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“How wonderful that we have met with a paradoxr. Now we have some hope of making

progress.”

Niels Bohr

“Nature is wont to hide herself.”

Heraclitus



Abstract

A review of the black hole information paradox and its potential solutions is presented.
Firstly we take a brief look into the history of black holes, some of the most useful
mathematical tools used to investigate them, and the discovery that they are thermo-
dynamical systems. A derivation of Hawking radiation using the Unruh effect is then
presented before introducing information theory and a survey of modern attempts to
resolve the information paradox. We conclude that the “fuzzball” proposal originating
from string theory is the most promising solution to have been put forward so far. The
recent proposal by Stephen Hawking involving supertranslations of the event horizon is

also included.
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Chapter 1

Introduction

The black hole information paradox may be considered later in the century to be one of

the defining collisions of the principles of modern physics.

Paradoxes have a long and fascinating history in the natural sciences and mathematics,
they usually result from the use of concepts that are ill-defined or self-referencing, and
quite often are not paradoxical at all (i.e. the “twin paradox” of special relativity)
[1, 2]. They can also emerge from a clash of theories. The great physical paradox
of the turn of the 20th century, the ultraviolet catastrophe, emanated from a clash of
physical theories — between classical statistical thermodynamics and field theory [3].
This ultimately led to the genesis of quantum theory. In an analogous way, Albert
Einstein’s early gedankenexperiments exploited the discord between Galilean relativity
and classical electrodynamics, leading to the special theory of relativity [4]. In each of
these cases the conflict of ideas and their apparent discontinuities provided the conditions

out of which new and deep ideas emerged.

The black hole information paradox is the result of a contradiction between the founda-
tions of general relativity and quantum mechanics and has been called both a “serious
crisis” [3], and “probably the most important issue for fundamental physics today” [5].
Before discussing the paradox in more detail let’s take a look at a brief history of black

holes.

A black hole is an object so massive that the gravitational field it produces prevents

even light escaping its pull. The size of the black hole is defined by the size of its event
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horizon, anything that falls past the event horizon can never escape. Except possibly

information, as we will see later.

The first hint that black holes may be lurking in the universe occurred during the
late eighteenth century when the Reverend John Michell, using Newton’s corpuscular
theory of light, found that if a star were sufficiently massive, its escape velocity would
exceed the speed of light (which was known with remarkable accuracy at the time)
[6, 7]. Around the same time as Michell’s work, the eminent French scholar Pierre-
Simon Laplace discovered the same result and put it on a more mathematical grounding
[8]. By the 19th century the corpuscular theory favoured by Newton [9] had gone out
of fashion, replaced by the wave theory of light (based on work by Christiaan Huygens,
Augustin-Jean Fresnel and Thomas Young amongst others) [10, 11], after which time

the idea of dark stars was left as a theoretical pecularity.

It took until the publication of Einstein’s general theory of relativity and Karl Schwarzschild’s
elegant vacuum metric solution that a black hole geometry could be derived and its fea-
tures — such as its event horizon — parameterized and studied [12]. Despite this, Einstein
and others refused to believe in the existence of black holes, believing them to be just
too exotic, and produced work attempting to show how massive objects (such as stars)

could never implode to such a degree that they would produce black holes [13].

By the 1920s high-density white dwarf stars had been discovered and an upper limit
to their mass — the Chandrasekhar limit — had been theorised, past which the star
would continue to collapse with gravitational effects overcoming the electron degeneracy
pressure [14]. It was natural to consider what would happen to a star with a mass that
exceeded this limit and even denser neutron stars were studied in the 1930s leading to
a further implosion limit, the Tolman-Oppenheimer-Volkoff limit [15]. In 1939 work
by Oppenheimer, Volkoff and Snyder [16, 17], utilising Einstein’s field equations and
Schwarzschild’s vacuum solution, suggested that if a ball of gas were sufficiently massive
(and suffered from no outward pressure to counteract collapse) the gas would implode
indefinitely, producing an inifinitely dense singularity and an event horizon. This paved
the way for further investigations and for faith in the existence of black holes by the
scientific community to grow substantially by the 1960s, largely thanks to improved
astrophysical computer simulations of collapsing matter; from this time up until the

middle of the 1970s a “golden age” of classical black hole physics was underway [10].
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Work done at this time led to more features of black holes being predicted and studied,
including their mass, electrical charge and angular momentum, leading to the “no-hair
theorem”, this stated that the information concerning the nature of a collapsing body
that formed a hole had to be encoded purely in terms of these three features — an external
observer cannot see any other features of the collapsing mass due to the presence of the
event horizon [10]. Another important discovery treated the possibility of extracting
work from a rotating black hole, theorised by Penrose and Floyd [18], as well as the
cosmic censorship hypothesis which posited that singularities should not be visible in

the universe — they should always be hidden behind event horizons [19].

At the start of the 1970s quantum theory began to be combined with the classical general
relativistic treatment of black holes, during this time the four classical laws of thermo-
dynamics were found to be strikingly analogous to the rules that had been developed
to describe black holes [20]. Most intriguingly the generalised second law suggested by
Bekenstein [21] gave an entropy for a black hole proportional to its horizon area. Stephen
Hawking’s discovery in 1974 [22] that black holes radiate was a revolutionary discovery
which cemented the relationship between black hole physics and thermodynamics and
uncovered a deep, mysterious link between quantum gravity and thermodynamics that

is still being studied extensively today [10, 23].

Stephen Hawking’s papers [24, 25] on the emission of radiation from black holes suggested
that the information inherent in a system that fell into a black hole would be forever
lost, radiated away as black body radiation until eventually the black hole evaporated
away completely, a conclusion incompatible with quantum theory. Around this time
several other papers were published which highlighted a possible deep link between black
holes and thermodynamical systems; firstly an analogue second law was put forward
which associated the entropy of a black hole with its area, and then three other laws of
black holes were found with striking similarities to the zeroth, first, and third laws of

thermodynamics [20-22].

The destruction of information, as implied by the thermal nature of Hawking radiation,
and also the origin of the extremely large entropy of a black hole (seemingly contradicting
the “no-hair theorem”) are puzzles that demand — and stimulate the search for — a full
theory of quantum gravity. At this time there is still no consensus regarding what a

theory of quantum gravity should be, however string theory is one of the most promising
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and most studied candidates, and its combination with supersymmetry has led to a
strikingly accurate rederivation of the entropy of certain types of black holes (which we

shall look into in more detail later on) [10, 26].

Although some prominent physicists [27] were content to give up the tenet of information
conservation, other theorists [28] thought this conclusion to be deeply unsatisfactory and
a step too far as it contradicted a foundational principle of quantum mechanics, namely
that the evolution of a quantum state should be unambiguously determined by an invert-
ible unitary operator [29]. Many ideas were put forward after the discovery of Hawking
radiation that attempted to come up with ways of somehow conserving information
during black hole evaporation, these included the information being somehow encoded
within the Hawking radiation, being contained in Planck-scale “remnants”, leaking out
right at the end of evaporation, being encoded within distortions of the event horizon
and even the possibility of the information being stored in baby universes apart from

our own [30].

The AdS/CFT correspondence [31], which states that there exists a duality between
gravitational theories in the bulk and quantum conformal field theories on the boundary,
convinced many physicists that information had to be conserved in black hole evapo-
ration somehow and that all that was needed to be done was to find the mechanism

[32-35].

In the early 1990s a promising solution appeared in the form of “complementarity”
[3, 36], which posited that information falling into a black hole both passes through
the event horizon and bounces back off of it to be collected by an external observer.
This counterintuitive idea is not contradictory as no single observer can detect both
the inward and outwardly propagating information. However the conceptual difficulties
remained and in 2013 the AMPS “firewall” paradox [37] showed that complementarity
led to a very strange conclusion, that there must be a layer of high-energy quanta — a
firewall — at the event horizon that would fry any observer who fell in. The equivalence
principle of general relativity suggests (ignoring tidal effects) that an observer should
feel nothing strange when falling through the horizon and so the firewall conclusion has

proven to be very perplexing indeed.

An exciting solution from string theory known as the “fuzzball” proposal describes the

microstates of black holes as bound states of strings and branes, effectively removing
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the traditional event horizon and singularity; fuzzballs allow information to leak out in
Hawking radiation and can be used to correctly rederive the Bekenstein entropy of the

hole, a very suggestive result [26].

