, φ). We

therefore have the equivalence:

HomRing-GC (R-bit)[ringS , GS′ ] ∼= HomRing[S, S′] (5.33)

(φD, φ)↔ φ (5.34)

Suppose that instead of just looking at morphisms out of ringR we also wanted to

look at morphisms into some generic object GS that preserved ring structure.

Corollary 5.14. Given a generic object GS′ and an isomorphism φ : S ∼= S′ there is

exactly one morphism (fD, fR) from ringS to GS′ such that fR = φ

Remark 5.15. Corollary 5.14 is the justification for saying that ringS is ‘initial for graph-

ical calculi with phase ring S’. The degenerate example zero can be seen as similarly

terminal; for any ring S there is a unique model MS of ring-propS in zero, and for

any object GS of Ring-GC (R-bit) there is a unique morphism from GS to (zero,MS)

formed by sending every diagram in GS to the unique diagram of the same arity in zero.

Another example of a morphism in Ring-GC (R-bit) is that of the phase ring homo-

morphism we are about to define. Phase ring homomorphisms are in essence the lifting of

a ring homomorphism φ : S → S′ not to φ̄ : ring-propS → ring-propS′ but to a func-

tor between two members of a parameterised family of calculi (such as ringS → ringS′).

Such a lifting is not guaranteed to exist, and depends on both the calculus and the model.

We will define these phase ring homomorphisms for ringS , ZHS and ZWS in §5.3, but

the definition relies on the way phases are presented in the calculus.

Definition 5.16 (Phase ring homomorphism for ring). Given a ring homomorphism

φ : S → S′, we can lift φ to the symmetric monoidal functor φ̂ : ringS → ringS′ where

we let φ act on each phase:

a
7→

φ(a)
7→ 7→ (5.35)

This φ̂ is called a ‘phase ring homomorphism’, with the pair (φ̂, φ) being a morphism

in Ring-GC (R-bit). There is a similar lifting for semantics, where φ is lifted to the
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symmetric monoidal functor φ̃ : S-bits → S′-bits which is the identity on objects, and

acts on matrices as: 
a11 a12 . . .

a21 a22 . . .
...

 7→

φ(a11) φ(a12) . . .

φ(a21) φ(a22) . . .
...

 (5.36)

We touch on this structure of (φ, φ̂, φ̃) again in §5.3.

Note that in Ring-GC (R) we have no restrictions on the ring substructures we are

modelling with ring-propS . There is also no interplay between the interpretation J · K
and the ring structure. In the next subsection we limit ourselves to Ring-GC (K), for

K a field, and show the very strict requirements that result from faithful interpretations

of ring-propS . After we have examined fields we shall return to the idea of a phase ring

homomorphism.

5.2 The generic phase field calculus

In this section K is a field, and R is a commutative ring. Faithfulness of the interpretation

for ring-propR (Definition 5.17) not only allows us to avoid degenerate cases, but also

imposes profound restrictions on the interpretation which we will cover in this section.

We first note that the restriction forces two important properties for the states 0 and

1 ; in particular that they are both non-zero, and non-colinear, and so form a basis

for K2 (Lemma 5.21) which in turn forces the interpretation of the other generators of

ring-propR (Lemma 5.23). From there we show several properties of ringK , which we

summarise in Remark 5.36.

Definition 5.17 (Faithful interpretation, and faithful model). An interpretation J · KG of

a graphical calculus is called faithful if no two generators are sent to the same morphism.

A model of ring-propS in G is faithful if no two generators of ring-propS are sent to

the same morphism by the composition of MS and J · KG.

Definition 5.18 (Treating ring-propR as a graphical calculus). We create the (expli-

citly not compact-closed) graphical calculus ring-prop
J K
R as the PROP ring-propR of

Definition 5.1 with a faithful interpretation J · K into K-bit.

Lemma 5.19. In ring-prop
J K
R

∀r ∈ R
s

r

{
6= 0 (5.37)
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Proof. We rely on the fact that for any matrix M , 0⊗M = 0.

assume

s

r

{
= 0 (5.38)

=⇒

u

w
v ×

r 0

}

�
~ = 0 by 0⊗M = 0 (5.39)

=⇒

u

w
v ×

r 0

}

�
~ =
×

s

0

{
= 0 (5.40)

=⇒

u

w
v +

0 1

}

�
~ = 0 by 0⊗M = 0 (5.41)

=⇒

u

w
v +

0 1

}

�
~ =

+

s

1

{
= 0 (5.42)

=⇒
s

0

{
=

s

1

{
(5.43)

Which contradicts faithfulness of the generators.

Lemma 5.20. In ring-prop
J K
R

r
0

z
6=

r
1

z
λ, λ ∈ K (5.44)

Proof. By contradiction

s

0

{
=
×

u

w
v ×

0 0

}

�
~ =

hyp.

u

w
v ×

0 1

}

�
~λ =

×

s

0

{
λ (5.45)

Note that by Lemma 5.19 we know that
r

0

z
6= 0, and so because K is a field we

know that λ = 1. Therefore
r

0

z
=

r
1

z
, which contradicts faithfulness.

Lemma 5.21. The interpretations
r

0

z
and

r
1

z
are

s

0

{
:=

(
1

0

) s

1

{
:=

(
1

1

)
(5.46)
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up to change of basis.

Proof. Follows immediately from the non-colinearity shown in Lemma 5.20

Remark 5.22. We limit ourselves to interpretations over K-bit rather than R-bits, and

so vector spaces rather than modules, because we want to be able to talk about ‘up to

change of basis’.

Lemma 5.23. The choice of basis in Lemma 5.21 forces the following interpretations

of × and + in ring-prop
J K
R :

u

v ×

}

~ =

(
1 0 0 0

0 0 0 1

) u

v
+

}

~ =

(
1 0 0 0

0 1 1 0

)
(5.47)

Proof. The following products form a basis for K2 ⊗K2

s

0
⊗

0

{
,

s

1
⊗

0

{
,

s

0
⊗

1

{
,

s

1
⊗

1

{
(5.48)

We will use these basis vectors to determine the entries of

s

+

{
and

s

×

{
. We do

this by expressing the following equations as diagrams, which should hold under J · K by

soundness of the rules in definition 5.1:

0× 0 = 0 0× 1 = 0

1× 0 = 0 1× 1 = 1

0 + 0 = 0 0 + 1 = 1

1 + 1 = 1 (5.49)

We perform the first calculation (which determines the first column in the matrix

interpretation of ×) in full as an example:

u

v ×

}

~ ◦


1

0

0

0

 =

u

w
v ×

0 0

}

�
~ =
×

s

0

{
=

(
1

0

)
(5.50)

In this manner we are able to determine the entries for the matrix interpretation of

× as:
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u

v ×

}

~ =

(
1 0 0 0

0 0 0 1

)
(5.51)

We do not, however, have enough equations involving addition in (5.49) to determine

all the entries in the matrix interpretation of +. We have merely determined the first

three columns, expressed as:

u

v
+

}

~ =

(
1 0 0 b

0 1 1 c

)
(5.52)

Where b and c are elements of K. Since R is a ring; even if we don’t know its characteristic

we can still define 2 := 1 + 1.

s

2

{
=
+

u

w
v +

1 1

}

�
~ =

(5.52)

(
1 + b

2 + c

)
(5.53)

We then use the equation 2× 0 = 0 to determine b:

(
1

0

)
=

s

0

{
=
×

u

w
v ×

2 0

}

�
~ =

(
1 0 0 0

0 0 0 1

)
◦


1 + b

0

2 + c

0

 (5.54)

(5.55)

=⇒ b = 0 (5.56)

We can now determine that c ∈ {0,−1,−2} by checking 2 + 2 = 2× 2:

u

w
v +

2 2

}

�
~ =

(5.52)

(
1 0 0 0

0 1 1 c

)
◦


1

2 + c

2 + c

(2 + c)2

 (5.57)

=
×

u

w
v ×

2 2

}

�
~ =

(
1 0 0 0

0 0 0 1

)
◦


1

2 + c

2 + c

(2 + c)2

 (5.58)

∴ 2(2 + c) + c(2 + c)2 = (2 + c)2 (5.59)
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∴ (2 + c)(c2 + 2 + c) = 0 (5.60)

∴ c ∈ {0,−1,−2} (5.61)

Finally we show that c = 0 by contradiction:

• If c = −1

u

w
v +

1 1

}

�
~ =

(
1 0 0 0

0 1 1 −1

)
◦


1

1

1

1

 =

(
1

1

)
=

s

1

{
(5.62)

=⇒ 1 + 1 = 1 (5.63)

=⇒ 1 = 0 (5.64)

• If c = −2:

u

w
v +

1 1

}

�
~ =

(
1 0 0 0

0 1 1 −2

)
◦


1

1

1

1

 =

(
1

0

)
=

s

0

{
(5.65)

=⇒ 1 + 1 = 0 (5.66)

(5.67)

If 1 + 1 = 0 then either we are working in characteristic 2 (and c = −2 = 0) or we

have a contradiction.

Therefore c = 0.

Remark 5.24. We chose this basis so that multiplication would coincide with the usual

interpretation of the Z-spider. There is an argument for using the computational basisr
0

z
= | 0 〉 and

r
1

z
= | 1 〉 because it makes the actions of × and + easier to

read in bra-ket notation, but it also makes the results of the next section harder to see.

Under the computational basis the interpretations of × and + are:

u

v ×

}

~

computational

=

(
1 1 1 0

0 0 0 1

)
(5.68)

u

v
+

}

~

computational

=

(
1 1 1 −1

0 1 1 2

)
(5.69)
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Now that we have established the interpretation of ring-prop
J K
R up to a change of

basis, we shall look at the relationship this forces between R and K as rings. First we

look at the sets R and K (Lemma 5.25), and then find an injective ring homomorphism

from R to K (Lemma 5.26).

Lemma 5.25. In ring-prop
J K
R , recalling that we assume the interpretation into K-bit

is faithful, R embeds into K as sets.

Proof. Using the interpretation from lemma 5.21 (i.e. up to change of basis) we know

that:

r ∈ R
s

r

{
=

(
b

c

)
(5.70)

=⇒

(
1

0

)
=

s

0

{
=
×

u

w
v ×

r 0

}

�
~ =

(
b

0

)
(5.71)

=⇒ b = 1 (5.72)

Therefore we can construct the function f that sends an element of the set R to its

second component in

s

r

{
.

f : R→ K (5.73)

r =

(
1

c

)
7→ c (5.74)

Since the interpretation is faithful, and the first component is always 1, f must be

injective.

Proposition 5.26. For ring-prop
J K
R over K-bit there is an injective ring homomorph-

ism R ↪→ K

Proof. The restriction of K to R in Lemma 5.25 preserves all of (×, +, 0, 1) so f is a

ring homomorphism.

Remark 5.27. This, in a sense, classifies phase ring substructures of a graphical calculus

over K-bit. That is whenever one finds a model for ring-propR (Definition 5.1) then

Proposition 5.26 shows that R must be a subring of K. Note that the calculus ringK
contains a model of ring-propR for every subring R of K, so this subring requirement

is the strictest subring requirement we will be able to find.
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Now that we have shown how restrictive ring-prop
J K
R is in terms of its requirements

on R, let us look at how expressive it is as a calculus, and compare it to the earlier parts

of this chapter.

Lemma 5.28. ring-prop
J K
R is not universal over K-bit

Proof. We cannot form morphisms of the shape 1→ 0

This is unsurprising; the category K-bit is compact closed, but ring-propR is not.

What is surprising is that adding compact closure, and setting R to K, is enough to

achieve universality. Not only this but we will show that our newly added generators

again have their interpretations determined by our choice of basis.

Definition 5.29 (ring-prop
T, J K
R ). The graphical calculus ring-prop

T, J K
R is defined

by adding the generators

cup (5.75)

cap (5.76)

to ring-prop
J K
R , requiring that they obey the snake equations

= = (5.77)

and also enact the transpose:

u

wwwwwww
v

D

. . .

. . .

. . .

. . .

}

�������
~

= J D KT (5.78)

Lemma 5.30. The requirement given in Definition 5.29 forces the following interpret-

ation for the cup and cap in ring-prop
T, J K
R :

r z
=


1

0

0

1


r z

=
(

1 0 0 1
)

(5.79)
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Proof.

u

www
v a

}

���
~

=
r z

◦


1 0

0 1

a 0

0 a

 =
(5.78)

(
1 a

)
(5.80)

=⇒
r z

=
(

1 0 0 1
)

(5.81)

We now use the requirement that the cup and cap obey the snake equation alongside

(5.81) to find the interpretation for the cup:

= =⇒
r z

=


1

0

0

1

 (5.82)

Proposition 5.31. The graphical calculus ring-prop
T, J K
K has the same generators and

interpretation as ringK , up to change of basis.

Proof. This is a combination of Lemmas 5.21, 5.23 and 5.30, and Definitions 4.1, 5.1 and

5.29.

Proposition 5.32. For every generic object (G,MR) of Ring-GC (K-bit) there is a

unique map ψ : K-bit→ K-bit dependent only on (G,MR) such that for any morphism

f : ringK → (G,MR) the following diagram commutes

ringK (G,MR)

K-bit K-bit

J · KringK

f

J · KG
ψ

(5.83)

What’s more ψG is given by a change of basis.

Proof. We construct ψ as simply the change of basis that sends

s

0

{

ringK

7→ J g0 KG

s

1

{

ringK

7→ J g1 KG (5.84)

which by Lemma 5.20 is indeed a change of basis (because these states form a basis),

and by Lemma 5.23 the diagram commutes for all generators of ringK .
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It is easy to construct trivial, or at least dull, graphical calculi in Ring-GC (K). For

example for R ( K the calculus ringR is an object of Ring-GC (K) (see Definition 5.8).

What we would like to show is a relationship between ringK and any ‘suitably expressive’

object of Ring-GC (K). It turns out that completeness and universality of the graphical

calculus is suitable for our needs.

Lemma 5.33. Any object (G,MR) of Ring-GC (K) that is a complete universal graph-

ical calculus (over K-bit) extends naturally to an object (G,MK).

Proof. Consider the object (G,MR). Let f : R → K be the f from Proposition 5.26

that identifies R with a subring of K. For every k ∈ K \ f(R) there is a representative

D in G of the sole equivalence class with

J D KG =

(
1

k

)
(5.85)

(with respect to the basis of Lemma 5.21) because the calculus G is universal and

complete.

Choose, for each k ∈ K \ f(R) such a diagram and label it gk. In doing so we

have constructed (G,MK); an object in Ring-GC (K) with the same generators as

the original object but with phase ring K. The multiplication and addition rules of

ring-propK hold in G because the semantics of g+ and g× have already been determined

by Lemma 5.23, those semantics preserve addition and multiplication with gk, and G is

complete.

Note that we needed to be able to determine the interpretation (up to change of

basis) in order to prove Lemma 5.33. Since we can extend complete, universal graphical

calculi over K-bit naturally to ones with modelsMK , let us look at the category of just

those graphical calculi with modelMK , and where the morphisms preserve this ‘fullness’

of the model.

Definition 5.34 (K-Phase-Field Calculi). We define the category of K-Phase-Field

Graphical Calculi as the subcategory of Ring-GC (K) where the objects GS are re-

stricted by requiring S ∼= K, and the ring homomorphisms fR are restricted to being

automorphisms of K.

Proposition 5.35. The object ringK is ‘initial, up to ring isomorphism’, for the cat-

egory of K-Phase Field Graphical Calculi. I.e. every morphism f from ringK to GK is

given by a phase ring isomorphism φ̂ : ringK → ringK (see Definition 5.16) followed by

an unique morphism (fD,2, fR,2) : ringK → G which is the identity on the ring structure:

fD,2 : ringK → G (5.86)

k
7→ gk + 7→ g+ × 7→ g× (5.87)
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fR,2 = idK : K → K (5.88)

What’s more, every morphism of this form exists.

Proof. We first show that every morphism of the form (fD,2, fR,2) : ringK → G, as

constructed in the statement, obeys the requirements of our category. Given a field

automorphism φ : K → K:

fD,2φD

(
s

)
= fD,2

(
φ(s)

)
= gidKφ(s) = gφ(s) (5.89)

fD,2φD


+

 = fD,2


+

 = g+ (5.90)

fD,2φD

 ×

 = fD,2

 ×

 = g× (5.91)

The morphism (fD,2, fR,2) is unique because fD,2 is entirely determined by the action on

the generators of ringK , which is entirely determined by the model MK in GK .

Remark 5.36. We have therefore shown that:

• ringK contains only those generators needed to be a phase ring graphical calculus

over monoids (Definition 4.1 and Proposition 5.31)

• ringK is universal and complete (Theorem 4.3)

• ringK has its interpretation fully determined, up to choice of basis (Lemma 5.23)

• ringK is ‘initial, up to field automorphism’ for K-Phase-Field Graphical Calculi

(Proposition 5.35)

• Every complete universal graphical calculus in Ring-GC (K) extends to a K-

Phase-Field Graphical Calculus (Lemma 5.33)

Which, in the view of the author, is sufficient reason for calling ringK the generic phase

field calculus for the field K into K-bits.

It is tempting to quotient out this ‘up to isomorphism’ aspect of Proposition 5.35,

but doing so would remove phase ring homomorphisms. These special morphisms will

turn out to have important properties, in particular that they send sound equations to

sound equations, i.e. ‘theorems are closed under phase ring homomorphism’.
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5.3 Phase ring homomorphisms

In Definition 5.16 we showed that any ring homomorphism φ : S → S′ lifts to the maps

φ̂ : ringS → ringS′ (5.92)

φ̃ : S-bit→ S′-bit (5.93)

In this section we continue this idea, showing first how to perform the same operation for

ZWR and ZHR, and then how this lifting interacts with the semantics (Theorem 5.42)

and syntax (Theorem 5.46) of all three calculi. We will assume, when speaking of ZHR,

that the ring R has 1
2 . Exploration of algebras other than rings is delayed until §5.4.

Proposition 5.37. For φ̂ and φ̃ from Definition 5.16 the following diagram commutes

ringS ringS′

S-bit S′-bit

J · K

φ̂

J · K

φ̃

(5.94)

Proof. We verify that the diagram (5.94) commutes for all the generators of ringS :

s φ(s)

(
1

s

) (
1

φ(s)

)J · KS

φ̂

J · KS′

φ̃

(5.95)

(
1 0 0 0

0 1 1 0

) (
1 0 0 0

0 1 1 0

)J · KS

φ̂

J · KS′

φ̃

(5.96)
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(
1 0 0 0

0 0 0 1

) (
1 0 0 0

0 0 0 1

)J · KS

φ̂

J · KS′

φ̃

(5.97)

Proposition 5.38. The analogous lifting of φ to φ̂ for ZWR and ZHR are as follows:

φ : S → S′ (5.98)

φ̂ : ZWS → ZWS′ (5.99)
. . .

. . .

7→
. . .

. . .

(5.100)

s

. . .

. . .

7→ φ(s)

. . .

. . .

(5.101)

φ̂ : ZHS → ZHS′ (5.102)

s

. . .

. . .

7→ φ(s)

. . .

. . .

(5.103)

. . .

. . .

7→
. . .

. . .

(5.104)

And the following diagrams commute

ZWS ZWS′

S-bit S′-bit

J · K

φ̂

J · K

φ̃

ZHS ZHS′

S-bit S′-bit

J · K

φ̂

J · K

φ̃

(5.105)

Note that we do not make it notationally explicit which base language is being considered.

The construction of φ̂ and φ̃ are the same for ringR, ZH, and ZW, with the context

making clear which language we are considering.

Proof. In both cases φ̃ is defined analogously to Definition 5.16, and one can verify that

for the generators of ZH and ZW that in both cases we have
r
φ̂D

z
= φ̃ J D K. It is

also clear from the definitions that (φ̂, φ) satisfies the conditions for being a morphism
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in Ring-GC (R-bit).

Remark 5.39. Since ring, ZH and ZW are all universal graphical calculi we note that φ̃

is entirely determined by its action on the generators.

Since φ determines φ̂ we propose the name ‘phase homomorphism pair’ for this

structure of φ, φ̂, φ̃ and in §5.4 we will give a broader definition of such a pair. §5.4 also

gives explicit examples in the phase group case. The primary property of these pairs is

preservation of soundness:

Proposition 5.40. If the diagrammatic equation A = B in ringS is sound, then the

diagrammatic equation φ̂(A) = φ̂(B) in ringS′ is sound

Proof.

J A K = J B K =⇒ φ̃ J A K = φ̃ J B K 5.37
=⇒

r
φ̂A

z
=

r
φ̂B

z
(5.106)

Example 5.41 (Soundness of field phase homomorphisms). Consider the field automorph-

isms of Q[i,
√

2]

σ : a+ ib+
√

2c+ i
√

2d 7→ a− ib+
√

2c− i
√

2d (5.107)

τ : a+ ib+
√

2c+ i
√

2d 7→ a+ ib−
√

2c− i
√

2d (5.108)

The following ringQ[i,
√

2] equation is sound:

i

−
√

2i
√

2

=
−
√

2(1 + i)
(5.109)

Therefore the following ringQ[i,
√

2] equations, found by applying the automorphisms

σ̂, τ̂ and σ̂τ̂ , are sound:

σ̂
−i

√
2i

√
2

=
−
√

2(1− i)
(5.110)
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τ̂
i

√
2i −

√
2

= √
2(1 + i)

(5.111)

σ̂τ̂
−i

−
√

2i −
√

2

= √
2(1− i)

(5.112)

(5.113)

Theorem 5.42 (Phase homomorphisms preserve soundness). if φ : R → S is a ring

homomorphism then ringR � A = B implies ringS � φ̂A = φ̂B. The same is true for

ZWR and ZHR.

Proof. The statement for ring is just Proposition 5.40. For ZW and ZH use the same

argument as Proposition 5.40 in conjunction with Proposition 5.3.

We can even go beyond the level of semantics, and show that syntactic entailment also

commutes with φ̂ (for these three calculi). We will need to show two things: That rules are

preserved under the action of φ̂, and that rule application is preserved under the action of

φ̂. Preservation of the rules is done by checking all the rules for every calculus mentioned

by hand. This requires no additional calculation, and so we include just one example

below. There are rules in ZX that do not satisfy the analogous requirements for phase

group homomorphisms, which we will mention explicitly in the proof of Proposition 5.54.

Example 5.43 (A rule preserved by φ̂). Given a ring homomorphism φ : R → S, the

spider rule of ringR is mapped by φ̂ to a restriction of the same rule in ringS :

φ(r)

. . .

. . .

φ(s)

. . .

. . .

= φ(rs)

. . .

. . . . . .

. . .

(5.114)

The restriction is that the above equation only matches onto phases that are in the

image of φ in S.

Proposition 5.44. Using the rules from the completeness theorem for ring· (The-

orem 4.3) and given a ring homomorphism φ : R → S, if ringR ` A = B then

ringS ` φ̂A = φ̂B, using the same proof steps.

Proof. We first note that for any rule A = B in ringR, the equation φ̂A = φ̂B expresses

a restriction of the rule A = B in ringS to the image of R under φ. This is because
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every phase used in a rule in ringR is either an integer or a free variable, and so under

the image of φ is either fixed (for an integer) or expressed as the image of a free variable

(for a free variable). For one example see Example 5.43, or for another: Applying φ̂ to

the rule (L) (Figure 4.4) in ringZ yields the identical rule (L) in ringQ, because trz
only involves the phases 0 and 1 (recall that we leave the white spider blank when it has

phase 1), which are fixed by φ̂.

The following diagram1, where both the front and back wide rectangles are double-

pushout rewrites, commutes, and φ̂A = φ̂B is a valid rule application in ringR:

A I B

φ̂A φ̂I φ̂B

G G′ H

φ̂G φ̂G′ φ̂H

φ̂ φ̂ φ̂

φ̂ φ̂ φ̂

In particular note that

φ̂A φ̂I

φ̂G φ̂G′

and

φ̂I φ̂B

φ̂G′ φ̂H

(5.115)

are both still pushouts, since φ̂ changes none of the underlying graph and only the labels.

Therefore a sequence of DPO rewrites from C to D in ringR becomes a sequence of

DPO rewrites from φ̂C to φ̂D in ringS under the action of φ̂.

Example 5.45 (Proof preservation of field phase homomorphisms). Using the same equa-

tion as in Example 5.41, we see that the proof

ringC `A = B (5.116)

i

√
2i −

√
2

=
+

i
√

2(i− 1)

=
× −

√
2(1 + i)

(5.117)

1A double double pushout diagram.
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is translated, using the field automorphism σ : C→ C, σ : i 7→ −i, to the proof

ringC `σ̂A = σ̂B (5.118)

−i

−
√

2i −
√

2

=
+

−i
√

2(−i− 1)

=
× −

√
2(1− i)

(5.119)

Theorem 5.46 (Phase homomorphisms preserve proofs). If ringR ` A = B, then

ringS ` φ̂(A) = φ̂(B) for every ring homomorphism φ : R → S. The proof of ringS `
φ̂(A) = φ̂(B) is constructed as the one-to-one translation via φ̂ of the proof of ringR `
A = B. The same is true for ZWR and ZHR.

Proof. The claim about ringR follows from Proposition 5.44. One then goes through

each rule of ZHR and ZWR and shows that the action of φ̂ on any instance of that rule

is to create an instance of a rule already present in ZWS or ZHS accordingly. We give

the (A) rule in ZHR as an example:

φ : R→ S
1

2
∈ R (5.120)

1 7→ 1 (5.121)

2 7→ 2 (5.122)

∴ φ :
1

2
7→ 1

2
(5.123)

∴ φ̂ : ¬ 7→ ¬ (5.124)

a b
=

a+b
2¬

2 7→
φ(a) φ(b)

=

φ
(
a+b

2

)
¬

2
(5.125)

Any assignment of elements of R to a or b in the rule (A) gives a valid instance of the

rule φ̂(A), because φ(a) ∈ S, φ(b) ∈ S, φ(2) = 2 and φ
(
a+b

2

)
= φ(a)+φ(b)

2 .

Phase ring homomorphisms shall reappear in the chapter on Conjecture Inference

(§7), where we note that these lifted homomorphisms correspond to certain symmetries

in a geometric space. They then come up again in the Conjecture Verification chapter

(§8) where we use Theorem 5.42 to ‘generate’ new sound equations from old, and in

doing so construct sufficient evidence to then prove hypotheses. Before moving on to

conjecture synthesis we shall talk about algebras other than rings.
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5.4 Phase algebra homomorphisms and beyond

While ZX is not a phase ring graphical calculus we can still consider phase group ho-

momorphisms, just as we did for phase ring homomorphisms earlier. In this section we

will classify the phase group homomorphism pairs for the finite subgroups of [0, 2π)

that contain π/4. Note that completeness of these finite subgroups has been shown in

Ref. [JPV19, Figure 4]. We shall be considering the presentation of ZX where the gen-

erators are green spiders with phases from our chosen fragment, and Hadamard gates. α

. . .

. . .

,


α∈G

(5.126)

Definition 5.47 (ZX phase homomorphism). For a given group homomorphism φ :

A→ B we can define the ZXA phase homomorphism φ̂ as

φ̂ : α

. . .

. . .

7→ φ(α)

. . .

