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Abstract – We create quarks from baryons in stead of constituting baryons from quarks. The
quantum fields of QCD are generated via the exterior derivative (momentum form) of baryon wave
functions on an intrinsic configuration space, the Lie group U(3). Local gauge transformations
correspond to coordinate translations in the intrinsic space. A proton spin structure function and
a proton magnetic moment are derived. We show how the spectrum of unflavoured baryons, the
N and Delta resonances, can be understood from a mass Hamiltonian on the intrinsic space and
note how our model resolves the problem of colour confinement. We calculate an approximate
value for the relative neutron-to-proton mass shift and give an exact value for the neutron mass.
We predict neutral charge singlets that may be interpreted as neutral pentaquarks at LHCb.
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Introduction. – Nature, at the present level of our
understanding, exhibits degrees of freedom that we call
quarks. Quarks are described as fractionally charged spin-
one-half particles of different kinds, labelled by flavour and
colour. The constituent quark model for baryons like the
proton and the neutron carries with it for many years a
missing resonance problem [1,2]: many more resonances
are predicted than observed1. Quantum chromodynam-
ics [1] carries with it a confinement problem: colour de-
grees of freedom are confined. Confinement has not yet
been shown to follow from the QCD Lagrangian density.
In the present work we try to solve these two seemingly in-
dependent problems by a common idea: we consider colour
to live in a compact, intrinsic space, the Lie group U(3)
—much like a generalized spin variable with QCD as a pro-
jection. Compactness confines colour per construction.

In 1925 George Uhlenbeck and Samuel Goudsmit [4] re-
alised that the intrinsic angular momentum, the spin, of

1The constituent quark model was successful in predicting, e.g.,
the Omega minus baryon at 1685 MeV [3]. Today however, the mul-
tiplet idea is mostly used post festum to label resonances when they
are already discovered. The present model uses a compact configu-
ration space which gives a periodic potential that lifts higher lying
levels out of the “resonance domain”.

the electron represents a new, intrinsic, degree of freedom.
We generalise this insight to cover also colour, flavour
and electric charge. This is possible by combining the
strong and electroweak interactions into a description of
baryons as stationary states on an intrinsic configuration
space, the Lie group U(3). This space contains all three
gauge groups of the standard model as subspaces which is
a first motivation to choose it as a configuration space for
baryons. It is compact and has nine generators equivalent
to the nine kinematic generators in the laboratory space:
momentum, angular momentum and Laplace-Runge-Lenz
generators [5] which could explain its origin. Baryons
feel both the strong interactions with SU(3) symmetry
and electroweak interactions with U(1) × SU(2) symme-
try. We show that coordinate translations in the intrinsic
space equate local gauge transformations in the labora-
tory space. We also show that the fundamental fields of
quantum chromodynamics, quarks and gluons, are gen-
erated by the exterior derivative, the momentum form,
on the intrinsic wave function. To give an intuitive pic-
ture, imagine playing “ducks and drakes” where a stone
thrown at a small glancing angle scatters on a water sur-
face and creates ripples on the surface where it hits. The
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ripple patterns are quantised to fit the compact intrinsic
space for mass eigenstates. The three Abelian momen-
tum generators excite toroidal orbits which we interpret
as colour degrees of freedom. The off-toroidal generators
excite non-commuting degrees of freedom taking care of
spin and flavour via off-toroidal derivatives in the Lapla-
cian on U(3).

The quarks in the present model are not fundamen-
tal [6] but share gauge groups with standard model quarks.
Quarks are intrinsic orbits in the baryon excited in scat-
tering by flavour generators which use quantum numbers
for quark charge and baryon hypercharge as coefficients
on their colour generators. The quark masses may be re-
lated to the curvature of such orbits when embedded in
laboratory space, see footnote 3.

