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“How wonderful that we have met with a paradox. Now we have some hope of making

progress.”

Niels Bohr

“Nature is wont to hide herself.”

Heraclitus



Abstract

A review of the black hole information paradox and its potential solutions is presented.

Firstly we take a brief look into the history of black holes, some of the most useful

mathematical tools used to investigate them, and the discovery that they are thermo-

dynamical systems. A derivation of Hawking radiation using the Unruh effect is then

presented before introducing information theory and a survey of modern attempts to

resolve the information paradox. We conclude that the “fuzzball” proposal originating

from string theory is the most promising solution to have been put forward so far. The

recent proposal by Stephen Hawking involving supertranslations of the event horizon is

also included.
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Chapter 1

Introduction

The black hole information paradox may be considered later in the century to be one of

the defining collisions of the principles of modern physics.

Paradoxes have a long and fascinating history in the natural sciences and mathematics,

they usually result from the use of concepts that are ill-defined or self-referencing, and

quite often are not paradoxical at all (i.e. the “twin paradox” of special relativity)

[1, 2]. They can also emerge from a clash of theories. The great physical paradox

of the turn of the 20th century, the ultraviolet catastrophe, emanated from a clash of

physical theories – between classical statistical thermodynamics and field theory [3].

This ultimately led to the genesis of quantum theory. In an analogous way, Albert

Einstein’s early gedankenexperiments exploited the discord between Galilean relativity

and classical electrodynamics, leading to the special theory of relativity [4]. In each of

these cases the conflict of ideas and their apparent discontinuities provided the conditions

out of which new and deep ideas emerged.

The black hole information paradox is the result of a contradiction between the founda-

tions of general relativity and quantum mechanics and has been called both a “serious

crisis” [3], and “probably the most important issue for fundamental physics today” [5].

Before discussing the paradox in more detail let’s take a look at a brief history of black

holes.

A black hole is an object so massive that the gravitational field it produces prevents

even light escaping its pull. The size of the black hole is defined by the size of its event

1



Introduction 2

horizon, anything that falls past the event horizon can never escape. Except possibly

information, as we will see later.

The first hint that black holes may be lurking in the universe occurred during the

late eighteenth century when the Reverend John Michell, using Newton’s corpuscular

theory of light, found that if a star were sufficiently massive, its escape velocity would

exceed the speed of light (which was known with remarkable accuracy at the time)

[6, 7]. Around the same time as Michell’s work, the eminent French scholar Pierre-

Simon Laplace discovered the same result and put it on a more mathematical grounding

[8]. By the 19th century the corpuscular theory favoured by Newton [9] had gone out

of fashion, replaced by the wave theory of light (based on work by Christiaan Huygens,

Augustin-Jean Fresnel and Thomas Young amongst others) [10, 11], after which time

the idea of dark stars was left as a theoretical pecularity.

It took until the publication of Einstein’s general theory of relativity and Karl Schwarzschild’s

elegant vacuum metric solution that a black hole geometry could be derived and its fea-

tures – such as its event horizon – parameterized and studied [12]. Despite this, Einstein

and others refused to believe in the existence of black holes, believing them to be just

too exotic, and produced work attempting to show how massive objects (such as stars)

could never implode to such a degree that they would produce black holes [13].

By the 1920s high-density white dwarf stars had been discovered and an upper limit

to their mass – the Chandrasekhar limit – had been theorised, past which the star

would continue to collapse with gravitational effects overcoming the electron degeneracy

pressure [14]. It was natural to consider what would happen to a star with a mass that

exceeded this limit and even denser neutron stars were studied in the 1930s leading to

a further implosion limit, the Tolman-Oppenheimer-Volkoff limit [15]. In 1939 work

by Oppenheimer, Volkoff and Snyder [16, 17], utilising Einstein’s field equations and

Schwarzschild’s vacuum solution, suggested that if a ball of gas were sufficiently massive

(and suffered from no outward pressure to counteract collapse) the gas would implode

indefinitely, producing an inifinitely dense singularity and an event horizon. This paved

the way for further investigations and for faith in the existence of black holes by the

scientific community to grow substantially by the 1960s, largely thanks to improved

astrophysical computer simulations of collapsing matter; from this time up until the

middle of the 1970s a “golden age” of classical black hole physics was underway [10].
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Work done at this time led to more features of black holes being predicted and studied,

including their mass, electrical charge and angular momentum, leading to the “no-hair

theorem”, this stated that the information concerning the nature of a collapsing body

that formed a hole had to be encoded purely in terms of these three features – an external

observer cannot see any other features of the collapsing mass due to the presence of the

event horizon [10]. Another important discovery treated the possibility of extracting

work from a rotating black hole, theorised by Penrose and Floyd [18], as well as the

cosmic censorship hypothesis which posited that singularities should not be visible in

the universe – they should always be hidden behind event horizons [19].

At the start of the 1970s quantum theory began to be combined with the classical general

relativistic treatment of black holes, during this time the four classical laws of thermo-

dynamics were found to be strikingly analogous to the rules that had been developed

to describe black holes [20]. Most intriguingly the generalised second law suggested by

Bekenstein [21] gave an entropy for a black hole proportional to its horizon area. Stephen

Hawking’s discovery in 1974 [22] that black holes radiate was a revolutionary discovery

which cemented the relationship between black hole physics and thermodynamics and

uncovered a deep, mysterious link between quantum gravity and thermodynamics that

is still being studied extensively today [10, 23].

Stephen Hawking’s papers [24, 25] on the emission of radiation from black holes suggested

that the information inherent in a system that fell into a black hole would be forever

lost, radiated away as black body radiation until eventually the black hole evaporated

away completely, a conclusion incompatible with quantum theory. Around this time

several other papers were published which highlighted a possible deep link between black

holes and thermodynamical systems; firstly an analogue second law was put forward

which associated the entropy of a black hole with its area, and then three other laws of

black holes were found with striking similarities to the zeroth, first, and third laws of

thermodynamics [20–22].

The destruction of information, as implied by the thermal nature of Hawking radiation,

and also the origin of the extremely large entropy of a black hole (seemingly contradicting

the “no-hair theorem”) are puzzles that demand – and stimulate the search for – a full

theory of quantum gravity. At this time there is still no consensus regarding what a

theory of quantum gravity should be, however string theory is one of the most promising
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and most studied candidates, and its combination with supersymmetry has led to a

strikingly accurate rederivation of the entropy of certain types of black holes (which we

shall look into in more detail later on) [10, 26].

Although some prominent physicists [27] were content to give up the tenet of information

conservation, other theorists [28] thought this conclusion to be deeply unsatisfactory and

a step too far as it contradicted a foundational principle of quantum mechanics, namely

that the evolution of a quantum state should be unambiguously determined by an invert-

ible unitary operator [29]. Many ideas were put forward after the discovery of Hawking

radiation that attempted to come up with ways of somehow conserving information

during black hole evaporation, these included the information being somehow encoded

within the Hawking radiation, being contained in Planck-scale “remnants”, leaking out

right at the end of evaporation, being encoded within distortions of the event horizon

and even the possibility of the information being stored in baby universes apart from

our own [30].

The AdS/CFT correspondence [31], which states that there exists a duality between

gravitational theories in the bulk and quantum conformal field theories on the boundary,

convinced many physicists that information had to be conserved in black hole evapo-

ration somehow and that all that was needed to be done was to find the mechanism

[32–35].

In the early 1990s a promising solution appeared in the form of “complementarity”

[3, 36], which posited that information falling into a black hole both passes through

the event horizon and bounces back off of it to be collected by an external observer.

This counterintuitive idea is not contradictory as no single observer can detect both

the inward and outwardly propagating information. However the conceptual difficulties

remained and in 2013 the AMPS “firewall” paradox [37] showed that complementarity

led to a very strange conclusion, that there must be a layer of high-energy quanta – a

firewall – at the event horizon that would fry any observer who fell in. The equivalence

principle of general relativity suggests (ignoring tidal effects) that an observer should

feel nothing strange when falling through the horizon and so the firewall conclusion has

proven to be very perplexing indeed.

An exciting solution from string theory known as the “fuzzball” proposal describes the

microstates of black holes as bound states of strings and branes, effectively removing
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the traditional event horizon and singularity; fuzzballs allow information to leak out in

Hawking radiation and can be used to correctly rederive the Bekenstein entropy of the

hole, a very suggestive result [26].

We shall begin by briefly looking at the basic properties of black holes and some of

the mathematics that is commonly utilised when studying them. Then the treatment

of black holes as thermodynamical systems will be introduced before moving on to a

derivation of Hawking radiation via the derivation of Unruh radiation – experienced

by an eternally accelerating observer in empty space. This will be followed by a short

discussion of information theory and a precise statement of the information paradox.

The final part of the work will be a review and appraisal of the main solutions to the

paradox that have been put forward so far.



Chapter 2

Black Holes

2.1 The Basic Properties of Black Holes

In this section I have mainly followed the treatments given in Dowker [12], Carroll [15],

Wald [38], and Townsend [39]. This section presents a small sample of the most basic

features of black holes, the most important part in relation to the information paradox

is the discussion of the Rindler metric.

The study of black holes in general relativity is done using a wide variety of coordinate

systems (and sometimes without any at all [40]). Some coordinate systems have sin-

gularities, places where the spacetime point is mathematically ill-defined. Singularities

can occur simply due to an artifact of the system being used, however they can also

result from a physical property of the spacetime being considered, i.e. as a result of the

curvature associated with a spacetime point being infinite.

One of the earliest and most important coordinate systems that was used to study black

holes was the Schwarzschild system mentioned earlier. This solution is valid in a vacuum

region surrounding a spherically symmetric distribution of mass and can be derived from

Einstein’s field equations [15]. The Schwarzschild line element is [12]:

ds2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1
dr2 + r2dθ2 + r2 sin2 θdφ2 (2.1)

where r is a radial coordinate which runs from zero to infinity, θ the polar angle, φ the

azimuthal angle, M the mass of the black hole, and t the time coordinate. We will see

6
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later how these coordinates should not necessarily be taken as literally representative

of physical quantities. The coordinate systems we will look at contain an infinity corre-

sponding to the physical singularity at the centre of black holes. These singularities can

be seen to be physical and not an artifact of the mathematical system in use by finding

an invariant measure of the curvature of spacetime such as the Kretschmann scalar, this

measure is formed from two Riemann curvature tensors:

K = RabcdR
abcd, (2.2)

for a Schwarzschild black hole its value is K = 48G2M2

c4r6
[41]. This can be seen to diverge

as r reaches zero which is expected as the centre of the hole is normally thought of as

having infinite density.

From a quick inspection of (2.1) it is apparent that there are two singularities. One

at r = 0 and the other at r = 2GM
c2

, the latter known as the Schwarzschild radius (or

event horizon radius). In the subsequent analysis we will see that the Schwarzschild

radius is not a physical singularity but only a feature of the metric. Due to Birkhoff’s

theorem [15], the Schwarzschild metric is the unique spherically symmetric solution to

the vacuum field equations of Einstein.

Einstein’s field equations are (with zero cosmological constant) [15]:

Rµν −
1

2
gµνR =

8πG

c4
Tµν . (2.3)

By multiplying both sides of the field equations by gµν , and in addition using gµνRµν =

R, gµνTµν = T and gµνgµν = D, where D is the number of spacetime dimensions, we

obtain:

R− D

2
R =

8πG

c4
T. (2.4)

Solving for R, inserting the solution into (2.3) and setting D = 4, the field equations

become:

Rµν =
8πG

c4

(
Tµν −

1

2
Tgµν

)
. (2.5)

The form of the field equations given in equation (2.5) clarifies the effect of setting the

stress-energy tensor Tµν to zero, namely it forces the Ricci tensor Rµν to also vanish.
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For a simple way to study the dynamics of black holes we shall look at an imploding

spherically symmetric ball of pressureless dust. Due to Birkhoff’s theorem we know

that the Schwarzschild metric must describe the region outside of the ball (and due to

continuity of the metric must also apply to the surface). For a particle constrained to

the surface of the ball and moving purely in a radial direction we can analyse its motion

as it falls towards r = 0.

The action of this contrained particle is [12]:

S =
1

2m

∫ (
gµν

dxµ

dτ

dxν

dτ
−m2

)
dτ, (2.6)

where τ is the proper time along the particle’s worldline and m is its mass.

The four-position of the particle can be parameterized as xµ(τ) = (t(τ), r(τ), θ0, φ0); θ0

and φ0 are both constants due to the motion being purely radial; from now on for ease

of notation we shall assume c = G = 1 unless otherwise stated [12].

Defining the radius of the collapsing sphere (and therefore the position of the particle)

as R(t), equivalent to r(τ(t)), and solving the Euler-Lagrange equations for the action

produces a conserved quantity:

ε =

(
1− 2M

R

)
dt

dτ
(2.7)

which can be interpreted as the particle’s energy per unit rest mass, measured by an

inertial observer positioned at an infinite radial distance [12].

It can be derived from the Euler-Lagrange equations that dR
dt vanishes at two values of R:

one at R = 2M and one at R = 2M
1−ε2 (due to the fact that the particle is assumed to start

its trajectory from rest at this latter point) [12]. But what is the correct interpretation

of the apparent suspension of the particle at R = 2M and why does the particle take

an infinite time t to reach R = 2M from its starting position? The reason for such

a strange result stems from our use of t, which is only a valid measure of time for an

observer stationed at infinity, replacing this parameter with the proper time τ of the

infalling particle we find that the time taken for it to reach R = 2M (and also R = 0)

from its starting point is finite [12].
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As we have seen we must be careful when interpreting coordinates in general relativity.

From equation (2.1) it can be noted that the Schwarzschild metric coefficients change sign

inside the event horizon, i.e. the r coordinate suddenly behaves like a time coordinate

and t behaves like a radial coordinate; this makes our calculations seem slightly shaky.

Next we will look at some other coordinate systems which are better behaved at the

event horizon and allow for easier physical interpretations.

Eddington-Finkelstein coordinates are useful for studying the region across the event

horizon of a black hole and are derived by firstly using tortoise coordinates (named

memorably by John Wheeler) given by [42]:

r∗ = r + 2M ln

(
r − 2M

2M

)
. (2.8)

Ingoing null geodesics followed by photons can be defined by ν = constant where ν =

t+ r∗ and outgoing null geodesics by u = constant where u = t− r∗ [12].

Ingoing Eddington-Finkelstein coordinates are defined by transforming the t coordinate

to ν in the Schwarzschild metric to get:

ds2 = −
(

1− 2M

r

)
dν2 + 2dνdr + r2dθ2 + r2 sin2 θdφ2. (2.9)

As can be easily seen there is no singularity in the IEF metric when R = 2M , and also

the determinant of the metric is non-zero at this point, indicating that the metric is

invertible and regular at the horizon [12].

What would the metric look like for an eternally accelerating observer? This observer

exists in Rindler space (which is a subregion of Minkowski space) and we will now look at

it in some detail as it is particularly useful in the study of black hole physics, especially in

the derivation of Hawking radiation as we will see later. I have followed the treatments

of Rindler space given in Dowker [12], Carroll [15], and Blau [43].