. . .

(5.127)

7→ (5.128)

Remark 5.48. Something similar to phase group homomorphisms has already been used

in the ZX calculus. Some of the early incompleteness proofs used ‘non-standard inter-

pretations’, such as in Refs [DP09, Lemma 8], [DP14, Lemma 1.5] or [SZ14, §2]. These

papers do not define something akin to our φ̂, but instead jump straight to defining and

using
r
φ̂(·)

z
. The idea of φ̂ is already apparent in the definition of J · Kk of Ref. [SZ14].

At the end of the chapter we will have the language for defining the general case of a

phase homomorphism and phase homomorphism pairs (Definition 5.62) but for now we

define a ZX phase homomorphism pair as:

Definition 5.49 (ZX phase homomorphism pair). A ZX phase homomorphism pair

(φ, φ̃) is a group homomorphism φ : A → B and a functor φ̃ : R-bit → S-bit such that

the following diagram commutes:

A ZXA R-bit

B ZXB S-bit

φ φ̂

J · K

φ̃

J · K
(5.129)

Proposition 5.50. The finite subgroups of [0, 2π) under addition are cyclic groups of
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the form < 2πik/n >, and have endomorphisms of the form

φj : 2πik/n 7→ j × 2πik/n (5.130)

These endomorphisms lift to a phase homomorphism pair (Definition 5.49) if and only

if the map φ̃

φ̃ : Z[2−
1
2 , e2πik/n]-bit→ Z[2−

1
2 , e2πik/n]-bit (5.131)

e2πik/n 7→ e2πijk/n (5.132)

is a well-defined ring homomorphism (when restricted to scalars) that fixes the subring

Z[2−
1
2 ].

Proof. The statements on the presentation of the finite subgroups and their endomorph-

isms follow from clearing denominators in the generators. The statement about lifting

to phase homomorphisms is shown by noting that:

• φ̃ must be a ring homomorphism when restricted to scalars

• For the green spider the diagram in (5.129) commutes for any φ that fixes 1 and

0, but for the Hadamard node we additionally require φ̃ to fix −1 and 1√
2

Example 5.51 (Clifford+T ZX phase homomorphism pairs). Consider the Clifford+T

phase group < e2πi/8 > and its relationship to the field automorphisms σ and τ from

Example 5.41

σ : i 7→ −i (5.133)

τ :
√

2 7→ −
√

2 (5.134)

Note that τ does not fix
√

2. In Figure 5.1 we show all the endomorphisms of the

Clifford+T phase group, the associated ring homomorphism φ̃ from (5.132), and whether

(φ, φ̃) forms a ZX phase homomorphism pair. If no ring homomorphism is recorded in

the column then the φ̃ constructed is not a ring homomorphism at all. If φ̃ is a valid

ring homomorphism and also fixes
√

2, then (φ, φ̃) forms a phase homomorphism pair,

and we record the effect of the pair in the final column. Note that this table shows that

the only phase homomorphism pairs of the Clifford+T ZX phase group are the identity

and complex conjugation (i.e. φ1 and φ7).

Proposition 5.52. For a finite fragment of ZX that contains π/4, a group endomorph-

ism φj lifts to a phase homomorphism pair if and only if j ≡ 1 or 7 modulo 8.

Proof. Restrict φj to the subgroup < π/4 >, and note that by Figure 5.1 j must be 1

or 7 modulo 8. Conversely if j ≡ 1 then φj fixes
√

2 and i, and if j ≡ 7 then φj moves
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Group endomorphism Z[i, 1√
2
] automorphism Pair

φ0 – –

φ1 Identity Identity

φ2 – –

φ3 τ –

φ4 – –

φ5 στ –

φ6 – –

φ7 σ Complex conjugation

Figure 5.1: The group endomorphisms of the Clifford+T phases, details on whether they lift to phase
group homomorphisms, and the associated ring automorphism of Z[i, 1√

2
]

i but fixes
√

2 (as seen by the action on 1+i√
2

), in both cases satisfying the conditions of

5.50.

Remark 5.53. We have already classified the phase ring homomorphisms for ZW, ZH

and ring by showing that every ring homomorphism lifts to a phase ring homomorphism

pair.

Looking now at the phase group version of Theorem 5.46 (phase ring homomorphisms

preserve proofs) we need a set of rules for these fragments of ZX, for which we take the

rules of Figure 1 of Ref. [JPV19], along with the rule (cancel) given in their Definition 10.

We call this set of rules ‘RZX’.

Proposition 5.54. For a finite fragment of ZX that contains π/4, a group endomorph-

ism φj lifts to a RZX-proof preserving map if and only if j ≡ 1 mod 8

RZX ` A = B =⇒ RZX ` φ̂A = φ̂B (5.135)

Proof. Following the same structure as the proof of Theorem 5.46 we note that the rules

of RZX contain phases that are multiples of π/4, and in particular any φj with j ≡ 7

mod 8 will send the rule (BW) (shown in Figure 5.2) to an equation that is not a rule.

In contrast if j ≡ 1 mod 8 then the rules are preserved by φ̂. By Proposition 5.52 the

only suitable φj are those where j ≡ 1 mod 8.

Remark 5.55. While the classification of ZXG phase homomorphism pairs in Proposi-

tion 5.52 only applied to finite subgroups of [0, 2π) containing π/4, it is worth remem-

bering that any given ZX diagram only contains finitely many phases, and so this result

applies in all situations where the phases are rational multiples of π.

Remark 5.56. The result of Proposition 5.54 does not imply that RZX is in any way defi-

cient. RZX is, after all, still sound, universal, and complete. Rather this result highlights
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π/4

π/4π/4

−π/2

π/4 π/4

π/4

=
BW

π/4

π/4π/4

π/4

π

π

π/2

Figure 5.2: The rule (BW) from Ref. [JPV19]

that the notation of ZX does not match perfectly onto the available algebraic structure.

There is a sense in which phase ring homomorphisms ‘just work’ for ZW, ring, and ZH,

but the same does not apply to phase group homomorphisms for ZX.

Remark 5.57. It is possible to generalise the above work from rings and groups to Σ-

algebras. Σ-algebras are at the heart of Universal Algebra, allowing us to represent

algebraic concepts without restricting ourselves to a particular algebraic system. Part

of our reason for not doing so from the start lies in the next chapter: ZQ is based

on group structure but cannot be represented as a model of the Σ-algebra for groups

(Corollary 6.11).

We present the general method of turning a signature and equational theory into

a parameterised family of PROPs below, as well as the general definition of a phase

homomorphism pair for Σ-algebras. As just mentioned this framework is not sufficient

for all our needs, which is why it is covered in such brief terms. It is, however, a bridging

between the concepts of universal algebras and graphical calculi.

Definition 5.58 (Signatures, terms, algebras, homomorphisms [BN98, Section 3]). •
A signature Σ is a set of function symbols with fixed arities. We write f ∈ Σ(n) if

f is a function symbol with arity n.

• A Σ-term is inductively defined using a set of variables: Every variable is a term,

and for every function symbol f ∈ Σ(n) and terms t1, . . . , tn the application

f(t1, . . . , tn) is a term.

• A Σ-algebra A is a set A, called the carrier set, and an assignment of each function

variable f ∈ Σ(n) to a function fA : An → A.

• A Σ-homomorphism φ : A → B is a function on the carrier sets A→ B such that

φ(fA(x1, . . . , xn)) = fB(φ(x1), . . . φ(xn)) (5.136)

With these definitions we can form a PROP analogue of the same concept. This is
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very similar to the idea of a term tree [BN98, Figure 3.1] except that the PROP structure

is also present, allowing arbitrary horizontal products and wire permutations.

Definition 5.59 (PROP form of a Σ-algebra). Given a signature Σ we create the PROP

ΣP generated by the morphisms

f

. . .

: n→ 1 ∀f ∈ Σ(n) (5.137)

For any Σ-algebra A with carrier set A and function assignments fA we generate the

PROP ΣPA by also including the diagrams

a
∀a ∈ A (5.138)

Given a set of variables X (symbols distinct from A and Σ) we likewise represent them

as

x
∀x ∈ X (5.139)

For each function symbol f we have the rewrite rule appf which applies the function fA

to its inputs:

f

x1 xn. . .

=
appf fA(x1, . . . , xn)

(5.140)

Any Σ-homomorphism φ : A → A′ lifts to a morphism φ̄ : ΣPA → ΣPB of Σ-PROPs

which is the identity on function symbols and sends

a
7→

φ(a)
(5.141)

Note that any equational theory one wishes to apply to a signature can be applied inside

the phases; i.e. if E ` a = b then we would consider the following to be an isomorphism

of diagrams:

E ` a = b ∴
a

∼=
b

(5.142)

Definition 5.1, where we defined ring-prop, is an example of such a Σ-PROP. As

we did for ring-prop we can define a model of ΣPA as a strict symmetric monoidal

functor MA out of ΣPA, and form the following category:

Definition 5.60 (Σ Graphical Calculi). The category of Σ Graphical Calculi over the

category C, written Σ-GC (C), is the category given by:
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• Objects are pairs (G,MA) where G is a (compact closed) graphical calculus given

as a collection of generators, an interpretation J · KG : G → C, and rewrite rules,

and MA is a model of ΣPA

• Morphisms

f : (G,MA)→ (G′,MA′) (5.143)

are given by a strict symmetric monoidal functor fD : G → G′ as well as a Σ-

homomorphism φ : A → A′ such that the right hand diagram commutes:

A ΣPA G

A′ ΣPA′ G′

φ φ̄

MA

fD

MA′

(5.144)

The category Ring-GC (R-bit) given in Definition 5.5 is an example of a category of

Σ Graphical Calculi, where Σ is the usual signature for rings. Our final definitions of this

chapter are the general definitions for phase homomorphisms and phase homomorphism

pairs. This extends the notion first seen in Definition 5.16 of finding an algebra homo-

morphism φ that lifts to a map φ̂ ‘acting on phases’ for diagrams and also commutes

with the interpretation via some third map φ̃.

Definition 5.61 (Phase homomorphism). The phase homomorphism for a Σ-homo-

morphism φ : A → A′ and objects GA and G′A′ is the Σ-GC (C) morphism GA → G′A′
(if it exists) given by φ and fD such that:

• fD acts as the identity on those vertices not labelled by symbols from Σ or A

• Otherwise the action of fD on the label is:

a 7→ φ(a) a ∈ A (5.145)

f 7→ f f ∈ Σ(n) (5.146)

We refer to such a fD as φ̂.

Definition 5.62 (Phase Homomorphism Pair). A phase Σ-homomorphism pair between

GA and G′A′ in Σ-GC (C) is a pair of maps (φ, φ̃) such that:

• φ : A → A′ is a Σ-homomorphism

• The phase homomorphism φ̂ : G→ G′ exists

• φ̃ : C → C is a strict symmetric monoidal functor
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• The following diagram commutes:

A G C

A′ G′ C

φ φ̂

J · KG

φ̃

J · KG′

(5.147)

The commutative square of Definition 5.62 gives us the soundness-preserving prop-

erty used in Theorem 5.42.

5.5 Summary

The most important result from this chapter (from the point of view of the later chapters)

will be that of phase ring homomorphisms preserving soundness (Theorem 5.42), which

for the ring calculi we have considered can be paraphrased as ‘theorems are closed under

phase homomorphism’. These pairs only arise because we view phase algebras as algebras

and not sets. We shall rephrase these pairs as symmetries of a geometric space in §7.

We also showed that ringC acts as a form of unifier for phase ring qubit graphical

calculi. While different choices of generators will yield graphical calculi suited for different

situations it is also important to know that any phase ring qubit graphical calculus will

have a relationship to ringC as described in Remark 5.36.

In the last subsection we also provided a classification of phase group homomorphism

pairs for the finite fragments of ZX containing π/4. Future work would include extending

this classification of phase homomorphism pairs to other fragments and calculi, but also

the investigation of any other category of Σ Graphical Calculi.





Chapter 6

The Graphical Calculus ZQ

In this chapter:

. We introduce the graphical calculus ZQ

. We justify the structural difference between ZQ and ZX

. We prove completeness of ZQ

. This chapter touches on the ideas of §5, but stands alone, and is not required for

the understanding of later chapters.

The ZX calculus is built from the Z and X classical structures of quantum computing

[CD08]. Even in that earliest paper the Z ‘phase shift’ is illustrated as a rotation of the

Bloch Sphere [CD08, §4]. By the time of [Bac16], eight years later, language has changed

to that of Z ‘rotations’ or ‘angles’ [Bac16, Lemma 3.1.7], and explicit use is made of the

Euler Angle Decomposition result; that any rotation in SO3(R) can be broken down into

rotations about the Z then X then Z axes. The idea behind ZQ is to represent not just

the Z and X rotations of the Bloch Sphere, but represent arbitrary rotations via unit-

length quaternions. In order to do so we shall have to fundamentally alter the structure

of how these diagrams are constructed: Composition of rotations along different axes

is not commutative, something that the spider-mediated monoid of ZX cannot model

(§6.1). While there have been graphical calculi with phase groups outside of ([0, 2π),+)

before, such as Backens’ calculus representing Spekkens’ toy bit theory [BD15], to the

author’s knowledge the language ZQ is the first with a non-commutative phase group.

To emphasise this idea further: Much study has been done on fragments of ZX

[JPV19], but these fragments all have a phase group that sits inside the unit circle of the

complex plane. Likewise ZWC and ZHC have phase rings of the entire complex plane.

Indeed we showed in Proposition 5.26 that a phase ring for a qubit graphical calculus

must inject into C. ZQ is therefore interesting as a qubit graphical calculus with a phase

algebra that does not neatly fit into the complex numbers, quite apart from its practical

uses.

91
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The Bloch Sphere, which we cover in more detail in §6.1, is not a perfect analogy.

Although it provides us with useful intuition and a way to consider a single qubit in

real Euclidean space, its group of rotations, SO3(R), is a subgroup of the group of unit-

ary evolutions, SU2(C), which the standard model of quantum computing actually uses

[NC10]. The group SU2(C) itself is isomorphic to the group of unit-length quaternions,

and it is this group of quaternions that we shall use as rotations, giving us the ‘Q’ in ZQ.

This use of quaternions to represent rotations is nothing new in the world of engineering

and computer graphics [Sho85], but has recently surfaced as a useful component of inter-

mediate representations for quantum circuits. Intermediate representations sit between

the user’s specification of an algorithm and the actual implementation on a specific

piece of hardware. The system TriQ [Mur+19] provides such an intermediate represent-

ation, targeting existing quantum computers run by IBM, Rigetti, and the University

of Maryland. The authors claim a speed-up in execution of their benchmarks on the

seven quantum computers considered, in part because of TriQ’s use of quaternions in

the optimisation process [Mur+19, §4]: Any sequence of single qubit rotations can be

combined into just one quaternion, then decomposed into the most efficient sequence of

gates for the target hardware architecture. Our aims in making ZQ are the following:

• Construct a graphical calculus that expresses all qubit rotations

• Construct a qubit graphical calculus with a non-commutative phase group

• Provide a complete ruleset that can condense sequences of single qubit rotations

• Provide a complete ruleset for a qubit phase group calculus that only uses linear

side conditions

This last point deserves extra attention: The (EU’) rule of ZX, given with the rest

of the Universal ZX rules in Figure 6.6, has side conditions that are fiddly to com-

pute, making them unsuitable for researchers to use or remember, and extremely hard

to find through conjecture synthesis (we explore this idea further in §7.2). Neither of

these objections apply to ZQ, with the Euler Angle composition captured neatly by the

multiplication of quaternions. Before we give the definition of ZQ we first give a brief

overview of the Bloch Sphere, the groups SU2(C) and SO3(R), and unit quaternions.

6.1 Quaternions, Rotations and the Bloch Sphere

In this section we will introduce the Bloch Sphere and quaternions, then demonstrate

the incompatibility of the group of unit-length quaternions with the spider notation of

ZX.
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Definition 6.1 (Bloch Sphere [NC10, Figure 1.3]). A qubit state, up to global phase,

can be represented as

|ψ 〉 = cos
θ

2
| 0 〉+ eiφ sin

θ

2
| 1 〉 (6.1)

The parameters θ and φ describe a point on the unit sphere in R3, known as the Bloch

Sphere. The group of rotations of this sphere is SO3(R).

Definition 6.2 (Quaternions [HGK04, p12]). The quaternions are a non-commutative,

four-dimensional, real algebra:

R + iR + jR + kR (6.2)

i2 = j2 = k2 = ijk = −1 (6.3)

For ZQ we are only interested in unit-length quaternions, forming the group Q̂ under

multiplication.

Remark 6.3. The group Q̂ is isomorphic with SU2(C), via the isomorphism:

φ : Q̂→ SU2(C) (6.4)

qw + iqx + jqy + kqz 7→

(
qw − iqz −qy + iqx

−qy − iqx qw + iqz

)
(6.5)

The fact that the groups are isomorphic is well known, but we include a proof that this

particular map is an isomorphism in Proposition C.1.

There is another way to represent unit-length quaternions, and that is by an angle and

a unit vector. It is important to note that this is not the same thing as ‘an angle rotation

along a unit vector’; the angle-vector pair (α, v̂) and the angle-vector pair (−α,−v̂) are

different as pairs, but would constitute the same rotation. This, in fact, describes the

relationship between Q̂ and SO3(R):

Definition 6.4 (Quaternions as rotations). There is a canonical homomorphism from

Q̂ to SO3(R), given by

(α, v) := cos
α

2
+ sin

α

2
(ivx + jvy + kvz) (6.6)

ψ : Q̂→ SO3(R) (6.7)

(α, v) 7→ rotation by angle α along vector v (6.8)
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kerψ = {1,−1} (6.9)

Remark 6.5. This presentation of quaternions as angle-vector pairs is directly linked to

the Pauli matrices and the Hadamard map via the homomorphism φ of (6.4), up to a

scalar factor of −i:

φ((π, x)) = −i

(
0 1

1 0

)
(6.10)

φ((π, y)) = −i

(
0 i

−i 0

)
(6.11)

φ((π, z)) = −i

(
1 0

0 −1

)
(6.12)

φ((π,
1√
2

(x+ z))) =
−i√

2

(
1 1

1 −1

)
(6.13)

Generally

φ((π, v)) = −i

(
vz vx + ivy

vx − ivy −vz

)
(6.14)

Definition 6.6 (The H quaternion). The quaternion (π, 1√
2
(x + z)) will often just be

referred to as H. It corresponds to the rotation that maps the Z axis to the X axis and

vice versa.

Example 6.7 (Quaternions in TriQ). The compiler TriQ uses quaternions as rotations as

part of its optimisation process1:

Since 1Q operations are rotations, each 1Q gate in the IR can be expressed

using a unit rotation quaternion which is a canonical representation using

a 4D complex number. TriQ composes rotation operations by multiplying

the corresponding quaternions and creates a single arbitrary rotation. This

rotation is expressed in terms of the input gate set. Furthermore, on all

three vendors, Z-axis rotations are special operations that are implemented in

classical hardware and are therefore error-free. TriQ expresses the multiplied

quaternion as a series of two Z-axis rotations and one rotation along either

X or Y axis, thereby maximizing the number of error-free operations. (Full-

Stack, Real-System Quantum Computer Studies: Architectural Comparisons

and Design Insights [Mur+19])

11Q: One qubit, 2Q: Two qubits, IR: Intermediate representation
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We shall explicitly construct this decomposition of a quaternion into a Z-X-Z rotation

in Proposition 6.29 when we explore how to translate from ZQ to ZX.

Unit-length quaternions form a very different group to the rotations of just the

Z axis. We will now show that the usual presentation of ZX (spiders and states) is

fundamentally incompatible with the group Q̂. In order to do so we introduce the notion

of a generic monoid, similar to how in Definition 5.1 we constructed a generic PROP for

rings, ring-propR.

Definition 6.8 (Monoid [Mac13, p2]). A monoid is a set M equipped with a binary

operation:

µ : M ×M →M (6.15)

referred to as the multiplication, which is required to be associative. There is also a unit,

e, which is the left and right unit for µ. We can also view e as the image of a function

η : 1→M . Graphically we represent these as:

µ := η := (6.16)

such that the following hold:

= = = (6.17)

Definition 6.9 (A generic monoid PROP). We construct the generic monoid PROP,

monoid-propM , for the monoid (M,µ, e) as the PROP generated by

and

{
a

}
a∈M

(6.18)

With the following rewrite rules:

a e

=
unitl a

=
unitr

ae

(6.19)

a b c

=
assoc

cba

(6.20)

A model for monoid-propM in a graphical calculus G is a strict symmetric monoidal

functor monoid-propM → G (just as in Definition 5.3).
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Proposition 6.10. Every faithful model of monoid-propM into a graphical calculus

over Qubit is commutative.

Proof. Taking a generic model of monoid-propM we look at the interpretation of the

image of the generators of monoid-propM . For brevity we will just write J D K for D a

diagram in monoid-propM to mean the interpretation of the image of D in the model.

We proceed by looking at the span of the interpretations of the elements of M .

W := span

{s

e

{
,

s

a

{
,

s

a′

{
, . . .

}
(6.21)

• If dimW = 0 then the monoid has only one element, e, and so is commutative.

• If dimW > 0 then there either M = {e} (and so commutative), or there is some

other element a ∈M . This implies that

s

e

{
6= 0:

assume

s

e

{
= 0 (6.22)

∴

u

w
v

ae

}

�
~ = 0 (any element a) (6.23)

u

w
v

ae

}

�
~ =

s

a

{
(e is the unit for m) (6.24)

∴

s

a

{
=

s

e

{
(faithfulness) (6.25)

• If dimW = 1 then without loss of generality:

s

e

{
=

(
1

0

)
(6.26)

∴

s

a

{
=

(
λa

0

)
∀a some λa ∈ C (6.27)

u

w
v

ae

}

�
~ =

s

a

{
e is the unit for m (6.28)

∴

u

v

}

~ =

(
1 · · ·
0 · · ·

)
where · represents unknowns (6.29)
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∴

u

w
v

ba

}

�
~ =

(
λaλb

0

)
=

u

w
v

b a

}

�
~ (6.30)

• if dimW = 2 then the states span all of C2:

s

e

{
=

(
1

0

)
w.l.o.g (6.31)

ae

=
unitl a

∀a (6.32)

∴

u

ww
v

e

}

��
~ =

u

v

}

~ =

u

ww
v

e

}

��
~ since span

{
a

}
= C2 (6.33)

∴

u

v

}

~ =

(
1 0 0 ·
0 1 1 ·

)
where · represents unknowns (6.34)

∴

u

www
v

}

���
~

=

u

v

}

~ (6.35)

∴

u

w
v

ba

}

�
~ =

u

w
v

b a

}

�
~ (6.36)

Corollary 6.11. There is no qubit graphical calculus that faithfully models monoid-propM
(for any M) such that this monoid action is isomorphic to the group multiplication of

Q̂, because Q̂ is not commutative.

Remark 6.12. Since Q̂ cannot be modelled as a monoid over states, it cannot obey the

fundamental spider rules of [CD08]. We therefore note that the presentation of ZQ (when

we come to it) will be different by necessity rather than whim.

We will deviate from the structure of ZX by having labelled, directed edges carry

the phase group of ZQ, but keep phase-free Z spiders to mediate the graph structure.

Although ZQ is presented here in the form of a PROP we encourage the reader to think

of ZQ diagrams as directed, multi, open graphs, where each directed edge is labelled by a

unit-length quaternion. A different approach to this monoid-based presentation of groups
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(as suggested by our general notion of graphical calculi based on Σ-algebras in §5.4) is

to instead consider a group as a category with one object and where all morphisms are

invertible. This point of view lends us to the following definition:

Definition 6.13 (Group PROP with vertical composition). We construct the (vertic-

ally composed) group PROP, v-group-propG, for a group (G, ·) as the PROP with

generators

g ∀g ∈ G (6.37)

It additionally satisfies the rewrite rules

f

g
=
M f · g (6.38)

Both ZQ and ZX will be models of this PROP; in each case the image of the morph-

isms in v-group-propG are the single qubit rotations of the phase group. For ZQ this

group is SU2(C), for ZX this group is [0, 2π) under addition.

6.2 The definition of the ZQ-calculus

We present the graphical calculus ZQ as a compact closed PROP generated by the

morphisms in Figure 6.1 and then present the interpretation of these generators in Fig-

ure 6.3. We build the transpose of the Qq node in the usual way, as shown in Figure 6.2. A

unit-length quaternion q can be expressed as an element of R4, i.e. qw+iqx+jqy+kqz, or

as an angle-vector pair, e.g. (α, v) (see §6.1). Finally we give the rules of ZQ in Figure 6.5.

Definition 6.14 (ZQ). The graphical calculus ZQ is formed by:

• The generators of Figure 6.1

• The interpretation of Figure 6.3

• The rules of Figure 6.5

Theorem 6.15 (ZQ is sound). The rules of ZQ (Figure 6.5) are sound with respect to

the standard interpretation (Figure 6.3)

Proof. This proof is covered in §6.3

Theorem 6.16 (ZQ is complete). ZQ with the rules of Figure 6.5 is complete with

respect to the standard interpretation (Figure 6.3)
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Z : m→ n

. . .

. . .

Z spider node

Qq : 1→ 1 q q a unit-length quaternion

λc : 0→ 0 λc c a complex scalar

Figure 6.1: The generators of ZQ as a PROP

q := q

Figure 6.2: The transpose of q in ZQ

Proof. This proof is covered in §6.4, and is performed by an equivalence with the ZX

calculus.

Diagrams of ZQ are elements of the compact closed PROP generated by the morph-

isms in Figure 6.1. We add to these generators a shorthand for the transpose of Qq,

written as a trapezium pointing downwards (as in Figure 6.2), and defined using the

cup and cap. The interpretations of these generators are given both in Figure 6.3, or

alternatively using angle-vector pair notation (Definition 6.4) we have the interpretation

given in Figure 6.4.
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u

v
. . .

. . .

}

~ =



1 0 . . . 0

0 0 . . . 0
...

. . .
...

0 . . . 0 0

0 . . . 0 1


u

v q

}

~ =

(
qw − iqz −qy + iqx

−qy − iqx qw + iqz

)

J λc K = c

r z
=


1

0

0

1


r z

=
(

1 0 0 1
)

Figure 6.3: Interpretations of the generators of ZQ

u

v
(α, v)

}

~ =

(
cos α2 − i sin α

2 vz −i sin α
2 (vx + ivy)

−i sin α
2 (vx − ivy) cos α2 + i sin α

2 vz

)

Figure 6.4: Interpretation of the Q generator using angle-vector pair notation
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In order to decrease diagrammatic clutter we shall use the following notation:

:= (π, 1√
2

(x+ z)) = H (6.39)

This is the familiar ‘Hadamard edge’ from e.g. [Dun+20]. Note that the Hadamard edge

is symmetrical, but the H quaternion edge decoration is not. As soon as we have the

tools to show that this is well defined we shall do so (Lemma 6.17).

6.2.1 The rules of ZQ

We present in Figure 6.5 a ruleset of ZQ. The soundness of this ruleset is proved in

subsection 6.3 and completeness is proved in section 6.4.