The creation of unit electric charge, e.g., in the n → p
decay is interpreted topologically to originate in period
doublings in the intrinsic nucleon wave function. The
decay relates the strong and electroweak sectors to yield
equations for the electroweak energy scale and the Higgs
mass in closed forms [7] and relates the electroweak mix-
ing angle θW and the Cabibbo angle θC via quark flavour
generators Tu, Td and Ts to have sin2 θW ≈ 1−Tr T †

uTd =
2/9, | sin θC | ≈ |Tr T †

uTs| = 2/9 [8]. The u, d flavour gen-
erators also enter our treatment of the electroweak sector
via a slight change in the electroweak energy scale v =
vSM/

√|Vud|. It may be a matter of definition whether this
should be ascribed to a change in the electroweak interac-
tions of quarks. We prefer to see it as a shift in interpreta-
tion by redefining electroweak coupling contants [8] even
though signal strengths μHV V /μHV V,SM = 1

|Vud| = 1.03
will distinguish the viewpoints [7]. In the present work,
however, we focus our attention on the strong interactions.

Baryons as intrinsic configuration states. –
Baryons are considered as stationary states on an intrin-
sic configuration space, the Lie group U(3). We identify
baryon masses as the energy eigenvalues of [9]

�c

a

[
−1

2
Δ +

1
2
d2(e, u)

]
Ψ(u) = E0Ψ(u), u ∈ U(3),

(1)
with mc2 = E0. The length scale a is related to the clas-
sical electron radius re = e2

4πε0mec2 [10,11] by the expres-
sion re = πa [9] from mapping of the intrinsic baryon
dynamics to the laboratory space. The factor π reflects the
toroidal shape of the intrinsic configuration space U(3).
The baryonic energy scale Λ = �c/a = π

αmec
2 is close

to the scale of non-pertubative quantum chromodynam-
ics Λ(5)

MS
≈ 210(14)MeV [12]. The Hamiltonian in (1) is

radically reinterpreted from lattice gauge theory [13] with
a potential inspired by [14]. The unitary configuration
variable u ∈ U(3) now concerns the full baryon configu-
ration and has eigenvalues eiθj , j = 1, 2, 3 given by three
dynamical eigenangles θj ∈ R which we interpret as colour
degrees of freedom, confined per construction by the com-
pactness of U(3). These eigenangles can be used for a

polar decomposition of the Laplacian [15]

Δ =
3∑

j=1

1
J2

∂

∂θj
J2 ∂

∂θj
−

3∑
1≤i<j≤3

k �=i,j

(S2
k +M2

k )/�2

8 sin2 1
2 (θi − θj)

,

(2)
where [16]

J =
3∏

1≤i<j≤3

2 sin
1
2
(θi − θj) (3)

and the generators Sk and Mk take care of spin and
flavour, respectively. The potential in (1) is constructed
from the shortest geodesic d(e, u) from the neutral element
e, the origo in the configuration space. The potential is
periodic in the eigenangles and depends only on these [17]

1
2
d2(e, u) =

1
2

Tr χ2 =
3∑

j=1

w(θj), u = eiχ, (4)

where the generator

χ = θjTj + (αjSj + βjMj)/�, iTj =
∂

∂θj
; αj , βj ∈ R

(5)
and (see fig. 1)

w(θ) =
1
2
(θ−n·2π)2, θ ∈ [(2n−1)π, (2n+1)π], n ∈ Z.

(6)
The periodicity of the potential reflects the compactness
of the configuration space. We see that (1) with (2) in-
serted is analogous to solving the hydrogen atom [18].
Now however, there are three “radial” degrees of free-
dom, the three eigenangles θj that span the Abelian (max-
imal) torus (7) of U(3). The independence of the potential
upon the remaining six dynamical variables αj , βj follows
from the invariance of the trace on similarity operations
u → v−1uv, v ∈ U(3), in particular the ones that diago-
nalise u, thus

u ∼ v−1uv =

⎛
⎝ eiθ1

eiθ2

eiθ3

⎞
⎠ . (7)

The length scale a in (1) can be used to map from the lab-
oratory space to the intrinsic space by the identification,
see fig. 1,

θj = xj/a. (8)