For simplicity let’s analyse the physics of an accelerating observer in 1+1 dimensions.

In the following derivations we take the Minkowski signature as (–+). The observer is

travellling in the x-direction and has an acceleration of magnitude α. The trajectory

can be parameterized in Minkowski spacetime by [15]:

xµ(τ) =

(
1

α
sinh(ατ),

1

α
cosh(ατ)

)
, (2.10)
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where τ is the observer’s proper time. In Minkowski spacetime the acceleration two-

vector is aµ = d2xµ

dτ2
; finding the components of the acceleration using equation (2.10)

it is easy to see that
√
aµaµ = α, therefore the path parameterized above does in-

deed describe an observer eternally accelerating with magnitude α. Using the identity

cosh2θ − sinh2θ = 1 [44] it is apparent that the Rindler path (path of constant acceler-

ation) adheres to

x2(τ) = t2(τ) +
1

α2
, (2.11)

x asymptotes to −t at past null infinity and asymptotes to t at future null infinity.

Let’s choose a new set of coordinates (η, ξ) that are better “adapted to uniformly accel-

erated motion” [15], obeying:

t =
1

a
eaξsinh(aη),

x =
1

a
eaξcosh(aη). (2.12)

Both η and ξ range from negative to positive infinity. Region I of Figure 2.1 is covered

by x > |t|.

The Rindler path previously given by equation (2.10) is now given in terms of the new

coordinates:

η(τ) =
α

a
τ,

ξ(τ) =
1

a
ln
( a
α

)
. (2.13)

Under the new coordinates, the Minkowski metric becomes the Rindler metric describing

the frame of the eternally accelerating Rindler observer:

ds2 = e2aξ
(
−dη2 + dξ2

)
. (2.14)

The Rindler spacetime is embedded in Minkowski spacetime. Region I is the only region

accessible to an observer with constant acceleration in the positive x-direction [15].

The lines of x = ±t are asymptotically approached by Rindler observers at past and

future null infinity and so the lines demarcate types of horizon, we will see exactly what

types of horizon in section 3.2 on the Unruh effect (strictly speaking these horizons
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Figure 2.1: Rindler spacetime. Region I is the only region accessible for an eternally
accelerating observer in the positive x-direction. Lines at 45 degrees demarcate separate

regions.

are fundamentally different from black hole event horizons as the Rindler horizon is

dependent on the observer’s motion [12]). Due to the equivalence principle of general

relativity these tools can apply to an observer in a constant gravitational field – we will

elaborate on this in section 3.2 and build on it in our derivation of Hawking radiation.

The Schwarzschild black hole, although useful pedagogically, is not representative of

the black holes thought to be found in our universe. Real black holes are predicted to

have non-zero angular momentum and can also have electric charge, whereas the only

property of the hole described by the Schwarzschild system is its mass. The metric used

to describe a charged black hole is the Reissner-Nördstrom solution, this is formed by

varying the Einstein-Maxwell action [12]

S =
1

16π

∫ √
−g (R− FµνFµν) d4x (2.15)
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to obtain the equations of motion

Rµν −
1

2
Rgµν = 2

(
FµαF

α
ν −

1

4
gµνFβγF

βγ

)
, (2.16)

∇µFµν = 0. (2.17)

The spherically symmetric metric solution is [12]:

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1
dr2 + r2dθ2 + r2 sin2 θdφ2 (2.18)

where Q is the charge of the black hole. This is the unique spherically symmetric solution

to equations (2.16) and (2.17) [38]. Introducing the function:

∆ = Q2 − 2Mr + r2 = (r − r+) (r − r−) , (2.19)

where r± = M ±
√
M2 −Q2, (2.20)

gives a form for the metric:

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2dθ2 + r2sin2θdφ2. (2.21)

The units are geometrised in this subsection, so mass M and charge Q have the same

units [12].

The cases where Q > M , Q = M , and Q < M lead to very different physics and

interesting reviews of these can be found in [12, 15, 38, 39]. How can a more general

black hole be described?

For this we require the Kerr-Newman solution which includes both the charge and an-

gular momentum of the hole. This solution describes a charged hole of mass M rotating

through the polar angle φ with angular momentum per unit mass a [12, 39]:

ds2 = −
(

∆− a2sin2θ
Σ

)
dt2 +

Σ

∆
dr2 − 2asin2θ

Σ

(
r2 + a2 −∆

)
dtdφ+ Σdθ2

+

((
r2 + a2

)2 −∆a2sin2θ

Σ

)
sin2θdφ2, (2.22)
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where

Σ = r2 + a2cos2θ, (2.23)

∆ = r2 − 2Mr +Q2 + a2, (2.24)

and the components of the vector potential are

At =
Qr

Σ
, Aφ = −Qarsinθ

Σ
, Ar = Aθ = 0. (2.25)

When the charge Q is zero then we find the Kerr metric. The Kerr metric has the

curious property that it describes a singularity in the shape of a ring centred at r = 0

with finite radius [12].

The Kerr/Kerr-Newman black hole descriptions are not spherically symmetric as they

rotate around polar axes, this suggests that we cannot use an anaologue of Birkhoff’s

theorem, and so the metric shown above is not necessarily valid on the surface of the

collapsing matter used to form the black hole [12]. At late times the spacetime around the

rotating black hole “settles down” to a stationary state which exhibits time-translation

symmetry or equivalenty has a timelike Killing vector field (introduced in the next

section) [38].

2.2 Useful Mathematics for Black Holes

I have mainly followed the treatment of the mathematics of black holes given in Car-

roll [15] and Poisson [45]. One of the most powerful techniques used in the study of

black holes and general relativity is differential geometry. Here we will look at some

of the basics of differential geometry and introduce the technical apparatus required to

understand some of the salient features of black holes.

A manifold is a topological space which locally looks Euclidean [46]. Let’s define a vector

field on the manifold vµ(x), with integral curves xµ(t) where vµ = dxµ

dt . Now if we have

a tensor defined on the manifold at a certain point T (p) (the arbitrary covariant and

contravariant components of T are implicit) we would like to see how it changes with

respect to the integral curves. A diffeomorphism maps a manifold to itself φ : M → M

and lets us push forward and pull back arbitrary tensors along integral curves; if the
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vector field on M is everywhere smooth and non-zero then the collection of its integral

curves forms a congruence [15, 47].

φs(p) defines the point parameter distance s along from p; the parameter s indexes the

distance along an integral curve (every point on the manifold is defined to be on a unique

integral curve). The Lie derivative of the tensor T along the vector field vµ(x) is given

by [12]:

LvT = lim
t→0

(
φ∗t [T (φt(p))]− T (p)

t

)
. (2.26)

φ∗t pulls back tensors. So the Lie derivative can be interpreted as comparing how the

tensor at point p, T (p), compares to the tensor at point φt(p) pulled back to point p

along an integral curve – see Figure 2.2.

Let’s apply the Lie derivative to the metric tensor gµν and utilise the equality [45]:

(Lvg)µν = ∇µvν +∇νvµ. (2.27)

When the above equation equals zero this is known as Killing’s equation and any vector

v that satisfies it is a Killing vector. Killing vectors indicate the directions in which

the metric is unaltered [48]. There is an easy way to find out whether a metric has a

Killing vector: if the metric coefficients are independent of a coordinate, say for example

time t, then ∂
∂t is a Killing vector. If the metric coefficients are independent of t then

the metric is stationary, if they are independent of the polar angle φ then the solution

is axisymmetric [49]. Spacetimes that are stationary and axisymmetric are significant

in that they describe the equilibrium setting for rotating, axisymmetric bodies; and

stationary, axisymmetric vacuum solutions to Einstein’s field equations are very useful

for describing the region around rotating black holes – cf. the Kerr metric [38].

Killing vectors also allow a conservation law to be formed for particles travelling on

geodesics through a spacetime. For the Killing vector vµ, a conserved charge Q is

formed by multiplying the vector by the generalised momentum

pµ =
∂L
∂ẋµ

(2.28)

where L in equation (2.28) is the Lagrangian density of the system [12]:

Q = vµpµ. (2.29)
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Figure 2.2: Pictorial view clarifying Lie derivative. Illustration from [50].

Hypersurfaces are also a prevalent feature of general relativity [45]. The hypersurfaces we

will be looking at are submanifolds of one less dimension than the full four-dimensional

spacetime. They can be either timelike, spacelike, or null, depending on the properties of

their normal vectors. If one has a normal vector that is spacelike then the hypersurface is

timelike and vice versa; a null hypersurface has null normal vector [12]. A very important

feature of general relativity useful in the study of black holes is a Killing horizon. Given

a Killing vector field χµ that is null along a null hypersurface Σ, then Σ is a Killing

horizon of χ [45]. The link between Killing horizons and event horizons is given in

Carroll [15]: “Every event horizon Σ in a stationary, asymptotically flat spacetime is a

Killing horizon for some Killing vector field χµ”. Killing horizons are useful in that they

allow us to define a quantity known as surface gravity : along a Killing horizon, a Killing

vector field χµ satisfies

χµ∇µχα = −κχα (2.30)

where κ represents the surface gravity, which normally has a constant value over the

horizon – except in certain special circumstances where it can change sign which will

not be relevant for our discussion [15]. κ can be scaled by an arbitrarily chosen constant,

however we can fix it at a certain value using boundary conditions. For example in an

asymptotically flat, static spacetime the Killing vector k = ∂
∂t can be set to kµk

µ = −1

at infinity which fixes the value of κ. The applicability of the label “surface gravity”

results from the following definition, also from Carroll [15]:
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“In a static, asymptotically flat spacetime, the surface gravity is the acceleration of a

static observer near the horizon, as measured by a static observer at infinity.”

A static observer is defined to be one whose four-velocity uµ obeys [15]

kµ = V uµ. (2.31)

Multiplying the contravariant kµ by its covariant counterpart kµ, and remembering

u2 = −1, trivially gives a value for V (which is a function of spacetime coordinates)

of
√
−kµkµ. Due to our boundary conditions V is zero at Σ and tends to 1 as infinity

is reached (since here kµk
µ = −1). V is generally called the redshift factor [38] for a

reason we will now see.

Remember that conservation laws emerge from considerations of Killing vectors, from

(2.29) we found that a Killing vector has an associated charge that is conserved along

geodesics. In Schwarzschild spacetime, with metric given by (2.1), there is a conserved

charge Q associated with Killing vector k = ∂
∂t [12] – in component form kµ = (1, 0, 0, 0)

– given by:

Q = kµpµ

= kµmgµν ẋ
ν

= mg00ẋ
0

= −m
(

1− 2M

r

)
dt

dτ

(2.32)

where m is the mass of the particle on the geodesic. To clarify the physical meaning of

Q:

pµ = (−E,p)

= mgµν
dxν

dτ
,

(2.33)

so the energy of the particle per its rest mass is (as measured by an inertial observer at

infinity):

E

m
= −g00

dt

dτ

=

(
1− 2M

r

)
dt

dτ
,

(2.34)
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from here we trivially find Q = −E.

Back to our redshift factor V . The frequency of a photon as measured by an observer

with four-velocity uµ is ω = −pµuµ [15], and from our proof above we have the pho-

ton’s energy as E = −pµkµ. The quotient E
V therefore gives ω, revealing why V is

called the redshift factor. Picture two static observers outside of a Schwarzschild black

hole, observer 1 emits a photon of wavelength λ1 which observer 2 measures as having

wavelength redshifted to λ2 = V2
V1
λ1.

The four-acceleration aν = uα∇αuν can be expressed as aν = ∇ν lnV where

a =
1

V

√
∇νV∇νV , (2.35)

this goes to infinity at the horizon where the redshift factor becomes zero [15]. Schwarzschild

spacetime is static (and therefore stationary) and asymptotically flat and so the Killing

horizon associated with ∂
∂t coincides with its event horizon. Therefore we can see that

a going to infinity at the Killing horizon is physically reasonable, since for an observer

hovering just above the event horizon to stay static would require an incredibly high out-

ward acceleration to ensure that they didn’t fall in. At the horizon itself the acceleration

would become infinite. The surface gravity at the horizon is taken to be

κ = V a, (2.36)

the “redshifted” acceleration [38]. We can also see now that the event horizon is a

surface of infinite redshift. Moving observer 1 to the horizon pushes its redshift factor

V1 to zero; infinitely stretching the outgoing signal.

Let’s calculate some of the values for these quantities in Schwarzschild spacetime as

they will be very useful for us later on when deriving black hole evaporation by Hawking

radiation. The Schwarzschild spacetime has Killing vector kµ = (1, 0, 0, 0) and a static

four-velocity calculated by:

−1 = uµuνgµν

= −
(
u0
)2(

1− 2M

r

)
,

(2.37)
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using (2.1), leading to u0 = 1√
1− 2M

r

. From (2.31) V is obviously:

V =

√
1− 2M

r
(2.38)

Using aν = ∇ν lnV we find:

aν =
1

2
∇ν
[
ln

(
1− 2M

r

)]
=

M

r2
(
1− 2M

r

)∇νr
=

M

r2
(
1− 2M

r

)δrν .
(2.39)

Giving magnitude:

a =
M

r2

(
1− 2M

r

)− 1
2

. (2.40)

Finally, the surface gravity at the horizon is equal to V a therefore using (2.38) gives for

a Schwarzschild black hole [23]:

κ =
1

4M
. (2.41)

2.3 Black Hole Thermodynamics

The deep connection between black holes and thermodynamics first came into view in

the early 1970s [10]. There appeared to be a remarkable similarity between the “laws”

that had been derived concerning the behaviour of black holes and the four laws of

thermodynamics [20] – see Table 2.1. The “second law” for example posited that the

entropy of a black hole was analogous to its area. Bekenstein [21] argued that black

holes must have a physical entropy as otherwise throwing a highly entropic system into

the black hole would allow for the entropy of the universe to be arbitrarily diminished.

Therefore he put forward a generalised second law which stated that the total entropy of

matter outside of black holes plus the entropy of the black holes themselves could never

decrease. Initially it was believed that the similarity between the surface area of a black

hole and its entropy was purely structural and that the black hole couldn’t actually have

an entropy as its temperature was zero [12]; however after Bekenstein’s arguments and

the discovery of Hawking radiation, a thermodynamic temperature was associated with

the hole (which we shall derive in section 3.3), and the association of area and entropy
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Law Classical Thermodynamics Black Holes

0th The temperature T is con-
stant all through a system
in thermal equilibrium

The surface gravity κ re-
mains constant over the
event horizon of a station-
ary black hole

1st dE = TdS+ work terms dM = 1
8πκdA+ ΩHdJ

2nd The entropy S increases or
stays the same in any pro-
cess

The area A increases or
stays the same in any pro-
cess

3rd T = 0 cannot be achieved
in any physical process

κ = 0 cannot be achieved
in any physical process

Table 2.1: Comparison of laws of thermodynamics and black hole mechanics [12, 20,
38].

was put onto more solid ground [24]. See Carroll [15] and Jacobson [23] for a much more

detailed exposition of black hole thermodynamics.



