
C
ER

N
-T

H
ES

IS
-2

00
5-

07
5

04
/0

2/
20

05

Università degli Studi di Palermo

Dottorato di Ricerca in Ingegneria Informatica

DIPARTIMENTO DI INGEGNERIA INFORMATICA

Peer-To-Peer Architectures in
Distributed Data Management Systems
for Large Hadron Collider Experiments

Ph. D. Candidate
GIUSEPPE LO PRESTI

Collaborations:

European Organization for
Nuclear Research
PH Department, CMS TriDAS Group

Consiglio Nazionale
delle Ricerche
Istituto di Calcolo e Reti
ad alte prestazioni

Tutor
Prof. SALVATORE GAGLIO

Ph. D. Coordinator
Prof. ALESSANDRO GENCO

Tesi di Dottorato di Ricerca in Ingegneria Informatica - XVI Ciclo
Palermo, Dicembre 2004

Cover background: part of the Compact Muon Solenoid detector being built at
Cessy (France), for the CERN Large Hadron Collider experiments.

 v

Abstract

The main goal of the presented research is to investigate Peer-to-Peer ar-
chitectures and to leverage distributed services to support networked autono-
mous systems. The research work focuses on development and demonstration
of technologies suitable for providing autonomy and flexibility in the context of
distributed network management and distributed data acquisition.

A network management system enables the network administrator to
monitor a computer network and properly handle any failure that can arise
within the network. An online data acquisition (DAQ) system for high-energy
physics experiments has to collect, combine, filter, and store for later analysis
a huge amount of data, describing subatomic particles collision events. Both
domains have tight constraints which are discussed and tackled in this work.

New emerging paradigms have been investigated to design novel middle-
ware architectures for such distributed systems, particularly the Active Net-
works paradigm and the Peer-to-Peer paradigm.

A network management framework has been designed and developed,
which is able to carry on network management tasks and failures detection.
Moreover an Artificial Intelligence based autonomous agent has been proto-
typed, in order to support the network administrator in pursuing his manage-
ment responsibilities. The Active Networks paradigm has been used in this
context to enable network programming.

In addition, a software prototype has been developed to enable controlling
of DAQ systems by means of distributed discovery services. A discovery service
allows network entities to be acknowledged about each other, and enables
them to expose and make use of custom services. The Peer-to-Peer paradigm
has been leveraged to implement a discovery service to ease configuration and
monitoring of distributed DAQ systems.

The research and development activity carried on in both domains had
the common goal of demonstrating how appropriate middleware can provide
the required autonomy to systems under analysis.

 vi

Sommario

Lo scopo principale della ricerca presentata in questa dissertazione è lo
studio di architetture Peer-to-Peer e l’impiego di servizi distribuiti per il sup-
porto di sistemi di rete autonomi. Il lavoro di ricerca si è concentrato nello svi-
luppo e nella dimostrazione di tecnologie che consentissero l’autonomia e la
flessibilità del sistema, nel contesto della gestione di rete e dell’acquisizione di
dati distribuita. Un sistema per la gestione di rete consente all’amministratore
di rete il monitoraggio di una rete di computer e la gestione corretta di qua-
lunque guasto possa accadere durante la sua operatività. Un sistema di acqui-
sizione dati (DAQ) per esperimenti di fisica delle alte energie raccoglie, combi-
na e filtra una grande quantità di dati, i quali descrivono eventi di collisione di
particelle subatomiche, e successivamente memorizza tali dati per ulteriori
analisi. Entrambi questi domini possiedono vincoli particolarmente stringenti
che sono discussi ed affrontati in questo lavoro.

Sono stati investigati nuovi paradigmi emergenti per il progetto di mo-
derne architetture di middleware per tali sistemi distribuiti: in particolare il
paradigma delle Reti Attive (Active Networks) e il paradigma delle reti parite-
tiche (Peer-to-Peer). È stata progettata e sviluppata un’architettura per la ge-
stione di rete e per l’esecuzione di compiti di amministrazione di rete e rileva-
zione di guasti. Quindi è stato sviluppato un prototipo di un agente autonomo,
basato su tecniche di Intelligenza Artificiale, per supportare l’amministratore
di rete nello svolgimento delle sue attività di gestione. In questo contesto è sta-
to utilizzato il paradigma delle reti attive per sfruttare la possibilità della pro-
grammazione della rete. Inoltre, è stato sviluppato un prototipo per il controllo
di sistemi DAQ tramite servizi di discovery distribuiti: un servizio di discovery
consente ad entità di rete di scoprire reciprocamente le altre, nonché di condi-
videre i propri servizi. In questo ambito è stato sfruttato il paradigma delle reti
paritetiche per implementare un servizio di discovery che faciliti la configura-
zione ed il monitoraggio dei sistemi di acquisizione dati distribuiti.

L’attività di ricerca e sviluppo condotta in entrambi i domini ha avuto lo
scopo comune di dimostrare come l’uso di middleware opportuno possa fornire
l’autonomia richiesta ai sistemi analizzati.

 vii

Acknowledgements

This work has been supported by the Italian Doctoral Students Pro-
gramme, and specifically by the University of Palermo, Italy. Moreover, part of
the work presented in this dissertation has been made possible thanks to the
CERN Doctoral Students Programme, which provided the allowance to work at
CERN Laboratories for Particle Physics in Geneva, Switzerland.

I wish to thank my office mates and colleagues, both at University of Pa-
lermo (Mauro Barone, Piermarco Burrafato, Pierluigi Chirco, Vincenzo Conti,
Luca Gatani, Giovanni Neglia, Marco Ortolani, Ignazio Selvaggio, and many
others) and at CERN (they are too many to mention all of them!) for their
friendship and help. Moreover, I have to thank Bernard Traversat, leader of
the Jxta project, and the guys involved on it, for their concrete support during
the development work.

I am indebted to my tutor at the University of Palermo, Prof. Salvatore
Gaglio, and to my supervisor at ICAR, Prof. Giuseppe Lo Re, for their precious
aid. Furthermore, I’m obliged to my supervisor at CERN, Dr. Luciano Orsini,
and to Dr. Johannes Gutleber, for their continuous support during the period
spent at CERN.

My warmest thanks go to my sister Rosa Maria, which always supported
me not only in my work but in everything.

Finally, my parents. I could not have come to this point without their
constant encouragement from childhood. Thanks papà e mamma for all!

 viii

 ix

Contents

Abstract v

Sommario vi

Acknowledgements vii

Contents ix

Introduction. Distributed Data Management systems 1

I.1. Brief excerpt on the carried research activity 2

Chapter 1. Infrastructures for distributed autonomous systems 5

1.1. The Active Network paradigm: pros and cons 5
1.1.1. A survey on Active Network Execution Environments 7

1.2. The Peer-to-Peer paradigm: features and challenges 11
1.2.1. State of the art in Peer-to-Peer systems 13

Chapter 2. ANgate: an architecture for distributed AN management 25

2.1. Overview 26
2.2. The AN Gateway Architecture 29
2.3. Practical implementation 31

2.3.1. The Gateway service 31
2.3.2. The Management Modules 34
2.3.3. The Active Local Agent 36

2.4. Case study: prototyping an intelligent management system for ANs 39
2.4.1. Architecture 40
2.4.2. Reactive Golog 42
2.4.3. The Ontology 43
2.4.4. Experimental tests 45
2.4.5. Performances and scalability issues 46

 x

Chapter 3. Data Acquisition Systems for High Energy Physics 49

3.1. Data Acquisition Systems at CERN 49
3.1.1. CERN and the LHC experiments 50
3.1.2. Overview of the CMS experiment 52
3.1.3. The on-line Trigger and Data Acquisition system for CMS 54

3.2. Distributed Data Acquisition: requirement analysis 57
3.2.1. Functional requirements 57
3.2.2. Non-functional requirements 59

3.3. XDAQ: a Peer-to-Peer framework for Data Acquisition 60

Chapter 4. Peer-to-Peer and Discovery for Distributed Data

Acquisition 67

4.1. Autonomy and auto-discovery features of Peer-to-Peer systems 67
4.2. JXTA as a platform for DAQ 70

4.2.1. JXTA fundamentals 70
4.2.2. The JXTA protocols 74
4.2.3. An outline of the Java and C reference implementations 77

Chapter 5. Case study: a JXTA-based XDAQ Peer Transport 81

5.1. General description and architecture 81
5.2. Use cases 83
5.3. Implementation 85

5.3.1. The Rendezvous peers 89
5.4. Experimental tests 91
5.5. Performances and scalability issues 93

Conclusions and future directions 97

Appendix A. ANgate source code 101

A.1. The Gateway service 101
A.2. The ALA service 105
A.3. The logical inference engine 114

Appendix B. JxtaPT for XDAQ source code 127

B.1. The user’s API 127
B.2. The Java Rendezvous 137

References 143

 1

Introduction.
Distributed Data Management systems

The need for managing distributed data stems from a spread field of
disciplines that can generate large amounts of data. Applications producing
such an amount of data are generally data intensive. In this context, the
term distributed identifies a set of machines interconnected by a high per-
formance network. A centralized approach could strongly affect the system
performance; therefore a distributed approach is often beneficial. Examples
are Large Hadron Collider Data Acquisition systems which are under devel-
opment at CERN.

Distributed data acquisition systems collect data from embedded de-
vices and process them for later use. Such systems rely on an infrastructure
that facilitates the data acquisition task. This underlying infrastructure
deals with a number of upcoming issues in distributed computing:

• architectures for distributed applications
• control and configuration of distributed applications
• contents and code distribution
• application intercommunication
• fault tolerance
• service discovery
• scalability and communication performance
• independence of physical technologies for communication
In the present work distributed architectures for networked environ-

ments are investigated, in order to take advantage of the services provided
by such architectures to develop appropriate middleware.

After a review of current state-of-the-art technologies for distributed
systems, two outstanding paradigms are exploited in the present disserta-
tion: the Active Network paradigm and the Peer-to-Peer paradigm. Software
prototypes and performance tests are provided to fully evaluate each envi-
ronment. Afterwards, a requirement analysis has been carried to address
the issues shown above and software architecture has been devised, taking

 2

advantage on existing Peer-to-Peer technologies. Finally, conclusions are
drawn and future directions on ongoing work are discussed.

I.1. Brief excerpt on the carried research activity

During the Ph. D. course a number of different research areas have
been covered and a brief report of the most important achieved results is
provided here.

The research activity started with an analysis of current advancements
of the Steiner Problem in networks, a typical network optimization problem
which arises on designing networks for multicast applications, such as rich-
media content delivery to multiple destinations, as well as other network
design related scenarios. A study on scale-free network topologies such the
Internet has been carried on, and novel meta-heuristic methods have been
devised and developed to obtain better solutions to large problem instances,
including a Simulated Annealing algorithm and a parallel Grid-enabled Ge-
netic Algorithm. Main results have been published in [DLL01], [DLL03],
[LLSU04], and [STE].

Afterwards, the Active Networks paradigm has been taken into consid-
eration as a first distributed environment to deploy distributed management
systems. A software prototype for an Active Network management frame-
work has been designed, and an Artificial Intelligence based autonomous
agent has been developed, which is able to carry on basic network manage-
ment tasks by means of the management framework previously mentioned.
Main results have been published in [DGLL02], [DGLLI03], [GGLLU04],
and [ANG].

Finally, the Peer-to-Peer paradigm has been taken into account as a
distributed environment to deploy distributed Data Acquisition systems, in
the context of High-Energy Physics experiments. An online Data Acquisition
(DAQ) system for high-energy physics experiments has to collect, combine
and filter a huge amount of data describing subatomic particles collision
events. In this context, existing technologies have been utilized to facilitate
configuration and monitoring of such systems, and a software prototype has
been developed, which enables DAQ systems to be monitored by means of
Peer-to-Peer distributed discovery services. Preliminary results are going to
be published in [GLO05] and [LoP05].

 3

 4

 5

Chapter 1.
Infrastructures for distributed autonomous systems

Information technology distributed systems are characterized by com-
puter applications that consist of several components running on different
computing systems, and autonomous systems are computer applications
that are able to perform complex tasks without human intervention.

In the recent years, Information Technologies have grown with an in-
creasing rate, making such systems more powerful but also more complexes.
The world-wide Internet, while providing seamless interconnection across
distant locations enabling new paradigms, opens new challenges in the con-
text of distributed and autonomous systems: a huge effort has been devoted
by the research and the industry communities to conceptualize, design, and
develop appropriate middleware infrastructures, capable of operating and
controlling large systems.

The present dissertation deals with middleware software for distrib-
uted networked autonomous systems. New emerging paradigms have been
investigated to design novel middleware architectures for distributed sys-
tems. In this preliminary survey two outstanding paradigms are analyzed:
the Active Network (AN) paradigm and the Peer-to-Peer (P2P) paradigm.

1.1. The Active Network paradigm: pros and cons

Active Network is a novel approach to the network computing which
has been proposed on late 90s to introduce programmability in the network,
giving the possibility to execute customized computations on the messages
flowing through the routers. Networks which enable the user to customize
their behaviour are active in the sense that nodes can perform computations
on and modify the packet contents [Ten97] (see fig. 1.1).

The concept of Active Networking emerged from discussions within the
DARPA research community in mid 90s, in order to address some issues of
today’s networks: in particular, one of the initial goals was to test and de-

 6

ploy new network protocols in a wide area network environment overcoming
the limitation of traditional networks, where the standardization process is
very long compared to the typical evolution of users’ needs. But this para-
digm goes further and enables autonomy features: in fact, as active routers
can run small computations, active packets can act as autonomous agents
running distributed tasks. The major advantages against end-to-end net-
work software and systems are a better inside view of the real status of the
network, which enables distributed software to gather needed information
and process it along the way, and on a theoretical basis a new computational
paradigm beyond the classical Turing Machine.

Fig. 1.1 – Classic vs. Active Network paradigm (source: DARPA, 1998).

However, allowing users’ code to be run inside the network introduces
new safety issues. Malicious code inside packets can easily attack routers,
and node resources consumption must be monitored and limited by suitable
mechanisms in order to avoid that a users’ code locks a router. Moreover, a
number of security issues must be solved concerning authorization and cre-
dentials about what kind of code can be executed.

In ANs two different models can be recognized: a discrete approach,
which implies that active routers are programmed via an out-of-band
mechanism, so they behave as programmable switches, and an integrated
approach, where every packet can carry both data and code. The first one
has been preferred when program loading must be carefully controlled, al-

 7

lowing network administrators to monitor and eventually restrict access to
the router. The second one follows a more extreme view of this paradigm
and it demonstrated to be more flexible, though safety and security issues
must be taken into account as mentioned before.

Another major issue of Active Networking is the intrinsic slowness of
active nodes with respect to conventional routers. As optic technology’s per-
formance is growing faster than that of CPU technology, there will be less
and less CPU time available to process each packet. Therefore, a trade-off
between pure network performances and application complexity must be
considered on designing a distributed active service.

In the context of the world-wide research on Active Networking, some
facilities have been devised by the research community to allow interopera-
tion between prototype ANs and classical networks. First of all, an Active
Network Encapsulation Protocol (ANEP) have been devised by University of
Pennsilvania and others [ANEP], which allows seamlessly encapsulating
any active packets in standard IP packets, so that they can be routed as
normal data packets and processed or executed only by active routers. Sec-
ondly, two main prototype backbones have been setup as virtual testbeds
world wide, with active nodes spread mainly in USA and in Europe: ABone,
an Active Network backbone [ABONE], and ANON, an Active Network
Overlay Network. These testbeds support the ANEP protocol and the UDP
transport layer, and allow the deployment and test of ANs over a wide net-
work environment. Currently, only ABone is still running and supported.

In the following, a brief survey on current and past Active Network
prototypes is presented, taking into account their features with reference to
autonomy and provision of distributed services.

1.1.1. A survey on Active Network Execution Environments
Among AN Execution Environment projects, the followings are described

here: PLAN, the Packet Language for Active Networks [Hic98], ANTS, an Ac-
tive Network Transport System [WGT98], ASP, an Active Signalling Protocol
[BRFL02], and Tamanoir [GL00]. All these environments with the Tamanoir ex-
ception are available in the ABone network backbone.

For each environment, a basic description and a classification based on
the proposed models is given; then the typical services provided by the envi-
ronment are shown and safety and security issues are discussed. Finally a
performance assessment is provided and the most important advantages

 8

and drawbacks shown by the environment are given.
PLAN
PLAN [Hic98] is an ML-based language for ANs which follows the cap-

sule model. Active packets are in fact small pieces of code based on a subset
of the Objective CAML language [CAML], with some added primitives to
express remote evaluation. When traversing the network, PLAN packets
may invoke services, which are resident on the nodes. Therefore an Active
Application is typically made by a single PLAN packet, which can propagate
itself on a certain number of nodes and invoke needed services.

The main goal of the platform is to allow ease of test and deployment of
new protocols in a proof of concept environment model. Therefore perform-
ances are not a concern in the PLAN design, and the active node simply
runs as a daemon process under common Linux O.S. Nevertheless, the sys-
tem has shown a throughput up to 40 Mbps with standard hardware setup
and 100 Mbps Ethernet network, but during long time tests it has been
demonstrated that the daemon process can consume more and more hard-
ware resources without restoring them, thus leading to resource leakages or
crashes after some days of operation.

The PLAN environment addresses safety using a straightforward
mechanism: each capsule is given a certain resource bound, which acts as a
TTL for the packet. Each time the capsule needs to locally or remotely
evaluate a piece of code, its resource bound is decremented by the underly-
ing EE; when it reaches zero, an error capsule is sent back to the sender. As
in this context a remote evaluation is equivalent to forward the capsule to
one or more nodes, this mechanism ensures that each capsule can spend a
finite amount of CPU time in a finite number of nodes. If a capsule needs a
more complex computation, it can access local services, which are statically
linked to the EE and are written with the full O-Caml language. However,
no security mechanism is provided to restrict access to potentially unsafe
services on the node.

In conclusion, the PLAN environment provides a full testbed to try out
new protocols and distributed services, but among its drawbacks it lacks a
stronger security model and production level performances.

ANTS
ANTS [WGT98] is one of the first Java-based Execution Environments

for ANs, which enables ease of development and deployment of network pro-
tocols. It is based on the capsule approach and its main goal is to allow dy-

 9

namical online deployment of new protocols. Namely, ANTS capsules can
carry Java code, which can be remotely executed by active nodes.

In the proposed prototype, the active node is implemented by a Java
application that emulates a router and network concepts such as the packet
and the protocol are virtualized inside the environment; authors demon-
strated the proposed approach implementing capsules for mobile hosts han-
dling and multicast transmission. Node safety is achieved through the stan-
dard Java applications sand-boxing, and the EE provides a basic form of
resources protection to limit the use of network resources by AAs; however,
there is no security mechanism provided for validating the custom code.

The shown performances are poor, as this prototype implementation is
not optimized for best throughput. In conclusion, ANTS has been developed
as a proof-of-concept environment for early research on Active Networking,
and the mentioned lacks prevent it on being implemented as is in a produc-
tion environment.

ASP
ASP [BRFL02] is another Java-based EE that provides services to AAs

defined by a Protocol Programming Interface. It does not use the capsule
model, but instead fetches AA code out of band from the flow of active pack-
ets, thus achieving a better control on when new custom code is injected in
the network. Active packets contain only references to the code that has to
be executed on the EE.

The design of ASP has been modelled following the requirements for
dynamic deployment of complex control-related functions, such as network
signalling and management. Therefore ASP includes support for persistent
Active Applications, fine grained network I/O, security, and resource protec-
tion. In particular, security is achieved by means of a custom Java class
loader, which eventually provides requested bytecode from another location
such as the previous hop, and can be enabled to support signed Java code,
thus preventing untrusted or malicious code from being executed on the
node; moreover, different AAs executing within the EE are effectively iso-
lated, so that an Application cannot crash another one or even the EE. On
the other side, trusted core AAs can be given special privileges to strongly
interact with the EE.

With reference to performances and real use cases, a number of Active
Applications have been proposed on a variety of areas, including QoS sup-
port, reliable multicast, and management, thus proving the effectiveness of

 10

the platform in control-related contexts. On the other side, a shown draw-
back is that ASP does not provide a mechanism to limit use of network re-
sources.

TAMANOIR
Tamanoir [GL00] is a software environment dedicated to deploy active

routers and services inside the network. It is based on a discrete approach
as the deployment of active code is carried on by means of a service broker.
Tamanoir Active Nodes (TAN) provide standard routing and support both
TCP and UDP transports; the active services support relies on the ANEP
protocol. The main goal of this platform has been to achieve high perform-
ances on normal data packets while preserving a full featured EE for active
packets; authors claim that in real scenarios the fraction of active packets is
often very small compared to data packets, as the formers implement con-
trolling or managing functions.

The Execution Environment is based upon a demultiplexer which is
able to receive and redirect active packets towards the called service by
means of a hash key contained in the packets. The environment allows
plugging new services dynamically, and an Active Network Manager is pro-
vided to deploy active services.

The chosen language for active services is once again Java, and the ac-
tive router is implemented as a Java application on top of a common off-the-
shelf Linux O.S.; the core routing functionality is implemented by means of
a fast netfilter kernel patch to catch and route all normal packets. This way,
the overhead for normal IP routing is negligible allowing high-performance
networking, while the virtual Java-based environment still provides a full
computational environment for active packets. Authors demonstrated the
effectiveness of the proposed approach with experiments on Gbit networks.

In conclusion, Tamanoir’s major benefit is the shown performances,
while among drawbacks no security mechanism is provided by the environ-
ment.

Related technologies
The research on Active Networking demonstrated that the proposed

approach in computer networking can be effective in highly dynamic envi-
ronments, where it can be foreseen a benefit from the flexibility introduced
by active packets. But in the last ten years no “killer application” has been
shown which takes advantage of this technology and overcomes other ad-hoc
solutions, and after an initial enthusiasm the current research has been de-

 11

voted to specific contexts, where it is possible to take advantage of such a
paradigm as a supporting technology. Among current AN research areas,
Active Grid management projects (see for instance [GGLY03]) have been
proposed recently in the context of the ongoing worldwide Grid projects: the
aim of Active Grid management is mainly to leverage the Active Network
experience to explore suitable middleware for the management of computa-
tional Grid.

Moreover, it should be mentioned that no leading EE implementation
has been emerged as a de facto standard, thus any project that relies on AN
technology must take into account implementation details which are
strongly dependent on the underlying environment.

Nevertheless, the programmability of the network node, whatever it
will be, has demonstrated being increasingly important, and in the present
work this feature is leveraged in the context of a distributed network man-
agement system, as will be shown later.

1.2. The Peer-to-Peer paradigm: features and challenges

The term “Peer-to-Peer” (P2P) refers to a class of systems and applica-
tions that employ distributed resources to perform a critical task on a decen-
tralized basis. With the pervasive deployment of computers, P2P is increas-
ingly receiving attention in research as well as in enterprise environments.

Typical P2P systems have a series of key characteristics: as they are
based on a peer model rather than a client/server one, each network node
(peer) is able to communicate and share information with the others and the
whole system is partially or totally independent on central servers. Fur-
thermore, no peer has a full view of the network, and the global behaviour
results from the local peers’ interactions. P2P is mainly focused on sharing
resources through direct interaction of the peers; shared resources can be
files, documents, disk storage, CPUs, network bandwidth, and even human
resources.

Such a dynamic environment set a number of challenges to the under-
lying middleware; in particular, a directory and indexing service is critical
on P2P systems more than on C/S and WWW scenarios, because peer’s con-
nectivity can be very unstable and classical DNS and IP for addressing
peers can fail in a P2P scenario. So a DNS-independent overlay addressing
and directory system must be provided to allow peers to effectively share re-

 12

sources.
On the other side, P2P systems potentially have more fault resilience

and scalability features than C/S systems, and leveraging such qualities is
one of the most important research areas in this field.

A rough classification of P2P systems is presented in fig. 1.2, where the
P2P “space” is divided into three main directions: distributed computing, file
sharing and collaborative environments. General-purpose platforms, which
enable the development and deployment of P2P systems, are shown in the
center.

Fig. 1.2 – A classification of P2P systems (Source: HP, 2002).

In the following survey several distributed computing and resource

sharing P2P systems are presented, focusing on their key features and
drawbacks. Furthermore, for the aim of this work particular emphasis is
given to resources’ discovery features of the system. For each of them a brief
description of its goal is pointed out, together with a taxonomical classifica-
tion; then an overview on the existing protocols, languages, and platforms
on which it relies is given, and when appropriate an estimation of the con-
figuration effort needed to run a sample application is provided. Afterwards,
security concerns are briefly discussed and some hints about the commit-
ment of enterprises and the developers’ community are given, as well as a
rough classification of the maturity level reached by the system referring to

 13

its standardization process. The most important advantages and drawbacks
shown by the system complete the outline.

Finally, some terminology is needed to identify particular aspect of P2P
systems. First of all a servent [RFI02] is defined as a host that act both as a
server and client, so it is a synonym of peer. Furthermore, a discovery ser-
vice in the general case is a service which provides clients to locate re-
sources, and resources to be published to clients. Such a service can be dis-
tributed among all peers, so that each peer (servent) is able to auto-discover
other peers’ resources.

1.2.1. State of the art in Peer-to-Peer systems
In this section, the following systems are covered: SETI@home and the

BOINC platform in the distributed computing area, Napster, Gnutella, and
FreeNet in the file sharing area, Avaki, JXTA, and .NET in the platform
area. Furthermore, a number of related technologies are analyzed from a
P2P perspective, including CORBA and Web Services middleware.

SETI@home
SETI (Search for Extraterrestrial Intelligence) is a collection of re-

search projects aimed at discovering alien civilizations. Among them, Berke-
ley’s SETI@home analyzes radio emissions collected by the Arecibo telescope
using the idle computing power of the subscribed users. It can be defined as
a “reversed” C/S system for distributed computing: in fact, each “peer” re-
ceives a job and computes it during its idle time, as the peer software is a
screen-saver program. A central database maintains all user accounts, and
no discovery service is present, as it’s not needed indeed.

As a CPU intensive oriented architecture, the system has low commu-
nication impact, because each job takes roughly a week of CPU time and few
hundreds of Kb of transmitted data. The implemented protocol runs over
TCP, and the client side is a software available on several platforms includ-
ing Microsoft Windows, Linux, MacOS and Solaris, whereas the server side
is a standard PHP web application with MySQL RDBMS running on top of a
unix-like environment.

The system is stable and well established because the project started in
1996, and it has inspired other “@home” scientific computing projects includ-
ing medical tasks and weather forecasts. Now it is going to become an appli-
cation built over the BOINC open platform [BOINC]; on this behalf a C++
API is made available to write a custom client both to run computation and

 14

to show graphics using this platform, while it takes care of distributing jobs
to clients. A typical trial application can be developed in few days.

With reference to security concerns, the system is login-based, as each
client needs to be registered in the central database.

The main advantages are the scalability reached by the system
(4,800,000 users so far), because the communication load is very low com-
pared to the computing load, and good fault resilience: clients store their
state every 1-2 minutes and the server is able to reassign a job after a time-
out. On the other side, the architecture is specifically oriented to coarse-
grain CPU-intensive computing, so it is not a general-purpose platform.

Napster
Despite it’s the most famous P2P application, Napster is a C/S system

for file sharing, which uses a P2P model only during the final transmission
of data. In fact, each peer needs to register itself to the central directory
server before sharing its resources and querying the system, and no auto-
discovery service is implemented in this system. Napster has proven to be
scalable and effective despite the centralized server, because the server is
queried only to get the references to the peers, and the number of messages
needed to get a resource is always equal to 3; moreover as the shown results
only span the online peers the probability of actually getting the file after a
query hit is higher than competing file sharing systems. The implemented
protocol uses HTTP GET requests for negotiating transfers, and TCP for
transport. Security is centrally managed by a login mechanism.

The main advantage of this system is a fast query response: an upper
bound for the duration can be provided thanks to the simple network model
[EPFL2002]. The counterpart is that the central server represents a single
point of failure for the entire network, thus limiting fault resiliency.

Gnutella
Gnutella is a pure distributed P2P protocol for file sharing. It was born

as an open source software, and its key feature is that it implements a dis-
tributed auto-discovery procedure: when a new peer wants to join the net-
work it advertises itself to the others sending a PING message, and answers
to the advertise sending back a PONG message. So the peers can dynami-
cally create the network as long as they know at least one peer using out-of-
band mechanisms. To start a query, a peer broadcasts it to all neighboring
peers using the QUERY message, and if a peer has the requested resource it
replies with a QUERYHIT message. As the query strategy is flooding based,

 15

a query message has a limited TTL (usually less than 7), thus to limit its
propagation over the network. In fact, the number of messages required to
get a resource is O(dTTL) where d is the average node degree.

The protocol runs over TCP and contains only five messages, the four
previously mentioned and a PUSH message to enable firewalled peers to
send file to not firewalled “clients” (if both peers are firewalled no communi-
cation is allowed). No authentication or security features are provided.

So far several implementations of the peer software are known on the
Internet, and the Gnutella network was studied in order to evaluate its per-
formances. But the flooding model limits the scalability of the protocol and
moreover it offers no guarantees on query results: no time bounds can be
stated, and a query could even fail, i.e. it doesn’t discover the queried re-
source even if it’s present in the network.

To address these issues, an evolution of this protocol has been pre-
sented which adds several enhancements. First of all, the pure P2P model is
evolved to a 2-tier hierarchy model where most peers are connected to so-
called ultra-peers, which act like hubs and directory servers. Ultra-peers
create a pure P2P network. Secondly, each peer caches PONG messages,
and routes queries following a Query Routing Protocol [GNUT] based on
Distributed Hash Tables (DHT), so one or more keys must be assigned to
each resource when it is put on the network. This way, the number of mes-
sages needed to get a resource in the average case is proven to be O(log n)
thanks to the so-called small-world effect1 [GNUT], thus enhancing the scal-
ability of the protocol.

This model was adopted by several file sharing software (e.g. KaZaA,
Morpheus, Joltid, eDonkey) and it’s worth to note that the QRP has been
adopted and enhanced by other P2P indexing systems such as CAN, Chord,
Pastry, etc. using techniques from the RDF (Resource Description Frame-

1 The small-world notion has been introduced in [Mil67] and is related to heavy-tailed

(fractal) distribution of some graph topology properties and the transition from regular
graphs to random graphs. In a regular graph each vertex is connected to the nearest
neighbors with high clustering, and the average path length is approximately n/2d, if n >>
d >> 1, while in a random graph more bridges can be present and this value decreases to
log n / log d, but the clustering is poorer because each node can be connected with any
other, not only the neighbors. It has been proven that little changes in regular graphs are
sufficient to achieve short global path length as in random graphs, maintaining the high
clustering of regular ones: such graphs are called small-world graphs, and it has been
shown that common computer networks show the properties of such graphs.

 16

work, W3C) and Semantic Web research area to address the issue of finding
a right key to index a resource2.

FreeNet
FreeNet is another pure distributed P2P protocol for file sharing, fo-

cused on anonymity and security: in fact, the protocol is structured in such a
way that nobody knows where the resources are, and nobody can discover
who asks for a resource.

The query strategy is depth-first in order to avoid flooding of queries:
each resource is ciphered and indexed by a key, obtained either hashing the
content or a description provided by the user when the file is inserted in the
system. Then each peer creates a routing table by getting the neighbouring
indexes, and routes search requests only to the peer that own the closest key
to the queried data. Moreover, the protocol supports a dynamic replica of
most queried files to further shorten the average path length to the re-
source.