We imagine the mapping in (8) to take place in scatter-
ing experiments where the intrinsic degrees of freedom are
excited by the nine kinematic generators from laboratory
space, namely momentum

pj =
−i�
a

∂

∂θj
=

�

a
Tj , (9)

angular momentum, e.g.,

S1 = aθ2p3 − aθ3p2 = �λ7, (10)
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Fig. 1: Trace potential (6) in dynamical variables θ and map-
ping into toroidal eigenangles θj = xj/a, j = 1, 2, 3 from lab-
oratory space. The length scale a is taken from the classical
electron radius re [10,11] as πa = re [9]. Figure elaborated
from [19].

and Laplace-Runge-Lenz operators, e.g.,

M1/� = θ2θ3 +
a2

�2 p2p3 = λ6. (11)

Here, the lambdas are the Gell-Mann generators [5].
The quantisation inherent in (9) generalises to all of

the configuration space by the global concepts of left (or
right) invariant coordinate fields ∂j and corresponding co-
ordinate forms dθj [20]

∂j ≡ ∂

∂θ
ueθiTj |θ=0 = uiTj, (12)[

θi,
∂

∂θj
|e
]

= δij → dθi(∂j) = δij .

This generalises the well-known commutation relations

[aθi, pj] = −i�δij . (13)

From the coordinate representations [5] in (10) and (11)

[Mi,Mj] = [Si, Sj ] = −i�εijkSk. (14)

Note the minus sign for the spin commutators as in body
fixed intrinsic coordinate systems in nuclear physics [21].

Quarks and gluons as scattering states. – In solv-
ing (1) we introduce the measure-scaled wave function [9]

Φ(u) ≡ JΨ(u) ≡ R(θ1, θ2, θ3)Υ(α1, α2, α3, β1, β2, β3).
(15)

The two functions R and Υ are analogues of the radial
wave function and the spherical harmonics used in describ-
ing the Euclidean three-dimensional case of the hydrogen
atom [18].

We consider quarks and gluons as scattering states on
baryons. We create their corresponding fields ψj and G(k)

via the momentum forms dR and dΦ acting on the toroidal
generators iTj and the basis iλk of the adjoint represen-
tation of the su(3) algebra, respectively,

ψj(u) = dRu(∂j), G(k)(u) = dΦu(∂k). (16)

Here
∂k = uitk, k = 1, 2, . . . 8 (17)

are left invariant coordinate fields corresponding to the
gluon field generators tk = λk/2 [1], six of which are pro-
portional to Sj and Mj and the remaining two are diago-
nal linear combinations of the Tj ’s. The momentum form
becomes “operational” by derivation of Φ along the direc-
tion given by the generator. For a generator Z we have
the general definition of a derivation as

Z[Φ](u) ≡ dΦu(Z) =
d
dt

Φ(uetZ)|t=0, Z ∈ u(3), (18)

where u(3) is the algebra of U(3).
From (16) applied to the ground state of (1) we have

derived exemplar parton distribution functions for the va-
lence u and d quarks of the proton [9] and we have recently
derived exemplar energy-momentum tensor components of
the proton too [22]. We add here as a further motivation
a proton spin structure function and the proton magnetic
moment. For an approximate calculation we use a Slater
determinant R with period doubling in the eigenangles in-
terpreted as a topological origin of the proton’s electric
charge [9]

R =
1
N

∣∣∣∣∣∣∣∣
1 1 1

sin
1
2
θ1 sin

1
2
θ2 sin

1
2
θ3

cos θ1 cos θ2 cos θ3

∣∣∣∣∣∣∣∣
. (19)

Here N with N2 = 3
2π

3 − 44
3 π normalises R on θj ∈ [0, π].