Chapter 3

Hawking Radiation

3.1 Quantum Field Theory in Curved Spacetimes

Quantum field theory has over the past century proven to be the basis for arguably

the most successful scientific theories ever produced. It forms the language of quantum

electrodynamics, quantum chromodynamics and is a very powerful tool in the study and

development of condensed matter systems [51]. The combination of quantum field theory

and the general relativistic description of gravity has turned out to be extremely difficult,

although significant progress has been made within the frameworks of supersymmetry,

string theory, and other candidate theories [52–54]. In this section we will look at

quantum field theory on fixed curved spacetimes. By fixing the background spacetime

we significantly simplify the physics as we are in effect ignoring the “back reaction” [3]

of the matter on the geometry. First we will very briefly look at the main features of a

quantum field theory in flat spacetime, after which these features will be compared and

contrasted with the features of the theory in a curved background. In this section I have

mainly followed the treatments given in Dowker [12], Carroll [15], and Wald [55].

The simplest field to study, but containing all of the salient features relevant for our

discussion, is the real massive scalar field φ. The Lagrangian density for φ is

L = −1

2
gµν∂µφ∂νφ−

1

2
m2φ2 (3.1)

20
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where the metric gµν here is Minkowskian and m is the field’s mass [51]. Utilising the

Euler-Lagrange equations yields the equation of motion:

�φ = m2φ (3.2)

known as the Klein-Gordon equation [51]. �φ denotes the d’Alembertian operator ∂µ∂
µ

acting on the field.

A plane wave solution to the Klein-Gordon equation is given by

φ = φ0e
ipµxµ , (3.3)

where pµ = (ω,k) with the time component representing angular frequency, the space

components wave 3-vector, and satisfying the dispersion relation p2 + m2 = 0 (having

set ~ = 1). We wish to find the most general solution by forming an orthonormal basis

into which any solution can be decomposed. This orthonormality is manifest by defining

an inner product on the Klein-Gordon solution space. An inner product of two solutions

over a t = constant hypersurface is [15]

(φ1, φ2) = −i
∫

(φ1∂tφ
∗
2 − φ∗2∂tφ1) d3x. (3.4)

The complete orthonormal basis for solutions consists of all positive frequency plane

wave modes and their complex conjugates {ψp, ψ
∗
p}, i.e.

φ =

∫
d3p

(
apψp + a†pψ

∗
p

)
, (3.5)

where the coefficients and fields have been upgraded to operators under second quanti-

sation (hats denoting operator status are implicit) [15]. ψp is positive frequency and its

complex conjugate is negative frequency, they fulfill:

∂tψp = −iωψp, (3.6)

∂tψ
∗
p = iωψ∗p, (3.7)

ω > 0 in both equations above even though (3.6) describes positive frequency modes

and (3.7) describes negative frequency modes (this is because of the complex conjugate

changing the sign of i in the plane wave solution) [15]. The coefficients are annihilation
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and creation operators satisfying

[ap, ap′ ] = 0,

[a†p, a
†
p′ ] = 0, (3.8)

[ap, a
†
p′ ] = δ(3)

(
p− p′

)
,

with the vacuum state defined by ap|0〉 = 0 for all p [51]. These allow us to build

up arbitrary quantum states of many particles (a Fock basis for the Hilbert space).

ω > 0 modes in an inertial frame can be decomposed into linear combinations of ω > 0

modes in a Lorentz transformed frame, this means that all inertial observers will agree

on whether they measure particles or whether they measure a vacuum state. A proof

of this, following Carroll [15], shows how the crux of the issue lay in whether we can

objectively call a mode’s frequency positive or negative. Let’s Lorentz boost a positive

frequency mode by velocity v = dx
dt to see how the frequency behaves in this new inertial

frame (parameterized by x′ and t′) [38]:

t = γ
(
t′ + v.x′

)
, (3.9)

x = γ
(
x′ + vt′

)
. (3.10)

In the boosted frame:

∂t′ψp =
∂xµ

∂t′
∂µψp = −iω′ψp (3.11)

using the plane wave solution given in (3.3) and ω′ = γ (ω − v.k). This shows that a

quantum particle defined on a flat background can be boosted to simply give the particle

with boosted momentum in the new frame. The existence of particles or lack thereof

(a vacuum) is therefore independent of our inertial frame in flat spacetimes and can be

reliably defined. We will now see that this is not the case for field theory in curved

spacetimes where the notions of “particle” and “vacuum” are shown to be observer-

dependent.

When looking at field theories in curved backgrounds we must insist on the spacetime

satisfying a condition known as global hyperbolicity [12] [55]. This requires that the

spacetime under study, with specified geometry and metric, has a Cauchy surface Σ: a

three-dimensional hypersurface that all past and future inextendible causal curves cross

once.
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Definition: A causal curve has a tangent vector which is at no point space-like.

Theorems 4.1.1. and 4.1.2 in Wald [55] state that a globally hyperbolic spacetime

can be “foliated” by Cauchy surfaces such that each t = constant hypersurface is a

Cauchy surface, and that quantum fields have solutions to their equations of motion

defined throughout the spacetime from the initial data on Σ. This “foliation” is familiar

from cosmology in the Robertson–Walker model [15]. Defining a real scalar field on Σ

satisfying the Klein-Gordon equation given in (3.2) (where the d’Alembertian is now

of a more complicated form than in the flat case due to the non-vanishing connection

coefficients of the metric) and generalising the inner product from (3.4) gives:

(φ1, φ2) = −i
∫

(φ1∇µφ∗2 − φ∗2∇µφ1) dSµ, (3.12)

where the integral is over the Cauchy surface Σ, dS is the infinitesimal induced volume

element on the surface with normal nµ, and dSµ = dSnµ [15]. This inner product is

independent of our choice of Σ.

Naively following our earlier flat spacetime procedure we would find solutions to the

Klein-Gordon equation (now in a curved background) and decompose these into a basis

of positive- and negative-frequency modes, with creation and annihilation operator co-

efficients. The problem with this method is that solutions of the Klein-Gordon equation

which dissociate into space-dependent and time-dependent factors only exist when there

is also a time-like Killing vector k = ∂t [38]. This dissociation is required in order to

define positive- and negative-frequency modes in an invariant way [15]. We now see

why unique positive- and negative-frequency solutions were found in flat spacetime: the

Minkowski metric carries a time-like Killing vector k = ∂t and all k in different inertial

frames are related by Lorentz boosts [15].

If a Cauchy surface exists in the spacetime then we can always decompose our solutions

into orthonormal bases {fi, f∗i }, satisfying [12]:

(fi, fj) = δij ,(
f∗i , f

∗
j

)
= −δij , (3.13)(

fi, f
∗
j

)
= 0.



Hawking Radiation 24

Choosing {fi, f∗i } to be a complete set, we can expand φ as:

φ =
∑
i

(
aifi + a†if

∗
i

)
, (3.14)

the coefficients satisfy:

[ai, aj ] = 0,

[a†i , a
†
j ] = 0, (3.15)

[ai, a
†
j ] = δij .

As before we define ai to be an annihilation operator and a†i to be a creation operator,

therefore the f-vacuum is defined by:

ai|0f 〉 = 0 ∀i, (3.16)

and we can build up a number of excitations in state i as usual:

|ni〉 =
1√
ni!

(
a†i

)ni
|0f 〉. (3.17)

The number operator for f-excitations is as expected:

nfi = a†iai. (3.18)

Unlike in the flat case, the basis {fi, f∗i } is highly nonunique and so the concepts of

vacuum and number operator will be dependent on our choice of basis. Let’s look at a

different basis {gi, g∗i }, permitting the expansion:

φ =
∑
i

(
bigi + b†ig

∗
i

)
, (3.19)

the new annihilation bi and creation b†i operators satisfy the same commutation relations

[bi, bj ] = 0,

[b†i , b
†
j ] = 0, (3.20)

[bi, b
†
j ] = δij .
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With vacuum state defined by

bi|0g〉 = 0 ∀i, (3.21)

and number operator ngi = b†ibi.

To see how different observers measure the same physical phenomena in curved space-

times, let’s expand each mode in terms of the other one [15]:

gi =
∑
j

(
αijfj + βijf

∗
j

)
, (3.22)

fi =
∑
j

(
α∗jigj − βjig∗j

)
. (3.23)

These relations between different bases are examples of what is known as Bogolubov

transformations [56]; αij and βij are Bogolubov coefficients, they satisfy αij = (gi, fi)

and βij = −
(
gi, f

∗
j

)
, as well as [15]:

∑
j

(
αikα

∗
jk − βikβ∗jk

)
= δij ,

∑
j

(αikβjk − βikαjk) = 0. (3.24)

The Bogolubov transformation also allows us to express operators in one mode in terms

of operators in another mode [15]:

ai =
∑
j

(
αjibj + β∗jib

†
j

)
,

bi =
∑
j

(
α∗ijaj − β∗ija

†
j

)
. (3.25)

Now we are ready to see what an observer using one set of modes sees in a vacuum

defined in another set of modes. Setting our quantum state to be in the f-vacuum, we
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find the expectation value of the g-mode number operator to be:

〈0f |ngi|0f 〉 = 〈0f |b†ibi|0f 〉

=

〈
0f

∣∣∣∣∑
jk

(
αija

†
j − βijaj

)(
α∗ikak − β∗ika

†
k

) ∣∣∣∣0f
〉

=
∑
jk

(−βij) (−β∗ik) 〈0f |aja
†
k|0f 〉

=
∑
jk

βijβ
∗
ik〈0f |

(
a†kaj + δjk

)
|0f 〉

=
∑
jk

βijβ
∗
ikδjk〈0f |0f 〉

=
∑
j

βijβ
∗
ij

(3.26)

using equations (3.15) and (3.25). In general this expectation value will be non-zero and

so the question of the existence of particles or the presence of a vacuum will depend

ultimately on the observer. In quantum field theory, it is the fields that are the funda-

mental physical objects, the picture of particles are contingent and in some cases not a

sharply defined concept [15].

A very simple but useful picture of how particles can be created by the changing curva-

ture of a spacetime comes from looking at a wavefunction’s response to a sudden change

in potential [5]. Quantum field theory dictates that each mode of a field acts as a har-

monic oscillator [51]. This mode has a certain frequency ω1, however once the spacetime

in which it dwells has changed (for example due to the influence of some mass) the

mode’s frequency can alter, giving a different value ω2. Using the well-known adiabatic

theorem of quantum mechanics we know that changing a potential “slowly” [57] with

repect to the inverse of the frequencies ω1 and ω2, which we take to be of the same order

[5], will allow the mode to adapt in such a way that it stays as the (say) vacuum state

throughout the evolution of the potential. If instead the potential changes suddenly,

the wavefunction has not had enough time to evolve appropriately and so it will change

from a vacuum state to an excited state.

The ω1 vacuum can be expanded in terms of the excited states of ω2 as

|0〉ω1 = C|0〉ω2 + C1|1〉ω2 + C2|2〉ω2 + C3|3〉ω2 + ... (3.27)
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but the wavefunctions are symmetric and so we can throw out the odd-numbered har-

monic excitations in our expansion [5], leaving:

|0〉ω1 = C|0〉ω2 + C2|2〉ω2 + .... (3.28)

So a fast enough change in spacetime curvature will create pairs of excitations.

3.2 The Unruh Effect

In this section we’ll use the notions developed previously of the relativity of particles

and the vacuum, and build on the earlier exposition of Rindler spactime, to derive the

result that an accelerating observer in a Minkowski vacuum will detect thermal radiation,

known as the Unruh effect. This phenomenon will then be shown to imply the Hawking

effect whereby a black hole emits thermal radiation – the source of the information

paradox.

In section 2.1 we looked at Rindler space, the description of a constantly accelerating

observer in flat spacetime. Now let’s look into its structure in a bit more detail before

quantising and expanding a scalar field with respect to the Rindler observers. In Figure

2.1 we saw that the Minkowski spacetime is divided into four regions by the Rindler

coordinates with region I referred to as Rindler space. There is a strong parallel between

Rindler observers in region I and static observers in the r > GM section of Schwarzschild

spacetime. Here again is the Rindler metric:

ds2 = e2aξ
(
−dη2 + dξ2

)
, (3.29)

none of the metric coefficients depend on η therefore there exists a Killing vector ∂η,

which in terms of Minkowski coordinates becomes:

∂η =
∂t

∂η

∂

∂t
+
∂x

∂η

∂

∂x

= a

(
x
∂

∂t
+ t

∂

∂x

) (3.30)

using equation (2.12). This is the Killing field for a Lorentz boost in the positive x-

direction [15]. In regions I and IV of Figure 2.1 ∂η is a time-like Killing vector whereas

in regions II and III it is space-like. Therefore the lines x = ±t are both Killing horizons
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[15, 43]. The Rindler coordinates in region IV can be defined as:

t = −1

a
eaξsinh (aη) ,

x = −1

a
eaξcosh (aη) .

(3.31)

where x < |t|. As in the last section, a time-like Killing vector is required to define

positive- and negative-frequency modes in an invariant way, therefore here we can use

∂η. Let’s consider a massless 1+1 dimensional scalar field φ obeying the usual Klein-

Gordon equation, expressed in Rindler coordinates:

�φ = e−2aξ
(
∂2

∂η2
+

∂2

∂ξ2

)
φ = 0, (3.32)

solved by plane wave mode:

gk =
1√
4πω

e−iωη+ikξ, (3.33)

where ω = |k| [15]. From equations (2.13) it is noted that η is proportional to the Rindler

observer’s proper time and so our definition of a positive-frequency mode should be with

respect to η:
∂

∂η
gk = −iωgk (3.34)

as required cf. (3.6). One caveat is that the associated Killing vector defining the

positive-frequency modes gk must be future-directed [15]. ∂
∂η points in opposite direc-

tions in regions I and IV, so the Killing vector required to define positive frequency

modes in region IV must be − ∂
∂η (for clarity: ∂

∂η is future-directed in region I, − ∂
∂η is

future-directed in region IV). To cope with this we define two sets of modes, each one

non-zero in a certain region [15]:

g
(1)
k =

1√
4πω

e−iωη+ikξ. (3.35)

Note that equation (3.35) is only valid in region I, in region IV g
(1)
k = 0. Also [15]

g
(2)
k =

1√
4πω

eiωη+ikξ (3.36)

where (3.36) is valid only in region IV, g
(2)
k = 0 in region I. Taking these two sets of

modes together we see that both regions I and IV are covered; the Rindler metric (2.14)

is valid throughout these two regions [12, 15]. Both sets of modes can now be seen to
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be positive-frequency with respect to future-directed Killing vectors:

∂

∂η
g
(1)
k = −iωg(1)k ,

− ∂

∂η
g
(2)
k = −iωg(2)k . (3.37)

Where ω > 0. Compare to equations (3.6), (3.7) to see that both expressions in (3.37)

do indeed correspond to positive-frequency modes.