The system is in a very early stage, as a first C++ prototype is freely
available but no real world application is based on this protocol, nor compa-
nies are committed in developing it. Among advantages the scalability is
similar to Gnutella with QRP, as the network exhibits small-world proper-
ties and in the average case the path length is O(logn), but local query rout-
ing decisions could be poor because of lack of routing information, so in the
worst case the entire network still needs to be traversed, and a query could
fail.

Avaki
Avaki is a commercial P2P and Grid platform for distributed comput-

ing; its main goal is to provide a single virtual computer view of a heteroge-
neous network of computing resources. It features an object-oriented layered
architecture, where basic services are separated in three levels: core services
including interface to the network and distributed directory and discovery,
system services including accounting, load balancing and recovery, and ap-
plication services including job scheduling and distributed file system. The
platform is C++ based and the supported protocols are TCP/IP, .NET, Jxta;

2 The QRP mechanism needs a set of keywords for each resource to be indexed. These

words are manually chosen by the user in the music file sharing scenario, but if the re-
source contains more semantic information, a better technique can be devised to extract a
key which actually describes the resource’s content: this is the challenge which is tackled by
RDF and Semantic Web research area.

 17

custom protocols are not supported directly but as bridges to other platforms
are provided a solution can be devised. As a Grid oriented platform it can
run any binary code over the supported operating systems, which are Linux
and Windows.

Concerning security, it’s built-in as a core service: the authentication is
login-based at startup, afterwards the middleware manages all further au-
thentications required to run tasks over computing resources. The platform
is still in an early stage; it is sell as a product and currently evaluated at
various research labs, but a free working implementation is not available for
testing.

Among advantages, the layered architecture with a built-in directory
service has to be mentioned, while among drawbacks it should be noted that
Avaki is a commercial not-open-source platform, and the fault resilience
support is present only at hardware level: if a node goes down, the middle-
ware is able to migrate the job on another node, but in case of software fault
nothing is done.

JXTA
Project Jxta (pronounced “juxta”3) is an open general-purpose platform

for P2P applications. Jxta is structured in three levels of services: core,
which includes security and peer group management; system, which in-
cludes searching and directory/indexing services; and application, where the
P2P applications run using the underlying layers. Up to now several imple-
mentations are available: the most important are a Java implementation,
which can be run on any Java enabled OS (either J2SE 1.3.x or J2ME), and
a C implementation, though the latter is not as complete as the former. The
protocols defined in the Jxta architecture are XML based. Moreover, Jxta is
transport independent as it features a way to define custom “bridges” to
even non-IP protocols like Bluetooth. With reference to security, a cryptog-
raphy toolkit is available that enables message privacy and ensures authen-
tication and integrity.

The platform is in an early stage, but Sun and the Java community ac-
tively support it. Among third-party projects based on this platform,
Edutella is an RDF-based metadata infrastructure for P2P applications.

The setup of a Jxta network is straightforward and the number of tools

3 Jxta is the contraction of the word juxtaposing, i.e. side by side, which represents

the P2P style in contrast to the classical C/S model.

 18

built on top of Jxta is growing up. More on this platform will be presented
later.

The main advantages of Jxta are the distributed discovery service pro-
vided natively, the independency on transport protocols and the XML data
and metadata representation. Among drawbacks, a scalability issue regard-
ing global naming is still not resolved: Jxta doesn’t guarantee uniqueness of
names in the peers’ network. A naming service shall be implemented to en-
sure a unique name on a given scope.

Web services
Among related technologies, web services are a standard to develop

and integrate distributed application: in fact a web service can be defined as
a «logical manifestation of some physical resources (like databases, pro-
grams, devices, or humans) that an organization exposes to the network»4.
From a Peer-to-Peer perspective, a WS can be seen as a servent software
component, because it’s a server when it receives a request from a client,
and it’s a client as it can query other WSs, thus to establish a P2P network
of even different services which can interoperate each other. But each WS
needs to register itself to a central UDDI registry in order to be used by cli-
ents, and a client needs to know the registry address to ask for a WS using
out-of-band mechanisms. So as far as all needed WSs are published on the
same UDDI registry, a P2P-style application can run using all needed mul-
tiple instances of them.

Protocols involved in WSs are UDDI and WSDL for resource discovery
and description, and SOAP for RPC and data transport; all of them are XML
based on top of HTTP. Several languages contain support for WSs, including
Java and C++, and several different platforms are supported, because an
XML parser and a web application container are the only key requirements
to publish a software component as a web service.

With reference to security, there is no built-in support, and each appli-
cation must implement the required level of security. On the other side, lots
of third-party tools allow the programmer to easy deploy a software compo-
nent into a web service. For instance, a Java class can be published as a WS
with minimal human intervention (the WSDL descriptor file is automati-
cally generated).

Web services are a standard maintained by W3C [WS] and actively

4 WebServices Journal, November 2003.

 19

supported by all big names of IT. It’s worth noting that Grid computing is
moving towards WSs, and for instance Globus Toolkit version 3 [GT] sup-
ports Grid Services, a WS extension for Grid applications. Among advan-
tages, the interoperability and platform independency are the most impor-
tant together with XML metadata representation, although transport of
huge amounts of binary data is inefficient if SOAP has to be used.

.NET
Microsoft’s .NET is a commercial platform for distributed applications,

which includes support for P2P-like systems. It is based on WS standards,
as it includes UDDI, WSDL and SOAP protocols. The supported languages
are C# and other .NET languages, and the reference operating system is the
Windows Server family OSs. A minimal level of authentication is provided
through the centralized Passport service, maintained by Microsoft.

The platform has been proposed in 2001 and it’s in early stage devel-
opment, supported by Microsoft and the .NET developers community.
Among advantages the use of open standards like WS has to be mentioned,
but the main drawback is that it’s currently available only on a single oper-
ating system.

CORBA
The Common Object Request Broker Architecture (CORBA) is the last

middleware of this survey. It features a centralized directory service (bro-
ker), which takes care of handling requests and passing references to remote
resources; so each software resource needs to be published, using the Inter-
face Description Language (IDL), and no distributed discovery system is
provided. CORBA supports a wide variety of languages, including C/C++,
Java, Cobol, Smalltalk, etc. and relies on the IIOP protocol over TCP/IP to
handle the RPCs. CORBA implementations are available on most platforms,
from mainframes to standard PCs to handheld computers. The CORBA Se-
curity Service can provide a variety of security policies depending on the ap-
plication’s needs.

The configuration of a CORBA-compliant software is not straightfor-
ward because of the intrinsic complexity of the ORB (Object Request Bro-
ker): in fact, skeleton (server-side) and stub (client-side) software compo-
nents have to be created for each resource that needs to be published in the
CORBA environment. From a P2P perspective, if a software component is
wrapped by both stub and skeleton parts and it is registered in the ORB, it
can be seen as a CORBA P2P-style application as the middleware enables

 20

peer-style connections to other instances of itself.
Referring to the maturity level, the project started in 1997 and it is one

of the first object-oriented evolutions of RPC; now it is standard and it is
maintained by the OMG. Main advantages are the support for load balanc-
ing and fault tolerance policies, while the main drawback is the weakness of
IDL, because it must be able to support a wide variety of languages.

Rendez-vous
Apple Rendez-vous [ARV] is a protocol that enables networked hard-

ware components to connect each other with no human intervention, be-
cause it takes care of assigning proper TCP/IP configuration to each device.
The discovery of a right network configuration is achieved through a broad-
cast based search: the device assigns itself an IP address in a valid local-
area range and tries to communicate to other “peers”. If an address collision
occurs, it changes the address and tries again until it’s able to connect prop-
erly with other resources. Moreover, the protocol leverages the Multicast
DNS standard to allow discovery of services provided by peers.

With reference to the maturity level, the protocol is in production state
and is currently deployed by Apple, both embedded on networked devices
such printers or wireless access points and integrated in the MacOS X Op-
erating System. Furthermore, it is provided as an open-source software li-
brary.

Finally, Apple Xgrid is a Grid technology built over the Rendez-vous
protocol, which enables a group of even heterogeneous computers to run
CPU-intensive coarse-grained parallel tasks. Xgrid basic principles are the
same of the BOINC platform mentioned above.

Among advantages, Rendez-vous is an open-source zero configuration
protocol for network communication; its main drawback is the use of broad-
cast messages, which can result in poor scalability and reliability depending
on the network environment.

UPnP
Universal Plug-and-Play [UPNP] is a network middleware technology,

and allows automatic discovery and control of services available on the net-
work from different devices without user intervention. The main focus of
this technology is in home networking, with scenarios spanning from remote
home devices control to their intercommunication; however, the standard
defines a set of protocols for discovery and remote control of software ser-
vices, and shares ideas from P2P context to enable such services.

 21

The UPnP protocols are based on XML and they make use of SOAP
over both HTTP/TCP and multicast UDP. As such, they can be run over sev-
eral platforms and Operating Systems, including PDAs and embedded de-
vices; the SDK includes a tiny web server to enable a UPnP device to com-
municate through HTTP.

The UPnP has been standardized and a reference SDK implementation
is available since 2002 as open source. It is actively maintained by all main
IT vendors, including HP, Intel, and Microsoft.

Main advantage of the platform is the low memory and hardware re-
source requirements, which allow running it over small devices. On the
other side, the protocols essentially provide only the discovery service and
basic control features, while other facilities from the P2P world, such as
shared content management, are not included and must be developed or
provided on a case by case basis.

Related technologies
Several computer networks technologies deal with discovery of re-

sources and “peers” handling for different aims, from distributed storage
systems to instant messaging systems, and often scalability issues are of
major interest in such technologies.

A brief summary of them from a P2P perspective is given here. Andrew
File System (AFS) is a distributed file system, which allow to seamlessly
merge on a single mounting point several Unix file system spread over the
Internet. The key feature of AFS is its scalability; it has been achieved mov-
ing needed computation on the workstations (“peers”) that provide data, in
order to not rely on a single server, and making best use of network connec-
tions through caching and batching transport of data. At a lower level,
DHCP and wireless technologies (Bluetooth, 802.11) use a broadcast model
to advertise and connect a device to other networked devices. DNS has a
strictly hierarchical model for discovery: if a DNS server receives a query it
cannot resolve, it always will forward it to its higher-level DNS server. Then
the answer can be routed immediately to the first server or through each
queried DNS server depending on the type of the DNS query. Finally, In-
stant Messaging systems use a centralized model for directory and discovery
services, but some of them (for instance ICQ) are able to establish P2P di-
rect connection between “peers” after the discovery phase has been finished.

In the context of related technologies, Grid systems have to be men-
tioned once more, because of the great overlap with P2P systems; in fact,

 22

thanks to the convergence towards Web Services, Grid Services can behave
much like “peer” services sensu lato as they are able to perform computa-
tions on demand and can be connected each other in a peer-to-peer way.
However, the typical requirements of Grid applications involve a robust ar-
chitecture to effectively address safety and security issues, and this often
leads to a trade off in performance and throughput capabilities, which usu-
ally are not of main concern in Grid scenarios compared to typical P2P sce-
narios. This trend must be taken into account in designing a distributed ar-
chitecture for a real time task such as data acquisition.

In conclusion, this section has shown the large variety of different ap-
proaches to the P2P paradigm, spanning from almost pure C/S systems to
pure P2P systems; the architectures that have been revealed to be the most
scalable and reliable are focused on a hybrid approach, in order to take ad-
vantage from both C/S and P2P paradigms. These architectures will be util-
ized later in the context of distributed data acquisition systems.

 23

 24

 25

Chapter 2.
ANgate: an architecture for distributed AN management

In this chapter an architecture for network and applications manage-
ment is presented, which is based on the Active Networks paradigm and
shows the advantages of network programmability. ANs can implement a
complete distributed network management system, taking advantage of key
features like:

• availability of information held by intermediate nodes;
• data processing capability along the path;
• adoption of distributed strategies.
The above features meet the network management requirements: mo-

bile agents can be encapsulated and transported inside the active code of
application capsules. They can retrieve and extract pieces of information
held by intermediate nodes in a more effective way than through remote
queries from the application itself. For instance, an agent could make use of
an active code to look-up the Management Information Base (MIB) objects of
an intermediate node and select some entries according to a given criterion.
It can either send such extracted information back to the application, or it
can use the information to take timely decisions autonomously from the ap-
plication. Another example is a network topology discovery agent, which has
been devised and is able to walk through the network and get back to the
sender the full topology of the current active network.

More examples can be found in other network management areas, such
as congestion control, error management, or traffic monitoring. A more com-
plete example is the customization of the routing function. A mobile agent
could be devoted to the evaluation of the path for the application’s data flow,
according to the user’s QoS specifications. Each application could set up its
own control policy or make use of a common service.

Finally, active networks applications can easily implement distributed
strategies by spreading management mobile agents in the network. The in-
troduction of network node programmability makes the network system one

 26

single knowledge base, which is also capable of producing new information.
This happens, for instance, when new actions are generated deductively
from the resolution of previously stored data with occurrences of particular
events, thus allowing the inference of new events and the triggering of codi-
fied measures.

The architecture has been devised and implemented in the context of
the present research work; the stimulus to develop such architecture arose
from an actual need to manage a cluster of active nodes, where it is often
required to redeploy network assets and modify nodes connectivity. The cho-
sen name focuses on the central role provided by some special nodes in the
network, which act as gateways to the active network environment, and al-
low decoupling management applications from the specific implementation
details of the AN.

2.1. Overview

In this section the overall Active Networks management framework is
shown, focusing on the key functional characteristics of the proposed archi-
tecture. In particular, the programmability feature of ANs has been intro-
duced in a MIB-like software component to make the management applica-
tion itself distributed, cooperative, and adaptive ([ANG], [DGLL02]).

The main goal of such architecture has to be the management and
monitoring of active applications. Active applications management includes
the deployment, integration, and coordination of the software components to
monitor, test, poll, configure, analyze, evaluate, and control distributed net-
work applications and the network resources being used.

In this framework, shown in figure 2.1, the management application
operates as a Managing Entity (ME) by means of a graphical user interface,
and it sends queries and receives replays in XML format to and from an AN
Access Point.

An AN Access Point is an active node hosting a Gateway service. The
tasks of a Gateway service are the translation of XML requests to the spe-
cific language adopted by the Execution Environments (EEs) and the injec-
tion in the network of the appropriate active capsules that perform ME re-
quests. This way, the Gateway acts as an interface for a particular EE and
it is specific for the language supported by that EE.

 27

Management
ApplicationGUI

XML
wrapper

request [XML]

response [XML]

EE

EE

EE

EE

EE

ALA

ALA

ALA

ALA

ALA

Active Network

AN Access Point

EE = Execution Environment
ALA = Active Local Agent

reports

XML parser

EE Interface

active packets
[ML, Java, …]

AN gateway

Fig. 2.1 – The ANgate overall architecture.

Several nodes in the active network can be configured to provide Gate-
way services. An overview of the Use Cases provided by the system from the
AN Access Point perspective is given in fig. 2.2, where the main actors in-
volved in the network management process are depicted. More details on
the Gateway service will be given in the next section.

The XML language has been adopted to define a set of requests/replies
for basic operational tasks, which are common to any Active Network envi-
ronment. For instance, the user can discover the network topology, explore
the network nodes, find out those applications which subscribed the service
and monitor their activities. In particular, we are interested to manage an
AN testbed where novel management tasks are required as well, such as de-
fining the active network topology to be deployed. For this aim the GUI pro-
vides a topology editor and the Gateway is able to manage the configuration
and bootstrap phases of EEs in the active nodes, as it will be shown later.

Furthermore, a resident management service called Active Local Agent
(ALA) is installed in each active node. ME and ALA are the end points of the
management communication. Namely, the ME can either query the Active
Local Agents (polling) or deploy subtasks to them (programmable trapping).
Subtasks are asynchronously performed by the local management agents, in

 28

terms of actions to be executed at local events occurrences.

Fig. 2.2 – Main Use Cases Diagram for the ANgate system.

In the design of the architecture we moved from the traditional SNMP
framework and introduced the advantages of programmability of the Active
Networks paradigm. We redefined the role of the management agent and
adopted a different model for the MIB (Management Information Base). In
the traditional SNMP framework a managed device is a network equipment
which, in general, may contain several monitorable objects, either hardware
or software (for instance network interface cards or routing protocols). In
this protocol the Managing Entity can request the local SNMP basic opera-
tions on the MIB, i.e. SET and GET the value of the objects. Differently from
the SNMP scheme, in our model the ME can program the local agents’ be-
haviour to accomplish independent tasks and consequently it becomes able
to deploy a distributed strategy.

A degree of programmability is also added to the MIB objects with the
adoption of the object oriented programming paradigm. In our framework
the managed objects are active applications, which are distributed applica-

 29

tions whose software components run in both end nodes and intermediate
nodes of the network. A managed application is an application which sub-
scribes the management/monitoring service in a node by registering a
unique ID to the local agent and which stores information into the Active
MIB (AMIB). An AMIB object is related to a component of the managed ap-
plication in the active node.

Active MIB

Get/Set data,
filters, and
actions

Actions
Scheduler

Sync Events
GeneratorEasync Esync

Action
Performer

NTP

Active
Capsule

<Event,
Action>

Agent
Interface and

Policy
Enforcement

ALA - Active Local Agent

Action result:
- Active Capsule
- Remote Report
- Local/Remote set/get
data, filters, and actions

Clock and sync
process

Fig. 2.3 – The Active Local Agent Architecture.

The AMIB object allows storing the application data and a code frag-
ment associated to the data. Namely, each object is not just a single variable
storing a value, but it contains both data and code, where the code is repre-
sented as a set of conditions called filters. In ALA we implemented an
Events-Actions model, as shown in figure 2.3. AMIB filters are (Test, Event)
pairs, where the test is a boolean expression built over basic predicates by
means of logical operators. Filter test verification means that the given
event has occurred. The filter test is executed on the data when a primitive
SetData call occurs, i.e. whenever the data may change. If the test succeeds
the asynchronous event associated to the filter is raised and submitted to
the Actions Scheduler.

2.2. The AN Gateway Architecture

In this section the Gateway architecture is described, focusing on the
control flow which allows the MEs to operate on the underlying network.

 30

All Gateway services are offered over a TCP connection, by means of a
protocol defined to interoperate between the MEs and the AN. The protocol
supports commands for AN management in the form of XML wrapped re-
quests and responses; the general format for a query is:

<request command=“commandName” node=“nodeID”>
 <parameter name=“parName” value=“parValue” />
 ...
</request>

A similar format holds for the response:
<response command=“name” node=“nodeID” result=“queryResult”>
 further information if pertinent
</response>

As all queries are implemented in an asynchronous fashion, the command
name is carried back to allow demultiplexing on the receiving side. More-
over, the architecture supports multiple users, which can operate independ-
ently each other; therefore, as shown in the ANgate Class Diagram (fig. 2.4),
each user is assigned a new instance of GatewayToClient and Gateway-
ToNet classes, which are grouped by the main Gateway class. The first one is
an independent thread in charge of collecting XML requests and passes
them to the second one, which in turn will create and inject a suitable active
packet depending on the underlying EE.

Fig. 2.4 – The Overall ANgate Logical Class Diagram.

 31

On the AN side, each implementation is requested to send back re-
sponse messages by means of a standard TCP connection to the ANgate
host; therefore all capsules must contain the information to allow proper
demultiplexing towards the users. Namely, each active capsule includes the
command name to which it refers to, the ANgate hostname and the TCP
port number to which any reports have to be sent. The GatewayToPlan class
listens for these messages, and eventually calls back the GatewayToClient
class to forward the answer to the involved user, thus implementing the
well-known listener - subscriber callback pattern.

Finally, an authorization mechanism is in place in order to give differ-
ent privileges to authenticated users. Specifically, only superusers can
switch on and off the network, or inject custom active capsules, while nor-
mal users cannot interfere with other users’ activity.

In conclusion, this architecture allows to transparently manage differ-
ent kind of EEs and provides full multiuser support by means of multi-
threading.

2.3. Practical implementation

To prove the effectiveness of the proposed approach, we implemented
the Gateway service and the ALA on top of two of the main software pack-
ages for active networking, PLAN [Hic98] and ANTS [WGT98]. However, as
shown the framework has been designed in order to be independent on the
underlying Execution Environment, and new interfaces can be developed
and plugged in without modifying the Gateway core implementation.

2.3.1. The Gateway service
The Gateway service has been implemented by means of the Java pro-

gramming language. It takes advantage of the Reflection APIs provided
natively by the Java language to run different EE Interfaces on a homoge-
neous basis. An excerpt of the Java code that each EE interface must im-
plement is shown in listing 2.1.

public interface IGatewayToANet {
 public void setANetPort(short port);
 public void setGatewayToClient(GatewayToClient gwToClient);
 public void closeANetPort();

 32

 public boolean startANet(Net aNet);
 public boolean stopANet();
 public ANet isANetOn();
 public Vector getHosts();

 public boolean suspendNode(String node);
 public boolean resumeNode(String node);
 public boolean actPing(String node);
 public boolean getNodeLinks(String node);
 public boolean runMonCapsules(String node);

 public Iterator getCodesList(String codeType);
 public boolean injectRaw(String node, String capsule);
 public boolean injectToNode(String node, String capsule);
 public boolean injectToStar(String root, String capsule);
 public boolean injectToPath(String sNode, String dNode,

String capsule);
 public boolean injectToANet(String root, String capsule);

 public String getALAVersion(String node);
 public boolean getALAAppList(String node);
 public boolean getALAVarList(String node, String app);
 public boolean getALAVarValue(String node, String app,

String varName);
 public boolean clearALAValues(String node);
 public boolean setFilterAction(String node, String type,

String app, String varName);
 // ... other specific services
}

Listing 2.1 – Java code of the Gateway Interface to the EEs.

Here different group of services can be recognized: firstly, a set of core ser-
vices must be provided to start and stop the Active Network daemons, and
to retrieve the network topology (getHosts(), getNodeLinks()). Then a
group of services is devoted to the injection of custom active code on the
network: this is the key feature of Active Networking and it has been lever-
aged by means of Navigation Patterns. Namely, four different patterns have
been identified for the deployment of active code on the network:

• node simply deploys a custom capsule on a single node;
• star deploys it on a node and its neighbours;
• path deploys it on each node belonging to the shortest path between

two given edge nodes;
• net deploys it on the full network along the shortest paths’ tree, and

provides the possibility to run custom active code both during the
branching phase, when the capsule is broadcasted on the subsequent
branches, and during the merge phase, on the way back to the root.

 33

This way, the network administrator is able to deliver custom active
code on the network and thus implement distributed strategies and proto-
cols. Finally, the last group of service is related to the interaction with the
ALAs: services include querying the AMIB by application name and variable
name, and setting custom filters and actions related to them.

Fig. 2.5 – Gateway implementation Class Diagram.

A detailed view of the Gateway implementation is shown in fig. 2.5,

 34

where the full Class Diagram of the mentioned classes is presented. Among
others, the IGatewayToNet interface and one implementation, the Gateway-
ToPlan class, are shown. As mentioned before, both GatewayToClient and
GatewayToPlan instances are run concurrently, so the classes inherit from
the Thread class.

2.3.2. The Management Modules
Referring to the user interface, the GUI management modules have

been implemented as standard Java applets in order to be used remotely;
they maintain a TCP connection to a ANgate host and communicate over
this channel on a user driven basis.

A few screenshots of the running system are shown in fig. 2.6, where a
sample active network is running and some variables are monitored.

Fig. 2.6 – ANgate GUI screenshots. From left to
right: the AN designer and manager module, the AA monitor module and the main window
where the network manager can select the management modules to be used.

The main window on the right allows the user to select the Gateway
server and the EE to interact with, and contains the buttons to the man-
agement modules. To this end, four management applications have been de-
veloped in the context of this project: the AN Manager, the AA Monitor, the
MIB Browser and the Traffic Generator.

 35

The AN Designer & Manager provides the basic management and sys-
tem tasks, including switching on and off the EE daemons, discovering an
existing active network, and send custom active capsules to the network
nodes to deploy tasks to them. The Active Applications Monitor provides a
GUI to the AMIBs available on the network, and allows to query for current
variables and set custom traps according to the event-action paradigm
shown before. The MIB Browser acts as a bridge with the standard SNMP-
compliant MIB data, and allows to query for MIB values locally as well as
on other SNMP enabled devices. Finally, the Traffic Generator is able to
simulate traffic load scenarios on the network and allows studying the be-
havior and the performances of the active routers during overloaded condi-
tions.

Fig. 2.7 – Login and service initializing scenario Sequence Diagram.

 36

Although the lasts two applications concern other specific tasks, which
are not related to the present work, nevertheless all the applications rely on
the services provided by the Gateway servers as described above, thus prov-
ing the effectiveness of the proposed approach.

A working scenario of all the mentioned components is provided in fig-
ures 2.7 and 2.8, where two Sequence Diagrams describe the login and the
code injection use cases; the first shows the interactions from the user to the
network interface, including the GUI on the client side and the Gateway
classes Gateway, GatewayToClient, and GatewayToPlan; the second depicts
the process in a more condensed fashion, and the asynchronous behaviour of
the network in sending the answers is emphasized by means of the half ar-
rows.

Fig. 2.8 – Active capsule injection Sequence Diagram.

2.3.3. The Active Local Agent
The Active Local Agent has been prototyped for the Plan EE in the

 37

form of ML services [CAML]. The choice of a ML language has been driven
by the Plan implementation, which is based on ML, and it has the advan-
tage of a functional approach which in most cases makes the implementa-
tion shorter than a traditional imperative language, though it’s more com-
plex to understand; on the other side, a non-native code approach has shown
to significantly affect the performances: this is not an issue for a prototype
implementation, but it must be taken into account on a production environ-
ment. In order to provide a sample of the ALA services implementation, the
publish and the getVarValue services are shown in listing 2.2 below: even
without dealing with details of the OCAML syntax, the listing shows that
an hash table data structure, which is natively provided by the language, is
extensively used to store AMIB objects and query them as if they belongs to
SQL enabled databases.

let publish (name, newv, app) =
(
 try (
 let entry = Hashtbl.find pubTable (name, app) in
 match entry with
 (ts, v, t, filter) -> (
 let t1 = grabType newv in
 Hashtbl.replace pubTable (name, app) (Unix.gettimeofday(), newv,
 t1, filter)
 ; newv
)
)
 with Not_found -> (
 let t = grabType newv in
 Hashtbl.replace pubTable (name, app) (Unix.gettimeofday(),newv,t,[])
 ; newv
)
)

let getVarValue (name, app) =
(
 try (
 let entry = Hashtbl.find pubTable (name, app) in
 match entry with
 (ts, newv, t, f) -> (
 newv
)
)
 with Not_found -> (
 Log.log_msg ("\nALA.getVarValue: variable not found or expired\n");
 VList([]) (* returns an empty list as a void result *)
)
)

Listing 2.2 – The publish and the getValue ALA services implementation.

 38

Furthermore, listing 2.3 provides the related PLAN packet used to go
and query for a value into an active node. Here the second-order function
OnRemote is used to remotely evaluate a function, which is carried to the
target node achieving the code mobility mentioned before; the PLAN syntax
|f|() means that the function f must be evaluated remotely but its ar-
guments have to be evaluated locally.

fun report(v, lport, anode, aaname, avar) =
(
 try
 let val p = openPort(lport)
 in (
 printPort (p,"getALAVarValue: " ^ toString(anode) ^ " " ^

toString(aaname) ^ " " ^ toString(avar) ^ " = " ^ toString(v));
 printPort (p,"\004");
 closePort(p)
) end
 handle OpenFailed => (
 print("No server listening on host ");
 print(canonThisHost());
 print(" on port ");
 print(lport)
)
)

fun varValueSend(gw, gwport, dst, aaName, varName) =
 OnRemote (|report| (getVarValue(aaName, varName), gwport, dst,

aaName, varName), gw, getRB (), defaultRoute)

fun doit(gwport, destination, aaName, varName) =
(
 let val gateway = canonThisHost()
 in
 try
 OnRemote (|varValueSend| (gateway, gwport, destination, aaName,

varName), getHostByName(destination), getRB(), defaultRoute)
 handle NoRouteEntry => (
 let val p = openPort(gwport)
 in (
 printPort(p, "getALAVarValue: " ^ destination ^ " " ^ aaName ^

 " unreachable");
 printPort (p,"\004");
 closePort(p)
) end
) end
)

Listing 2.3 – The getALAVarValue PLAN packet which is sent to get an AMIB object.

The starting point of the packet is the doit() function, which is in-

 39

voked by the Gateway when it injects the capsule on the first node; it calls
the varValueSend() function, which has to be evaluated on the target node,
thus asking the node to route the packet towards the requested destination.
As the varValueSend() function is executed remotely, the packet asks once
again a remote evaluation of the report() function, this time back to the
starting point; this way the active packet performs a remote task and re-
turns back to provide a report on it. The exposed pattern has been used for
several report-oriented capsules, which implement all the required active
services, and it shows how the network functionality is seamlessly inte-
grated into the execution of the capsule.

Finally, the experimental laboratory on which the system has been de-
ployed and tested is constituted by a fully connected network of 40 active
nodes, which allows running custom specific topologies. Each node is im-
plemented by a Linux workstation equipped with four 100 Mbps Ethernet
network cards to emulate a four ports active router. The active nodes are
equipped with the Execution Environments mentioned above, together with
all the implemented software components to run the ALA service on each
active node, while the Gateway service has been run on a single node. This
setup allowed to run typical network management scenarios, as the size of
the network can be chosen in the order of tens of nodes, which is the same
order of magnitude of common intra-Autonomous System networks. Among
these scenarios, the case study proposed in the following section takes ad-
vantage of the main management applications, which allow controlling the
Active Network and the ALAs.

2.4. Case study: prototyping an intelligent management sys-
tem for ANs

In the following, a proof-of-concept application is described, which
takes advantage of the architecture shown above. The goal of the proposed
application is to run basic management tasks in an intelligent and autono-
mous way, by adopting a two levels framework where a decision system be-
haves as Managing Entity, and the Active Network management system
executes the operational tasks [DGLLI03].

The upper level automation is made possible by the adoption of a logic-
programming environment, which intrinsically owns special features that
easily allow the achievement of tasks such as the decision of actions, the

 40

prediction and classification of events, the diagnosis or explanation of fail-
ures, etc. Intelligent network management requires a model of the network,
which is able to capture both the cause-effect relationships and their dy-
namic nature (time varying relationships). A logical inference process can
use the system model to relate events that happen in the time-space to some
other events which can be seen as their root causes.

The situation calculus [Rei01] has been adopted to model the network
and its dynamic evolution. The situation calculus is a logic language specifi-
cally designed for representing dynamically changing world. The designed
management system can be classified as an expert system that adopts a
case-based strategy [CMR89]. It is an expert system since it owns a com-
plete knowledge of the working environment. Namely, among the logic
predicates it is necessary to provide ontological descriptions for all the enti-
ties which populate the external world, and for all their relationships. More-
over, we provided the system with the further capability of retrieving new
knowledge on the basis of the current situation where the world lies: if the
information available in the knowledge base is not sufficient to reach some
deductive goals, new data are required and successively acquired by means
of specific sensors positioned in opportune nodes of the network. The twofold
nature of the system allowed us to achieve a simple and accurate monitoring
of the managed network. In particular, the capabilities offered by the Reac-
tive Golog [Rei01] language have been used as the specific reasoning envi-
ronment adopted to implement the system. The adoption of Reactive Golog
language is due to its noticeable expressiveness and to its capability of pro-
viding simple and linear frameworks to the programmers.