The quark distribution functions derived in [9] are ob-
tained along one-parameter curves generated by the mo-
mentum form dR applied to flavour generators Tq (23)
while summing over colours and squaring to get prob-
ability distributions for the parton momentum fraction
x ∈ [0, 1]

fq(x)dx =

⎛
⎝ 3∑

j=1

dRu=exp(θiTq)(iTj)

⎞
⎠

2

dθ. (20)

Here θ = πξ and the boost variable ξ is [9]

ξ ≡ E − E0

E =
2 − 2x
2 − x

, E0 = mc2, (21)

from impacting a massless energy momentum q = (E −
E0,q) on a parton xP acquiring mass xE in a proton at
rest (E0,0), i.e.,

(xPμ + qμ)(xPμ + qμ) = x2E2. (22)

For u, d, s quarks we use, respectively,

Tu =
2
3
T1 −T3, Td = −1

3
T1 −T3, Ts = −1

3
T1, (23)

to get the unpolarised proton spin structure function av-
eraging over three colours [19] (fs(x) ≡ 0 for R in (19))

gp
1(x) =

1
2

[
e2u

1
3
fu(x) + e2d

1
3
fd(x)

]
. (24)
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Fig. 2: Spin structure function of the proton (solid) from an ex-
emplar calculation (24) based on flavour quarks derived from an
intrinsic U(3) configuration overlaid on experimental data [12]
spanning four orders of magnitude. Figure taken from [8].

This represents rather well the experimentally extracted
values [12] in fig. 2 without fitting parameters.

From the constituent quark model, we have an expres-
sion for the proton magnetic moment [23]

μp =
4
3
μu − 1

3
μd, μq =

eq�/2
4πε0mq

. (25)

We use [19]

mp = 2mu +md,
mu

md
=

∫ 1
0 xfu(x)dx∫ 1
0 xfd(x)dx

=
0.2722
0.1432

(26)

and get muc
2 = 371 MeV,mdc

2 = 195 MeV from which

μp = 2.779 . . .μN , μN =
e�/2

4πε0mp
, (27)

to compare with experiment 2.7928473446(8)μN [1].

Basic building blocks for QCD construction. –
We require local gauge invariance of a field Hamil-

tonian [24] constructed from the colour quark fields
generated in (16)2

H=
∫
ψ† (−i�c α · ∇ + βmc2

)
ψ dx3, ψ† = (ψ∗

1 , ψ
∗
2 , ψ

∗
3).

(28)
Here we suppressed spinor indices which are mixed by the
4 × 4 Dirac matrices α = (α1, α2, α3) and β. The spinor
indices commute with the colour indices. Using left invari-
ance of the coordinate fields ∂j |u = uiTj = u∂j|e from (12)
we get in the mass term of (28)3

ψ′(u′)†ψ′(u′) = (u′iTj[R])† (u′iTj[R]) = (29)

(iTj[R])† (u′)†u′ (iTj[R]) = ψ(u)†ψ(u),
2This section is edited from [25].
3Quark masses are ad hoc. One may speculate that the finite

values of current masses mu, md represent a topological tension from
mapping the curved intrinsic group to the flat algebra in laboratory
space, somewhat like our interpretation of the electron as a peel-off
from the neutron in the n → p decay [9] which scales (1) by πa ≡ re

via the strength of the electric charge in the classical electron radius,
mec2 = e2/(4πε0re) = α �c

re
. With flavour distributed over three

colour charges, by analogy, mqc2 = (gs/3)2/(4π) �c
rq

= αs
9

�c
rq

. An
interpretation of 1/rq as a curvature is supported by treating the
u, d, s quark mass matrix M as an external field, cf. sect. 59 in [1]

provided the configuration variables u′, u are unitary, i.e.,
(u′)†u′ = u†u = 1. Next we impose the local gauge
transformation

ψ → ψ′ = g(x)ψ, g(x) ∈ SU(3), ∂μ → Dμ = ∂μ + Gμ,
(30)

with colour gauge field, G = igsG [1] containing a strong
coupling gs

Gμ = igsG
k
μtk, k = 1, 2, . . . , 8, Gk ∼ G(k)(e) = dΦe(itk)

(31)
and transforming (when e → g(x) in G(k)) like in [27]

G′
μ = g(x)Gμg(x)−1 − ∂μ(g(x))g(x)−1 →(
D′

μψ
′)2 = (Dμψ)2 . (32)