Lemma 6.17. The Hadamard edge is well defined in ZQ, in that:

ZQ � H = H = ZQ ` H
=
Y H = (6.40)

Proof. For the semantics:

u

v
H

}

~ =
−i√

2

(
1 1

1 −1

)
=

u

v
H

}

~
T

=

u

w
v


H

T
}

�
~ =

u

v
H

}

~ (6.41)

Syntactically

cos π
2

+ sin π
2

(i+ k) =
Y

cos π
2

+ sin π
2

(i+ k) (6.42)

The author feels that the rules of ZQ are easier to grasp than the rules of Universal

ZX given in Figure 6.6. (Other rulesets for Universal ZX exist but all of them require

trigonometric side conditions for their variation on the EU rule.) By contrast the rules

of ZQ involve a single, linear side condition, it abstracts scalar diagrams into simply

scalar numbers λc, and it neatly divides graphically into entanglement (vertices) and

rotations (edges). The ‘complexity’ of the (EU’) rule in ZX is simply a shadow of the

group multiplication of rotations shown in the (Q) rule of ZQ. This is best illustrated

by noting that to simplify a chain of single qubit unitaries in ZX one must successively

apply the (EU’) rule, at each point calculating x+, x−, z, and z′, as well as various

arguments, moduli, sines, and cosines, eventually reaching three rotations (and a choice

of ZXZ or XZX); in ZQ one simply applies the group multiplication.
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...

. . . . . .

. . . . . .

=
S

. . .

. . .
q2

q1 =
Q

q1 × q2

q =
Y q̃ λ−1 q =

N
−q

1
=
Iq

=
Iz

q =
A
λ2(qw−iqx)

λxλy =
M

λx×y λ1 =
I1

λ−
√

2i
=
B

=
CP

λ i√
2

α, z
=
P α, z

Figure 6.5: The rules of ZQ. In rule S the diagonal dots indicate one or more wires, horizontal dots
indicate zero or more wires. The right hand side of rule I1 is the empty diagram, and q̃ is the quaternion
q reflected in the map j 7→ −j.
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· ·
· = α+β

β

· · ·
α

· · ·

(S)

· · ·
· · ·

· · ·

· · ·

=
(Ig)

=
(Ir) α

=
(IV)

=
(CP)

=
(B)

α

· · ·

= α

· · ·

· · ·

· · ·

(H)
= β2

β1

β3

α1

α2

π

γ

(EU’)

Figure 6.6: Set of rules ZX for the ZX-Calculus with scalars from Ref. [Vil19]. The right-hand side of (IV)

is an empty diagram. (...) denote zero or more wires, while ( · · · ) denote one or more wires. In rule (EU’),
β1, β2, β3 and γ can be determined as follows: x+ := α1+α2

2
, x− := x+ − α2, z := − sinx+ + i cosx−

and z′ := cosx+ − i sinx−, then β1 = arg z + arg z′, β2 = 2 arg
(
i+

∣∣ z
z′

∣∣) , β3 = arg z − arg z′, γ =

x+ − arg(z) + π−β2
2

where by convention arg(0) := 0 and z′ = 0 =⇒ β2 = 0.

6.3 Soundness of ZQ

In this section we go through each of the rules given in Section 6.2.1, showing that the

interpretations of the left and right hand sides of the rules are equal.

Proposition 6.18. The rule S is sound:

u

wwww
v

...

a. . . b. . .

c. . . d. . .

}

����
~

=

u

ww
v

a+b. . .

. . .
c+d

}

��
~ (6.43)

Where there are k ≥ 1 wires represented by
... in the middle of the left hand side.

Proof. This is simply a restating of the original Z spider law from [CD08, Theorem 6.12].
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Proposition 6.19. The rule Q is sound:

u

w
v

q2

q1

}

�
~ =

u

v q1 × q2

}

~ (6.44)

Proof. Follows from φ (see Remark 6.3) being a group isomorphism. The left hand side

is multiplication in SU2(C), the right hand side is multiplication in Q̂.

Proposition 6.20. The rule Y is sound:

u

v qw + iqx − jqy + kqz

}

~ =

u

v qw + iqx + jqy + kqz

}

~ (6.45)

Proof. The action of the cups and caps in Figure 6.2 (where we defined the diagrammatic

transpose), is to enact the transpose in the interpretation:

u

v q

}

~ =

(
qw − iqz −qy − iqx
qy − iqx qw + iqz

)
=

u

v qw + iqx − jqy + kqz

}

~ (6.46)

Proposition 6.21. The rule N is sound:

u

v λ−1 q

}

~ =

u

v −q

}

~ (6.47)

Proof.

LHS = −1

(
qw − iqz qy − iqx
−qy − iqx qw + iqz

)
=

(
−qw + iqz −qy + iqx

qy + iqx −qw − iqz

)
= RHS (6.48)

Proposition 6.22. The rules Iq and Iz are sound:

u

v
1

}

~ =

u

v

}

~ =

u

v

}

~ (6.49)

Proof. They all have the interpretation

(
1 0

0 1

)
.
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Proposition 6.23. The rule A is sound:

u

v q

}

~ =
q
λ2(qw−iqx)

y
(6.50)

Proof.

u

v q

}

~ =
(

1 1
)
◦

(
qw − iqz qy − iqx
−qy − iqx qw + iqz

)
◦

(
1

1

)
(6.51)

=qw − iqz + qy − iqx − qy − iqx + qw + iqz (6.52)

=2(qw − iqx) (6.53)

=
q
λ2(qw−iqx)

y
(6.54)

Proposition 6.24. The rule M is sound:

J λxλy K = J λx×y K (6.55)

Proof. Both sides have interpretation x× y.

Proposition 6.25. The rule Iλ is sound:

J λ1 K = J ε K (6.56)

Where ε is the empty diagram.

Proof. Both sides have interpretation 1.

Proposition 6.26. The rule B is sound:

u

ww
v λ−

√
2i

}

��
~ =

u

ww
v

}

��
~ (6.57)

Proof.

LHS =−
√

2i×

(
1 0 0 0

0 0 0 1

)⊗2

◦

(
−i√

2

(
1 1

1 −1

))⊗4

◦ (6.58)
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id2 ⊗


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⊗ id2

 ◦


1 0

0 0

0 0

0 1


⊗2

(6.59)

=
−i
√

2
3


1 1 1 1

1 −1 −1 1

1 −1 −1 1

1 1 1 1

 (6.60)

RHS =

(
−i√

2

)5

×

(
1 1

1 −1

)⊗2

◦


1 0

0 0

0 0

0 1

 ◦ (6.61)

(
1 1

1 −1

)
◦

(
1 0 0 0

0 0 0 1

)
◦

(
1 1

1 −1

)⊗2

(6.62)

=

(
−i√

2

)5

×


2 2 2 2

2 −2 −2 2

2 −2 −2 2

2 2 2 2

 =
−i
√

2
3 ×


1 1 1 1

1 −1 −1 1

1 −1 −1 1

1 1 1 1

 (6.63)

Proposition 6.27. The rule CP is sound:

u

v

}

~ =

u

v λ i√
2

}

~ (6.64)

Proof.

LHS =
(

1 1
)
◦ −i√

2

(
1 1

1 −1

)
◦

(
1 0 0 0

0 0 0 1

)
=
−i√

2

(
2 0 0 0

)
(6.65)

RHS =
i√
2

((
1 1

)
◦ −i√

2

(
1 1

1 −1

))⊗2

=
−i√

2

(
2 0 0 0

)
(6.66)
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Proposition 6.28. The rule P is sound:

u

w
v

α, z

}

�
~ =

u

w
v

α, z

}

�
~ (6.67)

Proof.

LHS =

(
1 0 0 0

0 0 0 1

)
◦

((
qw − iqz 0

0 qw + iqz

)
⊗ id2

)
(6.68)

=

(
qw − iqz 0 0 0

0 0 0 qw + iqz

)
(6.69)

RHS =

(
1 0 0 0

0 0 0 1

)
◦

(
id2 ⊗

(
qw − iqz 0

0 qw + iqz

))
(6.70)

=

(
qw − iqz 0 0 0

0 0 0 qw + iqz

)
(6.71)

6.4 Completeness of ZQ

The completion of ZQ is achieved by finding an equivalence between ZQ and ZX as

PROPs. We already know that ZX is complete [NW17] and this proof was by a similar

equivalence with ZW, which was shown to be complete in Ref. [Had15]. Equivalence is

shown by finding a translation of the generators from ZX to ZQ and vice versa (§6.4.1),

before then translating all of the rules from ZX into ZQ (§6.4.2), and keeping these

as rules in ZQ. Finally one has to ensure that any diagram translated from ZQ to ZX

and back again can be proven to be equivalent to the original ZQ diagram (§6.4.3). In

symbols this is:

J D1 K = J D2 K Two diagrams in ZQ (6.72)

ZX `FXD1 = FXD2 (6.73)

§6.4.2 : ZQ `FQFXD1 = FQFXD2 (6.74)

§6.4.3 : ZQ `D1 = FQFXD1 and D2 = FQFXD2 (6.75)

∴ ZQ `D1 = FQFXD1 = FQFXD2 = D2 (6.76)
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6.4.1 Translation to and from ZX

We define the strict monoidal functors FX and FQ on generators in Figure 6.7. In de-

fining this translation we make use of two facts; firstly that we can decompose any unit

quaternion into Z then X then Z rotations. This is tantamount to Euler Angle Decom-

position and is performed explicitly in Proposition 6.29. Secondly we need to be able to

express any complex number in a rather particular form, which is shown in Lemma 6.30.

Proposition 6.29. There exist α and γ ∈ [0, 2π), and β ∈ [0, π] such that:

qw + iqx + jqy + kqz =
(

cos
α

2
+ k sin

α

2

)(
cos

β

2
+ i sin

β

2

)(
cos

γ

2
+ k sin

γ

2

)
(6.77)

Proof.

RHS =
(

cos
α

2
+ k sin

α

2

)(
cos

β

2
+ i sin

β

2

)(
cos

γ

2
+ k sin

γ

2

)
(6.78)

=

(
cos

α

2
cos

β

2
cos

γ

2
− sin

α

2
cos

β

2
sin

γ

2

)
+ (6.79)

i

(
cos

α

2
sin

β

2
cos

γ

2
+ sin

α

2
sin

β

2
sin

γ

2

)
j

(
cos

α

2
sin

β

2
sin

γ

2
− sin

α

2
sin

β

2
cos

γ

2

)
+

k

(
cos

α

2
cos

β

2
sin

γ

2
+ sin

α

2
cos

β

2
cos

γ

2

)
+

= cos
β

2

(
cos

α+ γ

2
+ i sin

α+ γ

2

)
+ j sin

β

2

(
sin

γ − α
2
− i cos

γ − α
2

)
From this we gather:

qw = cos
β

2
cos

α+ γ

2
qx = cos

β

2
sin

α+ γ

2
(6.80)

qy = sin
β

2
sin

γ − α
2

qz = sin
β

2
cos

γ − α
2

(6.81)

And finally use these to determine values of α, β and γ :

• q2
w + q2

x = cos2 β
2 determines up to two different possibilities of β ∈ [0, 2π). We will

enforce β ∈ [0, π] to make this unique and cos β2 non-negative.

• If β = 0 then set γ = 0, use qw and qx to determine α

• Likewise if β = π set γ = 0, use qy and qz to determine α

• Otherwise determine α + γ/2 from qw and qx, and α − γ/2 from qy and qz; their

sum and difference give γ and α respectively.
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FQ : ZX →ZQ

α

. . .

. . .

7→

. . .

. . .

α, z λeiα/2

α

. . .

. . .

7→

λi H

⊗n ◦
. . .

. . .

α, z λeiα/2 ◦

λi H

⊗m

7→ H λi

FX : ZQ→ZX

q 7→
α

β

γ

−α/2

π

−β/2

π

−γ/2

π

. . .

. . .

7→
. . .

. . .

λ(
√

2)
n
eiα cosβ 7→

α

π


π

⊗n β

−β

Figure 6.7: Translation from ZX to ZQ and back again. The existence of α, β and γ when translating the Q
node is shown in Proposition 6.29, likewise the decomposition of any complex number as

(√
2
)n
eiα cosβ

is shown in Lemma 6.30.
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The choices we made in this proof we justify by noting that we can represent these

choices by certain applications of the spider rule (in the case β = 0) and π-commutativity

rules (relating (α, β, γ) ∼ (α+ π,−β, γ + π)) in ZX.

Lemma 6.30. Any non-zero complex number c can be expressed uniquely as
(√

2
)n
eiα cosβ

where n ∈ N, α ∈ [0, 2π), β ∈ [0, π) and where n is chosen to be the least n such that√
2
n ≥ |c|.

Proof. Express the complex number c as reiα, where r ∈ R≥0. This matches our choice

of α ∈ [0, 2π). For all r there is at least one n where
√

2
n ≥ r and so we can find a least

such n. Once we know n there is a unique β ∈ [0, π) such that cosβ
√

2
n

= r.

If c is zero then we set α and n to 0 and β to π/2.

6.4.2 Proving the translated ZX rules

We aim to show that the rules translated from ZX are all derivable by the rules in §6.2.1,

which we will refer to as ZQ. We will use the ZX ruleset from [Vil19, Figure 2], and refer

to individual ZX rules as ZXrule name. To save space, we will assume applications of the

M rule (scalar multiplication) in the statements of the propositions.

Lemma 6.31. Translation of the Z spider

ZQ ` FQ

 . . .

. . .

 =

. . .

. . .

(6.82)

Proof.

LHS =

. . .

. . .

1
=
Iq

. . .

. . .

=
S

. . .

. . .

(6.83)

Proposition 6.32. Translation of the Z spider rule

ZQ ` FQ (ZXS) (6.84)
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i.e. ZQ `

(α, z)

(β, z)

. . .

...

. . .

. . . . . .

λeiα/2

λeiβ/2

= (α+ β, z)

. . . . . .

. . . . . .

λei(α+β)/2

(6.85)

(The diagonal dots represent at least one wire between the Z spiders)

Proof.

(α, z)

(β, z)

. . .

...

. . .

. . . . . .

λeiα/2

λeiβ/2

=
S

(α, z)

(β, z)

. . . . . .

. . . . . .

λei(α+β)/2 (6.86)

=
P, Y

(α, z)

. . . . . .

. . . . . .

λei(α+β)/2(β, z)
=
Q,S

(α+ β, z)

. . . . . .

. . . . . .

λei(α+β)/2

(6.87)

=
P,Q, S (α+ β, z)

. . . . . .

. . . . . .

λei(α+β)/2

(6.88)
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Proposition 6.33. Translation of the Z spider identity

ZQ ` FQ
(
ZXIg

)
(6.89)

i.e. ZQ ` ◦ 1 ◦ = (6.90)

Proof.

◦ 1 ◦ =
Iz

1
=
Iq

(6.91)

Proposition 6.34. Translation of the X spider identity

ZQ ` FQ (ZXIr) (6.92)

i.e. ZQ ` H ◦ ◦ 1 ◦ ◦ H λiλi = (6.93)

Proof.

LHS = H ◦ ◦ 1 ◦ ◦ H λiλi (6.94)

=
Iz

H ◦ 1 ◦ H λiλi (6.95)

=
Iq

H ◦ H λiλi =
Q −1 λiλi (6.96)

=
N 1 λ−1λiλi =

Iq
λ−1λiλi =

M
λ1 =

I1
(6.97)

We introduce our first three intermediate lemmas, corresponding to properties of the

following three ZX diagrams:

α

β

, , (6.98)
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Lemma 6.35. Interaction of a Z state and Z effect joined by a Hadamard

ZQ `

α, z

β, z

= λ−
√

2((sin α+β
2 )+i cos α−β

2 ) (6.99)

Proof.

α, z

β, z

=
Iz

H

α, z

β, z

=
Q (α, z)×H × (β, z) =

A
λ−
√

2((sin α+β
2

)+i cos α−β
2

)
(6.100)

Since (cos
α

2
+ k sin

α

2
)×H × (cos

β

2
+ k sin

β

2
) =

1√
2

(− sin
α+ β

2
+ i(cos

α− β
2

) + j(sin
α− β

2
) + k(cos

α+ β

2
)) (6.101)

Lemma 6.36. Interaction of two Hadamard rotations

ZQ ` H ◦ H = λ−1 (6.102)

Proof.

H ◦ H
=
Q H ×H = −1 =

N 1 λ−1 =
Iq

λ−1 (6.103)

Lemma 6.37. The value of the scalar describing three Hadamard rotations in parallel

ZQ ` = λ i√
2

(6.104)
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Proof.

=
S, 6.36

λ−1

H

H HH

H

=
Y, S

λ−1 H (6.105)

=
M,B

λ−i/
√

2 H
=

Y, S, Iz
λ−i/

√
2

H

H

H

H

H

H

(6.106)

=
CP, Y

λi/2
√

2

H

H

H

H

H

H

H

H

=
Iz

λi/2
√

2

H

H

H

H

H

H

H

H

(6.107)

=
M, 6.36

λ−i/2
√

2 H H
=
A
λ−i/2

√
2 λ−i

√
2λ−i

√
2 (6.108)

=
M

λ i√
2

(6.109)

Proposition 6.38. Translation of the IV rule

ZQ `FQ (ZXIV ) (6.110)



Completeness of ZQ 115

i.e. ZQ `λ
ei
α
2

1

H

α, z

1

1

= ε (6.111)

Proof.

λ
ei
α
2

1

H

α, z

1

1

=
Iz , Iq , S,M

λ
ei
α
2 H

α, z

0, z

(6.112)

=
6.35, 6.37

λ
ei
α
2
λ−
√

2ie−i
α
2
λi/
√

2 (6.113)

=
M

λ1 =
I1

ε (6.114)

Proposition 6.39. Translation of the CP rule

ZQ `FQ (ZXCP ) (6.115)

i.e. ZQ `λ−1

1

H

1

1

H

1

=
H H

λ−1 (6.116)

Proof.

LHS =
1z , 1q

λ−1
HH =

A
λ−1λ−i

√
2

H (6.117)

=
CP

λ−1λ−i
√

2λi/
√

2 H H
=
M

λ−1 H H
= RHS (6.118)
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Proposition 6.40. Translation of the B rule

ZQ `FQ (ZXB) (6.119)

i.e. ZQ `λ−i

H H

H

1

1

1 1

1 1

=

H H

H
λ−i (6.120)

Proof.

LHS =
Iz , Iq

λ−i

H H

H
=
B

λ−iλi/
√

2

H H

H

H H

H H

H (6.121)

=
A,M, 6.36

λ−i

H H

H
(6.122)

Proposition 6.41. Translation of the H rule

ZQ `FQ (H) (6.123)

i.e. ZQ `

λi H

⊗n ◦
λi H

⊗n ◦
. . .

. . .

α, z λeiα/2◦ (6.124)

λi H

⊗m ◦
λi H

⊗m
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=

. . .

. . .

α, z λeiα/2 (6.125)

Proof.

LHS =
6.36

(λiλiλ−1)⊗n (λiλiλ−1)⊗m

. . .

. . .

α, z λeiα/2 =
M

. . .

. . .

α, z λeiα/2 (6.126)

Before proving the translation of the (EU’) rule (Proposition 6.46) we introduce

some helpful lemmas. For the more trigonometric lemmas we delay their proof until

Appendix C, because the details of those proofs are not very informative with respect

to proving ZQ ` FQ (EU ′). We reproduce the side conditions for the rule ZXEU ′ for

reference here:

In rule (EU’), β1, β2, β3 and γ can be determined as follows: x+ := α1+α2
2 ,

x− := x−α2, z := − sin(x+) + i cos(x−) and z′ := cos(x+) − i sin(x−), then

β1 = arg z+ arg z′, β2 = 2 arg(i+ |z|
|z′|), β3 = arg z− arg z′, γ = x+− arg(z) +

π−β2

2 where by convention arg(0) := 0 and z′ = 0 =⇒ β2 = 0. (Figure 2,

A Near-Minimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum

Mechanics [Vil19])

Lemma 6.42. With the conditions of ZXEU ′(
ei(β1+β2+β3+γ+9π)/2

)
×
(

i√
2

)
×
(
−
√

2
(
eiγ/2

))
= ei(α1+α2+π)/2 (6.127)

Proof.

LHS =
(
ei(β1+β2+β3+γ+9π)/2

)
×
(

i√
2

)
×
(
−
√

2
(
eiγ/2

))
(6.128)

= (−i)
(
ei(β1+β2+β3+2γ+π)/2

)
(6.129)

= (−i)
(
ei(arg z+arg z′+β2+arg z−arg z′+2x+−2 arg z+π−β2+π)/2

)
(6.130)

= (−i)
(
ei(2x++2π)/2

)
(6.131)

=ei(α1+α2+π)/2 (6.132)
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The quaternion
(
π, x+z√

2

)
, also known as H is the the ZQ equivalent of the Hadamard

gate in ZX. This quaternion changes Z rotations to X rotations and vice versa, but is

not quite self-inverse, with H ×H = −1.

Lemma 6.43. The quaternion
(
π, x+z√

2

)
and its interactions with (α, z) and (α, x):(

π,
x+ z√

2

)
× (α, z) = (α, x)×

(
π,
x+ z√

2

)
(6.133)

(α, z)×
(
π,
x+ z√

2

)
=

(
π,
x+ z√

2

)
× (α, x) (6.134)(

π,
x+ z√

2

)
×
(
π,
x+ z√

2

)
= −1 (6.135)

The proof of lemma 6.43 is in §C. We now show that the two sequences of rotations

in the rule ZXEU ′ correspond to the same two sequences of rotations in ZQ.

Lemma 6.44. With the conditions of ZXEU ′:

(α1, z)×H × (α2, z) = H × (β1, z)×H × (β2, z)×H × (β3, z)×H (6.136)

The proof of lemma 6.44 is in §C. The final lemma before Proposition 6.46 is the

evaluation of the parameterised scalar in ZXEU ′ .

Lemma 6.45.

ZQ ` H

π, z

γ, z

= λ−
√

2(eiγ/2) (6.137)

Proof. This is a special case of Lemma 6.35.

Proposition 6.46.

ZQ `FQ
(
EU ′

)
(6.138)
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i.e. ZQ `λ
e
i
2 (α1+α2+π) H

α1, z

α2, z

= λei(β1+β2+β3+γ+9π)/2 β2, z

H

H

β3, z

β1, z

H

H

0, z

γ, z

H

(6.139)

Proof.

LHS =
Iq , Q

(α1, z)×H × (α2, z) λei(α1+α2+π)/2 (6.140)

RHS =

λ
ei(β1+β2+β3+γ+9π)/2

H

π, z

γ, z

H × (β1, z)×H × (β2, z)×H × (β3, z)×H (6.141)

=
6.44

λei(β1+β2+β3+γ+9π)/2 H

π, z

γ, z

(α1, z)×H × (α2, z) (6.142)

=
6.45

λei(β1+β2+β3+γ+9π)/2 λ−
√

2(eiγ/2) (α1, z)×H × (α2, z) (6.143)

=
6.37

λei(β1+β2+β3+γ+9π)/2λ i√
2

λ−
√

2(eiγ/2) (α1, z)×H × (α2, z) (6.144)

=
6.42

λei(α1+α2+π)/2 (α1, z)×H × (α2, z) (6.145)
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We have shown that for every rule L = R in ZX, ZQ ` FQ (L) = FQ (R). We have

therefore shown that if ZX ` D1 = D2 then ZQ ` FQ (D1) = FQ (D2).

6.4.3 From ZQ to ZX and back again

It remains to be shown that ZQ ` FQ (FX (D)) = D

Proposition 6.47. Re-translating the Z spider

ZQ ` FQ

FX
 . . .

. . .

 =

. . .

. . .

(6.146)

Proof.

LHS = FQ

 . . .

. . .

 =
6.31

. . .

. . .

(6.147)

The following lemmas are necessary for the re-translation of the Q node in Proposi-

tion 6.52.

Lemma 6.48.

ZQ ` FQ

  = λ1/
√

2 (6.148)

Proof.

FQ

  =
M

λ−i =
M, 6.37

λ1/
√

2 (6.149)

Lemma 6.49.

ZQ ` FQ

 γ

π

 = λ−
√

2eiγ/2 (6.150)
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Proof.

FQ

 γ

π

 =
Y H

π, z

γ, z

λeiγ/2λiλi =
6.45,M

λ√2eiγ (6.151)

Lemma 6.50.

ZQ ` FQ


α

 = α, z λ
ei
α
2

(6.152)

Proof.

LHS = ◦ α, z ◦ λ
ei
α
2

= α, z λ
ei
α
2

(6.153)

Lemma 6.51.

ZQ ` FQ


α

 = α, x λ
ei
α
2

(6.154)

Proof.

LHS =
M H ◦ ◦ α, z ◦ ◦ H λ−ei

α
2

(6.155)

=
Q H × (α, z)×H λ−ei

α
2

=
6.43 H ×H × (α, x) λ−ei

α
2

(6.156)

=
6.36, N

α, x λ
ei
α
2

(6.157)



122 Chapter 6 The Graphical Calculus ZQ

Proposition 6.52.

ZQ ` FQ

FX
 q

 = q (6.158)

Where q = (α1, z)× (α2, x)× (α3, z), as in Proposition 6.29

Proof.

LHS =FQ

 α1 ◦ α2 ◦ α3

⊗ −α1/2

π

−α2/2

π

−α3/2

π

(6.159)

=
6.49, 6.48

FQ

 α1 ◦ α2 ◦ α3

⊗ λ√2e−iα1/2λ
√

2e−iα2/2λ
√

2e−iα3/2λ 1√
2
λ 1√

2
λ 1√

2

(6.160)

=
M

FQ

 α1 ◦ α2 ◦ α3

⊗ λ
e−

i
2 (α1+α2+α3) (6.161)

=
6.51, 6.50

 α1, z ◦ α2, x ◦ α3, z

⊗ λ
e−

i
2 (α1+α2+α3)λeiα1/2λeiα2/2λeiα3/2 (6.162)

=
M

α1, z ◦ α2, x ◦ α3, z (6.163)

=
Q (α1, z)× (α2, x)× (α3, z) (6.164)

Finally we need the following lemma for Proposition 6.54.

Lemma 6.53.

ZQ ` FQ

 β

−β

 = λ√2 cosβ (6.165)
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Proof.

LHS = H

−β, z

β, z

λeiβ2λe−iβ2λi =
M H

−β, z

β, z

λi =
Q (β, z)×H × (−β, z) λi (6.166)

=
A
λ√2 cosβ (6.167)

Proposition 6.54.

ZQ ` FQ (FX (λc)) = λc (6.168)

Proof.

c =
(√

2
)n
eiα cosβ for some α, β (6.169)

LHS =FQ

 α

π


π

⊗n β

−β

 =
6.49, 6.37

λ√2eiαλ 1√
2
λ 1√

2

(
λ√2

)⊗n
FQ

 β

−β


(6.170)

=
6.53

λ√2eiα/2λ 1√
2
λ 1√

2

(
λ√2

)⊗n
λ√2 cosβ

=
M

λ(
√

2)
n
eiα cosβ = λc (6.171)

We have shown that for each of the generators of ZQ, ZQ ` FQ (FX (G)) = G, and

since FQ and FX are monoidal functors we know that ZQ ` FQ (FX (D)) = D for any

diagram D. This concludes our proof of completeness for the rules of ZQ.

