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Abstract

We consider the possibility that the horizon area is expressed by the general area
spectrum in loop quantum gravity and calculate the black hole entropy by counting
the degrees of freedom in spin-network states related to its area. Although the general
area spectrum has a complex expression, we succeeded in obtaining the result that the
black hole entropy is proportional to its area as in previous works where the simplified
area formula has been used. This gives new values for the Barbero-Immirzi parameter
(y=0.5802--- or 0.7847 - --) which are larger than that of previous works.

1 Introduction

Statistical mechanics in a self-gravitating system is quite different from that without gravity. For example,
particles in the box have maximal entropy when they spread out uniformly in the box if gravity is not
taken into account. On the other hand, if particles are self-gravitating, we can suppose that clusters
appear as an entropically favorable state. Then, if the pressure of particles can be neglected, it is likely
that a black hole appears as a maximal entropy state. Thus, black hole entropy would be the key for
understanding statistics in a self-gravitating system.

One of the most mysterious things about black holes is their entropy S which is not proportional to
its volume but to its horizon area A. This was first pointed out related to the first law of black hole
thermodynamics. The famous relation S = A/4 has been established by the discovery of the Hawking
radiation. Recently, its statistical origin has been discussed in the candidate theories of quantum gravity,
such as string theory, or loop quantum gravity (LQG) [1], etc. It has been discussed that LQG can
describe its statistical origin independent of black hole species because of its background independent
formulation [2]. For this reason, we concentrate on LQG here.

Quantum states in LQG are described by spin-network [3], and basic ingredients of the spin-network
are edges, which are lines labeled by spin j(j = 0,1/2,1,3/2, - ) reflecting the SU(2) nature of the gauge
group, and vertices which are intersections between edges. For three edges having spin j1, j2, and js that
merge at an arbitrary vertex, we have following conditions.

Jitiz+iseN, (1)
Ji £ jj + jr, (i, 7,k different from each other.). (2)
These conditions guarantee the gauge invariance of the spin-network.

Using this formalism, general expressions for the spectrum of the area and the volume operators can
be derived [4, 5]. For example, the area spectrum A; is

Ay = 4y 300276 + 1) + 220G+ 1) - GG 1) (3)

where v is the Barbero-Immirzi parameter related to an ambiguity in the choice of canonically conjugate
variables. The sum is added up all intersections between a surface and edges. Here, the indices u, d, and
t mean edges upper side, down side, and tangential to the surface, respectively (We can determine which
side is upper or down side arbitrarily).
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In [1], it was proposed that black hole entropy is obtained by counting the number of degrees of
freedom about j when we fix the horizon area where a simplified area formula is used. This simplified
area formula is obtained by assuming that there are no tangential edges on black hole horizon, that is
ji = 0. We obtain j¥ = jfl := j; by using the condition (2). Then, we consider the degrees of freedom
about j satisfying

Ay =879 Y VG 1) = A. (4)

The standard procedure is to impose the Bekenstein-Hawking entropy-area law S = A/4 for large black
holes in order to fix the value of . Ashtekar et al. in [2] extended this idea using the isolated horizon
framework (ABCK framework) [6]. Error in counting in this original work has been corrected in [7, §].
Similar works appear related to how to count the number of freedom in [9, 10].

However, should we restrict to the simplified area spectrum (4) ? Thiemann in [11] used the boundary
condition that there is no other side of the horizon, i.e., jfi = 0. Then, by using (2), we obtain j¥ = jf := j;
which gives A; = 4wy ) . +/Ji(ji +1). Based on this proposal, the number counting has been performed
in [12] which gives v = 0.323- - -.

Another interesting possibility is to use (3) motivated by the hypothesis that a black hole is a maximal
entropy state in a self-gravitating system. If we agree that the origin of the black hole entropy is related
to degrees of freedom in j (or m = —j,—j + 1,--- ,j considered in [2]), it is evident that (3) can gain
larger number of states than (4) for the fixed area. See, also [13] which also discuss using (3) as expressing
the horizon area. Of course, it is speculative and the typical objection to the idea is that since the black
hole evaporates, it is not the maximal entropy state. However, the black hole we consider is the limit
A — oo where the evaporation process can be negligible. The second objection is that if we require the
entropy-area law S = A/4, the black hole entropy does not depend on what types of area formula we use,
S0 it is not relevant to the above hypothesis. This is a delicate question to be answered carefully. From
the view point that the Barbero-Immirzi parameter is determined a priori, the formula S = A/4 only
provides us the method to know the value of «. If this is the case, using (3) would enhance the entropy.
Therefore, we concentrate on evaluating the number of states using (3) by adopting this view point. To
answer whether this view point is true or not, we need independent discussion to know the value of
through, e.g., cosmology [14] or quasinormal modes of black holes [15, 16, 17].

Our strategy is as follows [18]. Based on the observation that the value of v in [2] is qualitatively same
as that inferred in [1] which counts the degrees of freedom of j without imposing the horizon conditions
for the case (4), we restrict counting the corresponding j freedom for (3) as a first step. We can perform
it by carefully reanalyzing the case (4). This paper is organized as follows. In section 2, we count the
degrees of freedom for (3). In section 3, we mention concluding remarks.