We shall begin by briefly looking at the basic properties of black holes and some of
the mathematics that is commonly utilised when studying them. Then the treatment
of black holes as thermodynamical systems will be introduced before moving on to a
derivation of Hawking radiation via the derivation of Unruh radiation — experienced
by an eternally accelerating observer in empty space. This will be followed by a short
discussion of information theory and a precise statement of the information paradox.
The final part of the work will be a review and appraisal of the main solutions to the

paradox that have been put forward so far.



Chapter 2

Black Holes

2.1 The Basic Properties of Black Holes

In this section I have mainly followed the treatments given in Dowker [12], Carroll [15],
Wald [38], and Townsend [39]. This section presents a small sample of the most basic
features of black holes, the most important part in relation to the information paradox

is the discussion of the Rindler metric.

The study of black holes in general relativity is done using a wide variety of coordinate
systems (and sometimes without any at all [40]). Some coordinate systems have sin-
gularities, places where the spacetime point is mathematically ill-defined. Singularities
can occur simply due to an artifact of the system being used, however they can also
result from a physical property of the spacetime being considered, i.e. as a result of the

curvature associated with a spacetime point being infinite.

One of the earliest and most important coordinate systems that was used to study black
holes was the Schwarzschild system mentioned earlier. This solution is valid in a vacuum
region surrounding a spherically symmetric distribution of mass and can be derived from

Einstein’s field equations [15]. The Schwarzschild line element is [12]:

2G M 2GM\
ds® = — <1 - G2> Adt* + <1 - G2 > dr? + r2d6? + r*sin® 0d¢? (2.1)
re re

where r is a radial coordinate which runs from zero to infinity, € the polar angle, ¢ the

azimuthal angle, M the mass of the black hole, and ¢ the time coordinate. We will see

6
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later how these coordinates should not necessarily be taken as literally representative
of physical quantities. The coordinate systems we will look at contain an infinity corre-
sponding to the physical singularity at the centre of black holes. These singularities can
be seen to be physical and not an artifact of the mathematical system in use by finding
an invariant measure of the curvature of spacetime such as the Kretschmann scalar, this

measure is formed from two Riemann curvature tensors:

K = Rypeq R, (2.2)
for a Schwarzschild black hole its value is K = 48?3{;\/[ : [41]. This can be seen to diverge

as r reaches zero which is expected as the centre of the hole is normally thought of as

having infinite density.

From a quick inspection of (2.1) it is apparent that there are two singularities. One

at r = 0 and the other at r = Q%M , the latter known as the Schwarzschild radius (or

event horizon radius). In the subsequent analysis we will see that the Schwarzschild
radius is not a physical singularity but only a feature of the metric. Due to Birkhoff’s
theorem [15], the Schwarzschild metric is the unique spherically symmetric solution to

the vacuum field equations of Einstein.
Einstein’s field equations are (with zero cosmological constant) [15]:

1 rG

R;w - *QWR = CT

5 Lyw- (2.3)

By multiplying both sides of the field equations by ¢g#”, and in addition using ¢g""R,,, =
R, ¢"T,,, = T and g"g,, = D, where D is the number of spacetime dimensions, we
obtain:

R—ZR=—"—"-T. (2.4)

Solving for R, inserting the solution into (2.3) and setting D = 4, the field equations

become:

8¢ 1
R,U,z/ = CT (T,U'V — 2Tg/“/) . (25)

The form of the field equations given in equation (2.5) clarifies the effect of setting the

stress-energy tensor T}, to zero, namely it forces the Ricci tensor R, to also vanish.
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For a simple way to study the dynamics of black holes we shall look at an imploding
spherically symmetric ball of pressureless dust. Due to Birkhoff’s theorem we know
that the Schwarzschild metric must describe the region outside of the ball (and due to
continuity of the metric must also apply to the surface). For a particle constrained to
the surface of the ball and moving purely in a radial direction we can analyse its motion

as it falls towards r = 0.

The action of this contrained particle is [12]:

1 dzt dz¥ 9
— . _ . 2.
5 2m / <g“ dr dar " ) ar (26)

where 7 is the proper time along the particle’s worldline and m is its mass.

The four-position of the particle can be parameterized as z#(7) = (¢t(7),7(7), 00, P0); o
and ¢ are both constants due to the motion being purely radial; from now on for ease

of notation we shall assume ¢ = G = 1 unless otherwise stated [12].

Defining the radius of the collapsing sphere (and therefore the position of the particle)
as R(t), equivalent to r(7(t)), and solving the Euler-Lagrange equations for the action

produces a conserved quantity:

2M Y\ dt
e=(1—— | — 2.7
< R > dr (2.7)
which can be interpreted as the particle’s energy per unit rest mass, measured by an

inertial observer positioned at an infinite radial distance [12].

It can be derived from the Euler-Lagrange equations that % vanishes at two values of R:

one at R = 2M and one at R = 12_]{2 (due to the fact that the particle is assumed to start
its trajectory from rest at this latter point) [12]. But what is the correct interpretation
of the apparent suspension of the particle at R = 2M and why does the particle take
an infinite time ¢t to reach R = 2M from its starting position? The reason for such
a strange result stems from our use of ¢, which is only a valid measure of time for an
observer stationed at infinity, replacing this parameter with the proper time 7 of the

infalling particle we find that the time taken for it to reach R = 2M (and also R = 0)

from its starting point is finite [12].
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As we have seen we must be careful when interpreting coordinates in general relativity.
From equation (2.1) it can be noted that the Schwarzschild metric coefficients change sign
inside the event horizon, i.e. the r coordinate suddenly behaves like a time coordinate
and ¢ behaves like a radial coordinate; this makes our calculations seem slightly shaky.
Next we will look at some other coordinate systems which are better behaved at the

event horizon and allow for easier physical interpretations.

Eddington-Finkelstein coordinates are useful for studying the region across the event
horizon of a black hole and are derived by firstly using tortoise coordinates (named

memorably by John Wheeler) given by [42]:

r—2M
=7 +2MI . 2.8
e n( 20 ) (2:8)

Ingoing null geodesics followed by photons can be defined by v = constant where v =

t + r, and outgoing null geodesics by u = constant where u =t — r, [12].

Ingoing Eddington-Finkelstein coordinates are defined by transforming the ¢ coordinate

to v in the Schwarzschild metric to get:

2M
ds? = — <1 — 'r> dv? + 2dvdr + r2d6? + r? sin® 0do>. (2.9)

As can be easily seen there is no singularity in the IEF metric when R = 2M, and also
the determinant of the metric is non-zero at this point, indicating that the metric is

invertible and regular at the horizon [12].

What would the metric look like for an eternally accelerating observer? This observer
exists in Rindler space (which is a subregion of Minkowski space) and we will now look at
it in some detail as it is particularly useful in the study of black hole physics, especially in
the derivation of Hawking radiation as we will see later. I have followed the treatments

of Rindler space given in Dowker [12], Carroll [15], and Blau [43].

For simplicity let’s analyse the physics of an accelerating observer in 1+1 dimensions.
In the following derivations we take the Minkowski signature as (—). The observer is
travellling in the z-direction and has an acceleration of magnitude «. The trajectory

can be parameterized in Minkowski spacetime by [15]:

P(r) = <;sinh(a7), ;cosh(a7)> , (2.10)
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where 7 is the observer’s proper time. In Minkowski spacetime the acceleration two-

d2zH

vector is a# =

finding the components of the acceleration using equation (2.10)
it is easy to see that /a”a, = «, therefore the path parameterized above does in-
deed describe an observer eternally accelerating with magnitude «. Using the identity
cosh?0 — sinh?0 = 1 [44] it is apparent that the Rindler path (path of constant acceler-
ation) adheres to

P (r) = P(r) + . (2.11)

x asymptotes to —t at past null infinity and asymptotes to ¢ at future null infinity.

Let’s choose a new set of coordinates (7, ) that are better “adapted to uniformly accel-
erated motion” [15], obeying:
1 e
t = —e“sinh(an),
a
1
x = —e®cosh(an). (2.12)
a
Both 1 and ¢ range from negative to positive infinity. Region I of Figure 2.1 is covered
by z > [t].