6.5 Summary

This chapter introduced ZQ, a complete graphical calculus that extends the phase group

concept of ZX. ZQ cannot fit into the categorical framework of Σ Graphical Calculi

given in the previous chapter, because the group action of ZQ cannot be expressed as

a monoid (and therefore also cannot be expressed as a spider) and is the first qubit

graphical calculus with a non-commutative phase group. ZQ allows for the expression of

arbitrary single qubit rotations in the form of quaternions, similar to the compiler TriQ.

This expression of arbitrary rotations in ZQ allows for a clearer presentation of the

Euler Angle structure than ZX exhibits in the rule (EU’). The author feels this clarity,
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and the clarity of the ZQ rules in general, lends ZQ to replacing ZX for pedagogy and

research purposes.

In the following chapters we will return to the idea of conjecture synthesis, exploring

how conjecture synthesis interacts with our new calculi, and how we can use these results

to further improve our inference and verification methods. Future work based on this

chapter would include implementing ZQ in a graphical proof assistant, or exploring

the category of models of v-group-propG. The author also hopes that ZQ will act as a

bridge between the optimisation methods of both TriQ and of ZX (such as Refs [Bac+20],

[KW20b]).



Chapter 7

Conjecture Inference

In this chapter:

. We introduce conjecture inference for graphical calculi

. We provide a link between phase algebras and algebraic geometry

. We use this geometric link to infer rules from sample instances of those rules

. We present a simple method for adding !-boxes and phase variables to diagram

boundaries

Graphical Conjecture Synthesis1 produces simple equational theorems, i.e. theorems

of the form L = R where L and R are diagrams containing neither !-boxes nor phase

variables (see §2.3). In all the calculi we have encountered their complete rulesets can

be expressed using either an infinite number of simple rules, or a finite number (around

20) of decorated rules. We therefore would like to know the answer to ‘how can we find

rules containing !-boxes and phase variables?’ We break this down into two situations:

• Finding these rules with certainty, and

• Finding these results in a way we can easily verify (e.g. by checking a few more

examples).

This chapter covers the inference aspect of this process, with the next chapter (§8) de-

voted to the task of verification. Our aim in conjecture inference is given in the definition

below, but we note that it is simply a small part of the greater philosophical program

called ‘The Problem of Induction’. This Problem began with David Hume [Hum03,

§1.iii.6] and concerns the construction of new ideas from existing evidence.

Definition 7.1 (Conjecture Inference). Conjecture Inference is the algorithmic act of

hypothesising families of theorems, given a few examples from that family.

1Outside of the contributions of this thesis. See §3.
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In this chapter we also demonstrate a link between phase algebras and Algebraic

Geometry (§7.2). This link is novel, useful, and neatly generalises existing concepts in the

literature. We will use this link to clarify the relationship between rules with and without

side conditions, explore concepts like rebasing of variables, and then rely on geometric

ideas as a core part of our inference process. This geometric framework builds on the

earlier ideas of phase homomorphism pairs (§5), where these pairs will be rephrased as

symmetries of the geometric space. This idea will also be carried forward when we come

to discuss verification: The geometric interpolation discussed in this chapter is directly

related to the interpolation discussed in the next, and we combine these ideas with the

above symmetries (and some Galois Theory) for a pleasantly surprising result in §8.3.

7.1 Adding parameters at boundaries

There is a very simple way to hypothesise adding !-boxes and phase variables to certain

boundary spiders in ZX, ZH, ZW, and ZQ rules, and what’s more the method comes with

a proof of correctness, meaning that we don’t need to verify any more examples. For each

of our calculi we can use spider laws to infer more general results from simple equations.

These results are included in part for posterity (any proof assistant that uses these calculi

should ideally be capable of automatically inferring variations on Proposition 7.2) but

also as a contrast to the methods of §7.2. The hypotheses inferred in §7.2 do not come

with proofs of correctness and must be verified in some manner (the topic of §8).

In order to signify that this process can be applied at the boundary of a diagram we

use the following to signify an arbitrary diagram D:

D

. . .

. . .

(7.1)

Proposition 7.2. A ZXG equation of the form

D

b

. . .

. . .

. . .

=
D′

c

. . .

. . .

. . .

b, c fixed phases ∈ G
non-zero, fixed number of inputs

D,D′ arbitrary diagrams

(7.2)

implies and is implied by the family of ZXG equations parameterised over the phase
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variable α and a !-box:
D

α

. . .

. . .

=

D′

α+ c− b

. . .

. . .

α,!

α phase variable ∈ G
!-box on inputs

(7.3)

This holds for Z and for X spiders, providing the spider is the same colour on both sides

of the rule.

Proof. We can apply a spider s with phase (α − b) to both sides of the top rule r. The

spider s has as many outputs as r has inputs, and can have any number of inputs. For

the converse we specify the !-box to have has many instances as r has inputs, and we

instantiate α to the value b.

Remark 7.3. Proposition 7.2 and its proof both generalise easily to the spiders of ZW.

For ZQ one can generalise either the phase of a Q node, or add a !-box to a Z-spider,

depending on which is joined to the boundary. In ringR one can add a !-box to the

inputs or outputs of the multiplication spider, or to the inputs of the addition spider.

In both cases you can also generalise the phase. The Z-spider of ZH has a phase-free

analogue of Proposition 7.2, however the H-box result requires a little more work and is

presented after Lemma 7.4.

Lemma 7.4 (n-joined ZH spider law). In the ZH calculus:

a

b

n. . .

. . .

. . .

= 1 + (−1
2

)n(b− 1)(a− 1) 2n

. . .

. . .

a, b ∈ C \ {1}
n > 0

(7.4)

Since the proof isn’t relevant to the discussion of conjecture inference we defer it to

§D.

Proposition 7.5. A simple ZH equation of the form:

D

b

. . .

. . .

n. . .

=
D′

c

. . .

. . .

n. . .

b, c fixed phases ∈ C \ {1}
n, non-zero number of inputs

D,D′ arbitrary diagrams

(7.5)
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implies and is implied by the family of equations parameterised over α and a !-box:
D

α

. . .

. . .

=

D′

1 + (α− 1)(c− 1)(b− 1)−1

. . .

. . .

α,!

α ∈ C
!-box on inputs

(7.6)

Proof. Apply the following diagram to the bottom of each side of Equation (7.5):

1 + (α− 1)(−2)n(b− 1)−1

2−n

n. . .

. . .

(7.7)

Then apply lemma 7.4. As with the ZX case we justify the !-box by saying that the

above is true for any number of inputs and value of α. For the converse we specify the

!-box to have has many instances as needed, and we set α to b.

7.2 Linear rules, parameter spaces, and algebraic geometry

We move now to a method of conjecture inference that does not come with a proof of

correctness. The fundamental idea behind this method is to transform the problem of

conjecture inference into a problem in algebraic geometry. Rather than seeing a para-

meterised family of diagrams as a set of diagrams we see them as points defining a

surface in some affine space. The question of conjecture inference then becomes ‘given

a sample of these points, can I reconstruct the surface?’ In order to frame this question

correctly we begin with some necessary definitions (§7.2.1), show how to view paramet-

erised families as submodules (§7.2.2), show how to get back to parameterised equations

from submodules (§7.2.3), and finally show how to find submodules from sample points

(§7.2.4).

One way of thinking about the content of this section is that in the usual presentation

of our calculi and rules we have as much information as possible in the algebra written as

phases, and as little information as possible in the side conditions. This section describes

how to move from the algebraic paradigm into a geometric one; describing everything as

restrictions on a space (i.e. as side conditions). In the case of linear rules over Z-modules

we show how to go in the other direction as well (from geometry to algebra), describing

the linear geometric constraints using just the algebra in the phases. This concept neatly

generalises the idea of linear rules for ZX already present in the literature.
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7.2.1 Skeletons and parameter spaces

We will assume for the rest of this chapter that the phase algebra we are considering is

R-linear for some commutative ring R. In the case of ZX we would consider the phase

group as a Z-module, for ringR, ZHR and ZWR we would consider the phase ring as an

R-module. ZQ can be considered as an R-module, where a phase is an element of R4,

but only some of the points in the space result in valid phases.

The key to this section is the novel separation of a diagram into its skeleton and

parameter space. The skeleton holds all the graph information except for the phases,

and the parameter space holds the information from the phase algebra.

Definition 7.6 (Skeleton). The skeleton of a diagram, written |D|, is the phase-free

version of that diagram. The skeleton of a rule is the pair of skeletons from its two

diagrams.

Example 7.7 (ZX diagram skeleton). An example diagram and skeleton:

D α+ π

. . .

. . .

|D|
. . .

. . .

(7.8)

Definition 7.8 (Parameter space). The parameter space of a skeleton is the direct

product (in R-mod) of all the phase algebras of the nodes in the skeleton.

P :=
∏

nodes in the skeleton

{Phase algebra of that node} (7.9)

The parameter space of a rule is the direct product of the parameter spaces of each

diagram.

Remark 7.9. Some nodes contribute trivially to the parameter space. For example the Z

spider in ZH is always blank. We treat this as the trivialR-module, {0}, which contributes

nothing to the overall product P . As such these cases will be ignored from here on.

Remark 7.10. In the case of calculi such as ZQ, where the phase algebra is a four-

dimensional R-module, the parameter space can have many more dimensions than the

rule has vertices. In later subsections of this chapter this may require viewing the phase

of a Q node as four distinct, real numbers rather than as a single quaternion, but the

alterations that need to be made to the methods are small and will not be mentioned

again. In essence they are ‘treat this node labelled by an element from Rn as n nodes

each labelled by an element of R’.

Example 7.11 (Clifford+T ZX parameter space). Consider, as an example, the left hand

side of a simplified Clifford+T ZX spider law:
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D |D|

α

β

. . .

. . .

. . .

. . .

This skeleton has parameter space:

< π/4 > × < π/4 > ' Z8 × Z8 (7.10)

Which is the product of the two cyclic phase groups, viewed as Z-modules, one for each

node. Assuming we have made (or retained) a choice of which phase group corresponds

to which node then every point in the parameter space corresponds to a diagram. For

example the point p = (π/2, 3π/4) in the parameter space corresponds to the diagram:

π/2

3π/4

. . .

. . .

(7.11)

Definition 7.12 (Sound points in a parameter space). A point p in a parameter space

is sound if the corresponding rule, with phases as described by p, is sound (see Defini-

tion 2.27). Any point in P that does not correspond to a sound rule is unsound.

7.2.2 Equation families as submodules

In this subsection we view a family of equations parameterised by phase variables as

a collection of simple rules that all have the same skeleton, and a collection of sound

points in the parameter space. This will allow us to rephrase families parameterised by

phase variables as submodules of a parameter space.

Example 7.13 (Parameter space of the spider rule). Here is a (slightly unusual) way of

presenting the simplified spider rule in ZXG:

α

β

. . .

. . .

= γ

. . .

. . .

(α, β, γ) ∈ P
γ = α+ β

(7.12)

We have given the parameterisation as a collection of points in the parameter space

P , subject to the condition α+ β = γ.

Remark 7.14. This presentation of rules is not uncommon; see for example the EU rule

of [Vil19, §2.3].

We will now introduce the bare minimum of algebraic geometry; the notion of a

variety or zero set. It is this tool that links the two notions of algebra (in the form of a

system of equations) and geometry (in the form of a topological shape).
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Definition 7.15 (Affine algebraic variety [Smi+04, §1.1]). A complex affine algebraic

variety is the common zero set of a collection {Fi}i∈I of complex polynomials on complex

n-space Cn.

Definition 7.16 (Linear rule). A parameterised family of rules is linear if the sound

points in P are the zero set of a collection of linear polynomials on P .

Remark 7.17 (Parameter space restrictions as side conditions). For a calculus like ZQ,

where only certain points in the parameter space correspond to valid diagrams, we impose

these same restrictions when talking about rules. I.e. we say that a parameterised family

of rules is linear if the sound and valid points in P are the intersection of the zero set of

a collection of linear polynomials on P with the valid points in P . We could even define

ZQ in such a way that these ‘valid points in P ’ were phrased as side conditions on the

generators and rules.

This definition is, on the surface, different to the definition of a linear rule given in

[JPV18b], which we reproduce (in language consistent with the rest of this thesis) as:

Definition 7.18 (Previous definition of linear rule [JPV18b, Definition 1]). A ZX-

diagram is linear in α1, . . . , αk with constants in C ⊂ R, if it is generated by Z-spiders

with phase E, X-spiders with phase E, the Hadamard node, and compact closed wire

structure, where E is of the form
∑

i niαi + c with ni ∈ Z and c ∈ C.

Thankfully we can show these definitions coincide, starting with:

Proposition 7.19. Every linear ZX rule in the sense of Definition 7.18 is a linear rule

in the sense of Definition 7.16.

Proof. Give every spider in the linear rule an index j ∈ J , which as per Definition 7.18

has phase
∑

i ni,jαi + cj . Assign to each spider the parameter βj , and construct the

system of linear equations (as in Definition 7.16) as the set {βj =
∑

i ni,jαi + cj}j∈J

Remark 7.20. The converse to Proposition 7.19 is given as Corollary 7.25 later on in this

chapter. While this shows that the two definitions are equivalent in the case of ZXG, we

prefer the geometric definition because it can be generalised to other calculi; for example

it is unclear how to generalise Definition 7.18 to the case of ZQ.

Example 7.21 (Linear Clifford+T ZX rule). The following Clifford+T ZX rule is linear

in the sense of Definition 7.16:

α β = δγ {α = 0, δ = 0, β − γ = 0} (7.13)

The affine, linear Z-submodule described by the linear polynomials is Z(0, π/4, π/4, 0).

Example 7.22 (Rule with multiple linear subspaces). The following Clifford+T ZX rule

(although very similar to Example 7.21) is not linear, but the union of four different
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sound (up to scalar), linear rules on the same skeleton:

α β = δγ

{α = 0, δ = 0, β − γ = 0}
{β = 0, γ = 0, α− δ = 0}

{α− π = 0, δ − π = 0, β + γ = 0}
{β − π = 0, γ − π = 0, α+ δ = 0}

(7.14)

This is because it is sound on the following linear varieties of P :

defining polynomials affine submodule

α = 0, δ = 0, β = γ (0, 0, 0, 0) + Z(0, π/4, π/4, 0) (7.15)

β = 0, γ = 0, α = δ (0, 0, 0, 0) + Z(π/4, 0, 0, π/4) (7.16)

α = π, δ = π, β = −γ (π, 0, 0, π) + Z(0, π/4,−π/4, 0) (7.17)

β = π, γ = π, α = −δ (0, π, π, 0) + Z(π/4, 0, 0,−π/4) (7.18)

For example the rule given by this skeleton and just the variety given by (7.15) is

Example 7.21.

Remark 7.23. The rule in Example 7.22 can be seen as applications of the spider

and π-commutation rules, and their colour-swapped counterparts, (see (S2) and (K)

of Ref. [JPV18b]) representing the four linear subspaces we have exhibited.

Having shown how to view families of equations as submodules we now work back-

wards; from submodules to families of equations. The benefit of the submodule viewpoint

is deferred until §7.2.4, where we examine how to hypothesise larger submodules con-

taining a known collection of points.

7.2.3 Submodules as families of equations

Assume we have been given a sound, affine submodule q + Q of P . In the case where

Q is finitely generated, and R admits an Euclidean function, we can find the Hermite

Normal Form to simplify relationships between generators. (In the case where R is a

field we can do Gaussian Elimination, and the following is even simpler.)

Proposition 7.24. It is possible to describe any affine, linear R-submodule of a para-

meter space as a single diagram with phases that are linear in some set of phase variables.

Additionally we can ensure the set of phase variables is of minimal cardinality.

Proof. We provide here an algorithm that assigns to each vertex such a phase. The input

for the algorithm is the rule skeleton, and a description of the finitely generated, linear

R-submodule q +Q.

We treat Q as a matrix where each row corresponds to a generator, and each column

corresponds to a vertex in the rule. We then find a linearly independent set of generators
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for the space Q by putting the matrix Q into Hermite Normal Form. I.e. we find matrices

U and H such that H = UQ, where U is a product of elementary column and row

operations, and H has the following properties:

• The leading coefficient of each row is not in the same column as the leading coef-

ficient of any other row,

• The leading coefficient of each row has only the entry 0 in that column in any of

the rows below it,

• If the leading coefficient of a row has value r then the values in places above it

have smaller Euclidean degree than r,

• All rows containing only 0 come after any rows that are not all 0,

• All non-zero rows are linearly independent of the other non-zero rows.

This is a standard procedure in mathematics software (see, for example, an implement-

ation in Ref. [BCP97]), and all of these properties can be shown to be obtainable via

Euclid’s Algorithm. The matrix H corresponds to a linearly independent set of generat-

ors of Q, i.e. if H is split into rows {rj}nj=1 then Q = Rr1 +Rr2 + · · ·+Rrn.

To show that all linear independent sets of generators for Q are the same size: Given

two sets of generators B := {bj} and B′ := {b′k}, each linearly independent, and with

|B| < |B′|, one can construct the matrix C where the kth row is {rj}|B|j=1 and
∑

j rjbj = b′k.

If we find the Hermite Normal Form of C the result is upper triangular of shape |B|×|B′|,
so the final row must be all 0s, and so there must be a linear dependence inside B′, which

is a contradiction. Therefore any linear independent sets of generators for Q are of the

same size.

We translate the matrix H to a diagram by assigning to each non-zero row of H a

phase variable αk, and for each vertex vj in the skeleton (with corresponding column

{cl}ml=1) that vertex is assigned the phase qj +
∑

l clαl, recalling that q was the affine

shift of the original linear subspace.

Corollary 7.25. The two definitions of a linear rule (Definition 7.16 and Defini-

tion 7.18) coincide. One direction is Proposition 7.19, the other is Proposition 7.24.

Example 7.26 (Two different subspace representations as rules). The skeleton of the rule

S1 for ZXπ/4 has two vertices on the left hand side, and one on the right, which we label

v1, v2 and v3

v1

v2

. . .

. . .

= v3

. . .

. . .

(7.19)
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P is therefore isomorphic to Z8 ×Z8 ×Z8, and we will assume for this example that

we already know that the rule is sound for p ∈ q +Q where:

q := (0, 0, 0) (7.20)

Q := Z(1, 0, 1) + Z(0, 1, 1) (7.21)

As in the proof of Proposition 7.24 we consider the Q part as a matrix:

[
1 0 1

0 1 1

]
(7.22)

Which is already in Hermite Normal Form. We assign to each row a phase variable,

and then add together every entry in each column:

[
α 0 α

0 β β

]
(α, β, α+ β) (7.23)

This gives us the phases we assign to the skeleton of the rule:

v1 7→ α v2 7→ β v3 7→ α+ β α

β

. . .

. . .

= α+ β

. . .

. . .

(7.24)

Suppose instead we started with the following presentation of the same linear sub-

module:

q := 0 (7.25)

Q′ := Z(−1, 1, 0) + Z(0, 1, 1) ∼= Q (7.26)

Corresponding to the matrix:

[
−1 1 0

0 1 1

]
(7.27)

If we applied the same rewriting to get a family of equations (without finding Hermite

Normal Form) then we would get:
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[
−α α 0

0 β β

]
(−α, α+ β, β) (7.28)

This gives us the ‘same’ rule:

v1 7→ −α v2 7→ α+ β v3 7→ β −α

α+ β

. . .

. . .

= β

. . .

. . .

(7.29)

Equations (7.24) and (7.29) are the same rule, in that they describe the same set of

simple rules, but they are presented differently because they reflect the different ways of

presenting the underlying affine, linear spaces Q and Q′.

Remark 7.27. This use of the Hermite Normal Form is not unexpected, since this process

bears a strong resemblance to the way the matcher works in the software Quantomatic

[KZ15]. The matcher is the subroutine that matches instances of rules onto diagrams,

and in doing so needs to match variable names onto concrete values.

Definition 7.28 (Independent phase variables). We call the phase variable α in some

rule independent if there is any vertex with the phase α + c, where c is a non-variable

element of the phase algebra.

Remark 7.29. This ‘rebasing’ of the affine linear subspace actually allows one to shift

the independent phases around in a rule; in particular from one side to the other. Doing

so in a proof assistant would allow for clearer representations of rule inverses, where

the independent variables are presented on the left hand side of the rule. This can be

achieved by choosing the order of the vertices in the method of Proposition 7.24 such

that the vertices from the left hand side of the rule appear to the left (as columns in the

matrix Q) of the vertices from the right hand side of the rule.

Lemma 7.30. If the phase algebra is a K-module for some field K then all phase

variables can be re-based as independent phase variables.

Proof. Working over a field K we can put the matrix Q into reduced row echelon form

via Gaussian Elimination, i.e. each leading coefficient is 1 and is the only entry in that

column. When translated into phases this results in a phase of α + c, where c is a

non-variable element of the phase algebra.

Remark 7.31. We mentioned in §3.2 that it seems unlikely that it is possible to find a

ruleset of Universal ZX that can be expressed using linear rules and the group action.

This was the impetus for ZQ, and the author notes that the rules of ZQ presented in

§6.2.1 use only linear rules (as an R-algebra) and the group action.
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7.2.4 Finding submodules

Now that we know how to represent linear rules as affine linear submodules, we want to

go about the business of inferring which submodules lead to sound rules. Given a skeleton

rule |D| = |D′|, we know it is sound for some (possibly empty) subset of the parameter

space P . The question is which linear affine submodules of P to check for soundness. We

suggest here three ways of hypothesising larger linear submodules containing the points

we already know to be sound in P :

• Full Linear Interpolation. Given two points p and q sound in P : Extend the

points into a line p+R(q − p).

• Sparse Linear Interpolation. Given two points p and q sound in P , extend the

points into a sparse line p+Zr, where there is some a ∈ Z such that a× r = q− p.
Note that this line does not necessarily lie inside the parameter space, and in such

cases this technique cannot be applied.

• Summation. Given two, affine submodules s+S, t+T , sound in P , that intersect

at q: The affine submodules can be re-based to q + S + (s − q) = q + S and

q + T + (t− q) = q + T . Consider q + S + T .

Remark 7.32 (Higher Order Interpolation). With the exception of the (EU) rule (and

variants) all of the rules for all of the calculi discussed in this thesis are linear, and

the above interpolation methods will only infer linear subspaces. We can, however, still

apply higher order methods, see Ref. [GS00] for a survey of higher-order polynomial

interpolation techniques. These higher-order techniques would still not be able to infer

the (EU) rule of ZX since it does not express a polynomial relationship.

Remark 7.33. This technique is similar to the method of altering the existential and

universal quantifiers in term-based conjecture synthesis, mentioned in Example 3.5. Our

method makes use of both the linear structure and the information from multiple the-

orems (sound points) at once.

Example 7.34 (Finding the Clifford+T ZX spider law’s subspace). Suppose, using ZXπ/4,

that you know the spider law of (7.12) holds true for p = (0, 0, 0), q = (π/2, 0, π/2).

• Sparse Linear Interpolation suggests the subspace Q1 := (0, 0, 0) + Z(π/2, 0, π/2)

• Full Linear Interpolation suggests the subspace Q2 := (0, 0, 0) + Z(π/4, 0, π/4)

• Suppose we also knew the subspaces Q2 and Q3 := (0, 0, 0) + Z(0, π/4, π/4) were

sound, then summation would suggest the subspaceQ4 := (0, 0, 0)+Z(π/4, 0, π/4)+

Z(0, π/4, π/4), which would give you every sound point in P .

What these methods require is some non-exhaustive method of verifying the inferred

subspaces of P . The chapter on verification (§8) answers this problem for phase variables,

and is inspired by this chapter’s link to algebraic geometry, in particular by the geometric

notion of degree.
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Remark 7.35. We have been working with linear varieties to satisfy the constraints of ZX

and ZQ. When working with phase rings we can consider non-linear varieties (i.e. higher

degree polynomials in the phase variables) although we have not developed heuristics

for which non-linear polynomials to conjecture.

7.2.5 Phase homomorphisms and parameter space symmetries

The concepts of this chapter can also be combined with that of §5.3, where we constructed

the phase homomorphism pair (φ, φ̃), where φ : R→ R (lifted to φ̂ acting on the diagrams

of ringR) and φ̃ acting on matrices in R-bit.

Proposition 7.36. Given a ringR equation D1 = D2 with parameter space P , then if

(p1, . . . , pn) ∈ P is sound then (φ(p1), . . . , φ(pn)) is also sound for any ring endomorph-

ism φ.

Proof. The action of (p1, . . . , pn) 7→ (φ(p1), . . . , φ(pn)) is precisely the action of φ̂ in

Proposition 5.40.

This shows that any phase homomorphism pair is a symmetry of the parameter

space. There is one final piece to the conjecture inference puzzle, and that is conjectures

involving !-boxes. In order to approach this problem we first need to know about a

property called the join (Definition 8.41). The join will tell us how far into a series of

!-box expansions we need to check before the pattern continues indefinitely. This line of

thought is continued in Remark 8.59, after the results on finite verification.

7.2.6 Varying the skeleton

§7.2 has so far concerned itself with investigating the parameter space of an equation

with a fixed skeleton. We will now explore what happens when we vary a skeleton,

initially by adding components via ◦ or ⊗.

Proposition 7.37. Given an equation D = D′ with parameter space P , a sound subspace

Q of P embeds as the sound subspace Q⊕R ⊂ P ⊕R for the equation D⊗E = D′ ⊗E
and for the equation D ◦ E = D′ ◦ E.

Proof. Write Mq for the interpretation of the diagram D at point q ∈ Q. Likewise write

M ′q for the interpretation of D′ at point q, and Nr for the interpretation of E at the

point r in R (the parameter space of the diagram E). Since q is a sound point in Q:

Mq = M ′q (7.30)

∴ Mq ◦Nr = M ′q ◦Nr ∀r (7.31)

∴ Mq ⊗Nr = M ′q ⊗Nr ∀r (7.32)

Therefore the sound subspace Q ⊂ P embeds as Q⊕R ⊂ P ⊕R.
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What if, rather than compose diagrams, we want to change the underlying graph of

existing ones? We saw earlier in this chapter how to generalise from a single boundary

wire to a boundary wire with a !-box, and here we shall go from no boundary wire

to a single boundary wire. In this next proposition we will assume the diagrams are

ZXG diagrams but the result is easy enough to generalise to diagrams in other graphical

calculi.

Proposition 7.38. Starting with an equation D = D′ of ZXG diagrams with parameter

space P : Let eα be the vector in P that is 0 everywhere except for a 1 at position α,

and let α and β be labels for two vertices of the same colour in D and D′ respectively.

If, and only if, Q + Z(eα + eβ) is sound in P then the diagram equation formed by

adding an additional boundary connected to α and β on each side respectively is sound

at Q+ Z(eα + eβ).

Proof. We begin by picking a point q ∈ Q, and then rewriting the diagrams D and D′ as

compositions of the vertices α and β with the subdiagrams D̄ and D̄′. We are assuming

both α and β label Z vertices, the proof for X vertices is identical, just with colours

swapped.

J Dq K =
q
D′q

y D̄q

qα

. . .