2.4.1. Architecture
In this section we describe the testbed architecture which has been

adopted to implement the system. The general framework is shown in fig.
2.9 (next page).

The central role is performed by the Online Logical Reasoner, which
acts as a Managing Entity and is able to receive real-time data about the
state of the network through the ANgate Gateway, and to infer actions and
diagnoses. An RDBMS is connected to this logical Reasoner to store summa-
rized data about past diagnoses; this way, the logical Reasoner is able to
perform data mining across all logged data available on the network, since
the SQL database will contain only the meaningful information that is

 41

gathered from network nodes and filtered by the reasoning processes.
Furthermore, if the user submits a query about a specific fault hap-

pened in the past, the Offline Reasoner is set up to answer the query, based
on the data provided by the user. The Offline Reasoner could even load spe-
cific modules on demand, based on the submitted query, and it is able to
store the results of the inference process in the SQL database as well, thus
to enlarge the statistical data about detected faults.

past data

user data and modules

real time data

Online
Logical

Reasoner

Offline on-demand
Logical Reasoner

Active Network

user

ANgate

GUI

Fig. 2.9 – The Intelligent Management System architecture.

The network environment on which the Reasoner performs its tasks is
the Active Network management framework described in the previous sec-
tions. This implementation leverages both the ALAs, which are able to
monitor and manage each node of the network, and the active capsules,
which perform the actions planned by the logical Reasoner across the entire
network. Each ALA contains a set of sensors which can be switched on to
monitor a specific behaviour of the node; to this end, sensors for capturing
early discard of packets, detecting routing table changes, and detecting
neighbours state were developed; new external sensors (i.e. off-the-shelf
software components which are able to detect some particular network vari-
ables) can be plugged as well in the ALA architecture, as they become avail-
able.

 42

The local agents are modelled inside the logical engine as teleo-reactive
agents [Nil98]. From the logical point of view, a teleo-reactive agent holds a
set of simple rules and performs actions whenever the rule conditions are
met. Hence the ALA filter-event-action behaviour can be regarded as a
teleo-reactive agent implementation, where its variables constitute the dis-
criminating values over which filters are installed in order to generate
events, which in turn cause the execution of opportune actions.

A key feature of this architecture is that the inference engine is com-
pletely decoupled from the sensors and agents implementation, making it
easy to deploy the Reasoner in other network environments. Namely, the
flexibility offered by the ANgate management framework allows the logical
Reasoner to interact with other environments, provided that an interface is
implemented inside the framework to gather data and send commands to
that environment.

2.4.2. Reactive Golog
To implement the system the Reactive Golog language as the specific

reasoning environment has been adopted, which is based on common Prolog
languages. The formalization of the world in this language is performed by
means of well formed formulas of the first order logic, while the dynamism
is captured by the primitive concepts of state, primitive action and fluent.

The state is a snapshot of the world at a specific moment. All changes
to the world can be seen as the result of some primitive actions. Relations
whose truth values may vary in different situations are called relational flu-
ents. They are represented by means of predicate symbols which take a
situation term as their last argument.

Furthermore, special logical rules must be provided to represent the
time evolution. Primitive actions preconditions are rules that describe
whether actions can be carried out given a state of the world. Preconditions
are stated by fluents. The successor state axioms provide a complete descrip-
tion about the fluents evolution in response to primitive actions. They are
needed for each predicate that may change its truth value over the time. Fi-
nally, procedures represent the complex actions and constitute one of the
most important features of the Reactive Golog. They allow to group se-
quences of primitive actions and to implement recursive formulas using
formal parameters. Generally, dynamic systems are not totally isolated from
the rest of the world, but they continuously receive solicitations and interact

 43

with the external world. The Reactive Golog rules allow these interactions
describing how the world evolves when an external action is performed. This
is the so-called reactive behaviour, as the model captures in a logic way any
external “reaction” performed by the world.

2.4.3. The Ontology
One of the key challenges of this work is the construction of a logic

model capable of fitting as more as possible networking concepts. To this
end, all the entities which constitute the network layer of the OSI reference
model have been formalized.

The ontological engineering process regards which network aspects
should be represented and which form of representation could provide the
most appropriate features. This induced to establish a relationship between
the functional layers of the OSI networking model and some correspondent
layers of dynamic knowledge representation. In this vision, the lower level
view concerns the physical features of the network, while, for instance, rout-
ing devices and their connecting communication links represent knowledge
at a higher level. Furthermore, this first amount of knowledge representa-
tion has been integrated with the capability of representing the functioning
during the time. Logical sentences, whose validity is bounded to the time,
have been introduced for representing the temporal status of a given node or
a particular link. In order to represent the network environment as a dy-
namic system capable of flowing from a situation (current state) to another
one (successor state), the network has been viewed as an active entity capa-
ble of carrying out actions which modify its own configuration.

As a consequence, the knowledge base that has been developed is com-
posed by two parts: the first is a static database which contains all the
predicates which are independent from the time; this includes the formal
description of the network topology and its components (nodes, interfaces,
and links). The second part contains relationships and predicates which are
time dependent, such as a node status, or a node routing table.

To give a general representation of all predicates that belong to the de-
signed ontology, the frame paradigm has been used. Frames [Min75] have
been introduced in Artificial Intelligence to represent hierarchically struc-
tured knowledge bases.

Each frame is a collection of attributes and related values which de-
scribes an entity of a given context. The main key feature is the inheritance,

 44

which allows to define more and more detailed entities, as in the well known
OOP paradigm (which in fact is a development of the frames paradigm).

Figure 2.10 shows the frame representation of the knowledge base. All
entities inherit from the general entity Thing, which only contains the slot
name, used to identify each frame.

-ISA : = Thing
#Name
-Status : = (ON, OFF, ABN)

NetEntity

-ISA : = NetEntity
#Name
#Status
-Type
-RoutingTable
-IFaceList
-NeighborList

Node

-ISA : = NetEntity
#Name
#Status
-Address

IFace

*

-ISA : = NetEntity
#Name
#Status
-Type
-Bandwidth
-IFaceList

Link

*

*

-ISA : = Actor
#Name
-Node
-SensorList

Ala

-ISA : = NetEntity
#Name
#Status
-Type : = (TTL, RT, AN, DN)

Sensor

-ISA : = Thing
#Name
-Actor
-Parameters

Action

-Name
Thing

*

-ISA : = Actor
#Name

Reasoner

-ISA : = Thing
#Name

Actor

*

-ISA : = Thing
#Name
-Type : = (Loop, RT)

Cause

Each Action instance has
a variable number of parameters
and its name has the form
actorName_actionName

-ISA : = Thing
#Name
-Type : = (LostPkt, RT, DN)

Fault

* *

-ISA : = Actor
#Name

Capsule

Fig. 2.10 – The Frame representation of the Knowledge Base.

 45

The first inheritance level includes the frame Fault (in yellow) which
describes the faults that can happen in the network, and Cause (in yellow)
to describe any fault’s cause. Action models the actions executed either by
the network or by the Reasoner itself and the Actor (in green) frame de-
scribes all the modelled agents (Network, Capsule, Reasoner, ALA). Finally
NetEntity (in light red) is the root frame for all the network related entities,
including Node, Sensor, Iface, and Link. These entities represent the actual
model of the OSI network layer, as stated before. The IS-A attribute held by
all frames represents the mentioned inheritance relationship.

2.4.4. Experimental tests
In order to test and evaluate the presented logical inference system the

experimental setup described previously has been used, which includes the
ANgate management framework to interact with the network. A series of
experimental tests has been devoted to determine the reliability degree of
the system, in terms of discovered faults and performed repair actions.

For details about typical faults detection scenarios we refer to
[DGLLI03]. Fault events have been generated according to a Poisson distri-
bution for their temporal occurrences, and a uniform distribution for their
spatial positioning. The network size has been selected in the range of 20 to
30 nodes, which as mentioned before is the typical size for intra-
Autonomous Systems such as ISP networks. The failures generated are
listed in table 2.1, together with the results of the experiments.

Fault % Failure discovered Avg. discovery time
Errors in the RIP routing tables 96 10 s
Early Packet Discarding 100 5 s
Full Link Failure 100 30 s
Full Node Failure 88 30 s
Loops in the RIP routing tables 96 10 s
Changes in the state of neighbor routers 100 20 s
Backup Link Recovery 100 35 s

Table 2.1 – Summary of detected failures.

For each managed type of failure we report the percentage of cases dis-
covered and the average time elapsed before the failure recognition.

Most of the events are captured the full percentage of the cases. In the

 46

cases of events directly discovered by the Active Local Agents on the nodes,
for instance the case of changes in the states of neighbour routers, the dis-
covering times are constant since they depend on the sampling time of the
monitoring activity. The low percentage for the case of full node failure has
to be related to the simultaneous failures of several nodes. In fact, the oc-
currence of such events may provoke a disconnection in the network, thus
denying the capability of retrieving the necessary alarms.

Last row shows the measures of the action adopted to recover a link
failure. The average time of 35 seconds is the overall time since the full link
failure, thus meaning that the recovery time is limited to 5 seconds.

2.4.5. Performances and scalability issues
In this section some final considerations are argued for the proposed

system. Referring to the structure, the novelty of the proposed architecture
arises from the original idea of complementing a logical Reasoner with the
versatility of Active Networks. The integrated system collects the advan-
tages coming from logical reasoning and network programmability, and re-
alizes a powerful system capable of performing high-level management
tasks and dealing with unusual network situations.

The logical Reasoner is, namely, able to deduce knowledge and find
correlations from data and events which are distributed on different places
of the network and which occurred in different instants; moreover, thanks to
the AI approach it is possible to extend the capabilities of the Reasoner by
means of high-level logical statements.

Finally, the shown performances demonstrate the effectiveness of the
proposed approach, as the system has been able to deal with typical faults
scenarios that could happen in intra-AS sized networks.

However, if we want to extend the system from a proof of concept stage
to a fully working system, some scalability issues must be taken into ac-
count, which arose during the test phase: in fact, logical inference is a com-
putational intensive task which is known to scale poorly with the size of the
problem, which in this system is represented by the number of edges in the
network.

Namely, the computational complexity and the memory requirement
for a generic inference process are O(2k), where k is some typical dimension
of the investigated domain. In this context, the number of involved predi-
cates and logical rules are proportional to the number of edges m rather

 47

than the number of nodes n, because as shown before all interfaces and
links must be taken into account to infer the network status. Assuming that
m is in the order of n log n, which is reasonable in common loosely-
connected computer internetworking, the computational complexity of the
logical Reasoner is O(2n log n) = O(nn), which is higher than any other expo-
nentially growing complexity.

Therefore, the logical Reasoner that is in charge of inferring the net-
work status could not afford the task of managing increasingly sized net-
works. In conclusion, further investigation is needed to achieve better scal-
ability in distributed environments such as the distributed data acquisition
systems mentioned in the first chapter. The following chapters are devoted
to this investigation in the context of peer-to-peer systems.

 48

 49

Chapter 3.
Data Acquisition Systems for High Energy Physics

3.1. Data Acquisition Systems at CERN

Data Acquisition (DAQ) is a challenging task which nowadays involves
several research fields, both in microelectronics hardware and in software
technologies. Current trends in DAQ include design and development of
hardware boards capable of high-speed accurate A/D converting, as well as
software protocols and middleware technologies to allow computer based
data acquisition.

In general, a Data Acquisition System is a set of hardware and soft-
ware components which are used to read some information from data pro-
ducers (i.e. detectors, sensors, etc.), process it according to rules, and trans-
fer it to persistent store for subsequent use.

DAQ systems can be found in several environments: one example is the
systems for handling information from observation satellites, which are in
operation within space agencies. Data acquisition systems for particle phys-
ics experiments are especially challenging on their requirements, expecially
because a large number of geographically disseminated data producers are
present and must be properly handled; the related context is outlined in this
section.

In a High Energy Physics (HEP) experiment, subatomic particles are
accelerated and brought to collision. The results of these collisions are re-
corded to investigate the structure of the matter, in order to find an answer
to the fundamental question in nature: what is matter made of? To achieve
this task, the energies with which the particles in a collider are shot at each
other have to be very high for two reasons: first, due to the Einstein’s law (E
= mc2) energy has to be high enough in order to produce new massive parti-
cles; second, according to the De Broglie law (λ = h/p), to probe very small
distances a short matter wavelength λ is required, which calls for high mo-

 50

mentum p and thus high energy.
These facts require that HEP experiments use huge machines compris-

ing several different arrays of sensors and detectors, capable of identifying
all newly generated particles which eventually arise after the collision
events. Furthermore, the rationale behind these machines is related to the
extremely low probability of new interesting events in particle colliding
beams, as it will be explained later; so in order to have a reasonable number
of interesting events, the primary event rate has grown as much as the
technology is able to deal with.

Therefore, an online DAQ system for such experiments has to collect
data from all events for later processing, and this task must be distributed
on several network and computational units. A typical HEP experiment in-
volves thousands CPUs, and since the system is distributed, an infrastruc-
ture must be in place that supports all the operations in a distributed sys-
tem. The infrastructure provides services that allow plugging a computing
resource into the system. Already available services should be accessible by
the newly added resource as well as all its services should be made available
to other participants. This process of joining and participating in a distrib-
uted system should be independent of special services, should not affect the
operation of other participants and should not require any input from a
user.

For this purpose Peer-to-Peer systems have been evaluated and tested
for their fitness in Data Acquisition systems for HEP experiments. In the
following an overview of this research context is given.

3.1.1. CERN and the LHC experiments
The European Organization for Nuclear Research (CERN) is located at

the border between France and Switzerland near Geneva. It is one of the
most important laboratories for High Energy Physics experiments world-
wide, and it hosted several accelerator facilities, which have been in opera-
tion during the last fifty years. Among them:

• PS Booster and PS (Proton Synchrotron), 1959, the first machines
now used to initiate particle beam acceleration and send the beam to
the other accelerators.

• ISR (Intersecting Storage Rings), 1966, for proton-proton collisions.
• SPS (Super Proton Synchrotron), 1971, for proton-antiproton colli-

sions.

 51

• LEP (Large Electron Positron collider), 1981, for electron-positron
collisions.

The latest accelerator facility that is being built at CERN is the Large
Hadrons Collider or LHC (fig. 3.1), a 26 km long accelerator facility which is
expected to be running by 2007, and which will be able to accelerate several
different high-energy particle beam collisions [LHC]:

• Proton-proton collisions at 7 TeV.
• Heavy ions (such as Pb) collisions at 1.25 TeV.
• Proton-electron collisions at 1.5 TeV.

Fig. 3.1 – Aerial view of the CERN accelerators.

In this framework, four different HEP experiments are presently being
devised to make use of the capabilities of the LHC accelerator: ALICE (A
Large Ion Collider Experiment), ATLAS (A Toroidal LHC ApparatuS), CMS
(Compact Muon Solenoid), and LHCb (LHC study of CP violation in B-
meson decays). While a detailed description of the LHC experiments is be-
yond the scope of this thesis, in the following an outline description of a spe-
cific Online Data Acquisition system, which is being developed for the CMS

SPS

PS

LEP/LHC

 52

experiment, is presented to show the context framework where the present
work has been implemented.

However, it’s important to mention that despite some rough similari-
ties among the four experiments, the Online DAQ systems being developed
for each of them are independent subprojects, as well as any other systems
presently under development, thus decoupling any eventual issue that could
arise in any system from each other.

3.1.2. Overview of the CMS experiment
The CMS experiment [CMS] is being built at CERN to leverage the full

luminosity of the LHC accelerator, i.e. the maximum particle bunch crossing
rate in proton-proton collisions. During such collisions, the total energy is
converted into matter and several newly generated particles are created
that evade from the interaction point (fig. 3.2).

Fig. 3.2 – Schematic layout of the CMS experiment.

The CMS experiment is a general purpose experiment, capable of de-
tecting a variety of new physics events. More specifically, a foreseen out-
come is the production of the Higgs boson, a key fundamental particle pre-
dicted by the current Standard Model of particle physics; moreover, the
CMS experiment will allow research on new concepts beyond the Standard
Model, such as super-symmetric particles. For further details about particle
physics involved in the CMS experiment, refer to [CMS95].

The CMS detector (fig. 3.3, next page) is mainly composed by a super-
conducting solenoid, to produce the strong magnetic field needed to bend the
trajectories of all charged particles generated after the collision, and a num-

 53

ber of different detectors, which surround the collision centre as an onion
skin and allow to measure energy and momentum of most generated parti-
cles: the Tracker provides track reconstruction for charged particles, the
Electromagnetic Calorimeter (ECAL) and the Hadronic Calorimeter (HCAL)
provide detection of electrons and photons the former, and quarks and glu-
ons the latter. The external Muon chambers provide tracks for muons,
which are able to traverse the whole detector; finally the EndCaps provide
detection for all particles (electrons, hadrons, and muons) which escape
close to the beam lines. The total number of individual detector channels in
the CMS experiment is in the order of 15,000,000. In fig. 3.4 (next page) a
view of one EndCap is shown to demonstrate the dimensions of the involved
components.

MUON BARREL

Silicon Microstrips Pixels

ECAL
Scintillating
PbWO4 crystals

Cathode Strip Chambers ()CSC
Resistive Plate Chambers ()RPC

Drift Tube
Chambers ()DT

Resistive Plate
Chambers ()RPC

SUPERCONDUCTING
COIL

IRON YOKE

TRACKER

MUON
ENDCAPS

Total weight : 12,500 t
Overall diameter : 15 m
Overall length : 21.6 m
Magnetic field : 4 Tesla

HCAL
Plastic scintillator/brass
sandwich

CALORIMETERS

Fig. 3.3 – Open view of the CMS detector (source: CMS web site).

According to the Standard Model, the probability of an event with a
Higgs boson production has been estimated in the order of O(10-13): at full
luminosity the LHC technology will allow an event rate of as high as 800

 54

MHz5, thus leading to an expected new particle production rate of approxi-
mately one event per day.

Given the above figures, the data acquisition and filtering processes
are of critical importance, in order to achieve the expected results from the
raw data produced during the operational phases of the experiment and get
the relevant events from it.

Fig. 3.4 – One end cap of the CMS detector (April 2004).

3.1.3. The on-line Trigger and Data Acquisition system for CMS
Among the subsystems for the CMS experiment, TriDAS (Trigger and

Data Acquisition System) is in charge of running, managing and monitoring
the on-line data acquisition processes needed for the experiment [CMS02,
TriDAS]. In the following a brief description of the whole process is given.

Since the primary event rate is as high as 800 MHz, the first triggering
and event-filtering process will be carried on by custom high-speed electron-

5 The maximum luminosity provided by the LHC is in the order of 1034 particles per

cm2 and per second, or equivalently 40 million bunch crossings per second. As each bunch
crossing generates on average 20 particle collision events, the average primary event rate is
in the order of 800 MHz.

 55

ics, capable of sampling the signals
coming from the mentioned detec-
tors, and making a first-level filter-
ing in order to quickly discard non
interesting events. The custom
hardware is also able to produce a
bit stream for each selected event,
which contains all the signals and
the information related to the sin-
gle collision that happened inside
the detector. The entire hardware
system is called Level 1 trigger
[TriDAS] and it is able to produce a
maximum event rate of 100 kHz
and an average event data size of 1
Mb.

The proper Data Acquisition
process will take place at this step,
where the total incoming band-
width is in the order of 1 Tbps.
Hereafter all computations are car-
ried by dedicated software running
on top of common off-the-shelf PCs,
equipped with suitable Linux OS distributions. As such, the shown figures
lead to several high performance requirements for a DAQ software system,
which has to deal with such bit rates. As mentioned before the DAQ system
must be distributed on a computing farm whose size is not trivial: in fact,
the computing farm which will operate the process is composed of thousands
PCs featuring a computing power of 5·106 MIPS and connected by an high-
end Tbps bandwidth network; the main task is to collect the events from the
digitizers (see fig. 3.5), and execute ad-hoc filtering algorithms to save the
most promising events with a ratio of at most 1 over 1000, thus achieving a
maximum output event rate of no more than 100 events per second: this is
carried on by the event filter farm, and the output can be finally sent to ap-
propriate mass storage for later offline analysis, by means of a world wide
Computing Grid. The data production is in the order of a Terabyte per day.

In particular, a more detailed view of the computing farm is shown in

Fig. 3.5 – A summarized view of the
whole DAQ process from the detectors
to the mass storage (source: TriDAS).

 56

fig. 3.6. The computing units which compose the DAQ farm can be divided in
three categories: the Readout Units (RU), the Builder Units (BU), and the
Filter Units (FU); the RUs are in charge of retrieving data from the hard-
ware detectors, the BUs are in charge of collecting data event produced in
different locations to a single place and the FUs are in charge of running
high-level filtering algorithms to extract and save most promising events as
mentioned. A full DAQ “slice” contains 64 RUs, 64 BUs and a variable num-
ber of FUs, depending on the chosen configuration and on the dynamic load
level of the farm. It is being foreseen a dynamic allocation of the computa-
tional resources, in order to take full advantage of them according to the on-
going tasks. The full system is composed by 8 slices, plus some controlling
and configuration facilities, including the Global Trigger Processor, the
Event Manager, and the Run Control and Monitoring System (RCMS)
[CMS02].

Fig. 3.6 – The DAQ cluster layout for the CMS experiment (source: TriDAS web site).

Experimental tests with trial data, as well as small scale replication of
the experiment at CERN test beam6 facilities, are being carried on in order
to assess the devised architecture.

The following section shows with more details all the requirements

6 Test beams are experimental facilities available at CERN to try out and calibrate

the detectors and all related systems, using particle beams generated in the CERN accel-
erators. As these beams are intended for testing purposes, the involved energy and the lu-
minosity are much less with respect to the LHC operating conditions.

 57

that a DAQ system shall meet to fulfil the targets mentioned above. After-
wards, the Peer-to-Peer DAQ framework that has been designed at CERN
will be described; this framework represents the environment on which the
present work has been developed.

3.2. Distributed Data Acquisition: requirement analysis

Re-usable online DAQ software [GMO02] must expand along two re-
quirement dimensions, functional and non-functional. The first category in-
cludes all requirements related to the tasks of the system, whereas the sec-
ond one captures requirements that stem from environmental constraints
imposed on the software subsystem. The most vital requirements, whose ful-
filment is crucial for reaching the goal, are outlined in this section.

3.2.1. Functional requirements
At the functional level, the software must provide the means for the

movement of data, the execution and steering of applications and the base-
line set of application components to perform data acquisition tasks.

Requirements on communication are the most important ones for a
data acquisition system. The software environment must provide a set of fa-
cilities for the transmission and reception of both, control and value data
within and across system boundaries. This functionality must be available
for communication among application components on the same processing
unit and for those distributed over physically distinct interconnected proces-
sors. In addition, services must be available to retrieve all information
needed to establish communication paths to other application components.
True interoperability is vital and requires decoupling of application code
from protocol code at run-time such that communication at the application
level can be performed in the same way even if the underlying protocols (ex-
change sequences and data format) used are changed. Finally, the design
must foresee the possibility for applications to interact with future systems
that were not planned for, through the provision of facilities that allow add-
ing communication protocols. These extensions shall be designed such that
no modifications in applications that use the newly added communication
method will be required.

Various system and application software components need a set of
functions to access custom electronics devices directly for configuration, con-

 58

trol and readout purposes. Such operation shall be provided in much the
same way for devices that interface directly to the host computer through
the internal bus as well as for devices that are interfaced through bus
adapters (e.g., PCI to VME). As a consequence, remote device manipulation
through intermediate control processors must be supported. The layer must
also include provisions for extensions to new bus adapter products. These
functional requirements imply additional constraints on the portability, ro-
bustness and efficiency of the software, as discussed in the next section.

The infrastructure must include facilities that enable the creation,
maintenance and persistent storage of information about all hardware and
software components that can make up the system. The stored data must
cover all configuration parameters that are necessary for applications to
perform their functions. Applications will be able to share physical resources
such as computers or networks. The software environment must support
these operations by providing mechanisms to cope with allocation, sharing
and concurrency situations. The environment should foresee the means to
make application run-time parameters of any built-in or user-defined data
types visible to other applications within or outside the system. It shall also
be possible to inspect and modify all such parameters. Moreover, all infor-
mation about a system and its components that is produced during run-time
must be preserved for analyzing system status and for backtracking fail-
ures. Thus, a service must be present to record different types of informa-
tion, such as logging messages, error reports, as well as composite data
types. Examples for the latter include statistics and histograms. Such in-
formation items, generally termed documents, should be distributed to a set
of subscribed clients in near real-time.

To let operators interact with the system for configuration, control and
monitoring purposes, a user interface that is decoupled from the actual ser-
vice implementation shall be provided. This interface, graphical, voice-
driven or otherwise adapted to human communication capabilities, must not
contain application specific implementations. Rather, it shall be possible to
tailor it to the given domain. Such requirements should lead to a design that
seamlessly allows remote control from any place in the world. To perform
repetitively occurring tasks a service has to be provided for automating all
operations that the configuration, control and monitoring services offer into
stored and recallable procedures.

Finally, a true re-usable architecture shall provide generic application

 59

components to allow ease of data acquisition related tasks for non-expert
users. These tasks include:

• collection of data from one or multiple data links to be made avail-
able to further components in the processing chain through a single
and narrow interface;

• event building (the combination of logically connected, but physically
split data fragments originating from the same observed physical ef-
fect) from multiple data sources on a set of parallel working process-
ing units;

• on-line diagnosis and hardware/software testing;
• a benchmarking suite to validate implementation efficiency and test-

ing against performance requirements;
• provision of access to various persistent data store systems through

a uniform interface (the inter-application communication scheme);
• self contained configuration, control and monitoring applications.

3.2.2. Non-functional requirements
In addition to functions, a number of constraints are placed on the soft-

ware targeted at providing a generic data acquisition infrastructure. They
originate from the diverse environment in which the system is embedded.
The term “environment” encompasses the hardware infrastructure, the
properties of detector output channels and the performance that the system
must sustain at its inputs (throughput and latency requirements).

First of all portability must be provided across different operating sys-
tems and hardware platforms. More than mere data conversion functional-
ities, this feature must support accessing data across multiple bus and
switching interconnects and the possibility to add new communication and
readout devices without the addition or removal of explicit instructions in
user applications.

Operating system independence shall be provided, but can only be
maintained if user applications do not to directly call native system func-
tions. Most important, the memory management tools of the underlying sys-
tem should not be exposed directly to applications, since their uncontrolled
use affects the robustness of the system. Rather, all system services shall be
provided through self-contained components.

Furthermore, scalability is a key requirement in such systems, in order
to take full advantage of increasing hardware resources, both as computing

 60

power and communication bandwidth. Namely, the system must be able to
make use of the available resources to operate within the changing require-
ment constraints, particularly regarding message transmission constraints,
which dominate data acquisition tasks and may change on a case-by-case
basis. As a result, the design of the system must guarantee constant over-
head for each transmission operation.

Finally, flexibility must be provided to the user level in several con-
texts: for example it is necessary to allow the developer to use multiple net-
works and protocols concurrently, hiding the technical differences. Another
related feature is making the system as much self-configuring as possible
for all technical related aspects. Therefore zero-configuration modules are
desirable for critical functions where the proper configuration cannot be
known before run-time. Namely, the system shall adapt itself to the envi-
ronment without relying on predefined static configuration files.

On this behalf, distributed auto-discovery services, which are the typi-
cal and most important feature of P2P systems, are able to provide the tech-
nological support to fulfil this requirement. Hence, a distributed infrastruc-
ture shall be in place to support discovery of any upcoming software
resource in the network, during the operational time of the system; in this
context, as in P2P systems, discovery refers to the ability of identify and lo-
cate a software resource wherever it is placed in the network, in order to
provide an updated distributed index of all running resources for later moni-
toring or control related tasks. This is the central topic of the present work,
as it will be shown in the next chapter.

3.3. XDAQ: a Peer-to-Peer framework for Data Acquisition

XDAQ (pronounced Cross DAQ) is a cross-platform Peer-to-Peer based
framework designed specifically for the development of distributed data ac-
quisition systems within the CMS experiments at CERN [GO02, GMO03].
The main goal of this framework is to provide a homogeneous architecture
to support development of data acquisition applications, hiding all the de-
tails of the underlying hardware. Namely, it acts as a middleware allowing
seamless integration between several different hardware devices.

The role of this middleware is to ease the tasks of designing, program-
ming and managing data acquisition applications by providing a simple,
consistent and integrated distributed programming environment. The

 61

framework builds upon industrial standards, open protocols and libraries.
The vision of its authors is to come to such architecture for data acqui-

sition that can be used in various high-energy and nuclear physics installa-
tions, scaling from small laboratory environments to large, collaboration-
based experiments such as the CMS, and fulfilling all the requirements
mentioned before. This high-profile challenge has requested an evolution to
validate and improve the architecture, and currently it is being released the
third version of the XDAQ software.

The XDAQ system has been designed as a set of independent, dynami-
cally loadable modules, each one dedicated to a specific subtask. A XDAQ
executive daemon simply acts as a container for such modules, and loads
them according to an XML configuration provided by the user. Some core
components are loaded by default in order to provide basic functionalities,
as explained later. The main components of the XDAQ environment include
exception handling facilities, peer transports, and data serialization; the
XDAQ core applications include the HyperDAQ web interface application
and the XRelay message forwarding application.

The Xcept module provides uniform distributed exception handling fa-
cilities across all modules of XDAQ and it hosts several pre-defined excep-
tion classes which inherits from the STL class std::exception. Some con-
veniences such as the line number are included for bugs tracking with a
Java-like interface.

The Peer Transport module is in charge of providing all the communi-
cation facilities between different executives. It is composed by a Peer
Transport Agent (PTA), which acts as a single manager for all registered
transport of each XDAQ environment, and several peer transports, which
support different network protocols and services. For instance, the HTTP
peer transport provides text based communication as SOAP messages on top
of HTTP/TCP; the I2O peer transport7 provides fast binary based communi-
cation by means of I2O frames over IP; an UDP peer transport provides un-
reliable messaging on top of UDP; and ATCP for asynchronous TCP com-
munication. The module is easily extensible as new peer transports can be
plugged in to fits specific needs, and as such it contains some ten peer trans-

7 I2O, which stands for Interactive I/O, is a protocol defined in the context of local

device access through the PCI bus [GMO03]. It has been adopted within the DAQ system
for the CMS experiment as a fast protocol for binary data transport, because it is more effi-
cient than SOAP, which in turn is more suitable for control-plane verbose text messages.

 62

ports.
All peer transports shall follow the same interface, which is outlined in

fig. 3.7, in order to provide to the application level a homogeneous platform
for communication over different networks and/or services. Two classes are
always provided by any peer transport, a PeerTransportSender and a
PeerTransportReceiver. The first one is a factory of Messenger class in-
stances, which expose a send() function with suitable arguments; the sec-
ond allows to register user-defined listener classes, which inherits from a
suitable Listener interface, and calls back their processIncomingMes-
sage() method to deliver incoming messages. The PTA wraps a vector of
senders and receivers, and exposes methods to retrieve the proper sender or
receiver given a complete URL, with the standard format including the pro-
tocol, the destination, the listening port and eventually the service name to
be invoked. Namely, the first peer transport is returned which matches the
protocol and service specified in the URL.