These modes and their complex conjugates form a complete set throughout the spacetime

under study; expanding a scalar field in these modes gives [15]:

φ =

∫
dk
(
b
(1)
k g

(1)
k + b

(1)†
k g

(1)∗
k + b

(2)
k g

(2)
k + b

(2)†
k g

(2)∗
k

)
. (3.38)

The mode coefficients are the annihilation and creation operators associated with their

regions of validity. The modes themselves satisfy inner product identities analogous to

(3.13) given by:

(
g
(1)
k1
, g

(1)
k2

)
= δ (k1 − k2)(

g
(2)
k1
, g

(2)
k2

)
= δ (k1 − k2)(
g
(1)
k1
, g

(2)
k2

)
= 0

(
g
(1)∗
k1

, g
(1)∗
k2

)
= −δ (k1 − k2)(

g
(2)∗
k1

, g
(2)∗
k2

)
= −δ (k1 − k2)(
g
(1)∗
k1

, g
(2)∗
k2

)
= 0.

(3.39)

Comparing our earlier field expansion in Minkowski modes (3.5) (at the time we defined

it in terms of 3+1 dimensions, now we will treat it in 1+1 dimensions) with our new

expansion in terms of Rindler modes (3.38) we can note that the vacuums do not coincide.

For example the vacuum as described by an observer in Minkowski spacetime ak|0M 〉 = 0

will be seen to be bubbling with particles by a Rindler observer who, in turn, will describe

a vacuum by b
(1)
k |0R〉 = b

(2)
k |0R〉 = 0 that the Minkowskian observer will see as anything

but empty. This is as a result of the lack of a purely positive-frequency Minkowski

mode basis with which to expand a Rindler mode; for example the annihilation operator

defining the Rindler vacuum can only be decomposed into a combination of Minkowski

annihilation and creation operators [15].

Now let’s investigate the properties of the particles that a Rindler observer would see as

they accelerated through the Minkowski vacuum. Rather than finding the Minkowski

vacuum expectation value of the Rindler number operator using Bogolubov coefficients
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as in section 3.1, we’ll utilise a shorter derivation based on the analytic continuation

of the Rindler modes to the whole spacetime and subsequently expressing this result in

terms of the more restricted Rindler modes valid only in regions I and IV. The derivation

presented here follows that of Dowker [12] and Carroll [15].

Using the coordinate definitions given in (2.12) and (3.31) and some light algebra we

find [12]:

e−a(η−ξ) =


a (−t+ x) I

a (t− x) IV

(3.40)

ea(η+ξ) =


a (t+ x) I

a (−t− x) IV

(3.41)

From the expression for mode g
(1)
k in (3.35) we derive:

√
4πωg

(1)
k = e−iωη+ikξ

= e−iω(η−ξ)

= a
iω
a (−t+ x)

iω
a ,

(3.42)

where we’ve used the fact that ω = k which is valid because in our plane wave expression

for gk (3.33) we had ω = |k|, and here k > 0. The analytic continuation of (3.42) is

simply attained by applying it for any values of the Minkowski coordinates (t, x) [15].

As we stated above, our method here is to analytically continue the Rindler modes to

the whole spacetime and then to express these in terms of the original Rindler modes

in regions I and IV; however the continuation we have just found involves g
(1)
k which

vanishes in region IV, so we must consider the other modes g
(2)
k too in order to cover

both regions. Repeating our procedure above we obtain:

√
4πωg

(2)
k = eiωη+ikξ

= eiω(η+ξ)

= a−
iω
a (−t− x)−

iω
a .

(3.43)
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We want the right sides of (3.42) and (3.43) to match up and so, making us of e−iπ = −1,

we transform (3.43) thusly:

√
4πωg

(2)∗
−k = e−iωη+ikξ

= e−iω(η−ξ)

= a
iω
a (t− x)

iω
a

= a
iω
a [e−iπ (−t+ x)]

iω
a

= a
iω
a e

πω
a (−t+ x)

iω
a ,

(3.44)

where * denotes complex conjugation. Now we can express a combination of modes as

[15]:
√

4πω
(
g
(1)
k + e−

πω
a g

(2)∗
−k

)
= a

iω
a (−t+ x)

iω
a . (3.45)

The mode given above covers regions I and IV as we wanted however (3.45) is not

normalised, as an ansatz [15] let’s assume the normalised analytic continuations of g
(1)
k

and g
(2)
k are given by:

h
(1)
k =

1√
2sinh

(
πω
a

) (eπω2a g(1)k + e−
πω
2a g

(2)∗
−k

)
,

h
(2)
k =

1√
2sinh

(
πω
a

) (eπω2a g(2)k + e−
πω
2a g

(1)∗
−k

)
. (3.46)

This normalisation can be verified by checking the mode inner products identical in form

to (3.39): i.e.
(
h
(1)
k1
, h

(1)
k2

)
= δ (k1 − k2) etc. Expanding a scalar field φ in our normalised

modes gives:

φ =

∫
dk
(
c
(1)
k h

(1)
k + c

(1)†
k h

(1)∗
k + c

(2)
k h

(2)
k + c

(2)†
k h

(2)∗
k

)
. (3.47)

In complete analogy to our discussion earlier of Bogolubov transformations in section

3.1 – cf. equations (3.22), (3.23), (3.25) – we can express our original Rindler operators

bk in terms of our new extended operators ck as:

b
(1)
k =

1√
2sinh

(
πω
a

) (eπω2a c(1)k + e−
πω
2a c

(2)†
−k

)
,

b
(2)
k =

1√
2sinh

(
πω
a

) (eπω2a c(2)k + e−
πω
2a c

(1)†
−k

)
. (3.48)
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An accelerating Rindler observer in region I will form a number operator n
(1)
R (k) =

b
(1)†
k b

(1)
k , which we can now express in terms of ck operators. The new positive-frequency

modes hk can be decomposed into positive-frequency Minkowski modes [12] and so their

vacuum states are identified. This allows us to finally obtain the expectation value for

a region I Rindler observer in the Minkowski vacuum:

〈0M|n(1)R (k)|0M〉 = 〈0M|b(1)†k b
(1)
k |0M〉

=
1

2sinh
(
πω
a

)〈0M|e−πωa c(2)−kc(2)†−k |0M〉
=

e−
πω
a

2sinh
(
πω
a

)δ(0)

=
1

e
2πω
a
−1
δ(0),

(3.49)

the δ(0) factor is an artifact of our choice of basis and can be transformed away (has

no physical meaning) [15]. The expectation value (3.49) is a Planckian distribution at

temperature [10]

T =
a

2π
(3.50)

where c = ~ = 1 and a is the magnitude of the acceleration. So a constantly accelerating

observer through the Minkowski vacuum experiences a thermal bath of particles.

3.3 Black Hole Evaporation

The core of the information paradox lies in Hawking radiation. If black holes behaved

classically – i.e. there was no evaporation mechanism – then the information that was

consumed by the hole would exist just out of reach, but the information would not nec-

essarily be destroyed. However a quantum mechanical treatment of black holes suggests

that they eventually (over time scales many orders of magnitude larger than the age

of the universe) vanish [24], leaving behind thermal radiation, seemingly erasing the

information that fell in.

A heuristic picture of Hawking radiation involves a pair of photons emerging from the

vacuum, one of which has energy −E, due to a fluctuation near the event horizon of

a black hole. If this process occurs far away from any black holes the photons would

annihilate in a time of order ∼ ~
E . However if the pair creation happens close to the
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horizon then the photon of energy −E may fall into the black hole whereas the other

photon can travel to infinity, where an observer may observe it as Hawking radiation

[10].

Rather than following Hawking’s original derivation of black hole radiation [24] we’ll see

how our derivation of Unruh radiation leads to the existence of Hawking radiation due

to the equivalence principle [15, 23].

Let’s assume there are two static observers outside of a black hole in Schwarzschild

spacetime: one at r1, and another one further out at r2 which we will push to infinity.

In the following calculations we will only be using Schwarzschild spacetime as it contains

all of the pertinent properties, we must also set some physical scales with which to anchor

our derivation. The natural acceleration scale is 1
2M the inverse of the Schwarzschild

radius, with the radius itself setting the natural time, length, and curvature scales near

the horizon [15]. For a static observer just outside the event horizon at r1, its acceleration

is huge with respect to 1
2M :

a1 �
1

2M
, (3.51)

and from the inverse 1
a1
� 2M we see that the observer at r1 experiences an almost flat

spacetime environment. From the equivalence principle we know that someone falling

through the event horizon and into a black hole feels nothing strange (ignoring tidal

forces) and so they experience approximately a Minkowski vacuum. Now we begin to

see how the Unruh radiation manifests itself in this situation: a freely-falling observer

sees a vacuum however a static observer at r1 is accelerating outwardly with magnitude

a1 in order to stay at the same radial distance and so experiences Unruh radiation at

temperature a1
2π , cf. (3.50).

Another observer stationed at r2 which we will assume is infinitely far away doesn’t

necessarily dwell in a flat region of spacetime like the observer stationed just outside the

event horizon. Therefore they shouldn’t experience Unruh radiation as the derivation

of that was predicated on acceleration through flat spacetime. However the Unruh

radiation detected by the observer at r1 will continue to propagate outwards towards

the observer at infinity, although in a redshifted form [15].
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The amount of redshift will be dictated by the redshift factor V introduced earlier in

section 2.2:

T2 =
V1
V2
T1, (3.52)

where the V ’s and T ’s refer to the redshift factors and thermal radiation temperatures

experienced by observers at r1 and r2. We know that T1 = a1
2π and that at infinity the

redshift factor tends to unity, therefore the temperature of the radiation experienced by

the faraway observer – using (2.36) and letting observer 1’s position r1 be infinitesimally

close to the horizon where V1a1 tends to κ – is

T =
κ

2π
. (3.53)

This is the temperature of the Hawking radiation emitted by the black hole.



Chapter 4

The Structure of Information

4.1 What is Information?

When one first hears the word “information” heard in a scientific context it can be

confusing as to what exactly is meant by the term. It sounds like a very subjective

concept which would be hard to quantify. To understand information we must first see

how it relates to entropy.

Entropy is one of the most fundamental and important concepts in physics; useful not

only in thermodynamics but in information theory, quantum theory, and as a basis for

an arrow of time [58]. It is a measure of the disorder inherent in a system. It was first

discovered (or invented) as a thermodynamical quantity related to energy and temper-

ature. After the development of statistical mechanics the idea of entropy was detached

and expanded somewhat and understood more in terms of the internal configurations of

systems, along with their respective probabilities of occurance [58]. The second law of

thermodynamics states that the entropy of the universe can never decrease and was said

by Arthur Eddington to hold “the supreme position among the laws of Nature” [59]. So

how does entropy relate to information?

The entropy of a thermodynamic system is:

− kB
∑
i

pilnpi (4.1)

35



The Structure of Information 36

where the sum is over all possible microstates corresponding to a given macrostate

of the system, each microstate has a probability pi of occuring. If we assume that

each microstate has equal probability of occurrence pi = 1
N , N being the number of

microstates corresponding to a given macrostate, then we recover the famous equation

due to Boltzmann:

S = kBlnN (4.2)

valid at thermodynamic equilibrium in the micro-canonical ensemble [60].

The notion of information as formulated by Hartley and Shannon is a generalisation

of this notion of entropy. Ralph Hartley (1888-1970), Claude Shannon (1916-2001),

and others invented the modern theory of information [61, 62] originally as a way to

speed up, compress, and process the signals used in communications. It has since been

generalised to incorporate quantum theory and has been fundamental in the development

of quantum computing and the study of entanglement [63].

Ralph Hartey was the first person to quantify the information contained in a message

source (an ensemble of messages) in 1928 [58]. He did so using two parameters: the

number of characters in the message n, and the number of equiprobable symbols that

each character may adopt s. So for example, for the bit string 1011001110, n = 10

and s = 2. Hartley developed the concept of the information of a message source using

the following assumptions: the information must be a function of both s and n, must

be proportional to the message length n, and should monotonically increase with the

number of equiprobable messages sn. Representing the information by the symbol H

and using the previous assumptions:

H = nf(s) = g(sn), (4.3)

where both f(s) and g(sn) are monotonically increasing on their respective domains.

The only differentiable solution is:

f(s) = clns (4.4)

where c is a positive constant. (More accurately H represents the missing information,

it denotes the missing information needed to select a message from the message source.)

Plugging the solution into equation (4.3) it is easy to see that H = clnsn – notice this is
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redolent of equation (4.2). We can see that the number of messages sn in the message

source is analogous to the number of microstates N of the thermodynamic system in

equation (4.2), and that S
kB

= lnN is the missing information required to specify the

microstate corresponding to a given macrostate.

Claude Shannon generalised Hartley’s concept of information to include messages made

up of characters that have unequal probabilities of occuring, this gives a form for the

Shannon information [58]:

H = −c

s∑
i=1

pilnpi (4.5)

which is analogous to equation (4.1).

All of this seems to strongly suggest that missing or hidden information is in some way

equivalent to entropy. For example a sealed box of hot gas could be in many different

microstates with respect to its bulk thermodynamics quantities, so we know very little

(hold limited information) about the internal configurations of the system and therefore

its entropy is large. On the other hand if we were studying a perfectly ordered crystal

at absolute zero temperature with a non-degenerate ground state (cf. the third law of

thermodynamics) we would have complete knowledge of its internal configuration and

so the entropy would be zero and there would be no hidden information [60]. Before we

see how all of this relates to black holes we must look at the generalisation of entropy

(missing information) to quantum theory: the von Neumann entropy.

In the 1930s [64] John von Neumann reformulated quantum mechanics by replacing

the idea of a wave function – defining the state of a quantum system – by an object

called a density matrix, describing a statistical ensemble of different quantum states.

This allowed the apparatus of classical statistical mechanics to be extended to quantum

theory. The density matrix is used to describe generic quantum systems that are either

pure states or mixed states. If we have complete knowledge of a quantum state then we

know that the probability of it being in that state is unity [65]. In reality it is more

common to have incomplete knowledge of the quantum state(s) and/or there may be an

ensemble of different states [66].

The density matrix ρ, defined by

ρ =
∑
i

pi|ψi〉〈ψi|, (4.6)
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tells us whether the states are pure or mixed. For a generic mixed state, the wave func-

tion ψi occurs with probability pi, and the expectation value of an observable described

by operator O is:

〈O〉 =
∑
i

pi〈ψi|O|ψi〉. (4.7)

Expanding the states in a basis αi [67]:

|ψi〉 =
∑
j

|αj〉〈αj |ψi〉 (4.8)

〈ψi| =
∑
k

〈ψi|αk〉〈αk| (4.9)

and substituting the expansions into equation (4.7) gives

〈O〉 =
∑
j,k

(∑
i

pi〈αj |ψi〉〈ψi|αk〉

)
〈αk|O|αj〉 (4.10)

=
∑
j,k

〈αj |ρ|αk〉〈αk|O|αj〉 (4.11)

= tr (ρO) . (4.12)

Density matrices have the following properties: their trace is always equal to one (be-

cause the probabilities add up to one), they are Hermitian, and their eigenvalues are

equal to or greater than zero. When ρ is diagonalised, the eigenvalues ρi represent the

probabilities that the quantum system is in state i. As mentioned above, if a system is

in a pure state then we possess complete knowledge of it, therefore the density matrix

will have one non-zero eigenvalue (due to the trace property it must be equal to one) as

there is a unity probability of it being in this eigenstate [3]. If the density matrix has

more than one non-zero eigenvalue then the state is mixed.