. . .

=
D̄′q

qβ

. . .

. . .

(7.33)

We then use the spider law to extend α and β downwards:

D̄q

qα

. . .

. . .

=

D̄q

qα

. . .

. . .

0

=

D̄′q

qβ

. . .

. . .

0

=
D̄′q

qβ

. . .

. . .

(7.34)

The above equation is sound for all q ∈ Q. Since Q + Z(eα + eβ) is sound in P we

therefore know that q + π(eα + eβ) is sound in P . Accordingly the following equation is

also sound:

D̄q

qα + π

. . .

. . .

=

D̄q

qα

. . .

. . .

π

=

D̄′q

qβ

. . .

. . .

π

=
D̄′q

qβ + π

. . .

. . .

(7.35)

We therefore know that the following diagram is sound for all values of q, since it is
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sound on a basis of inputs:

D̄q

qα

. . .

. . .

=

D̄′q

qβ

. . .

. . .

(7.36)

By Proposition 7.2 the following diagram is sound for all values of q, γ being a phase

variable:

D̄q

qα + γ

. . .

. . .

=

D̄′q

qβ + γ

. . .

. . .

(7.37)

Therefore q + Z(eα + eβ) is sound for all values of Q.

For the converse, with γ a phase variable not appearing in D or D′:

D̄q

qα + γ

. . .

. . .

=

D̄′q

qβ + γ

. . .

. . .

sound at q (7.38)

=⇒
D̄q

qα + γ

. . .

. . .

=

D̄′q

qβ + γ

. . .

. . .

sound at q (7.39)

=⇒
D̄q

qα + γ

. . .

. . .

=
D̄′q

qβ + γ

. . .

. . .

sound at q (7.40)

We showed earlier on in this chapter that parameter subspaces can be reflected in the

phase algebra. In the case of Proposition 7.38 we saw the existence of a specific sound

subspace, Q+Z(eα + eβ), and deduced the ability to add boundaries to the diagram. In

terms of phases this sound subspace would appear, given the right choice of presentation,

as a variable appearing exactly once in D and once in D′, as in Equation (7.40).

Remark 7.39 (From arbitrary many to one to none). In Proposition 7.2 we showed that

if a !-boxed boundary is connected to the same colour vertex on each side of the equation

then we only need to check the case where the !-box is expanded once. In Proposition 7.38
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we showed that if we are already calculating the sound subspaces then we only need to

check the case where the !-box is expanded 0 times; i.e. without any boundaries at

all. From the soundness of the equation with 0 boundaries, Proposition 7.38 will let us

deduce the soundness of the equation with 1 boundary, and then Proposition 7.2 will let

us generalise immediately to a !-boxed version.

Remark 7.40 (From sparse to full). Readers may also have noticed that we did not use

the full set Q+Z(eα+eβ), simply two points in it, q and q+π(eα+eβ). We will see in the

next chapter how the existence of two sound, distinct points inside a subspace known to

be linear implies the entire subspace is sound. The proposition could have been phrased:

“If q and q + a(eα + eβ) are distinct and sound in P then q + Z(eα + eβ) is sound for

the diagram equation formed by adding an additional boundary connected to α and β

on each side respectively.” The current phrasing emphasises the three-way link between

the linear subspace Z(eα + eβ), the presentation of some variable γ appearing only on

vertices α and β, and the ability to add a boundary to the vertices.

7.3 Summary

This chapter took the existing notion of linear rules in ZX and generalised it to apply

to all our graphical calculi, and also to beyond linear rules. The purpose of this was to

find ways to generalise theorems from just a few examples, but it also shows how to

link the two different presentations of rules (as phase algebras or as side conditions) and

unites the algebraic presentation of diagrams with a geometric notion of spaces. With

this framework in place we gave heuristics for inferring new polynomial hypotheses based

on an existing sample of theorems. We also examined generalisations at boundaries; ways

to deductively add phase variables and !-boxes to theorems, immediately increasing their

applicability. Even without reference to conjecture synthesis any proof assistant benefits

from increasing the applicability of lemmas, and in doing so reducing the number of

proof steps for the user.

Our examination of the parameter space showed that sound subspaces were pre-

served under ◦ and ⊗, that examination of the spaces could lead to important general-

isations (such as adding boundaries to diagrams), and that phase homomorphisms led

to symmetries of sound subspaces. We will combine this knowledge of symmetries with

geometric constraints on the sound subspaces in the next chapter, but already we have

an indication that the study of these subspaces could be as rich a topic as the study

of quantum graphical calculi. Parameter spaces give a novel and important method of

studying parameterised diagram equations.

Future work includes further examination of parameter spaces; in particular their

symmetries, other generalisations like Proposition 7.38, and the effects of common oper-

ations on the skeleton such as adding or removing an edge. Further work should also be

done on deductive generalisations, as any such theorem immediately improves conjec-

ture synthesis runs. Our focus will now turn to the problem of verifying these inferred
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hypotheses.





Chapter 8

Conjecture Verification

In this chapter:

. We introduce conjecture verification for phase ring and phase group calculi

. We demonstrate the ability to finitely verify certain classes of hypotheses

. We discuss the relationship between conjecture verification and conjecture infer-

ence

. We use phase homomorphisms to simplify the process even further over qubits

Conjecture Verification is the act of checking whether a hypothesis is true. In this chapter

we will only consider hypotheses of the form J D1 K = J D2 K, i.e. semantic equality of

two diagrams. This is in contrast to the syntactic question of whether R ` D1 = D2 for

some ruleset R. We only consider the question of semantic equality because our ultimate

aim is Conjecture Synthesis (§3), in which we try to construct a ruleset that is sound

and useful, rather than starting with a ruleset and showing it is complete.

This is the final results chapter of this thesis, providing verification methods for the

inference procedures discussed in §7 (among others). In particular the verification of

phase variables in §8.2 relies on ideas of polynomial fitting that mirror those of §7.2. §8.3

then builds on this foundation by including results from Galois Theory and the phase

homomorphism pairs of §5.

These verification methods rely on the structure inherent in phase algebras, and on a

novel presentation of !-box expansions that allow us to view these primarily as ◦ rather

than ⊗ products.

8.1 Motivation

In earlier chapters, with the exception of parts of §5, we considered a phase algebra to

be a founding property of a calculus; without specifying a phase algebra we could not

143
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specify the generators and so could not construct diagrams. We present here a different

point of view: Consider a ‘base’ calculus with a phase algebra A and without !-boxes.

We call diagrams constructed in this calculus simple (Definition 2.25). By contrast we

then consider a ‘higher’ calculus, identical to the base calculus except that we now allow

formal variables in A (Definition 2.21), and also !-boxes (Definition 2.23).

Our motivation for this perspective is that this is how many papers present their

rulesets. For example the calculus ZHC formally only allows elements of the complex

numbers as labels on H-boxes, but the rules presented in [BK19] use !-boxes and formal

variables, and the meaning is clear from the context. Our ultimate aim is for computers

to be able to reason with a similar degree of expressive power; to be able to hypothesise

and then verify equations between decorated diagrams, initially assuming only that they

are capable of reasoning with simple diagrams.

Using ZHC as an example we list in Figure 8.1 some structures of interest: The

sets of diagrams that fit certain criteria, as well as their interpretations as matrices or

sequences of matrices. The ev (evaluation) and as (assignment) maps generalise in the

obvious ways. From these maps, and ones very similar to them, we can construct the

commutative cube in Figure 8.2. Our reason for doing so is that the map of interest

(J · K : ZH!
C[X] → (N → MatC)) which interprets the ‘higher’ structure can then be

linked to the map we assume we have some knowledge of (J · K : ZHC → MatC) which

interprets the ‘base’ structure. Although we will use the language of category theory

(such as commutative diagrams) in this section the structures of interest are considered

as discrete categories.

The property we are interested in for this chapter is that of finite sampling: Determ-

ining the nature of a function by knowing its value at enough places. This is directly

linked to our ideas of conjecture inference in §7 where we hypothesise some surface as

sound, but need to be able to verify this by only checking a finite sample of points on

the surface. The quintessential example of this is interpolation of complex polynomials,

i.e. once you know the values P (X) at more than degP points, you can determine the

coefficients of P . We extend this notion to our ‘higher’ structure by investigating the

question ‘given D1 and D2 in ZH!
C[X], and knowing that as(ev(D1)) = as(ev(D2)) for

some number of values of X and !, does D1 = D2?’ The answer with one !-box and

one phase variable is yes (Proposition 8.53), and, crucially, we can work how how many

values is enough just from the syntax of the diagram. The phase variable part of the res-

ult (§8.2) always extends to situations with multiple phase variables, however the !-box

part of the result (§8.4) cannot always be extended to multiple !-boxes, leading us to

the notion of separability (§8.4.1). When generating hypotheses this allows us to verify

hypotheses containing !-boxes where previously we could not (provided the !-boxes are

separable).

For equations with phase variables but without !-boxes over the complex numbers we

can actually go a step further. Theorem 8.33 allows us to verify all the phase variables

in a ringC, ZWC, or ZHC equation (without !-boxes) using a single equation without
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ZHC ZHC diagrams, labelled with complex numbers

ZHC[X] ZHC with a phase variable, X

ZH!
C ZHC with a !-box, !

ZH!
C[X] ZHC with X and !

MatC Complex matrices

N→ MatC Sequences of complex matrices

ev : ZHC[X] → ZHC Evaluation of X

as : ZH!
C → ZHC Assignment of a number to !

J · K : ZHC → MatC Interpretation as a complex matrix

Figure 8.1: Example sets of diagrams, matrices and sequences as well as interpretations and some maps
between them

any phase variables. (The ZX analogue is Theorem 8.35.) The converse to this is that

whenever a phase appears in an equation less frequently than its algebraic degree it can

be replaced with a variable (Remark 8.36).

This work complements the work of [Qui15], which introduced !-induction. That

work allows the verification of an infinite family of equations parameterised by !-boxes,

by showing an inductive step involving those !-boxes. Our work instead requires more

equations to be checked, but where none of the equations involve !-boxes.
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ZH!
C[X] ZHC[X]

(N→ MatC[X]) MatC[X]

ZH!
C ZHC

(N→ MatC) MatC

ev

as

J · K J · K

ev

J · K J · K

as

Figure 8.2: The motivational commutative cube for phase variable and !-box conjecture verification.

8.2 Verifying phase variables

Our first result will concern diagrams that contain a finite number of phase variables

and no !-boxes. It relies on a certain property of polynomials: If you know the value of

the polynomial P (Y ) for sufficiently many values of Y then you can determine all the

coefficients of P . For example the polynomial P (Y1, Y2) = a + bY1 + cY2 + dY1Y2 can

have all of its coefficients determined by knowing the values P (0, 0), P (0, 1), P (1, 0), and

P (1, 1). We use this fact by extending the matrix interpretation of simple diagrams to

one for decorated diagrams. Continuing our ZH example from §8.1 we are investigating

this face of the commutative cube:

ZHC[X]

MatC[X]

ZHC

MatC

J · K

ev

ev

J · K

(8.1)

8.2.1 Matrix interpretations

The graphical calculi we have considered in this thesis all have matrix interpretations1.

Moreover for each of these calculi a diagram with n inputs and m outputs will be mapped

1The exception being SZX in Example 2.10, and even then only to make a point.
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to a matrix with dimH⊗n columns and dimH⊗m rows, where H represents R2 (e.g. C2

in the case of quantum computing). We will use the language of fields and vector spaces

in this chapter but note that many of the results only require the base ring to be an

integral domain. A family of diagrams parameterised over α is a set of simple diagrams,

and we could extend our interpretation so that a set of simple diagrams is sent to a set

of matrices. This would, however, lose any structure from the phase algebra. Instead we

try to find a polynomial matrix interpretation; for example one that sends a family of

ZHC equations {E}α to a matrix in MatC[α].

While this works well for ZHR, ZWR and ringR, there is a complication with ZX: A

phase variable α in a ZX diagram corresponds to an eiα in the matrix interpretation. We

can try performing the substitution Y := eiα, but run into trouble if there is a node con-

taining, for example, −α (and accordingly Y −1 in the matrix), since polynomials do not

normally allow negative powers. Rather than stick with standard polynomials we instead

move to Laurent polynomials; polynomials that do allow positive and negative powers,

and define all the properties we will need of them below. We do not consider the case

of ZQ in this chapter, because its phase group is not commutative and commutativity is

necessary for our results.

ZX also introduces one more subtlety: There is an extra relation from the phase

group (2π = 0) that we should take care to reflect in our matrix interpretation. This

does not impact Universal ZX, but does affect the fragments of ZX with a finite phase

group (Example 8.18 demonstrates this for the Clifford+T fragment). Before we get

started we define Laurent polynomials and show how to interpret diagrams with phases

linear in phase variables into matrices over Laurent polynomials.

Definition 8.1 (Laurent polynomials [Art13, p356]). A Laurent polynomial in the vari-

ables Y1, . . . , Yn with coefficients in R is an element of

R[Y1, Y
′

1 , . . . , Yn, Y
′
n]/(Y1Y

′
1 = 1, . . . , YnY

′
n = 1) (8.2)

We simply write Y −1
j instead of Y ′j . Laurent polynomial degrees are given by

• The 0 polynomial has degree −∞ by convention

• the non-zero Laurent polynomial anY
n + an−1Y

n−1 + · · · + a0 + a−1Y
−1 + · · · +

a−mY
−m with an 6= 0 and a−m 6= 0 has positive degree n ≥ 0 and negative degree

m ≥ 0.

Note that we can factorise this Laurent polynomial as Y −m multiplied by a (non-Laurent)

polynomial.

Definition 8.2 (Complex Laurent Polynomial Interpretation). A Laurent polynomial

interpretation for a graphical calculus L is a matrix interpretation:

J · K : L[α1, . . . , αn]→ MatR[Y1,Y
−1
1 ,...,Yn,Y

−1
n ] (8.3)
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The source category here is the PROP of diagrams where generator labels are now taken

not from the phase algebra of L but from this phase algebra adjoin the formal variables

α1, . . . , αn.

We give the Laurent polynomial interpretations of Universal ZX, ZWR, ZHR and

ringR here, showing how to link a phase variable α with the polynomial indeterminate

Y . These definitions are, frankly, so close to the original that the difference is easy to

miss so we show the ZX example in more detail in Example 8.3 and then the others in

Example 8.4.

Example 8.3 (Laurent polynomial interpretations of Universal ZX). The Z spider from

Universal ZX is parameterised by an α ∈ [0, 2π), and the (simple) matrix interpretation

of some Z spider (with α instantiated at a) is:

u

w
v

 α

. . .

. . .


α|α=a

}

�
~ =



1 0 . . . 0

0 0
...

...
. . .

0 0

0 . . . 0 eia


∈ MatC (8.4)

Rather than instantiate the value of α before we apply the map, we instead make

the substitution Y := eiα to find a Laurent polynomial matrix interpretation:

u

v
α

. . .

. . .

}

~ =



1 0 . . . 0

0 0
...

...
. . .

0 0

0 . . . 0 Y


∈ MatC[Y,Y −1] (8.5)

Example 8.4 (Laurent polynomial interpretations of ring, ZW and ZH). For a Laurent

polynomial interpretation we simply set α = Y to get:

ringR α

. . .

. . .

J · K7−→ | 0 . . . 0 〉〈 0 . . . 0 |+ Y | 1 . . . 1 〉〈 1 . . . 1 | (8.6)

ZWR α

. . .

. . .

J · K7−→ | 0 . . . 0 〉〈 0 . . . 0 |+ Y | 1 . . . 1 〉〈 1 . . . 1 | (8.7)

ZHR α

. . .

. . .

J · K7−→
∑

bitstrings

(Y )i1...imj1...jn | j1 . . . jn 〉〈 i1 . . . im | (8.8)
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(8.9)

The rest of the interpretations remain as usual (See Definitions 2.17, 4.38, and 4.1)

Remark 8.5. This is an unusually pedantic treatment of the interplay between inter-

pretation and phase variables, but it illustrates the commutativity of interpretation and

evaluation.

Remark 8.6. The generators for ZHC, ZWC and ringC have Laurent polynomial matrix

interpretations that are, in fact, just polynomial matrix interpretations. Really it is only

for ZX that we are considering the broader Laurent polynomial version.

8.2.2 Degree of a matrix

Our hope is to find properties of the interpretations of diagrams (which are matrices of

polynomials) just from the diagrams themselves. An obvious property to investigate is

the degree of the polynomials in the matrix interpretation, and while we cannot easily

determine this value precisely, we can find bounds for the degrees just by looking at the

diagrams themselves.

Definition 8.7 (Matrix and diagram degree). We define the degree of a matrix and

diagram by:

• The Y +
j -degree of a matrix in MatC[Y1,Y

−1
1 ,...,Yn,Y

−1
n ] is the maximum of the positive

Yj-degrees of the entries in that matrix

• The Y −j -degree is the maximum of the negative Yj-degrees of the entries in that

matrix

• The positive degree of a diagram is the positive degree of the matrix interpretation

of that diagram (likewise for negative degrees).

• When clear from context we will refer to the degree of a phase variable αj in the

diagram, meaning the degree of Yj in the interpretation.

Example 8.8 (Laurent polynomial and matrix degrees). Here are example positive and

negative degrees for first a polynomial, and then a 2× 2 matrix of polynomials.

deg+
Y

[
Y 8 + 1 + Y −2

]
= 8 (8.10)

deg−Y
[
Y 8 + 1 + Y −2

]
= 2 (8.11)

deg+
Y

[ (
2 Y −3

Y Y 2 − 2

) ]
= max {0, 0, 1, 2} = 2 (8.12)

deg−Y

[ (
2 Y −3

Y Y 2 − 2

) ]
= max {0, 3, 0, 0} = 3 (8.13)
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Proposition 8.9. For two diagrams D and D′ we can find an upper bound for the degrees

of the horizontal or vertical compositions of D and D′, i.e.:

deg+
[

(D ◦ D′)
]
≤ deg+

Y [ D ] + deg+
Y

[
D′
]

(8.14)

deg+
[

(D⊗ D′)
]
≤ deg+

Y [ D ] + deg+
Y

[
D′
]

(8.15)

deg−
[

(D ◦ D′)
]
≤ deg−Y [ D ] + deg−Y

[
D′
]

(8.16)

deg−
[

(D⊗ D′)
]
≤ deg−Y [ D ] + deg−Y

[
D′
]

(8.17)

Proof. We first note that for Laurent polynomials P and P ′ in C[Y, Y −1], and for λ ∈ C:

deg+
Y [ (λP ) ] ≤ deg+

Y [ P ] (8.18)

deg−Y [ (λP ) ] ≤ deg−Y [ P ] (8.19)

deg+
Y

[
(P × P ′)

]
≤ deg+

Y [ P ] + deg+
Y

[
P ′
]

(8.20)

deg−Y
[

(P × P ′)
]
≤ deg−Y [ P ] + deg−Y

[
P ′
]

(8.21)

deg+
Y

 ∑
j

Pj

  ≤ max
j

deg+
Y [ Pj ] (8.22)

deg−Y

 ∑
j

Pj

  ≤ max
j

deg−Y [ Pj ] (8.23)

The composition A ◦B or tensor product A⊗B of matrices produces a new matrix

with entries that are linear combinations of products of the entries of A and B. Therefore:

deg+
Y

[
(M ◦M ′)

]
≤ deg+

Y [ M ] + deg+
Y

[
M ′

]
(8.24)

deg+
Y

[
(M ⊗M ′)

]
≤ deg+

Y [ M ] + deg+
Y

[
M ′

]
(8.25)

deg−Y
[

(M ◦M ′)
]
≤ deg−Y [ M ] + deg−Y

[
M ′

]
(8.26)

deg−Y
[

(M ⊗M ′)
]
≤ deg−Y [ M ] + deg−Y

[
M ′

]
(8.27)

Recalling that the degree of a diagram is the degree of its polynomial matrix inter-

pretation this gives us the result for D and D′.

Now that we have shown how to bound the degree of a diagram by looking at the

degrees of its subdiagrams, all that is left is to calculate the degrees of the generators of

the diagrams. From there we can then find bounds for the degrees of any of the diagrams
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we consider in this chapter. For simplicity we will consider nodes parameterised by a

single variable α, and express their degree with respect to a variable Y . Degrees of wire

components are all 0.

ZX: Using Y n := eniα, the degrees in Y of the generators (for n ≥ 0) are:

deg+
α


nα

. . .

. . .

 = n deg−α


nα

. . .

. . .

 = 0 (8.28)

deg+
α

 −nα

. . .

. . .

 = 0 deg−α

 −nα

. . .

. . .

 = n (8.29)

deg+
α


nα

. . .

. . .

 = n deg−α


nα

. . .

. . .

 = 0 (8.30)

deg+
α

 −nα

. . .

. . .

 = 0 deg−α

 −nα

. . .

. . .

 = n (8.31)

deg+
α

  = 0 deg−α

  = 0 (8.32)

ZH: We equate Y := α, and for P any Laurent polynomial:

deg+
α


P (α)

. . .

. . .

 = deg+
Y [ P ] deg−α


P (α)

. . .

. . .

 = deg−Y [ P ] (8.33)

deg+
α

 . . .

. . .

 = 0 deg−α

 . . .

. . .

 = 0 (8.34)

ZW: We equate Y := α, and for P any Laurent polynomial:

deg+
α

 . . .

. . .

 = 0 deg−α

 . . .

. . .

 = 0 (8.35)

deg+
α

[ ]
= 0 deg−α

[ ]
= 0 (8.36)
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deg+
α


P (α)

. . .

. . .

 = deg+
Y [ P ] deg−α


P (α)

. . .

. . .

 = deg−Y [ P ] (8.37)

(8.38)

ring: We equate Y := α, and for P any Laurent polynomial:

deg+
α

[
P

]
= deg+

Y [ P ] deg−α

[
P

]
= deg−Y [ P ] (8.39)

deg+
α

  = 0 deg−α

  = 0 (8.40)

deg+
α

  = 0 deg−α

  = 0 (8.41)

(8.42)

Remark 8.10. Using the interpretations above one could evaluate diagrams containing

phase variables directly into polynomial rings and use this to verify an equation. This

would sidestep much of the need for a verification result like the one in Theorem 8.11, but

would also not reveal results like the bound on algebraic complexity in Remark 8.36 nor

indicate where one could replace phases with phase variables for conjecture inference. If

the direct evaluation could deal with quotient rings then it may be able to avoid pitfalls

like those in Example 8.18.

8.2.3 Finite verification of phase variables

Phase variables are, as it turns out, remarkably well behaved when it comes to verifica-

tion. As we will see in Theorem 8.11 we simply need to know a bound for the degree of

the polynomial entries in the matrix the diagram represents. For all of the graphical cal-

culi we have been considering this is tantamount to counting occurrences of the variable

in the diagram, taking powers into account. The only other ingredient for the theorem is

that of interpolation on a grid of points, a technique that is sadly not well documented

as to its origin, but has existed for well over a century [Mar00].

Theorem 8.11 (Finite verification of phase variables). For a diagrammatic equation

with phase variables

{ D1 = D2 }α1,...,αn

that has a Laurent polynomial matrix interpretation, and the equation is sound at

all values of (α1, . . . , αn) = (a1, . . . , an) ∈ A1 × · · · × An, where each |Aj | is sufficiently

large, then the equation is sound for all values of (α1, . . . , αn). That is:
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r
{ D1 }α1,...,αn|α1=a1,...,αn=an

z
=

r
{ D2 }α1,...,αn|α1=a1,...,αn=an

z

∀a1 ∈ A1, . . . , an ∈ An (8.43)

=⇒
r
{ D1 }α1,...,αn|α1=a1,...,αn=an

z
=

r
{ D2 }α1,...,αn|α1=a1,...,αn=an

z

∀a1, . . . , an

The necessary size of |Aj | is given by:

|Aj | = max(deg+
Yj

[ D1 ] , deg+
Yj

[ D2 ]) + max(deg−Yj [ D1 ] , deg−Yj [ D2 ]) + 1 (8.44)

‘The maximum of the positive degrees, plus the maximum of the negative degrees,

plus one.’

Before we embark on the proof we sketch it as follows:

• Manipulate the equation J D K = J D′ K into an equation of the form M = 0, where

M is a matrix of (non-Laurent) polynomials.

• Perform multivariate polynomial interpolation element-wise on M .

• In doing this interpolation we need to know an upper bound for the degrees of the

polynomials in M , which we calculate using Proposition 8.9

Proof. We are seeking the multivariate complex polynomials that populate the matrices

J D1 K and J D2 K. We begin by combining the two matrices of Laurent polynomials into

one matrix of (not-Laurent) polynomials and a scale factor of the form Y m1
1 . . . Y mn

n .

• We define:

M1 := J D1 K M2 := J D2 K (8.45)

and wish to show M1 = M2.

• First we pull enough copies of Y −1
1 , . . . , Y −1

n out of each side so that we have an

equation of the form:

M ′1
∏
j

(Y −1
j )

deg−Yj
[ M1 ]

= M ′2
∏
j

(Y −1
j )

deg−Yj
[ M2 ]

(8.46)

Where M ′1 and M ′2 are matrices of (not-Laurent) polynomials.

• Let mj := max(deg−Yj [ M1 ] ,deg−Yj [ M2 ]) and multiply both sides by
∏
j Y

mj
j to
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clear any negative powers of Yj .

M ′1
∏
j

Y
mj−deg−Yj

[ M1 ]
= M ′2

∏
j

Y
mj−deg−Yj

[ M2 ]
(8.47)

• Then subtract the right hand side from the left:

M ′1
∏
j

Y
mj−deg−Yj

[ M1 ]

j −M ′2
∏
j

Y
mj−deg−Yj

[ M2 ]
= 0 (8.48)

M :=M ′1
∏
j

Y
mj−deg−Yj

[ M1 ] −M ′2
∏
j

Y
mj−deg−Yj

[ M2 ]
(8.49)

Note that M is a matrix of (not-Laurent) polynomials. The statement M = 0 can

be viewed as a stating that each entry of M is equal to the 0 polynomial.

• We will use the notation degYj [ · ] for the degree of a (not-Laurent) polynomial,

or matrix of polynomials. We could continue to use the term positive degree, the

definitions coincide, but want to make it clear whenever we are not in the Laurent

polynomial setting.