Messenger
PT

Sender
PT

Receiver

Listener

Network Transport

void send(message* msg)

Listener
Interface

processIncMsg(message* msg)

Peer Transport Agent (PTA)

User Application level

Peer Transport level

Fig. 3.7 – The XDAQ Transport Architecture.

The Toolbox is a collection of utilities and tools to wrap OS services for
portability across different platforms. It includes classes to support Finite
State Machines creation and handling, to provide Java-like pointers featur-
ing reference counting and automatic disposal after last usage, and to wrap

 63

basic network and OS dependant functionalities.
A number of supporting modules are present. The XData module pro-

vides an API for data serialization and deserialization; it provides function-
alities to convert any complex data type, including vectors, maps and so on,
to SOAP messages. Xoap is a module to provide SOAP C++ API; it is based
on the Xerces open source project for XML parsing and exposes all the func-
tions to create and parse SOAP messages. Xgi is a module to provide CGI
programming to XDAQ applications, as explained later.

Finally XDAQ acts as an application container and as such it can run
custom applications, in the form of classes which shall inherit from the
xdaq::Application class. The XDAQ applications carry the real Data Ac-
quisition tasks and are typically written by physicists, to implement user-
defined algorithms in order to build up event records from detectors data in
the BUs, or filter promising events in the FUs as outlined previously. All the
XDAQ applications are configured at run-time through specific XML format-
ted files.

A XDAQ application may include a web-based interface, in order to
work as a web application, in a similar fashion as typical Java servlet-based
or PHP-based web application programming. In this case, web pages have to
be built by means of the cgicc package, a CGI for C++ external package
which is wrapped in the XDAQ Xgi module. A binding functionality is pro-
vided to easily attach user methods to URLs; when such methods are called
back, they receive the full HTTP message with any eventual parameters,
and they are provided with an output stream, which corresponds to the
HTML page in the client’s browser, thus replicating the well known Java
servlet APIs.

A number of core XDAQ applications are started automatically during
the daemon bootstrap procedure, to enable a minimum set of functionalities
and to enable users to further customize the behaviour of each XDAQ dae-
mon. This set comprises:

• The Executive itself, which essentially provides SOAP and I2O mes-
sage dispatching, as well as a web-based interface for configuration.

• The FIFO peer transport, which is used for inter application com-
munication within the same executive.

• The HTTP peer transport, to provide remote SOAP-based configura-
tion and to enable web-based interfaces to other XDAQ applications.

• The HyperDAQ application. HyperDAQ is a web-based application

 64

which allows managing all the running application in a given XDAQ
environment, included itself. It allows interactive SOAP based con-
figuration by means of suitable Java applet clients, so it is possible
to send SOAP messages to any running application or to check their
current configuration. Moreover, it supports a dynamic run-time
loading facility to upload and start a new XDAQ application as a
loadable module (either a Linux .so module or a MacOS .dynlib
module). On the other hand the same mechanism is used within the
bootstrap procedure to load this set of XDAQ applications.

• The XRelay application. XRelay is another web-based application
which supplies forwarding and hierarchical propagation of SOAP
messages to several different executives in the network, provided
that the list of target nodes is already known. This way it is possible
to send a single XML configuration file to a XDAQ executive through
a SOAP message, and instruct the XRelay application running on it
to deploy the specific configuration to all XDAQ executives running
on a given cluster. Furthermore, forwarded messages are able to
traverse firewalls or private networks as far as appropriate XRelay
instances run on top of border nodes acting as gateways.

It should be remarked that this self-referring dynamic mechanism pro-
vides a high level of flexibility and modularity, as even the core modules are
loaded at runtime like user modules in a uniform fashion.

In summary, it has been shown how the XDAQ executive works as a
middleware system to enable custom applications to run typical data acqui-
sition tasks on different network transports, and taking advantage of sev-
eral different facilities with a homogeneous approach.

 65

 66

 67

Chapter 4.
Peer-to-Peer and Discovery for Distributed Data Acquisition

4.1. Autonomy and auto-discovery features of Peer-to-Peer
systems

As previously mentioned, P2P systems deal with highly dynamic envi-
ronments where the autonomy of the peers and the auto-discovery service
they can provide is one of the most critical and enabling features. In this
section, the auto-discovery mechanisms and models are analyzed, in the
light of the DAQ requirements that arose in the previous section.

Among the main discovery models, the centralized model makes use of
a central server as a resources’ directory, while the peers are able to ex-
change data each other only after querying the central server; examples of
such a model are Napster and the Web Services paradigm. On the opposite
side, the distributed model with flooding is the most P2P-oriented model: in
fact, peers broadcast advertisements each other to create the network and to
find the queried resources; an example is the first Gnutella network. Fi-
nally, the distributed model with hash tables takes advantage of the Dis-
tributed Hash Tables (DHT) paradigm to index resources in a distributed
fashion without broadcasting query messages. This general model has
proven to be the most effective in common P2P systems, as mentioned in the
preliminary survey section; several implementations exists which take ad-
vantage of it, and introduce different variants depending on tradeoffs be-
tween the overhead of distributed index maintenance and the cost of que-
ries, especially in case the distributed index is not consistent.

In particular, the Gnutella network implements a Query Routing Pro-
tocol (QRP) [GNUT] which uses the DHT paradigm considering the case of
keeping the index synchronization; a brief description of the QRP is given.
Let H(k) be a function which return a hash key in the set {0, …, Hmax} for
each given string k. The routing table structure for each peer is defined as

 68

follows: for each h ∈ {0, …, Hmax} and for each connection C, let RT(C, h) be
the number of hops along the connection C to a peer which has a matching
file or content, i.e. a file indexed by a keyword k such that H(k) = h, or ∞ if it
does not exist. If the file is shared locally, let RT(C, H(k)) = 1 for each C and
for each k chosen for the file. With these assumptions, a query for the key-
words set {k1, …, km} with a TTL = N is forwarded to a connection C iff
RT(C, H(ki)) ≤ N for all i = 1, …, m. Therefore, a query for a single keyword
k is forwarded to a connection C iff there is a matching result on that con-
nection within N hops. This rule avoids to route requests far from a possible
hit, up to the knowledge available on each peer; however, if no entry is
found on the RT which satisfies the above condition, the query fails instead
of being forwarded to any other peer. Finally, routing tables are sent by
peers on a regular basis and when a routing table is received, a peer updates
its table via dynamic programming: let host X have connections to host
Y1, …, Ym (both incoming and outcoming). For each received entry RT(Yi →
X, h) and for each outgoing connection, RT(X → Yi, h) is equal to 1 if X is al-
ready sharing a resource with a keyword which hashes to h, or minj≠i {RT(Yi
→ X, h)} + 1 otherwise.

DHT approaches provide an efficient index lookup mechanism, which
as mentioned before has a complexity of O(log n), where n is the number of
peers. But it assumes that the routing tables are kept synchronized, and the
associated maintenance cost typically grows exponentially as the peer churn
rate increases.

On the other side, one can partially loose the consistency of the dis-
tributed index, in order to limit the overhead of regularly sending routing
tables in highly dynamic networks, which can overcome the cost of query
lookups. In this case, at cost of sporadically expensive queries, a loosely-
coupled network is maintained which converges to a fully consistent net-
work if the peer churn rate is low, but at the same time it does not lead to
index trashing if the peer churn rate is high. This is the case of the Rendez-
vous Peer View (RPV) implemented in the Jxta network [Tra03].

Project Jxta network proposes a hybrid approach that combines the use
of a loosely-consistent DHT with a limited-range rendezvous walker to gar-
bage collect out-of-sync indices. Rendezvous peers are not required to main-
tain a consistent distributed hash index leading to the term loosely-
consistent DHT. If the rendezvous churn rate happens to be very low, so the
known peers list for each of them remains stable, the loosely-consistent

 69

DHT will be synchronized and it will achieve optimum lookup performance.
The mentioned approach uses the following algorithm. Let H(adv) be a

function which hashes the given advertisement adv and returns a peer ref-
erence where to store the key. Whenever a rendezvous peer r1 receives a
new advertisement from a newly coming peer, it stores the advertisement
locally and computes H(adv) obtaining, say, rk; then it sends the advertise-
ment to the peer rk, as well as to rk-1 and rk+1, which are the two immediate
neighbours in the r1’s ordered list of known peers. This enables an amount
of redundancy in case the target peer rk will eventually shut down later. It
must be point out that the neighbouring relationship only holds in the logi-
cal view of peer r1: real peers can be located far away on the underlying
physical network. Now if another peer is looking for the same advertisement
adv, it will query it to its rendezvous, say r2: if the RPV is consistent, i.e. if
all rendezvous peers already know each other and no one is down, r2 com-
putes H(adv) = rk because the hash function is the same, and can success-
fully answer to the query without walking other RPV views. In the general
case, if the RPV is not consistent, r2 computes H(adv) = rk', k-th peer in r2’s
local RPV. But if there were only slight changes on the network, chances are
that rk' = rk-1 or rk' = rk+1, which as stated before hold the answer: in this
case, there is still no need to walk different rendezvous in order to find the
answer to the submitted query. If mayor changes happen to the network,
the computed rk' falls out of the range in which the entry has been dupli-
cated, and an expensive walking has to be performed to solve the query,
starting from rk' and moving to the list neighbours. It shall be noted that
such duplication range can be tuned in order to increase chances of finding
the correct hash at cost of increased messaging during the advertisement
phase; if the range grows up to the full RPV, the algorithm comes back to
the standard DHT model, ensuring perfect synchronization but with maxi-
mum messaging overhead during advertisements.

The distributed update process is similar to the Gnutella algorithm:
from time to time rendezvous peers exchange each other part of their RPV.
This ensures that the RPVs on all peers converge to the same consistent
view; however, no effort is made and thus no overhead is generated for
highly dynamic networks to keep consistency, as the provided RPV walking
explained above, though costly, turns out to be less expensive than trying to
maintain consistency.

 70

4.2. JXTA as a platform for DAQ

Among P2P platforms that have been outlined in the first chapter, the
Jxta platform has shown to be the most complete to design and develop dis-
tributed services to support common DAQ tasks.

Several advantages can be mentioned for such choice: Jxta is developed
as an open source platform, allowing further developments and customiza-
tions without royalty issues. The core distributed P2P services, especially
the discovery service, are provided natively by the platform, and the imple-
mented approach is the loosely-consistent DHT mentioned before, which fits
typical DAQ scenarios especially because it does not rely on central or pre-
configured servers. The platform is based on common standards, such as
XML, and can be easily extended to support all leading web oriented stan-
dards. Furthermore, during all the development of the present work the
Jxta developers’ community has proven to be very much active, hence assur-
ing support on any upcoming issues concerning the platform itself. Finally,
the intrinsic modularity, together with the mentioned open source nature,
have allowed ease of customization to address all minor issues that have
risen during the work, and to fit the platform to the requirements of the pre-
sent project.

In this section a deeper survey on the Jxta architecture is given to il-
lustrate some peculiarities of this platform, and how it can lead to a case
study application of Peer-to-Peer in DAQ context shown later.

4.2.1. JXTA fundamentals
Jxta is a set of XML based protocols to enable Peer-to-Peer communica-

tion and related core services to distributed applications. A number of dif-
ferent reference implementations are available for the most common pro-
gramming languages, as mentioned earlier; not enough, the Jxta project is
being implemented in several other embedded platforms, including JXME
for J2ME, a Tini implementation for TINI (Tiny INternet Interface) boards,
and among early stage ongoing project it shall be mentioned PocketJxta for
PDAs, JxtaPy for Python, and JxtaPerl for Perl language.

The main aim of the platform is to enable truly pervasive peer-to-peer
internetworking, abstracting the P2P services from any networked hard-
ware, no matter what it is based on, and creating a virtual overlay network
(see fig. 4.1).

 71

Fig. 4.1 – Mapping a Jxta virtual network over the physical network (source: Jxta web site).

Moreover, several leading middleware technologies can be integrated
in a Jxta based application, thanks to specific binding projects provided on
the Jxta web site as well. Among them the ijxta project, which aims inte-
grating Apple Rendezvous [ARV] enabled devices to the Jxta network; the
Jxta-RMI project, which enables Java Remote Method Invocation (RMI)
over the Jxta network; the Jxta-SOAP and the Jxta-XML-RPC projects,
which enables interoperation between Jxta applications and SOAP or XML-
RPC enabled applications, where the XML messages are tunnelled into ap-
propriate Jxta messages.

The general architecture of the Jxta “stack” is outlined in fig. 4.2 (next
page). Among its components, a brief description of the most important ones
is given to demonstrate auto-discovery capabilities.

First of all, at the core level the basic components are IDs, advertise-
ments, peer groups and peer pipes.

Unique identifiers (IDs) are needed in a distributed environment to
uniquely address resources regardless any underlying network address or
identification scheme. Jxta ID are 128 bit UUIDs and a random generator is
used to self-generate them. Furthermore, a Jxta ID is a standard URN in
the Jxta ID namespace. Namely, Jxta ID URNs are identified by the URN
namespace jxta (for instance, urn:jxta:uuid-123).

Advertisements in the Jxta project are short XML descriptions of any
resource that can be used or shared in the Jxta network, and represent a

 72

way to serialize and deserialize such resources in order to acknowledge re-
mote peers about resource details and how to make use of them. Jxta adver-
tisements comprise description for peers, peer groups, transports, routes
and pipes, plus a customizable module advertisement to advertise peers
about application-level services. Each advertisement includes a unique ID to
identify the resource which is advertised.

A peer group represents a dynamic set of peers that have agreed upon a
common set of policies as regards membership, content exchange, and pro-
vided services. Each peer group is uniquely identified by a group ID and is
discovered by means of its advertisement. Peers can arrange their selves in
groups regardless their physical location: peer groups are a mean to parti-
tion the virtual network in a logical way. Main reasons are creating secure
domains for exchange secure contents, or creating a monitoring environ-
ment.

Fig. 4.2 – The Jxta Architecture (source: Jxta Programming Guide).

At boot time every peer joins the NetPeerGroup; this group acts as a
root peergroup and offers by default a set of services, as detailed later.

An example of a Jxta Peer group advertisement is as follows:

 73

<?xml version="1.0"?>
<!DOCTYPE jxta:PGA>
<jxta:PGA xmlns:jxta="http://jxta.org">

<GID>urn:jxta:jxta-NetGroup</GID>
<MSID>urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000010206</MSID>
<Name>NetPeerGroup</Name>
<Desc>NetPeerGroup by default</Desc>

</jxta:PGA>

Here it can be recognized the general format for most advertisements,

as they provide a UUID identifier, a name and an optional description.
Peer pipes are virtual communication channels used to send and re-

ceive messages between services and applications. Pipes provide a virtual
abstraction over the physical transport protocols, and can connect one or
more peer endpoints. Namely, two modes of communication are offered: a
point-to-point pipe connects exactly two peers with a unidirectional and
asynchronous channel; a propagate pipe connects a peer to multiple receiv-
ers, thus implementing multicast communication over the Jxta network. On
TCP/IP, when the propagate scope maps an underlying physical subnet in a
one-to-one fashion, IP multicast may be used as an implementation for
propagate pipes. In the general case, propagate pipes are implemented us-
ing several point-to-point communications. The Jxta specifications define
both input pipes and output pipes: an input pipe is bound to a listener
whenever a peer needs to receive messages; an output pipe is linked to a
remote input pipe whenever a peer needs to send messages. It has to be
noted that as pipes generally are unreliable, the sending functionality pro-
vided by output pipes is asynchronous. Bi-directional, reliable and secure
pipe services are provided as additional services on top of the core pipe ser-
vice.

At the service level the specific middleware services are found, includ-
ing indexing and discovery. The discovery service implements the loosely-
coupled DHT previously discussed to index any advertisement which is pub-
lished by any peer, thus providing a distributed index to any resource in the
network. At this level one can distinguish the different behaviour of peers in
the network: namely, only rendezvous peers maintain the DHT using appro-
priate messaging, thus acting as super-peers in the Jxta network, while nor-
mal edge peers are connected to one or more rendezvous and, when asked,
route requests to them. Furthermore, a rendezvous peer can run wait for

 74

edge peer connections, while an edge peer needs at least one rendezvous
connection. It shall be noted that on this behalf different reference imple-
mentations behave differently: the Java reference implementation allows an
edge peer to become rendezvous, while the C and J2ME reference imple-
mentations lack rendezvous functionalities and can run only as edge peers.

Finally, at the application level developers can plug in distributed P2P
oriented applications taking advantage of the exposed services and proto-
cols. A number of applications are provided within the reference implemen-
tations, including instant messaging and file sharing, but new applications
can be designed at this level to meet any specific requirement.

4.2.2. The JXTA protocols
The Jxta platform is essentially defined by a set of XML-based proto-

cols, divided into two groups: core protocols and standard service protocols.
Core protocols comprise the minimum set of functionalities required by

all implementations of Jxta: small or embedded systems shall provide at
least these functionalities to interact into a Jxta network. The core specifi-
cation defines two protocols:

• the Endpoint Routing Protocol (ERP) is the protocol by which a peer
can manage and discover a route, namely a sequence of hops used to
send a message to another peer;

• the Peer Resolver Protocol (PRP) is the protocol by which a peer can
send a generic resolver query to one or more peers, and receive re-
sponses to the query. This protocol is the base to allow dissemination
of any type of queries within the group.

Standard service protocols are optional Jxta protocols and behaviours,
but they full leverage the potential of the Jxta platform. Four protocols are
defined in the specifications:

• the Rendezvous Protocol (RVP) is the protocol by which peers can es-
tablish rendezvous connections and define the super-peer network
structure. Only peers that are rendezvous or are connected to ren-
dezvous can subscribe or be a subscriber to a propagation service.
RVP is used by the PRP in order to propagate messages;

• the Peer Discovery Protocol (PDP) is the protocol by which a peer
publishes its own advertisements, and discovers advertisements
from other peers. PDP uses the PRP for sending and propagating
discovery advertisement requests. Since as mentioned before any re-

 75

source on the Jxta network is known by means of its advertisement,
this protocol enables peers to discover other peers as well as any re-
source or service published by them; more about the implemented
discovery algorithm will be shown later;

• the Peer Information Protocol (PIP) provides a basic level of monitor-
ing features in the network. Using PIP, peers can obtain status in-
formation about other peers, such as uptime, traffic load, etc. PIP
uses the PRP for sending and propagating the related messages;

• the Pipe Binding Protocol (PBP) is the protocol by which a peer can
establish a pipe to one or more peers. Once again, the PRP is used
for sending and propagating pipe binding requests.

All Jxta protocols have minimum requirements on the underlying
physical network, so they can be implemented even on unidirectional or
asymmetric unreliable links. On the other side, current reference implemen-
tations are based on bi-directional reliable transports such as TCP/IP or
HTTP, thus providing reliability to the protocols. Nevertheless, mechanisms
are in place to provide failure recovery and/or graceful service level degrada-
tion when connections cannot be established.

To illustrate the basic principles of these protocols, a typical adver-
tisement scenario in a Jxta network is outlined (see fig. 4.3).

Fig. 4.3 – The Jxta advertisements propagation scheme (source: [Tra03]).

 76

In this scenario, both Peer A and Peer B are pushing indices of their
advertisements to their respective rendezvous Rdv1, and Rdv2. When an
advertisement query is issued from Peer A for an advertisement stored on
Peer B, the query is sent to Peer A’s rendezvous Rdv1 (1). Rdv1 looks if it
has an index of that advertisement: if it does not find an index, it propa-
gates the query (2) to the next rendezvous Rdv2. When the query reaches
Rdv2, it finds the index for the advertisement and forwards the query to
Peer B (3). This is done to ensure that the latest copy of the advertisement
on Peer B will be sent to Peer A. When Peer B receives the query, it sends
the advertisement to Peer A (4).

It is important to point out that any peer can act as a rendezvous inde-
pendently of its physical location. In this case, the physical Peer2 is behind
NAT and acting as a rendezvous.

Finally, the advertisement propagation scheme shown here takes ad-
vantage of local persistent caches as well. Therefore peers store the discov-
ered advertisements on a locally accessible file for later use, and delete them
when they are expired. In the context of the pure discovery service, this fea-
ture enables different ways to advertise itself and get connections to other
peers; the general algorithm to self advertise a peer and hence to enable
subsequent discovery queries is outlined in listing 4.1 using a verbose pseu-
docode.

function selfAdvertisement()

if a rdv peers are available in the local cache then
for each rdv peer in the cache

send an adv message;
while there have been no answers do

broadcast an adv message to the local neighborhood;
wait for a timeout;

Listing 4.1 – Self advertising in Jxta.

In summary, it has been shown how the Jxta platform enables distrib-
uted applications to interact using the Peer-to-Peer paradigm, and how the
distributed services provided by the middleware can simplify the develop-
ment of new applications.

 77

4.2.3. An outline of the Java and C reference implementations
The main reference implementations available within the Jxta project

are based on the Java and on the C language. Here a brief outline of their
implementation peculiarities is given.

The Java reference implementation of the Jxta platform (Jxta-J2SE) is
essentially built upon two groups of packages; a set of packages exposes the
user API and is composed mainly by Java interfaces or abstract classes; an-
other set of packages contains the implementation and in most cases it is
loaded by means of the Java Reflection API. Furthermore, design patterns
like factories and instantiators are widely used throughout the code. This
way it is possible to plug in new components in the framework or to custom-
ize the behaviour of the system.

This characteristic is expecially powerful concerning the initial peer
configuration: the PeerGroupFactory class, which is responsible for creating
the peer groups including the NetPeerGroup, provides the setConfigura-
torClass() static method to modify the configurator class that has to be
used to create the configuration. This feature has been used in the case
study application presented in the next chapter.

On the other side, the C reference implementation of the Jxta platform
(Jxta-C) consistently differs from the previous because no object oriented
API is provided. In fact, one of the Jxta-C project targets is to allow porting
the source code to any low-profile device; therefore, minimum assumptions
are made on the underlying OS and on the compiler capabilities.

Nevertheless, the code has been carefully designed in order to expose
an OO-like interface: functions related to the same service are named with a
prefix identifying that service, and data structures (struct) are made ex-
tensible by means of appropriate macros. Moreover, a number of basic tools
have been reimplemented, including strings, vectors, and hash tables, and
they are extensively used within the package. This forces the user to make
use of the same patterns to take full advantage from the platform.

In addition, in order to abstract the Jxta code from OS-dependant
APIs, the Apache Portable Runtime project [APR] has been adopted as a low
level layer for thread management and network communication. The APR
project is currently supported by Apache to ease homogeneous development
of their web server (the well known httpd) across different platforms. APR
has been wrapped into another layer, called JPR (Jxta Portable Runtime);
the goal of JPR is to encapsulate APR in order to ease the porting effort for

 78

the platforms that do not provide it: the Jxta services implementation shall
use only JPR functions and shall not call directly APR ones, but currently
the abstraction and the layerization is not yet complete and this assert is
not true everywhere.

In the next chapter, an application which takes advantage of the illus-
trated platform is described to provide how P2P can fit in the broader con-
text of DAQ systems outlined before.

 79

 80

 81

Chapter 5.
Case study: a JXTA-based XDAQ Peer Transport

In this chapter a case study application is illustrated, which take ad-
vantage of the Peer-to-Peer platform shown before to enable the CMS Data
Acquisition system with distributed auto-discovery services.

The main goal of this application is to provide seamless integration be-
tween the XDAQ environment and the Jxta peers network, in order to en-
able distributed discovery of XDAQ peers across the network, and messag-
ing facilities where firewall or NAT traversal would prevent it. Since the
application is a Peer Transport in the XDAQ sense, it has been briefly called
JxtaPT. According to the DAQ requirements, the application shall provide
as well a zero-configuration feature as regards the peer bootstrap and first
advertising to the others.

After a brief overview of the architecture, some use cases are shown to
illustrate how the proposed approach can fit in the context of data acquisi-
tion applications. Afterwards, the application is analyzed showing all soft-
ware components and their binding with the Jxta platform, which is the un-
derlying P2P platform chosen for this project, and the XDAQ environment
release 3, which is the CMS reference software system for DAQ applications
outlined in the previous chapter. Finally, performance tests and issues are
discussed.

5.1. General description and architecture

As Jxta was the chosen P2P platform and the XDAQ environment is
C++ based, the project started devising a C++ Object Oriented API to access
Jxta services from XDAQ applications. Later the Jxta-C implementation,
which has been maturing very much during the past months, has been
adopted for the low level protocols-compliant communication, because it
turned out that embedding the full platform, and hence being fully Jxta
compatible, could lead to further advantages than merely re-implement

 82

from scratch the minimum set of services needed by the application.
Nevertheless, since the Jxta-C implementation has gone under major

evolution, a wrapper has to be devised in order to decouple the exposed API
from the Jxta implementation details. Therefore, the followed strategy dur-
ing the development was to wrap the Jxta-C API by means of a C++ Object-
Oriented API; then a XDAQ application has been built upon this API. To al-
low a complete separation between the user API and the implementation,
for each relevant class an abstract interface has been defined, which does
not refer to Jxta-C code, while all implementation details are hidden in an-
other class which inherits from the user oriented abstract class. In particu-
lar, for the prototype development the most recent CVS-available C imple-
mentation has been adopted, which will eventually become the official 2.1
release [JXTA]. Despite the little overhead in nesting function calls and lis-
tener call-backs, this approach has the advantage of improved maintainabil-
ity and portability. Moreover, if later the implementation changes, or if a
different underlying platform has to be used which offer the same services
as the Jxta platform, there is no need to rewrite XDAQ applications relying
on this API as one can keep the same API.

With these hypotheses, the basic architecture of the project is illus-
trated in fig. 5.1: essentially, a new peer transport has been designed, which
resembles the standard PT architecture and can be plugged in the XDAQ
Peer Transport package illustrated previously; furthermore, a XDAQ web-
enabled application has been developed, which can be invoked inside a
XDAQ executive to run and monitor the embedded Jxta peer. The underly-
ing wrapper runs the Jxta platform with edge peer functionalities.

Having in mind the requirements mentioned before, a number of new
features have been added to the Jxta-C platform: specifically, a zero-
configuration functionality has been implemented which enables the peer to
assign itself an auto-descriptive peer name using the format xdaq@IP-
address, and afterwards to advertise itself using multicast communication
over UDP, which is supported by Jxta. Furthermore, an embedded discovery
listener provides rendezvous connection as soon as a rendezvous peer is dis-
covered in the network. The rendezvous connection is an essential part of
the peers discovery and indexing procedure as the distributed index is main-
tained only by the rendezvous peers, in the form of a loosely-consistent DHT
as explained before. Finally, a peer shutdown notification has been imple-
mented as an optional feature to speedup peers’ views updates; however,

 83

peers’ views are already kept up to date thanks to the peer advertisements
timeout, which can be tuned to get the desired system responsiveness.

The next sections are devoted to explore with more details this archi-
tecture and its use within DAQ systems.

Messenger
PT

Sender
PT

Receiver

Jxta Transport

Listener
Interface

processIncMsg(string msg)

Peer Transport Agent (PTA)

User Application level

Peer Transport level

Jxta Platform wrapper

svc = “Pipe”svc = “Pipe”

void send(string msg)

Fig. 5.1 – The XDAQ PeerTransport for Jxta architecture.

5.2. Use cases

The outlined architecture can be used as a supporting feature in some
typical scenarios which span from DAQ configuration to monitoring data
taking runs.

First of all, the bootstrap process is the key feature provided by this ar-
chitecture, because it leverages the discovery stage to acknowledge XDAQ
executives about each other. As shown in fig. 5.2, The JxtaPT XDAQ appli-
cation is started during the bootstrap process of XDAQ itself, in the same
way as other core XDAQ applications mentioned earlier.

During this procedure, the Jxta platform is started and the peer adver-
tises itself to the neighboring nodes. In order to make this phase effective, a
rendezvous peer shall be running on the same network or subnetwork seg-
ment where the XDAQ peer is located, so to receive and process the broad-
casted advertisement sent by XDAQ peers. In fact, as one of the require-

 84

ments is zero-configuration capability, the XDAQ peer makes no assumption
about predefined rendezvous addresses and only uses IP multicast to send
the first advertisement message. However, if the peer has been previously
running, the local cache contains one or more IP addresses belonging to pre-
viously running rendezvous peers, and chanches are that they are still
available: in this case, the rendezvous connection is established immediately
without using the bandwidth expensive broadcast message. In other words,
the IP multicast transport is typically used only as the very first way to find
rendezvous peers.

After the bootstrap procedure, the JxtaPT can be queried either inter-
actively, by means of the included XDAQ application, or remotely, by means
of the Jxta network.

Fig. 5.2 – JxtaPT bootstrap scenario Sequence Diagram.

A more sophisticated scenario is related to the configuration of XDAQ
applications. Namely, when a XDAQ executive starts up, it does not know
which DAQ task it has to run: for instance, it can run events reconstruction
in a BU, or event processing and filtering in a FU. Therefore, it has to get
from a configuration service the XML configuration which describes the

 85

DAQ task. It is then possible to partially automate this procedure by letting
the XDAQ peer itself to discover where the configuration service is, and
query it in order to get the right configuration.

Another typical use case involves the messaging facility. The DAQ net-
work will be partitioned in several segments, which are generally not fully
connected for safety reasons; in particular, private DAQ networks can be in
operation, which are inaccessible from the public network. In this scenario,
a Jxta overlay network could provide a link at the application level, in order
to send control messages traversing private networks by means of appropri-
ate rendezvous peers. These rendezvous peers shall be switched on only on
demand, thus ensuring the required safety.

Finally, the devised architecture provides support in the context of
monitoring as well. Since the rendezvous peers hold a real-time view of all
XDAQ peers and their interconnections, it is possible to collect this informa-
tion and provide it to the user in the form of a graphical map of the network:
this has been implemented as a GUI facility provided by the rendezvous
peers, as it will be shown later. However, it shall be pointed out that moni-
toring issues and requirements go beyond the boundaries of the present
work and require a dedicated analysis, as it is being carried on within the
TriDAS working group at CERN; indeed the offered capability provides a
basic level of monitoring, which is embedded in the XDAQ architecture and
can be enhanced as needed.

5.3. Implementation

In order to design and implement an abstract API for peers discovery
in XDAQ, the Java reference implementation of the Jxta platform has been
taken as a model since it is object oriented. But as the goal was to keep the
API simple and to tailor it to the specific needs in the DAQ context, not all
Jxta services and features have been exposed; however, the API has been
designed in such a way that it is easy to expand it and include more func-
tionalities as needed.

Therefore the platform has been decomposed in a number of classes to
encapsulate the different services provided by Jxta (see fig. 5.3). In particu-
lar, some of them match a correspondent class on the Java side and repre-
sent specific Jxta services; others have been included as facilities to ease
system integration.

 86

Fig. 5.3 – The Jxta C++ API Class Diagram.

Among these classes, the followings represent the core of the system:
• Platform: provides references to the NetPeerGroup and to other

custom peer groups; the constructor creates the NetPeerGroup and
thus initializes the Jxta platform itself. This class is a singleton and
supplies an instance() static method to retrieve the single instan-
tiated object.

• PeerGroup: represents a Jxta peer group; a default constructor
starts the NetPeerGroup, while another constructor creates a cus-
tom group. This class provides references to the DiscoveryService,
the RdvService and the PipeService, which are the three services
abstracted from the Jxta-C implementation and exposed to the user.