2 Consideration of the general area spectrum

In the case for (4), horizon conditions does not affect entropy formula. Therefore in the case for (3) we
consider only degrees of freedom about area. In this case, we also denote number of states as N(A) which
is defined as

N
—, 0# jf €N, jg‘,jfl,jf should satisfy (1) and (2).

N(4) = {(ﬁ,jf,j{,--- s d u)l0 # 5551 € 5

) V2IEGE 1) + 208G+ 1) — LG+ 1) = 4;47} : (5)

K3

We adopt the condition j¢ € N motivated by the ABCK framework where the “classical horizon” is
described by U(1) connection. This is, of course, not verified in the present situation and should be
reconsidered in future.
Then, we perform counting as follows. If we use the condition j* € N, we have j* + j% :=n € N by
(1). If we fix n, we can classify the possible j*, j¢, j* as follows, which is one of the most important parts
n

in this paper. First, we have (j%, j%) = (5 £35,5 F 3) (double-sign corresponds) for 0 < s < n, s € N to



satisfy (2). Then, for each s, possible value of j! is j' = 5,5+ 1,--- ,n to satisfy (2). For any eigenvalue
z = 4myy/254 (5 + 1) + 259(jd 4+ 1) — jL(jL + 1) (0 < x £ A) of the area operator, we have

(j17"' 7jn)€N(A—:L‘):>(j1,--~ 7jnajm)eN(A)7 (6)

where we used the abbreviation as j; = (5%, ¢, j¢). We have (j1,- - ,jn,de) # (15 s dn,dar), if Jo 7 juor-
Therefore, as for the case in (4), if we consider all 0 < x £ A and (j1,- - ,jn) € N(A—2x), (1, ,dn,Jz)
form the entire set N(A).

Then, if we use the notation j* = 245, = 25 j' = ¢, we have z(n, s,t) = 4my\/n? + 2n + s — t(t + 1)
and

n

Ny =3 [Z S 2N (A a(n,5,8) + 3 N(A— 2,5 =0, t))] , (7)

n=1 Ls=1 t=s t=0

where the factor 2 in front of N(A — z(n,s,t)) for s # 0 corresponds to the fact that same x(n,s,t)

A
appears twice for the exchange of j* and j¢. For A — oo, by assuming N(A) = Ce s , where C' is a
constant and substituting to the recursion relation (7), we obtain the beautiful formula as a generalization
of the case (4) as,

1=> [Z > 2exp(—yma(n, 5,1) /47) + Y exp(—yua(n, s =0, t)/47)] . (8)

n=1 Ls=1 t=s t=0

If we require S = A/4, we have v = vy = 0.5802- - -. This means that even if we use (3) as the horizon
spectrum, we can reproduce the entropy formula S = A/4 by adjusting the Barbero-Immirzi parameter.
This is nontrivial and is our main result in this paper.

Let us turn back to our assumptions. Although we obtained v satisfying S = A/4 for the case (3),
there may be a criticism that the result is underestimated by only counting j freedom. To answer it, we
consider the following counting. When the simplified area formula was used, there is an proposal that
we should count not only j but also m = —j,—j + 1,--- ,j freedom based on the ABCK framework [9].
Although it is nontrivial whether this framework can be extended to the general area formula, let us count
also the m freedom for each j* to maximize the estimate. Counting only m related to j* is reasonable
from the point of view of the entanglement entropy or the holography principle.

If we notice that there are (n+s+ 1) and (n— s+ 1) freedoms for m (total 2(n+ 1)) corresponding to
(5%, 74 = (5+3,5—3)and (§ — 3,5 + 3), respectively, the factor 2 in the first term of the right-hand
side of (8) is replaced by 2(n 4 1) in this case. For s = 0, the factor 1 in the second term is replaced by
(n+1). Then, we obtain

n n n

1= DD 2(n+ Dexp(—yua(n,s,t)/4y) + Y (n+ 1) exp(—yaz(n,s = 0,6)/47) |, 9)

s=1 t=s t=0

which gives v = vp; = 0.7847---. Thus, we confirm that the black hole entropy is proportional to the
area again. Naively speaking, we expect that there is no qualitative deviation from these two values of
even if we take into account the ABCK framework for (3) appropriately.

3 Conclusion and Discussion

In this paper, we obtained the black hole entropy by considering the general area formula. It is surprising
that we succeeded in obtaining the black hole entropy proportional to the horizon area even in this case.
Then, it is natural to ask what the area formula should be in describing the horizon area. There are
many possibilities examining the area spectrum. For example, we have not yet established the black
hole thermodynamics in LQG which is one of the most important topics to be investigated. There is an
idea that black hole evaporation process should also be described by using the general area formula [13].
Therefore, whether we can establish the generalized second law of black hole thermodynamics might be
one of the criteria in judging which area formula is appropriate. For this purpose, it is desirable to extend



the ABCK framework for the general area formula since the exact counting is required. Though we do
not take care of the topology of the horizon, discussing the difference caused by the topology is important
as considered for the simplified area formula [19].

Of course, as we mentioned in the introduction, we should check the value of the Barbero-Immirzi
parameter in several independent discussions. Therefore, we should also take care of cosmology [14] and
quasinormal modes of black holes [15, 16, 17] in determining the Barbero-Immirzi parameter. Confirming
LQG in many independent methods would be the holy grail of the theory.
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