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Abstract We present the features of the fully flipped 3-3-
1-1 model and show that this model leads to dark matter can-
didates naturally. We study two dark matter scenarios corre-
sponding to the triplet fermion and singlet scalar candidates,
and we determine the viable parameter regimes constrained
from the observed relic density and direct detection experi-
ments.

1 Introduction

The extension of the Standard Model (SM) gauge symme-
try based upon the higher weak-isospin symmetry SU (3)L is
best known for solving the number of observed fermion gen-
erations, generally called 3-3-1 model when including color
and electric charges [1–4]. In order to cancel the [SU (3)L ]3

anomaly [5–8], the traditional arrangement is that one of
three quark generations transforms under SU (3)L differently
from remaining two quark generations, whereas all lepton
generations transform identically under this group. However,
recently Fonseca and Hirsch have made an interesting pro-
posal where one of three lepton generations to transform dif-
ferently from remaining two lepton generations, while all
quark generations are identical under SU (3)L [9]. In this
way, the 3-3-1 matter content is flipped (i.e. reversed), called
the flipped 3-3-1 model. The key for flipping is that the
[SU (3)L ]3 anomaly induced by a fermion sextet equals that
induced by seven fermion triplets, where note that the color
number is not counted. Furthermore, the authors have shown
that the flipped 3-3-1 model only realizes a unique and mini-
mal setup of fermion content (see also [10]). This flip converts
the flavor matters in quark sector to the lepton sector as well
as leads to the anomalies in interaction of neutrinos with mat-
ter [10]. The lepton flavor violating decays of charged leptons
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and the SM-like Higgs boson in this model were investigated,
all of which were well below experimental bounds [9–11].

It is noteworthy that the electric charge Q and the baryon-
minus-lepton charge B − L neither commute nor close alge-
braically with SU (3)L [10]. To close the symmetries on
which we can base our theory, the isospin symmetry SU (3)L
must be enlarged (i.e. flipped) to SU (3)L ⊗U (1)X ⊗U (1)N
by symmetry principles, called 3-3-1-1 when including the
color group [12,13]. Here the new abelian charges X and N
are related to Q and B − L through the Cartan generators of
SU (3)L , respectively. Hence, the fully flipping in gauge sec-
tor yields a complete gauge symmetry and it may of course
contain the above flipped fermion content. In this work, we
discuss a model that is based on this complete gauge sym-
metry with the flipped fermion content, called fully flipped
3-3-1-1 model. We show that the model supplies the novel
schemes of single-component dark matter (DM).

The rest of this paper is organized as follows. In Sect. 2, we
provide the features of the model. The mass spectra for the
scalar and gauge boson sectors are considered in Sect. 3. In
Sect. 4 we compute relevant interactions. Sect. 5 is devoted
to the DM observables. Finally, we conclude this work in
Sect. 6.

2 The fully flipped 3-3-1-1 model

As stated, the 3-3-1-1 gauge symmetry is given by

SU (3)C ⊗ SU (3)L ⊗U (1)X ⊗U (1)N , (1)

where SU (3)C is the ordinary color group. The new charges
X and N respectively determine Q and B − L as related to
the diagonal generators of the SU (3)L group to be [10]

Q = T3 + 1√
3
T8 + X, B − L = 2√

3
T8 + N . (2)
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The flipped fermion content under the gauge symmetry
SU (3)C ⊗ SU (3)L ⊗U (1)X ⊗U (1)N is arranged, such as

ψ1L =
⎛
⎜⎝

ξ+ 1√
2
ξ0 1√

2
ν1

1√
2
ξ0 ξ− 1√

2
e1

1√
2
ν1

1√
2
e1 E1

⎞
⎟⎠

L

∼ (1, 6,−1/3,−2/3), (3)

ψαL = (να eα Eα)TL ∼ (1, 3,−2/3,−4/3), (4)

QaL = (da − ua Ua)
T
L ∼ (3, 3∗, 1/3, 2/3), (5)

νaR ∼ (1, 1, 0,−1), eaR ∼ (1, 1,−1,−1),

EaR ∼ (1, 1,−1,−2), (6)

uaR ∼ (3, 1, 2/3, 1/3), daR ∼ (3, 1,−1/3, 1/3),

UaR ∼ (3, 1, 2/3, 4/3). (7)

Here α = 2, 3 and a = 1, 2, 3 are generation indices, the
component fields ξ ’s compose a real triplet of SU (2)L , and
the fields E,U have the same electric charge as e, u, respec-
tively. The above fermion content is free from all the anoma-
lies, including the gravitational anomaly.

To break the gauge symmetry and generate appropriate
masses for the particles, the scalar content is introduced as

η = (η0
1 η−

2 η−
3 )T ∼ (1, 3,−2/3,−1/3), (8)

ρ = (ρ+
1 ρ0

2 ρ0
3 )T ∼ (1, 3, 1/3,−1/3), (9)

χ = (χ+
1 χ0

2 χ0
3 )T ∼ (1, 3, 1/3, 2/3), (10)

S =
⎛
⎜⎝

S++
11

1√
2
S+

12
1√
2
S+

13
1√
2
S+

12 S0
22

1√
2
S0

23
1√
2
S+

13
1√
2
S0

23 S0
33

⎞
⎟⎠ ∼ (1, 6, 2/3, 4/3), (11)

φ ∼ (1, 1, 0, 2), (12)

which have the corresponding vacuum expectation values
(VEVs) to be

〈η〉 = 1√
2

⎛
⎝
u
0
0

⎞
⎠ , 〈ρ〉= 1√

2

⎛
⎝

0
v

0

⎞
⎠ , 〈χ〉= 1√

2

⎛
⎝

0
0
w

⎞
⎠ ,

(13)

〈S〉 = 1√
2

⎛
⎝

0 0 0
0 κ 0
0 0 �

⎞
⎠ , 〈φ〉 = 1√

2
�, (14)

where we assume κ � u, v � w,� � �. Notice that the
other neutral scalars are WP -odd, hence possessing vanished
VEV due to the WP conservation, as shown below.

The gauge symmetry is broken via three steps,

SU (3)C ⊗ SU (3)L ⊗U (1)X ⊗U (1)N

↓ �

SU (3)C ⊗ SU (3)L ⊗U (1)X ⊗ W ′
P

↓ w,�

SU (3)C ⊗ SU (2)L ⊗U (1)Y ⊗ WP

↓ u, v, κ

SU (3)C ⊗U (1)Q ⊗ WP

Here W ′
P is a residual gauge symmetry of U (1)N which

is continuously broken along with SU (3)L defining a final
residual symmetry WP = (−1)3(B−L) with B − L =
(2/

√
3)T8 + N [12,13]. When including the spin symme-

try (−1)2s , we have

WP = (−1)3(B−L)+2s . (15)

This symmetry divides the model particles into two classes,
as displayed in Table 1, where the new fermions and some
other particles are odd underWP , while all the remaining par-
ticles, including the SM ones, are even under this symmetry.
Since WP is conserved, the odd particles are only coupled in
pairs in interactions and the lightest odd particle is stabilized
and thus can be a DM candidate if it is electrically neutral
and colorless.

The total Lagrangian consists of

L = Lkinetic + LYukawa − V . (16)

The first term composes kinetic terms and gauge interactions,

Lkinetic =
∑
F

i F̄γ μDμF +
∑
�

(Dμ�)†(Dμ�)

− 1

4
GiμνG

μν
i − 1

4
Aiμν A

μν
i − 1

4
BμνB

μν − 1

4
CμνC

μν,

(17)

where F and � run over all the fermion and scalar multiplets,
respectively. Additionally, the covariant derivative and the
field strength tensors are determined by

Dμ = ∂μ + igs tiGiμ + igTi Aiμ + igX X Bμ + igN NCμ,

(18)

Giμν = ∂μGiν − ∂νGiμ − gs fi jkG jμGkν, (19)

Aiμν = ∂μAiν − ∂ν Aiμ − g fi jk A jμAkν, (20)

Bμν = ∂μBν − ∂νBμ, Cμν = ∂μCν − ∂νCμ, (21)
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Table 1 The residual gauge symmetry WP separates the model particles into two classes: even particles according to WP = 1 and odd particles
according to WP = −1

Particle ν e u d W γ Z , Z ′, Z ′′ η1,2 ρ1,2 χ3 S11,12,22 S33 φ

B − L −1 −1 1/3 1/3 0 0 0 0 0 0 2 0 2

WP 1 1 1 1 1 1 1 1 1 1 1 1 1

Particle ξ+ ξ0 ξ− E− U2/3 X+ Y 0 η−
3 ρ0

3 χ+
1 χ0

2 S+
13 S0

23

B − L 0 0 0 −2 4/3 1 1 −1 −1 1 1 1 1

WP −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

where we denote (gs, g, gX , gN ), (ti , Ti , X, N ), and
(Gi , Ai , B,C) to be the coupling constants, the generators,
and the gauge bosons corresponding to the 3-3-1-1 sub-
groups, respectively, and fi jk are SU (3) structure constants.

The second term of (16) contains Yukawa interactions,

LYukawa = heαaψ̄αLρeaR + hE
αaψ̄αLχEaR

+ hE
1aψ̄1L SEaR + hξ ψ̄c

1Lψ1L S

+ huab Q̄aLρ∗ubR + hdab Q̄aLη∗dbR
+ hUab Q̄aLχ∗UbR

+ hν
αbψ̄αLηνbR + hR

abν̄
c
aRνbRφ + H.c., (22)

which were previously presented in [10]. There, all the
fermion masses were properly produced, so we do not refer
to them hereafter.

The last term of (16) is the scalar potential, taking the form

V = V (η, ρ, χ, S) + V (φ, mix), (23)

where

V (η, ρ, χ, S)

= μ2
1η

†η + μ2
2ρ

†ρ + μ2
3χ

†χ + μ2
4Tr(S†S)

+ λ1(η
†η)2 + λ2(ρ

†ρ)2 + λ3(χ
†χ)2

+ λ4Tr2(S†S) + λ5Tr(S†S)2

+ λ6(η
†η)(ρ†ρ) + (λ7η

†η + λ8ρ
†ρ)(χ†χ)

+ (λ9η
†η + λ10ρ

†ρ + λ11χ
†χ)Tr(S†S)

+ λ12(η
†ρ)(ρ†η) + λ13(η

†χ)(χ†η) + λ14(χ
†ρ)(ρ†χ)

+ λ15(χ
†S)(S†χ) + λ16(η

†S)(S†η) + λ17(ρ
†S)(S†ρ)

+ [λ18ηρ(Sχ∗) + f1χ
T S†χ + f2ηρχ + H.c.], (24)

V (φ, mix)

= μ2
5φ

†φ + λ19(φ
†φ)2 + [λ20η

†η + λ21ρ
†ρ + λ22χ

†χ

+ λ23Tr(S†S)](φ†φ) + (λ24ρ
T S†ρφ + H.c.), (25)

where the parameters μ’s and f1,2 have mass dimension,
while the couplings λ’s are dimensionless. Furthermore,

the necessary conditions for the scalar potential bounded
from below and producing the gauge symmetry breaking are
μ2

1,2,3,4,5 < 0, λ1,2,3,19 > 0, and λ4 + λ5 > 0.

3 Scalar and gauge sectors

Because of the condition � � w, V , the field φ can be inte-
grated out from the low-energy effective potential of η, ρ, χ ,
and S. As a result, the scalar potential below � has a form
similar to V (η, ρ, χ, S) where its couplings become effec-
tive due to the modification of heavy particles. Indeed, let us
expand φ = 1√

2
(�+ HC + iGC ), where HC and GC are the

new Higgs and Goldstone bosons associate toU (1)N , respec-
tively. The masses of the new Higgs HC and the new gauge
C are proportional to �, mHC � √

2λ19� and mC � 2gN�,
which are decoupled from the low energy particle spectra.
Hence, we will neglect the U (1)N sector.