• We wish to find a bound for the maximum degree of any polynomial in M:

degYj [ M ] (8.50)

= degYj

M ′1∏
j

Y
mj−deg−Yj

[ M1 ] −M ′2
∏
j

Y
mj−deg−Yj

[ M2 ]

 (8.51)

≤max(degYj
[
M ′1

]
+mj − deg−Yj [ M1 ] , (8.52)

degYj
[
M ′2

]
+mj − deg−Yj [ M2 ])

= max(deg+
Yj

[ M1 ] + deg−Yj [ M1 ] +mj − deg−Yj [ M1 ] , (8.53)

deg+
Yj

[ M2 ] + deg−Yj [ M2 ] +mj − deg−Yj [ M2 ])

= max(deg+
Yj

[ M1 ] +mj , deg+
Yj

[ M2 ] +mj) (8.54)

= max(deg+
Yj

[ M1 ] ,deg+
Yj

[ M2 ]) +mj (8.55)

= max(deg+
Yj

[ M1 ] ,deg+
Yj

[ M2 ]) + max(deg−Yj [ M1 ] ,deg−Yj [ M2 ]) (8.56)

• Suppose we know that our diagram equation is sound for parameter choices in a

large enough regular grid of values. That is to say we know:

r
{ D1 }α1,...,αn|α1=a1,...,αn=an

z
=

r
{ D2 }α1,...,αn|α1=a1,...,αn=an

z

(8.57)
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for (a1, . . . , an) ∈ A1 × · · · ×An
where |Aj | = degYj (M) + 1

Aj :=
{
aj,0 , . . . , aj,deg Yj

}
By picking a polynomial entry P of M, expressing P using the multi-index β as

P =
∑

β cβY
β, and then evaluating P at every point in A1×· · ·×An we construct

the system of equations:
c0,...,0a

0,...,0
0,...,0 c1,...,0a

1,...,0
0,...,0 . . . cdeg Y1,...,deg Yna

deg Y1,...,deg Yn
0,...,0

...
...

. . .
...

c0,...,0a
0,...,0
|A1|,...,|An| c1,...,0a

1,...,0
|A1|,...,|An| . . . cdeg Y1,...,deg Yna

deg Y1,...,deg Yn
|A1|,...,|An|

 =


0
...

0


(8.58)

Which we view as:

[
V
]

c0,...,0

...

cdeg Y1,...,deg Yn

 =


0
...

0

 (8.59)

Where V contains all the products aβ1
1 × · · · × a

βn
n , β ranging from (0, . . . , 0) to

(deg Y1, . . . ,deg Yn). Thankfully V decomposes as:

V =V1 ⊗ . . .⊗ Vn (8.60)

Vj :=


a0
j,0 a1

j,0 . . . a
deg Yj
j,0

a0
j,1 a1

j,1 . . . a
deg Yj
j,1

...
...

...

a0
j,deg Yj

a1
j,deg Yj

. . . a
deg Yj
j,deg Yj

 (8.61)

• Since det(A ⊗ B) 6= 0 if and only if det(A) 6= 0 and det(B) 6= 0, and since

det(Vj) 6= 0 because each Vj is a Vandermonde matrix, we know that det(V ) 6= 0.

Since V is therefore invertible we know that all the coefficients cβ must be 0, and

therefore P is the 0 polynomial.

• In the presence of a regular grid on which D1 and D2 agree we know:

r
{ D1 }α1,...,αn|αk∈Ak∀k

z
=

r
{ D2 }α1,...,αn|αk∈Ak∀k

z
(8.62)
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=⇒ for any entry P of M P = 0 (8.63)

=⇒ M = 0 (8.64)

=⇒ M ′1
∏
j

Y
mj−deg−Yj

[ M1 ]
= M ′2

∏
j

Y
mj−deg−Yj

[ M2 ]
(8.65)

=⇒ M1 = M2 (8.66)

=⇒
r
{ D1 }α1,...,αn

z
=

r
{ D2 }α1,...,αn

z
(8.67)

• By setting dj to be strictly greater than degYj [ M ] (which we can find a bound

for using (8.56)), and |Aj | = dj we attain our result; that if we know that the

interpretations of the families of diagrams agree on the regular grid described by

the sizes dj then the interpretations agree on all points in the phase algebra.

Example 8.12 (Finding the sizes of the Aj). The following Universal ZX diagram contains

no !-boxes and two phase variables.

α1

α2

α1 + α2=
deg+

α1
D1 = 1 deg+

α2
D1 = 1

deg−α1
D1 = 0 deg−α2

D1 = 0

deg+
α1

D2 = 1 deg+
α2

D2 = 1

deg−α1
D2 = 0 deg−α2

D2 = 0

(8.68)

In order to apply Theorem 8.11 we should therefore construct A1 and A2 such that

|A1| = max {1, 1} + max {0, 0} + 1 and |A2| = max {1, 1} + max {0, 0} + 1. By picking

A1 = A2 = {0, π} we therefore know that we can verify this parameterised family of

diagram equations for all values of α1 and α2 by verifying this equation on the following

grid of values:

α1 = 0 α1 = π

α2 = 0 (0, 0) (0, π)

α2 = π (π, 0) (π, π)

(8.69)

I.e. by verifying the four equations:

0

0
0 + 0=

0

π
0 + π= (8.70)

π

0
π + 0=

π

π
π + π= (8.71)
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we can assert that the diagram equation in (8.68) is sound for all values of α1 and α2 in

[0, 2π).

Remark 8.13. Example 8.12 has verified a rule that applies to all phases in [0, 2π), but

the verification used only Clifford phases. Quantum circuits using just Clifford phases

are efficiently simulable on classical computers, but at time of writing Universal ZX

diagrams are not [Got98].

Corollary 8.14 ([JPV18b, Theorem 3]). In the Universal ZX calculus it suffices to

check (α1, . . . , αn) ∈ A1 × · · · ×An to prove an equation parameterised by αj, where the

Aj are sets of distinct angles with

|Aj | = max
{

deg+
αj [ D1 ] , deg+

αj [ D2 ]
}

+ max
{

deg−αj [ D1 ] , deg−αj [ D2 ]
}

+ 1 (8.72)

Remark 8.15. Corollary 8.14 was first proved in [JPV18b]. The authors of that paper

use the symbol µ to count appearances of αj (with coefficient), and Tj to denote a large

enough set of values. Their method does not use Laurent polynomials, instead examining

ranks of certain matrices, but this also means their method does not extend neatly to

other graphical calculi.

The result of [JPV18b] is in fact stronger than that of Theorem 8.11; as they show

that under the conditions given here there is a universal proof of the parameterised

equation, something that the method given in Theorem 8.11 does not show. For the

purposes of verification, however, it is not important how an equation is derived, only

whether the equation is sound.

Remark 8.16 (Distances between points). It is worth noting that there is no restriction

on the points in each Aj used in Theorem 8.11, beyond being distinct. If one were to

work over arbitrary rings rather than fields we would require that the differences between

any pair of points were not zero-divisors.

Example 8.17 (ZH phase variable verification). Note that the ZX result required the

variables to be linear, but for ZH and ZW this result applies to diagrams whose phases

are polynomial (or even Laurent polynomial) in the αj . For example we can verify the

following ZH equation by checking 3 distinct values of α:

α

α α2

2= (8.73)

Example 8.18 (Phase variables in a quotient ring). Consider a Clifford+T ZX diagram

that contains at least 8 nodes labelled by a positive α. Our theorem says that for any

equation containing this diagram it suffices to try at least 9 distinct values of α, but this

is impossible since there are only 8 distinct values of α available in Clifford+T.
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This is because our Laurent polynomial matrix interpretation needs to be viewed not

in C[Y, Y −1] but in C[Y ]/(Y 8− 1), reflecting the property 8×α = 0 in our phase group.

All polynomials in C[Y ]/(Y 8 − 1) have degree at most 7, and so it is never necessary to

check more than 8 points.

8.3 Phase variables over qubits

For ringC, ZWC, ZHC and Universal ZX we can combine Theorem 8.11 with The-

orem 5.42 to achieve phase variable verification with a single equation. The implication

of Theorem 8.11 is that if we find ‘enough’ sound instantiations we can then infer that

every instantiation is sound. The result of Theorem 5.42 is that we can use phase homo-

morphism pairs to discover more sound equations from an existing sound equation. All

we therefore need to do is find the right phase homomorphisms, and the right starting

equation, and we will have sufficient data to conclude soundness for a family of equations

parameterised by phase variables.

In order to show this we shall require some Galois theory, which we include below,

leading up to Theorem 8.33. Galois Theory concerns itself with the study of two fields,

K ⊂ L, and the field automorphisms of the larger that do not affect the smaller. A classic

example is the pair of fields R ⊂ C, where the only automorphisms of C that preserves R
are the identity and complex conjugation. A second example is the pair of fields (usually

just called a ‘field extension’) Q ⊂ Q(
√

2), where the only non-trivial automorphism of

Q(
√

2) that preserves Q is the map that sends a+ b
√

2 7→ a− b
√

2.

Our reason for using Galois Theory is that we will want to fix almost all of the phases

in a diagram, while affecting some others. For example in a ZX diagram with phases

that are multiples of π/8 we can define the fields K := Q(eiπ/4) and L := Q(eiπ/8).

The automorphisms of L that fix K will lift to phase automorphisms that affect only

those phases that are odd multiples of π/8. Much of the work below is in proving the

existence of suitable field extensions, and then showing that suitable automorphisms

exist. Definitions, lemmas, and theorems leading up to Theorem 8.33 are either directly

from the literature (and cited) or are expected to be well know (and a reference could

not be found). Theorems 8.33 and 8.35 are the crux of this section. This section concerns

itself with qubit graphical calculi, and as such all the fields considered will be subfields

of C.

Definition 8.19 (Degree of a field extension [Ste15, Definition 6.2]). Where K is a

subfield of L, written L/K, we define the degree of the extension [L : K] as the dimension

of L considered as a vector space over K.

Lemma 8.20 ([Ste15, Proposition 6.7]). For K(α)/K a field extension where α satisfies

some minimal polynomial m ∈ K[X],

[K(α) : K] = degm (8.74)
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Definition 8.21 (Normal extension [Ste15, Definition 9.8]). The field extension L/K is

called normal if every irreducible polynomial over K with a root in L splits in L as a

product of linear factors.

Theorem 8.22 (Normal closure [Ste15, Theorem 11.6]). If L/K is a finite extension of

subfields of C, then there exists a unique smallest normal extension N/L/K which is a

finite extension of K.

Theorem 8.23 (Tower Law [Ste15, Corollary 6.6]). If K0 ⊆ K1 ⊆ · · · ⊆ Kn are subfields

of C, then

[Kn : K0] = [Kn : Kn−1][Kn−1 : Kn−2] . . . [K1 : K0] (8.75)

Theorem 8.24 (Part of the fundamental theorem of Galois theory [Ste15, Theorem 12.2]).

If L/K is a finite, normal field extension inside C then Gal(L/K), the group of field

automorphisms of L that fix K, has order [L : K]

We will need to be able to place an upper bound on the degree of an algebraic

extension, in a similar way to how we needed to place an upper bound on the degree of

a matrix. Assuming we know for each α a polynomial p where p(α) = 0, then we know

that the degree of the minimal polynomial mα has lower degree than p. We can use this,

in conjunction with the following corollary, to get an upper bound for the degree of an

algebraic extension.

Corollary 8.25. For β1, . . . , βr algebraic over K, and mβj the minimal polynomial of

βj over K

[K(β1, . . . , βr) : K] ≤
∏
j

degmβj (8.76)

Now that we know how to find certain bounds we shall also need to find extensions

that are guaranteed to exceed those bounds. For this we shall use primitive roots of

unity and cyclotomic polynomials to introduce into a field K elements that guarantee

[K(α) : K] ≥ d for a given d.

Definition 8.26 (Primitive Roots of Unity [Ste15, Definition 1.5]). For n ∈ N the

primitive n-th roots of unity are {
e2ijπ/n|(j, n) = 1

}
(8.77)

and we shall use ωn to indicate a generic primitive n-th root of unity.

Definition 8.27 (Cyclotomic polynomials [Ste15, Definition 21.5]). The n-th cyclotomic

polynomial Φn is defined as:

Φn(X) :=
∏

1≤a≤n, (a,n)=1

(X − ωan) (8.78)
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for ωn a primitive n-th root of unity

Lemma 8.28 (Galois group of a cyclotomic extension [Ste15, Theorem 21.9]). The

Galois group of Q(ωn)/Q is isomorphic to (Z/nZ)∗, and the degree of Φn is |(Z/nZ)∗|

Lemma 8.29 (Φm irreducible over transcendental extension). Φm is irreducible over

Q(π1, . . . , πn), where n ≥ 0 and the πj are transcendental and algebraically independent

over Q.

Proof. If n = 0 then Φm is irreducible ([Ste15, Corollary 21.6]). If n > 0 then let us

assume that we can factorise Φm, i.e. for ωm a primitive m-th root of unity there is a

polynomial f such that

f(ωm) = 0 deg f < deg Φm f(X) ∈ Q(π1, . . . , πn) (8.79)

and without loss of generality we can assume that πn is used non-trivially as a coefficient

of f . We can modify f by clearing denominators and negative powers of πn to get

g(πn) = 0 deg g <∞ g(X) ∈ Q(π1, . . . , πn−1, ωm) (8.80)

We therefore can place upper bounds on the degrees of the relevant field extensions:

[Q(π1, . . . , πn, ωm) : Q(π1, . . . , πn−1, ωm)] ≤ deg g (8.81)

[Q(π1, . . . , πn−1, ωm) : Q(π1, . . . , πn−1)] ≤ deg Φm (8.82)

Therefore [Q(π1, . . . , πn, ωm) : Q(π1, . . . , πn−1)] is finite, and therefore [Q(π1, . . . , πn) :

Q(π1, . . . , πn−1)] is finite, contradicting the algebraic independence of {πj} over Q.

Lemma 8.30. For K a finitely generated field extension of Q, and any choice of natural

number d, there exist infinitely many primes p such that [K(ωp) : K] ≥ d

Proof. We decompose K/Q as K/L/Q where L/Q is transcendental (and finitely gen-

erated by algebraically independent additions to Q) and K/L is algebraic (and finitely

generated by algebraically dependent additions to L).

By Lemma 8.29 Φm is irreducible in L, and therefore [L(ωm) : L] = deg Φm. Let r

be [K : L], and s be [K(ωm) : K]. Note that r is fixed and we are trying to choose m

such that s is larger than d. We illustrate this with the diagram of extensions:

K

L

K(ωm)

L(ωm)

Q

r

s

deg Φm

≥ 1

(8.83)
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We know that

[K(ωm) : L] = [K(ωm) : L(ωm)][L(ωm) : L] ≥ deg Φm (8.84)

[K(ωm) : L] = [K(ωm) : K][K : L] = rs (8.85)

The degree of Φp for p a prime is p − 1, therefore by choosing m = p for p > rd we

know that [K(ωm) : K] ≥ deg Φp/r ≥ d

Lemma 8.31. For the finite set of distinct primes {pj} there is an isomorphism of

groups

Gal(K(ωp1 , . . . , ωpn)/K) ∼=
∏
j

Gal(K(ωpj )/K) (8.86)

Proof. Because the roots of Φp are all powers of any other root, either all the roots of

Φp are in K or none of them are. So either ωp is in K and Gal(K(ωp)/K) ∼= {e} or ωp
is not in K and Gal(K(ωp)/K) ∼= (Z/pZ)∗. We can therefore ignore any ωp ∈ K as it

contributes trivially to both Gal(K(ωp1 , . . . , ωpn)/K) and
∏
j Gal(K(ωpj )/K).

Only considering those ωp /∈ K, Lemma 8.28 gives us the isomorphism

Gal(K(ωp)/K) ∼= (Z/pZ)∗ (8.87)

(σ : ωp 7→ ωkp)↔ (k mod p) (8.88)

By writing N :=
∏
j pj and Ω :=

∏
j ωpj , and noting that K(ωp1 , . . . , ωpn) = K(Ω),

we construct the isomorphism we need via the Chinese Remainder Theorem:

Gal(K(Ω)/K) ∼=
∏
j

Gal(K(ωpj )/K) (8.89)

(σ : wN 7→ wkN )↔ (σ1 : ωp1 7→ ω(k mod p1)
p1

, . . . , σ1 : ωpn 7→ ω(k mod pn)
pn ) (8.90)

(k mod N)↔ (k mod p1, . . . , k mod pn) (8.91)

Lemma 8.32. For any list of natural numbers d1, . . . , dn and finitely generated field

extension K of Q we can construct elements a1, . . . , an of C (which happen to be roots

of unity) such that

Gal(K(a1, . . . , an)/K) ∼= Gal(K(a1)/K)× · · · ×Gal(K(an)/K) (8.92)

|Gal(K(aj)/K)| ≥ dj ∀j (8.93)

Proof. For any natural number d there exists a prime p such that [K(ωp) : K] ≥ d by
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Lemma 8.30. Therefore by Lemma 8.31

Gal(K(ωp1 , . . . , wpn)/K) ∼= Gal(K(ωp1)/K)× · · · ×Gal(K(ωpn)/K) (8.94)

and for each subgroup |Gal(K(ωpj )/K)| ≥ d. Set aj to a choice of ωpj , such as e2iπ/pj .

Theorem 8.33 (Single equation verification of qubit phase variables, ring version).

For a ringC, ZWC, or ZHC equation with phases that are polynomial in some phase

variables, there exists a single verifying equation without any phase variables. If we can

put an upper bound on the degrees of the minimal polynomials of the phase constants

then we can construct such an equation.

Proof. Let D1 = D2 be the equation of interest, with phase variables α1, . . . , αn, and

phase constants {c1, . . . , cm}. Let K be the normal closure of Q(c1, . . . , cm) in C; this ex-

ists by Theorem 8.22, is finite over Q(c1, . . . , cm), and is therefore finitely generated over

Q by the {c1, . . . , cm} and finitely many more elements (any missing Galois conjugates).

Note that K satisfies the conditions of Lemma 8.30. We will construct the assignments

α1 = a1, α2 = a2, . . . , αn = an (8.95)

and then show that this instantiation leads to the desired outcome.

K

Q(c1, . . . , cm)

K(a1, . . . , an)

Q

normal closure

large enough

(8.96)

By Lemma 8.32 there exist elements a1, . . . , an ∈ C such that

Gal(K(a1, . . . , an)/K) ∼= Gal(K(a1)/K)× · · · ×Gal(K(an)/K) (8.97)

and |Gal(K(aj)/K)| ≥ dj for all j; note that dj is the required size of the sets Aj , as in

Theorem 8.11.

In order to construct the phases we shall need to know some algebraic information

about all the phases cj already present in the diagram. That is for a given cj we will need

to know either that cj is transcendental over Q, or some polynomial that cj satisfies.

We can then apply Corollary 8.25 to get an upper bound on the degree of the algebraic

extension. Then using Lemma 8.32 we can construct suitable values a1, . . . , an.

Suppose the instantiation α1 = a1, . . . , αn = an of D1 = D2 is sound. By The-

orem 5.42 we know that applying φ̂ to this instantiation is also sound, for φ an auto-
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morphism that fixes K.

Therefore for any element φ of Gal(K(a1, . . . , an)/K) we know that the instantiation

α1 = φ(a1), . . . , αn = φ(an) is sound. Since the Galois group splits as a product of groups

each affecting a single aj (Lemma 8.32) we can apply Theorem 8.11 with the sets:

Aj := {φ(aj)|φ ∈ Gal(K(aj)/K)} (8.98)

knowing that each of these choices of instantiations yields a sound equation. Therefore

by verifying the phase-variable-parameterised equation D1 = D2 with the instantiation

α1 = a1, . . . , αn = an we have verified D1 = D2 for all values of the variables.

Example 8.34 (Verifying a ringC family of equations with a single equation). Consider

the ringC[x,y] equation

x y

=
xy

(8.99)

By Theorem 8.11 we require sets Ax and Ay, with sizes dx ≥ 2 and dy ≥ 2. We can

therefore instantiate x to e2iπ/3 and y to e2iπ/5, knowing that

e2iπ/3 e2iπ/5

=
e16iπ/15

sound (8.100)

=⇒
φ(e2iπ/3) φ(e2iπ/5)

=
φ(e16iπ/15)

sound ∀φ ∈ Gal(Q(ω3, ω5)/Q) (8.101)

=⇒
x y

=
xy

sound ∀x, y ∈ C by Theorem 8.11 (8.102)

In the language of §7: The equation

e2iπ/3 e2iπ/5

=
e16iπ/15

(8.103)

implies and is implied by the equation
x y

=
xy


x,y

x, y phase variables (8.104)

Theorem 8.35 (Single equation verification of qubit phase variables, ZX version). For
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a Universal ZX equation with phases that are linear in some phase variables, there exists

a single verifying equation without any phase variables. If all the phase constants are

rational multiples of π then we can construct such an equation.

Proof. The idea of the proof of Theorem 8.35 is nearly identical to that of Theorem 8.33.

The difference is that we cannot rely directly on the results about phase homomorphisms

and so must reconstruct the necessary properties directly.

We first regard the ZX equation as generated by Z spiders and Hadamard gates. Each

concrete phase c on a green node corresponds to eic in the matrix representation. We

therefore construct K as the normal closure of Q(eic1 , . . . , eicm , eiπ/4). The eiπ/4 ensures

that
√

2 is in K and so the automorphisms created will not unintentionally interact

with the interpretation of the Hadamard gate. By Lemma 8.32 there exist roots of unity

a1, . . . , an ∈ C such that

Gal(K(a1, . . . , an)/K) ∼= Gal(K(a1)/K)× · · · ×Gal(K(an)/K) (8.105)

and |Gal(K(aj)/K)| ≥ dj for all j; note that dj is the required size of the sets Aj , as in

Theorem 8.11.

Any given φ ∈ Gal(K(a1, . . . , an)/K) sends {a1, . . . , an} to {b1, . . . , bn} where bj is

a Galois conjugate of aj and can be viewed as conjugating the phases that each root of

unity represents (via a↔ eiα). We lift this permutation to a map φ̂ for the ZX diagrams,

noting that this is a very similar construction to that of phase group homomorphism

pairs. Since K is fixed by φ we know that φ̂ does not change any of the concrete phases

from the initial diagram. Since eiπ/4 is in K we can simply check that for Z spiders and

for Hadamard gates that φ and φ̂ respect J · K in the sense that:

φ(J · K) =
r
φ̂(·)

z
(8.106)

This gives us the property that if our original equation was sound then so is the image

under φ̂. We can therefore again apply Theorem 8.11 to show that the constructed

equation (with phases {qj} instead of variables) and all the images of this equation

under φ̂ verify the original family of parameterised equations.

The argument about construction is also similar to that in the proof of Theorem 8.33,

noting that the Universal ZX phase 2aπ/b with a/b rational represents the complex

number ei2aπ/b, which is a solution to the equation Xb − 1 = 0, and so the degree of the

corresponding minimal polynomial is bounded above by b.

Remark 8.36. One does not have to work from parameterised equation to verifying,

instantiated equation. The presence of a phase τ in A \Q for a ringC equation already

suggests at least two sound equations (since there is a non-identity Galois automorphism

φ for τ over Q, and we know that φ̂ preserves soundness). Such a phase τ suggests, in

the conjecture inference sense, the family of equations where τ has been replaced by a



Verifying !-boxes 165

phase variable. Again this is similar to the replacement of existential quantifiers with

universal quantifiers as mentioned in §3.2.

One could also view this result as a bound on the ‘algebraic complexity’ of phases in

an equation of diagrams: If any field element appears less frequently than the degree of

its minimal polynomial then we should seek to replace it with a phase variable. One does,

however, need to be careful when trying to calculate how often an element appears in a

diagram. For example
√

6 and
√

2 are not algebraically independent, so naively counting√
2 as not occurring in

√
6 will lead to errors.

Having brought the number of verifying equations needed down to one (in the qubit

case) we now turn our attention to !-boxes, which are only marginally less well behaved.

8.4 Verifying !-boxes

!-boxes allow the succinct representation of arbitrary numbers of copies of subdiagrams.

In this section we will show that unless two !-boxes are connected (and not nested) then

this family of diagrams will behave in a very constrained manner. The main result is

that if an equation includes !-boxes that are separable (i.e. not connected as described

above) then we need only check the first N instances of the !-box expansions in order to

verify the entire family. As with the result on phase variable verification we can read this

value N off the diagram directly. Part of this result is the definition of series !-box form,

a manipulation of the diagram (requiring spider laws) that presents the !-box expansions

in a novel manner. This manipulation allows us to view each further !-box expansion in

terms of the ◦ product rather than the more traditional ⊗ presentation.

In terms of our running ZH example from §8.1 we are now investigating this face of

the commutative cube:

ZH!
C ZHC

(N→ MatC) MatC

J · K

as

J · K

as

(8.107)

With a third face given in (8.108).

8.4.1 Copies, nesting, and separability

There is a choice to be made when expanding a !-box that contains a phase variable. The

approach taken in [Mer14], which we adopt here, is to copy the variable name exactly.

This is in contrast to creating a ‘fresh’ name for each new instance of the variable

(Quantomatic, Ref. [KZ15], implements a version of this for users that want it). The

original paper that this work appeared in, [Mil20], contains versions of these proofs that

encompass both options, but since only minor alterations are required at any point we

now present just the proof for the following definition of copying:
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Definition 8.37 (Copying variables inside !-boxes). When a !-box expansion creates

new instances of a phase variable we copy that variable name, so that all instances are

linked by the same name (the approach taken in [Mer14, §4.4.2])

This definition results in the commutativity of ev and as, giving us another face in

the commutative cube from our running example (see §8.1).

ZH!
C[X] ZHC[X]

ZH!
C ZHC

ev

as

ev

as

(8.108)

Definition 8.38 (nesting order). We define a partial order, called the nesting order, on

!-boxes in a diagram:

δ1 < δ2 if δ1 is inside δ2 (8.109)

And use this partial order to draw a nesting diagram. For example this Universal ZX

diagram:

β

α2αδ1 δ2

δ3

has nesting diagram
δ1

δ3

δ2

(8.110)

Remark 8.39. The nesting diagram is the same as just taking the !-nodes in a pattern

graph.

Definition 8.40 (Well nested). We say an equation is well nested if the nesting diagrams

corresponding to the left and right hand sides of the equation are identical.

Definition 8.41 (Join). The join of a !-box is the collection of wires that leave that

!-box, i.e. the edges linking a vertex inside δ to one outside δ. The size of a join is the

number of wires, and the dimension of a join is the dimension of the diagram formed

by just the wires of that join, i.e. dim
r

⊗n
z

where n is the size of the join. This is

equivalently
(

dim
r z)n

.

Definition 8.42. We describe a pair of !-boxes as separated if either:

• They are nested, or

• There is no edge joining a vertex in one to a vertex in the other
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Theorem 8.51 will require that the !-boxes all be separated, but before we look at that

theorem we will investigate how stringent a requirement that is; or rather the question

‘if two !-boxes are not separated, then how hard is it to separate them?’ This question

is directly relevant for conjecture synthesis, as it allows us to convert an equation that

is not amenable to finite verification into an equation that is amenable to finite verific-

ation. This determines which sorts of conjectures we should generate in our conjecture

synthesis.

Definition 8.43 (Separable). We describe a non-separated pair of !-boxes as separable

if we can perform the following operation:

...

. . .
. . .

B1B2

δ1δ2 =

. . .
. . .

B′1B′2

δ1δ2

B3
..
.

..

.

(8.111)

We define pairs of nodes as separable if we can always separate !-boxes that are joined

by edges between these pairs of nodes. Note that we only need to consider nodes that

have arbitrary arity, since only they can be connected to !-boxes.

Lemma 8.44. The following pairs of nodes are separable, by calculus:

ZX:

 . . .

. . .

,

. . .

. . .

  . . .

. . .

,

. . .

. . .

  . . .

. . .

,

. . .

. . .

 (8.112)

ZH:

 . . .

. . .

,

. . .

. . .

  . . .

. . .

,

. . .

. . .

  . . .