The von Neumann entropy is an extension of equation (4.1) to quantum systems and is

given by:

S = −trρlnρ = −
∑
i

ρilnρi (4.13)

where tr gives the trace. S is a quantitative measure of how mixed a quantum state

is [66]. A pure state has zero entropy whereas mixed states have entropy greater than

zero.

The von Neumann entropy is also very useful as it quantifies the degree of entanglement



The Structure of Information 39

between quantum subsystems [68]. To illustrate this let’s look at a pure state Ψ with

density matrix ρtotal = |Ψ〉〈Ψ|. As this is a pure state it must have von Neumann entropy

equal to zero. However let’s now split the system into two parts A and B; the Hilbert

space containing the states is also split into two: Htotal = HA ⊗HB. If an observer can

only access subsystem A then he will measure the density matrix to be [68]:

ρA = trBρtotal, (4.14)

trB signifies that the trace is over HB. The von Neumann entropy of ρA defines the

entanglement entropy of subsystem A [68]:

SA = −trAρAlnρA. (4.15)

Entanglement entropy illustrates a very important point about how entropy behaves

differently in quantum systems. The entropy S of a system as defined by Shannon cannot

be lower than the entropy of any of its constituent parts, whereas the von Neumann

entropy for an entangled system – for example a Bell pair – has total entropy equal to

zero but subsystem entropies greater than zero [69, 70]. We can know everything about

a system yet know nothing about its parts – a very quantum phenomenon. In the next

section we will see how the concepts introduced here relate to the problem (or illusion)

of information loss in black hole evaporation.

4.2 Throwing a Bit of Information into a Black Hole

To get to grips with the information content of a black hole let’s look at how the area

of its event horizon changes when a single bit of information is dropped in. How does

one drop a single bit of information into a black hole?

If we tried to encode a single bit in terms of say a 1 or 0 written on a piece of paper and

then threw this into a black hole this wouldn’t suffice because the mark on the paper

would be formed from many atoms, this would still be the case even if the paper it was

written on had nanoscale dimensions. The solution is to use an elementary particle, say

a photon; however as Susskind [28] points out a single photon could still encode more

than one bit of information if we had knowledge of the location of the point of entry into
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the black hole. Using a photon of wavelength of order the Schwarzschild radius of the

hole results in the scenario that a photon has entered the black hole at some location on

the event horizon, but it is not known where – this encodes one bit of information [28].

Using the basic Planck–Einstein relation E = hf and Einstein’s E = mc2 [71] we find

that the energy of a photon of wavelength Schwarzschild radius RS is

E =
hc

RS
, (4.16)

and that after the photon has entered the black hole the hole’s energy has increased by

E and its mass has increased by E
c2

= h
cRS

. Therefore the increase in the event horizon’s

radius is (temporarily restoring units)

∆RS =
2Gh

c3RS
. (4.17)

From the event horizon area formula A = 4πR2
S we find that the horizon area increases

by

∆A = 4π (RS + ∆RS)2 − 4πR2
S

= 4π

(
R2
S +

4Gh

c3
+

4G2h2

c6R2
S

)
− 4πR2

S

=
16πGh

c3

= 16π`2p

(4.18)

where the term of order G2h2

c6R2
S

is negligible and `2p is the square of the Planck length [71].

Hence up to a factor of 16π the area of a black hole increases by one Planck area every

time one bit of information falls into it. This implies that the area of a black hole horizon

measured in Planck units is proportional to its entropy (hidden information) measured in

bits: this very basic calculation therefore implies (up to a numerical factor) Bekenstein’s

famous formula S = A
4 [72]. As Susskind memorably puts it: “information equals area”

[28]; this link between information, entropy, and area hints at the holographic principle

[73–75] and AdS/CFT duality which we will look in section 5.2.9.



Chapter 5

The Information Paradox

5.1 An Exposition of the Information Paradox

(In this section we have set c = ~ = G = kB = 1.)

The black hole information paradox can be stated as follows:

Consider some matter in a pure state that collapses to form a black hole. After the hole

has evaporated away completely, leaving only thermal Hawking radiation, the result of

the whole process will have been that an initially pure quantum state evolved into a mixed

state. This pure-to-mixed state process is not unitary and so violates a central principle

of quantum mechanics.

Quantum mechanics requires that an initial state evolves according to an S-matrix:

|Ψfinal〉 = S|Ψinitial〉. The unitarity of the S-matrix implies that the evolution is deter-

ministic [3] and it indicates that the inital state can be retrieved from the final state

according to |Ψinitial〉 = S†|Ψfinal〉. For example if all of the Hawking radiation were to

be collected this should allow us to calculate what initial matter formed the hole. N.B.

the relationship between information loss and pure-to-mixed state quantum evolution

is subtle, and one does not necessarily imply the other, we will define these terms and

their interplay properly at the end of this section.

Before we delve into the information paradox let’s look at the closely related conundrum

of what Mathur [5] calls “the entropy puzzle”: what are the microstates of the black

hole that account for its enormous entropy? We saw at the end of section 4.2 that the

41
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Bekenstein entropy of a black hole is equal to a quarter of its area expressed in Planck

units

S =
A

4
(5.1)

and that by combining this entropy with the amount external to the hole the second law

of thermodynamics still holds. But where does the Bekenstein entropy come from?

From statistical mechanics we think of entropy as emerging from a logarithmic function

of the number of different states making up the system per macrostate. This would lead

us to believe that the number of microstates per macrostate in a system with entropy

S would be of order eS . For a relatively small black hole, of solar mass, the number of

microstates would be of order 1010
77

. From what we know about black holes it seems

like they should have very few microstates – they have “no hair” – a general black hole

can be fully described by its mass, charge, and angular momentum [12, 76]. What could

these microstates be? Here are some suggestions by various authors [77]:

• Black hole microstates may be the various combinations of internal matter and

gravitational states making up a hole of given mass, angular momentum, and

charge [78].

• There is a gas of quanta just outside of the event horizon whose entropy is that of

the Bekenstein entropy of the hole [79, 80].

• The entropy may derive from the entanglement between quantum fields inside and

outside of the horizon. The whole state taken together may be pure and so the

entanglement entropy is found by tracing out the internal states [81, 82].

• Black hole entropy is the Noether charge associated with diffeomorphism symmety

in theories containing higher curvature terms than classical general relativity. This

can lead to corrections to the entropy formula S = A
4 [83].

• Microstates are different string excitations in string theory [84]. We will look into

this in section 5.2.10.

There have also been attempts within loop quantum gravity which have correctly red-

erived the black hole entropy (once a parameter has been fixed) [85, 86].

Let’s now look at particle production by black holes in detail to see exactly why the

process seems to evolve an initially pure state into a final mixed state. The black holes
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we’ll treat in this section will be the Schwarzschild type we introduced earlier on. This

section follows closely the treatment given in Mathur [87] as it clearly illustrates the

robustness of the problem and how small corrections to the Hawking radiation do not

present a solution.

In our present analysis of black hole evaporation we’ll take certain “nice” spacelike slices

(which we will soon define properly) through the spacetime containing the black hole

(see Figure 5.1) which penetrate the event horizon and allow us to analyse the properties

of the Hawking pairs – specifically their entanglement – which is very important when

assessing their information encoding characteristics and their susceptibilities to small

perturbations. In the following we will assume that we are working in the semiclassical

domain, where quantum gravity effects are unimportant, and so our spacelike slices obey

certain “niceness” conditions [87]:

• The quantum states we are studying should be contained entirely on a spacelike

slice whose intrinsic curvature R(3) is everywhere smaller than the Planck scale:

R(3) � 1
`2p

.

• The spacelike slice should be embedded in 3+1 dimensional spacetime with small

extrinsic curvature: K � 1
`2p

.

• In the neighbourhood of the spacelike slice, the four-curvature of the spacetime

should also be small: R(4) � 1
`2p

.

• Any matter present on the slice should not approach the Planck scale where quan-

tum gravity effects are expected to apply.

• States on one slice will be evolved smoothly to another nice slice at a later time.

When our nice spacelike slices we have defined above deform, this produces Hawking

pairs on the slices. The pairs have wavelengths of the order of the curvature length

scale of the deformation, for a generic black hole this scale would be the Schwarzschild

radius. This is analogous to our earlier discussion of particle pair creation in a changing

harmonic potential at the end of section 3.1. Let the state of the produced entangled

pair be of the simple form [87]:

|ψ〉pair =
1√
2
|0〉c|0〉b +

1√
2
|1〉c|1〉b (5.2)
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where the b particles fly out to infinity (detected as Hawking radiation) and the c states

fall in towards the singularity. The matter |ψ〉matter which forms the black hole is also

contained on the spacelike slice but can be thought of as being far enough away that it

has negligible effect on the Hawking pairs.

The whole quantum state |Ψ〉 describing the matter making up the hole and the pair is

therefore given by:

|Ψ〉 ≈ |ψ〉matter ⊗
(

1√
2
|0〉c|0〉b +

1√
2
|1〉c|1〉b

)
(5.3)

where the equality is only approximate as the matter may have a very small effect on

the pair. Setting |ψ〉matter to be a two-level quantum system, for example

|ψ〉matter =
1√
2
| ↑〉matter +

1√
2
| ↓〉matter (5.4)

would give

|Ψ〉 ≈
(

1√
2
| ↑〉matter +

1√
2
| ↓〉matter

)
⊗
(

1√
2
|0〉c|0〉b +

1√
2
|1〉c|1〉b

)
. (5.5)

Quantifying the small effect ε � 1 of the matter on the pair allows us to promote our

above formula from an approximate identity into a full identity and gives [87]:

|Ψ〉 =

(
1√
2
| ↑〉matter +

1√
2
| ↓〉matter

)
⊗
((

1√
2

+ ε

)
|0〉c|0〉b +

(
1√
2
− ε
)
|1〉c|1〉b

)
.

(5.6)

The above perturbation is allowed, however the following change of state is not allowed

[87]:

|Ψ〉 =

(
1√
2
| ↑〉matter|0〉c +

1√
2
| ↓〉matter|1〉c

)
⊗
(

1√
2
|0〉b +

1√
2
|1〉b
)

(5.7)

as it drastically changes the entanglement properties of the system. The entanglement

entropy of a subsystem was given in equation (4.15); what are the entanglement entropies

for the above systems?

Tracing over |ψ〉matter and c for (5.5) gives Sb = ln2, for (5.6) it gives Sb = ln2 −

ε2 (6− 2ln2), and finally for (5.7) Sb = 0 [87]. The entanglement entropy for the Hawking

pair slightly affected by the matter |ψ〉matter can be seen above to tend quickly to the

unperturbed value ln2 as ε is brought to zero. The final zero-valued entanglement

entropy cannot be caused by the influence of faraway |ψ〉matter because locality on the
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Figure 5.1: Nice slices through a black hole spacetime. Illustration from [87].

spacelike slice doesn’t allow it. So locality implies:

∣∣∣∣ Sbln2
− 1

∣∣∣∣� 1. (5.8)

An essential facet of the evaporating black holes under study is that the regions around

their horizon must not contain information about the holes (equivalent to the observation

that an infalling observer experiences nothing strange whilst passing through the horizon

– ignoring tidal effects). Specifically any point on the horizon has a neighbourhood on

which quantum fields (neither trans-Planckian nor larger in wavelength than the horizon

radius) evolve according to the semiclassical evolution of fields in empty curved spacetime

[87]. We saw earlier that empty spacetime is relative to the observer, however in the

case of evaporating black holes the curvature scale is of order Schwarzschild radius and

so different observers may detect a different quantity of Schwarzschild radius wavelength

quanta, but only to order 1 – for quanta of wavelength much less than Schwarzschild

radius (but not below the Planck length) all observers will agree that the state is a

vacuum, with little error [77].

For evaporating black holes the Schwarzschild solution (2.1) is valid – despite its time

independence – as the evaporation takes a very long time (much longer than the current

age of the universe). Therefore the solution applies at any chosen point during evap-

oration until the black hole’s radius diminishes to the Planck length [87]. Taking nice

spacelike slices through a spacetime containing a black hole must avoid the hole’s central
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singularity so as to satisfy the niceness conditions defined above. Let’s rigorously define

these slices by splitting them up into parts outside, inside, along with a connecting piece

across the horizon [77, 87]:

Inside horizon ΣI :
M
2 < r < 3M

2 and r = constant. Can be smoothly connected to

Schwarzschild origin r = 0 at times before singularity formation.

Outside horizon ΣO: r � 4M and t = constant.

Connection ΣC : Smoothly connects ΣO and ΣI across the event horizon. Both space

and time dimensions of ΣC are of order M .

The spacelike slice defined above may seem strange as outside of the hole it is param-

eterized by t = constant (as expected) whereas inside the hole it is parameterized by

r = constant. This is purely as a result of the Schwarzschild metric’s pathology at the

horizon where time and space coordinates swap roles.

A whole spacelike slice Σ(t, r, C) is given by the union ΣI ∪ ΣO ∪ ΣC . Shifting forward

the parameters smoothly evolves one slice into another, i.e.

Σ1 = Σ(t1, r1, C1)→ Σ2 = Σ(t2, r2, C2) = Σ(t1 + δt, r1 + δr, C1 + δC). (5.9)

When evolving forward the spacelike slices the geometry of ΣC can be taken to be

unchanged as long as δr � M [77]. This results in the ΣI segments getting longer

as ΣO shifts forward in time – see Figure 5.2 for a simple diagram of this stretching.

A succession of these nice spacelike slices builds up an entire spacetime containing the

black hole. Evolving the slices along a timelike normal will leave the instrinsic geometries

of both ΣO and ΣI (although it stretches) the same; however the connecting part ΣC

must grow in order to connect these segments together and to account for the longer ΣI

at successive intervals – this stretching happens only in the neighbourhood of ΣC with

spatio-temporal dimensions of order M [77, 87].

This stretching of ΣC is the cause of the Hawking pair generation and we can now see

why it can only occur in the presence of a black hole and not in Minkowskian spacetime.

In flat spacetime ΣC would eventually become null and then timelike, but due to the

swapping of time and space coordinates at event horizons our choice of slices in black
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Figure 5.2: The stretching of nice slices during black hole evolution. Illustration from
[87].

hole backgrounds always stay spacelike throughout their evolution and Hawking pair

production carries on unimpeded until the hole reaches Planckian dimensions [77, 87].

Now let’s look at how the entanglement of Hawking pairs changes as the black hole

continually evaporates. This is key in understanding how Hawking radiation differs

from thermal radiation emitted normally by objects such as a burning encyclopedia or a

piece of coal; these objects emit radiation in a fundamentally different way that allows

information conservation and retrieval in principle. A series of nice spacelike slices as

time increases:

Slice 1: Collection of matter |ψ〉matter exists on slice but hasn’t yet collapsed to form

black hole.