Now, we consider the scalar potential (24). To obtain the
potential minimum and physical scalar spectrum, we expand
the neutral scalar fields around the VEVs as

η =
⎛
⎜⎝

1√
2
(u + S1 + i A1)

η−
2

η−
3

⎞
⎟⎠ , ρ =

⎛
⎜⎝

ρ+
1

1√
2
(v + S2 + i A2)

1√
2
(S′

3 + i A′
3)

⎞
⎟⎠ ,

(26)

χ =
⎛
⎜⎝

χ+
1

1√
2
(S′

2 + i A′
2)

1√
2
(w + S3 + i A3)

⎞
⎟⎠ ,

S =
⎛
⎜⎝

S++
11

1√
2
S+

12
1√
2
S+

13
1√
2
S+

12
1√
2
(S4 + i A4)

1
2 (S′

1 + i A′
1)

1√
2
S+

13
1
2 (S′

1 + i A′
1)

1√
2
(� + S5 + i A5)

⎞
⎟⎠ ,

(27)

where the fields ρ0
3 , χ0

2 , and S0
23 are odd under WP , can-

not develop VEVs, as mentioned. Additionally, since κ con-
strained by the ρ-parameter is tiny, its contribution would be
neglected.
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Expanding all the terms of the potential (24) up to the
second-order contributions of physical scalar fields, the
scalar potential is resulted asV (η, ρ, χ, S) = Vmin+Vlinear+
Vmass + Vinteraction, where the first term is the potential min-
imum independent of fields,

Vmin = 1

4
[2(μ2

1u
2 + μ2

2v
2 + μ2

3w
2 + μ2

4�
2)

+ λ1u
4 + λ2v

4 + λ3w
4 + (λ4 + λ5)�

4

+ λ6u
2v2 + λ7w

2u2 + λ8w
2v2

+ (λ9u
2 + λ10v

2 + λ11w
2)�2 + λ15w

2�2

+ 2�̄wuv + 2
√

2 f1w
2�], (28)

where �̄ = √
2 f2 + λ18�. The second term Vlinear contains

all the linear terms in fields, should be vanished due to the
gauge invariance, leading to

[2(μ2
1 + λ1u

2) + λ6v
2 + λ7w

2 + λ9�
2]u + �̄wv = 0,

(29)

[2(μ2
2 + λ2v

2) + λ6u
2 + λ8w

2 + λ10�
2]v + �̄wu = 0,

(30)

[2(μ2
3 + λ3w

2) + λ7u
2 + λ8v

2 + (λ11 + λ15)�
2]w

+ �̄uv + 2
√

2 f1w� = 0, (31)

[2(μ2
4 + λ4�

2 + λ5�
2) + λ9u

2 + λ10v
2 + (λ11 + λ15)w

2]�
+ �w = 0, (32)

where � = √
2 f1w+λ18uv. These minimization conditions

yield the VEVs u, v, w,� as desirable.
The mass part Vmass consists of the quadratic terms in

fields, grouped into Vmass = V S
mass + V A

mass + V charged
mass +

V S′
mass + V A′

mass. Here the charged term includes charged
scalars, while the remaining terms describe CP-even and
CP-odd scalar fields, and notice that the primed fields are
decoupled from the normal fields due to theWP conservation.
That said, after integrating φ out, the scalar potential (24)
gives a mass spectrum of the scalar sector including 22 mas-
sive Higgs fields, summarized as H0

1,2,3,4, H0,0∗
5 ,A0

1,2, H±±
11 ,

H±
12, H±

1 ,H′±
1,2, and H ′0,0∗

1,2 , where H0
1 is identified as the SM-

like Higgs boson with the mass in the weak scale, while the
others are new Higgs bosons with the masses at w,� scales.
Additionally, there are 8 Goldstone bosons, determined as
GZ , GZ ′ , G±

W , G±
X , and G0,0∗

Y , correspondingly eaten by 8
massive gauge bosons.

The mentioned Higgs and Goldstone bosons are related
to those in the gauge basis, such as

(
S1

S2

)
=
(
cα1 sα1

sα1 −cα1

)(
H1

H2

)
,

(
S3

S5

)
=
(

cα2 sα2

−sα2 cα2

)(
H3

H4

)
,

⎛
⎜⎜⎝

A1

A2

A3

A5

⎞
⎟⎟⎠ �

⎛
⎜⎜⎜⎜⎝

cα1

sα1cα1v√
w2+4�2 −

√
w2+4�2

u2+v2 sα1sε1

√
w2+4�2

u2+v2 sα1cε1

−sα1

sα1cα1u√
w2+4�2 −

√
w2+4�2

u2+v2 cα1sε1

√
w2+4�2

u2+v2 cα1cε1

0 −sα3 cε1cα3 − sε1sα3sα1cα1 cε1sα3sα1cα1 + sε1cα3

0 −cα3 −cε1sα3 − sε1cα3sα1cα1 cε1cα3sα1cα1 − sε1sα3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

GZ

GZ ′
A1

A2

⎞
⎟⎟⎠ ,

(
η±

2
ρ±

1

)
�
(

cα1 sα1

−sα1 cα1

)(
G±

W
H±

1

)
,

⎛
⎝

η±
3

χ±
1

S±
13

⎞
⎠ �

⎛
⎜⎝

u√
w2+2�2 cε2 sε2

−sα4

sα4 cε2u√
w2+2�2 − cα4sε2 cα4cε2

−cα4

cα4cε2u√
w2+2�2 + sα4sε2 −sα4cε2

⎞
⎟⎠
⎛
⎝

G±
X

H′±
1

H′±
2

⎞
⎠ ,

⎛
⎝

χ0
2

ρ0∗
3
S0

23

⎞
⎠ �

⎛
⎝

sα4 cα4sε3 + v
w
cε3 −cα4cε3

− v√
w2+2�2 cε3 sε3 + v

w
cα4cε3

cα4 −sα4sε3 sα4cε3

⎞
⎠
⎛
⎝

G0
Y

H ′0
1

H ′0
2

⎞
⎠ ,

S0
22 ≡ H0

5 , S±
12 ≡ H±

12, S±±
11 ≡ H±±

11 , (33)
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where we define sα1 ≡ sin α1, cα1 ≡ cos α1, tan α1 ≡ tα1 =
v/u, and

tα2 = 4[(λ11 + λ15)� + √
2 f1]w�

4(λ4 + λ5)�3 − (4λ3� + √
2 f1)w2

,

tα3 = w

2�
, tα4 = w√

2�
,

t2ε1 � 2[λ18(w
2 + 2�2) − 2

√
2 f2�]�uv

√
u2 + v2

[√2 f1(w2 + 4�2)uv − �̄w�(u2 + v2)]√w2 + 4�2
,

t2ε2 � 2
√

2[(2λ13 − λ16)w�u + (λ18w
2 − 2

√
2 f2�)v]�u√

w2 + 2�2{[(2λ13 + λ15)w2 + 2(λ15 + λ16)�2]�u − 2�̄w�v + 2
√

2 f1(w2 + 2�2)u} ,

t2ε3 � −2
√

2[(λ15 + λ17)�v − λ18wu + 2
√

2 f1v]�v
√

w2 + 2�2

w[(2λ14 + λ15)w2�v + 2(λ15 + λ17)�3v − 2�̄w�u + 2
√

2 f1(w2 + 2�2)v] . (34)

The masses of the mentioned Higgs fields (the masses of
the mentioned Goldstone bosons vanish, thus unlisted) are
given by

m2
H1

� 2

u2 + v2 (λ1u
4 + λ2v

4 + λ6u
2v2),

m2
H2

� − 1

s2α1

(
√

2 f2 + λ18�)w, (35)

m2
H3,4

�
(

λ3 − f1

2
√

2�

)
w2 + (λ4 + λ5)�

2

∓
√

[(λ11 + λ15)� + √
2 f1]2w2 +

[
(λ4 + λ5)�2 −

(
λ3 + f1

2
√

2�

)
w2

]2

, (36)

m2
H5

= − 1

2�

[
(2λ5�

2 + λ15w
2 − λ17v

2)�

+(
√

2 f1w + λ18uv)w
]
, (37)

m2
A1

� −2
√

2

c2
α3

f1�, m2
A2

� − 1

s2α1

(
√

2 f2 + λ18�)w,

(38)

m2
H±±

11
= − 1

2�

[
(2λ5�

2 + λ15w
2 − λ16u

2)�

+(
√

2 f1w + λ18uv)w
]
, (39)

m2
H±

12
= − 1

4�

[
(4λ5�

2 + 2λ15w
2 − λ16u

2 − λ17v
2)�

+2(
√

2 f1w + λ18uv)w
]
, (40)

m2
H±

1
= 1

s2α1

[
λ12uv − (

√
2 f2 + λ18�)w

]
, (41)

m2
H′±

1
� 1

2

[
λ13w

2 + λ16�
2 − (

√
2 f2 + λ18�)wtα1

]
,

(42)

m2
H′±

2
� − 1

2c2
α4

(λ15� + 2
√

2 f1)�, (43)

m2
H ′

1
� 1

2

[
λ14w

2 + λ17�
2 − u

v
(
√

2 f2 + λ18�)w
]
,

(44)

m2
H ′

2
� − 1

2c2
α4

(λ15� + 2
√

2 f1)�. (45)

For the gauge boson sector, recall that the U (1)N gauge
boson is heavy, which is integrated out as φ is. Hence,
the spectrum of the remaining gauge bosons is identical to
those obtained in [10]. That said, we have two new non-
Hermitian gauge bosons X,Y with the masses at the w,�

scales, besides the W boson of the SM, as follows

W±
μ = 1√

2
(A1μ ∓ i A2μ),

X±
μ = 1√

2
(A4μ ∓ i A5μ),

Y 0,0∗
μ = 1√

2
(A6μ ∓ i A7μ), (46)

m2
W � g2

4
(u2 + v2),
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m2
X = g2

4
(u2 + w2 + 2�2),

m2
Y � g2

4
(v2 + w2 + 2�2). (47)

The mass of W implies u2 + v2 � (246 GeV)2. For the
neutral gauge sector, the physical fields are related to the
gauge fields as (A3μ A8μ Bμ)T = U (Aμ Zμ Z ′

μ)T , with

U =

⎛
⎜⎜⎝

sW cWcϕ cW sϕ
1√
3
sW − 1√

3
sW tW cϕ −

√
1 − 1

3 t
2
Wsϕ − 1√

3
sW tW sϕ +

√
1 − 1

3 t
2
Wcϕ√

1 − 4
3 s

2
W

tW√
3
(sϕ −

√
3 − 4s2

Wcϕ) − tW√
3
(cϕ +

√
3 − 4s2

Wsϕ)

⎞
⎟⎟⎠ , (48)

where sW = √
3tX/

√
3 + 4t2

X , tX = gX/g, and

t2ϕ �
√

3 − t2
W

2c3
W

u2 − v2c2W

w2 + 4�2 (49)

defines the Z -Z ′ mixing angle, ϕ. Here A is the massless
photon field, while Z is the SM neutral weak boson with
mass mZ � mW /cW . Z ′ is the new neutral gauge boson,
obtaining a mass at w,� scale, such as

m2
Z ′ � g2

3 − t2
W

(w2 + 4�2). (50)

The lower bound of w,� is given by the rho parameter
constraint to be

√
w2 + 4�2 ∼ 5−7 TeV dependent on u, v

relation, as well as the LHC search for Z ′ through dilep-
ton products makes a constraint on Z ′ mass, mZ ′ > 2.25–
2.8 TeV, which translates to

√
w2 + 4�2 = mZ ′

√
(3 − t2

W )/g > 4.5−6 TeV, (51)

in agreement to the rho parameter [10]. We made a study
deduced from the LEPII bound for the process e+e− →
μ+μ− via Z ′ exchange [14] which reveals mZ ′ > 2.7 TeV,
implying a similar bound for w,�.

4 Relevant interactions

4.1 Fermion and gauge boson interactions

The gauge interactions of fermions arise from,

L f =
∑
F

i F̄γ μDμF. (52)

Using the result in (46), we get the charged current inter-
actions of W , X , and Y to be

LC
f = J−μ

W W+
μ + J−μ

X X+
μ + J 0∗μ

Y Y 0
μ + H.c., (53)

where the currents are given by

J−μ
W = − 1√

2
g(ν̄aLγ μeaL + ūaLγ μdaL), (54)

J−μ
X = − 1√

2
g(

√
2ν̄1Lγ μE1L + ν̄αLγ μEαL − ŪaLγ μdaL

+ √
2ξ̄+

L γ μν1L + ξ̄0
Lγ μe1L), (55)

J 0∗μ
Y = − 1√

2
g(

√
2ē1Lγ μE1L + ēαLγ μEαL

+ ŪaLγ μuaL + ξ̄0
Lγ μν1L + √

2ξ̄−
L γ μe1L). (56)

Using the result in (48), we get the neutral current inter-
actions for the neutral gauge bosons,

LN
f = −eQ( f ) f̄ γ μ f Aμ

− g

2cW
{ f̄ γ μ[gZV ( f ) − gZA( f )γ5] f Zμ

+ f̄ γ μ[gZ ′
V ( f ) − gZ

′
A ( f )γ5] f Z ′

μ}, (57)

where e = gsW and f refers to every fermion of the model,
except for the right-handed neutrinos. The vector and axial-
vector couplings of Z are collected in Table 2 as put in
Appendix A. Notice that all the interactions between Z boson
and ordinary fermions are consistently recovered in the limit
ϕ → 0.

The couplings of Z ′ with fermions can be obtained from
those for Z , by replacing

gZ
′

V,A( f ) = gZV,A( f )(cϕ → sϕ, sϕ → −cϕ), (58)

which need not necessarily to be determined, but pointed out
in the Table 2 caption.