. . .

,

. . .

. . .

 (8.113)

ZW:

 . . .

. . .

,

. . .

. . .

  . . .

. . .

,

. . .

. . .

 (8.114)

ring :

 . . .

. . .

,

. . .

. . .

 (8.115)

Proof. These proofs follow immediately from the spider and bialgebra laws in the respect-

ive calculi. Note that it is enough to specify the phase-free versions of these interactions,

because phases can always be moved away from the critical nodes.

Having shown how to separate !-boxes from each other, we will now talk about how

to spread apart the instances of a !-box once it has been instantiated. The form we

are aiming for is quite particular; one that allows us to use properties of the vertical

composition ◦.
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8.4.2 Series !-box form

Instantiation of !-boxes is an operation of pattern graphs and it is only because the

calculi we are considering are built from spiders that the instantiated outcomes still

form valid diagrams. After instantiating !-boxes, and in the presence of suitable spider

laws, we can change the presentation of the repeated elements into more amenable forms.

In particular we can represent the d copies created by a !-box as a d-fold composition of

diagrammatic elements, within the context of a larger diagram. We call this ‘series !-box

form’, providing a definition, example and method below.

Definition 8.45 (Series !-box form). Series !-box form for a given non-nested, separated

!-box δ1 is a presentation C ◦ (B◦d)◦G of each the (δ1 = d)-instantiated diagrams, where

• C := An unparameterised end diagram

• B := Repeated element, which may contain αj∀j, δk∀k ≥ 2 and some boundary

nodes

• G := The rest of the diagram outside of δ1, which may contain αj∀j, δk∀k ≥ 2 and

some boundary nodes

Example 8.46 (Series !-box form). To give a simple ZX example of series !-box form,

with just one !-box and just one wire between G and B′:



δ

G

B′

. . .


δ|δ=d

=
GB′B′B′

. . .

initial node inside Gd instances of Bend node C

. . .

(8.116)

Note that B is not just the subdiagram B′ but also everything directly below it as

depicted in (8.116). Although we have only used one example node and joining wire we

can perform this action on all nodes and joining wires. Where two wires travel from the

!-box to the same spider inside G we first spread out that spider so each wire from the

!-box connects to a different spider in G. Here is an example for n wires between B′ and

G, and p boundaries inside δ.
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GB′

. . .

n nodes inside Gd instances of Bn end nodes

...
. . .

...
...

. . .. . .

B′

. . .

p p m

(8.117)

From here it is easy to see that we have the diagram G : m→ n, beside d copies of a

diagram we call B : p+n→ n (containing the p boundary nodes and the new connecting

spiders), and finally an ending diagram C : n→ 0.

Proposition 8.47. In the calculi ZX, ZW and ZH, for any diagram D and any value

of d we can put Dα1,...,αn,δ1,...,δm|δ1=d into series !-box form.

Proof. We will only indicate the !-box we are interested in (δ) and not explicitly write

out the other parameters. First we manipulate the diagram (by Choi-Jamiolkowski we

can transform inputs into outputs, provided we turn them back again later) until it is

in the following form:

D =

G

B′

. . .

. . .

!-box δ around subdiagram B′

remaining diagram G

m boundary nodes for G

n connecting wires from B to G

δ

. . . p boundary nodes for B

(8.118)

We note that the nodes inside G that join with B′ must be spiders; since there can be

arbitrary many instances of B′ the connecting node in G must be able to have arbitrary

arity. There may also be p boundaries that are contained in δ. We will now rely on the

existence of a spider law such that we may do the following:

α

. . .

= . . .
α (8.119)

Which is the ability to ‘spread’ a spider with q outputs into q repeated copies of a spider
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with 1 output, with suitable initial, terminal, and joining subdiagrams. Such spider

laws exists for ZW, ZX, ZH and ring. We apply this to all the spiders in G that are

connected to the instantiated subdiagrams formed by δ, so that the spiders form a chain

as in (8.117).

8.4.3 The verification process for !-boxes

Using this notion of series !-box form (Definition 8.45) we will now show that checking

just an initial segment of a !-box instantiation suffices for showing soundness for all

possible instantiations. Before stating and proving our theorem we will first need two

simple lemmas concerning tensor products of bases, and increasing chains of vector

subspaces.

Lemma 8.48. The set of all vectors of the form {vd ⊗ . . .⊗ v1 ⊗ x} where vj ∈ H⊗p
and x ∈ H⊗m contains a basis for H⊗(m+dp)

Proof. Note that we may form a basis for V ⊗ V ′ by taking the tensor products of

the bases of V and V ′, and therefore the above set contains all the basis elements of

H⊗p ⊗ . . .H⊗p ⊗H⊗m ∼= H⊗(m+dp).

Lemma 8.49. A chain of subspaces Vj of an N -dimensional vector space V ′ has the

following property:

If

Vj ≤ Vj+1 ∀j (8.120)

(Vj = Vj+1) =⇒ (Vj+1 = Vj+2) (8.121)

Then

∃n ≤ Ns.t. Vn+k = Vn ∀k ∈ N (8.122)

Proof. By the assumptions in the statement Vj is non-decreasing, dimVj ≤ N , and if

Vj = Vj+1 then Vj = Vk∀k ≥ j; therefore the sequence {Vj} has an initial increasing

section, followed by a stable section. By looking at the sequence {dimVj} we know that

this initial increasing section has length at most N .

Definition 8.50 (Verifying subset). Given a parameterised equation E we say that

{E1, . . . ,En} verifies E if:

(∀j Ej is sound) =⇒ E is sound

Theorem 8.51 (Finite verification of !-boxes). Given a family

E = { D1 = D2 }α1,...,αn,δ1,...,δm
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of diagrammatic equations, in ZX, ZH, or ZW, parameterised by a !-box δ1 where δ1 is

separated from all other !-boxes and is nested in no other !-box; then E is verified by the

finite family

{E|δ1=0, . . . ,E|δ1=N}

where N is the dimension of the join of δ1 in D1 plus the dimension of the join of δ1 in

D2. That is:

n1 := join of δ1 in D1

n2 := join of δ1 in D2

N := dim
(
H⊗n1 ⊕H⊗n2

)
r
{ D1 }α1,...,αn,δ1,...,δm|δ1=d1

z

=
r
{ D2 }α1,...,αn,δ1,...,δm|δ1=d1

z
∀d1 ≤ N (8.123)

=⇒
r
{ D1 }α1,...,αn,δ1,...,δm

z

=
r
{ D2 }α1,...,αn,δ1,...,δm

z
(8.124)

The sketch of the proof is:

1. Manipulate the diagrams into series !-box form (Definition 8.45)

2. Move to the matrix interpretation

3. Manipulate the equation between two matrices into an expression on a single vector

space of dimension N

4. Demonstrate the required property as a condition on subspaces

Proof. Considering either D1 or D2 for now, manipulate Dδ1=d into series !-box form;

C ◦ (B)◦d ◦G. The p boundary vertices in every copy of B pose an issue for our intended

method, and so we instead consider B as being parameterised not just by αj ∀j and

δk ∀k > 1, but also by input vectors v ∈ H⊗p that ‘plug’ the inputs inside B.

Since we can show equivalence of complex matrices by showing that they perform the

same operation on any input, it will be enough to show that for any choice of αj , δk>1

and v that (8.124) holds. Assuming we have instantiated the αj and δk>1, Lemma 8.48

justifies that we can choose the input vector for the p inputs of each of the d copies of

B independently.

Given a choice of values for the αj , δk>1 and v we denote this choice by q and use Bq
to mean ‘the sub-diagram B from the series !-box form with this choice of variables’. We
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also define Gq as the subdiagram G instantiated with the values of αj and δk>1 described

by q, same as for Bq (we do not plug any values into the inputs of G). Once we have

chosen values for q we may consider the matrix interpretation of the diagram:

J C K J Bqd K . . . J Bq1 K J Gqo K (8.125)

Gq : H⊗m → H⊗n (8.126)

Bq : H⊗n → H⊗n (8.127)

C : H⊗n → C (8.128)

Going back to our original question: Given an equation D1 = D2 of two families

of diagrams, both parameterised by a (non-nested, separated) !-box δ1 (among other

parameters) we wish to remove our dependence on δ1 by instead verifying a finite set of

equations, each of which has a different value for δ1. Note that for this to be the case we

require the number of inputs to be equal; i.e. m := m1 = m2 and p := p1 = p2, but we

do not require n1 = n2 in (8.117). We instantiate δ1 = d and consider D1 and D2 to be

in series !-box form, with matrix interpretations:

J C1 K J B1,qd K . . . J B1,q1 K J G1,q0 K (8.129)

J C2 K J B2,qd K . . . J B2,q1 K J G2,q0 K (8.130)

And we wish to know when these two interpretations are equal. Rather than consider

the matrices acting on two independent spaces we view them as acting on the direct

sum of those two spaces and represent these maps as block matrices. (We drop the J · K
notation when it would appear inside a matrix.)

J C1 K J B1,qd K . . . J B1,q1 K J G1,q0 K = J C2 K J B2,qd K . . . J B2,q1 K J G2,q0 K (8.131)

⇐⇒
[
1 −1

] [C1 0

0 C2

][
B1,qd 0

0 B2,qd

]
. . .

[
B1,q1 0

0 B2,q1

][
G1,q0 0

0 G2,q0

][
idm

idm

]
= 0

(8.132)

One can think of the above as copying an input vector x ∈ Hm as x :: x in Hm ⊕ Hm,

then applying

J C1 K J B1,qd K . . . J B1,q1 K J G1,q0 K (8.133)

and

J C2 K J B2,qd K . . . J B2,q1 K J G2,q0 K (8.134)

to the left and right copies respectively. After that we apply a minus sign to the right hand

result and add that to the left hand result, effectively comparing them and demanding



Verifying !-boxes 173

the difference to be 0. We seek to prove:

[
1 −1

] [C1 0

0 C2

][
B1,qd 0

0 B2,qd

]
. . .

[
B1,q1 0

0 B2,q1

][
G1,q0 0

0 G2,q0

][
idm

idm

]
= 0

∀d ≤ N, q

=⇒
[
1 −1

] [C1 0

0 C2

][
B1,qd 0

0 B2,qd

]
. . .

[
B1,q1 0

0 B2,q1

][
G1,q0 0

0 G2,q0

][
idm

idm

]
= 0

∀d, q (8.135)

Recalling that q is the choice of values for αj , δk>1 and v ∈ H⊗p, we use Q to denote the

set of all possible choices. We use B̂q for the matrix that acts as the direct sum of B1,q

and B2,q:

B̂q :=

[
B1,q 0

0 B2,q

]
(8.136)

and inductively define the spaces:

V0 := span

⋃
q∈Q

Im

([
G1,q 0

0 G2,q

][
idm

idm

]) (8.137)

Vj := span

Vj−1 ∪
⋃
q∈Q

B̂qVj−1

 (8.138)

The Vj form an ascending sequence of subspaces, each containing the potential images

of up to j applications of B̂q:

Vj ≥ Im( B̂qk . . . B̂q1 V0 ) ∀k ≤ j ∀qk, . . . , q1 ∈ Q (8.139)

By Lemma 8.49 there is a Vb with the following properties:

• if j < b then Vj > Vj−1

• if j ≥ b then Vj = Vj−1

• b ≤ dim( Hn1 ⊕Hn2 )

Consider the subspace W defined as

W :=
[
1 −1

] [C1 0

0 C2

]
(8.140)
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We wish to show that:

Vj ≤W ∀j ≤ N (8.141)

=⇒ Vj ≤W ∀j

Since Vc = VN when c ≥ N ≥ b it is enough to show that this is the case for all

Vj when j ≤ N . This is, however, the assumption in our theorem; that for d ≤ N

our diagrammatic equation holds, and so for any choice of d and q1, . . . , qd this matrix

equation holds:

[
1 −1

] [C1 0

0 C2

][
B1,qd 0

0 B2,qd

]
. . .

[
B1,q1 0

0 B2,q1

][
G1,q0 0

0 G2,q0

][
idm

idm

]
= 0 (8.142)

We have shown that for any choice of inputs v ∈ Hp⊗ . . .⊗Hp⊗Hm, and parameters

αj , δk>1 our matrix equations hold, and by extension they hold on all elements of the

space H⊗(m+dp), i.e. that:

∀d ≤ N ∀qd . . . q1[
1 −1

] [C1 0

0 C2

][
B1,qd 0

0 B2,qd

]
. . .

[
B1,q1 0

0 B2,q1

][
G1,q0 0

0 G2,q0

][
idm

idm

]
= 0

(8.143)

=⇒ ∀d ∀qd . . . q1[
1 −1

] [C1 0

0 C2

][
B1,qd 0

0 B2,qd

]
. . .

[
B1,q1 0

0 B2,q1

][
G1,q0 0

0 G2,q0

][
idm

idm

]
= 0

(8.144)

And therefore:

J C1 K J B1,qd K . . . J B1,q1 K J G1,q0 K = J C2 K J B2,qd K . . . J B2,q1 K J G2,q0 K

∀d ≤ N ∀qd . . . q1

=⇒ J C1 K J B1,qd K . . . J B1,q1 K J G1,q0 K = J C2 K J B2,qd K . . . J B2,q1 K J G2,q0 K (8.145)

∀d ∀qd . . . q1

And therefore for any choice of value for αj and δk>1:

r
{ D1 }α1,...,αn,δ1,...,δm|δ1=d

z
=

r
{ D2 }α1,...,αn,δ1,...,δm|δ1=d

z
∀d ≤ N

(8.146)
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=⇒
r
{ D1 }α1,...,αn,δ1,...,δm|δ1=d

z
=

r
{ D2 }α1,...,αn,δ1,...,δm|δ1=d

z
∀d

(8.147)

Example 8.52 (!-box verification). Consider the following Universal ZX family of equa-

tions, parameterised by a single !-box:

E :=

 =

π −π δ δ


δ

(8.148)

The join between the !-box and the rest of the diagram on the left is two wires (dimension

22), and on the right is one wire (dimension 21). These sum to have dimension 6, and we

therefore need only to check the !-box instances (0, . . . , 6) to be sure that the equation

E is sound for any value of δ.

A longer example is provided in §E.

8.5 Verifying !-boxes and phase variables together

Theorem 8.11 and theorem 8.51 deal with equations containing multiple phase variables

and nested !-boxes respectively. This section will put together the necessary results such

that we can combine these approaches to deal with equations containing multiple !-boxes

and phase variables, any of which could potentially be nested inside other !-boxes. For

our running ZH example the previous sections covered the faces of the commutative

cube, and this is the section where we put them all together.

Proposition 8.53. Given a parameterised equation E and ways of finding

• finite verifying sets Aj for phase variables in diagrams without !-boxes (e.g. The-

orem 8.11)

• finite verifying sets Dk for the !-boxes (e.g. Theorem 8.51)

we may verify the entire family E by checking the (finite) set given by the cartesian

product of all the Aj and Dk.

Proof. We define:

D̄ := D1 ×D2 × · · · ×Dm (8.149)

δ̄ := (δ1, . . . , δm) (8.150)

Aδ̄j := The verifying set for αj once E has had !-boxes instantiated at δ̄ (8.151)
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Construct Aj by choosing as many points as there are in maxδ̄

{
|Aδ̄j |

}
. This is finite

because the Dk and the Aδ̄j are finite. Aj therefore contains enough points to be a

verifying set for Aδ̄j ∀δ̄ ∈ D̄. We now show that A1×· · ·×An×D1×· · ·×Dm describes

a verifying set for the parameterised equation E:

Eα1,...,αn,δ1,...,δm|∀j,k αj∈Aj , δk∈Dk is sound (8.152)

= Eα1,...,αn,δ1,...,δm|∀i αj∈Aj , δ̄∈D̄ is sound (rewrite using δ̄ notation) (8.153)

=⇒ E
α1,...,αn,δ1,...,δm|∀i αj∈Aδ̄j , δ̄∈D̄

is sound (construction of Aj) (8.154)

=⇒ Eα1,...,αn,δ1,...,δm|δ̄∈D̄ is sound (theorem 8.11) (8.155)

=⇒ Eα1,...,αn,δ1,...,δm is sound (theorem 8.51) (8.156)

We now proceed towards the main theorem of this chapter, giving the definition

that we will need in the proof. We shall need algorithms to determine the sets Aj and

Dk, as required by Proposition 8.53, and for that we shall need a way of ordering our

!-boxes, and a notion of ‘the largest diagram’. Proof of existence, or correctness, of these

definitions are given in the proof of Theorem 8.58.

Definition 8.54 (!-box ordering). Given a parameterised equation E, we construct the

ordered list δk1 � δk2 � · · · � δkn of !-boxes by recursively picking a !-box that is nested

in no other !-boxes, then removing that !-box from the nesting diagram of E. Repeat on

the new nesting diagram.

Definition 8.55 (The algorithm !-Removal). Given a verifying set of equations {Eκ}κ∈K ,

and a !-box δk nested in no other !-boxes present in the Eκ:

We define !-Remove(δk) as the process described in Theorem 8.51. It acts on the set

{Eκ}κ∈K by acting on each of the Eκ in turn, finding the value Nκ, and creating the new

verification set:

{Eκ}κ∈K′ :=
⋃
κ∈K

{
Eκ|δk=1, . . . ,Eκ|δk=Nκ

}
(8.157)

Definition 8.56 (Largest diagram). Given a verifying set of equations {Eκ}κ∈K , we use

Ē to denote the !-box free equation that is the result of instantiating each !-box δk at its

largest required amount Nk given by Definition 8.55

Definition 8.57 (The algorithm α-Removal). Given a verifying set {Eκ}κ∈K we con-

struct the set Aj for the variable αj by considering the degree of αj in Ē, and then

choosing enough valid values of αj to reach the amount dictated by Theorem 8.11. We

then form:
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{Eκ}κ∈K′ :=
⋃

κ∈K,a∈Aj

{Eκ|αj = a} (8.158)

If we are working with ringC, ZWC, or ZHC we may use Theorem 8.33 to generate

the sets A1 := {a1} , . . . An := {an} instead.

Theorem 8.58 (Finite verification of !-boxes and phase variables). Given a paramet-

erised family of equations E, where the !-boxes are separated and well nested, we can

construct a finite set of simple equations {Eκ}κ∈K that verifies E.

The idea of the proof is to iteratively remove dependencies on !-boxes via The-

orem 8.51, each time generating a larger set of verifying equations. Once we have re-

moved all !-box dependence we then use the method of Proposition 8.53 to remove phase

variable dependence; using the ‘largest’ equation in {Eκ} to determine the sizes of the

Aj . Since every step removes either a !-box or a phase variable (and introduces neither

!-boxes nor phase variables) this process terminates.

Proof. Throughout this proof we iterate on the set {Eκ}. While at all times {Eκ} is a

finite verifying set for E, it is only at the end that {Eκ} is a finite verifying set of simple

equations. We first show the existence of an ordered list of the !-boxes present in E,

compatible with the nesting order on both of the nesting diagrams of E.

Claims:

1. !-Remove(δk) removes any dependency on δk in the verifying set {Eκ}κ∈K′

2. {Eκ}κ∈K′ verifies {Eκ}κ∈K

3. !-Remove(δk) does not alter the nesting ordering of any remaining !-boxes and

phase variables in the verification pair

4. The ordered list δk1 � δk2 � . . . provides us with a sequence of !-boxes such that

we can apply !-Remove(δkn+1) to the output of !-Remove(δkn).

5. Applying !-Remove to this ordered sequence results in a finite verifying set that

has no dependence on any !-box.

Proof of claims: The first, second and fifth claims follow from Theorem 8.51. The third

and fourth claims are clear from the definitions.

Starting with {Eκ}κ∈K = E we iteratively apply !-Remove according to the nesting

order to obtain {Eκ}κ∈K′ which is a set of equations with phase variables but no !-

boxes, and also gives us the value of Ē (see Definition 8.56). We then iteratively apply

α-Remove to construct a finite set {Eκ}κ∈K′′ of simple equations that verifies E.
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Remark 8.59. When we introduced conjecture synthesis we said in Remark 3.2 that

because we can now verify conjectures that contain !-boxes it is now worth generating

conjectures that contain !-boxes. This can be done in one of two ways: We can infer

!-boxes onto an existing theorem, by perhaps spotting repeating subdiagrams on both

sides of the equation. Alternatively we could synthesise separated pattern graphs directly

(i.e. generate diagrams with !-boxes in) and then store the first 0, . . . , N instances of each

!-box expansion where N is the join. This would not give us all the details needed for

verifying whether two such diagrams were equal, as additional instances will need to be

calculated, but would allow some initial checks to be performed quickly.

8.6 Summary

This chapter combines two very different verification results; one for phase variables

(reliant on the structure of the phase algebra), and the other for !-boxes (reliant on

the new series !-box form). We showed how to unify these two results into one that

works in all cases where the !-boxes are separated, and also how to separate out !-boxes

in most, but not all, cases. When considering qubits we used some Galois theory to

reduce the number of verifying equations needed from ‘finite’ to ‘one’. Further work

includes finding similar results for the calculus ZQ, and potentially reducing the number

of equations needed to verify !-boxes over qubits. For conjecture synthesis this chapter

shows how to verify the sorts of hypotheses created in §7, but also shows that we can

compare diagrams containing !-boxes directly if we were to generate them as part of

conjecture synthesis. This chapter also gave the final piece of our conjecture inference;

hypothesising theorems involving !-boxes. It also brings the results chapters of this thesis

to a close.



Chapter 9

Conclusion

This thesis demonstrates that phase algebras conceal a wealth of algebraic complexity

that can and should be used in both quantum computing and conjecture synthesis. This

wealth comes from the interplay between the phase algebra of the diagrams and the

underlying category of the interpretation. In our exploration of this theme we have in-

troduced new graphical calculi, demonstrated a deep relationship between diagrammatic

rules and algebraic geometry, and introduced phase homomorphisms to link the algebra

of labels with the algebra of interpretations. While doing this we improved on the design

of conjecture synthesis, exhibited new methods for conjecture verification, and combined

all these, along with some Galois Theory, to show how a single equation can imply an

abundance of generalisations.

The impetus for this work was the task of Conjecture Synthesis for Quantum Graph-

ical Calculi. We have extended the core process found in the literature by including a

generalisation step at the point of successful synthesis. This generalisation step is per-

formed (although not exclusively) via the discovery, presented in this thesis, of a link

between our rule presentations and algebraic geometry. Through the related work on

conjecture verification, also presented in this thesis, it was shown that the evidence

needed for such a generalisation could be as low as a single equation; this is equivalent

to inferring all the points of a surface based on just a single point and some symmetries.

These symmetries of the parameter space, also discovered in this thesis, are the

phase homomorphism pairs exhibited in §5. We introduced them, demonstrated when

they preserved soundness and derivations, and then classified them for ZW, ZH, ring,

and certain fragments of ZX. The author hopes that this examination, and the contents

of §5 overall, prompt further research into graphical calculi with a greater variety of phase

algebras. These parameter spaces do not arise by chance: They are a direct consequence

of our choices of phase algebras, and have the capacity to reveal profound insights into

our graphical calculi.

The conjecture verification results of this thesis rely on the (relatively simple) prop-

erties of polynomial interpolation and chains of vector subspaces. The hard work in
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these results was in extracting the necessary information from the diagrams. Again we

emphasise that this algebraic machinery is present, but because we are dealing with an

unusual presentation of the information, and in a context where these results are less

commonly applied, these properties are far easier to miss.

Graphical calculus design is therefore clearly important but we have also shown ways

in which it is (usefully) limited. Any future work to design a quantum graphical calculus

with a phase ring will necessarily construct something similar to ringC (Remark 5.36).

This is not to say that ringC is the only option (ZH and ZW have good reasons for their

choices of generators) but that ringC will act as common ground between these calculi,

and will make the construction of equivalences easier. The language ZQ, on the other

hand, will be useful for those creating optimisers, or reasoning about certain hardware

implementations. In fact the author would argue that the rules of ZQ are more intuitive

than those for Universal ZX, and so there is a pedagogical argument for explaining

quantum circuitry using ZQ. The unwieldy nature of the Euler Decomposition rule of

ZX, and its comparative elegance in ZQ, was a major influence on the direction of this

research. Both ZQ and ring were introduced and then showed to be sound and complete

in this thesis.

The central point of this thesis was that phase algebras are important, and that they

enable algebraic machinery that was previously underused. This is a continuation of the

program of Categorical Quantum Mechanics, a program that aims to make reasoning

about these systems easier through selective abstraction:

The arguments for the benefits of a high-level, conceptual approach to design-

ing and reasoning about quantum computational systems are just as com-

pelling as for classical computation. In particular, we have in mind the hard-

learned lessons from Computer Science of the importance of compositionality,

types, abstraction, and the use of tools from algebra and logic in the design

and analysis of complex informatic processes. (Categorical Quantum Mech-

anics [AC09])

As a final demonstration of this point let us examine the generalisation step of an

updated simple ringC conjecture synthesis run:

• First an unparameterised, sound equation in ringC is generated.

• Let us assume that this equation shares a skeleton with other equations, already

shown to be sound. We may then use the link between the algebra of equations

and the geometry of parameter spaces to infer a potential generalisation.

• We can then use the results of §8.3 to pick a single, unparameterised, verifying

equation for this generalisation. This equation will already be in our search space,

we simply move it forward in the queue.
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• With our generalisation verified we can then reduce the search space by a far

greater amount than if we had not performed the verification.

This generalisation process uses Algebraic Geometry, Galois Theory, Laurent Polynomi-

als, Polynomial Interpolation, and Category Theory. Each of their particular uses are

novel to this thesis. All of these uses rely on the interplay between the phase algebra

and the underlying matrices.

The author hopes that this research prompts further work in the program of Categor-

ical Quantum Mechanics, in particular further collaboration between quantum comput-

ing and traditionally algebraic fields. The link to algebraic geometry given here deserves

further exploration, both for quantum computing and for the inference step in conjec-

ture synthesis. Even outside the geometric inference framework of this thesis our novel

generalisation step should increase efficacy in future conjecture synthesis projects. The

calculus ZQ would be ideal for formal verification of optimisers such as TriQ.
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Appendices

A Extending the calculus ZH

In this appendix:

. We extend the calculus ZHC to the calculus ZHR, where R is any commutative ring with

a half.

. The proof of this result is very similar to the original proof for ZHC in Ref. [BK19], and

we imitate, quote, and make use of that paper where possible.

For the definition of the calculus ZHR see Section 4.4.1. The majority of the text below is

from Ref. [BK19], it has simply been altered to reflect the more general case of ZHR over ZHC.

It can be seen from the proofs in Ref. [BK19] that the only property used of the ring C is the

existence of the element 1
2 .

We will show that ZHR is complete by demonstrating the existence of a unique normal

form for ZHR diagrams. It is first worth noting that, because we can turn inputs into outputs

arbitrarily (since all the generators are spiders), it suffices to consider diagrams which have only

outputs.

For states ψ, φ, let ψ ∗ φ be the Schur product of ψ and φ obtained by plugging the i-th

output of ψ and φ into , for each i:

ψ φψ∗φ

· · ·

:= · · · · · ·

· · ·

(1)

It follows from (ZS1) that ∗ is associative and commutative, so we can write k-fold Schur products

ψ1 ∗ ψ2 ∗ . . . ∗ ψk without ambiguity. For any finite set J with |J | = k, let
∏
j∈J ψj be the k-fold

Schur product.