The Rindler path previously given by equation (2.10) is now given in terms of the new

coordinates:

n(r) ="
£(r) = %ln (%) : (2.13)

Under the new coordinates, the Minkowski metric becomes the Rindler metric describing

the frame of the eternally accelerating Rindler observer:

ds® = €2 (—dn? + d&?) . (2.14)

The Rindler spacetime is embedded in Minkowski spacetime. Region I is the only region
accessible to an observer with constant acceleration in the positive z-direction [15].
The lines of x = 4t are asymptotically approached by Rindler observers at past and
future null infinity and so the lines demarcate types of horizon, we will see exactly what

types of horizon in section 3.2 on the Unruh effect (strictly speaking these horizons
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\ 11
1n = const. \

IV I

worldline of stationary observer

I
& = const. \

F1cURE 2.1: Rindler spacetime. Region I is the only region accessible for an eternally
accelerating observer in the positive xz-direction. Lines at 45 degrees demarcate separate
regions.

are fundamentally different from black hole event horizons as the Rindler horizon is
dependent on the observer’s motion [12]). Due to the equivalence principle of general
relativity these tools can apply to an observer in a constant gravitational field — we will

elaborate on this in section 3.2 and build on it in our derivation of Hawking radiation.

The Schwarzschild black hole, although useful pedagogically, is not representative of
the black holes thought to be found in our universe. Real black holes are predicted to
have non-zero angular momentum and can also have electric charge, whereas the only
property of the hole described by the Schwarzschild system is its mass. The metric used
to describe a charged black hole is the Reissner-Nordstrom solution, this is formed by

varying the Einstein-Maxwell action [12]

1

S=—
167

/ V—9(R— F,, F")d*z (2.15)
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to obtain the equations of motion

1 1
Ry — §Rgu,, =2 <FWFC§, — 4gu,,F/37F57) , (2.16)

V= . (2.17)

The spherically symmetric metric solution is [12]:

oM Q? oM Q2!
ds® = — (1 -+ %) dt® + (1 -+ Qz) dr® + r?df® + r®sin® fd¢* (2.18)
r r r r
where @ is the charge of the black hole. This is the unique spherically symmetric solution

to equations (2.16) and (2.17) [38]. Introducing the function:

A=Q?>—2Mr+ri=(r—ry)(r—r_), (2.19)

where ry =M +/M? —Q?, (2.20)

gives a form for the metric:

A 2
a?+

ds* = —=
iy r2 A

dr? + r2d0* + r?sin*0d¢?. (2.21)
The units are geometrised in this subsection, so mass M and charge ) have the same

units [12].

The cases where @ > M, @ = M, and Q < M lead to very different physics and
interesting reviews of these can be found in [12, 15, 38, 39]. How can a more general

black hole be described?

For this we require the Kerr-Newman solution which includes both the charge and an-
gular momentum of the hole. This solution describes a charged hole of mass M rotating

through the polar angle ¢ with angular momentum per unit mass a [12, 39]:

A — a%sin?0 by 2a5in>0
dszz_(gm) a4 e = 2P0 (2 4 2 ) dvdd + vab?

N < (1"2 + a2)2 — Aa2sin?6

> ) sin?0d¢?, (2.22)
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where

¥ =r? 4 a®cos®6, (2.23)

A =712 —2Mr+Q? +d?, (2.24)

and the components of the vector potential are

A= A= —M, A, = Ay = 0. (2.25)

When the charge @ is zero then we find the Kerr metric. The Kerr metric has the
curious property that it describes a singularity in the shape of a ring centred at r = 0

with finite radius [12].

The Kerr/Kerr-Newman black hole descriptions are not spherically symmetric as they
rotate around polar axes, this suggests that we cannot use an anaologue of Birkhoff’s
theorem, and so the metric shown above is not necessarily valid on the surface of the
collapsing matter used to form the black hole [12]. At late times the spacetime around the
rotating black hole “settles down” to a stationary state which exhibits time-translation
symmetry or equivalenty has a timelike Killing vector field (introduced in the next

section) [38].

2.2 Useful Mathematics for Black Holes

I have mainly followed the treatment of the mathematics of black holes given in Car-
roll [15] and Poisson [45]. One of the most powerful techniques used in the study of
black holes and general relativity is differential geometry. Here we will look at some
of the basics of differential geometry and introduce the technical apparatus required to

understand some of the salient features of black holes.

A manifold is a topological space which locally looks Euclidean [46]. Let’s define a vector
field on the manifold v*(z), with integral curves z#(t) where v* = %. Now if we have
a tensor defined on the manifold at a certain point T'(p) (the arbitrary covariant and
contravariant components of 7" are implicit) we would like to see how it changes with

respect to the integral curves. A diffeomorphism maps a manifold to itself ¢ : M — M

and lets us push forward and pull back arbitrary tensors along integral curves; if the
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vector field on M is everywhere smooth and non-zero then the collection of its integral

curves forms a congruence [15, 47].

¢s(p) defines the point parameter distance s along from p; the parameter s indexes the
distance along an integral curve (every point on the manifold is defined to be on a unique
integral curve). The Lie derivative of the tensor 7" along the vector field v*(x) is given

by [12]:

L,T = lim

lim (2.26)

<¢Z‘ [T(¢t(pt))] - T(p)> _

¢; pulls back tensors. So the Lie derivative can be interpreted as comparing how the
tensor at point p, T'(p), compares to the tensor at point ¢.(p) pulled back to point p

along an integral curve — see Figure 2.2.

Let’s apply the Lie derivative to the metric tensor g, and utilise the equality [45]:
(Evg)p,y = VMUV + vl/vp,- (227)

When the above equation equals zero this is known as Killing’s equation and any vector
v that satisfies it is a Killing vector. Killing vectors indicate the directions in which
the metric is unaltered [48]. There is an easy way to find out whether a metric has a
Killing vector: if the metric coefficients are independent of a coordinate, say for example
time ¢, then % is a Killing vector. If the metric coefficients are independent of ¢ then
the metric is stationary, if they are independent of the polar angle ¢ then the solution
is azisymmetric [49]. Spacetimes that are stationary and axisymmetric are significant
in that they describe the equilibrium setting for rotating, axisymmetric bodies; and
stationary, axisymmetric vacuum solutions to Einstein’s field equations are very useful

for describing the region around rotating black holes — cf. the Kerr metric [38].

Killing vectors also allow a conservation law to be formed for particles travelling on
geodesics through a spacetime. For the Killing vector v#, a conserved charge @ is
formed by multiplying the vector by the generalised momentum

o

= (2.28)

Pu

where £ in equation (2.28) is the Lagrangian density of the system [12]:

Q = v"py. (2.29)
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0 [T@, (P)]

5 i

FIGURE 2.2: Pictorial view clarifying Lie derivative. Illustration from [50].

Hypersurfaces are also a prevalent feature of general relativity [45]. The hypersurfaces we
will be looking at are submanifolds of one less dimension than the full four-dimensional
spacetime. They can be either timelike, spacelike, or null, depending on the properties of
their normal vectors. If one has a normal vector that is spacelike then the hypersurface is
timelike and vice versa; a null hypersurface has null normal vector [12]. A very important
feature of general relativity useful in the study of black holes is a Killing horizon. Given
a Killing vector field x* that is null along a null hypersurface ¥, then ¥ is a Killing
horizon of x [45]. The link between Killing horizons and event horizons is given in
Carroll [15]: “Every event horizon ¥ in a stationary, asymptotically flat spacetime is a
Killing horizon for some Killing vector field x*”. Killing horizons are useful in that they
allow us to define a quantity known as surface gravity: along a Killing horizon, a Killing
vector field x* satisfies

XV ux® = —kx® (2.30)

where k represents the surface gravity, which normally has a constant value over the
horizon — except in certain special circumstances where it can change sign which will
not be relevant for our discussion [15]. k can be scaled by an arbitrarily chosen constant,
however we can fix it at a certain value using boundary conditions. For example in an
asymptotically flat, static spacetime the Killing vector k = % can be set to k, k* = —1
at infinity which fixes the value of k. The applicability of the label “surface gravity”

results from the following definition, also from Carroll [15]:
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“In a static, asymptotically flat spacetime, the surface gravity is the acceleration of a

static observer near the horizon, as measured by a static observer at infinity.”

A static observer is defined to be one whose four-velocity u* obeys [15]
k= Vut, (2.31)

Multiplying the contravariant k¥ by its covariant counterpart k,, and remembering
u? = —1, trivially gives a value for V (which is a function of spacetime coordinates)
of \/TW Due to our boundary conditions V is zero at ¥ and tends to 1 as infinity
is reached (since here k,k* = —1). V is generally called the redshift factor [38] for a

reason we will now see.

Remember that conservation laws emerge from considerations of Killing vectors, from
(2.29) we found that a Killing vector has an associated charge that is conserved along
geodesics. In Schwarzschild spacetime, with metric given by (2.1), there is a conserved
charge () associated with Killing vector k = % [12] — in component form k* = (1,0,0,0)

— given by:

(2.32)

where m is the mass of the particle on the geodesic. To clarify the physical meaning of

Q:

pu=(—E,p)
dz¥
= MGuv——>»

dr

(2.33)

so the energy of the particle per its rest mass is (as measured by an inertial observer at
infinity):

E___d
m gOOdT

oM\ dt (2.34)
B (1 - > dr’
r dr
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from here we trivially find @ = —F.