 87

• RdvService: represents the Rendezvous service, which is in charge
of establishing and maintaining client rendezvous connections with
Java rdv peers. This class allows querying the status of the service
and subscribing custom listeners in order to receive a callback
whenever a rendezvous connection event happens. The user’s lis-
tener shall inherit from a specific RdvConnectionListener abstract
class.

• DiscoveryService: represents the Discovery service, and provides
the discovery functionalities. This class allows querying for known
peers in the local cache, as well as searching for remote peers. Since
the discovery process is asynchronous, a listener subscribing func-
tion is provided in order to get a callback when a new advertisement
has come, i.e. a new peer has been discovered or a new service has
been published. Moreover, the class provides methods to publish and
search for custom advertisements, which can represent Jxta re-
sources as groups and pipes, or user services.

• PipeService: represents the Pipe service, which allows sending
messages over the Jxta network. This class provides a convenience
method to discover and connect to remote pipes. Furthermore its
implementation provides a method to create an input pipe and pub-
licsh its advertisement; the pipe name uses an autodescriptive name
in the form jxtapipe:IP-address:port. This service is mainly used
within the PeerTransportReceiver and PeerTransportSender
classes.

• Advertisement: wraps a Jxta advertisement, which represents a
generic Jxta resource. In this context, four type of advertisements
have been defined: PEER, GROUP, PIPE, and SERVICE. They are all
handled by the same class, which hides the different implementa-
tions needed for the different types defined above.

On top of these classes, the XDAQ inherited PeerTransport classes ex-
pose XDAQ-compliant functions to provide messaging within the Jxta net-
work, and a XDAQ application provides a web interface to interact with the
Jxta platform (fig. 5.4). More specifically, the PeerTransportReceiver pro-
vides the listener callback mechanism in order to receive messages over a
Jxta input pipe, and its config() method allows configuring and bootstrap-
ping the platform by initializing the NetPeerGroup. The PeerTransport-
Sender provides a JxtaMessenger messenger factory, and binds newly cre-

 88

ated JxtaMessenger instances to the related Jxta output pipe. It is impor-
tant to point out that because of the P2P nature of Jxta, it is not allowed to
use only the PeerTransportSender class to send messages without starting
the Jxta platform; in other words, a peer cannot act in a client-only mode,
but rather it is a servent, in the sense introduced in chapter 1, and it must
run both as a client and as a server, listening to Jxta messages. Hence the
PeerTransportSender raises an exception if the user tries to get a messen-
ger without initializing the Platform.

Fig. 5.4 – The JxtaPT with the XDAQ Application Class Diagram.

The support for C++ listeners as abstract classes has been shown to be
effective even inside the framework itself: a built-in BootstrapRdvDiscLis-
tener listener has been implemented which takes care of establishing a con-
nection to the first rendezvous peer that is eventually discovered in the net-
work. Moreover, as the messaging facility through the pipe service can work

 89

only if such a rendezvous connection is in place, the PeerTransportRe-
ceiver class registers itself as a RdvConnectionListener listener in order
to start an input pipe only if the rdv has been found. So the user can register
a listener for messaging and it will be properly attached to the pipe service
when the input pipe is up and running. The whole mechanism, which in-
volves all the three different listeners (the discovery, the rendezvous connec-
tion and the pipe), is completely transparent and hidden from the user’s
point of view, in order to achieve an implementation-independent API to
send messages over the Jxta network using XDAQ-like messengers and lis-
teners.

Finally, the PeerTransportJxta class is the XDAQ application, featur-
ing a web interface integrated in HyperDAQ to monitor the current status of
the embedded Jxta peer. It allows static rendezvous configuration, and in-
teractive publishing of user services as custom advertisements. Moreover, it
provides hyperlinks to the rendezvous peers web interfaces, which will be
outlined later. This XDAQ application can be further extended as more
functionalities are needed to fully leverage the underlying platform.

In fig. 5.5 two screenshots of the JxtaPT web interface are shown,
which include the list of discovered peers and the list of published user ser-
vices.

Fig. 5.5 – Screenshots of the JxtaPT web interface: on the left, the list of the discovered peers,
on the right the list of published services on this peer.

5.3.1. The Rendezvous peers
As mentioned before, the Jxta-C code does not implement the rendez-

 90

vous behaviour. Therefore a Jxta rendezvous implementation needed to be
coupled to the XDAQ peers. To accomplish this task, the Java reference im-
plementation version 2.3.2 (due to be released on December 2004) has been
adopted to build the rendezvous super-peer daemon.

The requirements for a rendezvous peer in XDAQ context can be sum-
marized as follows:

• support for a zero-configuration mechanism;
• daemon-like behaviour without local GUI;
• support for web-based interface.
To meet the first requirement, a dedicated Jxta-compliant AutoCon-

figurator class has been developed, which assigns to the upcoming peer an
auto-descriptive name using the format rdv@IP-address, so to have the
same name structure as the XDAQ peers. The auto-configurator creates a
default working rendezvous configuration with TCP and HTTP transport
enabled and able to receive peer advertisements via UDP multicast.

Referring to the user interface for control and monitoring, a web-based
interface has been chosen in order to be consistent with the HyperDAQ web
interface for XDAQ, and for this reason its name is HyperJXTA. To provide
web support, the httpd Jxta module has been adopted [JXTA], which is
available within the Jxta community. It has been refactored and customized
to wrap an instance of the Jetty web server [JETTY], an open source web
application container which is already used by the platform to provide the
HTTP transport. As such, full support for the Java servlet API is provided,
and this facility has been used to enable users to interact with the rendez-
vous peers as they do with XDAQ peers.

In particular, a Java based GUI is provided as an applet to show a dy-
namical map of the running peers, including some basic statistic informa-
tion. The map is based on the JxtaNetMap project [JXTA], available once
again from the Jxta community; it is a Touch Graph enabled map, which
means that the user can dynamically readapt and repaint the graph. To plot
such a map, the applet acts as a Jxta edge peer and assigns itself a name
with the format netmap@IP-address, using the same AutoConfigurator
class mentioned before. Afterwards, it sends suitable messages over the Jxta
network to grab the network structure: namely, rendezvous peers have been
enhanced in order to be able to send their local information, including their
edge peers and the rendezvous to which they are connected to. This way, the
mapper is able to build a graph showing the hierarchical relationships be-

 91

tween all discovered peers. A screenshot of the rendezvous web interface
with a typical Jxta network map is shown in fig. 5.6.

In conclusion, it has to be mentioned that the custom code, which has
been developed for all the required functionalities, is comprised in less than
35 Kb, thanks to the already OO-enabled Jxta API for Java. The software
requires the full Jxta-J2SE 2.3.1 distribution, which is comprised in about
5 Mb of .jar Java archives, and the Java Runtime Environment version
1.4.2 or later.

Fig. 5.6 – The Jxta Network Map embedded in the Rendezvous web interface (HyperJXTA).

5.4. Experimental tests

In order to test and evaluate the performances of the XDAQ peers run-
ning the Jxta platform, a set of experimental tests has been carried on. They
have been devoted to determine the reliability degree of the system in terms
of continuous run to investigate stability against memory leakages, and in

 92

terms of discovery of a large number of peers to investigate scalability.
Two computer farms have been used for the tests. The first one is lo-

cated at CERN and comprises 32 PCs equipped with Gigabit Ethernet cards
and running the Scientific CERN Linux 3 distribution (based on the Redhat
Fedora package and Linux kernel 2.4.21-15.0.3.EL.cernsmp); the second one
is located at Cessy (France), near the CMS experiment hall, and includes
one hundred high-end PCs with fiber optic based Myrinet network and the
same OS platform; this farm reproduces one eighth of the final DAQ cluster.
The XDAQ daemons have been continuously run for several days and the
Jxta functions have been queried with random patterns.

Moreover, a single Jxta network has been built and the memory con-
sumption of the executives has been monitored to measure the scalability of
the platform. On the other side, the CPU consumption has not been taken
into account, because as far as the Jxta transport is concerned the typical
operational behaviour is related to control or bootstrap phases, and the CPU
usage is negligible. The same motivation holds for network resources usage,
as the needed control messages involve bit rates which are several orders of
magnitudes less than the ones involved to carry on the data acquisition
tasks.

In table 5.1 a summary of the tested conditions and the achieved re-
sults is shown.

Running scenario approx. memory usage (Mb)
XDAQ without JxtaPT 6.5
XDAQ with JxtaPT 8.0
Java Runtime Environment 1.5 memory footprint 5.5
Rdv peer at boot time 20.9
Rdv peer after discovering another rdv 21.0
Rdv peer with 5 connected edge peers 21.5
Rdv peer with 10 connected edge peers 22.0
Rdv peer with 10 connected edge peers and 2 rdvs 25.0

Table 5.1 – Summary of memory consumption tests.

The first part of table 5.1 shows that the additional overhead of the
JxtaPT in a XDAQ environment is in the order of 1.5 Mb. This memory foot-
print is mainly due to the Apache Runtime (APR), which is embedded in the
Jxta-C implementation. Nevertheless, the platform demonstrates to be ex-

 93

tremely compact, expecially in comparison with other middleware systems.
On the rendezvous side, it can be noted the large memory footprint of

the rendezvous peer at boot time, which is in the order of 15 Mb more than
the JRE. This is mainly due to the services started at bootstrap, expecially
the peer transports and the Jetty-based web server to support the user in-
terface. Moreover, rendezvous connections are more costly than edge con-
nections, because more resources are involved to keep the distributed peer
view updated. However, the further memory consumption when more edge
peers connect to the rendezvous is reasonably low as the real memory cost
grows only as O(n). In addition, the number of rendezvous peers is not re-
quired to grow as the number of XDAQ peers, therefore the scalability of the
entire system is guaranteed, because the most expensive tasks are kept
separated from the XDAQ peers.

Finally, it shall be pointed out that these tests have been executed us-
ing the latest beta versions of the XDAQ environment and the Jxta plat-
form, hence a slight improvement on these figures can be foreseen using
production level releases without the overhead related to the debugging
functionalities.

5.5. Performances and scalability issues

In this section some considerations are discussed for the proposed sys-
tem. With reference to the architecture, it has been shown that wrapping
the C code by means of appropriate C++ classes resulted in an efficient pro-
gramming approach, because an available C implementation has been lev-
eraged, and at the same time the user has access to a clear API, tailored for
DAQ specific tasks.

The memory consumption of the XDAQ JxtaPT has been demonstrated
to be very low, expecially compared with the Java rendezvous peer. More-
over, it does not increase significantly as the number of peers grows, thus
confirming the scalability of the proposed approach; in fact, as the distrib-
uted index maintenance is delegated to rendezvous peers, the XDAQ peers
have to maintain only few rdv connections, regardless the size of the net-
work. On the other side, the rdv peers have been demonstrated to be scal-
able due to the DHT approach provided by the Jxta platform.

With reference to flexibility, it shall be mentioned that the API is de-
coupled from the Jxta-C implementation, and it is suitable to be reimple-

 94

mented on top of another P2P framework featuring a discovery support,
such as for instance the UPnP project mentioned earlier [UPNP]; so the pre-
sented solution can be considered technology independent.

On the other side, the adoption of not-production released code could
lead to unstable behaviours, but the Jxta community and the Jxta-C project
are highly active, and stable releases are going to be published within a
timeframe which is far shorter than the expected delivery time of the DAQ
system for the CMS experiment.

In summary, the shown application satisfactorily meets the initial re-
quirements to enable P2P discovery in XDAQ systems.

 95

 96

 97

Conclusions and future directions

In the present work novel architectures for networking software have
been deeply analyzed and developed to meet high-end requirements in net-
working management and in distributed data acquisition scenarios. Both
these scenarios have been demonstrated to be highly demanding in terms of
flexibility and performances.

The performed work has demonstrated the validity of the proposed ap-
proaches, and the obtained experimental results show that a good asset has
already been obtained.

Referring to the network management area, the novelty of the pro-
posed architecture arises from the original idea of complementing a logical
inference engine with the versatility of Active Networks. The integrated sys-
tem collects the advantages coming from logical reasoning and network pro-
grammability, and realizes a powerful system capable of performing high-
level management tasks and dealing with unusual network situations.

With reference to the data acquisition area, the effectiveness and the
flexibility of the proposed solution has been demonstrated, and a software
prototype has been developed, which provides a technological independent
C++ API enabling distributed discovery in a Peer-to-Peer network of XDAQ
executives. In summary a feature has been added, which can ease control-
ling the DAQ system being built for the CMS experiment.

As far as future research is concerned, both areas have several direc-
tions on which to expand in order to improve the reliability, the perform-
ances, and the provided functionalities. In fact, as several aspects of Infor-
mation Technology have been covered, there are different paths to be
further pursued.

Particularly, referring to the intelligent network management system,
expert systems and Artificial Intelligence techniques are improving their
performances thanks to advanced research in robotics. Even if the intrinsic
complexity of logical inference is high, new approaches are coming into the
scene. The Situation Calculus demonstrated its effectiveness but also its

 98

limits; once again new paradigms are under development to model dynamic
time-dependent systems in a logical inference engine.

On the other side, the ongoing development in the context of data ac-
quisition for the CMS experiment will cover some reliability aspects. The
current implementation is based on beta release code; therefore it may show
memory leakages or unstable behaviours, and it shall be further tested to
ensure its stability.

Moreover, the application will be tested on a broaden set of operating
conditions, expecially with reference to the network configurations, in order
to further validate the provided discovery service. Particular attention will
be devoted to the reliability of the rendezvous peer views update processes,
when several peers start up or shutdown during the lifetime of the rendez-
vous peers. Finally the development of the XDAQ framework will be fol-
lowed as well, so the proposed platform can be continuously improved dur-
ing all the framework lifecicle.

 99

 100

 101

Appendix A.
ANgate source code

In this appendix an excerpt of the ANgate source code is provided. The
full package is composed by a set of Java classes for the GUIs and the
Gateway service, a set of Linux scripts to run OS-oriented tasks, a set of
Ocaml libraries for the network related ALA services, and finally a set of
PLAN packets. Here the core part of the Gateway service is provided, as
well as the ALA Ocaml interface. Furthermore, the Prolog code imple-
mented for the Intelligent Network Management case study application is
reported.

A.1. The Gateway service
Gateway.java
package org.icarcnr.ivenet.gateway;

import java.io.*;
import java.net.*;
import java.lang.Thread;
import java.util.*;

import org.icarcnr.ivenet.net.*;
import org.icarcnr.ivenet.gateway.*;

/**
 * <p>Title: ANgate</p>
 * <p>Description: A gateway and frontend for management and monitoring of ANs</p>
 * <p>Copyright: Copyright (c) 2002-2003</p>
 * <p>Company: ICAR - CNR</p>
 * @author G. Di Fatta, G. Lo Presti
 * @version 1.5 – December 2003
 */

public class Gateway {
 Vector clients;
 LinkedList availPorts;
 XmlNode usersdb;

 public String dirNets = "";
 String suppEE = "";
 short usersCount, guestsCount, su;
 short mainPort = 6789; // valori di default; quelli reali vengono letti

da ANgateway.properties
 short anPortOfs = (short)(4444-6789);
 short maxClients = 6;

 //public HashMap dnsTable = new HashMap();

 102

 public Gateway()
 {
 System.out.println("ANgate 1.5 - December 2003 - Copyright (c) 2002-2003 ICAR-

CNR\n\nStarting gateway service...");
 System.err.println("ANgate 1.5 - December 2003 - Copyright (c) 2002-2003 ICAR-

CNR\n\nStarting error logging for the gateway service...\n");
 String xmldoc = "";
 // inizializza usersdb da users.xml; convertire con parser DOM!
 try {
 FileInputStream f = new FileInputStream("users.xml");
 BufferedReader br = new BufferedReader(new InputStreamReader(f));
 br.readLine(); // skip header
 br.readLine();
 String line;
 do { line = br.readLine();
 xmldoc += line;
 }
 while(line.indexOf("</users>") == -1);
 }
 catch (Exception e) { System.err.println("Error reading users db: "+ e); }
 XmlTinyparser pm = new XmlTinyparser(xmldoc);
 pm.parse();
 usersdb = pm.getDocumentXml();

 try {
 // read parameters from configuration file
 Params prop = Params.getInstance();
 dirNets = prop.userHome + prop.getProperty("ANgateDir") + Sys-

tem.getProperty("file.separator") + prop.getProperty("NETSDir") + Sys-
tem.getProperty("file.separator");

 suppEE = prop.getProperty("SupportedEE");
 maxClients = Short.parseShort(prop.getProperty("MaxClients"));
 mainPort = Short.parseShort(prop.getProperty("GwMainPort"));
 anPortOfs = (short)(Short.parseShort(prop.getProperty("GwFromNetPort")) - mainPort

- 1);
 ANetPoller.runMonCapsules =

"true".equalsIgnoreCase(prop.getProperty("RunMonitoringCapsules"));
 }
 catch (Exception e) { System.err.println("Error reading internal properties: "+

e); }

 // generate the TCP ports list for the GwToClients and GwToNets
 clients = new Vector();
 availPorts = new LinkedList();
 for(int p = 0; p < maxClients; p++)
 availPorts.add(new Integer(mainPort+2 + p));
 }

 public void run()
 {
 ServerSocket welcomeSocket = null;
 try { welcomeSocket = new ServerSocket (mainPort); }
 catch (Exception e) {
 e.printStackTrace();
 System.exit(1);
 }
 while(true)
 {
 try {
 String fromclient, response = "";
 System.out.println("\nWaiting for client connections.");
 Socket connectionSocket = welcomeSocket.accept();

 DataInputStream inFromClient = new DataInput-

Stream(connectionSocket.getInputStream());
 DataOutputStream outToClient = new DataOutput-

Stream(connectionSocket.getOutputStream());

 fromclient = inFromClient.readUTF();
 System.out.println("Request from client: " + fromclient);
 XmlCommand msg = new XmlCommand(fromclient);
 String comm = msg.getCommand();

 103

 if(comm.equals("getSupportedEE"))
 outToClient.writeUTF("<response command='getSupportedEE'>"+ suppEE +

"</response>");

 else if(comm.equals("login"))
 {
 // autentica utente
 XmlNode usrdata = msg.getData();
 String usr = usrdata.item(0).value;
 String pwd = usrdata.item(1).value;
 String log = (new java.text.SimpleDateFormat()).format(new Date()) +": user

"+ usr +" from "+
 connectionSocket.getInetAddress().getHostAddress() +" ("+

usrdata.item(3).value +")";

 for(int i = 0; i < usersdb.getLength(); i++) // cerca utente
 if(usersdb.item(i).item(0).value.equals(usr) && us-

ersdb.item(i).item(1).value.equals(pwd)) {
 response = doLogin(usr, usersdb.item(i).getAttrName("rights"),

usrdata.item(2).value);
 if(response.indexOf("OK") > 0) {
 System.out.println(log +" logged in successfully.");
 Thread.sleep(200);
 }
 else
 System.out.println(log +" failed to login.");
 break;
 }
 if(response.length() == 0) {
 System.out.println(log +" not found.");
 response = "<response command='login' result='failed'></response>";
 }
 outToClient.writeUTF(response);
 }

 // comandi di gestione degli utenti (solo per il superuser)
 else
 {
 response = "<response command='"+ comm +"'";
 GatewayToClient c = getClient(msg.getCmdAttr("username"));
 if(c != null && c.userRights == GatewayToClient.SUPERUSER) {

 if(comm.equals("getUsers")) {
 response += ">\n";
 for(int i = 0; i < usersdb.getLength(); i++) { // lista utenti
 XmlNode user = usersdb.item(i);
 c = getClient(user.item(0).value);
 response += "<user username='" + user.item(0).value + "' user-

Rights='" + user.getAttrName("rights")
 + (c == null ? "' ipAddress='notlogged'" : "' ipAddress='" +

c.getRemoteIp() + "'")
 + "></user>\n";
 }
 outToClient.writeUTF(response + "\n</response>");
 }

 else if(comm.equals("killUser"))
 {
 getClient(msg.getData().getAttrName("user")).executeCommand(new

XmlCommand("<request command='logout'></request>"));
 outToClient.writeUTF(response +" result='ok'></response>");
 }

 else if(comm.equals("killAll"))
 {
 c.notMyself = true;
 broadcastToClients(new XmlCommand("<request com-

mand='logout'></request>"));
 outToClient.writeUTF(response +" result='ok'></response>");
 }
 // non sono accettati a questo livello altri comandi - vengono ignorati

 }
 else

 104

 outToClient.writeUTF(response +" result='notauthorized'></response>");
 }
 }
 catch (Exception e) { e.printStackTrace(); }
 }
 }

 private String doLogin(String username, String rights, String gwToNetClass) {
 int ur = 0;
 if(rights.equals("su") && su > 0)
 rights = "user";
 //return "<response command='login' result='suNotAvailable'></response>";
 if (!rights.equals("su") && availPorts.isEmpty())
 return "<response command='login' result='portNotAvailable'></response>";

 Integer p;
 if(rights.equals("su")) {
 su = 1;
 ur = GatewayToClient.SUPERUSER;
 p = new Integer(mainPort + 1); // superuser always has a free port
 usersCount++;
 }
 else {
 if(rights.equals("user")) {
 ur = GatewayToClient.USER;
 usersCount++;
 }
 else if(rights.equals("netlog")) {
 ur = GatewayToClient.NETLOG;
 usersCount++;
 }
 else {
 ur = GatewayToClient.GUEST;
 guestsCount++;
 }
 synchronized(availPorts) {
 p = (Integer)availPorts.getFirst();
 availPorts.removeFirst();
 }
 }

 try {
 GatewayToClient gwToClient = new GatewayToClient(this, p.intValue(), user-

name, ur);
 IGatewayToANet gwToNet = (IGateway-

ToANet)Class.forName("org.icarcnr.ivenet.gateway.GatewayTo"+ gwToNet-
Class).newInstance(); // alloca la classe richiesta

 gwToNet.setGatewayToClient(gwToClient); // imposta i riferimenti
incrociati

 gwToClient.setGatewayToNet(gwToNet);
 gwToNet.setANetPort((short)(p.shortValue() + anPortOfs));
 gwToClient.start(); // si mette in ascolto dei pacchetti lato client

 broadcastToClients(new XmlCommand("<request com-

mand='updateUsersCount'><connected users='"+ usersCount
+"'></connected></request>"));

 clients.add(gwToClient);
 return "<response command='login' result='OK'>\n<rights>"+ rights

+"</rights>\n<gwport>" + p.toString() + "</gwport>\n" +
 (!rights.equals("guest") ? "<connected users="+ usersCount +" guests="+

guestsCount +"></connected>\n" : "") + "</response>";
 } catch (Exception e) {
 e.printStackTrace();
 return "<response command='login' re-

sult='gwToNetClassNotAvailable'></response>";
 }
 }

 protected void killClient(GatewayToClient gwToCl) {
 java.text.SimpleDateFormat df = new java.text.SimpleDateFormat();

 if(gwToCl.userRights == GatewayToClient.GUEST)
 guestsCount--;

 105

 else if(gwToCl.userRights == GatewayToClient.USER || gwToCl.userRights == Gateway-
ToClient.NETLOG)

 usersCount--;
 else if(gwToCl.userRights == GatewayToClient.SUPERUSER) {
 usersCount--;
 su = 0; // now another superuser can log in
 }
 System.out.println(df.format(new Date()) +": user logout, releasing port " +

gwToCl.getPort() + ".\n");
 if(gwToCl.userRights != GatewayToClient.SUPERUSER)
 synchronized (availPorts)
 { availPorts.add(new Integer(gwToCl.getPort())); } // release

gw_port
 clients.remove(gwToCl);

 broadcastToClients(new XmlCommand("<request command='updateUsersCount'><connected

users='"+ usersCount +"'></connected></request>"));
 }

 protected void broadcastToClients(XmlCommand cmd) {
 System.out.println("Broadcasting message to all clients: "+ cmd.getCommand());
 for(int i = 0; i < clients.size(); i++) {
 GatewayToClient gw = (GatewayToClient)clients.elementAt(i);
 try {
 if(gw.userRights != GatewayToClient.NETLOG)
 gw.executeCommand(cmd);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 private GatewayToClient getClient(String username) {
 for(int i = 0; i < clients.size(); i++) {
 GatewayToClient gw = (GatewayToClient)clients.elementAt(i);
 if(gw.username.equals(username))
 return gw;
 }
 return null;
 }

 public static void main (String args[]) throws Exception
 {
 Gateway gw = new Gateway();
 gw.run(); // no need to create a new thread
 }
}

A.2. The ALA service
Publish_svc_impl.ml

(*
ALA (Active Local Agent) for PLAN
Version 1.5 - May 2003
Copyright (c) 2001-2003 ICAR-CNR
Authors: P. Chirco, G. Di Fatta, G. Lo Presti, G. Lo Re

History:
November 2001: project started
July 2002: first public release with basic actions/filters (v. 1.0)
February 2003: some bug fixes, actions/filters support improved (v. 1.1)
May 2003: first major re-engineering: garbage collection redesigned, filters list

support added, local store added (v. 1.5)
*)

 106

open Activehost
open Basis
open Eval
open PlanExn
open Services

(* pubTable
+--------------------+-----------------------------------+
|(varname,app,[user])| (time, value, type, filter list) |
+--------------------+-----------------------------------+
*)
let pubTable = Hashtbl.create 255

(* eventTable
+--------------------+-----------------------------------+
| event_ID | (action_code, [destination?]) |
+--------------------+-----------------------------------+
*)
let eventTable = Hashtbl.create 255
let eventQueue = Queue.create ()

type fd = Fd of Unix.file_descr | Dummy
let localStore = ref Dummy

let localStoreIdxName = "PLANetLOGS/ALAStore.idx"
let localStorePrefix = "PLANetLOGS/ALAStore_"

let check_time = 1.0 (* time interval between each sync event *)
let expiration_time = 300.0 (* ALA variables expiration time *)
let snapshot_count = 10 (* number of saved local store files *)

let sysname = "pland"
let version = "1.5"

(* ** *)

(* "*** PUBLISH *** *)
let publish (name, newv, app) =
(
try (
 let entry = Hashtbl.find pubTable (name, app) in
 match entry with
 (ts, v, t, filter) ->
 (
 let t1 = grabType newv in
 Hashtbl.replace pubTable (name, app) (Unix.gettimeofday(), newv, t1, filter)
 ; newv
)
)
with Not_found ->
 (
 let t = grabType newv in
 Hashtbl.replace pubTable (name, app) (Unix.gettimeofday(), newv, t, [])
 ; newv
)
)

(* "*** GETPVALUE returns the value of a published variable as a Plan value *** *)

let getPValue (name, app) =
(
try
 (
 let entry = Hashtbl.find pubTable (name, app) in
 match entry with
 (ts, newv, t, f) ->
 (
 newv
)
)
with Not_found ->
 (

 107

 (* raise (PLANException "NotFound") *)
 Log.log_msg ("\nALA: getPValue failed: variable " ^ name ^ " not found or expired,

returning an empty list\n");
 VList([])
)
)

(* "*** GETPVALUEASSTR returns a string representing a Plan value *** *)
let getPValueAsStr (name, app) =
 myvalue2str(getPValue(name,app))

(* "*** GETAPPLIST *** returns the complete list of registered applications as a list of

strings*)

let getAppList () =
(
 let l = ref [] in
 Hashtbl.iter
 (
 fun key data ->
 match key with
 (name, app) ->
 (
 match data with
 (ts, v, t, code) ->
 (
 let ret = (app)
 in
 l := (String (ret))::!l
)
)
 ;
 ()

) pubTable
 ;
 uniq (List.sort compare !l)
)

(* "*** GETVARLIST *** returns the complete list of published variables as a list of

strings*)

let getVarList (anapp) =
(
let l = ref [] in
 Hashtbl.iter
 (
 fun key data ->
 match key with
 (name, app) ->
 (
 match data with
 (ts, v, t, code) ->
 (
 if ((compare app anapp) == 0) then
 (
 let ret =
 (name) ^ ":" ^ (t)
 in
 l := (String (ret))::!l
)
 else ()
)

)
 ;
 ()

) pubTable
 ;
 uniq (List.sort compare !l)
)

let clearAll() =

 108

(
 (* Hashtbl.clear pubTable *)
 Hashtbl.iter
 (
 fun key data ->
 match key with
 (name, app) ->
 (
 if((compare app sysname) != 0) then
 (
 (Hashtbl.remove pubTable (name,app); ())
)
 else ()
)
) pubTable;
 ()
)

(* *** FILTERS/ACTIONS *** *)

let getFilters (name, app) =
(
 let l = ref [] in
 let entry = Hashtbl.find pubTable (name, app) in
 match entry with
 | (ts, v, t, filters) ->
 (
 let temp_list = List.map (function (f) -> match f with
 | String(sf) -> (l := String(sf) :: !l)
 | _ -> ()
) filters
 in
 (!l)
)
)

(* ADD_FILTER
 Il test del filtro: codice plan arbitrario contenente una funzione con nome standard
 (testIt) che ritorni un valore intero corrispondente all'evento (test positivo) o 0.
*)

let add_filter(name, app, code) =
(
try
 (
 let entry = Hashtbl.find pubTable (name, app) in
 match entry with
 (ts, v, t, old_filters_list) ->
 let filters_list = ref []
 in (
 filters_list := String(code) :: old_filters_list;
 Hashtbl.replace pubTable (name, app) (Unix.gettimeofday(), v, t, !filters_list);
 Log.log_msg "ALA: filter installed\n";
 ()
)
)
 with Not_found ->
 (
 Log.log_msg "\nALA: filter setting failed: variable not found\n";
 raise (PLANException "Variable not found");
 ()
)
)

let remove_filters(name, app) =
(
try
 (
 let entry = Hashtbl.find pubTable (name, app) in
 match entry with
 (ts, v, t, code_list) ->
 Hashtbl.replace pubTable (name, app) (Unix.gettimeofday(), v, t, []);

 109

 Log.log_msg "ALA: filter(s) removed\n";
 ()
)
with Not_found ->
 (
 Log.log_msg "\nALA: filter setting failed: variable not found\n";
 raise (PLANException "Variable not found");
 ()
)
)

(* *** RAISEEVENT *** *)

let raiseEvent(evId) =
 try
 (
 let action = Hashtbl.find eventTable (evId) in
 (
 let filterAction_pkt_code = Frontend.str_to_wire_rep action in
 let default_gateway = Hostfile.stringToActiveHost "0.0.0.0:0" 0 in
 let filterAction_pkt =
 {
 code = filterAction_pkt_code;
 bindings = [];
 fn_to_exec = "execIt";
 evalDest = List.hd (Net.me());
 rb = 1000; (* somebody wondered: HOW MUCH? *)
 source = (Net.meDev Net.local_if);
 session = -1;
 flow_id = -1;
 routFun = "defaultRoute";
 handler = "";
 interface = Some(Net.local_if)
 } in
 Net.send_active_packet filterAction_pkt Net.local_if default_gateway;
 Log.log_msg "ALA: action executed\n";
 ()
)
)
 with Not_found ->
 (
 () (* do nothing *)
)