Slice 2: Black hole has now formed. “Middle” of slice stretches to create first Hawking

pair à la (5.3):

|Ψ〉 ≈ |ψ〉matter ⊗
(

1√
2
|0〉c1 |0〉b1 +

1√
2
|1〉c1 |1〉b1

)
, (5.10)

giving entanglement entropy ln2 between the Hawking radiation and the rest of the

system as we saw previously when we assumed |ψ〉matter was a simple two-level quantum

system (5.4).
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Figure 5.3: Hawking pair creation showing “pushing” of earlier ones away from the
horizon as new pairs emerge. |ψ〉matter shown as black boxes on left of figure. Illustra-

tion from [87].

Slice 3: The matter |ψ〉matter is unchanged, the b1, c1 pair gets “pushed” outwards –

see Figure 5.3 – by the stretching of ΣC which also stimulates creation of a new Hawking

pair b2, c2 giving full quantum state on the slice:

|Ψ〉 ≈ |ψ〉matter ⊗
(

1√
2
|0〉c1 |0〉b1 +

1√
2
|1〉c1 |1〉b1

)
⊗
(

1√
2
|0〉c2 |0〉b2 +

1√
2
|1〉c2 |1〉b2

) (5.11)

giving entanglement entropy 2ln2 between the Hawking radiation and the rest of the

system.

Slice N+1: At the limit of the (N+1)-th slice N Hawking pairs have been created:

|Ψ〉 ≈ |ψ〉matter ⊗
(

1√
2
|0〉c1 |0〉b1 +

1√
2
|1〉c1 |1〉b1

)
⊗
(

1√
2
|0〉c2 |0〉b2 +

1√
2
|1〉c2 |1〉b2

)
...(

1√
2
|0〉cN |0〉bN +

1√
2
|1〉cN |1〉bN

)
(5.12)

giving entanglement entropy Nln2 between the Hawking radiation and the rest of the

system.

Now the problem is clear. Once the black hole has emitted all of its mass in Hawking

radiation it ceases to exists, leaving only a radiation field: represented by b1, b2, ..., bN

above. This final Hawking radiation has entanglement entropy Nln2 but it is not entan-

gled with anything. Therefore the radiation can only be described by a density matrix,

it is now a mixed state [77]. Before the black hole had evaporated away completely
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the Hawking radiation was entangled with internal states of the hole and so the whole

quantum system had zero von Neumann entropy and was pure.

What is the effect of the Hawking pairs on each other? Could these corrections be

sufficient to encode the information about the matter making up the black hole in

correlations in the outgoing radiation? It can be shown [77, 87] that as each new Hawking

pair is created the entanglement entropy of the outgoing radiation increases steadily,

taking into account possible corrections, by an amount ln2-2ε per pair (ε� 1 as before).

This increase in entropy is the minimum possible increase whenever any Hawking pair

is created. Therefore Hawking’s original derivation [24] is sturdy in the face of small

corrections and something more drastic is needed to solve the information paradox.

Although evolution of a pure to a mixed state violates unitarity, this does not always

imply information loss – as emphasised in Mathur [87] in the context of black hole

evaporation. In some cases a mixed Hawking radiation field can contain all of the

information about the matter that had formed the hole, and on the other hand a final

pure state could result in information loss. Let’s look at some examples, firstly a process

which violates unitarity but conserves information. Starting with a quantum matter

state:

|ψ〉matter = α|1〉matter + β|0〉matter. (5.13)

After this matter has collapsed to form a black hole and two Hawking pairs (b1, c1)

and (b2, c2) have emerged from the vacuum, the complete quantum state of the system

becomes: (
1√
2
|1〉matter|0〉c1 +

1√
2
|0〉matter|1〉c1

)
⊗ (α|1〉b1 + β|0〉b1)

⊗
(

1√
2
|1〉c2 |0〉b2 +

1√
2
|0〉c2 |1〉b2

)
.

(5.14)

In the above case the first Hawking radiation particle b1 contains all of the information

regarding the matter that collapsed to form the hole. This can be retrieved by an

observer and information in principle is now not lost. However the second Hawking

radiation particle b2 is entangled (with entanglement entropy ln2) with its partner c2

within the hole; therefore after the hole has completely evaporated the final state is

mixed and we have violated unitarity of quantum evolution.
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What about a system with the opposite problem? Letting our original matter state

(5.13) now evolve into a black hole that has produced so far one Hawking pair (b, c)

given by:

(α|1〉matter|0〉c + β|0〉matter|1〉c)

⊗
(

1√
2
|1〉b +

1√
2
|0〉b
) (5.15)

results in a Hawking radiation particle b existing in a pure state but carrying no infor-

mation about the original matter that we are interested in.

N.B. the two evolutions we just looked at are toy models and cannot result from normal

semiclassical processes in real black hole evaporation [87]. Normal black hole evaporation

suffers from both of issues shown above – non-unitarity and information loss – and a

satisfactory solution to the information paradox would need to find a remedy for both.

Why is information loss bad? One reason is that in theories containing the possibility of

information loss, energy seems to be unconserved; Preskill suggests a heuristic picture

of this process as analogous to the coupling of a signal to a source of random noise [88].

A quantum state in the universe can be thought of as a signal encoding information, if

the universe is then coupled to a source of noise it can overwhelm the signal destroying

the information and at the same time pump energy into the universe, violating energy

conservation. Another reason why information loss is undesirable is that, if violated,

quantum theory would have to be drastically altered if not completely overhauled, and

due to quantum theory’s great successes and continued experimental validations this

would seem unreasonable.

5.2 Proposed Solutions

In this section we shall look at a number of potential solutions to the information paradox

that have been put forward in the last few decades. Firstly taking a cursory look at

some of the less promising and less discussed candidate solutions before going into more

detail with regards to complementarity, the AMPS paradox, and the fuzzball conjecture.

Several other proposed solutions not covered here can be found in Mathur [89].
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5.2.1 Remnants

The point where the black hole vanishes seems to cause a violent shift from pure to mixed

state. Is there a way to terminate the evaporation before the black hole completely

disappears?

The Hawking evaporation process could cease when the hole reaches the Planck mass,

leaving what is known as a remnant [90]. This would leave unitarity intact but such

remnants would behave unlike any other known objects; as the remnant would be en-

tangled with entropy Nln2 with the emitted radiation it must have at least N possible

internal states [87] but be of finite size and energy. As N is arbitrary and not bounded

the remnant can have an abitrarily large degeneracy unlike normal quantum states, this

feature can also lead to divergences when formulating its interaction with normal matter

[77].

5.2.2 Bleaching

Bleaching posits that the information in a quantum system is somehow prevented from

entering the black hole – the horizon “bleaches” it – possibly decoupling the information

from the system’s energy and momentum allowing it to come out in Hawking radiation

[30, 77]. This would require a drastic alteration of the semiclassical assumptions of

the emptiness of the horizon that we assumed earlier when looking at Hawking pair

entanglement. The equivalence principle would be violated as a physical process must

occur at the horizon to decouple the information or to prevent the system from falling

in.

5.2.3 Quantum Hair

Could the information about infalling matter be contained in distortions of the event

horizon? This contradicts the “no-hair theorems” [76] and attempts to create “hair”

from quantum fields around the horizon have been shown to lead to divergent energy

tensors at the horizon [91]. Some of the attempts to derive quantum hair have utilised

discrete gauge symmetries, while this somewhat circumvents the no-hair theorems it

isn’t sufficient to explain the enormous degeneracy implied by the Bekenstein entropy
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formula [92, 93]. The fuzzball conjecture predicts quantum hair can be formed from

bound states of strings and branes which we will look at in more detail in section 5.2.10.

5.2.4 Baby Universes

This idea proposes that the matter normally thought of as collapsing to a singularity

during black hole formation actually generates a “baby universe” in which the matter

then resides, caused by quantum gravitational effects [30]. This new universe is causally

disconnected from our own and so the information is lost from our vantage point. How-

ever this new universe can be thought of as one section of a multiverse (another section

obviously being our own universe). From the point of view of an observer capable of

making measurements on the whole multiverse information is not destroyed, just trans-

ported. Therefore from our point of view the black hole seems to have evolved from

a pure to a mixed state, whereas in actuality our universe is just a subsystem which

becomes pure when combined with the baby universe subsystem [30, 94].

A deeper analysis of this idea actually shows that black hole evaporation does lead

to a final pure state in our universe [95], but we are still left with the problem of the

unknown mechanism by which the Hawking radiation encodes the information regarding

the collapsed matter, therefore the baby universe hypothesis seems to lack important

elements needed to solve the paradox satisfactorily.

5.2.5 Information Emergence at the End of Evaporation

What about if the information leaks out of a black hole right at the end of its evaporation

process, when the hole is of Planck scale?

Assuming a black hole follows the normal semiclassical evaporation process until its

radius is around the Planck distance, then this takes time roughly of the initial black

hole mass cubed M3 [30]. But then the time required for the Planck-dimensional hole

to completely disappear is of order t ∼ M4 as we now show. Assuming the remnant

emits quanta, the number of which is of order Bekenstein entropy S ∼ M2, and taking

the energy of the remnant to be of order one E ∼ 1, then each quantum emitted has

energy of order M−2 with wavelength given by inverse of the energy. For the quanta

to encode the information that was contained in the remnant then the quanta must
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emerge with minimal overlap; given that the time taken per quantum emission is ∼M2

and there are ∼M2 quanta to come out we arrive at a minimum time required for the

Planck-dimensional hole to disappear given by t ∼M4 [30, 96]. This leaves us with very

long-lived remnants of the type we looked at in 5.2.1, therefore we are burdened with

the same problems we encountered there, namely the potentially infinite degeneracy of

the remnants.

Recent work [97] has shown that even if we postpone information emergence until after

the black hole has reached Planckian dimensions this does not imply that the remnant

contains all of the information. This counterintuitive result is due to the fact that

information isn’t additive, a small amount of quanta can “lock” (render inaccessible)

a large amount of information, with the information only emerging when the hole has

completely evaporated [90].

5.2.6 Treating Black Holes as Rubik’s Cubes

Recently a proposal was put forward to treat black holes as a collection of “Rubik’s

cubes”, configurations of which represent the microstates of a black hole. Let’s look at

this proposal in more detail before explaining its flaws [89, 98].

For simplicity a Rubik’s cube is represented by a 2-by-2 grid of numerals. A possible

grid being:

2 1

3 4
.

These numerals span the internal Hilbert space of the black hole (the black holes we

are looking at have zero angular momentum and charge), their combinations in grids

representing orthogonal states, with the vacuum state represented by

1 2

3 4
.

Czech et al [98] also define four operators:
←−
L which swaps the numerals in the first

column,
←−
R swaps numerals in the second column,

←−
U swaps numerals in the top row,

and
←−
N leaving states unchanged. The Hawking pairs created by a black hole are split
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into ingoing and outgoing particles as we have seen. In this model the ingoing Hawking

particles act as operators on the internal state of the black hole with the accompanying

outgoing particles – contingent on this operation – being of four possible types n, l, r, u.

For clarification: if during the Hawking process an ingoing particle represented by op-

erator
←−
R is created then the internal state of the hole will change (the numerals in the

right column will swap) and an outgoing Hawking radiation particle will be emitted in

state r, the other operators working in analogous ways. The
←−
N operator will leave the

internal state unchanged and emit an “n-particle” which is in actuality the absence of

a particle. An appropriate unitary operator acting on the internal state of the hole and

the state describing the previously emitted Hawking radiation is given by [98]

←−
S =

1

2

(←−
N ⊗ n+

←−
L ⊗ l +

←−
R ⊗ r +

←−
U ⊗ u

)
. (5.16)

In order to more realistically model the black hole, a collection of E number of grids is

used to represent internal state of the hole (the letter E is suggested by Czech et al [98]

as the variable is designed to be redolent of the entropy, energy, or inverse temperature

of the hole as it evaporates, i.e. E decreases until the hole is no more). When the

evaporation operator S “solves” a grid (evolves it to the vacuum configuration), the grid

is removed from the state and a particle is emitted representing a drop in energy of the

hole (detectable by an outside observer) [98]. After the unitary operator S has acted

on the hole many times (analogous to the hole evaporating over a long time period)

then the number of “unsolved” grids E decreases and the entanglement entropy between

outside and inside states of the hole drops to zero at the point of evaporation. Therefore

this model seems to describe an evaporating black hole losing all of its energy to pure

Hawking radiation, seemingly without information loss or pure-to-mixed state evolution.

Is this model physical?

Unfortunately the Rubik’s model is not a physical analogue of Hawking radiation. The

evolution of the system given in Czech et al [98] cannot be physically realised by a hole

well-described by the Schwarzschild metric [89] – the no-hair theorems show that this

metric cannot be significantly deformed [76] – and is in fact a model of a generic burning

object. This model could be used to describe a burning encyclopedia, in which case the

entanglement entropy does drop to zero after it has been completely burnt leaving a pure

radiation field, however black hole evaporation creates a steadily increasing entanglement

entropy as we saw earlier which this model does not address [89].
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5.2.7 Tunnelling

Research has been done [77, 89, 99, 100] treating the black hole evaporation process

as a case of quantum tunnelling. Tunnelling is normally thought of in the context of

a classically forbidden transition of a particle from one side of a potential barrier to

another; in the black hole context the Hawking radiation particle is thought of as trav-

elling from the inside to the outside of the hole, another classically forbidden process.

Parikh and Wilczek [99] showed that Hawking radiation can be derived using tunnelling

considerations but that the emission spectrum deviates from a thermal spectrum, the

authors believed this to be suggestive of the radiation encoding information within its

non-thermal correlations. However as pointed out in Mathur [89] the non-thermal spec-

trum has no direct bearing on the information paradox as the entanglement between

outside and inside Hawking modes still increases steadily as we saw in section 5.1.

Studying Hawking radiation in the context of tunnelling does have certain advantages

however. It is one of a handful of methods that can be used to investigate fermionic

spin-1/2 emission (and that of higher spins) [77, 101] from black holes; and provides an

independent check of their thermodynamical properties, including the Hawking temper-

ature and more generally the Unruh temperature in Rindler spacetimes [101].

5.2.8 Complementarity, Firewalls, and ER=EPR

Black hole complementarity is a very intriguing idea, introduced in the early 1990s,

based on the proposition that a physical theory doesn’t need to be able to describe an

observer who can measure phenomena both inside and outside of a black hole because

such an observer cannot exist [36, 102].