Back to our redshift factor V. The frequency of a photon as measured by an observer
with four-velocity u* is w = —ptu, [15], and from our proof above we have the pho-
ton’s energy as £ = —ptk,. The quotient % therefore gives w, revealing why V is
called the redshift factor. Picture two static observers outside of a Schwarzschild black
hole, observer 1 emits a photon of wavelength A; which observer 2 measures as having

wavelength redshifted to Ao = %)\1.

The four-acceleration a¥ = u*V,u” can be expressed as a, = V,InV where

1
a= VYV, (2.35)

this goes to infinity at the horizon where the redshift factor becomes zero [15]. Schwarzschild
spacetime is static (and therefore stationary) and asymptotically flat and so the Killing
horizon associated with % coincides with its event horizon. Therefore we can see that
a going to infinity at the Killing horizon is physically reasonable, since for an observer
hovering just above the event horizon to stay static would require an incredibly high out-
ward acceleration to ensure that they didn’t fall in. At the horizon itself the acceleration

would become infinite. The surface gravity at the horizon is taken to be
k="Va, (2.36)

the “redshifted” acceleration [38]. We can also see now that the event horizon is a
surface of infinite redshift. Moving observer 1 to the horizon pushes its redshift factor

V1 to zero; infinitely stretching the outgoing signal.

Let’s calculate some of the values for these quantities in Schwarzschild spacetime as
they will be very useful for us later on when deriving black hole evaporation by Hawking
radiation. The Schwarzschild spacetime has Killing vector k# = (1,0,0,0) and a static

four-velocity calculated by:

v
—1 =v"u"gu

= (u9)? (1 B 2M> | (2.37)
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using (2.1), leading to u® = liLM. From (2.31) V is obviously:
2M
V=4/1-= (2.38)
r

Using a, = V,InV we find:

ay, = 1V,, {ln (1 — W)}
2 T

M

= 5o (1— 2 V,r (2.39)

r

Giving magnitude:

—c W)* | (240

Finally, the surface gravity at the horizon is equal to Va therefore using (2.38) gives for
a Schwarzschild black hole [23]:
K=—. (2.41)

2.3 Black Hole Thermodynamics

The deep connection between black holes and thermodynamics first came into view in
the early 1970s [10]. There appeared to be a remarkable similarity between the “laws”
that had been derived concerning the behaviour of black holes and the four laws of
thermodynamics [20] — see Table 2.1. The “second law” for example posited that the
entropy of a black hole was analogous to its area. Bekenstein [21] argued that black
holes must have a physical entropy as otherwise throwing a highly entropic system into
the black hole would allow for the entropy of the universe to be arbitrarily diminished.
Therefore he put forward a generalised second law which stated that the total entropy of
matter outside of black holes plus the entropy of the black holes themselves could never
decrease. Initially it was believed that the similarity between the surface area of a black
hole and its entropy was purely structural and that the black hole couldn’t actually have
an entropy as its temperature was zero [12]; however after Bekenstein’s arguments and
the discovery of Hawking radiation, a thermodynamic temperature was associated with

the hole (which we shall derive in section 3.3), and the association of area and entropy
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Law

Classical Thermodynamics

Black Holes

Oth

The temperature T' is con-
stant all through a system
in thermal equilibrium

The surface gravity k re-
mains constant over the
event horizon of a station-
ary black hole

1st

dE = TdS+ work terms

dM = -rkdA + QudJ

2nd

The entropy S increases or
stays the same in any pro-
cess

The area A increases or
stays the same in any pro-
cess

3rd

T = 0 cannot be achieved
in any physical process

k = 0 cannot be achieved
in any physical process

TABLE 2.1: Comparison of laws of thermodynamics and black hole mechanics [12, 20,

38].

was put onto more solid ground [24]. See Carroll [15] and Jacobson [23] for a much more

detailed exposition of black hole thermodynamics.



Chapter 3

Hawking Radiation

3.1 Quantum Field Theory in Curved Spacetimes

Quantum field theory has over the past century proven to be the basis for arguably
the most successful scientific theories ever produced. It forms the language of quantum
electrodynamics, quantum chromodynamics and is a very powerful tool in the study and
development of condensed matter systems [51]. The combination of quantum field theory
and the general relativistic description of gravity has turned out to be extremely difficult,
although significant progress has been made within the frameworks of supersymmetry,
string theory, and other candidate theories [52-54]. In this section we will look at
quantum field theory on fixed curved spacetimes. By fixing the background spacetime
we significantly simplify the physics as we are in effect ignoring the “back reaction” [3]
of the matter on the geometry. First we will very briefly look at the main features of a
quantum field theory in flat spacetime, after which these features will be compared and
contrasted with the features of the theory in a curved background. In this section I have

mainly followed the treatments given in Dowker [12], Carroll [15], and Wald [55].

The simplest field to study, but containing all of the salient features relevant for our

discussion, is the real massive scalar field ¢. The Lagrangian density for ¢ is

L= 0" 00,6 — L’ (3.1

20
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where the metric g"” here is Minkowskian and m is the field’s mass [51]. Utilising the

Euler-Lagrange equations yields the equation of motion:

D¢ = m?¢ (3.2)
known as the Klein-Gordon equation [51]. ¢ denotes the d’Alembertian operator 9,0
acting on the field.

A plane wave solution to the Klein-Gordon equation is given by
¢ = oePr™", (3.3)

where p# = (w, k) with the time component representing angular frequency, the space
components wave 3-vector, and satisfying the dispersion relation p? + m? = 0 (having
set i =1). We wish to find the most general solution by forming an orthonormal basis
into which any solution can be decomposed. This orthonormality is manifest by defining
an inner product on the Klein-Gordon solution space. An inner product of two solutions

over a t = constant hypersurface is [15]

(1, 02) = —i/(¢1<9t¢>§ — $30h1) dPa. (3.4)

The complete orthonormal basis for solutions consists of all positive frequency plane

wave modes and their complex conjugates {1p, dfr“,}, ie.

b= / & (apwp i GWE) , (3.5)

where the coefficients and fields have been upgraded to operators under second quanti-
sation (hats denoting operator status are implicit) [15]. 9p is positive frequency and its

complex conjugate is negative frequency, they fulfill:
pp = —iwip, (3.6)

w > 0 in both equations above even though (3.6) describes positive frequency modes
and (3.7) describes negative frequency modes (this is because of the complex conjugate

changing the sign of 7 in the plane wave solution) [15]. The coefficients are annihilation
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and creation operators satisfying

[ap, ap/] =0,
lal,al,] =0, (3.8)

[ap, aL,] =6 (P - P/) )

with the vacuum state defined by ap|0) = 0 for all p [51]. These allow us to build
up arbitrary quantum states of many particles (a Fock basis for the Hilbert space).
w > 0 modes in an inertial frame can be decomposed into linear combinations of w > 0
modes in a Lorentz transformed frame, this means that all inertial observers will agree
on whether they measure particles or whether they measure a vacuum state. A proof
of this, following Carroll [15], shows how the crux of the issue lay in whether we can
objectively call a mode’s frequency positive or negative. Let’s Lorentz boost a positive
frequency mode by velocity v = CC%‘ to see how the frequency behaves in this new inertial

frame (parameterized by x" and t') [38]:

t=~y(t'+vx), (3.9)
x =7 (x' +vt'). (3.10)
In the boosted frame:
oxH o
at/’l!)p = Wa’uﬂﬁp = —1W '(/Jp (311)

using the plane wave solution given in (3.3) and w’ = 7 (w — v.k). This shows that a
quantum particle defined on a flat background can be boosted to simply give the particle
with boosted momentum in the new frame. The existence of particles or lack thereof
(a vacuum) is therefore independent of our inertial frame in flat spacetimes and can be
reliably defined. We will now see that this is not the case for field theory in curved
spacetimes where the notions of “particle” and “vacuum” are shown to be observer-

dependent.

When looking at field theories in curved backgrounds we must insist on the spacetime
satisfying a condition known as global hyperbolicity [12] [55]. This requires that the
spacetime under study, with specified geometry and metric, has a Cauchy surface 3: a
three-dimensional hypersurface that all past and future inextendible causal curves cross

once.
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Definition: A causal curve has a tangent vector which is at no point space-like.