Notice that νR’s have only gauge interaction with the
U (1)N gauge boson and are obviously integrated out as C
is, since they possess a large mass proportional to � via the
coupling νRνRφ [10].
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Fig. 1 Relevant contributions
to the scalar DM pair
annihilation into SM particles
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4.2 Scalar and gauge boson interactions

The gauge interactions of the scalar fields arise from

L� =
∑
�

(Dμ�)†(Dμ�). (59)

Substituting the physical fields from (33), (46), and (48) to
this Lagrangian, we get the interactions between a gauge
boson and two scalars, two gauge bosons and a scalar, and
two gauge bosons and two scalars in the model, given in
Tables 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, which are gathered
in Appendix A. At the leading order, we have verified that
all the interactions between the SM-like Higgs boson and the
gauge bosons are consistently recovered. However, only the
interactions relevant to the following diagrams are needed,
yielding the cross-sections as given.

5 Search for DM

In this model, the two scalars H ′0
1,2, the fermion ξ0, and

the gauge boson Y 0, which all have masses at w,� scale,
are WP -odd particles and electrically neutral and colorless.
Hence, they may be responsible for the DM candidate. As
indicated in [12] and updated in [15], the relic density con-
tribution of the gauge boson Y 0 is small compared to the
observed dark matter density, so we do not interpret the vec-
tor field as DM. Additionally, if the scalar H ′0

2 that transforms
as a SU (2)L doublet has a correct relic density to be DM,
it should be ruled out by the direct detection experiments
due to a large scattering cross-section induced by Z [16,17].

Therefore, in the following we study the DM phenomenology
associated with the candidates, singlet scalar H ′0

1 and triplet
fermion ξ0. The presence of the triplet candidate, a result of
the fully flipped, would make dark matter phenomena of the
model completely different from the other theories of this
type, such as the ordinary 3-3-1 [18,19], 3-3-1-1 [20–22],
3-2-3-1 [23], and flipped trinification [24].

5.1 DM as a singlet scalar

We now consider the DM scenario where H ′0
1 is the light-

est particle among all of the WP -odd particles. The DM pair
annihilation into the SM particles, via the most relevant chan-
nels, is described in Fig. 1.

Corresponding to each process, the thermal average anni-
hilation cross-section times the relative velocity is approxi-
mately given by

〈σv〉H ′
1H

′
1→H1H1

= 1

16πm2
H ′

1

{
2λ2s

2
α1

+ λ6c
2
α1

+ 2[√2 f2cα1cα4 − wsα4(0.5λ14cα4 + λ18cα1)]2

m2
H ′

1
+ m2

H ′
2

+
g2s2

α1
m2

H ′
1

2(m2
H ′

1
+ m2

Y )

⎛
⎝5 +

m2
H ′

1

m2
Y

⎞
⎠

− 3
[
(2λ1−λ6)vc

3
α1

−(2λ2−λ6)us
3
α1

] λ6usα1 − 2λ2vcα1

4m2
H ′

1
− m2

H2

−
[
(λ7c

2
α1

+ λ8s
2
α1

)wcα2 − (λ9c
2
α1

+ λ10s
2
α1

)�sα2

+sα1cα1(λ18�cα2 − λ18wsα2 + √
2 f2cα2)

]
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× (λ8 + λ14)wcα2 − (λ10 + λ17)�sα2

4m2
H ′

1
− m2

H3

+(mH3 ↔ mH4 , cα2 ↔ sα2 , sα2 ↔ −cα2)
}2

, (60)

〈σv〉H ′
1H

′
1→W+W− = (2λ2v

2 + λ6u2)2

8π(u2 + v2)2m2
H ′

1

,

〈σv〉H ′
1H

′
1→Z Z = (2λ2v

2 + λ6u2)2

16π(u2 + v2)2m2
H ′

1

, (61)

〈σv〉H ′
1H

′
1→t tc = 3m2

t

πm2
H ′

1
(u2 + v2)2

×
⎡
⎣ (2λ2v

2 + λ6u2)2

16m2
H ′

1

+
(2λ2 − λ6)

2m2
H ′

1
u4

(4m2
H ′

1
− m2

H2
)2

⎤
⎦ , (62)

where the annihilation channels into the SM-like Higgs
bosons (H1) involving the H ′

1, H1 propagators as well as the
last annihilation channel exchanged by Z ′ are infinitesimal,
as neglected, because of the small coupling or non-relativistic
dark matter momentum suppression. Indeed, although the
channels exchanged by H ′

1,2 are the same, the H1H ′
1H

′∗
1

coupling as proportional to u, v is radically smaller than the
H1H ′

1H
′∗
2 coupling as proportional to w, f2. So the channels

exchanged by H ′
1 are suppressed as compared to those by

H ′
2, for which only the H ′

2 contribution appears in Eq. (60).
Note that the H2H ′

1H
′∗
1 coupling is also proportional to u, v.

Hence, for the same reason, the s-channel contributions of
H1,2 to the process H ′

1H
′
1 → H1H1 are much smaller than

those by H3,4. The SM Higgs (H1) contribution is straight-
forwardly prevented, while the H2 one may become signifi-
cant, as kept, due to a resonance in the relic density when
the DM mass is close to its mass. The amplitude of the
Z ′-exchanged diagram is proportional to the DM momen-
tum p � mH ′

1
v at the Z ′H ′

1H
′∗
1 vertex, hence strongly-

suppressed by |v| ∼ 10−3. Additionally, the DM stability
requires mH ′

1
< mX � mY < mZ ′ , where the last two com-

parisons are derived from Eqs. (47) and (50) for w,� � u, v.
The Z ′ amplitude is also suppressed by 1/m2

Z ′ through its
propagation. With the two suppressions, this contribution is
manifestly omitted in comparison to the dominant channels.1

Note that Z does not couple to H ′
1H

′∗
1 in the effective limit,

(u, v)2/(w,�)2 � 1, hence it does not contribute to such
channel too. Furthermore, at the effective limit, the SU (2)L
singlets, H3,4, do not couple to top quarks. They do not con-
tribute to the annihilation channel to t tc, unlike the H1,2 in the
above diagram. This H2 correction has a size similar to the H2

contribution in the H ′
1H

′
1 → H1H1 process, as mentioned.

On the other hand, since H2,3,4 do not couple toWW and Z Z ,

1 There may exist an extremely narrow resonance in the relic density
by Z ′ mass close to the DM stable limit, i.e. mH ′

1
= 1

2mZ ′ ∼ mX,Y , but
it is unreasonable and skipped in this work.

as seen in Appendix A, they do not contribute to the processes
H ′

1H
′
1 → WW (Z Z). There might exist t- and/or u-channel

diagrams associate to the processes H ′
1H

′
1 → WW (Z Z),

as exchanged by X,Y , but they are all discarded due to the
(u, v)2/m2

X,Y suppression in comparison to the H1 contribu-
tion. Also, such corrections are significantly smaller than the
Y -exchanged diagrams to H1H1, which result in Eq. (60).
Finally, the relic density of the H ′

1 is �H ′
1
h2 � 0.1pb/〈σv〉,

where

〈σv〉 = 〈σv〉H ′
1H

′
1→H1H1

+ 〈σv〉H ′
1H

′
1→W+W−

+ 〈σv〉H ′
1H

′
1→Z Z + 〈σv〉H ′

1H
′
1→t tc . (63)

To study the direct detection for the H ′
1 via the spin-

independent (SI) scattering on nuclei, we write the effec-
tive Lagrangian describing DM–nucleon interaction in the
limit of zero-momentum transfer through the exchange of
the Higgs boson H1 as follows

Leff
H ′

1−quark = 2
√

2mq

(u2 + v2)m2
H1

(2λ2v
2 + λ6u

2)H ′
1H

′
1q̄q. (64)

The SI cross-section for the scattering of H ′
1 on a target

nucleus is given by [25]

σ SI
H ′

1N
=
(

2mH ′
1N

m2
H1

mp

mH ′
1

CN

)2

, (65)

where N = p, n and mH ′
1N

= mH ′
1
mN/(mH ′

1
+mN ) � mN

is the DM-nucleon reduced mass. The nucleus factor, CN , is

CN = 4
√

2

27(u2 + v2)
(2λ2v

2 + λ6u
2)

×
⎧⎨
⎩3A f pTg +

∑
q=u,d,s

[Z f pTq + (A − Z) f nTq ]
⎫⎬
⎭ , (66)

where Z and A correspond to the nucleus charge and the total
number of nucleons in the nucleus, respectively, and [26]

f p(n)
Tu � 0.020 (0.014), f p(n)

Td � 0.026 (0.036), (67)

f p(n)
T s � 0.118 (0.118), f pTg = 1 −

∑
q=u,d,s

f pTq . (68)

For numerical computation in this subsection and the next
one for DM fermion, we take the following values of known
parameters as [27]

u = v � 174 GeV, s2
W � 0.231, α � 1/128,

g = √
4πα/sW , mt � 173.1 GeV, mH1 � 125.3 GeV,

A = 131, Z = 54, mN � 1 GeV. (69)
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Fig. 2 The relic density of the scalar candidate as a function of the DM mass according to the several choices of w,�, where the DM unstable
region (light red) is the band on the right side of each panel

Since the superheavyU (1)N sector is decoupled, the inter-
mediate new physics regime set by the 3-3-1 breaking scales
w,� is the most relevant to dark matter phenomena. As seen,
the scalar dark matter observables are governed by the dark
matter mass mH ′

1
and the new Higgs portals, given through

the new Higgs masses and couplings, that connect the dark
sector to the normal sector. Additionally, the masses of all
such dark matter and new Higgs particles are proportional
to the scalar couplings and the scales w,�. Hence, we will
investigate two alternative benchmark choices of parame-
ters, either fixing w,� while changing necessary couplings
or varying w,� while fixing relevant couplings, which might
lead to distinct new physics results.

5.1.1 Fixing w,� while varying necessary couplings

When the new physics scales w,� are fixed, the dark matter
observables depend on the dimensionless (λ’s) and mass-
dimension ( f ’s) scalar couplings. Among these couplings,
we choose the two typical parameters, f2 and λ2, to be varied,
while the remainders are fixed as

λ6 = −0.2, λ5,14,17,18 = −0.01,

λ3,4,7,8,9,10,11,12,13,15,16 = 0.5, f1 = −w. (70)

Note that λ1 is related to λ2 via the SM Higgs mass. Although
λ2 can be changed, we will choose only three values of it that
characterize its viable range, simultaneously making the DM
phenomenology suitable, as supplied in the following figures.

In Fig. 2, we depict the relic density as a function of DM
mass which all vary upon the variation of f2 and simultane-
ously show the DM unstable regime (light red, when H ′

1 is
not the lightest WP -odd field) according to the several selec-
tions of the new physics scales w and �. These selections
are consistent with the constraints from the ρ-parameter, the
LHC dilepton, as well as the charged lepton flavor violat-

ing processes and nonstandard neutrino interactions, as stud-
ied in [10]. Additionally, throughout this paper the choice
� ∼ w would characterize the strength of the SU (3)L break-
ing down to SU (2)L , as assumed from the model setup. The
viable DM mass regime is given below the correct abundance
�h2 < 0.12 and before the DM unstable regime. We see that
each density curve contains three resonances, corresponding
to mH ′

1
= mH2/2, mH ′

1
= mH3/2 and mH ′

1
= mH4/2, where

the relic density is largely decreased. The variation of λ2

slightly separates the relic density and this is also valid for
the whole viable range of λ2 ∼ 0–0.7, since λ1 > 0. When
w,� are large as in the right panel, the DM mass upper bound
is increased but appearing an excluded intermediate region
according to �h2 > 0.12.

With the benchmark choices in Eq. (70), the DM mass
variation in Fig. 2 is exclusively obtained by varying f2, as
mentioned. But, such variation of f2 also leads to the changes
of the masses of other fields, which are described in Fig. 3.
Here we do not explicitly label the lines of the same field
type for simplicity. Note also that the X,Y gauge bosons are
almost degenerated in mass. Obviously, all the new scalar
fields in the model except the dark matter obtain mass values
safely above O(1) TeV. There is a range of f2 where H ′

1 is
the lightest WP -odd field, set by the X,Y mass, as imposed
to Fig. 2. Note that in the unstable region of Fig. 2, the DM
scalar proceeds to decaying into X,Y bosons through chan-
nels, H ′

1 → Y H1,Y Z , XW , derived by the corresponding
vertices in Appendix A, which would be kinematically sup-
pressed. Last, the dark fermions ξ, E,U have masses pro-
portional to the relevant Yukawa couplings in Eq. (22) which
can easily be chosen, such that these fermions are heavier
than the scalar DM. So we need not refer to this case here.