We thus have the basic ingredient colour fields for set-
ting up QCD. Spin degrees of freedom enter from (10)
and flavours enter from (11) and are extracted by (23).
Choosing u = g(x) in (30) and in (12) equates local gauge
transformation in laboratory space to left translation of
the intrinsic coordinate fields

ψj(u) = ∂j |u[Φ] = u∂j |e[Φ] = uψj(e). (33)

Unflavoured baryons: N and Δ states. – In (1) we
multiply by J and integrate over the off-toroidal degrees
of freedom to get [9]⎡
⎣−1

2

3∑
j=1

∂2

∂θ2j
+W (θ)

⎤
⎦R(θ) = ER(θ), θ = (θ1, θ2, θ3),

(34)
for the dimensionless eigenvalues E = E0/Λ. The total
potential

W (θ) = −1 +
3∑

1≤i<j≤3

4/3
16 sin2 1

2 (θi − θj)
+

3∑
j=1

w(θj)

(35)
is periodic with w from (4). The constant term −1 follows
from differentiating through J in the Laplacian (2) [15];
Dowker calls it the constant global curvature poten-
tial [28]. The centrifugal term has the numerator 4/3
from the minimum value (S2 + M2)/�2 = 4 [19] com-
mon for N and Δ in integrating the second term in (2)
over the six off-toroidal degrees of freedom contained in
Υ from (15). Here the arbitrary labelling of the three
eigenangles is exploited to make an average over the non-
commuting components of S and M in (2). For a Wilson

—quite analogous to the relation in general relativity between the
curvature of the metric field and the energy-momentum density in
spacetime. In stead of (8), we may embed the 2D tori generated
by Tu,d from (23) in laboratory space to have (x, y, z) = (a(1 +
cos eqθ1) cos(−θ3), a(1+cos eqθ1) sin(−θ3), a sin eqθ1). Using [26] we
find Gaussian curvatures K = cos eqθ1

aeq(a+a cos eqθ1) with eq in units of e.

Integration with R2 from (19) over [0, π]3 yields 1/rd
1/ru

=
√ |〈Kd〉|

|〈Ku〉| =
2.19 to compare with md/mu = 2.16(40) [1].
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analogue [29], which is more commonly used, w would read
wWilson(θ) = (1 − cos θ). However, the Wilson analogue
does not represent well even the lowest-lying states if used
in (34) in stead of the Manton-inspired potential we use
here.

The total potential W has periodicity 2π in all three
eigenangles. This opens for the introduction of Bloch
wave degrees of freedom. The measure-scaled toroidal
wave function R is antisymmetric under interchange
of the three colour degrees of freedom θj and we may
therefore expand it on Slater determinants [19] (see Sup-
plementary Material Supp1 1Deigenvalues Matlab.m
and Supp1a 1Deigenvalues Matlab.pdf (SM1), Supp2-
1DbaseFunctionSet-Maple.mw and Supp2a-1Dbase
FunctionSet-Maple.pdf (SM2), Supp3-3DchargedN-
Mathcad.mcd and Supp3a-3DchargedN-Mathcad (SM3))

glmn =

∣∣∣∣∣∣
φl(θ1) φl(θ2) φl(θ3)
φm(θ1) φm(θ2) φm(θ3)
φn(θ1) φn(θ2) φn(θ3)

∣∣∣∣∣∣ , l,m, n ∈ Z
+,

(36)
constructed from solutions φi with periodicity either 2π
or 4π to the one-dimensional problem[

−1
2

d2

dθ2
+ w(θ)

]
φi(θ) = eiφi(θ). (37)

These correspond to Bloch wave functions [30]

φ(θ) = eiκθb(θ), (38)

with b carrying the 2π periodicity of the potential and
κ = 0, κ = ± 1

2 , respectively. No other values of κ are
allowed since the square of the wave function must be
single-valued on the configuration space to keep up its
probability interpretation. Note that in (37) there is no
summation over i. Table 1 shows the first eigenvalues ei for
real-valued wave functions emulating Bloch wave vectors
κ = 0 (2π periodicity) and e′

i for κ = ± 1
2 (4π periodicity).