Theorems 4.1.1. and 4.1.2 in Wald [55] state that a globally hyperbolic spacetime
can be “foliated” by Cauchy surfaces such that each ¢ = constant hypersurface is a
Cauchy surface, and that quantum fields have solutions to their equations of motion
defined throughout the spacetime from the initial data on X. This “foliation” is familiar
from cosmology in the Robertson-Walker model [15]. Defining a real scalar field on
satisfying the Klein-Gordon equation given in (3.2) (where the d’Alembertian is now
of a more complicated form than in the flat case due to the non-vanishing connection

coefficients of the metric) and generalising the inner product from (3.4) gives:

(91, ¢2) = —i/(élvufb; — ¢5V 1) dSH, (3.12)

where the integral is over the Cauchy surface 3, dS' is the infinitesimal induced volume
element on the surface with normal n*, and dS* = dSn* [15]. This inner product is

independent of our choice of 3.

Naively following our earlier flat spacetime procedure we would find solutions to the
Klein-Gordon equation (now in a curved background) and decompose these into a basis
of positive- and negative-frequency modes, with creation and annihilation operator co-
efficients. The problem with this method is that solutions of the Klein-Gordon equation
which dissociate into space-dependent and time-dependent factors only exist when there
is also a time-like Killing vector k& = 9; [38]. This dissociation is required in order to
define positive- and negative-frequency modes in an invariant way [15]. We now see
why unique positive- and negative-frequency solutions were found in flat spacetime: the
Minkowski metric carries a time-like Killing vector k = 0; and all k in different inertial

frames are related by Lorentz boosts [15].

If a Cauchy surface exists in the spacetime then we can always decompose our solutions

into orthonormal bases {f;, f}, satisfying [12]:

(fir £3) = dij,
(fi*aff) = —dij, (3.13)
(fia fj*) = 0.



Hawking Radiation 24

Choosing {fi, f;'} to be a complete set, we can expand ¢ as:

o= (afi+alfy), (3.14)
the coefficients satisfy:
[ai7 aj] = 07
[a], al] =0, (3.15)
[ai,a;] = 5”

As before we define a; to be an annihilation operator and a;f to be a creation operator,

therefore the f-vacuum is defined by:
a;|0f) =0 Vi, (3.16)

and we can build up a number of excitations in state ¢ as usual:

) = <= (af) 100 (3.17)

The number operator for f-excitations is as expected:

ng = ala;. (3.18)

Unlike in the flat case, the basis {f;, f/'} is highly nonunique and so the concepts of
vacuum and number operator will be dependent on our choice of basis. Let’s look at a

different basis {g;, g}, permitting the expansion:
p=> (bigi + bjgi‘) : (3.19)
i

the new annihilation b; and creation bj operators satisfy the same commutation relations

[bi? bj] =0,

topt
[b},b;] =0, (3.20)
[bs, bT] = 3.
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With vacuum state defined by
bi|04) =0 Vi, (3.21)

and number operator ng; = bjbi.

To see how different observers measure the same physical phenomena in curved space-

times, let’s expand each mode in terms of the other one [15]:

g9i =Y (aiifi + Bijf7) (3.22)

J

fi= Z (atigj — Bjig}) - (3.23)

J
These relations between different bases are examples of what is known as Bogolubov

transformations [56]; «;; and f;; are Bogolubov coefficients, they satisfy a;; = (gi, fi)

and f3;; = — (9%]7), as well as [15]:

> (el — BikBr) = i

J
> (airBik — Bivajk) = 0. (3.24)
J
The Bogolubov transformation also allows us to express operators in one mode in terms
of operators in another mode [15]:

ai=)Y (ajibj + 5;@) ;

J

b = Z (afjaj - ;‘]aD . (3.25)

J
Now we are ready to see what an observer using one set of modes sees in a vacuum

defined in another set of modes. Setting our quantum state to be in the f-vacuum, we
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find the expectation value of the g-mode number operator to be:

(07lngil0y) = (07 1b]bil05)
= <0f > (%’aj - 5@'%’) (Oéi‘kak - ﬁm%) 0f>
ik

Z (—=Biz) (=B <Of‘%ak’0f>

(3.26)
= Zﬁz’jﬁfkmﬂ (ak:aj + 5jk) 105)
ik

= Zﬁw zkéjk Of‘0f>

= Zﬁw i

using equations (3.15) and (3.25). In general this expectation value will be non-zero and
so the question of the existence of particles or the presence of a vacuum will depend
ultimately on the observer. In quantum field theory, it is the fields that are the funda-
mental physical objects, the picture of particles are contingent and in some cases not a

sharply defined concept [15].

A very simple but useful picture of how particles can be created by the changing curva-
ture of a spacetime comes from looking at a wavefunction’s response to a sudden change
in potential [5]. Quantum field theory dictates that each mode of a field acts as a har-
monic oscillator [51]. This mode has a certain frequency wi, however once the spacetime
in which it dwells has changed (for example due to the influence of some mass) the
mode’s frequency can alter, giving a different value wy. Using the well-known adiabatic
theorem of quantum mechanics we know that changing a potential “slowly” [57] with
repect to the inverse of the frequencies w; and ws, which we take to be of the same order
[5], will allow the mode to adapt in such a way that it stays as the (say) vacuum state
throughout the evolution of the potential. If instead the potential changes suddenly,
the wavefunction has not had enough time to evolve appropriately and so it will change

from a vacuum state to an excited state.

The wy vacuum can be expanded in terms of the excited states of wy as

10)w; = C|0)wy + Ci|1)w, + C2|2) sy + C3(3)wy + ... (3.27)
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but the wavefunctions are symmetric and so we can throw out the odd-numbered har-

monic excitations in our expansion [5], leaving:
0)wy = Cl0)w, + C212)wy + ... (3.28)

So a fast enough change in spacetime curvature will create pairs of excitations.

3.2 The Unruh Effect

In this section we’ll use the notions developed previously of the relativity of particles
and the vacuum, and build on the earlier exposition of Rindler spactime, to derive the
result that an accelerating observer in a Minkowski vacuum will detect thermal radiation,
known as the Unruh effect. This phenomenon will then be shown to imply the Hawking
effect whereby a black hole emits thermal radiation — the source of the information

paradox.

In section 2.1 we looked at Rindler space, the description of a constantly accelerating
observer in flat spacetime. Now let’s look into its structure in a bit more detail before
quantising and expanding a scalar field with respect to the Rindler observers. In Figure
2.1 we saw that the Minkowski spacetime is divided into four regions by the Rindler
coordinates with region I referred to as Rindler space. There is a strong parallel between
Rindler observers in region I and static observers in the 7 > G'M section of Schwarzschild

spacetime. Here again is the Rindler metric:
ds® = e* (—dn® + d¢?), (3.29)

none of the metric coefficients depend on 7 therefore there exists a Killing vector 9,

which in terms of Minkowski coordinates becomes:

Ny
T onot  Onox

I
9\ Tor o

using equation (2.12). This is the Killing field for a Lorentz boost in the positive z-

(3.30)

direction [15]. In regions I and IV of Figure 2.1 9, is a time-like Killing vector whereas

in regions II and III it is space-like. Therefore the lines x = +t are both Killing horizons
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[15, 43]. The Rindler coordinates in region IV can be defined as:

1
t = —=e%sinh (an) ,
? (3.31)
x = —=e%cosh (an).
a

where < [t|. As in the last section, a time-like Killing vector is required to define
positive- and negative-frequency modes in an invariant way, therefore here we can use
Oy. Let’s consider a massless 1+1 dimensional scalar field ¢ obeying the usual Klein-
Gordon equation, expressed in Rindler coordinates:

> o
O = e 2% (8712 + 852) ¢ =0, (3.32)

solved by plane wave mode:
1

Ik = VAarw

where w = |k| [15]. From equations (2.13) it is noted that 7 is proportional to the Rindler

e*iwnﬁ”ikf’ (333)

observer’s proper time and so our definition of a positive-frequency mode should be with

respect to n:

;ngk = —Ilwgk (3.34)
as required cf. (3.6). One caveat is that the associated Killing vector defining the
positive-frequency modes g must be future-directed [15]. 8% points in opposite direc-
tions in regions I and IV, so the Killing vector required to define positive frequency
modes in region IV must be —a% (for clarity: 8% is future-directed in region I, _8% is

future-directed in region IV). To cope with this we define two sets of modes, each one

non-zero in a certain region [15]:

(1) _ 1 —iwn+iké
k /1 ( )

Note that equation (3.35) is only valid in region I, in region IV g](cl) = 0. Also [15]

9 1
g( ) _
k Vamrw

where (3.36) is valid only in region IV, 9122) = 0 in region I. Taking these two sets of

eiwn+ik€ (336)

modes together we see that both regions I and IV are covered; the Rindler metric (2.14)

is valid throughout these two regions [12, 15]. Both sets of modes can now be seen to
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be positive-frequency with respect to future-directed Killing vectors:

0 ,
8779]9) = ZWg]gl)a
9 (2 (2
——ang,(C ) = —zoug,(g ), (3.37)

Where w > 0. Compare to equations (3.6), (3.7) to see that both expressions in (3.37)

do indeed correspond to positive-frequency modes.