The SI DM-nucleon cross-section (65) depends only on
the DM mass mH ′

1
and the scalar coupling λ2, where the

remaining parameters u, v, λ6 were fixed as mentioned. The
choice, change, or variation of all the relevant parameters
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Fig. 3 The masses of the new scalar fields and the odd gauge bosons as functions of the parameter f2 according to the several choices of w,�,
where the dark field lines are put as red and the DM stable regime (i.e., below the light red background) is bounded by the X, Y line

Fig. 4 The SI DM-nucleon scattering cross-section limit as a function
of DM mass according to the several choices of λ2, where the excluded
region (light red) lies above the experimental (green and yellow) bands

in mH ′
1
, such as w,�, f2 and so on, effectively modifies

only the DM mass. Hence, although we have several cases
for parameter values, it all leads to the cross-section depen-
dence only in terms of mH ′

1
, λ2, yielding a common result.

In Fig. 4, we depict the SI scattering cross-section of H ′
1 on

the nucleon according to the above choices of λ2 as well as
show the experimental bounds from XENON1T [28], where
the black line is the SI WIMP-nucleon cross-section limit
at 90% confidence level, while the green and yellow bands
are the 1σ and 2σ sensitivities, respectively. We see that the
scalar DM mass below around 500 GeV is excluded by the
direct detection experiment for λ2 = 0.12. Hence, in this
case the viable scalar DM mass regime is around 500 GeV to
a few TeV (cf. Fig. 2). However, the SI DM cross-section is
quite separated for the variation of λ2. In the latter cases for
λ2 = 0.05 and 0.01, the respective lower bounds of H ′

1 mass
are above 1 TeV. If λ2 is bigger, i.e. λ2 > 0.12, the DM mass
is close to the weak scale, and in this case the DM would be
subject to the electroweak precision test and collider bounds,

which is not studied in this work. Additionally, when λ2 is
smaller than 0.01, the viable DM mass region is narrow as
constrained by the relic density and the unstable regime.

5.1.2 Varying w,� while fixing relevant couplings

Since the new physics scales w and � govern all the DM
annihilation channels, it is interesting to recast the above
investigation in which w and � are varied instead of f2. For
this aim, we choose f2 = −4 TeV, without loss of gener-
ality. As mentioned, w,� commonly set the strength of the
SU (3)L breaking, it is suitably to impose w ∼ �, while
both these parameters are simultaneously run from a lower
bound as supplied in Eq. (51). We also vary λ2 while fixing
the values of the other parameters as in the previous case.
The results of the relic density and the mass variations are
shown in Figs. 5 and 6, respectively.

As we see from Fig. 6, all the new particle masses signif-
icantly change upon the new physics scales, apposite to the
previous case as f2 varies. Additionally, the DM scalar is sta-
bilized if w > 7.75 and 4.75 TeV corresponding to the cases
in the left and right panels, respectively. This translates to the
unstable regions as lower bounds on the DM mass accord-
ing to the left and right panels of Fig. 5, unlike the previous
case. With the choice of the parameters, there are only two
resonances in the relic density as seen in Fig. 5 set by the
H3,4 masses, i.e. mH ′

1
= 1

2mH3 and mH ′
1

= 1
2mH4 , respec-

tively. This can also be realized from Fig. 6 by comparing
relevant masses. The splittings in the relic density and the SI
DM cross-section according to λ2 are similar to the previ-
ous case. Here note that the SI DM cross-section remains the
same previous case, since it depends only on the DM mass
and λ2.

That said, the viable scalar DM mass regime is now either
from 5.25 to 6.85 TeV according to � = 1.1w or from 3.65 to
4.2 TeV and from 5.4 to 5.67 TeV according to � = 1.5w, as
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Fig. 5 The relic density of the scalar candidate as a function of the DM mass, which all vary according to the variation of w and �, but with several
relations as fixed, where the DM unstable region (light red) is the band on the left side of each panel

Fig. 6 The masses of the new scalar fields and the odd gauge bosons as functions of w according to the several relations between w and �, where
the dark field lines are put as red and the DM unstable regime is input as light red background, which is bounded by X, Y line

Fig. 7 Dominant contributions
to the fermion DM pair
annihilation into the SM
particles

ξ0

ξ0c

Z ′

ν1, e
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1 , να, e−

α , q, Z

νc
1, e
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1 , νc

α, e+α , qc, H1

ξ0 ν1, e
−
1

Y 0, X+

ξ0c νc
1, e

+
1

bounded by the unstable region and the relic density �h2 <

0.12. Such ranges are appropriate to the SI DM cross-section
bounds.

5.2 DM as a triplet fermion

The ξ triplet components have a degenerate mass,

mξ = −√
2hξ�, (71)

at the tree level, as induced by the VEV of the scalar sextet.
But, the loop effects of gauge bosons can make ξ± mass

larger than ξ0 mass by an amount,

mξ± − mξ0 = 166 MeV, (72)

as shown in [16]. Hence, ξ0 is first regarded as the lightest
of the triplet components. We further assume that ξ0 is the
lightest particle among all of the other WP -odd particles and
thus ξ0 is responsible for the DM candidate. This scenario
was briefly discussed in [10], in which the field ξ0 yielded the
correct abundance and satisfied the direct detection bounds,
provided that it had a mass mξ0 � 2.86 TeV. Here in the
present work, we will explore the full viable mass region
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Fig. 8 The relic density of the fermion candidate as a function of its mass according to the several choices of w,�, where the DM unstable region
is input as light red

of ξ0 and investigate physical density resonances which are
crucial for the experimental detections.

It is obvious that the DM candidates mainly annihilate
to the SM particles. The dominant channels for the fermion
DM pair annihilation ξ0 to the SM particles are presented in
Fig. 7.

The thermal average annihilation cross-section times the
relative velocity is approximated as follows

〈σv〉ξ0ξ0c→SM SM

=
g4m2

ξ0

πc4
W

⎧⎨
⎩
[
gZ

′
V (ξ0)

]2

⎡
⎣∑

f

NC ( f )
[gZ ′

V ( f )]2 + [gZ ′
A ( f )]2

16(4m2
ξ0 − m2

Z ′)2

+ g2
Z ′ZH1

c2
W

32g2m2
Z (4m2

ξ0 − m2
Z ′)2

]

+
[

c4
W

(m2
ξ0 + m2

Y )2
− gZ

′
V (ξ0)gZ

′
V (ν1)c2

W

2(m2
ξ0 + m2

Y )(4m2
ξ0 − m2

Z ′)

+(ν1 ↔ e1,mY ↔ mX )]} , (73)

where f denotes the SM fermions and the masses of the new
gauge bosons are assumed to be much larger than the masses
of the SM fermions. Note that ξ0 can also annihilate to the
SM Higgs boson via a s-channel diagram, exchanged by the
new Higgs portal, H3,4, because H3,4 couples to ξ0 via the
coupling hξ ∼ mξ /� and to H1 via a coupling in the form
of λ̄× (w,�), where λ̄ is a combination of the known scalar
self-couplings, λ’s. This contribution may become evident
with the interesting resonances at mξ0 = mH3,4/2 in the relic
density, similar to the scalar DM case, as studied above. In the
present case, we are most favored in investigating the gauge
portals, which are not significant in the scalar DM case. For
this aim, the H3,4 contributions to the total annihilation cross-
section can directly be suppressed, as omitted, by assuming
that λ̄ is radically smaller than the gauge coupling constant,
g.

Note that ξ0 does not interact with Z at the effective limit
u, v � w,�. To investigate the direct detection of the field
ξ0 via the SI scattering on nuclei, we write the effective
Lagrangian that describes the interactions of ξ0 with funda-
mental level quarks, induced through the t-channel exchange
of the field Z ′, such as

Leff
ξ0−quark = g2

4c2
Wm2

Z ′
ξ̄0γ μgZ

′
V (ξ0)(1 − γ5)ξ

0q̄γμ

× [gZ ′
V (q) − gZ

′
A (q)γ5]q. (74)

Thus, we obtain the SI cross-section for the scattering of the
ξ0 on a target nucleus [25],

σ SI
ξ0N =

g4m2
ξ0N

16πc4
Wm4

Z ′
[gZ ′

V (ξ0)]2

×
∣∣∣gZ ′

V (u)(Z + A) + gZ
′

V (d)(2A − Z)

∣∣∣2 , (75)

where mξ0N � mN .
For numerical computation in this subsection, we take

mZ � 91.187 GeV and relevant parameters given in (69).
In Fig. 8, we plot the relic density of the DM as a function
of its mass according to the several choices of w and �. We
see that each density curve always contain a quite narrow
resonance at mξ0 = mZ ′/2, at which the relic density is
substantially reduced, tending to zero. Whereas, outside the
resonance region, the relic density slowly increases. Since
the gauge couplings are fixed and that the Z -Z ′ mixing angle
is small, the relic density only depends on mξ0 and w,�

through mX,Y,Z ′ . It is proportional to m4
X,Y,Z ′/m2

ξ0 for mξ0

close to the weak scale, while it is proportional tom2
ξ0 formξ0

much beyond mX,Y,Z ′ . Because the range of the DM mass
considered in Fig. 8 is narrow, the corresponding relic density
outside the resonance region is weakly changed as scaled by
the resonance massmZ ′ . To see a significant change, we make
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Fig. 9 The SI DM-nucleon scattering cross-section limit as a func-
tion of DM mass according to the several choices of w,�, where the
excluded region is input as light red

an estimation, �h2 = 2.8, 0.7, and 3.75 formξ0 = 1, 20, and
50 TeV, respectively, according to the right panel. Whereas,
�h2 = 0.6 and 3.6 correspond to mξ0 = 20 and 50 TeV,
respectively, according to the left panel. In Fig. 9, we plot
the SI scattering cross-section limit as a function of the DM
mass according to the above choices. The limits are in good
agreement the constraint from XENON1T [28]. Combining
the results in Figs. 8 and 9, the viable DM mass regime is as
follows: mξ0 = 1.3–3.2 TeV for w = 5 TeV, � = 6 TeV;
mξ0 = 3.5–4.4 TeV for w = 8 TeV, � = 9 TeV; and
mξ0 = 4.9–5.5 TeV for w = 11 TeV, � = 12 TeV.

Last, but not least, the scalar sextet (S) and triplet (χ ) are
decomposed as

S ∼ 6 = 3 ⊕ 2 ⊕ 1, χ ∼ 3 = 2 ⊕ 1, (76)

under the SM SU (2)L symmetry at the effective limit. Here
S33 and χ3 transform as the SU (2)L singlets respectively,
hence they can develop the VEVs, 〈S33〉 = �/

√
2 and

〈χ3〉 = w/
√

2, for breaking SU (3)L down to SU (2)L as
conserved. At this stage, w,� contribute to all the new parti-
cle masses, as seen in the new gauge and Higgs bosons above.
Additionally, w gives exotic quark mass, while � provides ξ

mass, and both w,� supply E mass. All that implies a sim-
ilar role between w,� as mutually contributing to the new
physics and interacting of their fields with the SM. Although
we have chosen � > w in interpreting the results, we reex-
amined that an opposite choice, w > �, or including both
cases, but always ensuring w ∼ �, lead to the same physics.