The eigenvalues are found by collocation (see SM1). We
get an eigenvalue E = el + em + en for (36) under an
approximate, separable Hamiltonian4⎡

⎣ 3∑
j=1

(
−1

2
∂2

∂θ2j
+ w(θj)

)⎤
⎦ glmn = Eglmn. (39)

Combining three different eigenvalues from table 1
gives the resonance structure shown in fig. 3 for maxi-
mally charged states, i.e., N+-like and Δ++-like states.
We note in passing the resulting value for the relative
neutron-to-proton mass shift [31],

mn −mp

mp
≈

e1 + e2 + e3 − (e′
1 + e′

2 + e3)
e′
1 + e′

2 + e3
= 0.13847(14)%, (40)

4The eigenvalues of this Hamiltonian are closer to those involving
the full potential (35) than one might expect. This is because the
total curvature term and the centrifugal terms have opposite signs
and more or less cancel each other when integrated [31].

Table 1: 1D eigenvalues (37) to construct the approximate
baryon spectrum in fig. 3 from (36). The eigenvalues are cal-
culated with 1500 collocation points (sm1). The lowest eigen-
values, as expected, are close to those of the ordinary harmonic
oscillator. Moving up to higher levels, the eigenvalues increase
quadratically as indicated in fig. 4. Table extract from [19].

i ei e′
i e′

i

Level Eigenvalue Diminished Augmented

1 0.499804708 0.5001727904
2 1.502988968 1.496433950
3 2.471378779 2.522629649
4 3.600509000 3.377236032
5 4.218515963 4.803947527
. . . . . . . . . . . .

to compare with the observed value 0.13784190(5)% [1].
Note that we combine two period doublings in the choice
of κ’s for the protonic state. The choices are shown with
black dots in fig. 4. The same kind of coupling between
Bloch wave vectors is necessary when the full potential W
in (35) is to be used for exact solutions of (1) since then
the singularity of the centrifugal term can be cancelled.
Unfortunately we have not succeeded in finding a complete
base on which to expand protonic states for solving with
analytical integrals. Our best suggestion so far is [19,25]

fpqr =

∣∣∣∣∣∣
cos pθ1 cos pθ2 cos pθ3
sin qθ1 sin qθ2 sin qθ3
cos rθ1 cos rθ2 cos rθ3

∣∣∣∣∣∣ ∈ Rn and

1
2

(
e

i
2 (θ1+θ2+θ3) + e

−i
2 (θ1+θ2+θ3)

)
fpqr ∈ Rp (41)

with non-negative integers 0 ≤ p < r and 0 < q.
For Rn the set is complete and yields the very accu-
rate neutron-to-electron mass ratio [9,32] (see Supple-
mentary Material Supp4-3DneutralN-Mathcad.mcd and
Supp4a-3DneutralN-Mathcad.pdf (SM4))

mn

me
=

π

α(mn)
En = 1839(1), En = 4.382(2), (42)

in agreement with the observed value [1]. However, for
the protonic state Rp we have not settled how to select
the p, q, r-triples to keep completeness and avoid over-
completeness. An abstract crystallographic approach is
needed; Jones [33] seems appropriate.

Charge singlet states: neutral pentaquarks? –
A particularly interesting set of states with no charged

partners and parity opposite to those from (41) are

f0
pqr =

∣∣∣∣∣∣
cos pθ1 cos pθ2 cos pθ3
cos qθ1 cos qθ2 cos qθ3
cos rθ1 cos rθ2 cos rθ3

∣∣∣∣∣∣ , 0 ≤ p < q < r ∈ N.

(43)
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Fig. 3: Unflavoured baryon spectra. The dashed lines are sin-
glet states. The red lines mark states with augmented con-
tribution in level 3. All lines are approximate predictions
based on (39). The boxes represent baryons observed with
certainty [1]. The box widths represent the uncertainty in the
mass pole peaks, not resonance widths, which are much larger.
Figure updated from [31].