These modes and their complex conjugates form a complete set throughout the spacetime

under study; expanding a scalar field in these modes gives [15]:
1) (1 D (1)* 2) (2 2)t (2)x
6= / ak (b9 + 0 g + o2 g + 6Py (3.38)

The mode coefficients are the annihilation and creation operators associated with their
regions of validity. The modes themselves satisfy inner product identities analogous to

(3.13) given by:

(gﬁ),gg)) =0 (k1 — ko) (g&)*,gg)*) = —6 (k1 — ky)

(92.92) =0 (ki — ko) (92",0") = =8 (ks — ko) (3.39)
(6.02) o (s 42) =0

Comparing our earlier field expansion in Minkowski modes (3.5) (at the time we defined
it in terms of 341 dimensions, now we will treat it in 141 dimensions) with our new
expansion in terms of Rindler modes (3.38) we can note that the vacuums do not coincide.
For example the vacuum as described by an observer in Minkowski spacetime ay|057) = 0
will be seen to be bubbling with particles by a Rindler observer who, in turn, will describe
a vacuum by b,(fl) 0R) = b,(f) |0r) = 0 that the Minkowskian observer will see as anything
but empty. This is as a result of the lack of a purely positive-frequency Minkowski
mode basis with which to expand a Rindler mode; for example the annihilation operator
defining the Rindler vacuum can only be decomposed into a combination of Minkowski

annihilation and creation operators [15].

Now let’s investigate the properties of the particles that a Rindler observer would see as
they accelerated through the Minkowski vacuum. Rather than finding the Minkowski

vacuum expectation value of the Rindler number operator using Bogolubov coefficients
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as in section 3.1, we’ll utilise a shorter derivation based on the analytic continuation
of the Rindler modes to the whole spacetime and subsequently expressing this result in
terms of the more restricted Rindler modes valid only in regions I and IV. The derivation

presented here follows that of Dowker [12] and Carroll [15].

Using the coordinate definitions given in (2.12) and (3.31) and some light algebra we
find [12]:

a(—t+z) I

e~ =) = ( ) (3.40)
a(t—z) IV

ea(mt8) _ a(t+a2) ! (3.41)

a(-t—z) IV

From the expression for mode g,(cl) in (3.35) we derive:

‘/747ng,(€1) — o iwntike
— o~ w(n=f) (3.42)

w iw
a a

=aa (—t+x)e,

where we’ve used the fact that w = k which is valid because in our plane wave expression
for gi (3.33) we had w = |k|, and here k > 0. The analytic continuation of (3.42) is
simply attained by applying it for any values of the Minkowski coordinates (¢, x) [15].
As we stated above, our method here is to analytically continue the Rindler modes to
the whole spacetime and then to express these in terms of the original Rindler modes
in regions I and IV; however the continuation we have just found involves g,(Cl) which
vanishes in region IV, so we must consider the other modes g,(f) too in order to cover

both regions. Repeating our procedure above we obtain:

(2)

drwg! iwn+ike

=e

_ () (3.43)

W iw

=a o (—t—x) @.
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We want the right sides of (3.42) and (3.43) to match up and so, making us of e /" = —1,

we transform (3.43) thusly:

47rwg(_2,2* = g iwntike
— e~ w(n=5)
—a" (t—a)% (3.44)

where * denotes complex conjugation. Now we can express a combination of modes as
[15]:
Varw (g,(:) + ef%g(_zlz*) —q' (—t+ x)% : (3.45)

The mode given above covers regions I and IV as we wanted however (3.45) is not

normalised, as an ansatz [15] let’s assume the normalised analytic continuations of g,(:)

and g,(f) are given by:

hg) — ; (e%glil) + e*%g(}é*) :
2sinh (%)

h® — o (e%gl(f) " ef%g(_lg*) , (3.46)
2sinh (%)

This normalisation can be verified by checking the mode inner products identical in form
to (3.39): i.e. (h(l) h(1)> = § (k1 — k2) etc. Expanding a scalar field ¢ in our normalised

k10 "Vko

modes gives:
6= / i (enD + o n" + P + DT (3.47)

In complete analogy to our discussion earlier of Bogolubov transformations in section
3.1 — cf. equations (3.22), (3.23), (3.25) — we can express our original Rindler operators

by in terms of our new extended operators c; as:

b}({}) I (6%01(:) n 6_%0_2]1T) 7
2sinh (%)
bl(f) = _ (e%c,(f) + 6_%0(}{[) . (3.48)

2sinh (%)
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(1)

An accelerating Rindler observer in region I will form a number operator ny’ (k) =

b,(cl)Tbgcl), which we can now express in terms of ¢, operators. The new positive-frequency

modes hy can be decomposed into positive-frequency Minkowski modes [12] and so their
vacuum states are identified. This allows us to finally obtain the expectation value for

a region I Rindler observer in the Minkowski vacuum:

(Ol (k) [0nr) = <oM\b<”*b<”ro )

- (2)t
(Opmle™ e 0
2Slnh (—;”) ]e c kc k [On) (3.49)

6 a
QSlnh (%)
1
= 627;/.1 16(0)7

the §(0) factor is an artifact of our choice of basis and can be transformed away (has
no physical meaning) [15]. The expectation value (3.49) is a Planckian distribution at
temperature [10]

T=_— .
o (3.50)

where ¢ = i = 1 and a is the magnitude of the acceleration. So a constantly accelerating

observer through the Minkowski vacuum experiences a thermal bath of particles.

3.3 Black Hole Evaporation

The core of the information paradox lies in Hawking radiation. If black holes behaved
classically — i.e. there was no evaporation mechanism — then the information that was
consumed by the hole would exist just out of reach, but the information would not nec-
essarily be destroyed. However a quantum mechanical treatment of black holes suggests
that they eventually (over time scales many orders of magnitude larger than the age
of the universe) vanish [24], leaving behind thermal radiation, seemingly erasing the

information that fell in.

A heuristic picture of Hawking radiation involves a pair of photons emerging from the
vacuum, one of which has energy —F, due to a fluctuation near the event horizon of
a black hole. If this process occurs far away from any black holes the photons would

annihilate in a time of order ~ % However if the pair creation happens close to the
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horizon then the photon of energy —FE may fall into the black hole whereas the other
photon can travel to infinity, where an observer may observe it as Hawking radiation

[10].

Rather than following Hawking’s original derivation of black hole radiation [24] we’'ll see
how our derivation of Unruh radiation leads to the existence of Hawking radiation due

to the equivalence principle [15, 23].

Let’s assume there are two static observers outside of a black hole in Schwarzschild
spacetime: one at r1, and another one further out at ro which we will push to infinity.
In the following calculations we will only be using Schwarzschild spacetime as it contains
all of the pertinent properties, we must also set some physical scales with which to anchor
our derivation. The natural acceleration scale is ﬁ the inverse of the Schwarzschild
radius, with the radius itself setting the natural time, length, and curvature scales near
the horizon [15]. For a static observer just outside the event horizon at 7, its acceleration
is huge with respect to ﬁ:

1
ay > m, (351)

and from the inverse i < 2M we see that the observer at r; experiences an almost flat
spacetime environment. From the equivalence principle we know that someone falling
through the event horizon and into a black hole feels nothing strange (ignoring tidal
forces) and so they experience approximately a Minkowski vacuum. Now we begin to
see how the Unruh radiation manifests itself in this situation: a freely-falling observer
sees a vacuum however a static observer at r; is accelerating outwardly with magnitude
a1 in order to stay at the same radial distance and so experiences Unruh radiation at

temperature §t, cf. (3.50).