6 Conclusion

In this work, the fully flipped 3-3-1-1 model has been inter-
preted. The scalar sector has explicitly been diagonalized,
yielding the appropriate particle spectrum. We have shown
that the model naturally provides the two DM candidates, a
singlet scalar and a triplet fermion, with the masses in TeV
regime. We have determined the physical resonances in the
dark matter relic density, which are set by the new neutral
gauge boson and the new neutral Higgs boson according
to the fermion and scalar densities, respectively. A further
experimental search for these resonances is crucial to probe
the existence of dark matter.
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Appendix A: Couplings of fermions and scalars with
gauge bosons

This appendix is devoted to determine all the couplings of
fermions and scalars with gauge bosons, given throughout
Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, according to
the various types of interactions. Here, we have frequently
utilized the notations, A

←→
∂ B ≡ A(∂B) − (∂A)B and ϒ ≡√

(4�2 + w2)/(u2 + v2). While the form of the fermion and
gauge boson interactions is explicitly displayed in the body
text, let us remind the reader that each scalar and gauge boson
interaction is directly determined as its vertex times coupling;
neither extra imaginary unit nor derivatives with respect to
the vertex fields as set for the Feynman rules are supplied.
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Table 2 The couplings of Z with fermions ( f �= νR), whereas those for Z ′ are obtained by replacement: cϕ → sϕ and sϕ → −cϕ

f gZV ( f ) gZA ( f )

ν1
sϕc2W+cϕ

√
1+2c2W

2
√

1+2c2W

sϕc2W+cϕ
√

1+2c2W

2
√

1+2c2W

να − sϕ−cϕ
√

1+2c2W

2
√

1+2c2W
− sϕ−cϕ

√
1+2c2W

2
√

1+2c2W

e1
(sϕ−cϕ

√
1+2c2W )(2c2W−1)

2
√

1+2c2W

sϕ−cϕ
√

1+2c2W

2
√

1+2c2W

eα
sϕ(c2W−2)−cϕ

√
1+2c2W (2c2W−1)

2
√

1+2c2W
− sϕc2W+cϕ

√
1+2c2W

2
√

1+2c2W

ua
sϕ(4−c2W )+cϕ

√
1+2c2W (4c2W−1)

6
√

1+2c2W

sϕc2W+cϕ
√

1+2c2W

2
√

1+2c2W

da
(sϕ−cϕ

√
1+2c2W )

√
1+2c2W

6
sϕ−cϕ

√
1+2c2W

2
√

1+2c2W

ξ0 − sϕc2
W√

1+2c2W
− sϕc2

W√
1+2c2W

ξ 2cϕc2
W − 2sϕc2

W√
1+2c2W

E1
2sϕc2W+cϕ

√
1+2c2W (1−c2W )√

1+2c2W

2sϕc2
W√

1+2c2W

Eα
sϕ(3c2W−1)−2cϕ

√
1+2c2W (c2W−1)

2
√

1+2c2W

sϕc2
W√

1+2c2W

Ua
sϕ(1−7c2W )+4cϕ

√
1+2c2W (c2W−1)

6
√

1+2c2W
− sϕc2

W√
1+2c2W

Table 3 The interactions of a neutral gauge boson with two scalars

Vertex Coupling Vertex Coupling

AμH
++
11

←→
∂ μH−

11 2igsW AμH
+
12

←→
∂ μH−

12 igsW

AμH
+
1

←→
∂ μH−

1 igsW AμH′+
1

←→
∂ μH′−

1 igsW

AμH′+
2

←→
∂ μH′−

2 igsW ZμH2
←→
∂ μA1

−g
2cW

ϒsε1

ZμH2
←→
∂ μA2

g
2cW

ϒcε1 ZμH0∗
5

←→
∂ μH0

5
ig
cW

ZμH
++
11

←→
∂ μH−

11
ig
cW

c2W ZμH
−
12

←→
∂ μH+

12 igsW tW

ZμH
+
1

←→
∂ μH−

1
ig

2cW
c2W ZμH′+

1
←→
∂ μH′−

1
ig

2cW
(c2W − c2

ε2
)

ZμH′−
1

←→
∂ μH′+

2
ig

4cW
s2ε2 ZμH′−

2
←→
∂ μH′+

2
ig

2cW
(s2

ε2
− c2W )

ZμH ′0
1

←→
∂ μH ′0∗

1
−ig
2cW

( v
w
cα4 s2ε3 + s2

ε3
) ZμH ′0

1
←→
∂ μH ′0∗

2
ig

2cW
( v

w
cα4cε3 + sε3 )cε3

ZμH0∗
2

←→
∂ μH ′0

2
ig

2cW
c2
ε3

Z ′
μH1

←→
∂ μA1

−g

2
√

3−t2W
sε1 s2α1ϒ

Z ′
μH1

←→
∂ μA2

g

2
√

3−t2W
ϒs2α1cε1 Z ′

μH2
←→
∂ μA1

g√
3−t2W

ϒ(c2
α1

− 1
2c2

W
)sε1

Z ′
μH2

←→
∂ μA2

g√
3−t2W

ϒ( 1
2c2

W
− c2

α1
)cε1 Z ′

μH
0
5
←→
∂ μH0∗

5
ig√

3−t2W
(1 − t2

W )

Z ′
μH

−
11

←→
∂ μH++

11
ig√

3−t2W
(t2
W − 1) Z ′

μH
−
12

←→
∂ μH+

12
ig√

3−t2W
(t2
W − 1)

Z ′
μH

−
1

←→
∂ μH+

1
ig√

3−t2W
( 1

2c2
W

− c2
α1

) No data No data

Vertex Coupling

Z ′
μH3

←→
∂ μA1

−g√
3−t2W

[cα1 sα1 (2sα2cα3 − cα2 sα3 )sε1 + (cα2cα3 + 2sα2 sα3 )cε1 ]

Z ′
μH3

←→
∂ μA2

−g√
3−t2W

[cα1 sα1 (cα2 sα3 − 2sα2cα3 )cε1 + (cα2cα3 + 2sα2 sα3 )sε1 ]

Z ′
μH4

←→
∂ μA1

g√
3−t2W

[cα1 sα1 (2cα2cα3 + sα2 sα3 )sε1 − (sα2cα3 − 2cα2 sα3 )cε1 ]
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Table 3 continued

Vertex Coupling

Z ′
μH4

←→
∂ μA2

−g√
3−t2W

[cα1 sα1 (2cα2cα3 + sα2 sα3 )cε1 + (sα2cα3 − 2cα2 sα3 )sε1 ]

Z ′
μH′−

1
←→
∂ μH′+

1
ig

2c2
W

√
3−t2W

[ u√
2�2+w2 c

2
W s2α4 s2ε2 + s2

α4
s2
ε2

− c2W (2c2
ε2

+ c2
α4
s2
ε2

)]

Z ′
μH′−

1
←→
∂ μH′+

2
−ig

2
√

3−t2W
[ u√

2�2+w2 s2α4cε2 + (1 − t2
W + 2s2

α4
)sε2 ]cε2

Z ′
μH′−

2
←→
∂ μH′+

2
ig

2c2
W

√
3−t2W

[1 + s2
ε2

− 2c2
W (c2

α4
c2
ε2

+ 2s2
ε2

)]

Z ′
μH

′0∗
1

←→
∂ μH ′0

1
−ig

2c2
W

√
3−t2W

[( v
w
cα4 s2ε3 − s2

α4
s2
ε3

+ 1)c2W + c2
ε3

− s2
α4
s2
ε3

]

Z ′
μH

′0∗
1

←→
∂ μH ′0

2
−ig

2c2
W

√
3−t2W

( v
w
cα4cε3 + 2c2

W s2
α4
sε3 + sε3 )cε3

Z ′
μH

′0∗
2

←→
∂ μH ′0

2
−ig

2
√

3−t2W
[ 2v

w
cα4 s2ε3 − (1 + t2

W + 2s2
α4

)c2
ε3

+ 2]

Table 4 The interactions of a charged gauge boson with two scalars

Vertex Coupling Vertex Coupling

W+
μ H2

←→
∂ μH−

1
−ig

2 W+
μ H0

5
←→
∂ μH−

12 ig

W+
μ H−

11
←→
∂ μH+

12 −ig W+
μ H−

1
←→
∂ μA1

−g
2 ϒsε1

W+
μ H−

1
←→
∂ μA2

g
2 ϒcε1 W+

μ H′−
1

←→
∂ μH ′0

1
ig√

2
( v

w
cα4cε3 + sε3 )sε2

W+
μ H′−

1
←→
∂ μH ′0

2
−ig√

2
sε2cε3 W+

μ H′−
2

←→
∂ μH ′0

1
−ig√

2
( v

w
cα4cε3 + sε3 )cε2

W+
μ H′−

2
←→
∂ μH ′0

2
ig√

2
cε2cε3 X+

μ H1
←→
∂ μH′−

1
−ig

2 cα1cε2

X+
μ H1

←→
∂ μH′−

2
−ig

2 cα1 sε2 X+
μ H2

←→
∂ μH′−

1
−ig

2 sα1cε2

X+
μ H2

←→
∂ μH′−

2
−ig

2 sα1 sε2 X+
μ H3

←→
∂ μH′−

2
ig
2 (

√
2sα2 sα4 + cα2cα4 )cε2

X+
μ H4

←→
∂ μH′−

2
ig
2 (sα2cα4 − √

2cα2 sα4 )cε2 X+
μ H−

11
←→
∂ μH′+

1 −ig( u√
2�2+w2 cα4cε2 + sα4 sε2 )

X+
μ H−

11
←→
∂ μH′+

2 igsα4cε2 X+
μ H−

12
←→
∂ μH ′0

1
ig√

2
sα4 sε3

X+
μ H−

12
←→
∂ μH ′0

2
−ig√

2
sα4cε3 X+

μ H−
1

←→
∂ μH ′0∗

1
−ig√

2
cα1cε3

X+
μ H−

1
←→
∂ μH ′0∗

2
−ig√

2
cα1 (

v
w
cα4cε3 + sε3 ) Y 0

μH1
←→
∂ μH ′0∗

1
−ig

2 sα1cε3

Y 0
μH1

←→
∂ μH ′0∗

2
−ig

2 sα1 (sε3 + v
w
cα4cε3 ) Y 0

μH2
←→
∂ μH ′0∗

1
ig
2 cα1cε3

Y 0
μH2

←→
∂ μH ′0∗

2
ig
2 cα1 (sε3 + v

w
cα4cε3 ) Y 0

μH3
←→
∂ μH ′0∗

1
ig
2 [ v

w
cα2cε3 + (cα2cα4 + √

2sα2 sα4 )sε3 ]
Y 0

μH3
←→
∂ μH ′0∗

2
−ig

2 (cα2cα4 + √
2sα2 sα4 )cε3 Y 0

μH4
←→
∂ μH ′0∗

1
ig
2 [ v

w
sα2cε3 + (sα2cα4 − √

2cα2 sα4 )sε3 ]
Y 0

μH4
←→
∂ μH ′0∗

2
ig
2 (

√
2cα2 sα4 − sα2cα4 )cε3 Y 0

μH
−
12

←→
∂ μH′+

1
−ig√

2
( u√

2�2+w2 cα4cε2 + sα4 sε2 )

Y 0
μH

−
12

←→
∂ μH′+

2
ig√

2
sα4cε2 Y 0

μH′−
1

←→
∂ μH+

1
ig√

2
sα1cε2

Y 0
μH′−

2
←→
∂ μH+

1
ig√

2
sα1 sε2 No data No data

Vertex Coupling

X+
μ H3

←→
∂ μH′−

1
−ig

2 [ u√
2�2+w2 (

√
2sα2cα4 − cα2 sα4 )cε2 + (

√
2sα2 sα4 + cα2cα4 )sε2 ]
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Table 4 continued

Vertex Coupling

X+
μ H4

←→
∂ μH′−

1
ig
2 [ u√

2�2+w2 (
√

2cα2cα4 + sα2 sα4 )cε2 + (
√

2cα2 sα4 − sα2cα4 )sε2 ]
X+

μH′−
1

←→
∂ μA1

−g
2 [(√2sα3 sα4 + cα3cα4 )cε1 sε2 + sα1 (cα1 sα3cα4 sε2 + ϒcε2 )sε1 ]

X+
μH′−

1
←→
∂ μA2

−g
2 [(√2sα3 sα4 + cα3cα4 )sε1 sε2 − sα1 (cα1 sα3cα4 sε2 + ϒcε2 )cε1 ]

X+
μH′−

2
←→
∂ μA1

g
2 [(√2sα3 sα4 + cα3cα4 )cε1cε2 + sα1 (cα1 sα3cα4cε2 − ϒsε2 )sε1 ]

X+
μH′−

2
←→
∂ μA2

g
2 [(√2sα3 sα4 + cα3cα4 )sε1cε2 − sα1 (cα1 sα3cα4cε2 − ϒsε2 )cε1 ]

Y 0
μH

′0∗
1

←→
∂ μA1

g
2 [(√2sα3 sα4 + cα3cα4 )cε1 sε3 + cα1 (sα1 sα3cα4 sε3 − ϒcε3 )sε1 ]

Y 0
μH

′0∗
1

←→
∂ μA2

g
2 [(√2sα3 sα4 + cα3cα4 )sε1 sε3 − cα1 (sα1 sα3cα4 sε3 − ϒcε3 )cε1 ]

Y 0
μH

′0∗
2

←→
∂ μA1

−g
2 {(√2sα3 sα4 + cα3cα4 )cε1cε3 + cα1 [sα1 sα3cα4cε3 + ϒ( v

w
cα4cε3 + sε3 )]sε1 }

Y 0
μH

′0∗
2

←→
∂ μA2

−g
2 {(√2sα3 sα4 + cα3cα4 )sε1cε3 − cα1 [sα1 sα3cα4cε3 + ϒ( v

w
cα4cε3 + sε3 )]cε1 }

Table 5 The interactions of a scalar with two gauge bosons

Vertex Coupling Vertex Coupling

H1Z Z ′ g2

2c2
W

√
1+2c2W

(ucα1 − vc2W sα1 ) H1Z Z
g2

4c2
W

√
u2 + v2

H1Z ′Z ′ g2

4c2
W (1+2c2W )

(ucα1 + vc2
2W sα1 ) H2Z Z ′ g2√

1+2c2W
usα1

H2Z ′Z ′ g2

1+2c2W
us2

W sα1 H3Z ′Z ′ g2

1+2c2W
c2
W (wcα2 − 4�sα2 )