(* *** APPLY_FILTER *** *)

let apply_filter(app, filter) =
(
 let filtertest_pkt_code = Frontend.str_to_wire_rep filter in
 let filtertest_pkt =
 {
 code = filtertest_pkt_code;
 bindings = [];
 fn_to_exec = "testIt";
 evalDest = List.hd (Net.me());
 rb = 1;
 source = (Net.meDev Net.local_if);
 session = -1;
 flow_id = -1;
 routFun = "defaultRoute";
 handler = "";
 interface = Some(Net.local_if)
 } in
 match (Eval.interpret(filtertest_pkt.code, filtertest_pkt, Envi-

ron.get_top_level())) with
 Int(chunk_output) ->
 (
 if (chunk_output > 0) then
 (* raiseEvent(Int(chunk_output)) in questo punto piuttosto che lanciare l'even-

to occorre schedularlo *)
 Queue.add (Int(chunk_output)) eventQueue
 else ()

 110

 ;
 if ((compare app sysname) != 0) then
 (Log.log_msg "ALA: user event fired\n"; ())
 else ()
)
 | _ ->
 Log.log_msg "\nBad output from chunk evaluation\n";
 ()
)

let apply_filters(name, app) =
(
 let entry = Hashtbl.find pubTable (name, app) in
 match entry with
 | (ts, v, t, filter_list) ->
 (
 List.map (function (f) -> match f with
 | String(sf) ->
 if((compare sf "") != 0) then
 apply_filter(app, sf)
 else ()

 | _ -> (Log.log_msg "\nALA.apply_filters: bad filter found\n"; ())
) filter_list
)
)

(* setValue: publish & verify filters *)
let setValue (name, v, app) =
 (
 let new_v = publish (name, v, app) in
 apply_filters(name, app);
 new_v
)

(*** LOCAL EVENTS STORE ***)

(* funzione privata usata da storeSnapshot e durante l'inizializzazione di ALA *)
let createLocalStore () =
 (
 let idx_ch = open_in localStoreIdxName in
 let ct = ref 0 in
 let first_line = ref "" in
 let idx_content = ref "" in
 try
 while true do
 let line = input_line idx_ch in (
 if(!ct == 0) then (
 first_line:= line
)
 else (
 idx_content := !idx_content ^ line ^ "\n"
)
);
 ct := !ct + 1
 done;
 []
 with End_of_file -> close_in idx_ch;

 let idx_out_ch = open_out localStoreIdxName in
 let t = string_of_float(Unix.gettimeofday()) in
 let tLocalStore = Unix.openfile (localStorePrefix ^ t ^ ".log") [Unix.O_CREAT;

Unix.O_RDWR] 0o644 in (* crea il nuovo db locale *)
 (
 localStore := Fd (tLocalStore);

 if (!ct >= snapshot_count) then (
 Sys.remove (localStorePrefix ^ !first_line ^ ".log"); () (* elimina il log piu'

vecchio *)
) else (
 if(String.length !first_line > 0) then (
 idx_content := !first_line ^ "\n" ^ !idx_content; ()
)

 111

);
 idx_content := !idx_content ^ t; (* aggiunge la entry del nuovo store *)

 output_string idx_out_ch !idx_content;
 close_out idx_out_ch;
 []
)
)

let storeLocalData (data) =
 (
 let entry = string_of_float(Unix.gettimeofday()) ^ ": " ^ data ^ "\n" in
 let Fd (tLocalStore) = !localStore in
 let _ = Unix.write tLocalStore entry 0 (String.length entry)-1
 in (
 Log.log_msg "ALA: data stored into the local store.\n";
 ()
)
)

let storeSnapshot () =
 (
 let Fd (tLocalStore) = !localStore in
 Unix.close tLocalStore;
 (* Unix.openfile "ALAStore_xxx.log" [Unix.O_TRUNC; Unix.O_EXCL] 0o644; elimina il file

*)
 createLocalStore();
 List.map (function (v) -> match v with
 | String(sv) ->
 let vname = String.sub sv 0 (String.index sv ':') in (* estrae il nome dalla

coppia nome:tipo *)
 storeLocalData ("getALAVarValue: " ^ sysname ^ " " ^ vname ^ " = " ^ ge-

tPValueAsStr(vname, sysname));
 | _ -> ()
) (getVarList sysname);
 storeLocalData("snapshot end"); (* serve come separatore tra lo snapshot e gli al-

tri eventi *)
)

let getSnapshot (t) =
(

 let getSnapshotName (t) =
 (
 let oldline = ref "" in
 let ch = open_in localStoreIdxName in
 try
 while true do
 let line = input_line ch in
 let ts = float_of_string line in
 if (ts > float(t)) then
 raise End_of_file (* trovato uno snapshot successivo a t, il precedente

e' quello cercato *)
 else
 oldline := line
 done;
 ""
 with End_of_file -> (close_in ch; !oldline)
) in

 let snapshotName = getSnapshotName(t) in (
 if ((compare snapshotName "") == 0) then (
 Log.log_msg "ALA.getSnapshot: snapshot not found.\n";
 ("")
)
 else (
 let ch = open_in (localStorePrefix ^ snapshotName ^ ".log") in
 let result = ref "" in
 try

 112

 while true do
 let line = input_line ch in
 result := !result ^ line ^ "\n"
 done;
 ("")
 with End_of_file -> (close_in ch; !result)
)
)
)

(* (A)SYNCHRONOUS FILTERING THREADS MANAGEMENT *)
(* "PROCESS_EVENT_QUEUE *)

let process_event_queue (interval) =
(
 while (true) do
 (
 try
 (
 raiseEvent(Queue.take eventQueue)
)
 with Queue.Empty ->
 (
 Thread.delay(interval)
)
)
 done
)

let synch_event (interval) =
(

 publish("timer", Int(1), "pland");
 publish("version", String(version), "pland");
 publish("zeroRBPkt", VList[], "pland");

 while (true) do
 (
 let t = getPValue ("timer", "pland") in (
 match t with
 | Int i -> (
 setValue ("timer", Int(i+1), "pland");
 if(i mod 20 == 0) then (
 clearExpired(); ()
);

 let st = Unix.gettimeofday() in
 Thread.delay(interval +. floor(st) -. st)
)
 | _ -> ()
)
)
 done
)

let rstart() =
(
 Random.init(Unix.getpid());
 let st = Unix.gettimeofday() in
 Thread.delay(3.0 +. ceil(st /. 10.0) *. 10.0 -. st);

 let idx = Unix.openfile localStoreIdxName [Unix.O_CREAT] 0o644 in (* crea se assente

il file indice *)
 Unix.close idx;
 createLocalStore();
 storeLocalData("pland started.");

 Thread.create process_event_queue (check_time);
 Thread.create synch_event (check_time);
 ()
)

 113

(* --- *)
(* SERVICES *)
(* --- *)

let publish_svc (p,l) =
 match l with
 [String name; v; String app] -> publish (name, v, app)

 | _ -> typecheck_args "publish" l [StringType; Alpha("a"); StringType]; Unit

let getsnapshot_svc (p,l) =
 match l with
 [Int t] -> String (getSnapshot(t));

 | [v] -> raise (ExecException(TypeError(Variable "getSnapshot",v,HostType)))
 | _ -> raise (ExecException
 (ArgMismatch
 ("getSnapshot", List.map (function v -> Val v) l, 1
)))

let storesnapshot_svc (p,l) =
 match l with
 [] ->
 storeSnapshot();
 Unit

 | [v] -> raise (ExecException(TypeError(Variable "storeSnapshot",v,HostType)))
 | _ -> raise (ExecException
 (ArgMismatch
 ("storeSnapshot", List.map (function v -> Val v) l, 1
)))

let getVersion_svc (p,l) =
 match l with
 [] ->
 String (version)

 | [v] -> raise (ExecException(TypeError(Variable "version",v,HostType)))
 | _ -> raise (ExecException
 (ArgMismatch
 ("getVersion", List.map (function v -> Val v) l, 1
)))

let sleep_svc (p,l) =
 match l with
 [Int t] ->
 Thread.delay(float(t) *. 0.1); Unit

 | [v] -> raise (ExecException(TypeError(Variable "sleep",v,HostType)))
 | _ -> raise (ExecException
 (ArgMismatch
 ("sleep", List.map (function v -> Val v) l, 1
)))

(* "----REGISTER_SVCS---- *)

let register_svcs () =
 register_svc("getValueAsStr",getValueAsStr_svc,Some "(string,string) -> string");
 register_svc("getVarValue",getValueAsStr_svc,Some "(string,string) -> string");
 register_svc("getFilters",getfilters_svc,Some "(string,string) -> string list");
 register_svc("addFilter",addfilter_svc,Some "(string,string,string) -> unit");
 register_svc("removeFilters",removefilters_svc,Some "(string,string) -> unit");
 register_svc("getPlanValue",getPlanValue_svc,Some "(string,string) -> 'a");
 register_svc("publish",publish_svc,Some "(string,'a,string) -> 'a");
 register_svc("setValue",setvalue_svc,Some "(string,'a,string) -> 'a");
 register_svc("getAppList",getAppList_svc,Some "unit -> string list");
 register_svc("getVarList",getVarList_svc,Some "string -> string list");
 register_svc("clearAll",clearAll_svc,Some "void -> unit");
 register_svc("clearExpired",clearExpired_svc,Some "void -> unit");
 register_svc("getAlaVersion",getVersion_svc,Some "void -> string");
 register_svc("setAction", setAction_svc, Some "(int,string) -> unit");
 register_svc("storeLocalData",storelocaldata_svc,Some "(string) -> unit");

 114

 register_svc("storeSnapshot",storesnapshot_svc,Some "void -> unit");
 register_svc("getSnapshot",getsnapshot_svc,Some "(int) -> string");
 register_svc("sleep", sleep_svc, Some "int -> unit");
 register_exn("NotFound");
 rstart()

A.3. The logical inference engine
Reasoner.pl

/***
 * reasoner.pl - A Logical Reasoner for Active Network Management *
 * *
 * Copyright 2002-2003 ICAR-CNR *
 * Last version: December 2003 *
 * Authors: G. Lo Presti, G. Lo Re, I. Selvaggio *
 * *
 ***/

:-load("c_function.so").
/* This rule is used to load the C module in the logical engine, in order to interact

with the Gateway */

:- dynamic visited/1.
/*predicato dinamico di arità 1 usato per marcare i nodi nella
 ricerca di un cammino nella rete. */
:- dynamic loop_temp/1.
/*predicato dinamico di arità 1 usato per determinare la lista di nodi facenti parte di

un loop.*/

:- dynamic port/1.

/***
**************External predicates*************************
***/

:-external(start/1,c_connect).
:-external(c_close/1,c_close).
:-external(request_tab/2,request_tab).
:-external(sensor_tab/2,sensor_tab).
:-external(sensor_extab/2,sensor_extab).
:-external(sensor_neigh_alive/2,sensor_neigh_alive).
:-external(sensor_neigh_dead/2,sensor_neigh_dead).
:-external(sensor_ttl/2,sensor_ttl).
:-external(node_set/2,node_set).
/*:-external(action_on_table/2,action_on_table).*/
:-external(get_local_var/2,get_local_var).

/***
****************Primitive Actions*************************
***/

primitive_action(define_rip_table(N,T)).
primitive_action(update_rip_table(N,Upd)).
/*Queste azioni sono usate rispettivamente per istanziare il fluente routing_table(N,T)
 ed aggiornare la tabella di routing del nodo N con le informazioni contenute in Upd.*/

primitive_action(dummy).
/*questa è una azione ausiliaria */

primitive_action(node_up(N)).
primitive_action(node_down(N)).
/*Queste azioni sono usate rispettivamente per rendere vero e falso il fluente no-

de_status(N).*/

primitive_action(iface_up(I)).

 115

primitive_action(iface_down(I)).
/*Queste azioni sono usate rispettivamente per rendere vero e falso il fluente ifa-

ce_status(I).*/

primitive_action(link_up(L)).
primitive_action(link_down(L)).
/*Queste azioni sono usate rispettivamente per rendere vero e falso il fluente

link_status(L).*/

primitive_action(ala_up(A)).
primitive_action(ala_down(A)).
/*Queste azioni sono usate rispettivamente per rendere vero e falso il fluente a-

la_status(A).*/

primitive_action(alarm_up(S,D)).
primitive_action(alarm_down(S,D)).
/*Queste azioni sono usate rispettivamente per rendere vero e falso il fluente a-

larm(S,D).*/

primitive_action(sensors_up).
primitive_action(sensors_down).
/*Queste azioni sono usate rispettivamente per rendere vero e falso il fluente sen-

sors.*/

primitive_action(no_info_up).
primitive_action(no_info_down).
/*Queste azioni sono usate rispettivamente per rendere vero e falso il fluente

no_info.*/

primitive_action(tab_corr_up(N)).
primitive_action(tab_corr_down(N)).
/*Queste azioni sono usate rispettivamente per rendere vero e falso il fluente

tab_corr(N).*/

primitive_action(loop_up(D,N)).
primitive_action(loop_down(D,N)).
/*Queste azioni sono usate rispettivamente per rendere vero e falso il fluente lo-

op(D).*/

primitive_action(lost_pkt_up(N)).
primitive_action(lost_pkt_down(N)).
/*Queste azioni sono usate rispettivamente per rendere vero e falso il fluente

lost_pkt(N).*/

primitive_action(ttl_up).
primitive_action(ttl_down).
/*Queste azioni sono usate rispettivamente per rendere vero e falso il fluente ttl.*/

primitive_action(backup_up(N)).
primitive_action(backup_down(N)).
/*Queste azioni sono usate rispettivamente per rendere vero e falso il fluente ba-

ckup(N).*/

primitive_action(update_repository(N,[Dest,Neigh,Cost],Time)).
/*questa azione è usata per aggiornare il valore del fluente repository(L).
 I parametri della azione sono utilizzati per indicare che il nodo N ha effettuato la

modifica [Dest,Neigh,Cost]
 nella propria tabella di routing all'istante Time */

primitive_action(add_causes(N,Time)).
/*questa azione è usata per aggiornare il valore del fluente causes(L).*/

/***
****************Successor State Axioms********************
***/

net_neighbor(N1,N2,L,I1,I2,do(A,S)):- (net_neighbor(N1,N2,L,I1,I2,S), not A =

node_down(N1),
 not A=node_down(N2), not A=link_down(L), not

A=iface_down(I1),
 not A=iface_down(I2)
) ;

 116

 (not net_neighbor(N1,N2,L,I1,I2,S), not
node_status(N1,S), node_status(N2,S),link_status(L,S),

 iface_status(I1,S), iface_status(I2,S), A=
node_up(N1)

) ;
 (not net_neighbor(N1,N2,L,I1,I2,S),

node_status(N1,S), not node_status(N2,S),link_status(L,S),
 iface_status(I1,S), iface_status(I2,S), A=

node_up(N2)
) ;
 (not net_neighbor(N1,N2,L,I1,I2,S),

node_status(N1,S), node_status(N2,S), not link_status(L,S),
 iface_status(I1,S), iface_status(I2,S), A=

link_up(L)
) ;
 (not net_neighbor(N1,N2,L,I1,I2,S),

node_status(N1,S), node_status(N2,S),link_status(L,S),
 not iface_status(I1,S), iface_status(I2,S), A= iface_up(I1)
) ;
 (not net_neighbor(N1,N2,L,I1,I2,S),

node_status(N1,S), node_status(N2,S),link_status(L,S),
 iface_status(I1,S), not iface_status(I2,S), A= iface_up(I2)
) .

 /* il fluente net_neighbor(N1,N2,L,I1,I2,S) descrive la vicinza al livello network nel-

lo stato S dei due nodi
 N1 e N2 uniti tramite le rispettive interfacce I1 ed I2 ed il link L che le collega.
 il precedente assioma di stato successore illustra la variazione del fluente

net_neighbor nel passaggio da
 una situazione alla successiva */

routing_table(N,T,do(A,S)) :- (routing_table(N,T,S), not A=update_rip_table(N,_));
 (A=define_rip_table(N,T) ; (A=update_rip_table(N,Upd),

routing_table(N,Old,S), tab_merge(Upd,Old,T))).

/* Il fluente routing_table(N,T,S) è usato per associare la tabella di routing T al nodo

N nella situazione S.
 Il fluente assume valore vero dopo l'applicazione di una azione A se era vero nella

situazione precedente S e non ci sono
 stati aggiornamenti nella tabella di routing (A diverso da update_rip_table(N,_)),

oppure se viene definita una nuova tabella
 di routing di N (A = define_rip_table(N,T)) oppure, infine, se vi è stato un ag-

giornamento della tabella di routing (A=update_rip_table(N,Udp)) con
 conseguente modifica della precedente tabella (contenuta nella variabile Old del

fluente routing_table(N,Old,S)) tramite il predicato
 tab_merge(Upd,Old,T) descritto in seguito.*/

node_status(N,do(A,S)) :- (node_status(N,S) , not A=node_down(N)) ;
 (A=node_up(N)).

 /*il fluente node_status(N) indica lo stato di un nodo N ed è vero dopo che è stata

compiuta l'azione A nello stato S
 se la relazione era vera in S ed A è diverso da node_down(N), oppure se l'azione A è

node_up(N)*/

iface_status(I,do(A,S)) :- (iface_status(I,S) , not A=iface_down(I)) ;
 (A=iface_up(I)).

 /*il fluente iface_status(I) indica lo stato di una interfaccia I di un nodo ed è vero

dopo che è stata compiuta l'azione A nello stato S
 se la relazione era vera in S ed A è diverso da iface_down(I) oppure se l'azione A è

iface_up(I)*/

link_status(L,do(A,S)) :- (link_status(L,S) , not A=link_down(L)) ;
 (A=link_up(L)).

 /*il fluente link_status(L) indica lo stato di un link ed è vero dopo che è stata com-

piuta l'azione A nello stato S
 se la relazione era vera in S ed A è diverso da link_down(L), oppure se l'azione A è

 117

link_up(L)*/

ala_status(N,do(A,S)) :- (ala_status(N,S) , not A=ala_down(N)) ;
 (A=ala_up(N)).

 /*il fluente ala_status(N) indica lo stato di un ALA è vero dopo che è stata compiuta

l'azione A nello stato S
 se la relazione era vera in S ed A è diverso da ala_down(N), oppure se l'azione A è a-

la_up(N)*/

alarm(Src,Dest,do(A,S)) :- (alarm(Src,Dest,S) , not A = alarm_down(Src,Dest));
 (A=alarm_up(Src,Dest)).

 /*il fluente alarm(Src,Dest) indica una condizione anomala nel routing tra la sorgente

Src e la destinazioe Dest.
 Tale fluente è vero dopo che è stata compiuta l'azione A nello stato S
 se la relazione era vera in S ed A è diverso da alarm_down(Src,Dest) oppure se l'a-

zione A è alarm_up(Src,Dest)*/

sensors(do(A,S)) :- (sensors(S), not A = sensors_down) ;
 (A = sensors_up).

 /*il fluente sensor è utilizzato per descrivere la situazione in cui i sensori attivi

presenti nella rete sono stati settati.
 Tale fluente è vero dopo che è stata compiuta l'azione A nello stato S
 se la relazione era vera in S ed A è diverso da sensor_down oppure se l'azione A è

sensor_up*/

no_info(do(A,S)) :- (no_info(S) , not A = no_info_down) ;
 (A = no_info_up) .

 /*il fluente no_info è utilizzato per descrivere la situazione in cui le informazioni

in possesso del logical reasoner non sono sufficienti
 (es. non si hanno le tabelle di routing di tutti i nodi presenti in un path anomalo

tra una sorgente e una destinazione)..
 Tale fluente è vero dopo che è stata compiuta l'azione A nello stato S
 se la relazione era vera in S ed A è diverso da no_info_down oppure se l'azione A è

no_info_up*/

tab_corr(N,do(A,S)) :- (tab_corr(N,S) , not A = tab_corr_down(N));
 (A = tab_corr_up(N)).

 /*il fluente tab_corr(N) è utilizzato per descrivere la situazione in cui la tabella

di routing del nodo N risulta essere corrotta.
 Tale fluente è vero dopo che è stata compiuta l'azione A nello stato S
 se la relazione era vera in S ed A è diverso da tab_corr_down(N) oppure se l'azione A

è tab_corr_up(N)*/

loop(D,N,do(A,S)) :- (loop(D,N,S) , not A = loop_down(D,N));
 (A = loop_up(D,N)).

 /*il fluente loop(D,N) è utilizzato per descrivere la situazione in cui viene rilevato

un loop terminante nel nodo N nel cammino che conduce al nodo D.
 Tale fluente è vero dopo che è stata compiuta l'azione A nello stato S
 se la relazione era vera in S ed A è diverso da loop_down(D,N) oppure se l'azione A è

loop_up(D,N)*/

lost_pkt(N,do(A,S)) :- (lost_pkt(N,S) , not A = lost_pkt_down(N)) ;
 (A = lost_pkt_up(N)).

 /*il fluente lost_pkt(N) è utilizzato per descrivere la situazione in cui viene scar-

tato un pacchetto nel nodo N.
 Tale fluente è vero dopo che è stata compiuta l'azione A nello stato S
 se la relazione era vera in S ed A è diverso da lost_pkt_down(N) oppure se l'azione A

è lost_pkt_up(N)*/

ttl(do(A,S)) :- (ttl(S) , not A = ttl_down);
 (A = ttl_up).

 /*il fluente ttl è utilizzato per descrivere la situazione in cui vengono settati i

sensori per rilevare i pacchetti scartati a causa di ttl basso.
 Tale fluente è vero dopo che è stata compiuta l'azione A nello stato S

 118

 se la relazione era vera in S ed A è diverso da ttl_down oppure se l'azione A è
ttl_up*/

backup(N,do(A,S)) :- (backup(N,S) , not A = backup_down(N)) ;
 (A = backup_up(N)).

 /*il fluente backup(N) è utilizzato per classificare il nodo N come nodo di backup.
 Tale fluente è vero dopo che è stata compiuta l'azione A nello stato S
 se la relazione era vera in S ed A è diverso da backup_down(N) oppure se l'azione A è

backup_up(N)*/

repository(L,do(A,S)) :- repository(L,S), not A=update_repository(_,_,_) ;
 A=update_repository(N,[Dest,Neigh,Cost],Time), reposi-

tory(Old,S), L is [[N, [Dest,Neigh,Cost],Time]|Old].

/*il fluente repository(L) è usato per contenere tutte le variazioni delle tabelle di

routing dei nodi interessati ad un loop.
 La lista L è composta da elementi del tipo [N,[Dest,Neigh,Cost],Time] per indicare che

il nodo N ha effettuato la modifica
 [Dest,Neigh,Cost] nella propria tabella di routing all'istante Time.*/

causes(C, do(A,S)) :- causes(C,S), not A=add_causes(_,_) ;
 A=add_causes(N,Time), causes(Old,S), C is [[N,Time]|Old].
/*il fluente causes(C) è usato per contenere nella lista L delle coppie del tipo

[N,Time] utili
 ad individuare il nodo N che per primo ha generato un loop nella rete.*/

/***
****************Indirect fluents**************************
***/

path(B,B,[B],0,S).
path(A,B,[A|Lc],C,S):-net_neighbor(A,X,_,_,_,S),
 \+clause(visited(X),K),
 do_assert(visited(A)),
 path(X,B,Lc,T,S),
 C is T + 1.

/*tramite i predicati path(A,B,P,C,S) viene calcolato un cammino P di costo C al livello

network
(viene usato il fluente net_neighbor) tra i nodi A e B nella situazione S.
il predicato dinamico visited è usato per marcare i nodi già visitati ed evitare così

loop*/

minpath(A,B,L,C,S) :- retract_all(visited(Z)),
 findall(X,
 path(A,B,X,Y,S),
 T
),
 do_min(T,C,L).

/*il predicato minpath(A,B,L,C,S) consente di calcolare il cammino L (come lista di nodi

apparteneti al cammino)
di costo minimo C al livello network tra i nodi A e B nello stato S.
Tutti i cammini tra A e B sono immagazzinati come lista di liste in T, */

minpath_backup(A,B,L,C,S) :- retract_all(visited(Z)),
 findall(X,
 path_backup(A,B,X,Y,S),
 T
),
 do_min(T,C,L).

/*Analogamente ai predicati minpath, i predicati minpath_backup(A,B,L,C,S) consentono di

determinare un cammino L minimo
 di costo C tra i nodi A e B considerando anche i possibili nodi di backup nella situa-

zione S.
 A tal proposito viene utilizzato il predicato path_backup. */

path_backup(B,B,[B],0,S).
path_backup(A,B,[A|Lc],C,S):-ph_neighbor(A,X,_,_,_),

 119

 (backup(A,S) ; node_status(A,S)),
 \+clause(visited(X),K),
 do_assert(visited(A)),
 path_backup(X,B,Lc,T,S),
 C is T + 1.

/*tramite i predicati path_backup(A,B,P,C,S) viene calcolato un cammino P di costo C ot-

tenuto considerando
anche i nodi di backup (fluente backup(A,S)) tra i nodi A e B nella situazione S.*/

all_nodes_minpath(A,B,L,C,S):- retract_all(visited(Z)),
 findall(X,
 path(A,B,X,Y,S) ,
 T
),
 select_min(T,C,L1),nodes_union(L1,L).

/*il predicato all_nodes_minpath(A,B,L,C,S) consente di determinare tutti i nodi
 (contenuti nella lista L) presenti in tutti i possibili cammini di costo minimo C tra

i nodi A e B.*/

check_bac([],[],S).
check_bac([X|Tail],[X|Tail1],S):- backup(X,S) , check_bac(Tail,Tail1,S).
check_bac([X|Tail],Tail1,S):- not backup(X,S) , check_bac(Tail,Tail1,S).
/*i predicati check_bac consentono di determinare i nodi di backup presenti in un cammi-

no.*/

/***
*******restore suppressed situation arguments*************
***/

restoreSitArg(net_neighbor(N1,N2,L,I1,I2),S,net_neighbor(N1,N2,L,I1,I2,S)).
restoreSitArg(routing_table(N,T),S,routing_table(N,T,S)).
restoreSitArg(node_status(N),S,node_status(N,S)).
restoreSitArg(iface_status(I),S,iface_status(I,S)).
restoreSitArg(link_status(L),S,link_status(L,S)).
restoreSitArg(ala_status(A),S,ala_status(A,S)).
restoreSitArg(alarm(Src,Dest),S,alarm(Src,Dest,S)).
restoreSitArg(sensors,S,sensors(S)).
restoreSitArg(no_info,S,no_info(S)).
restoreSitArg(tab_corr(N),S,tab_corr(N,S)).
restoreSitArg(loop(D,N),S,loop(D,N,S)).
restoreSitArg(lost_pkt(N),S,lost_pkt(N,S)).
restoreSitArg(ttl,S,ttl(S)).
restoreSitArg(backup(N),S,backup(N,S)).
restoreSitArg(repository(L),S,repository(L,S)).
restoreSitArg(causes(L),S,causes(L,S)).

restoreSitArg(minpath(N1,N2,L,C),S,minpath(N1,N2,L,C,S)).
restoreSitArg(minpath_backup(N1,N2,L,C),S,minpath_backup(N1,N2,L,C,S)).
restoreSitArg(all_nodes_minpath(N1,N2,L,C),S,all_nodes_minpath(N1,N2,L,C,S)).
restoreSitArg(check_bac(L,B),S,check_bac(L,B,S)).

/***
********************Initial Situation*********************
***/

ph_neighbour(X,Y,L,I1,I2):- connect(L,I1,I2),link(L),iface_node(I1,X),iface_node(I2,Y).

net_neighbor(N1,N2,L,I1,I2,s0):- ph_neighbor(N1,N2,L,I1,I2), node_status(N1,s0),

node_status(N2,s0),
 link_status(L,s0), iface_status(I1,s0),

iface_status(I2,s0).

/*La precedente relazione è utilizzata per inferire il valore iniziale nella situazione

s0 del fluente net_neighbor(N1,N2,L,I1,I2).
 I due nodi N1 ed N2 sono vicini al livello network nella situazione s0 se sono vicini

al livello fisico in s0 (ph_neighbor(N1,N2,L,I1,I2,s0))
 e lo status dei nodi, delle interfacce e del link è on (node_status(N1,s0), no-

de_status(N2,s0),link_status(L,s0), iface_status(I1,s0), ifa-
ce_status(I2,s0)). */

repository([],s0).

 120

causes([],s0).

/*le liste contenute nei fluenti repository e causes vengono inizializzate alla lista

vuota.*/

/***
*********Preconditions for Primitive Actions**************
***/

poss(define_rip_table(N,T),S).
/*L'azione define_rip_table(N,T) può essere eseguita nella situazione S se il fluente

routing_table(N,_,S) è falso in S*/

poss(update_rip_table(N,Upd),S):- routing_table(N,_,S).
/*L'azione update_rip_table(N,T) può essere eseguita nella situazione S se il fluente

routing_table(N,_,S) è vero in S*/

poss(dummy,S).
/*l'azione ausiliaria dummy è sempre eseguibile in ogni situazione */

poss(node_up(N),S):- not node_status(N,S).
poss(node_down(N),S):- node_status(N,S).
/*L'azione node_up(N) può essere eseguita nella situazione S se il fluente no-

de_status(N) è falso in S,
 mentre, al contrario, per l'azione node_down(N) viene richiesto il valore vero del

fluente */

poss(iface_up(I),S) :- not iface_status(I,S).
poss(iface_down(I),S) :- iface_status(I,S).
/*L'azione iface_up(I) può essere eseguita nella situazione S se il fluente ifa-

ce_status(I,S) è falso in S,
 mentre, al contrario, per l'azione iface_down(I) viene richiesto il valore vero del

fluente*/

poss(link_up(L),S) :- not link_status(L,S).
poss(link_down(L),S) :- link_status(L,S).
/*L'azione link_up(L) può essere eseguita nella situazione S se il fluente

link_status(L,S) è falso in S,
 mentre, al contrario, per l'azione link_down(I) viene richiesto il valore vero del

fluente*/

poss(ala_up(A),S) :- not ala_status(A,S).
poss(ala_down(A),S) :- ala_status(A,S).
/*L'azione ala_up(A) può essere eseguita nella situazione S se il fluente a-

la_status(A,S) è falso in S,
 mentre, al contrario, per l'azione ala_down(I) viene richiesto il valore vero del flu-

ente*/

poss(alarm_up(Src,Dest),S):-not alarm(Src,Dest,S).
poss(alarm_down(Src,Dest),S):- alarm(Src,Dest,S).
/*L'azione alarm_up(Src,Dest) può essere eseguita nella situazione S se il fluente a-

larm(Src,Dest,S) è falso in S,
 mentre, al contrario, per l'azione alarm(Src,Dest) viene richiesto il valore vero del

fluente*/

poss(sensors_up,S):-not sensors(S).
poss(sensors_down,S):- sensors(S).
/*L'azione sensors_up può essere eseguita nella situazione S se il fluente sensors è

falso in S,
 mentre, al contrario, per l'azione sensors_down viene richiesto il valore vero del

fluente*/

poss(no_info_up,S):- not no_info(S).
poss(no_info_down,S):- no_info(S).
/*L'azione no_info_up può essere eseguita nella situazione S se il fluente no_info è

falso in S,
 mentre, al contrario, per l'azione no_info_down viene richiesto il valore vero del

fluente*/

poss(tab_corr_up(N),S):- not tab_corr(N,S).