Complementarity attempts to get around the information paradox by positing that mat-

ter falling into a black hole, rather than passing through unimpeded, hits a “stretched

horizon” located a Planck distance above the Schwarzschild horizon, which absorbs

and unitarily reemits it as Hawking radiation [103]. As we saw in section 2.1 the

Schwarzschild coordinates (2.1) seem to show that an observer falling towards a black

hole would take an infinite amount of time to reach the horizon, this was taken as

evidence that the Schwarzschild time coordinate t was unphysical. Complementarity

implies that infalling matter indeed never falls into the hole and passes through at the
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same time without implying a contradiction. In other words after throwing a bit of

information into a black hole, an infalling observer sees it inside whereas an external

observer sees the same bit outside, but there is no one who can see both [104]. The

word complementarity is used because just as in the Bohrian concept of complementar-

ity (where the wave and particle properties of light cannot be measured simultaneously)

trying to measure a bit of information inside a black hole precludes being able to mea-

sure it outside and vice versa, therefore there is no contradiction as no one observer

can achieve both [28]. Black hole complementarity assumes that information emerges in

Hawking radiation, so what would happen if a bit of information fell into a black hole

and an external observer waited long enough to decode the radiation and retrieve the

bit? Could they then carry that bit into the hole and compare it with the bit (the same

bit) that fell in? This would effectively break down the complementarity framework

and also imply that the black hole acted as a cloning machine (forbidden by quantum

information theory); in actual fact this scenario is prohibited as the time it would take

for an external observer to gather and decode the bit from the Hawking radiation would

be much longer than the time taken for the infalling bit to reach and be destroyed by

the singularity [28, 63, 105].

The postulates underlying black hole complementarity are [36, 104]:

• A distant, external observer describes the formation and evaporation of a black

hole as unitary, i.e. in principle there exists a unitary S-matrix describing the

whole process.

• Outside of the stretched horizon of the black hole (at distances > RS + `p) physics

can be described using semiclassical field theory.

• The subspace of states describing a hole has dimensions of eS , where S is the

Bekenstein entropy: S = A
4 .

• To an infalling observer the horizon seems like any other region of spacetime – in

other words the equivalence principle holds.

Let’s look at the original reasoning of Susskind et al [36] which led to the idea of black

complementarity.
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The Penrose diagram for an evaporating black hole is given in Figure 5.4. Assuming the

spacetime in which the black hole lives is globally hyperbolic we can foliate it using a

series of Cauchy surfaces – cf. section 3.1. A Cauchy surface for an evaporating black

hole can be defined which is partially inside and outside of the hole, split into Σbh and

Σout in Figure 5.4, where ΣP = Σbh ∪ Σout – the Cauchy surfaces we are looking at

satisfy the niceness conditions defined in section 5.1. (The Hilbert space of states on

ΣP is a product state of Hilbert spaces defined for the inside and outside of the black

hole [36].) The last of the niceness conditions says that states defined on one slice can

be evolved smoothly to states on slices at later times, therefore a state |ψ(Σ)〉 on Σ can

be evolved smoothly to a state |ψ(ΣP)〉 on ΣP which can then further evolve to |ψ(Σ′)〉

defined on Σ′ (this last space-like slice describes the universe after the black hole has

fully evaporated). As stated above, the first postulate of black hole complementarity

says that |ψ(Σ′)〉 evolves from |ψ(Σ)〉 by a unitary S-matrix – also |ψ(Σ′)〉 must be a

pure state as we assume that the Hawking radiation is pure after complete black hole

evaporation [36]. It is also assumed that the state |ψ(Σ′)〉 evolves smoothly from a state

|ξ(Σout)〉 defined on Σout [36]. This implies (along with the fact that the Hilbert space

on ΣP is a product space) that |ψ(ΣP)〉 = |Π(Σbh)〉 ⊗ |ξ(Σout)〉 where |Π(Σbh) is a state

defined on Σbh.

The product state defined on slice ΣP, |ψ(ΣP)〉, evolves linearly from |ψ(Σ)〉 however

|ξ(Σout)〉 also evolves linearly from |ψ(Σ)〉, therefore it seems to follow that |Π(Σbh)〉

does not depend on the pre-black hole formation initial state |ψ(Σ)〉 – the event horizon

seems to bleach (see section 5.2.2) the information of an infalling state [36, 77]. Comple-

mentarity removes this bleaching effect by arguing that the assumption that there exists

a state ΣP simultaneously describing the inside and outside of a hole is unphysical and

so the above argument collapses [36].

N.B. the stretched horizon of the black hole must be “virtual” as an infalling observer

does not measure it and complementarity doesn’t provide any hair with which a stretched

horizon could thermalise and unitarily reemit the infalling information [77, 106].

As we have seen previously, if semiclassical physics is valid on nice slices through a

black hole spacetime then Hawking pairs will inevitably emerge from the vacuum not

from a stretched horizon, therefore complementarity demands that some new non-local

physics must be important over Schwarzschild horizon scales [77, 106]. A recent paper
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Figure 5.4: Penrose diagram for evaporating black hole foliated by space-like Cauchy
surfaces. Past and future null infinites, singularity and event horizon also shown. Illus-

tration from [36].

[37] – known as AMPS after its authors – argues that the postulates of complementarity

lead to a contradiction, and that assuming information conservation and the validity of

effective field theory away from the horizon implies the existence of a “firewall” at the

horizon – a region of Planck density radiation that would destroy any infalling matter

– thus doing away with the equivalence principle which many authors believe to be too

radical a step [77, 104, 107].

The AMPS argument can be put as follows [106]. Assuming the tenets of comple-

mentarity to be correct, a faraway external observer (A) receives Hawking radiation

emitted from a stretched horizon whereas an infalling observer (B) experiences nothing

unusual as they fall into the hole. For observer A early Hawking radiation is located
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far away from the hole whereas recently emitted radiation is just outside the stretched

horizon; observers A and B find no discrepancies between measurements of early and

recent Hawking quanta [106]. Observer B measures a vacuum at the horizon and so as

we saw at the end of section 5.1 the entanglement entropy of the hole with Hawking

radiation must steadily grow as each new Hawking pair is created. However based on

the assumption that observers A and B measure the same early- and late-time Hawk-

ing quanta, the entanglement entropy between the hole and the outgoing radiation also

appears to steadily increase for observer A; this leads to a contradiction as observer A

should measure the entanglement entropy to decrease after the hole is halfway through

its evaporation in order for the final Hawking quanta field to be pure [106, 108]. By

removing the assumption that observer B experiences nothing at the horizon this allows

the information to be retrieved by observer A however observer B then is burnt up at

the horizon by the firewall [37].

Complementarity demanded non-locality limited to Schwarzschild horizon scales however

it assumed local physics exterior to the stretched horizon, the AMPS argument suggests

that this limitation leads to a seemingly unphysical firewall [77, 106], therefore the

original idea of complementarity [36] does not appear to provide a consistent mechanism

by which information is conserved in black hole evaporation.

Much work has been done attempting to bypass the existence of firewalls (see Mann [77]

for a summary of recent attempts) including string theoretic studies of black holes [26]

(see section 5.2.10), and a very intriguing idea known as the ER=EPR proposal [109].

ER=EPR – the name deriving from the conjectured general equivalence of entanglement

(cf. the Einstein-Podolsky-Rosen paradox) and wormholes (also known as Einstein-

Rosen bridges) – suggests that outgoing Hawking particles are connected to their part-

ners via wormholes [110]. Let’s see how this may help with removing firewalls. Another

way of stating the AMPS paradox is that an outgoing Hawking quantum has to be

entangled with all the previously emitted Hawking radiation if information is to be con-

served, however the outgoing quantum is also entangled with its infalling partner as

we have seen, both of these entanglements experienced by the outgoing quantum are

maximal – meaning that making a measurement just on the outgoing quantum provides

no information about the complete entangled state [111] – which is forbidden by the

well-established monogamy of entanglement [107]. The AMPS authors did not want
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to sacrifice information conservation so they proposed that the entanglement between

Hawking pairs had to be broken, thereby releasing a huge amount of energy at the hori-

zon forming a firewall [37, 107]. The ER=EPR proposal says that the Hawking pairs

are related by wormholes and are therefore not independent systems, allowing them

to interact and leaving the entanglement between outgoing Hawking quanta untouched

[109, 112]. The ER=EPR authors stress that the idea does not disprove the existence

of firewalls however they state that “if it can be shown that the Einstein-Rosen bridge

connecting the black hole to its radiation is smooth near the black hole, then there will

be no firewall” [109] unless the outgoing radiation is manipulated in a very contrived

way. This idea is very recent and is subject to much debate [112].

5.2.9 The AdS/CFT Correspondence

One of the most striking recent discoveries in physics is that string theory in a particular

spacetime background is dual to a supersymmetric gauge theory on the boundary of that

spacetime – the AdS/CFT correspondence [31, 33]. Before looking into the applicability

of this duality to the information paradox let’s introduce the AdS/CFT correspondence

along with it most significant features.

The AdS/CFT correspondence emerged in the late 1990s [31] and is considered to be one

of the most important and interesting results string theory has yet produced [113, 114].

In the simplest possible terms it posits a duality between gravitational theories and

theories without gravity. The original formulation given by Maldacena [31] treated the

equivalence of type IIB string theory compactified on AdS5 × S5 and N = 4 supersym-

metric Yang-Mills theory in 3+1 dimensions.

Definition: Anti-de Sitter (AdS) space is a maximally symmetric solution of Einstein’s

field equations with a negative cosmological constant [115].

Definition: A conformal field theory (CFT) has no dimensional parameters and is

generally also scale invariant (this last point is subtle, see last two of references at end

of this definition). A CFT is particularly useful as it exists at a fixed point of the

renormalization group’s flow and one can easily study its geometry, i.e. define its metric.

[3, 116–118].
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Definition: AdS5 × S5 denotes the ten-dimensional product space of five-dimensional

AdS space and 5-sphere S5 [3].

Definition: N = 4 supersymmetric Yang-Mills theory is a quantum field theory with

non-abelian gauge symmetry that relates bosonic and fermionic fields using four super-

symmetries [3, 119].

Definition: Type IIB string theory describes closed, oriented superstrings of two types:

left-moving and right-moving, which transform under separate supersymmetries having

the same chirality [53].

Since its discovery the correspondence has been applied to areas not originally thought to

have been pertinent including condensed matter physics and relativistic hydrodynamics

[116].

The AdS/CFT correspondence emerges from the duality between open and closed strings

in string theory [113], however the duality can also be motivated by looking at lattice

systems using renormalisation group methods following the approach given in Ramallo

[116]. The renormalisation group treats the running of physical couplings at varying

energy scales. The best known example of this phenomenon being the varying electron

charge in QED [120]. The Hamiltonian of a system without gravity on a lattice, of

spacing a, is given by [116]

H =
∑
i,x

Ji(x, a)Oi(x) (5.17)

where i numbers the different operators Oi, x parameterizes the lattice position, and

Ji(x, a) are the sources for the operators at each point on the lattice. By coarse-graining

the lattice (increasing the spacing between lattice points and averaging the lattice vari-

ables) each operator Oi must be weighted differently, and the sources Ji(x, a) must vary

as the coarse-graining progresses [116]. For example, continually increasing the spacing

between lattice points by a factor of four evolves the sources as

Ji(x, a)→ Ji(x, 4a)→ Ji(x, 16a)→ ... (5.18)

and so on. As can be seen, during the above evolution the Ji(x, a) are dependent on

the scale s = (a, 4a, 16a, ...). At weak coupling the variation of Ji(x, a) with respect to

the scale (i.e. the familiar β function) can be found using perturbation theory methods,

however when the coupling becomes strong the AdS/CFT method suggests treating s as
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an additional dimension [116]. Ji(x, a) are then defined as quantum fields in a space with

one extra dimension with dynamics given by a particular metric (i.e. defining gravity),

with the operators Oi defined on the boundary of this manifold. It may be thought of as

strange that all of the bulk physics can be described by studying the space’s boundary,

however as we saw earlier the entropy of a black hole, all of its hidden information, is

proportional to its area measured in Planck units, not its volume. Some authors have

stated that the breakdown of local gravity theory at some scale due to the AdS/CFT

duality may hold the key the solution of the information paradox [113].

What does a black hole look like in anti-de Sitter space? AdS space has constant negative

scalar curvature creating an effective gravitational field that pulls objects to the center

of the space, irrelevant of the mass distribution in the spacetime. A black hole formed

in AdS space won’t evaporate, the Hawking emission particles from the surface fall back

to the surface [28].

If a black hole were created in AdS space this could, by Maldacena’s duality [31], be

equated with a CFT on the space’s boundary. If the CFT were unitary then we would

expect the bulk evolution to be unitary as well thereby conserving information and

bypassing the information paradox; as stated in Lowe and Thorlacius [33]: the unitarity

property of the boundary CFT “strongly suggests that all information about an initial

state that forms a black hole is returned in the Hawking radiation”. Does the AdS/CFT

correspondence really provide a simple solution to the information problem or as Lowe

and Thorlacius state does it just strongly suggest information conservation without

providing the physical mechanisms for a satisfactory explanation?

As pointed out in Mathur [114], the statement that AdS/CFT proves information preser-

vation in black hole evaporations is a circular argument. A black hole in AdS, just like

in the Schwarzschild case looked at earlier, has a horizon where the state of quantum

fields is the vacuum arising from normal gravitational collapse [89, 114], this vacuum

state at the horizon is “stretched” during black hole evaporation creating entangled

Hawking pairs. This evaporation process must result in either a breakdown of locality,

pure-to-mixed state evolution, or a final remnant state [114]. As we saw at the end of

section 5.1, the hole evaporation necessarily creates a steady increase of entanglement

entropy between the interior and exterior of the hole, this result also holds in AdS space

therefore the only way to ensure a pure final radiation state is to undermine some of
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the assumptions we made in our derivation of Hawking radiation in section 5.1 (we shall

see which in particular in section 5.2.10). So we see that AdS/CFT does not solve the

paradox. Black hole information conservation must be understood on the gravity side

of the coin, not just by considering the CFT side.

5.2.10 Fuzzballs

Arguably the most successful potential solution to the information paradox is the “fuzzball”

proposal [121–123].

In section 5.1 our derivation of Hawking radiation was explicitly predicated on the

horizon having small spacetime curvature to leading order. Let’s quantify the evolution

of modes on the horizon, letting ψi be low-energy quanta (neither trans-Planckian nor

larger in wavelength than the horizon radius) and evolving these forward in a time

interval of order Schwarzchild radius of the hole gives matrix element:

〈ψi|H|ψj〉. (5.19)

Defining the matrix element for the semiclassical evolution of a quantum field on generic

low-curvature spacetime as

〈ψi|H0|ψj〉 (5.20)

gives

〈ψi|H|ψj〉 = 〈ψi|H0|ψj〉+O(ε) (5.21)

where ε is much less than unity. As pointed out in Mathur [114] if (5.21) is valid at

the horizon of a black hole then evaporation will inevitably lead to information loss or

remnants.

The fuzzball proposal undermines the horizon assumption (5.21), it states that there are

corrections at order unity to the evolution of low-energy quanta at the horizon [114]. It

also posits that black holes do indeed have “hair” (string configurations) which when

taken into account can explain the origin of its large entropy, as suggested by Susskind

[124]. Let’s look now in more detail at how the fuzzball construction can explain the

origin of black hole entropy and also potentially solve the information paradox. In the
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following we mainly follow the treatment of fuzzball construction laid out by Mathur

[121] as well as several other sources cited below.