H4Z ′Z ′ g2

1+2c2W
c2
W (wsα2 + 4�cα2 ) H ′0

1 ZY 0∗ −g2

2cW
vcε3

H ′0
1 Z ′Y 0∗ g2

2c2
W

√
3−t2W

(2wc2
Wcα4 sε3 − vcε3 ) H ′0

2 ZY 0∗ −g2

4cW
v(sε3 + v

w
cα4cε3 )

H ′0
2 Z ′Y 0∗ −g2

4c2
W

√
3−t2W

(4wc2
Wcα4cε3 + vsε3 ) H1W+W− g2

2

√
u2 + v2

H1X+X− g2

2 ucα1 H1Y 0Y 0∗ g2

2 vsα1

H2X+X− g2

2 usα1 H2Y 0Y 0∗ −g2

2 vcα1

H3X+X− g2

2 (wcα2 − 2�sα2 ) H3Y 0Y 0∗ g2

2 (wcα2 − 2�sα2 )

H4X+X− g2

2 (wsα2 + 2�cα2 ) H4Y 0Y 0∗ g2

2 (wsα2 + 2�cα2 )

H−
12X

+Y 0 g2� H−
1 W+Z ′ g2√

3−t2W
usα1

H−
1 X+Y 0∗ g2√

2
usα1 H′−

1 W+Y 0 g2√
2
ucε2

H′−
1 X+Z ′ −g2

2
√

3−t2W
[2wcα4 sε2 + u(1 − t2

W + 2c2
α4

)cε2 ] H′−
1 X+Z g2

2cW
ucε2

H′−
2 W+Y 0 g2

2
√

2
usε2 H′−

2 X+A −g2

2 usW sε2

H′−
2 X+Z ′ g2

4
√

3−t2W
[4wcα4cε2 − u(1 − 3t2

W )sε2 ] H′−
2 X+Z g2

4cW
u(3 − 2c2

W )sε2

H ′0
1 W+X− g2√

2
vcε3 H ′0

2 W+X− g2

2
√

2
v(sε3 + v

w
cα4cε3 )
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Table 6 The interactions of a neutral and a charged gauge boson with two scalars (Table continued)

Vertex Coupling Vertex Coupling

AW+H ′0
1 H′−

1
−g2√

2
sW (sε3 + v

w
cα4cε3 )sε2 AW+H ′0

1 H′−
2

g2√
2
sW (sε3 + v

w
cα4cε3 )cε2

AW+H ′0
2 H′−

1
g2√

2
sW sε2cε3 AW+H ′0

2 H′−
2

−g2√
2
sW cε2cε3

AW+H−
11H

+
12 3g2sW AW+H−

12H
0
5 g2sW

AW+H−
1 H2

−g2

2 sW AW+H−
1 A1

−ig2

2 ϒsW sε1

AW+H−
1 A2

ig2

2 ϒsW cε1 AX+H−
12H

′0
1

−g2√
2
sW sα4 sε3

AX+H−
12H

′0
2

g2√
2
sW sα4cε3 AX+H−

1 H ′0∗
1

g2√
2
sW cα1cε3

AX+H−
1 H ′0∗

2
g2√

2
sW cα1 (sε3 + v

w
cα4cε3 ) AX+H−

11H′+
1

3g2√
2�2+w2 sW (wsε2 + ucα4cε2 )

AX+H−
11H′+

2 −3g2sW sα4cε2 AX+H′−
1 H1

−g2

2 sW cα1cε2

AX+H′−
1 H2

−g2

2 sW sα1cε2 AX+H′−
2 H1

−g2

2 sW cα1 sε2

AX+H′−
2 H2

−g2

2 sW sα1 sε2 AX+H′−
2 H3

g2

2 sW (cα2cα4 + √
2sα2 sα4 )cε2

AX+H′−
2 H4

g2

2 sW (sα2cα4 − √
2cα2 sα4 )cε2 AY 0H+

1 H′−
1 −√

2g2sW sα1cε2

AY 0H+
1 H′−

2 −√
2g2sW sα1 sε2 AY 0H−

12H′+
1

√
2g2√

2�2+w2 sW (wsε2 + ucα4cε2 )

AY 0H−
12H′+

2 −√
2g2sW sα4cε2 ZW+H−

11H
+
12 g2(cW − 2sW tW )

ZW+H−
12H

0
5 −g2(cW + 2sW tW ) ZW+H ′0

1 H′−
1

g2√
2
sW tW (sε3 + v

w
cα4cε3 )sε2

ZW+H ′0
1 H′−

2
−g2√

2
sW tW (sε3 + v

w
cα4cε3 )cε2 ZW+H ′0

2 H′−
1

−g2√
2
sW tW sε2cε3

ZW+H ′0
2 H′−

2
g2√

2
sW tW cε2cε3 ZW+H−

1 H2
g2

2 sW tW

ZW+H−
1 A1

ig2

2 ϒsW tW sε1 ZW+H−
1 A2

−ig2

2 ϒsW tW cε1

Z X+H−
12H

′0
1

g2

2
√

2cW
(2 − c2W )sα4 sε3 Z X+H−

12H
′0
2

g2

2
√

2cW
(c2W − 2)sα4cε3

Z X+H′−
1 H1

g2

4cW
(2 − c2W )cα1cε2 Z X+H′−

1 H2
g2

4cW
(2 − c2W )sα1cε2

Z X+H′−
2 H1

g2

4cW
(2 − c2W )cα1 sε2 Z X+H′−

2 H2
g2

4cW
(2 − c2W )sα1 sε2

Z X+H′−
2 H3

g2

4cW
c2W (cα2cα4 + √

2sα2 sα4 )cε2 Z X+H′−
2 H4

g2

4cW
c2W (sα2cα4 − √

2cα2 sα4 )cε2

Z X+H−
1 H ′0∗

1
g2

2
√

2cW
c2Wcα1cε3 Z X+H−

1 H ′0∗
2

g2

2
√

2cW
c2Wcα1 (

v
w
cα4cε3 + sε3 )

Vertex Coupling

AX+H′−
1 H3

g2

2
√

2�2+w2 sW [cα2 (usα4cε2 − √
2�sε2 ) − √

2sα2 (ucα4cε2 + wsε2 )]
AX+H′−

1 H4
g2

2
√

2�2+w2 sW [sα2 (usα4cε2 − √
2�sε2 ) + √

2cα2 (ucα4cε2 + wsε2 )]
AX+H′−

1 A1
−ig2

2 sW [(√2sα3 sα4 + cα3cα4 )cε1 sε2 + sα1 (ϒcε2 + cα1 sα3cα4 sε2 )sε1 ]
AX+H′−

1 A2
−ig2

2 sW [(√2sα3 sα4 + cα3cα4 )sε1 sε2 − sα1 (ϒcε2 + cα1 sα3cα4 sε2 )cε1 ]
AX+H′−

2 A1
ig2

2 sW [(√2sα3 sα4 + cα3cα4 )cε1cε2 + sα1 (cα1 sα3cα4cε2 − sε2 ϒ)sε1 ]
AX+H′−

2 A2
ig2

2 sW [(√2sα3 sα4 + cα3cα4 )sε1cε2 − sα1 (cα1 sα3cα4cε2 − sε2 ϒ)cε1 ]
Z X+H′−

1 H3
g2

4cW
√

2�2+w2 c2W [cα2 (usα4cε2 − √
2�sε2 ) − √

2sα2 (ucα4cε2 + wsε2 )]
Z X+H′−

1 H4
g2

4cW
√

2�2+w2 c2W [sα2 (usα4cε2 − √
2�sε2 ) + √

2cα2 (ucα4cε2 + wsε2 )]
Z X+H′−

1 A1
ig2

4cW
[ϒ(2 − c2W )sα1 sε1cε2 −

√
2√

4�2+w2 c2W (�cα1 sα1 sα4 sε1 + √
2�2 + w2cε1 )sε2 ]

Z X+H′−
1 A2

−ig2

4cW
[ϒ(2 − c2W )sα1cε1cε2 −

√
2√

4�2+w2 c2W (�cα1 sα1 sα4cε1 − √
2�2 + w2sε1 )sε2 ]
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Table 7 The interactions of a neutral and a charged gauge boson with two scalars (Continued)

Vertex Coupling Vertex Coupling

Z X+H−
11H′+

1
3g2

2
√

2�2+w2cW
c2W (wsε2 + ucα4cε2 ) Z X+H−

11H′+
2

−3g2

2cW
c2W sα4cε2

ZY 0H0∗
5 H ′0

1
3g2

2cW
sα4 sε3 ZY 0H0∗

5 H ′0
2

−3g2

2cW
sα4cε3

ZY 0H ′0∗
1 H1

−g2

4cW
sα1cε3 ZY 0H ′0∗

1 H2
g2

4cW
cα1cε3

ZY 0H ′0∗
1 H3

−g2

4cW
[(√2sα2 sα4 + cα2cα4 )sε3 + v

w
cα2cε3 ] ZY 0H ′0∗

2 H1
−g2

4cW
sα1 (

v
w
cα4cε3 + sε3 )

ZY 0H ′0∗
1 H4

g2

4cW
[(√2cα2 sα4 − sα2cα4 )sε3 − v

w
sα2cε3 ] ZY 0H ′0∗

2 H2
g2

4cW
cα1 (

v
w
cα4cε3 + sε3 )

ZY 0H ′0∗
2 H3

g2

4cW
(cα2cα4 + √

2sα2 sα4 )cε3 ZY 0H ′0∗
2 H4

g2

4cW
(sα2cα4 − √

2cα2 sα4 )cε3

ZY 0H+
1 H′−

1
g2

2
√

2cW
(1 − 2c2W )sα1cε2 ZY 0H+

1 H′−
2

g2

2
√

2cW
(1 − 2c2W )sα1 sε2

ZY 0H−
12H′+

1
−g2√

8(2�2+w2)cW
(1 − 2c2W )(ucα4cε2 + wsε2 ) ZY 0H−

12H′+
2

g2

2
√

2cW
(1 − 2c2W )sα4cε2

Z ′W+H−
11H

+
12

2g2√
3−t2W

(1 − t2
W ) Z ′W+H−

12H
0
5

2g2√
3−t2W

(1 − t2
W )

Z ′W+H ′0
2 H′−

2
g2

c2
W

√
2(3−t2W )

(1 − 2c2
Wc2

α4
)cε2cε3 Z ′W+H−

1 H1
g2√

3−t2W
cα1 sα1

Z ′W+H−
1 A1

ig2

2c2
W

√
3−t2W

ϒ(1 − 2c2
α1
c2
W )sε1 Z ′W+H−

1 H2
g2

2c2
W

√
3−t2W

(1 − 2c2
α1
c2
W )

Z ′W+H−
1 A2

ig2

2c2
W

√
3−t2W

ϒ(2c2
α1
c2
W − 1)cε1 Z ′X+H−

1 H ′0∗
1

−g2

2c2
W

√
2(3−t2W )

cα1cε3

Z ′X+H−
1 H ′0∗

2
−g2

2c2
W

√
2(3−t2W )

cα1 (
v
w
cα4cε3 + sε3 ) Z ′X+H′−

1 H1
g2

4
√

3−t2W
(3t2

W − 1)cα1cε2

Z ′X+H′−
1 H2

g2

4
√

3−t2W
(3t2

W − 1)sα1cε2 Z ′X+H′−
2 H1

g2

4
√

3−t2W
(3t2

W − 1)cα1 sε2

Z ′X+H′−
2 H2

g2

4
√

3−t2W
(3t2

W − 1)sα1 sε2 Z ′X+H−
12H

′0
1

g2√
8(3−t2W )

(3t2
W − 1)sα4 sε3

Vertex Coupling

Z X+H′−
2 A1

ig2

4cW
{ϒ(2 − c2W )sα1 sε1 sε2 + c2W [(cα3cα4 + √

2sα3 sα4 )cε1 + cα1 sα1 sα3cα4 sε1 ]cε2 }
Z X+H′−

2 A2
ig2

4cW
{ϒ(c2W − 2)sα1cε1 sε2 + c2W [(cα3cα4 + √

2sα3 sα4 )sε1 − cα1 sα1 sα3cα4cε1 ]cε2 }
ZY 0H ′0∗

1 A1
−ig2

4cW
[(cα3cα4 + √

2sα3 sα4 )cε1 sε3 + cα1 (sα1 sα3cα4 sε3 + ϒcε3 )sε1 ]
ZY 0H ′0∗

1 A2
−ig2

4cW
[(cα3cα4 + √

2sα3 sα4 )sε1 sε3 − cα1 (sα1 sα3cα4 sε3 + ϒcε3 )cε1 ]
ZY 0H ′0∗

2 A1
ig2

4cW
{[(cα3cα4 + √

2sα3 sα4 )cε1 + cα1 sα1 sα3cα4 sε1 ]cε3 − ϒcα1 (
v
w
cα4cε3 + sε3 )sε1 }

ZY 0H ′0∗
2 A2

ig2

4cW
{[(cα3cα4 + √

2sα3 sα4 )sε1 − cα1 sα1 sα3cα4cε1 ]cε3 + ϒcα1 (
v
w
cα4cε3 + sε3 )cε1 }

Z ′W+H ′0
1 H′−

1
g2

c2
W

√
2(3−t2W )