 121

poss(tab_corr_down(N),S):- tab_corr(N,S).
/*L'azione tab_corr_up(N) può essere eseguita nella situazione S se il fluente

tab_corr(N) è falso in S,
 mentre, al contrario, per l'azione tab_corr_down(N) viene richiesto il valore vero del

fluente*/

poss(loop_up(D,N),S):- not loop(D,N,S).
poss(loop_down(D,N),S):- loop(D,N,S).
/*L'azione loop_up(D,N) può essere eseguita nella situazione S se il fluente loop(D,N) è

falso in S,
 mentre, al contrario, per l'azione loop_down(D,N) viene richiesto il valore vero del

fluente*/

poss(lost_pkt_up(N),S):- not lost_pkt(N,S).
poss(lost_pkt_down(N),S):- lost_pkt(N,S).
/*L'azione lost_pkt_up(N) può essere eseguita nella situazione S se il fluente

lost_pkt(N) è falso in S,
 mentre, al contrario, per l'azione lost_pkt_down(N) viene richiesto il valore vero del

fluente*/

poss(ttl_up,S):- not ttl(S).
poss(ttl_down,S):- ttl(S).
/*L'azione ttl_up può essere eseguita nella situazione S se il fluente ttl è falso in S,
 mentre, al contrario, per l'azione ttl_down viene richiesto il valore vero del fluen-

te*/

poss(backup_up(N),S):- not backup(N,S).
poss(backup_down(N),S):- backup(N,S).
/*L'azione backup(N) può essere eseguita nella situazione S se il fluente backup(N,S) è

falso in S,
 mentre, al contrario, per l'azione backup_down viene richiesto il valore vero del flu-

ente*/

poss(update_repository(N,[Dest,Neigh,Cost],Time),S) :- repository(L,S).
/*l'azione update_repository(N,[Dest,Neigh,Cost],Time) può essere eseguita nella situa-

zione S se il
fluente repository(L) è vero in S.*/

poss(add_causes(N,T),S) :- causes(L,S).
/*l'azione add_causes(N,T) può essere eseguita nella situazione S se il
fluente causes(L) è vero in S.*/

/***
********************Prolog Predicates*********************
***/

do_assert(T):-asserta(T).
do_assert(T):-retract(T),!,fail.
/*predicati usati per la gestione del predicato dinamico visited.*/

...

step :- doR(main,rules,s0,S), save(S,stati) , step.

step2 :- get_flag(unix_time,X), mod(X,10,Mod) ,writeln(X), writeln(Mod),
 ((0 == Mod) , writeln("intro date ? (y/n)") , read(0,Y),
 (('n' == Y , step2) ;
 ('y' == Y , writeln("date = ? (hhhh/mm/dd)"), read(0,D), writeln("time =

? (mm:ss)"), read(0,T), writeln(D), writeln(T), step2)
)
) ; step2 .

/*Questa regola è usata per gestire ogni passo del ragionamento logico.
 Il cuore della regole è il predicato rgolog doR che consente di eseguire la procedura

complessa main in
 concorrenza con la procedura rules. Ogni azione primitiva inferita dal sistma o intro-

dotta dall'esterno comporta
 l'analisi di tutte le regole di funzionamento contenute in rules.
 Terminata la regola doR viene invocata la successiva regola save che consente il sal-

vataggio della
 situazione corrente su file e il ripristino di una nuova situazione iniziale.
 Infine viene richiamata ricorsivamente la procedura step.*/

 122

avvio(X):- write("sto stampando "), write(X).
start:- start(Y),asserta(port(Y)), remote_connect(babbage/3000

,peer,I),static_database,step.

/*Tramite questa regola si instaura una connessione TCP con l'AN_Gate (predicato esterno

start(Y) che ritorna la porta
 socket da utilizzare per successive connessioni). Viene quindi preparata una connes-

sione sulla porta 3000 del local host per
 consentire l'introduzione della conoscenza iniziale (static_database) e per l'intro-

duzione delle successive azioni.
 Infine viene invocata la regola step per avviare il ragionamento. */

static_database:- read_exdr(gw_to_netlog,X),(X = nil ; (asserta(X) , static_database

)).

/*il predicato static_database consente l'introduzione della conoscenza iniziale nel lo-

gical reasoner. */

list_node(List):-findall(X, node(X), List).
list_iface(S):-findall(X, iface(X), S).
list_ala(S):-findall(X, ala(X), S).
list_link(S):-findall(X, link(X), S).

save_node([],F,S).
save_node([X|Tail],F,S) :- node_status(X,S) , node_status(X,s0),

writeln(F,node_status(X,s0)) , save_node(Tail,F,S) ;
 node_status(X,S) , not node_status(X,s0) ,

writeln(F,node_status(X,s0)) , asserta(node_status(X,s0)) ,
save_nod(Tail,F,S) ;

 not node_status(X,S) , node_status(X,s0) , re-
tract(node_status(X,s0)), save_node(Tail,F,S);

 not node_status(X,S) , not node_status(X,s0),
save_node(Tail,F,S).

save_table([],F,S).
save_table([X|Tail],F,S) :- routing_table(X,T,S), routing_table(X,T,s0),

writeln(F,routing_table(X,T,s0)),save_table(Tail,F,S) ;
 routing_table(X,T,S), not routing_table(X,T,s0),

writeln(F,routing_table(X,T,s0)), as-
serta(routing_table(X,T,s0)),save_table(Tail,F,S) ;

 not routing_table(X,T,S), routing_table(X,T,s0), re-
tract(routing_table(X,T,s0)),save_table(Tail,F,S) ;

 not routing_table(X,T,S), not routing_table(X,T,s0),
save_table(Tail,F,S).

...

save(S,File) :- open(File, write , F) , list_node(L) , save_nod(L,F,S) ,

save_table(L,F,S) ,
 list_iface(I), save_iface(I,F,S) , /*list_ala(A), save_ala(A,S,F),*/

list_link(P) , save_link(P,F,S) ,
 sens_temp(S,F), ttl_temp(S,F), alarm_temp(S,F), repository_temp(S,F),

causes_temp(S,F), close(F).

/***
***********************Procedures*************************
***/

/*procedure complesse per la determinazione della causa root*/

proc(collect(List,P), ?([]=List) # ?([X|Tail]=List) : get_local_var(X,P) : col-

lect(Tail,P)).
/*procedura che consente di raccogliere tutte le variazioni delle tabelle di routing
 contenute nei dapositi locali dei nodi contenuti nella lista List.*/

proc(select(List,Rep) , ?([]=Rep) # ?([[N,[Dest,Neigh,Cost],Time]|Tail]=Rep) :
 (?(member(Neigh,List)) : add_causes(N,Time) : select(List,Tail) # se-

lect(List,Tail))).
/*List è la lista dei nodi che fanno parte del loop. N fa già parte della lista List per

costruzione.

 123

 Si devono selezionare tutte le variazioni delle tabelle di routing che hanno reindi-
rizzato una entry verso un altro nodo appartenente al loop (nodi di List) */

proc(check_cause(List,Root) , ?(repository(R)) : select(List,R) : ?(causes(C)) : ?(se-

lect_old(C,[N,T])) : ?(Root is N)).
/*procedura che viene utilizzata per selezionare tutte le variazioni alle tabelle
 di routing significative per determinare la causa principale */

proc(set_table(N,[Dest,Neigh,Cost]), ?(port(P))). /*: ac-

tion_on_table(N,Dest,Neigh,Cost,P)).*/
/*chiamata alla procedura esterna action_on_table per l'azione di ripristino*/

proc(action_parameter(Dest,N), ?(minpath(N,Dest,Path,Cost)) : ?([_,Neigh|Tail]=Path) :

set_table(N,[Dest,Neigh,Cost])).
/*procedura che calcola il cammino minimo tra il nodo N e la destinazione Dest per de-

terminare i parametri della azione di ripristino */

proc(init_sens(L,P), ?([]=L) # ?([X|Tail]=L) : ?(sensor_ttl(X,P)) : init_sens(Tail,P)

).
/*procedura per settare il sensore ttl nei nodi della lista L tramite la socket P */

proc(resume_node(L,P), ?([]=L) # ?([X|Tail]=L) : ?(node_set(X,P)) : resume_node(Tail,P)

).
/*procedura per attivare i vari nodi di backup cotenuti nella lista L. P è la porta so-

cket attraverso
 cui inviare le azioni.*/

proc(send_sens(L,P), ?([]=L) # ?([X|Tail]=L) : ?(request_tab(X,P)) : ?(sensor_tab(X,P))

: ?(sensor_neigh_alive(X,P)) :
 ?(sensor_neigh_dead(X,P)) : send_sens(Tail,P)).
/*procedura per settare i sensori nei nodi della lista L tramite la socket P */

proc(set_sensors(Src,Dest), /*?(minpath(Src,Dest,Path,Cost)) :

?(all_nodes_minpath(Src,Dest,List,Cost)):*/ ?(list_node(List)) :
 ?(port(P)) : send_sens(List,P) : sensors_up).
/*questa procedura cerca tutti i nodi (lista List) che sono nei cammini di costo minimo

che conducono da Src a Dest
e chiama la procedura send_sens con i parametri determinati */

proc(check_loop(Src,Dest), if(routing_table(Src,Tab) , slide_tab(Dest,Src,Src,Tab) ,

?(writeln("nessuna info su nodo iniziale ")) : no_info_up)).
/*procedura che indaga circa la presenza di cicli nei cammini tra Src e Dest.
In paricolare la procedura inzia la ricerca determinando se possibile la tabella di rou-

ting del nodo di partenza Src.
In caso di esito negativo viene chiamata l'azione primitiva no_info_up per notificare la

mancanza di info.*/

proc(slide_tab(Dest,Src,Node,Tab) , ?([]=Tab) : ?(writeln("tabella vuota")) :

tab_corr_up(Node) #

 ?([[Dest,Dest,V]|Tail]=Tab) : (?(16=V) : ?(open(log,append,F)) : ?(write(F,"TAB

ROUTING CORROTTA ")) : ?(write(F,Node)) : ?(write(F," ")) : ?(date(D)) :
?(write(F,D)) : ?(close(F)) : ?(retract(loop_temp(L))) : ?(asser-
ta(loop_temp([Dest|L]))) : ?(writeln("trovata destinazione")) # ?(re-
tract(loop_temp(L))) : ?(asserta(loop_temp([Dest|L]))) : ?(writeln("trovata
destinazione"))) #

 ?([[Dest,Next,V]|Tail]=Tab) : (?(16=V) : ?(open(log,append,F)) : ?(write(F,"TAB

ROUTING CORROTTA ")) : ?(write(F,Node)) : ?(write(F," ")) : ?(date(D)) :
?(write(F,D)) : ?(close(F)) : ?(loop_temp(L)) : ?(member(Next,L)) : ?(re-
tract(loop_temp(L))) : ?(asserta(loop_temp([Next|L]))) : loop_up(Dest,Node)
?(loop_temp(L)) : ?(member(Next,L)) : ?(retract(loop_temp(L))) : ?(as-
serta(loop_temp([Next|L]))) : loop_up(Dest,Node)) #

 ?([[Dest,Next,V]|Tail]=Tab) : (?(16=V) : ?(open(log,append,F)) : ?(write(F,"TAB

 124

ROUTING CORROTTA ")) : ?(write(F,Node)) : ?(write(F," ")) : ?(date(D)) :
?(write(F,D)) : ?(close(F)) : ?(loop_temp(L)) : ?(-member(Next,L)) : ?(re-
tract(loop_temp(L))) : ?(asserta(loop_temp([Next|L]))) : if(rout-
ing_table(Next,Tab1), slide_tab(Dest,Src,Next,Tab1) , ?(port(P)) : ?(re-
quest_tab(Next,P)) : ?(writeln("no info ")) : no_info_up) # ?(loop_temp(L))
: ?(-member(Next,L)) : ?(retract(loop_temp(L))) : ?(as-
serta(loop_temp([Next|L]))) : if(routing_table(Next,Tab1),
slide_tab(Dest,Src,Next,Tab1) , ?(port(P)) : ?(request_tab(Next,P)) : ?(wri-
teln("no info")) : no_info_up)) #

 ?([[Host1,Host,_]|Tail]=Tab) : slide_tab(Dest,Src,Node,Tail)).

/*procedura che scorre la tabella di routing del nodo Node per cercare il rigo che con-

duce al nodo Dest.
 Se il rigo non esiste viene chiamata l'azione primitiva tab_corr_up(Node). Tale azione

viene invocata per determinare il fatto che
 la tabella di routing è corrotta.
 Nel caso in cui viene determinata la entry che conduce alla destinazine Dest viene a-

nalizzato il costo del cammino. Se il costo del cammino è 16
 viene nuovamente invocata l'azione di tabella corrotta.
 Viene inoltre verificato se il nodo attraverso cui il nodo Node raggiunge la destina-

zione non sia già stato esaminato nell'analisi del cammino
 che conduce dalla sorgente Src alla destinazione Dest.
 Nel caso in cui il nodo successivo Next è già stato visitato (è cioè contenuto nella

lista L contenuta nel predicato dinamico loop_temp(L)) viene
 invocata l'azione loop_up(Dest,Node) per segnalare la presenza di un loop nelle tabel-

le di routing dei nodi nel cammino da Sor a Dest.
 Per tutte le anomalie riscontrate si procede al salvataggio delle informazioni oppor-

tune nel file di log "log".*/

proc (main , dummy).
/*La procedura main è utilizzata per consentire l'introduzione di nuove azioni esterne

nel sistema e per la
 analisi delle correnti situazioni di allarme determinate nella procedura rules.
 L'azione fittizia dummy viene invocata per iniziare la fase di analisi della situazio-

ne corrente e sensing per l'introduzione di nuove azioni.*/

proc(rules ,(
 /* (?(alarm(Src,Dest)) : ?(-minpath(Src,Dest,Path,Cost)) : ?(min-

path_backup(Src,Dest,Path1,Cost1)) : ?(open(log,append,F)) : ?(write(F,"RETE
SCONNESSA ")) : ?(date(D)) : ?(write(F,D)) : ?(write(F,"PRESENTE PATH BACKUP
")) : ?(check_bac(Path1,Temp)) : ?(write(F,Temp)) : ?(write(F, " ")) : ?(da-
te(D)) : ?(write(F,D)) : ?(close(F)) : ?(port(P)) : resume_node(Temp,P)) #
*/

 /* (?(alarm(Src,Dest)) : ?(-node_status(N)) : ?(open(log,append,F)) :
?(write(F,"NODE DOWN ")) : ?(write(F,N)) : ?(write(F," ")) : ?(date(D)) :
?(write(F,D)) : ?(close(F)))# */

 (?(alarm(Src,Dest)) : ?(-sensors) : set_sensors(Src,Dest)) #
 (?(alarm(Src,Dest)) : ?(lost_pkt(N)) : ?(open(log,append,F)) :

?(write(F,"SCARTATO UN PACCHETTO ")) : ?(write(F,N)) : ?(write(F," ")) :
?(date(D)) : ?(write(F,D)) : ?(close(F)))#

 (?(alarm(Src,Dest)) : ?(tab_corr(N)) : ?(open(log,append,F)) : ?(write(F,"TAB
ROUTING CORROTTA ")) : ?(write(F,N)) : ?(write(F," ")) : ?(date(D)) :
?(write(F,D)) : ?(close(F)))#

 (?(alarm(Src,Dest)) : ?(loop(Dest,N)) : ?(open(log,append,F)) :
?(write(F,"TROVATO loop RIP ")) : ?(loop_temp(List)) : ?(write(F,List)) :
?(write(F," ")) : ?(date(D)) : ?(write(F,D)) : ?(close(F)))# /* :
?(port(P)) : collect(List,P) : check_causes(List,Root) : ac-
tion_parameter(Dest,Root)) # */

 (?(alarm(Src,Dest)) : ?(no_info) : ?(open(log,append,F)) : ?(write(F,"info in-
sufficienti ")) : ?(date(D)) : ?(write(F,D)) : ?(close(F))) #

 (?(alarm(Src,Dest)) : ?(sensors) : ?(retract_all(loop_temp(X))) : ?(as-
serta(loop_temp([Src]))) : check_loop(Src,Dest))#

 (?(alarm(Src,Dest)) : ?(writeln("allarme default")))#
 (?(-ttl) : ?(list_node(L)) : ?(port(P)) : init_sens(L,P) :

?(open(log,append,F)) : ?(write(F,"sensors ttl settati ")) : ?(date(D)) :
?(write(F,D)) : ?(close(F)) : ttl_up) #

 (?(-alarm(Src,Dest)) : ?(writeln("nessun allarme "))))).

/*la procedura rules è di estrema importanza nel reactive golog e consente di gestire
 tutte le anomalie o le situazioni pericolose che si vengono a creare nella rete.
 La prima regola implementata prevede la presenza di una situazione di allarme riscon-

 125

trata nel cammino
 che conduce dal nodo Src al nodo Dest. Quindi viene indagata la connettività della re-

te. Nel caso in cui la
 rete sia sconnessa, viene cercato un cammino tra Src e Dest che includa anche nodi di

backup. Qualora tale percorso esista
 si provvede a rirpistinare la connettività grazie ai nodi di backup.
 La seconda regola indaga circa la presenza di nodi in stato down nella rete.
 Nella terza regola sempre in presenza di una situazione di allarme, si prevvede al

settaggio dei sensori attivi nei nodi
 opprtuni qualora i sensori non siano già stati attivati.
 Nella regola successiva viene previsto il caso in cui si verifichi la situazione di

pacchetto perso (fluente lost_pkt(N) vero)
 quindi si annota la situazione nel file di log.
 La quinta regola tratta il caso di tabella di routing corrotta.
 La sesta regola analizza il caso di loop riscontrati nel cammino che conduce dalla

sorgente Src alla destinazione Dest.
 La regola successiva prevede, inoltre, la situazione in cui il logical reasoner non

abbia sufficienti informazioni sulle tabelle di routing.
 L'ottava regola analizza la presenza dei sensori nella rete, quindi inizia la ricerca

di loop nelle tabelle di routing dei nodi.
 La nona regola è la regola di default nella condizione di allarme utilizzata nel caso

in cui nessuna delle precedenti regole di allarme sia vera.
 L'ultima regola, infine, è la regola di default per le normali condizioni di funziona-

mento della rete.*/

/***
********************Exogenous Actions*********************
***/

exoTransition(S1,S2) :- requestExogenousAction(E,S1),
 (E = nil, S2 = S1 ;
 not E = nil, S2 = do(E,S1)).

/*Questa regola tipica del reactive golog è usata per prevedere l'introduzione nel
sistema logico delle azioni esterne che accadono nella rete.
Tramite queste azioni, il logical reasoner ha sempre una visione aggiornata dell'attuale

situazione
presente nel mondo sotto osservazione.*/

requestExogenousAction(E,S) :- remote_yield(peer), read_exdr(gw_to_netlog,E1),nl,

writeln(E1),
 ((E1 = nil ; (open(log,append,F) , write(F,E1) ,write(F," "), date(D) ,

write(F,D) , close(F) ,poss(E1,S))) -> E = E1 ;
 write(">> Action not possible. Try again.\n"), nl,
 requestExogenousAction(E,S)).

/*Il predicato requestExogenousAction è utilizzato per permettere ad AN_gate l'introdu-

zione delle nuove azioni tramire il canala di comunicazione gw_to_netlog
precedentemente stabilito.

 E' possibile introdurre una azione fittizzia nil che non ha alcun effetto sulla base
di conoscenza o introdurre una quanlunque azione primitiva compatibile con
la situazione corrente.*/

 126

 127

Appendix B.
JxtaPT for XDAQ source code

In this appendix an excerpt of the JxtaPT XDAQ module source code is
provided. The full package is composed by a set of abstract C++ classes,
which represent the user API, and a set of implementing C++ classes, which
are heavily dependant on the underlying Jxta-C source code used during
this work; furthermore, a Java package provides the additional functional-
ities required within the Java rendezvous peers. Here the user API is pre-
sented, as well as the main Java class.

B.1. The user’s API
Address.h
/***
 * XDAQ Components for Distributed Data Acquisition *
 * Copyright (C) 2000-2004, CERN. *
 * All rights reserved. *
 * Authors: J. Gutleber, G. Lo Presti and L. Orsini *
 * *
 * For the licensing terms see LICENSE. *
 * For the list of contributors see CREDITS. *
 ***/

#ifndef _jxta_Address_h
#define _jxta_Address_h

#include "pt/Address.h"
#include "pt/exception/InvalidAddress.h"

#include "toolbox/net/URL.h"
#include <netinet/in.h>

namespace jxta
{

//! This class provides the network transport specific information.
//! In general the format of an address takes the form
//! <protocol>:://<network address>/<service name>/<service parameters>
//! This implementation is identical to the http::Address class plus some
//! Jxta specific methods.

class Address: public pt::Address
{
 public:

 //! Create address from url
 Address (const std::string& url) throw (pt::exception::InvalidAddress);
 virtual ~Address();

 128

 //! Get the host part of the url
 std::string getHost();

 //! Get the port number of the url as int
 int getPort();

 //! Get the address in the Jxta pipe format, i.e. jxtapipe:<IP>:<port>
 std::string getPipeName();

 // --- Inherited methods: ---

 //! Retrieve the protocol part of the address, e.g. jxta
 std::string getProtocol();

 //! Retrieve the service name, e.g. "pipe"
 std::string getService();

 //! Get a string representation of the address, e.g. a URL
 std::string toString();

 //! Retrieve additional service parameters
 std::string getServiceParameters();

 //! Address comparison
 bool equals(pt::Address::Reference addressRef);

 protected:
 toolbox::net::URL * url_;
};

}

#endif

Advertisement.h
#ifndef _jxta_Advertisement_h
#define _jxta_Advertisement_h

#include <string>

#include "toolbox/mem/CountingPtr.h"
#include "toolbox/mem/ThreadSafeReferenceCount.h"
#include "toolbox/mem/StandardObjectPolicy.h"

namespace jxta
{

//! This class wraps a Jxta advertisement and handles peer advs, peergroup advs, pipe

advs, and custom advs.
class Advertisement
{
 public:
 static std::string PEER;
 static std::string GROUP;
 static std::string PIPE;
 static std::string SVC;

 typedef toolbox::mem::CountingPtr<Advertisement, toolbox::mem::SimpleReferenceCount,

toolbox::mem::StandardObjectPolicy> Reference;

 virtual ~Advertisement() {};

 //! Returns the advertisement type. Either "jxta:PA", "jxta:PGA",

"jxta:PipeAdvertisement" or "jxta:SvcAdv".
 virtual std::string getType() = 0;
 //! Returns the internal ID associated with this advertisement.
 virtual std::string getID() = 0;
 //! Returns the name associated with this advertisement, either the peer name, the

peergroup name or the pipe name.
 virtual std::string getName() = 0;

 //! Dumps the entire XML representation of this advertisement.

 129

 virtual std::string getXmlDocument() = 0;
};

//! Creates a module advertisement to advertise external services.
//! @param string name The name of the advertised service.
//! @param string desc An optional description of the advertised service.
jxta::Advertisement::Reference newModuleAdv(std::string name, std::string desc);

}

#endif

AdvertisementList.h
#ifndef _jxta_AdvertisementList_h
#define _jxta_AdvertisementList_h

#include <string>
#include <vector>

#include "jxta/exception/Exception.h"
#include "jxta/Advertisement.h"

#include "toolbox/mem/CountingPtr.h"
#include "toolbox/mem/ThreadSafeReferenceCount.h"
#include "toolbox/mem/StandardObjectPolicy.h"

namespace jxta
{

//! This class wraps a list of advertisements.
class AdvertisementList
{
 public:
 typedef toolbox::mem::CountingPtr<AdvertisementList,

toolbox::mem::ThreadSafeReferenceCount, toolbox::mem::StandardObjectPolicy>
Reference;

 virtual ~AdvertisementList() {};

 //! Returns the list length.
 virtual int getLength() = 0;

 //! Returns the i-th element of this list as a reference.
 virtual jxta::Advertisement::Reference getItem(int i) = 0;

 //! Adds the provided element to the end of this list.
 virtual void addItem(jxta::Advertisement::Reference adv) = 0;

 //! Removes the i-th element from this list.
 virtual void removeItem(int i) = 0;
};

}

#endif

DiscoveryListener.h
#ifndef _jxta_DiscoveryListener_h
#define _jxta_DiscoveryListener_h

#include "jxta/AdvertisementList.h"

namespace jxta {

//! This abstract class represents a discovery listener.
//##ModelId=416A98F1014E
class DiscoveryListener
{

 130

 public:
 //! Callback for a discovery event.
 //! The Discovery Service calls back this function whenever an asynchronous discov-

ery event happens.
 //! @param AdvertisementList::Reference advList the list of newly discovered adver-

tisements.
 //##ModelId=416A98F20073
 virtual void discoveryEvent(jxta::AdvertisementList::Reference advList) = 0;
};

}

#endif

DiscoveryService.h
#ifndef _jxta_DiscoveryService_h
#define _jxta_DiscoveryService_h

#include "jxta/exception/Exception.h"
#include "jxta/Advertisement.h"
#include "jxta/AdvertisementList.h"
#include "jxta/DiscoveryListener.h"

namespace jxta
{

//! This class wraps the Jxta Discovery Service. This service is responsible for all

discovery queries over the Jxta network.
class DiscoveryService
{
 public:

 static int PEER;
 static int GROUP;
 static int ADV;

 //! Queries the local cache getting all known running peers, peer groups or pipes.
 //! @param int advType the requested advertisement type; one of DiscoverySer-

vice::PEER, DiscoveryService::GROUP, DiscoveryService::ADV
 //! @return a list of advertisements, or an empty list if nothing is present in the

local cache.
 virtual jxta::AdvertisementList::Reference getKnownAdvertisements(int advType = 0)

throw (jxta::exception::Exception) = 0;

 //! Remotely and asynchronously queries the network getting all running peers, peer

groups or pipes.
 //! To get the discovered advertisements use a DiscoveryListener or call getKnownAd-

vertisements()
 //! @param int advType the requested advertisement type; one of DiscoverySer-

vice::PEER, DiscoveryService::GROUP, DiscoveryService::ADV
 virtual void searchRemoteAdvertisements(int advType = 0) = 0;

 //! Flushes the local cache
 //! @param int advType the requested advertisement type; one of DiscoverySer-

vice::PEER, DiscoveryService::GROUP, DiscoveryService::ADV
 virtual void flushAdvertisements(int advType = 0) = 0;

 //! Publishes the given advertisement to the Jxta network. Currently used to publish

pipe advertisements.
 virtual bool publishAdvertisement(Advertisement::Reference adv) = 0;

 //! Gives the peer which is running the requested service svcName (i.e. published

the related advertisement).
 //! @param string advType the advertisement type searched for; one of Advertise-

ment::PEER, Advertisement::GROUP, Advertisement::PIPE
 //! @param string svcName the queried service name; it can contain '*' wildcard

characters
 //! @param bool remote if true forces a synchronous remote discovery, otherwise

searches only on the local cache
 //! @return the first matching advertisement, or an empty AdvertisementReference if

the target advertisement is not found

 131

 virtual jxta::Advertisement::Reference getAdvertisementByName(std::string advType,
std::string svcName, bool remote) = 0;

 //! Registers a listener to the discovery service. It is called back whenever a new

peer is discovered.
 virtual void addServiceListener(DiscoveryListener* listener) throw

(jxta::exception::Exception) = 0;

 //! Removes a previously registered discovery listener.
 virtual void removeServiceListener(DiscoveryListener* listener) = 0;

 //! Removes all previously registered discovery listeners.
 virtual void removeAllServiceListeners() = 0;
};

}

#endif

JxtaListener.h
#ifndef _pt_JxtaListener_h_
#define _pt_JxtaListener_h_

#include <string>
#include <exception>
#include "pt/Listener.h"

namespace pt
{

//! A concrete Listener inherits from this class and implements a callback
//! corresponding to the service type
class JxtaListener: public pt::Listener
{
 public:

 //! Return the type of listener according the service for which it is implemented
 std::string getService()
 {
 return "Pipe";
 }

 //! User provides an implementation for processing the incoming Jxta message
 virtual void processIncomingMessage (std::string msg) throw (std::exception) = 0;
};

}

#endif

JxtaMessenger.h
#ifndef _pt_JxtaMessenger_h_
#define _pt_JxtaMessenger_h_

#include <string>
#include "pt/Messenger.h"

namespace pt
{

//! This class is used to send a message over a Peer Transport
class JxtaMessenger: public pt::Messenger
{
 public:

 //! A concrete messenger inherits from the interface and implements send functions
 std::string getService() { return "pipe"; }

 132

 //! A Peer Transport must implement this send function by inheriting from this class
 virtual void send (std::string message) = 0;
};

}

#endif

PeerGroup.h
#ifndef _jxta_PeerGroup_h
#define _jxta_PeerGroup_h

#include <string>
#include "jxta/DiscoveryService.h"
#include "jxta/RdvService.h"
#include "jxta/PipeService.h"

#include "toolbox/mem/CountingPtr.h"
#include "toolbox/mem/ThreadSafeReferenceCount.h"
#include "toolbox/mem/StandardObjectPolicy.h"

namespace jxta {

//! This class represents a Jxta Peer Group.
//! It provides all the services associated with a Jxta peer.
//! The Jxta NetPeerGroup is a singleton istance of this class.
class PeerGroup {
 public:
 typedef toolbox::mem::CountingPtr<PeerGroup, toolbox::mem::ThreadSafeReferenceCount,

toolbox::mem::StandardObjectPolicy> Reference;

 virtual ~PeerGroup() {};

 //! Returns the local peer name.
 virtual std::string getPeerName() = 0;
 //! Returns the local peer ID as string.
 virtual std::string getPeerID() = 0;
 //! Returns the peer group name.
 virtual std::string getPeerGroupName() = 0;
 //! Returns the peer group ID as string.
 virtual std::string getPeerGroupID() = 0;

 //! Returns the Discovery Service associated with the NetPeerGroup.
 virtual jxta::DiscoveryService* getDiscoveryService() = 0;
 //! Returns the Rendezvous Service associated with the NetPeerGroup.
 virtual jxta::RdvService* getRdvService() = 0;
 //! Returns the Pipe Service associated with the NetPeerGroup.
 virtual jxta::PipeService* getPipeService() = 0;
};

}

#endif

PeerTransportReceiver.h
#ifndef _jxta_PeerTransportReceiver_h
#define _jxta_PeerTransportReceiver_h

#include <string>
#include <vector>

#include "pt/PeerTransportReceiver.h"
#include "pt/JxtaListener.h"
#include "jxta/Address.h"
#include "jxta/PlatformImpl.h"
#include "jxta/PipeService.h"
#include "jxta/RdvConnectionListener.h"
#include "jxta/exception/Exception.h"

 133

namespace jxta
{

//! This class represents a XDAQ compliant PeerTransportReceiver over the Jxta network.
//! It wraps a Jxta input pipe.
class PeerTransportReceiver: public pt::PeerTransportReceiver, public

jxta::RdvConnectionListener
{
 public:

 PeerTransportReceiver();
 virtual ~PeerTransportReceiver();

 pt::TransportType getType();

 pt::Address::Reference createAddress(const std::string& url) throw

(pt::exception::InvalidAddress);
 pt::Address::Reference createAddress(std::map<std::string, std::string,

std::less<std::string> >& address) throw (pt::exception::InvalidAddress);

 //! Adds a listener to get messages from the Jxta network.
 void addServiceListener (pt::Listener* listener) throw (pt::exception::Exception);
 bool isExistingListener (std::string service);
 void removeServiceListener (pt::Listener* listener) throw