Let Bn be the set of all n-bitstrings. For any ~b := b1 . . . bn ∈ Bn, define the indexing map ι~b
as follows:

ι~b = ~b

. . .

. . .

=

(
¬

)1−b1

. . .

(
¬

)1−bn

. (2)

Then normal forms are given by the following 2n-fold Schur products:∏
~b∈Bn

(
ι~b ◦Hn(a~b)

)
(3)
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where Hn(a~b) is the arity-n H-box (considered as a state) labelled by an arbitrary elements a~b
of R.

A normal form diagram can be seen as a collection of n spiders, fanning out to 2n H-

boxes, each with a distinct configuration of NOT’s corresponding to the 2n bitstrings in Bn.

Diagrammatically, normal forms are:

a~b

~b

. . .

~b ∈ Bn
. . .

. . .

:=

a0...0

0 . . . 0 0 . . . 01

a0...01

1 . . . 1

a1...1

. . .

. . .

. . .

. . .

. . .. . .. . .

(4)

Theorem A.1. [BK19, Theorem 3.1] Normal forms are unique. In particular:

u

v
∏
~b∈Bn

(
ι~b ◦Hn(a~b)

) }

~ =
∑
~b∈Bn

a~b|~b 〉. (5)

Proof. The map ι~b is a permutation that acts on computational basis elements as |~c 〉 7→ |~c ⊕
~b ⊕ ~1 〉. In particular, it sends the basis element |~1 〉 to |~b 〉. Hence ι~b ◦ Hn(a~b) is a vector with

a~b in the ~b-th component and 1 everywhere else. The Schur product of all such vectors gives the

RHS of (5).

Since equation (5) gives us a means of constructing any vector in R2n , Theorem A.1 can also

be seen as a proof of universality of ZHR.

Lemma A.2 ([BK19, Lemma 3.2]). The NOT operator copies through white spiders:

¬

=

¬

(6)

Lemma A.3 ([BK19, Lemma 3.3]). The ι~b operator copies through white spiders, i.e. for any
~b ∈ Bn:

~b

. . .

. . .

. . . . . .

. . .~b

. . .
. . .

. . .

~b

. . .

=
. . .

(7)

Lemma A.4 ([BK19, Lemma 3.4]). ZHR enables the computation of the Schur product of two
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maps of the form ι~b ◦Hn(x) and ι~b ◦Hn(y) for any ~b ∈ Bn and x, y ∈ R:

. . . . . .

~b

yx

~b

. . . . . .

. . .

=

. . .

. . .

xy

~b
(8)

We will now show that normal form diagrams, when combined in various ways, can also be

put into normal form. Let

NF

. . .
(9)

denote an arbitrary normal-form diagram. It is straightforward to see that permuting the outputs

of a normal-form diagram merely interchanges the bits in the coefficients a~b. Hence, normal forms

are preserved under permutations of outputs. Furthermore:

Proposition A.5 ([BK19, Proposition 3.5]). A diagram consisting of a normal form diagram

juxtaposed with can be brought into normal form using the rules of ZHR:

NF

. . . . . .

NF ′=

n n+ 1

(10)

Proposition A.6 ([BK19, Proposition 3.6]). The Schur product of two normal form diagrams

can be brought into normal form using the rules of ZHR.

. . . . . .

NF2NF1

. . .

=

. . .

NF ′

(11)

Corollary A.7 ([BK19, Corollary 3.7]). The tensor product of two normal form diagrams can

be brought into normal form using the rules of ZHR.

Remark A.8. Note that a single scalar H-box is a normal form diagram. Corollary A.7 thus

implies that a diagram consisting of a normal form diagram juxtaposed with a scalar H-box can be

brought into normal form. In the following proofs, we will therefore ignore scalars for simplicity:

they can be added back in and then incorporated to the normal form without problems.

Proposition A.9 ([BK19, Proposition 3.9]). The diagram resulting from applying to an

output of a normal form diagram can be brought into normal form:

. . .

NF
=

. . .

NF ′
(12)

Our strategy will now be to show that any diagram can be decomposed into H-boxes, com-

bined via the operations of extension, convolution, and contraction. This will give us a complete-

ness proof, thanks to the following proposition.
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Lemma A.10. [[BK19, Lemma 3.10]] Any H-box can be brought into normal form using the

rules of ZHR.

Corollary A.11 ([BK19, Corollary 3.11]). The diagram of a single cup can be brought into

normal form:

=
NF

(13)

Corollary A.12 ([BK19, Corollary 3.12]). The diagram resulting from applying to a

pair of outputs of a normal form diagram can be brought into normal form.

. . .

NF
=

. . .

NF ′

(14)

Corollary A.13 ([BK19, Corollary 3.13]). Applying a cap to a normal form diagram results in

another normal form diagram:

. . .

NF
=

. . .

NF ′
(15)

Thanks to Corollaries A.7 and A.13, we are able to turn any diagram of normal forms into a

normal form. It only remains to show that the generators of ZHR can themselves be made into

normal forms. We have already shown the result for H-boxes, so we only need the following.

Lemma A.14 ([BK19, Lemma 3.14]). Any Z-spider can be brought into normal form using the

rules of ZHR.

Theorem A.15 (ZHR is complete). For any ZHR diagrams D1 and D2, if J D1 K = J D2 K then

D1 is convertible into D2 using the rules of ZHR.

Proof. By Theorem A.1, it suffices to show that any ZHR diagram can be brought into normal

form. Lemmas A.10 and A.14 suffice to turn any generator into normal form. Corollary A.7 lets

us turn any tensor product of generators into a normal form and Corollary A.13 lets us normalise

any arbitrary wiring.

B ZHR’s relationship to RING

In this appendix we prove completeness for the set of rules for ring presented in §4.4.3, using a

translation of the complete set of rules for ZHR given in Figure 4.8. The translation was provided

in Figure 4.9.
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B.1 Translations of generators of RING to ZH and back

• Translation of

. . .

. . .

from ringR to ZH and back:

u

w
v

u

w
v

. . .

. . .

}

�
~

ZH

}

�
~

ring

=

u

w
v

. . .

. . .

}

�
~

ring

=

. . .

. . .

(16)

• Translation of from ringR to ZH and back:

u

w
v

u

w
v

}

�
~

ZH

}

�
~

ring

=

u

wwwwwwww
v

¬
1
2

2

1
2

1
2

}

��������
~

ring

=

1

1

−2

1

1

−2

1

−2

1

1

1
− 1

2

− 1
2

− 1
2

− 1
2

(17)

• Translation of
a

from ringR to ZH and back:

t t

a

|

ZH

|

ring

=

t

a

|

ring

=

a− 1 1

(18)

B.2 Translation of the derived generators of ZH

. . .

. . .

n

m

7→
. . .

. . .

n

m

−1
2

¬ 7→

− 1
2

+1

−2

− 1
2

(19)
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B.3 Proof of completeness

In this section we prove the following:

Theorem 4.40 (ring is complete, via ZHR). The rules of §4.4.3 are complete for the graphical

calculus ringR, where R is a commutative ring with a half.

We will show that the rules of §4.4.3, here called ring2
R, can derive all of the equations

J L = R Kring where L = R is a rule of ZH, and all the equations J J g KZH K
ring

= g where g is a

generator of ring. First we will show some useful intermediate results.

Proposition B.1. In ring2
R we can ‘cycle’ the gates of two adjacent Hadamard maps, and call

this rule H ′

1

-2

1

1

-2

1

=
H′

1

-2

1

1

-2

1

=
H′

1

-2

1

1

1

-2

(H’)

Proof. We simultaneously pre- and post-compose both sides of rule H with the elements 1

and −1 for the first equality, then −2 and − 1
2

for the second.

Proposition B.2. We can also find another useful representation of the Hadamard gate, and

call this rule H ′′

=
1

-2

1

=
H′′

-1

− 1
2

-1

(H”)

Proof. We apply the right hand side of this rule (minus the scalar) to both sides of rule H, then

cancel terms using +a and S.

Proposition B.3. The following derivation is helpful for the rules translated from ZH that

contain ¬ :

-1

1

-1

1

=¬ 1

-2

− 1
2

(¬)
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Proof.

1

-2

− 1
2

=
H, sc

1

-2

=
+, S -1 (20)

=
H′′ -1

−2

1

1

− 1
2

-1

-1

=
D

−2

1

− 1
2

-1

-1

-1

-1
=

S,+a

2

1

− 1
2

-1

-2 (21)

=
D

2

1

-1

− 1
2

1

=
S

-1

1

-1

1
(22)

Corollary B.4. The derived generator a obeys the following rules that follow immediately

from +, +a and D, so we will use these labels when referring to these rules:

a

b

=
+ a+ b

a

b

=
+a a+ b

a

b

=
D

ab

a
(23)

Lemma B.5. ring2
R ` F (ZHZS1), i.e.

ring2
R `

. . .

. . .

m

n

. . .

n

m

. . .

= (24)

Proof. This follows immediately from the rule S1
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Lemma B.6. ring2
R ` F (ZHHS1), i.e.

ring2
R `

. . .

. . .

. . .

. . .

=

1 1

-2

1

1

a− 1

1 1

1 1

a− 1

1 1

(25)

Proof.

. . .

. . .
1 1

-2

1

1

-2

1

1

a− 1

1 1

=
S

. . .

. . .
1 1

1

1

-2

1

1

a− 1

1 1

-2

=
H′

. . .

. . .
1 1

a− 1

1 1

1

1

-2

1

1

-2

=
H

. . .

. . .
1 1

a− 1

1 1

=
S

. . .

. . .
1 1

a− 1

1 1

(26)

Proposition B.7. ring2
R ` F (ZHZS2), i.e.

ring2
R ` == (27)

Proof.

=
S

=
×1

(28)
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Proposition B.8. ring2
R ` F (ZHHS2), i.e.

ring2
R ` = (29)

Proof. This is the same as rule H

Proposition B.9. ring2
R ` F (ZHBA1), i.e.

ring2
R `

· · ·

· · ·

=

· · ·

− 1
2

− 1
2

− 1
2

· · ·

· · ·

· · ·

(30)

Proof. This is the same as rule BA1

Proposition B.10. ring2
R ` F (ZHBA2), i.e.

ring2
R `

. . .

. . .
. . .

. . .

−2

=

−2 −2

. . .. . .
1

1 1

1 1 1 1

11

− 1
2 (31)

Proof.

. . .

. . .

−2

1

1 1

− 1
2 =

S

. . .

. . .

1

1 1

− 1
2

−2

1

1

−2

=
+a

. . .

. . .

1

1 1

− 1
2

−2

1

1

−2

1

-1

(32)
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=
H

. . .

. . .

1 1

− 1
2 −1

=
sc,BA2

. . .

. . .

. . .. . .

1 1 1 1

-1 -1

-1 -1

1 1

=
+a, S

. . .

. . .

-2 -2

. . .. . .

1 1 1 1

1 1

(33)

Lemma B.11. ring2
R ` F (ZHM ), i.e.

ring2
R `

a b

=

(a× b)− 1

1 (34)

Proof.

a b

=
× a× b

=
+

(a× b)− 1

1 (35)

Lemma B.12. ring2
R ` F (ZHU ), i.e.

ring2
R `

0

1
=

1

(36)

Proof. This is an instance of rule +
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Lemma B.13. ring2
R ` equation (17) (the re-translation of the + generator), i.e.

ring2
R ` =

1

1

−2

1

1

−2

1

−2

1

1

1
− 1

2

− 1
2

− 1
2

− 1
2

(37)

Proof.

1

1

−2

1

1

−2

1

−2

1

1

1
− 1

2

− 1
2

− 1
2

− 1
2

=
S,+a,+0

1

1

1

1

1

−2

1

1

1
− 1

2

− 1
2

− 1
2

− 1
2

−2 −2

1 1

-1 -1

(38)
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=
H, sc 1

1 1

1

−2

1

1

− 1
2

-1 -1

=
+, S 1

1 1

1

−2

1

2

− 1
2

-1 -1

=
S

1

1 1

-1
1

2 − 1
2

-1 -1

(39)

=
H′′, sc

1

1 1

-1
1

2

-1 -1

-1

-1

− 1
2

-1

-1

− 1
2

=
a

1
-1

1

2

-1 -1

-1

− 1
2

-1

− 1
2

=
S 1

− 1
2

− 1
2

-1
1

2

-1 -1

-1 -1

=
+′

(40)

Lemma B.14. ring2
R ` F (ZHA), i.e.

ring2
R `

a− 1 b− 1

=

a+b
2
− 1

1 1

1
1 1

−2

1

− 1
2

(41)
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Proof.

a− 1 b− 1

1 1

1 1

−2

1

− 1
2

=
H, sc

a− 1 b− 1

1 1

1 1

−2

1

=
+a, S a− 1 b− 1

-1

1 1

1 1

(42)

=
S

-1

1 1

1 1

a− 1 b− 1

=
+

-1

1 1

1 1

a b

−1 −1

(43)

=
H′′

-1

1 1

1 1

a b

−1 −1

-1

− 1
2

-1

-1

− 1
2

-1

=
+a,+0

-1

1 1

a b

−1 −1− 1
2

-1

− 1
2

-1

=
S − 1

2
− 1

2

2

-1

1 1

a b

−1 −1-1-1

1
2

(44)

=
+′

a b

1
2

=
+, S

a+b
2

=
+a

RHS (45)
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Lemma B.15. ring2
R ` F (ZHI), i.e.

ring2
R `

a− 1 a− 1

=

a− 1

1 1 1

−2

1

1 1

− 1
2

(46)

Proof.

a− 1

a− 1

1

1

−2

1

1

1

− 1
2

=¬

a− 1

a− 1

1

1

1

1

-1

1

1

-1
=

+a,+0

a− 1

a− 1

1

1

1-1

1

1

(47)

=
D a− 1

a 1

1

1− a

1

=
I

a

(48)
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Lemma B.16. ring2
R ` F (ZHO), i.e.

ring2
R `

−2 −2

=

−2−2

1 1 1 1 1 11 1

1 1 1 1

1

−2
1

−2

− 1
2

− 1
2

(49)

Proof.

−2 −2

1 1 1 1

1 1
1

−2

− 1
2

=
H, sc

−2 −2

1 1 1 1

1 1

-1

1

-1

1
=

+, S

−2 −2

1 1 1

1 1

-1

1

1

(50)

=
H′′

1 1 1

1 1

1

-1

2 -2

=
D

1 1 1

1 1

1

-1

2 -2

=
D

2 -2

1 1 1

1 1

1

-1 (51)
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=
H′′

-2 -2

1 1 1

1 1

1

1

-1
=
D

-2 -2

1 1 1

1 1

1

1

-1

-1

1

=
D

-2 -2

1 1 1

1 1

1

1

-2

− 1
2

(52)

Lemma B.17. ring2
R ` equation (16) (the re-translation of the white spider) i.e.

ring2
R `

. . .

. . .

=

. . .

. . .

(53)

Proof. Nothing to prove

Lemma B.18. ring2
R ` equation (18) (the re-translation of the state a) i.e.

ring2
R `

a
=

a− 1 1

(54)

Proof. Instance of the + rule

We have shown that the ruleset ring2
R can prove all the translated rules of ZHR, and can

prove that generators equal their images under the translation into ZH and back. The ruleset

ring2
R is therefore complete for R any commutative ring with a half, because ZHR is complete

for any commutative ring with a half.

C Trigonometry proofs

In this appendix we prove the trigonometric proofs required in §6. We reproduce the side condi-

tions for the rule ZXEU ′ for reference here:

In rule (EU’), β1, β2, β3 and γ can be determined as follows: x+ := α1+α2

2 , x− :=

x−α2, z := − sin(x+) + i cos(x−) and z′ := cos(x+) − i sin(x−), then β1 = arg z +

arg z′, β2 = 2 arg(i + |z|
|z′| ), β3 = arg z − arg z′, γ = x+ − arg(z) + π−β2

2 where

by convention arg(0) := 0 and z′ = 0 =⇒ β2 = 0. (Figure 2, A Near-Minimal

Axiomatisation of ZX-Calculus for Pure Qubit Quantum Mechanics [Vil19])
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Lemma 6.43. The quaternion
(
π, x+z√

2

)
and its interactions with (α, z) and (α, x):(

π,
x+ z√

2

)
× (α, z) = (α, x)×

(
π,
x+ z√

2

)
(6.133)

(α, z)×
(
π,
x+ z√

2

)
=

(
π,
x+ z√

2

)
× (α, x) (6.134)(

π,
x+ z√

2

)
×
(
π,
x+ z√

2

)
= −1 (6.135)

Proof.

(π,
x+ z√

2
)× (α, z) =

1√
2

(i+ k)(cos
α

2
+ k sin

α

2
) (55)

=
1√
2

(− sin
α

2
+ i cos

α

2
− j sin

α

2
+ k cos

α

2
(56)

=
1√
2

(cos
α

2
+ i sin

α

2
)(i+ k) (57)

=(α, x)× (π,
x+ z√

2
) (58)

(π,
x+ z√

2
)× (α, x) =

1√
2

(i+ k)(cos
α

2
+ i sin

α

2
) (59)

=
1√
2

(− sin
α

2
+ i cos

α

2
+ j sin

α

2
+ k cos

α

2
(60)

=
1√
2

(cos
α

2
+ k sin

α

2
)(i+ k) (61)

=(α, z)× (π,
x+ z√

2
) (62)

(π,
x+ z√

2
)× (π,

x+ z√
2

) =
1√
2

(i+ k)
1√
2

(i+ k) (63)

=
1

2
(−1− j − 1 + j) = −1 (64)

Lemma 6.44. With the conditions of ZXEU ′ :

(α1, z)×H × (α2, z) = H × (β1, z)×H × (β2, z)×H × (β3, z)×H (6.136)

In the hope of easing legibility we separate out the real, i, j, and k components of quaternions

onto separate lines where suitable.

Proof.

RHS =H × (β1, z)×H × (β2, z)×H × (β3, z)×H (65)

=H ×H ×H ×H × (β1, x)× (β2, z)× (β3, x) (6.43) (66)
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=(β1, x)× (β2, z)× (β3, x) (6.43) (67)

=(cosβ1/2 + i sinβ1/2)× (68)

(cosβ2/2 + k sinβ2/2)×
(cosβ3/2 + i sinβ3/2)

=1(cosβ1/2 cosβ2/2 cosβ3/2− sinβ1/2 cosβ2/2 sinβ3/2)+ (69)

i(cosβ1/2 cosβ2/2 sinβ3/2 + sinβ1/2 cosβ2/2 cosβ3/2)+

j(cosβ1/2 sinβ2/2 sinβ3/2− sinβ1/2 sinβ2/2 cosβ3/2)+

k(cosβ1/2 sinβ2/2 cosβ3/2 + sinβ1/2 sinβ2/2 sinβ3/2)

=1(cosβ2/2)(cosβ1/2 cosβ3/2− sinβ1/2 sinβ3/2)+ (70)

i(cosβ2/2)(cosβ1/2 sinβ3/2 + sinβ1/2 cosβ3/2)+

j(sinβ2/2)(cosβ1/2 sinβ3/2− sinβ1/2 cosβ3/2)+

k(sinβ2/2)(cosβ1/2 cosβ3/2 + sinβ1/2 sinβ3/2)

=1(cosβ2/2)(cos
β1 + β3

2
)+ (71)

i(cosβ2/2)(sin
β1 + β3

2
)+

j(sinβ2/2)(sin
β3 − β1

2
)+

k(sinβ2/2)(cos
β1 − β3

2
)

=1(cosβ2/2)(cos arg z)+ (72)

i(cosβ2/2)(sin arg z)+

j(sinβ2/2)(− sin arg z′)+

k(sinβ2/2)(cos arg z′)

(73)

Using properties of arguments and moduli we then show the following:

cos arg(a+ ib) =a/|a+ ib| (74)

sin arg(a+ ib) =b/|a+ ib| (75)

|z|2 = sin(x+)2 + cos(x−)2 (76)

|z′|2 = sin(x−)2 + cos(x+)2 (77)

|z|2 + |z′|2 = cos2 x+ + sin2 x+ + cos2 x− + sin2 x− = 2 (78)

(79)

cos arg z =<(z)/|z| = − sin(α1 + α2)/2

|z|
(80)

sin arg z ==(z)/|z| = cos(α1 − α2)/2

|z|
(81)

cos arg z′ =<(z′)/|z′| = cos(α1 + α2)/2

|z′|
(82)
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sin arg z′ ==(z′)/|z′| = − sin(α1 − α2)/2

|z′|
(83)

cos(β2/2) = cos arg(i+ |z|/|z′|) = cos arg(|z′|i+ |z|) = |z|/
√

2 (84)

sin(β2/2) = sin arg(i+ |z|/|z′|) = sin arg(|z′|i+ |z|) = |z′|/
√

2 (85)

And now substitute these values into our expression for the right hand side:

RHS =1(cosβ2/2)(cos arg z)+ (86)

i(cosβ2/2)(sin arg z)+

j(sinβ2/2)(− sin arg z′)+

k(sinβ2/2)(cos arg z′)

=1(|z|/
√

2)(
− sin(α1 + α2)/2

|z|
)+ (87)

i(|z|/
√

2)(
cos(α1 − α2)/2

|z|
)+

j(|z′|/
√

2)(−− sin(α1 − α2)/2

|z′|
)+

k(|z′|/
√

2)(
cos(α1 + α2)/2

|z′|
)

=(
1√
2

)× (88)

(−1(sin(α1 + α2)/2)+

i(cos(α1 − α2)/2)+

j(sin(α1 − α2)/2)+

k(cos(α1 + α2)/2))

(89)

And now for the left hand side:

LHS =(α1, z)×H × (α2, z) (90)

=
1√
2

(cosα1 + k sinα1)(i+ k)(cosα2 + k sinα2) (91)

=
1√
2

(i cosα1 cosα2 − j cosα1 sinα2 + k cosα1 cosα2 − cosα1 sinα2+ (92)

j sinα1 cosα2 + i sinα1 sinα2 − sinα1 cosα2 − k sinα1 sinα2)

=
1√
2

(−(cosα1 sinα2 + sinα1 cosα2) (93)

i(sinα1 sinα2 + cosα1α2)+

j(sinα1 cosα2 − cosα1 sinα2)+

k(cosα1 cosα2 − sinα1 sinα2))

211



=(
1√
2

)× (94)

(−1(sin(α1 + α2)/2)+

i(cos(α1 − α2)/2)+

j(sin(α1 − α2)/2)+

k(cos(α1 + α2)/2))

Proposition C.1. The map φ, given by

φ : (Unit Quaternions,×)→ (2× 2 complex matrices, ◦) (95)

φ : qw + iqx + jqy + kqz 7→

(
qw − iqz qy − iqx
−qy − iqx qw + iqz

)
(96)

is a group homomorphism with trivial kernel.

Proof. Write q1 as w + x+ y + z and q2 as w′ + x′ + y′ + z′:

• Show that φ(1) =

(
1 0

0 1

)
:

φ(1) =

(
1− i0 0− i0
−0− i0 1 + i0

)
(97)

=

(
1 0

0 1

)
(98)

• Show that φ(q1)φ(q2) = φ(q1 × q2):

LHS =

(
w − iz y − ix
−y − ix w + iz

)
◦

(
w′ − iz′ y′ − ix′

−y′ − ix′ w′ + iz′

)
(99)

LHS(1,1) =((ww′ − zz′ − yy′ − xx′)− i(wz′ − xy′ + yx′ + w′z)) (100)

LHS(1,2) =(((w − iz)(y′ − ix′) + (y − ix)(w′ + iz′)) (101)

=(wy′ − zx′ + yw′ + xz′)− i(wx′ + xw′ − yz′ + zy′) (102)

LHS(2,1) =((−y − ix)(w′ − iz′) + (w + iz)(−y′ − ix′)) (103)

=− (yw′ + xz′ + wy′ − zx′)− i(wx′ + xw′ − yz′ + zy′) (104)

LHS(2,2) =((−y − ix)(y′ − ix′) + (w + iz)(w′ + iz′)) (105)

=(ww′ − xx′ − yy′ − zz′) + i(wz′ − xy′ + yx′ + zw′) (106)

RHS(1,1) =(ww′ − xx′ − yy′ − zz′)− i(wz′ + xy′ − yx′ + zw′) (107)

RHS(1,2) =(wy′ − xz′ + yw′) + zx′ − i(wx′ + xw′ + yz′ − zy′) (108)

RHS(2,1) =− (wy′ − xz′ + yw′) + zx′)− i(wx′ + xw′ + yz′ − zy′) (109)

RHS(2,2) =(ww′ − xx′ − yy′ − zz′) + i(wz′ + xy′ − yx′ + zw′) (110)
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• Show that φ(q) =

(
1 0

0 1

)
=⇒ q = 1: Looking at the matrix entries individually:

1 = qw − iqz (111)

=⇒ qw = 1 (112)

=⇒ qz = 0 (113)

0 =− qy − iqx (114)

=⇒ qy = 0 (115)

=⇒ qx = 0 (116)

∴ q =1 (117)

D Proof of the n-joined ZH spider law

Lemma 7.4 (n-joined ZH spider law). In the ZH calculus:

a

b

n. . .

. . .

. . .

= 1 + (−1
2

)n(b− 1)(a− 1) 2n

. . .

. . .

a, b ∈ C \ {1}
n > 0

(7.4)

Proof. Aiming to proceed by induction we first note the base case where n = 1:

a

b

· · ·

· · ·

1− (a− 1)(b− 1)/2

· · ·

· · ·

= 2 (118)

This is shown by checking soundness by hand. For the induction step we will need the

following lemma:

a =

. . .

. . .

(3− a)/2

. . .

. . .

2 (119)

Which again can be shown to be sound by direct computation. For the induction step we

assume the original statement is true for n− 1, n > 1, we then add another joining Hadamard.

213



a

· · ·

· · ·

a

n−1· · · = 1 + (−1
2

)n−1(b− 1)(a− 1)

· · ·

· · ·

2n−1

(120)

(3− 1− (−1
2

)n−1(b− 1)(a− 1))/2

· · ·

· · ·

2 2n−1

= 1 + (−1
2

)n(b− 1)(a− 1)

· · ·

· · ·

2n

(121)

E Worked example of !-box removal

In this appendix we give a longer example of !-box removal. Consider the following ZHC equation,

which is not sound, but is suitable for demonstrating the principle of !-box removal.

X -X

=

X -XX -X

=

X -X

(122)

We first need to work out the join, which we do by counting the wires entering the !-boxes.

21 + 20 = 3 (123)

By Theorem 8.51 we need to check d = {0, 1, 2, 3} instances of the !-box. So in order to verify:

X -X

=

X -XX -X

=

X -X

(124)

We just need to verify these equations:
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X

=

XX

=

X

,

X -X

=

X -XX -X

=

X

(125)

X -X -X

=

X -X -XX -X -X

=

X -X -X

,

X -X -X -X

=

X -X -X -XX -X -X -X

=

X -X -X -X

(126)

Note that these equations contain no !-boxes.
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