{ u
w
c2
W s2α4 sα4cε2 sε3 + [s2

α4
sε3 − c2Wcα4 (

v
w
cε3 + cα4 sε3 )]sε2 }

Z ′W+H ′0
1 H′−

2
g2

c2
W

√
2(3−t2W )

[c2Wcα4 (
v
w
cε3 + cα4 sε3 ) − s2

α4
sε3 ]cε2

Z ′W+H ′0
2 H′−

1
−g2

c2
W

√
2(3−t2W )

[ u√
2�2+w2 c

2
W s2α4cε2 + (1 − 2c2

Wc2
α4

)sε2 ]cε3

Z ′X+H′−
1 H3

g2

4c2
W

√
3−t2W

{[√2(1 + 4c2
W )sα2 sα4 + cα2cα4 ]sε2 + u√

2�2+w2 [√2(1 + 4c2
W )sα2cα4 − cα2 sα4 ]cε2 }

Z ′X+H′−
1 H4

−g2

4c2
W

√
3−t2W

{[√2(1 + 4c2
W )cα2 sα4 − sα2cα4 ]sε2 + u√

2�2+w2 [√2(1 + 4c2
W )cα2cα4 + sα2 sα4 ]cε2 }

Z ′X+H′−
1 A1

ig2

4c2
W

√
3−t2W

{sα1 [(8c2
W + 1)cα1 sα3cα4 sε2 + ϒ(1 − 2c2W )cε2 ]sε1

+[√2(4c2
W + 1)sα3 sα4 + cα3cα4 ]cε1 sε2 }

Z ′X+H′−
1 A2

−ig2

4c2
W

√
3−t2W

{sα1 [(8c2
W + 1)cα1 sα3cα4 sε2 + ϒ(1 − 2c2W )cε2 ]cε1

−[√2(4c2
W + 1)sα3 sα4 + cα3cα4 ]sε1 sε2 }

123
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Table 8 The interactions of a neutral and a charged gauge boson with two scalars (Continued)

Vertex Coupling Vertex Coupling

Z ′X+H′−
2 H3

−g2

4
√

3−t2W c2
W

[cα2cα4 + √
2(4c2

W + 1)sα2 sα4 ]cε2 Z ′X+H−
12H

′0
2

g2√
8(3−t2W )

(1 − 3t2
W )sα4cε3

Z ′X+H′−
2 H4

−g2

4
√

3−t2W c2
W

[sα2cα4 − √
2(4c2

W + 1)cα2 sα4 ]cε2 Z ′X+H−
11H′+

2
g2

2
√

3−t2W
(3t2

W − 1)sα4cε2

Z ′X+H−
11H′+

1
g2

2
√

3−t2W
(1 − 3t2

W )( u√
2�2+w2 cα4cε2 + sα4 sε2 ) Z ′Y 0H ′0∗

1 H1
−g2

4c2
W

√
3−t2W

sα1cε3

Z ′Y 0H ′0∗
2 H1

−g2

4c2
W

√
3−t2W

sα1 (
v
w
cα4cε3 + sε3 ) Z ′Y 0H ′0∗

1 H2
g2

4c2
W

√
3−t2W

cα1cε3

Z ′Y 0H ′0∗
2 H2

g2

4c2
W

√
3−t2W

cα1 (
v
w
cα4cε3 + sε3 ) Z ′Y 0H+

1 H′−
1

g2√
8(3−t2W )

(3t2
W − 1)sα1cε2

Z ′Y 0H ′0∗
2 H3

g2

4c2
W

√
3−t2W

[cα2cα4 + √
2(4c2

W + 1)sα2 sα4 ]cε3 Z ′Y 0H+
1 H′−

2
g2√

8(3−t2W )
(3t2

W − 1)sα1 sε2

Z ′Y 0H ′0∗
2 H4

g2

4c2
W

√
3−t2W

[sα2cα4 − √
2(4c2

W + 1)cα2 sα4 ]cε3 Z ′Y 0H0∗
5 H ′0

1
g2√

4(3−t2W )
(3t2

W − 1)sα4 sε3

Z ′Y 0H−
12H′+

2
g2√

8(3−t2W )
(3t2

W − 1)sα4cε2 Z ′Y 0H0∗
5 H ′0

2
g2√

4(3−t2W )
(1 − 3t2

W )sα4cε3

Vertex Coupling

Z ′X+H′−
2 A1

−ig2

4c2
W

√
3−t2W

{sα1 [(8c2
W + 1)cα1 sα3cα4cε2 − ϒ(1 − 2c2W )sε2 ]sε1

+[√2(4c2
W + 1)sα3 sα4 + cα3cα4 ]cε1cε2 }

Z ′X+H′−
2 A2

ig2

4c2
W

√
3−t2W

{sα1 [(8c2
W + 1)cα1 sα3cα4cε2 − ϒ(1 − 2c2W )sε2 ]cε1

−[√2(4c2
W + 1)sα3 sα4 + cα3cα4 ]sε1cε2 }

Z ′Y 0H ′0∗
1 H3

−g2

4c2
W

√
3−t2W

{ v
w
cα2cε3 + [√2(4c2

W + 1)sα2 sα4 + cα2cα4 ]sε3 }

Z ′Y 0H ′0∗
1 H4

−g2

4c2
W

√
3−t2W

{ v
w
sα2cε3 − [√2(4c2

W + 1)cα2 sα4 − sα2cα4 ]sε3 }

Z ′Y 0H ′0∗
1 A1

−ig2

4c2
W

√
3−t2W

{cα1 [(8c2
W + 1)sα1 sα3cα4 sε3 + ϒcε3 ]sε1 + [√2(4c2

W + 1)sα3 sα4 + cα3cα4 ]cε1 sε3 }

Z ′Y 0H ′0∗
1 A2

ig2

4c2
W

√
3−t2W

{cα1 [(8c2
W + 1)sα1 sα3cα4 sε3 + ϒcε3 ]cε1 − [√2(4c2

W + 1)sα3 sα4 + cα3cα4 ]sε1 sε3 }

Z ′Y 0H ′0∗
2 A1

ig2

4c2
W

√
3−t2W

{cα1 [(8c2
W + 1)sα1 sα3cα4cε3 − ϒ( v

w
cα4cε3 + sε3 )]sε1

+[√2(4c2
W + 1)sα3 sα4 + cα3cα4 ]cε1cε3 }

Z ′Y 0H ′0∗
2 A2

−ig2

4c2
W

√
3−t2W

{cα1 [(8c2
W + 1)sα1 sα3cα4cε3 − ϒ( v

w
cα4cε3 + sε3 )]cε1

−[√2(4c2
W + 1)sα3 sα4 + cα3cα4 ]sε1cε3 }

Z ′Y 0H−
12H′+

1
g2√

8(3−t2W )
(1 − 3t2

W )( u√
2�2+w2 cα4cε2 + sα4 sε2 )
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Table 9 The interactions of two charged gauge bosons with two scalars (Table continued)

Vertex Coupling Vertex Coupling

W+W+H−
11H

0
5 g2 W+W−H1H1

g2

4

W+W−H++
11 H−

11 g2 W+W−H+
12H

−
12 2g2

W+W−H+
1 H−

1
g2

2 W+W−H2H2
g2

4

W+W−H′+
1 H′−

1
g2

2 s2
ε2

W+W−H′+
1 H′−

2
−g2

4 s2ε2

W+W−H′+
2 H′−

2
g2

2 c2
ε2

W+W−H0
5 H

0∗
5 g2

W+W−H ′0
1 H ′0∗

1
g2

2 (s2
ε3

+ v
w
cα4 s2ε3 ) W+W−H ′0

1 H ′0∗
2

−g2

2 (sε3 + v
w
cα4cε3 )cε3

W+W−H ′0
2 H ′0∗

2
g2

2 c2
ε3

W+W−A1A1
g2

4 ϒ2s2
ε1

W+W−A1A2
−g2

4 ϒ2s2ε1 W+W−A2A2
g2

4 ϒ2c2
ε1

W+X+H−
11H

′0
1 −√

2g2sα4 sε3 W+X+H−
11H

′0
2

√
2g2sα4cε3

W+X−H−
1 H′+

1
g2

2 sα1cε2 W+X−H−
1 H′+

2
g2

2 sα1 sε2

W+X−H ′0
1 H1

g2

2
√

2
sα1cε3 W+X−H ′0

1 H2
−g2

2
√

2
cα1cε3

W+X−H ′0
1 H3

g2

2
√

2
[√2sα2 sα4 sε3 + cα2 (

v
w
cε3 + cα4 sε3 )] W+X−H ′0

2 H1
g2

2
√

2
sα1 (

v
w
cα4cε3 + sε3 )

W+X−H ′0
1 H4

g2

2
√

2
[sα2 (

v
w
cε3 + cα4 sε3 ) − √

2cα2 sα4 sε3 ] W+X−H ′0
2 H2

−g2

2
√

2
cα1 (

v
w
cα4cε3 + sε3 )

W+X−H ′0
2 H3

−g2

2
√

2
(cα2cα4 + √

2sα2 sα4 )cε3 W+X−H ′0
2 H4

g2

2
√

2
(
√

2cα2 sα4 − sα2cα4 )cε3

W+X−H0
5 H

′0∗
1

−g2√
2
sα4 sε3 W+X−H0

5 H
′0∗
2

g2√
2
sα4cε3

W+X−H+
12H′−

1
3g2

2 ( u√
2�2+w2 cα4cε2 + sα4 sε2 ) W+X−H+

12H′−
2

−3g2

2 sα4cε2

W+Y 0∗H0
5 H′−

1

√
2g2( u√

2�2+w2 cα4cε2 + sα4 sε2 ) W+Y 0∗H0
5 H′−

2 −√
2g2sα4cε2

W+Y 0H−
12H

′0
1

−3g2

2 sα4 sε3 W+Y 0H−
12H

′0
2

3g2

2 sα4cε3

W+Y 0H−
1 H ′0∗

1
g2

2 cα1cε3 W+Y 0H−
1 H ′0∗

2
g2

2 cα1 (
v
w
cα4cε3 + sε3 )

W+Y 0H−
11H′+

1
g2√

2
( u√

2�2+w2 cα4cε2 + sα4 sε2 ) W+Y 0H−
11H′+

2
−g2√

2
sα4cε2

W+Y 0H′−
1 H1

g2

2
√

2
cα1cε2 W+Y 0H′−

1 H2
g2

2
√

2
sα1cε2

W+Y 0H′−
2 H1

g2

2
√

2
cα1 sε2 W+Y 0H′−

2 H2
g2

2
√

2
sα1 sε2

W+Y 0H′−
2 H3

g2

2
√

2
(cα2cα4 + √

2sα2 sα4 )cε2 W+Y 0H′−
2 H4

g2

2
√

2
(sα2cα4 − √

2cα2 sα4 )cε2

Vertex Coupling

W+X−H ′0
1 A1

−ig2

2
√

2
[(cα3cα4 + √

2sα3 sα4 )cε1 sε3 + cα1 (sα1 sα3cα4 sε3 + ϒcε3 )sε1 ]
W+X−H ′0

1 A2
−ig2

2
√

2
[(cα3cα4 + √

2sα3 sα4 )sε1 sε3 − cα1 (sα1 sα3cα4 sε3 + ϒcε3 )cε1 ]
W+X−H ′0

2 A1
ig2

2
√

2
{(cα3cα4 + √

2sα3 sα4 )cε1cε3 + cα1 [sα1 sα3cα4cε3 − ϒ( v
w
cα4cε3 + sε3 )]sε1 }

W+X−H ′0
2 A2

ig2

2
√

2
{(cα3cα4 + √

2sα3 sα4 )sε1cε3 − cα1 [sα1 sα3cα4cε3 − ϒ( v
w
cα4cε3 + sε3 )]cε1 }

W+Y 0H′−
1 H3

g2

2
√

2
[ u√

2�2+w2 (cα2 sα4 − √
2sα2cα4 )cε2 − (

√
2sα2 sα4 + cα2cα4 )sε2 ]

W+Y 0H′−
1 H4

g2

2
√

2
[ u√

2�2+w2 (sα2 sα4 + √
2cα2cα4 )cε2 + (

√
2cα2 sα4 − sα2cα4 )sε2 ]