Fig. 4: Left and right: reduced zone schemes, cf. [30], for
Bloch wave numbers for the neutron state (left) and the pro-
ton state (right). Middle: Higgs potential (solid, blue) match-
ing the Manton-inspired potential [14] (dashed, red) and the
Wilson-inspired potential [29] (dotted, green). The Manton
and Wilson inspired potentials yield the same value for the
Higgs mass and the electroweak energy scale [19] whereas only
the Manton inspired potential (6) gives a satisfactory repro-
duction of the baryon spectrum seen in fig. 3. Figure adapted
from [34].

Like for the neutral states Rn in (41) also the Hamiltonian
in (1) for (43) can be diagonalized with a Rayleigh-Ritz
method [19,32] where the integrals needed for the Hamil-
tonian matrix elements can be found analytically and the

Table 2: Scarce singlet states. Eigenvalues based on Slater de-
terminants (43) of three cosines up to order 20 (see SM5). The
first column shows eigenvalues from the approximate Hamilto-
nian (39) and the third column shows eigenvalues of the exact
equation (34). The rest masses are predicted from a common
fit of the neutron state 939.57 MeV to the ground state 4.382
of (34) with no period doublings. The four resonances marked
by an asterix (*) lie within the observational window in Λ0

b -
decays (44) at LHCb. Table updated from [31].

Singlet Toroidal Singlet Rest mass
approximate (39) label exact (34) MeV/c2

7.1895 1 3 5 7.1217 1527
. . . . . . . . . . . .

18.9214 1 5 11 19.7327 4231
20.3774 5 7 9 20.9940 4501*
20.8910 3 5 11 21.7110 4655*
21.0766 1 7 11 22.0409 4726*
23.0609 3 7 11 23.7887 5101*
24.4575 1 9 11 23.9981 5146
. . . . . . . . . . . .

Fig. 5: Feynman diagram for neutral pentaquark forma-
tion (44). Figure adapted from [35].

eigenvalues therefore be found with high accuracy. The
eigenvalues for these cases are given in table 2 (see Supple-
mentary Material Supp5-3Dsinglets-Mathcad.mcd and
Supp5a-3Dsinglets-Mathcad.pdf (SM5)).

We have previously suggested to look for neutral charge
resonances in [31] and had the opportunity to discuss the
possibilities at LHCb with Sheldon S. Stone at the EPS-
HEP 2015 after Marta Calvi had been so kind as to for-
ward our request. Sheldon Stone suggested the following
channel (when enough data are acquired) [36]:

Λ0
b → K

0
+ P 0

c → K
0
+ J/Ψ + Δ0 → K

0
+ J/ψ+ p+ π−.

(44)
Figure 5 shows a quark structure interpretation for P 0

c

production in Λ0
b decay which can be reached at LHCb.

Other channels could be narrow resonances in photopro-
duction on neutrons, in π−p scattering and in invariant
mass spectra of Σ+

c (2455)D− from decays.

Conclusion. – We derived quark and gluon fields for
QCD from baryonic states on an intrinsic U(3) Lie group
configuration space with a mass Hamiltonian. We have
shown in general that the intrinsic variable must be uni-
tary for the mass term of the field Hamiltonian to be
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invariant under translations in the intrinsic space and
that local gauge transformations in laboratory space cor-
respond to left translations in configuration space. As
applications of the momentum form, we derived a proton
spin structure function and a proton magnetic moment.
We used the conjugacy of coordinate fields and coordinate
forms as a generalisation of action-angle quantisation in
ordinary quantum mechanics. We hinted at a topological
origin of quark masses which should be better understood.

We have shown how to derive unflavoured baryon spec-
tra without explicit introduction of quarks and gluons.
Colour degrees of freedom are carried by the toroidal
degrees of freedom and spin and flavour by off-toroidal
derivatives in the Laplacian on U(3). The unflavoured
spectrum from approximate calculations compares well
with observed four star resonances. We have given an
approximate value for the relative neutron to proton mass
shift and an accurate value for the neutron mass. We
predict unflavoured neutral charge singlets that might be
interpreted as neutral pentaquarks.
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