Another observer stationed at ro which we will assume is infinitely far away doesn’t
necessarily dwell in a flat region of spacetime like the observer stationed just outside the
event horizon. Therefore they shouldn’t experience Unruh radiation as the derivation
of that was predicated on acceleration through flat spacetime. However the Unruh
radiation detected by the observer at r; will continue to propagate outwards towards

the observer at infinity, although in a redshifted form [15].
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The amount of redshift will be dictated by the redshift factor V introduced earlier in

section 2.2:

Vi
T, = —=T; 3.52
2 V2 1 ( )

where the V’s and T’s refer to the redshift factors and thermal radiation temperatures
experienced by observers at 71 and ro. We know that 77 = g and that at infinity the
redshift factor tends to unity, therefore the temperature of the radiation experienced by
the faraway observer — using (2.36) and letting observer 1’s position r; be infinitesimally

close to the horizon where Via; tends to k — is

T =", )
o (3.53)

This is the temperature of the Hawking radiation emitted by the black hole.



Chapter 4

The Structure of Information

4.1 What is Information?

When one first hears the word “information” heard in a scientific context it can be
confusing as to what exactly is meant by the term. It sounds like a very subjective
concept which would be hard to quantify. To understand information we must first see

how it relates to entropy.

Entropy is one of the most fundamental and important concepts in physics; useful not
only in thermodynamics but in information theory, quantum theory, and as a basis for
an arrow of time [58]. It is a measure of the disorder inherent in a system. It was first
discovered (or invented) as a thermodynamical quantity related to energy and temper-
ature. After the development of statistical mechanics the idea of entropy was detached
and expanded somewhat and understood more in terms of the internal configurations of
systems, along with their respective probabilities of occurance [58]. The second law of
thermodynamics states that the entropy of the universe can never decrease and was said
by Arthur Eddington to hold “the supreme position among the laws of Nature” [59]. So

how does entropy relate to information?

The entropy of a thermodynamic system is:

— kB Zpilnpi (4.1)
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where the sum is over all possible microstates corresponding to a given macrostate
of the system, each microstate has a probability p; of occuring. If we assume that
each microstate has equal probability of occurrence p; = %, N being the number of
microstates corresponding to a given macrostate, then we recover the famous equation
due to Boltzmann:

S = kglnN (4.2)
valid at thermodynamic equilibrium in the micro-canonical ensemble [60].

The notion of information as formulated by Hartley and Shannon is a generalisation
of this notion of entropy. Ralph Hartley (1888-1970), Claude Shannon (1916-2001),
and others invented the modern theory of information [61, 62] originally as a way to
speed up, compress, and process the signals used in communications. It has since been
generalised to incorporate quantum theory and has been fundamental in the development

of quantum computing and the study of entanglement [63].

Ralph Hartey was the first person to quantify the information contained in a message
source (an ensemble of messages) in 1928 [58]. He did so using two parameters: the
number of characters in the message n, and the number of equiprobable symbols that
each character may adopt s. So for example, for the bit string 1011001110, n = 10
and s = 2. Hartley developed the concept of the information of a message source using
the following assumptions: the information must be a function of both s and n, must
be proportional to the message length n, and should monotonically increase with the
number of equiprobable messages s™. Representing the information by the symbol H

and using the previous assumptions:

H =nf(s) = g(s"), (4.3)

where both f(s) and g(s™) are monotonically increasing on their respective domains.

The only differentiable solution is:
f(s) =clns (4.4)

where c is a positive constant. (More accurately H represents the missing information,
it denotes the missing information needed to select a message from the message source.)

Plugging the solution into equation (4.3) it is easy to see that H = clns” — notice this is
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redolent of equation (4.2). We can see that the number of messages s in the message
source is analogous to the number of microstates N of the thermodynamic system in
equation (4.2), and that % = InN is the missing information required to specify the

microstate corresponding to a given macrostate.

Claude Shannon generalised Hartley’s concept of information to include messages made
up of characters that have unequal probabilities of occuring, this gives a form for the

Shannon information [58]:

S
H=—c Zpilnpi (4.5)
i=1
which is analogous to equation (4.1).

All of this seems to strongly suggest that missing or hidden information is in some way
equivalent to entropy. For example a sealed box of hot gas could be in many different
microstates with respect to its bulk thermodynamics quantities, so we know very little
(hold limited information) about the internal configurations of the system and therefore
its entropy is large. On the other hand if we were studying a perfectly ordered crystal
at absolute zero temperature with a non-degenerate ground state (cf. the third law of
thermodynamics) we would have complete knowledge of its internal configuration and
so the entropy would be zero and there would be no hidden information [60]. Before we
see how all of this relates to black holes we must look at the generalisation of entropy

(missing information) to quantum theory: the von Neumann entropy.

In the 1930s [64] John von Neumann reformulated quantum mechanics by replacing
the idea of a wave function — defining the state of a quantum system — by an object
called a density matriz, describing a statistical ensemble of different quantum states.
This allowed the apparatus of classical statistical mechanics to be extended to quantum
theory. The density matrix is used to describe generic quantum systems that are either
pure states or mized states. If we have complete knowledge of a quantum state then we
know that the probability of it being in that state is unity [65]. In reality it is more
common to have incomplete knowledge of the quantum state(s) and/or there may be an

ensemble of different states [66].

The density matrix p, defined by

p= ZPz‘Wz‘)WH, (4.6)
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tells us whether the states are pure or mixed. For a generic mixed state, the wave func-
tion 9; occurs with probability p;, and the expectation value of an observable described

by operator O is:
(0) = ZPi<¢i|OW¢>- (4.7)

Expanding the states in a basis «; [67]:
(i) = Y la){ajlvs) (4.8)
J

(Wil =D (il k) (o] (4.9)

k

and substituting the expansions into equation (4.7) gives

0)=>" <Zpi<aj|¢i><¢z‘\ak>> (ak|Olaj) (4.10)

7.k 7

= (ajlplar)(ar|Olay) (4.11)
7.k

=tr(p0). (4.12)

Density matrices have the following properties: their trace is always equal to one (be-
cause the probabilities add up to one), they are Hermitian, and their eigenvalues are
equal to or greater than zero. When p is diagonalised, the eigenvalues p; represent the
probabilities that the quantum system is in state ¢. As mentioned above, if a system is
in a pure state then we possess complete knowledge of it, therefore the density matrix
will have one non-zero eigenvalue (due to the trace property it must be equal to one) as
there is a unity probability of it being in this eigenstate [3]. If the density matrix has

more than one non-zero eigenvalue then the state is mixed.

The von Neumann entropy is an extension of equation (4.1) to quantum systems and is
given by:
S = —trplnp = — Z pilnp; (4.13)

K3
where tr gives the trace. S is a quantitative measure of how mixed a quantum state
is [66]. A pure state has zero entropy whereas mixed states have entropy greater than

Zero.

The von Neumann entropy is also very useful as it quantifies the degree of entanglement



The Structure of Information 39

between quantum subsystems [68]. To illustrate this let’s look at a pure state U with
density matrix pyorqr = |¥)(¥|. As this is a pure state it must have von Neumann entropy
equal to zero. However let’s now split the system into two parts A and B; the Hilbert
space containing the states is also split into two: Hiotar = Ha ® Hp. If an observer can

only access subsystem A then he will measure the density matrix to be [68]:

PA = tl‘BPtotal, (414)

trp signifies that the trace is over Hp. The von Neumann entropy of pa defines the

entanglement entropy of subsystem A [68]:

Sa = —trapalnpa. (4.15)

Entanglement entropy illustrates a very important point about how entropy behaves
differently in quantum systems. The entropy S of a system as defined by Shannon cannot
be lower than the entropy of any of its constituent parts, whereas the von Neumann
entropy for an entangled system — for example a Bell pair — has total entropy equal to
zero but subsystem entropies greater than zero [69, 70]. We can know everything about
a system yet know nothing about its parts — a very quantum phenomenon. In the next
section we will see how the concepts introduced here relate to the problem (or illusion)

of information loss in black hole evaporation.

4.2 Throwing a Bit of Information into a Black Hole

To get to grips with the information content of a black hole let’s look at how the area
of its event horizon changes when a single bit of information is dropped in. How does

one drop a single bit of information into a black hole?

If we tried to encode a single bit in terms of say a 1 or 0 written on a piece of paper and
then threw this into a black hole this wouldn’t suffice because the mark on the paper
would be formed from many atoms, this would still be the case even if the paper it was
written on had nanoscale dimensions. The solution is to use an elementary particle, say
a photon; however as Susskind [28] points out a single photon could still encode more

than one bit of information if we had knowledge of the location of the point of entry into
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the black hole. Using a photon of wavelength of order the Schwarzschild radius of the
hole results in the scenario that a photon has entered the black hole at some location on

the event horizon, but it is not known where — this encodes one bit of information [28].