The information paradox relies on quantum gravity effects being confined to within a

given distance – fuzzballs contradict this and undermine Hawking’s argument. Hair

wasn’t found before as perturbative methods were used, the fuzzball constructions are

nonperturbative and construct the hair required for unitary emission of Hawking radi-

ation [121]. The fuzzball proposal emerges from string theory. Since string theory is

thought to be complete and consistent then we must only use objects present within the

theory when forming a black hole (i.e. strings, branes, 2-form fields, 4-form fields, and

so on) [121].

A very important feature of string theory is compactification: whereby degrees of freedom

are said to be compact or non-compact, allowing for dimensional reduction, generalising

the beautiful work of Kaluza and Klein at the start of the last century [52, 125]. For a

string existing in 9+1 dimensions, we can evidently compactify 6 of the spatial dimen-

sions at such a scale that an observer (observer A) sees only 3+1 dimensions. Figure 5.5

shows an example of a dimension wrapped around a cylinder, invisible to observer A who

cannot resolve this compactification. If we let a quantum of gravity, a graviton, travel

around this compact dimension, observer A sees a point mass lying on the non-compact

direction; this point mass then carries “momentum charge” np (if this charge is equal to

the mass of the point seen by observer A then this is called a “BPS object”) [121]. In

a way analogous to above we can wrap a string around the compact dimension (around

the cylinder), again this system appears as a point mass to observer A; now the point

carries “winding charge” [5]. We now have some objects defined in string theory from

which to construct a black hole.

The simplest construction is that of a “1-charge” black hole (using one type of object, i.e.

a graviton or a wound string or some other objects we have yet to introduce) [26]. Firstly

let’s look at a 1-charge hole made from wound strings. Black holes normally studied are

very massive and so to form a realistic hole we should not use a string wound around a

compact direction once, but a string wrapped around many times (with its ends joined)

in order to create an object with a higher winding charge n1 and therefore higher mass

(remember we are treating BPS objects: mass=charge) [121].
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Figure 5.5: Top: Illustration of compactification. Middle: graviton travelling around
compact dimension. Bottom: point mass appearance of graviton to observer A. Illus-

tration from [121].

Counting the number of states of this string wound several times around the compact

direction, taking into account supersymmetry, gives 256 configurations and so an entropy

value given by the logarithm of this number [26, 121]. This entropy value is very small

and more importantly it is fixed, it doesn’t have a functional dependence on the winding

charge n1. The metric produced by this wound string gives a singular horizon and a

zero-valued entropy, as expected from the count of states (ln256 is almost zero); another

type of 1-charge hole, made from a high-energy graviton travelling around the compact

direction, gives the exact same results as the wound string case [121].

What about a 2-charge hole? A wound string can maintain travelling waves (of mo-

mentum otherwise given by a graviton). This is called a NS1-P system, see Figure 5.6

– NS1 referring to the string and P to the momentum of the wave. The momentum

of the travelling wave can be partitioned between different harmonics (i.e. all of the

momentum could be put in the ground state or be more spread out amongst the modes)

and these partitions give different configurations and thus their count can be used to

find a microscopic value of the entropy of the system [121]. As can be seen pictorially

in Figure 5.6 the total length of the NS1 string LT is given by the circumference of the

compact direction (thought of as a cylinder; c.f. Figure 5.5) multiplied by the winding

charge n1 [121]. A single k-th harmonic mode has momentum

p =
2πk

LT
, (5.22)
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whereas the total momentum carried by the string is given by [91, 121]

ptotal =
2πnp
L

=
2πn1np
LT

. (5.23)

If each harmonic k has mk modes then by equating two forms for the total momentum

it trivially follows that ∑
k

kmk = n1np. (5.24)

The number of different configurations is of order [121]

e
2π

√
n1np

6 , (5.25)

partitioning these between c degrees of freedom (from the freedom to vibrate in the 8

spatial dimensions left available in the 9+1 dimensional system) alters the formula for

the number of different configurations, now of order

e
2π

√
cn1np

6 . (5.26)

Exponentiating this number gives a value for the microscopic entropy (using supersym-

metry to account for both bosonic and fermionic modes) [121] of

Smicro = 2π
√

2n1np. (5.27)

Let’s put the above structures into the framework of type IIB string theory in order to

take advantage of its dualities [53] and to find more complicated (3-charge, 4-charge, ...)

constructions. First we compactify the spacetime thusly:

M9,1 →M4,1 × T 4 × S1, (5.28)

where T 4 is a 4-torus and the NS1 and P of the 2-charge system we looked at previously

will be contained on/around the circle S1 [121]. Using both S- and T-dualities we find

that for the NS1-P system, NS1 around S1 is dual to a D5 brane wrapped in T 4 × S1,

and the P charge becomes D1 around S1 [52, 53, 121]. These dualities do not affect the

non-compact directions which is useful as later we will see that the tranverse spreading

of the modes is the source of the fuzzball’s size; the dualities are only in the compact
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Figure 5.6: Top: 2-charge NS1-P system showing compact, and non-compact (left-
to-right) directions. Bottom: Compact direction “rolled out” showing the string’s full

length. Illustration from [121].

directions and so do not affect this result [91, 121].

A brief aside: a P momentum state on an NS1 string with winding charge n1 is split

into “fractional units” of momentum: P
n1

, this will be an important feature which we

will use below [121, 126].

What does our above 2-charge system look like in terms of D1-D5 branes, after using the

above dualities? Just as P momentum states on n1 NS1 strings are split into “fractional

units” the D1 branes, after being bound to n5 D5 branes, are split into fractional units

of 1
n5

times their unbound values [121]. In Figure 5.7 we see that taking n1 D1 branes

(wrapped on S1) and binding this to n5 D5 branes (wrapped on T 4 × S1) produces an

“effective” D1 brane with winding number n1n5; this is due to the fact that the D1 brane

wrapped on D5 has its tension (originating from its Planckian dimensions) reduced by

a factor n5 [121]. This multiplicative winding number n1n5 is redolent of the one we

found for the 2-charge entropy in (5.27), this factor reappearing is unsurprising as each

case is equivalent after taking into account dualities; to be clear, P wrapped on NS1

is dual to D1 wrapped on D5, therefore the same physical results should emerge from

studying either case.
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Figure 5.7: Pictorial view of the effect of binding n1 D1 branes to n5 D5 branes.
Illustration from [121].

Adding momentum P to a D1-D5 bound state gives us a 3-charge system – see Figure

5.8 – with microscopic entropy

Smicro = 2π
√
n1n5np (5.29)

where n1 and n5 are the number of D1 and D5 branes respectively, and np is the

momentum charge of P; this result is derived by using supersymmetric arguments to

account for the bosonic and fermionic modes, and by taking into account that the D1

branes are constrained by the D5 brane thus limiting their degrees of freedom [84, 121].

An RN black hole made in type IIB supergravity with the mass (and therefore also

charge) of the BPS 3-charge system we just looked at gives a Bekenstein entropy equal

to the value given in (5.29) [26], therefore the fuzzball microstate count for a 3-charge

system produces the expected entropy of the associated black hole – a very suggestive

result that fuzzballs may provide the hair required to resolve the long-standing entropy

puzzle.

It would be nice to be able to determine the entropy of the more general non-BPS states.

This can be done by allowing momentum modes P to run in opposite directions around

the NS1 string, in this case the momentum charge cancels but the energy adds; therefore

we get states in which the mass is greater than the charge, this has reproduced the cor-

rect entropy in the non-BPS 2-charge and 3-charge cases [121]. These P modes can also
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Figure 5.8: Pictorial view of D1-D5-P 3-charge system. Illustration from [121].

collide and “come off”, exiting the system at a certain rate, the associated supergrav-

ity black holes emit Hawking radiation at the same rate, suggesting that the collision

of momentum modes (or any phenomena related by dualities) present an alternative

viewpoint of the Hawking emission mechanism [26, 121, 127, 128].

Do the brane-systems we looked at have a size of order the black hole horizon? This

would explain the classical size of the black hole. The key to explaining the size of

brane-systems is – as already mentioned – that branes bound to other branes have their

tension reduced, thus giving a larger size than if they were unbound and had higher

tension [121]. It turns out that the size of the brane-system grows with the number of

charges (momentum, winding etc.) and in certain cases reproduces the Schwarzschild

radius of the black hole [129].

The P modes on an NS1 string that we looked at above can only vibrate in transverse

directions, not longitudinal, because the NS1 string is fundamental, it isn’t made of

smaller elements – these transverse vibrations create a non-zero spread in the non-

compact directions [26, 121]. This spread turns out to be equal to the horizon size of

the associated black hole [91]. If all the available energy is put in a few harmonics of the

NS1 string then we get coherent states, if it’s shared over many different harmonics then

we get a generic quantum state (fuzzball) which has area of order microscopic entropy,

suggesting that black holes may indeed be described by fuzzballs [91].

A collapsing shell of matter has a very small tunnelling amplitude to a fuzzball state

however this is compensated by the very large amount of available fuzzball states – these

factors cancel to give an order 1 probability for the matter to tunnel to a fuzzball state

for times less than the Hawking evaporation time [121].
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The fuzzball proposal is very persuasive as it removes the vacuum state at the black hole

horizon, replacing it by a bound state of strings and branes. The horizon vacuum state –

when stretched during hole evaporation – directly led to a mixed, information-less state

whereas fuzzball radiation does not emerge from a vacuum region. It emerges from

regions (microstate constructions) containing information about the system, therefore

radiating in a way analogous to a macroscopic object [91, 103, 106].

In the future further research needs to be done on the dynamics of fuzzballs and a study

into more general nonextremal microstate constructions, as well as a more quantitative

look at the tunnelling of normal matter into fuzzball states [121]. This will illuminate

the relation between fuzzballs and black holes and put this solution to the information

paradox on firmer ground.

5.2.11 Supertranslations

Recently an idea was put forward that the information of a particle falling into a black

hole is encoded on its horizon by “supertranslations” [130].

Supertranslations refers to the symmetries of future null infinity under the BMS group

which describes asymptotic isometries of spacetime [131, 132]. The vacuum in general

relativity is considered to be highly degenerate with the vacua related by supertransla-

tions associated with a spontaneously broken BMS symmetry – the presence of radiation

can induce transitions between these vacua [133]. An effect called “quantum memory”

(shifts in detector positions and times due to nearby energy-momentum) can in theory

be measured and has been shown to be equivalent to BMS transformations [133, 134].

A supertranslation can therefore shift spacetime coordinates at future null infinity and

so if matter falling into a black hole radiates this can leave an imprint – a form of sought

after hair cf. section 5.2.3 – at infinity as the vacuum there is shifted. This opens up

the possibility that detectors positioned near future null infinity could measurably shift,

recording the information about how the black hole formed [133].

Professor Stephen Hawking [130] has suggested that the horizons of stationary black

holes also experience supertranslations, as the generators of the horizon are shifted by

infalling particles. Further evidence for this can be found in Polchinski [135].
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These supertranslations would manifest as delays in the emission of Hawking radiation by

the hole – encoding the information about what fell in – therefore information is indeed

conserved; the S-matrix is also invariant under these supertranslations and so there is

no pure-to-mixed state evolution [130]. Further, this suggestion would be satisfying if

shown to be correct as it would presumably remove the need for certain unfavoured

concepts such as interiors of black holes leading to other universes and remnants.

The idea seems to avoid the problem of steadily increasing entanglement entropy between

the interior and exterior of black holes during evaporation that we looked at earlier in

section 5.1. The increasing entanglement result was predicated on the horizon being a

vacuum – information-free – creating Hawking pairs with no relation to whatever formed

the hole. Supertranslations may undermine this assumption by providing a horizon rich

with information, which can then be carried out by the Hawking radiation thus solving

the information paradox.

Applications of supertranslations to black hole horizons is still in its infancy and further

work is due to be published on the subject in the coming months [130].



Chapter 6

Conclusion

In this dissertation we have set up the black hole information paradox and reviewed the

most promising attempts so far at toppling it.

We began with a short look at the history of black holes as an idea and some of the most

powerful mathematical tools that are commonly used to study them. A comparison of

the rules that have been developed for describing black holes and the laws of classical

thermodynamics was also included to show the striking similarities. We chose to derive

Hawking radiation from black holes by way of the Unruh effect as we found this to be

illuminating in showing how the concepts of particles and the vacuum are contingent

on the state of observers in quantum field theory. Information and its relationship with

entropy – specifically entanglement entropy – was introduced in order to clarify the main

conceptual points involved in the paradox, before moving on to an appraisal of possible

solutions.

The first potential solution we looked at involved remnants, a relatively old idea which

suggested that holes stop evaporating before becoming Planck-sized where it was as-

sumed quantum gravity effects would become important. This suffered from numerous

problems as discussed, information emerging from black holes right at the end of evap-

oration led to some of the same issues. We also looked at a recent interesting paper

treating black holes as a collection of Rubik’s cubes, although this turned out only to

be able to model the burning (and emission of radiation) of macroscopic objects, not

including black holes. Another intriguing paper concerned the conjectured equivalence
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of entanglement and wormholes and its applicability to the information paradox, it is

not clear at this time how applicable this equivalence will prove to be.

A very important event in the history of the paradox involves the AdS/CFT duality.

This relationship convinced many physicists that information had to be conserved in all

physical processes. Of course this didn’t solve the problem but it did frame the paradox

in a new way, most researchers now are convinced black holes evolve unitarily.

Several of the proposed solutions had unappealing elements which we discussed includ-

ing: the infinite degeneracy of suggested Planck-sized remnants, the contradictions in-

herent in complementarity as shown by the AMPS paper authors, as well as the conclu-

sion of the AMPS authors that the horizon of a black hole must be a highly energetic

and lethal place for infalling observers – contradicting the well-established equivalence

principle of general relativity.

In the author’s opinion the most promising attempt at a solution to the paradox so

far is given by the fuzzball, emerging from superstring theory. This has allowed the

microscopic entropy of several types of holes to be accurately rederived by a count of

bound states of strings and branes. Fuzzballs also provide a mechanism for unitary

emission of radiation, and again the rate of emission agrees with that predicted by

semiclassical theory. Further investigations into the tunnelling of collapsing matter into

fuzzball states and their use in describing more general black holes will shed more light

on these exotic objects and their link to semiclassical black holes.

The root cause of the paradox is the information-free vacuum state at the event horizon

as predicted by general relativity. As black holes evaporate this vacuum “stretches”

producing Hawking pairs independent of the matter that originally formed the hole. The

recent proposal by Professor Stephen Hawking that supertranslations encode information

at the horizon may remove this information-free property providing a mechanism for

information emission. This idea is encouraging as it is not reliant on small corrections to

the semiclassical derivation of Hawking radiation – which as we saw would be insufficient.

From our consideration of the current state of the paradox it seems as if research at this

time is as active – if not more so – than at any time in the past, stimulated in large

part by the discovery of the AMPS firewall. A resolution of the paradox, irrespective

of whatever particular idea or framework provides the answer, would be a major step
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forward in our understanding of the universe and the next few years ought to be a very

exciting time in this area of physics.
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