(pt::exception::Exception);
 void removeAllServiceListeners();

 std::string getProtocol();
 std::vector<std::string> getSupportedServices();
 bool isServiceSupported(const std::string& service);

 //! Configures the listening address. Starts the Jxta platform if not yet done.
 //! This method can be used as a bootstrap for the Jxta platform.
 void config (pt::Address::Reference address) throw (pt::exception::Exception);

 private:

 void rdvConnectionEvent();

 void onMessage (Jxta_object* obj);
 friend void j_on_message_callback(Jxta_object* obj, void* arg);

 jxta::Platform* jpl_; // a Jxta receiver NEEDS the platform, to access the NetPG
 jxta::PipeService* pipeSvc_;

 Jxta_listener* j_listener_;
 Jxta_inputpipe* j_ip_;
 pt::JxtaListener* listener_;
};

}

void j_on_message_callback(Jxta_object* obj, void* arg);

#endif

PeerTransportSender.h
#ifndef _jxta_PeerTransportSender_h
#define _jxta_PeerTransportSender_h

#include <string>

#include "pt/PeerTransportSender.h"
#include "jxta/Address.h"
#include "jxta/JxtaMessenger.h"
#include "jxta/PlatformImpl.h"
#include "jxta/RdvService.h"
#include "jxta/PipeService.h"

namespace jxta

 134

{

//! This class represents a XDAQ compliant PeerTransportSender over the Jxta network
class PeerTransportSender: public pt::PeerTransportSender
{
 public:

 PeerTransportSender();
 virtual ~PeerTransportSender();

 pt::TransportType getType();

 pt::Address::Reference createAddress(const std::string& url) throw

(pt::exception::InvalidAddress);
 pt::Address::Reference createAddress(std::map<std::string, std::string,

std::less<std::string> >& address) throw (pt::exception::InvalidAddress);

 std::string getProtocol();

 std::vector<std::string> getSupportedServices();
 bool isServiceSupported(const std::string& service);

 //! Creates or returns a JxtaMessenger to send messages to the given destination.
 //! @param destination a reference to the destination address.
 //! @param local a reference to the local address; it is ignored in this context.
 pt::Messenger::Reference getMessenger (pt::Address::Reference destination,

pt::Address::Reference local) throw
(pt::exception::UnknownProtocolOrService);

 private:
 jxta::PlatformImpl* jpl_; // a Jxta sender NEEDS the platform, to access the NetPG
};

}

#endif

PeerTransportJxta.h
#ifndef _PeerTransportJxta_h_
#define _PeerTransportJxta_h_

#include "xdaq/Application.h"
#include "jxta/PeerTransportSender.h"
#include "jxta/PeerTransportReceiver.h"
#include "jxta/Platform.h"

#include "xgi/Utils.h"
#include "xgi/Method.h"

//! This is the XDAQ Peer Transport Appliction Wrapper for Jxta.
//! It contains the Jxta PeerTransportReceiver and PeerTransportSender, and the Plat-

form.
//! It also includes xgi methods to control the Jxta peer via HyperDAQ.
class PeerTransportJxta : public xdaq::Application
{
 public:

 PeerTransportJxta(xdaq::ApplicationStub * s);
 ~PeerTransportJxta();

 //! Shows the local published services and links to other commands.
 void serviceView(xgi::Input * in, xgi::Output * out) throw

(xgi::exception::Exception);
 //! Shows the discovered peers view and links to other commands.
 //! Default method, called by the '/' URL associated with this URN.
 void peerView(xgi::Input * in, xgi::Output * out) throw (xgi::exception::Exception);
 //! Forces a remote discovery to refresh peer view.
 void refreshPView(xgi::Input * in, xgi::Output * out) throw

(xgi::exception::Exception);
 //! Shows the add rendezvous form page.
 void addRdvForm(xgi::Input * in, xgi::Output * out) throw

 135

(xgi::exception::Exception);
 //! Adds a static rendezvous as specified in input parameters.
 void addRdv(xgi::Input * in, xgi::Output * out) throw (xgi::exception::Exception);
 //! Shows the publish advertisement form page.
 void publishAdvForm(xgi::Input * in, xgi::Output * out) throw

(xgi::exception::Exception);
 //! Publishes a custom Jxta module class advertisement (MCA) as specified in input

parameters.
 void publishAdv(xgi::Input * in, xgi::Output * out) throw

(xgi::exception::Exception);

 private:

 void displayPeers(xgi::Output& out);
 void displayServices(xgi::Output& out);
 void printConfirmMessage(xgi::Output& out, std::string message, std::string refresh

= "");
 void printPageFooter(xgi::Output& out);

 jxta::PeerTransportSender* pts_;
 jxta::PeerTransportReceiver* ptr_;
 jxta::Platform* jpl_;
 jxta::PeerGroup* netPG_;

 std::string localUrn_;
};

#endif

PipeService.h
#ifndef _jxta_PipeService_h
#define _jxta_PipeService_h

#include "jxta/exception/Exception.h"
#include "jxta/Address.h"
#include "jxta/JxtaMessenger.h"

namespace jxta
{

//! This class wraps the Jxta Pipe Service, which is responsible for the messaging over

the Jxta network.
//! This interface is provided for documentation purposes only. The user should not call
//! its methods directly, but use instead the PeerTransportReceiver and PeerTransport-

Sender classes.
class PipeService
{
 public:
 //! Creates a JxtaMessenger to send messages over a Jxta pipe to the given address.
 //! @return a JxtaMessenger instance to send messages to the given destination.
 virtual jxta::JxtaMessenger* createMessenger(pt::Address::Reference destination)

throw (jxta::exception::Exception) = 0;
};

}

#endif

Platform.h
#ifndef _jxta_Platform_h
#define _jxta_Platform_h

#include <string>

#include "jxta/exception/Exception.h"
#include "jxta/Address.h"
#include "jxta/PeerGroup.h"

 136

//! if this macro is not defined, the Jxta PlatformConfig file will be regenerated each
time.

#define KEEP_PLATFORM_CONFIG

namespace jxta
{

//! This class represents the Jxta platform. It's a singleton, and wraps a Jxta NetPeer-

Group. @see jxta::PeerGroup.
class Platform
{
 public:
 //! Shutdown the Jxta platform. Explicitly sends a message to all connected rdvs to

flush their caches.
 virtual ~Platform() {};

 //! Return the local IP address and the port on which the Jxta is running. The ad-

dress is in the form jxta://IPAddress:port/Platform.
 virtual Address* getLocalAddress() = 0;
 //! Return the NetPeerGroup, i.e. the main group to which every peer must belong.

@see jxta::PeerGroup.
 virtual PeerGroup* getNetPeerGroup() = 0;

 //! Search and join a given peer group. Throws exception if the group cannot be

found on the local cache.
 //! To remotely discover a group use the Discovery Service.
 virtual PeerGroup* joinPeerGroup(std::string groupName) throw

(jxta::exception::Exception) = 0;
 //! Return the PeerGroup instance which represent the given peer group.
 //! Return null if the group cannot be found.
 virtual PeerGroup* getPeerGroup(std::string groupName) = 0;
 //! Leave the given peer group. Cannot be used to leave the NetPeerGroup, because

it's equivalent to shutdown the platform.
 //! To leave Jxta delete this object.
 virtual void leavePeerGroup(std::string groupName) = 0;
};

//! static function to get the Platform singleton or configure it with the provided port

number if not yet done.
//! @param port the optional port number to listen for Jxta connections over TCP. By de-

fault, Jxta connection over HTTP are received on port-1.
//! Values <= 1 are not accepted. If such a value is passed, the singleton instance is

returned if already initialized, otherwise NULL is returned.
//! @return the singleton Jxta Platform instance.
Platform* getPlatform(int port = 9701);

}

#endif

RdvConnectionListener.h
#ifndef _jxta_RdvConnectionListener_h
#define _jxta_RdvConnectionListener_h

namespace jxta {

//! This class represents a Rendezvous connection listener.
class RdvConnectionListener
{
 public:
 //! Callback for a rdv connection event.
 virtual void rdvConnectionEvent() = 0;
};

}

#endif

RdvService.h

 137

#ifndef _jxta_RdvService_h
#define _jxta_RdvService_h

#include "jxta/RdvConnectionListener.h"
#include "jxta/exception/Exception.h"

namespace jxta
{

//! This class wraps the Jxta Rendezvous Service. This service is responsible to the

first connection to a rdv peer.
class RdvService
{
 public:
 //! Explicitly connects to a given rendezvous peer.
 //! @param string rdvIPAddr the IP address of the remote rdv peer. If the port is

not specified, the default TCP port 9701 is assumed.
 virtual void addRdvPeer(std::string rdvIPAddr) = 0;
 //! Returns the current status of the rdv connection.
 //! @return true if there is at least one rdv connection.
 virtual bool isConnectedToRdv() = 0;

 //! Adds a rdv connection listener. It's called back when a rdv connection is in

place.
 virtual void addRdvConnectionListener(RdvConnectionListener* listener) throw

(jxta::exception::Exception) = 0;
 //! Removes a previously registered rdv connection listener.
 virtual void removeRdvConnectionListener() = 0;
};

}

#endif

B.2. The Java Rendezvous
RdvPeer.java
package cern.xdaq.jxtapt;

import net.jxta.peergroup.*;
import java.io.*;
import net.jxta.protocol.*;
import net.jxta.pipe.*;

import cern.xdaq.jxtapt.netmap.*;
import java.net.URISyntaxException;

/**
 * <p>Title: JxtaPT</p>
 * <p>Description: A Jxta enabled architecture to discovery and monitor XDAQ applica-

tions</p>
 * <p>Copyright: Copyright (c) 2004</p>
 * <p>Company: CERN</p>
 * @author Giuseppe Lo Presti
 * @version 1.2
 */

public class RdvPeer {
 private RdvPeer() {} // this class is not instantiable

 public static PeerGroup netPeerGroup = null;
 public static IOPipeListener pipeListener = null;
 private static iViewRendezvous iView = null;

 public static void startJxta(PipeMsgListener customListener) {
 try { PeerGroupFac-

tory.setConfiguratorClass(cern.xdaq.jxtapt.AutoConfigurator.class);
 System.setProperty("net.jxta.tls.principal", "rdv@" +

net.jxta.impl.endpoint.IPUtils.ANYADDRESS.getLocalHost().getHostAddress());
 System.setProperty("net.jxta.tls.password", "jxta4xdaq");

 138

 netPeerGroup = PeerGroupFactory.newNetPeerGroup(); // start JXTA
 if(System.getProperty("jxta.tcp.port") == null)
 System.setProperty("jxta.tcp.port", "9701"); // this is the default in

cern.xdaq.jxtapt.AutoConfigurator

 // clean old advertisements
 java.util.Enumeration localEnum = netPeer-

Group.getDiscoveryService().getLocalAdvertisements(net.jxta.discovery.Discov
eryService.PEER, null, null);

 while (localEnum.hasMoreElements()) {
 PeerAdvertisement a = (PeerAdvertisement)localEnum.nextElement();
 if(!netPeerGroup.getPeerAdvertisement().getName().equals(a.getName()))
 netPeerGroup.getDiscoveryService().flushAdvertisement(a);
 }

 //start support for JxtaNetMap
 iView = new iViewRendezvous();
 iView.init(netPeerGroup);

 //start the httpd service
 startHttpd();

 //finally start the pipe for XDAQ messaging
 pipeListener = new IOPipeListener(netPeerGroup, customListener);
 }
 catch (Exception any) {
 // could not instantiate the group, print the stack and exit
 System.out.println("Fatal error: group creation failure");
 any.printStackTrace();
 System.exit(1);
 }
 }

 public static void addSeed(String rdvAddress) {
 try {
 (

(net.jxta.impl.rendezvous.RendezVousServiceInterface)netPeerGroup.getRendezV
ousService()).getPeerView().addSeed(

 new java.net.URI("tcp://" + rdvAddress + ":9701"));
 (

(net.jxta.impl.rendezvous.RendezVousServiceInterface)netPeerGroup.getRendezV
ousService()).getPeerView().seed();

 }
 catch (URISyntaxException ignored) {}
 }

 public static void shutdownJxta() {
 // send a shutdown message to all connected rdvs (except itself)
 try {
 String shutdownMsg = "PeerShutdown@" +

net.jxta.impl.endpoint.IPUtils.ANYADDRESS.getLocalHost().getHostAddress();
 java.util.Enumeration advs = netPeer-

Group.getDiscoveryService().getLocalAdvertisements(net.jxta.discovery.Discov
eryService.PEER, "", "");

 while(advs.hasMoreElements()) {
 PeerAdvertisement adv = (PeerAdvertisement)advs.nextElement();
 if(adv.getName().indexOf("rdv") == 0 && adv.getName() != netPeer-

Group.getPeerName()) {
 pipeListener.sendMessage("JxtaSys", shutdownMsg, adv.getPeerID(),

adv.getName());
 System.out.println("Shutdown message sent to "+ adv.getName());
 }
 }
 } catch (Exception ignored) {}

 netPeerGroup.unref();
 }

 private static void startHttpd() {
 // load and starts JXTA-HTTPD module.

 // Get the ModuleManager

 139

 net.jxta.impl.util.ModuleManager moduleManager =
net.jxta.impl.util.ModuleManager.getModuleManager(netPeerGroup);

 // Do we already know the module ?
 net.jxta.platform.Module httpdModule = moduleMan-

ager.lookupModule(cern.xdaq.httpd.HttpdService.ServiceName);
 if (httpdModule == null) {
 // HttpdService is not loaded yet. Load it now.
 httpdModule = moduleMan-

ager.loadModule(cern.xdaq.httpd.HttpdService.ServiceName,
"cern.xdaq.httpd.HttpdService");

 if (httpdModule == null) {
 // raise exception?
 System.err.println("httpd: cannot load the HttpdService");
 }
 }

 // Start the HttpdService
moduleManager.startModule(cern.xdaq.httpd.HttpdService.ServiceName, new String[] {"-

config", "jetty.xml"});
 }

 public static void main(String args[]) {
 if(args.length > 0)
 cern.xdaq.jxtapt.AutoConfigurator.config(args[0], true); // if provided,

the first argument is considered as a seed rdv's IP
 startJxta(null); // this simply starts the JXTA platform
 System.out.println("\n### RdvPeer: Rendez-vous peer started successfully ###\n");
 }

 public static void printPeerList() throws java.io.IOException {
 java.util.Enumeration localEnum = netPeer-

Group.getDiscoveryService().getLocalAdvertisements(net.jxta.discovery.Discov
eryService.PEER, null, null);

 int i = 0;
 while (localEnum.hasMoreElements()) {
 PeerAdvertisement localPeerAdv = (PeerAdvertisement)localEnum.nextElement();
 System.out.println("Peer "+ (i++) +": "+ localPeerAdv.getName());
 }
 }
}

IOPipeListener.java
package cern.xdaq.jxtapt;

import java.io.*;
import java.util.*;

import net.jxta.peergroup.*;
import net.jxta.discovery.*;
import net.jxta.document.*;
import net.jxta.protocol.*;
import net.jxta.pipe.*;
import net.jxta.endpoint.*;
import net.jxta.peer.PeerID;

public class IOPipeListener implements PipeMsgListener, DiscoveryListener {
 private List discResults = null;
 private PeerGroup netPeerGroup;
 private DiscoveryService discSvc;

 public IOPipeListener(PeerGroup netPeerGroup, PipeMsgListener listener) {
 this.netPeerGroup = netPeerGroup;
 discSvc = netPeerGroup.getDiscoveryService();
 discResults = new ArrayList();
 try {
 String pipeName = "jxtapipe:"+

net.jxta.impl.endpoint.IPUtils.ANYADDRESS.getLocalHost().getHostAddress()
+":" + System.getProperty("jxta.tcp.port");

 140

 PipeService pipeSvc = netPeerGroup.getPipeService();
 DiscoveryService discSvc = netPeerGroup.getDiscoveryService();
 PipeAdvertisement pipeAdv = null;
 Enumeration advs = discSvc.getLocalAdvertisements(DiscoveryService.ADV, "Name",

pipeName);
 if(advs.hasMoreElements()) {
 pipeAdv = (PipeAdvertisement)advs.nextElement();
 }
 else {
 String xmlPipeAdv =
 "<!DOCTYPE jxta:PipeAdvertisement><jxta:PipeAdvertisement

xmlns:jxta=\"http://jxta.org\"><Id>"
 +

net.jxta.id.IDFactory.newPipeID(netPeerGroup.getPeerGroupID()).toString()
 + "</Id><Type>JxtaUnicast</Type><Name>" + pipeName +

"</Name></jxta:PipeAdvertisement>";

 pipeAdv = (PipeAdvertisement)AdvertisementFactory.newAdvertisement(new Mime-

MediaType(
 "text/xml"), new ByteArrayInputStream(xmlPipeAdv.getBytes()));
 discSvc.publish(pipeAdv, DiscoveryService.INFINITE_LIFETIME, DiscoverySer-

vice.NO_EXPIRATION);
 //discSvc.remotePublish(pipeAdv, DiscoveryService.INFINITE_LIFETIME);
 }

 if(listener != null)
 pipeSvc.createInputPipe(pipeAdv, listener);
 else
 pipeSvc.createInputPipe(pipeAdv, this); // the default listener
 }
 catch (Exception any) {
 any.printStackTrace();
 }
 }

 public void sendMessage(String msg, PeerID destID, String destName) throws IOExcep-

tion {
 sendMessage("JxtaXDAQMsg", msg, destID, destName);
 }

 public void sendMessage(String tagName, String msg, PeerID destID, String destName)

throws IOException {
 try {
 String pipeName = "jxtapipe:" + destName.substring(destName.indexOf('@')+1) +

":" + System.getProperty("jxta.tcp.port");

 PipeAdvertisement outpipeAdv = searchPipeAdv(pipeName);
 if(outpipeAdv == null) throw new IOException("Pipe Advertisement for pipe '" +

pipeName +"' not found");

 OutputPipe op = netPeerGroup.getPipeService().createOutputPipe(outpipeAdv,

java.util.Collections.singleton(destID), 10000);

 Message m = new Message();
 m.addMessageElement(new StringMessageElement(tagName, msg, null));
 op.send(m);
 op.close();

 System.out.println(" message sent.");
 }
 catch (IOException e) {
 System.out.println("Error: failed to send message");
 e.printStackTrace();
 }
 }

 private PipeAdvertisement searchPipeAdv(String pipeName) {
 Enumeration advs = null;

 // First look in the local storage
 try {
 advs = discSvc.getLocalAdvertisements(DiscoveryService.ADV, PipeAdvertise-

ment.NameTag, pipeName);

 141

 PipeAdvertisement adv = null;
 while (advs.hasMoreElements()) {
 adv = (PipeAdvertisement)advs.nextElement();
 if(pipeName.equals(adv.getName()))
 return adv;
 }
 }
 catch (Exception e) {}

 // Now, search remote
 discResults.clear();
 discSvc.getRemoteAdvertisements(null, DiscoveryService.ADV, PipeAdvertise-

ment.NameTag, pipeName, 2, this);

 try {
 synchronized(this) {
 wait(3000);
 Iterator eachAdv = discResults.iterator();
 while(eachAdv.hasNext()) {
 try {
 PipeAdvertisement adv = (PipeAdvertisement) eachAdv.next();
 if(pipeName.equals(adv.getName()))
 return adv;
 } catch(Exception e) {
 continue;
 }
 }
 }
 } catch (Exception e) {}
 return null;
 }

 public void discoveryEvent(DiscoveryEvent event) {
 DiscoveryResponseMsg res = event.getResponse();
 Enumeration each;
 Advertisement adv = null;

 if (res.getDiscoveryType() == DiscoveryService.ADV) {
 each = res.getAdvertisements();

 synchronized(this) {
 while (each.hasMoreElements()) {
 try {
 adv = (Advertisement) each.nextElement();
 if (adv instanceof PipeAdvertisement) {
 discResults.add(adv);
 }
 } catch (Exception ex) {}
 }
 notify();
 }
 }
 }

 public void pipeMsgEvent (PipeMsgEvent event){
 try {
 Message msg = event.getMessage();
 String newMessage = msg.getMessageElement("JxtaXDAQMsg").toString();
 System.out.println("Received message: " + newMessage);
 }
 catch (Exception e) {
 System.err.println("bad or null message received");
 e.printStackTrace();
 return;
 }
 }

}

 142

 143

References

Active Networks and management
[GGLLU04] S. GAGLIO, L. GATANI, G. LO PRESTI, G. LO RE, A. URSO, A Dynamic

Reasoning Architecture for Computer Network Management, Proceed-
ings of 16th IEEE ICTAI Conference, Boca Raton (FL), USA, Novem-
ber 2004, pp. 779-781.

[DGLLI03] G. DI FATTA, S. GAGLIO, G. LO PRESTI, G. LO RE, I. SELVAGGIO, Di-
stributed Intelligent Management of Active Networks, in: A. CAPPELLI,
F. TURINI, AI*IA 2003 Proceedings, LNAI 2829, Sprinter-Verlag, Sep-
tember 2003, pp. 312-323.

[GGLY03] A. GALIS, J-P. GELAS, L. LEFEVRE, K. YANG, Active Network Approach
to Grid Management & Services, Proceedings of ICCS 2003 Confer-
ence , LNCS 2658, June 2003, Melbourne, Australia, pp. 1103-1113.

[DGLL02] G. DI FATTA, S. GAGLIO, G. LO PRESTI, G. LO RE, Logical Reasoning
for Active Networks, International Workshop on Active Networks
2002, December 2002, Zürich, Switzerland.

[BRFL02] S. BERSON, R. BRADEN, T. FABER, B. LINDELL, The ASP EE: An Active
Network Execution Environment, Proceedings of the 1st DARPA Ac-
tive Networks Conference and Exposition, May 2002.

[KS00] R. KAWAMURA, R. STADLER, Active Distributed Management for IP
Networks, IEEE Communications Magazine 38, N. 4, April 2000, pp.
114-121.

[GL00] J-P. GELAS, L. LEFÈVRE, TAMANOIR: A High Performance Active
Network Framework, Workshop on Active Middleware Services, Klu-
wer Academic Publishers, August 2000.

[Cam99] A. T. CAMPBELL, M. E. KOUNAVIS et al., A Survey of Programmable
Networks, ACM SIGCOMM Computer Communication Review, 29
(2), April 1999, pp. 7-24.

[Hic99] M. HICKS, P. KAKKAR, J. T. MOORE, C. A. GUNTER, S. NETTLES, Net-
work Programming Using PLAN, 1999.

[Hic98] M. HICKS et al, PLAN: A Packet Language for Active Networks, Proc.
of 3rd ACM SIGPLAN International Conference on Functional Pro-
gramming, ACM, September 1998, pp. 86-93.

[WGT98] D. J. WETHERALL, J. GUTTAG, D. L. TENNENHOUSE, ANTS: A Toolkit

 144

for Building and Dynamically Deploying Network Protocols, IEEE
OpenArch ’98, San Francisco (CA), USA, April 1998.

[Lak98] R. LAKSHMI, OSI Systems and Network Management, IEEE Commu-
nications Magazine, 36 (3), March 1998, pp. 46-53.

[Ten97] D. L. TENNENHOUSE et al., A Survey of Active Network Research,
IEEE Communications Magazine, 35 (1), January 1997.

[TW96] D. L. TENNENHOUSE, D. J. WETHERALL, Towards an Active Network
Architecture, Computer Communication Review, 26 (2), April 1996.

[SM96] T. SAYDAM, T. MAGEDANZ, From Networks and Network Management
into Service and Service Management, Journal of Network and Sys-
tem Management, 4 (4), December 1996, pp. 345-348.

[BCZ96] S. BHATTACHARJEE, K. L. CALVERT, E. W. ZEGURA, An Architecture
for Active Networking, 1996.

[CMR89] K. D. CEBULKA, M. J. MULLER, C. A. RILEY, Applications of artificial
intelligence for meeting network management challenges of the 1990s,
in: IEEE Global Telecommunications Conference (Globecom), Dallas
(TX), USA, November 1989, pp. 501-506.

[ABONE] The ABone web site, www.isi.edu/abone.

[ANEP] The ANEP protocol web page, www.cis.upenn.edu/~switchware/ANEP.

[ANG] The ANgate web site, www.pa.icar.cnr.it/networks/angate.

[CAML] The CAML language web site, paulliac.inria.fr/caml.

[DARPA] Active Networks, www.darpa.mil/ato/programs/activenetworks/actnet.htm.

Peer-to-Peer systems
[LoP05] G. LO PRESTI et al., Peer-to-Peer Data Acquisition: Distributed Dis-

covery for the CMS DAQ System, submitted as Technical Report,
CERN, Genève, Switzerland, January 2005.

[GLO05] J. GUTLEBER, G. LO PRESTI, L. ORSINI, Peer-to-Peer Discovery in Dis-
tributed Data Acquisition Systems, JXTA University Spotlight, Janu-
ary 2005, www.jxta.org/universities/universityarchive.html.

[NTT03] N. ISHIKAWA et al., A Platform for Peer-to-Peer Communications and
its Relation to Semantic Web Applications, NTT DoCoMo / Ericsson,
2003.

[Tra03] B. TRAVERSAT et al., Project JXTA 2.0 Super-Peer Virtual Network,
White Paper, Sun Microsystems, www.jxta.org, May 2003.

[FVCL03] F. FRANCISCANI, M. VASCONCELOS, R. COUTO, A. LOUREIRO, Peer-to-
Peer over Ad-hoc Networks: (Re)Configuration Algorithms, Proceed-
ings of the IEEE IPDPS 2003, April 2003.

 145

[Nej03] W. NEJDL et al., Super-Peer-Based Routing and Clustering Strategies
for RDF-Based Peer-to-Peer Networks, 2003.

[RFI02] M. RIPEANU, I. FOSTER, A. IAMNITCHI, Mapping the Gnutella Net-
work, IEEE Internet Computing Journal, 6(1), 2002.

[Mil02] D. S. MILOJICIC et al., Peer-to-Peer Computing, Technical Report, HP
Laboratories Palo Alto, 2002.

[Li02] LI GONG, Project JXTA: A Technology Overview, Technical Report,
Sun Microsystems, Palo Alto, 2002.

[KP02] S. KUTTEN, D. PELEG, Asynchronous Resource Discovery in Peer to
Peer Networks, Proc. of the 21st IEEE Symposium on Reliable Dis-
tributed Systems, 2002.

[EPFL02] K. ABERER, M. HAUSWIRTH, An Overview on Peer-to-Peer Information
Systems, EPFL Switzerland, 2002.

[Nej02] W. NEJDL et al., Edutella: A P2P Networking Infrastructure Based on
RDF, 11th WWW Conference Proceedings, 2002.

[Rat01] S. RATNASAMY et al., A Scalable Content-Addressable Network, SIG-
COMM’01, August 27-31, 2001.

[FK99] I. FOSTER, C. KESSELMAN, The Globus Toolkit, in: I. FOSTER, C. KES-
SELMAN, The Grid. Blueprint for a new Computing Infrastructure,
Morgan Kaufmann Publishers, Inc., San Francisco (CA), USA, 1999.

[Sat90] M. SATYANARAYANAN, Scalable, Secure, and Highly Available Dis-
tributed File Access, in: Computer, 23(5), IEEE press, 1990.

[APR] The Apache Portable Runtime project, apr.apache.org.
[ARV] Apple Rendez-vous, white paper, developer.apple.com/macosx/rendezvous.
[BOINC] The Berkeley Open Infrastructure for Network Computing web site,

boinc.berkeley.edu.

[GNUT] The Gnutella project web site, rfc-gnutella.sourceforge.net.

[GT] The Globus Toolkit web site, www.globus.org.

[JETTY] The Jetty project web site, jetty.mortbay.org.

[JXTA] The JXTA project web site, www.jxta.org.

[OMG] The OMG web site, www.omg.org.

[UPNP] The UPnP web site, www.upnp.org.

[WS] The Web Services web site, www.w3.org/2002/ws.

[ZC] The Zeroconf web site, www.zeroconf.org.

 146

CERN High Energy Physics Experiments

[GMO02] J. GUTLEBER, S. MURRAY, L. ORSINI, Towards a homogeneous archi-
tecture for high-energy physics data acquisition systems, Computer
Physics Communications, 2002.

[GO02] J. GUTLEBER, L. ORSINI, Software architecture for processing clusters
based on I2O, in: Cluster Computing, 5, Kluwer Academic Publishers,
The Netherlands, 2002, pp. 55-64.

[CMS02] The CMS Collaboration, The Trigger and Data Acquisition Project,
Data Acquisition & High-level Trigger Technical Design Report, 2,
CERN, LHCC 2002-26, CMS TDR 6.2, December 2002.

[GO00] J. GUTLEBER, L. ORSINI, XDAQ: a Software Development Toolkit for
the CMS Data Acquisition System, in: INFN International Conference
on Computing in High Energy and Nuclear Physics, Padova, Italy,
February 2000.

[CMS95] The CMS Collaboration, The Compact Muon Solenoid, CERN Techni-
cal Proposal, 7, LHCC 94-38, December 1995.

[LHC] The CERN LHC web site, www.cern.ch/LHC.

[CMS] The CMS Experiment web site, cmsdoc.cern.ch/CMSnicehome.html.

[TriDAS] The TriDAS group web site, cmsdoc.cern.ch/cms/TriDAS/html/tridas.html.

[XDAQ] The XDAQ web site, www.cern.ch/xdaq.

General references and related works

[Rei01] R. REITER, Knowledge in action: Logical Foundations for specifying
and implementing Dynamical Systems, The MIT Press, Cambridge,
Massachusetts, 2001.

[RN98] S. J. RUSSEL, P. NORVING, Artificial Intelligence: a Modern Approach,
UTET, 1998.

[Nil98] N. J. NILSON, Artificial Intelligence: A New Synthesis, Morgan Kauf-
mann, 1998.

[KR97] J. F. KUROSE, W. ROSS, Computer Networking: A Top-Down Approach
Featuring the Internet, Pearson Addison Wesley, 2nd edition, October
1997.

[Min75] M. MINSKY, A framework for representing knowledge, in: P. H.
Winston, The Psychology of Computer Vision. McGraw-Hill, New
York, USA, 1975.

[Mil67] S. MILGRAM, The Small World Problem, in: Psychology Today, May
1967, pp. 60-67.

[LLSU04] G. LO PRESTI, G. LO RE, P. STORNIOLO, A. M. URSO, A Grid Enabled

 147

Parallel Hybrid Genetic Algorithm for the SPN, in: M. BUBAK et al.,
ICCS 2004 Proceedings, LNCS 3036, Sprinter-Verlag, June 2004, pp.
156-163.

[DLL03] G. DI FATTA, G. LO PRESTI, G. LO RE, A Parallel Genetic Algorithm for
the Steiner Problem in Networks, Proceedings of the 15th IASTED In-
ternational Conference on Parallel and Distributed Computing and
Systems (PDCS) - Marina del Rey (CA), USA, ACTA Press, Novem-
ber 2003, pp. 569-573.

[DLL01] G. DI FATTA, G. LO PRESTI, G. LO RE, Computer Network Topologies:
Models and Generation Tools, CE.R.E. Technical Report n. 5, Pal-
ermo, Italy, July 2001.

[STE] The Steiner Tree Problem in Networks web page,
www.pa.icar.cnr.it/networks/STN.