W+Y 0H′−
1 A1

−ig2

2
√

2
[(cα3cα4 + √

2sα3 sα4 )cε1 sε2 + sα1 (cα1 sα3cα4 sε2 − ϒcε2 )sε1 ]
W+Y 0H′−

1 A2
−ig2

2
√

2
[(cα3cα4 + √

2sα3 sα4 )sε1 sε2 − sα1 (cα1 sα3cα4 sε2 − ϒcε2 )cε1 ]
W+Y 0H′−

2 A1
ig2

2
√

2
[(cα3cα4 + √

2sα3 sα4 )cε1cε2 + sα1 (cα1 sα3cα4cε2 + ϒsε2 )sε1 ]
W+Y 0H′−

2 A2
ig2

2
√

2
[(cα3cα4 + √

2sα3 sα4 )sε1cε2 − sα1 (cα1 sα3cα4cε2 + ϒsε2 )cε1 ]
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Table 10 The interactions of two charged gauge bosons with two scalars (Continued)

Vertex Coupling Vertex Coupling

X+X+H−
11A1

−ig2√
2

(sα3cε1 + cα1 sα1cα3 sε1 ) X+X+H−
11H3

−g2√
2
sα2

X+X+H−
11A2

ig2√
2
(cα1 sα1cα3cε1 − sα3 sε1 ) X+X+H−

11H4
g2√

2
cα2

X+X−H3H3
g2

4 (1 + s2
α2

) X+X−H1H1
g2

4 c2
α1

X+X−H4H4
g2

4 (1 + c2
α2

) X+X−H2H2
g2

4 s2
α1

X+X−H1H2
g2

4 s2α1 X+X−H3H4
−g2

4 s2α2

X+X−H++
11 H−

11 g2 X+X−H+
12H

−
12

g2

2

X+X−H ′0
1 H ′0∗

2
g2

2 cα4 (cα4 sε3 + v
w
cε3 )cε3 X+X−H ′0

1 H ′0∗
1

g2

2 (1 − c2
α4
s2
ε3

)

X+X−H ′0
2 H ′0∗

2
g2

2 (1 + v
w
cα4 s2ε3 − c2

α4
c2
ε3

) X+X−H+
1 H−

1
g2

2 c2
α1

X+X−H′+
1 H′−

1
g2

2 [1 + 3(s2
α4
s2
ε2

+ u
2
√

2�2+w2 s2α4 s2ε2 )] X+X−H′+
2 H′−

2
g2

2 (1 + 3s2
α4
c2
ε2

)

X+X−H′+
1 H′−

2
−3g2

4 (s2
α4
s2ε2 + u√

2�2+w2 s2α4c
2
ε2

) X+X−A1A1
g2

4 ϒ2s2
α1
s2
ε1

X+X−A1A2
−g2

4 ϒ2s2
α1
s2ε1 X+X−A2A2

g2

4 ϒ2s2
α1
c2
ε1

X+Y 0∗H−
11H

+
12

g2√
2

X+Y 0∗H−
12H

0
5

g2√
2

X+Y 0∗H ′0
1 H′−

2
g2

2 [ v
w
cα4cε3 + (1 + 2s2

α4
)sε3 ]cε2 X+Y 0∗H ′0

2 H′−
2

−g2

2 (1 + 2s2
α4

)cε2cε3

X+Y 0∗H ′0
2 H′−

1
g2

2 [ u√
2�2+w2 s2α4cε2 + (1 + 2s2

α4
)sε2 ]cε3 X+Y 0∗H−

1 H1
g2

2
√

2
s2α1

X+Y 0∗H−
1 H2

−g2

2
√

2
c2α1 X+Y 0∗H−

1 A1
−ig2

2
√

2
ϒc2α1sε1

X+Y 0∗H−
1 A2

ig2

2
√

2
ϒc2α1cε1 X+Y 0H−

12H3 −g2sα2

X+Y 0H−
12A1 −ig2(cα1 sα1cα3 sε1 + sα3cε1 ) X+Y 0H−

12H4 g2cα2

X+Y 0H−
12A2 ig2(cα1 sα1cα3cε1 − sα3 sε1 ) Y 0Y 0H0∗

5 H3
−g2√

2
sα2

Y 0Y 0H0∗
5 A1

−ig2√
2

(cα1 sα1cα3 sε1 + sα3cε1 ) Y 0Y 0H0∗
5 H4

g2√
2
cα2

Y 0Y 0H0∗
5 A2

ig2√
2
(cα1 sα1cα3cε1 − sα3 sε1 ) Y 0Y 0∗H1H1

g2

4 s2
α1

Y 0Y 0∗H2H2
g2

4 c2
α1

Y 0Y 0∗H3H3
g2

4 (1 + s2
α2

)

Y 0Y 0∗H4H4
g2

4 (1 + c2
α2

) Y 0Y 0∗H1H2
−g2

4 s2α1

Y 0Y 0∗H ′0
1 H ′0∗

1
g2

2 (1 + 3s2
α4
s2
ε3

+ v
w
cα4 s2ε3 ) Y 0Y 0∗H3H4

−g2

4 s2α2

Y 0Y 0∗H ′0
2 H ′0∗

2
g2

2 (1 + 3s2
α4
c2
ε3

+ v
w
cα4 s2ε3 ) Y 0Y 0∗H ′0

1 H ′0∗
2

−3g2

4 s2
α4
s2ε3

Y 0Y 0∗H+
12H

−
12

g2

2 Y 0Y 0∗H0
5 H

0∗
5 g2

Y 0Y 0∗H′+
1 H′−

1
g2

2 (1 − c2
α4
s2
ε2

+ u
2
√

2�2+w2 s2α4 s2ε2 ) Y 0Y 0∗H+
1 H−

1
g2

2 s2
α1

Y 0Y 0∗H′+
1 H′−

2
g2

4 [s2ε2 − (s2
α4
s2ε2 + u√

2�2+w2 s2α4c
2
ε2

)] Y 0Y 0∗H′+
2 H′−

2
g2

2 (1 − c2
α4
c2
ε2

)

Y 0Y 0∗A1A1
g2

4 ϒ2c2
α1
s2
ε1

Y 0Y 0∗A1A2
−g2

4 ϒ2c2
α1
s2ε1

Y 0Y 0∗A2A2
g2

4 ϒ2c2
α1
c2
ε1

No data No data

Vertex Coupling

X+Y 0∗H ′0
1 H′−

1
−g2

2 [ u√
2�2+w2 s2α4cε2 sε3 + v

w
cα4 sε2cε3 + (1 + 2s2

α4
)sε2 sε3 ]
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Table 11 The interactions of two neutral gauge bosons with two scalars (Table continued)

Vertex Coupling Vertex Coupling

AAH++
11 H−

11 4g2s2
W AAH+

12H
−
12 g2s2

W

AAH+
1 H−

1 g2s2
W AAH′+

1 H′−
1 g2s2

W

AAH′+
2 H′−

2 g2s2
W AZH+

12H
−
12 −2g2s2

W tW

AZH′+
1 H′−

1 g2tW (c2W − c2
ε2

) AZH′+
1 H′−

2 −g2tW cε2 sε2

AZH′+
2 H′−

2 g2tW (c2W − s2
ε2

) AZH++
11 H−

11 4g2c2W tW

AZH+
1 H−

1
g2

2cW
(s3W − sW ) AZ ′H++

11 H−
11

4g2√
1+2c2W

c2W tW

AZ ′H+
12H

−
12

2g2√
1+2c2W

c2W tW AZ ′H+
1 H−

1
g2√

1+2c2W
(2c2

Wc2
α1

− 1)tW

AZ ′H′+
2 H′−

2
g2√

1+2c2W
tW [c2W (c2

α4
c2
ε2

+ 2s2
ε2

) − s2
α4
c2
ε2

] Z ZH0
5 H

0∗
5

g2

c2
W

Z ZH ′0
1 H ′0∗

1
g2

4c2
W

( v
w
cα4 s2ε3 + s2

ε3
) Z ZH ′0

1 H ′0∗
2

−g2

4c2
W

( v
w
cα4cε3 + sε3 )cε3

Z ZH ′0
2 H ′0∗

2
g2

4c2
W
c2
ε3

Z ZH1H1
g2

8c2
W

Z ZH2H2
g2

8c2
W

Z ZA1A1
g2

8c2
W

ϒ2s2
ε1

Z ZA1A2
−g2

8c2
W

ϒ2s2ε1 Z ZA2A2
g2

8c2
W

ϒ2c2
ε1

Z ZH++
11 H−

11
g2

c2
W
c2

2W Z ZH+
1 H−

1
g2

4c2
W
c2

2W

Z ZH′+
1 H′−

1
g2

4c2
W

(c2
2W s2

ε2
+ 4s4

Wc2
ε2

) Z ZH′+
1 H′−

2
g2

8c2
W

(3 − 4c2
W )s2ε2

Z ZH′+
2 H′−

2
g2

8c2
W

[1 + 2(1 − 2c2W )s2
ε2

+ c4W ] Z ZH+
12H

−
12 g2s2

W t2
W

Z Z ′H+
12H

−
12

−2g2√
1+2c2W

c2W t2
W Z Z ′H1H1

g2

4c2
W

√
1+2c2W

(1 − 2c2
W s2

α1
)

Z Z ′H1H2
g2

2
√

1+2c2W
s2α1 Z Z ′H2H2

g2

4c2
W

√
1+2c2W

(1 − 2c2
Wc2

α1
)

Z Z ′A1A1
g2

4c2
W

√
1+2c2W

ϒ2(1 − 2c2
Wc2

α1
)s2

ε1
Z Z ′A1A2

g2

4c2
W

√
1+2c2W

ϒ2(2c2
Wc2

α1
− 1)s2ε1

Z Z ′A2A2
g2

4c2
W

√
1+2c2W

ϒ2(1 − 2c2
Wc2

α1
)c2

ε1
Z Z ′H0

5 H
0∗
5

2g2√
1+2c2W

(t2
W − 1)

Z Z ′H ′0
2 H ′0∗

2
g2

2c2
W

√
1+2c2W

(1 − 2c2
Wc2

α4
)c2

ε3
Z Z ′H++

11 H−
11

2g2

c2
W

√
1+2c2W

c2
2W

Z Z ′H+
1 H−

1
g2

2c2
W

√
1+2c2W

c2W (2c2
Wc2

α1
− 1) Z ′Z ′H1H1

g2

8c2
W (1+2c2W )

(1 − s2
2W s2

α1
)

Z ′Z ′H1H2
g2

2(1+2c2W )
s2
W s2α1 Z ′Z ′H2H2

g2

8c2
W (1+2c2W )

(1 − s2
2Wc2

α1
)

Z ′Z ′A1A1
g2

4(2+3c2W+c4W )
ϒ2(1 − s2

2Wc2
α1

)s2
ε1

Z ′Z ′H3H3
g2

2(3−t2W )
(1 + 3s2

α2
)

Z ′Z ′A1A2
g2

8c4
W (t2W−3)

ϒ2(1 − s2
2Wc2

α1
)s2ε1 Z ′Z ′H3H4

3g2

t2W−3
sα2cα2

Z ′Z ′A2A2
g2

4(2+3c2W+c4W )
ϒ2(1 − s2

2Wc2
α1

)c2
ε1

Z ′Z ′H4H4
g2

2(3−t2W )
(1 + 3c2

α2
)

Vertex Coupling

AZ ′H′+
1 H′−

1
g2√

1+2c2W
tW [(1 + 2c2W )c2

ε2
− 1 + c2

W (2c2
α4
s2
ε2

− u√
2�2+w2 s2α4 s2ε2 )]

AZ ′H′+
1 H′−

2
g2√

1+2c2W
tW [(c2W + 2c2

W s2
α4

)sε2 + u√
2�2+w2 c

2
W s2α4cε2 ]cε2

Z Z ′H′+
1 H′−

1
−g2

2c2
W

√
1+2c2W

c2W {1 + 3c2
ε2

+ c2
W [ u√

2�2+w2 s2α4 s2ε2 − 2(2c2
ε2

+ c2
α4
s2
ε2

)]}
Z Z ′H′+

1 H′−
2

g2

2
√

1+2c2W
c2W [ u√

2�2+w2 s2α4cε2 − (c2α4 + 3t2
W )sε2 ]cε2

Z Z ′H′+
2 H′−

2
g2

2c2
W

√
1+2c2W

c2W [2c2
W (c2

α4
c2
ε2

+ 2s2
ε2

) − 1 − 3s2
ε2

]
Z Z ′H ′0

1 H ′0∗
1

g2

2c2
W

√
1+2c2W

[s2
α4
sε3 − c2Wcα4 (

2v
w
cε3 + cα4 sε3 )]sε3

Z Z ′H ′0
1 H ′0∗

2
−g2

2c2
W

√
1+2c2W

[s2
α4
sε3 − c2Wcα4 (

v
w
cε3 + cα4 sε3 )]cε3
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