Using the basic Planck-Einstein relation E = hf and Einstein’s E = mc? [71] we find

that the energy of a photon of wavelength Schwarzschild radius Rg is

E=— (4.16)

and that after the photon has entered the black hole the hole’s energy has increased by

FE and its mass has increased by CEQ = dgs. Therefore the increase in the event horizon’s
radius is (temporarily restoring units)
2Gh
ARg = . 4.17
s 3Ry ( )

From the event horizon area formula A = 47TR§ we find that the horizon area increases

by

AA =47 (Rs 4+ ARg)? — 4w R%

AGh  AG?h?
=Ar R%+7+72 —47TRZ~
c3 SR
&} (4.18)
B 167Gh
=—3
= 1677512)

G2 h2

where the term of order =25
Ry

is negligible and Ef) is the square of the Planck length [71].
Hence up to a factor of 167 the area of a black hole increases by one Planck area every
time one bit of information falls into it. This implies that the area of a black hole horizon
measured in Planck units is proportional to its entropy (hidden information) measured in
bits: this very basic calculation therefore implies (up to a numerical factor) Bekenstein’s
famous formula S = % [72]. As Susskind memorably puts it: “information equals area”
[28]; this link between information, entropy, and area hints at the holographic principle

[73-75] and AdS/CFT duality which we will look in section 5.2.9.
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The Information Paradox

5.1 An Exposition of the Information Paradox

(In this section we have set c=h=G =k =1.)
The black hole information paradox can be stated as follows:

Consider some matter in a pure state that collapses to form a black hole. After the hole
has evaporated away completely, leaving only thermal Hawking radiation, the result of
the whole process will have been that an initially pure quantum state evolved into a mized
state. This pure-to-mized state process is not unitary and so violates a central principle

of quantum mechanics.

Quantum mechanics requires that an initial state evolves according to an S-matrix:
|V final) = S|Winitiar). The unitarity of the S-matrix implies that the evolution is deter-
ministic [3] and it indicates that the inital state can be retrieved from the final state
according to |W;piriar) = ST|W final)- For example if all of the Hawking radiation were to
be collected this should allow us to calculate what initial matter formed the hole. N.B.
the relationship between information loss and pure-to-mixed state quantum evolution
is subtle, and one does not necessarily imply the other, we will define these terms and

their interplay properly at the end of this section.

Before we delve into the information paradox let’s look at the closely related conundrum
of what Mathur [5] calls “the entropy puzzle”: what are the microstates of the black

hole that account for its enormous entropy? We saw at the end of section 4.2 that the

41
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Bekenstein entropy of a black hole is equal to a quarter of its area expressed in Planck
units

A
=7

(5.1)
and that by combining this entropy with the amount external to the hole the second law

of thermodynamics still holds. But where does the Bekenstein entropy come from?

From statistical mechanics we think of entropy as emerging from a logarithmic function
of the number of different states making up the system per macrostate. This would lead
us to believe that the number of microstates per macrostate in a system with entropy
S would be of order . For a relatively small black hole, of solar mass, the number of

019" From what we know about black holes it seems

microstates would be of order 1
like they should have very few microstates — they have “no hair” — a general black hole
can be fully described by its mass, charge, and angular momentum [12, 76]. What could

these microstates be? Here are some suggestions by various authors [77]:

e Black hole microstates may be the various combinations of internal matter and
gravitational states making up a hole of given mass, angular momentum, and

charge [78].

e There is a gas of quanta just outside of the event horizon whose entropy is that of

the Bekenstein entropy of the hole [79, 80].

e The entropy may derive from the entanglement between quantum fields inside and
outside of the horizon. The whole state taken together may be pure and so the

entanglement entropy is found by tracing out the internal states [81, 82].

e Black hole entropy is the Noether charge associated with diffeomorphism symmety
in theories containing higher curvature terms than classical general relativity. This

can lead to corrections to the entropy formula S = % [83].
e Microstates are different string excitations in string theory [84]. We will look into

this in section 5.2.10.

There have also been attempts within loop quantum gravity which have correctly red-

erived the black hole entropy (once a parameter has been fixed) [85, 86].

Let’s now look at particle production by black holes in detail to see exactly why the

process seems to evolve an initially pure state into a final mixed state. The black holes
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we’ll treat in this section will be the Schwarzschild type we introduced earlier on. This
section follows closely the treatment given in Mathur [87] as it clearly illustrates the
robustness of the problem and how small corrections to the Hawking radiation do not

present a solution.

In our present analysis of black hole evaporation we’ll take certain “nice” spacelike slices
(which we will soon define properly) through the spacetime containing the black hole
(see Figure 5.1) which penetrate the event horizon and allow us to analyse the properties
of the Hawking pairs — specifically their entanglement — which is very important when
assessing their information encoding characteristics and their susceptibilities to small
perturbations. In the following we will assume that we are working in the semiclassical
domain, where quantum gravity effects are unimportant, and so our spacelike slices obey

certain “niceness” conditions [87]:

e The quantum states we are studying should be contained entirely on a spacelike
slice whose intrinsic curvature R®) is everywhere smaller than the Planck scale:

RO < 4.
P

e The spacelike slice should be embedded in 34+1 dimensional spacetime with small

extrinsic curvature: K < %2.
p

e In the neighbourhood of the spacelike slice, the four-curvature of the spacetime

should also be small: R¥ < 4%.
P

e Any matter present on the slice should not approach the Planck scale where quan-

tum gravity effects are expected to apply.

States on one slice will be evolved smoothly to another nice slice at a later time.

When our nice spacelike slices we have defined above deform, this produces Hawking
pairs on the slices. The pairs have wavelengths of the order of the curvature length
scale of the deformation, for a generic black hole this scale would be the Schwarzschild
radius. This is analogous to our earlier discussion of particle pair creation in a changing
harmonic potential at the end of section 3.1. Let the state of the produced entangled

pair be of the simple form [87]:

Ly (5.2)

L j0)elo, + 7

|¢>pair — E
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where the b particles fly out to infinity (detected as Hawking radiation) and the c states
fall in towards the singularity. The matter |¢));qa1er Which forms the black hole is also
contained on the spacelike slice but can be thought of as being far enough away that it

has negligible effect on the Hawking pairs.

The whole quantum state |¥) describing the matter making up the hole and the pair is

therefore given by:

) & ) matier © (\}io>cyo>b + \}imcmb) (5.3)

where the equality is only approximate as the matter may have a very small effect on

the pair. Setting |¢)matter to be a two-level quantum system, for example

’w>matter - \}i‘ T)matter + \}5’ J/>matter (5-4)

would give

) ~ (| Dmatter + =] Dmatter ) © (=096l + —=|D)el 1)) . (5.5)
V2 V2 V2 V2

Quantifying the small effect ¢ < 1 of the matter on the pair allows us to promote our

above formula from an approximate identity into a full identity and gives [87]:

) = <\2| M matter + \}5 ¢>matter) ® <<\}§ + e> 10)]0), + <\}§ — e> |1>C|1>b> .
(5.6)

The above perturbation is allowed, however the following change of state is not allowed

[87]:
‘\I/> = <\}§’ T>matter|0>c + \}5 \L>matte7"|1>c> ® <\}§‘O>b + \}5’1>b> (57)

as it drastically changes the entanglement properties of the system. The entanglement
entropy of a subsystem was given in equation (4.15); what are the entanglement entropies

for the above systems?

Tracing over |[Y)maier and ¢ for (5.5) gives S, = In2, for (5.6) it gives S, = In2 —
€2 (6 — 2In2), and finally for (5.7) S, = 0 [87]. The entanglement entropy for the Hawking
pair slightly affected by the matter [1))matter can be seen above to tend quickly to the
unperturbed value In2 as e is brought to zero. The final zero-valued entanglement

entropy cannot be caused by the influence of faraway [¢))matter because locality on the
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FIGURE 5.1: Nice slices through a black hole spacetime. Illustration from [87].

spacelike slice doesn’t allow it. So locality implies:

Sp
Pb | . 5.8
‘an ‘ < (5-8)

An essential facet of the evaporating black holes under study is that the regions around
their horizon must not contain information about the holes (equivalent to the observation
that an infalling observer experiences nothing strange whilst passing through the horizon
— ignoring tidal effects). Specifically any point on the horizon has a neighbourhood on
which quantum fields (neither trans-Planckian nor larger in wavelength than the horizon
radius) evolve according to the semiclassical evolution of fields in empty curved spacetime
[87]. We saw earlier that empty spacetime is relative to the observer, however in the
case of evaporating black holes the curvature scale is of order Schwarzschild radius and
so different observers may detect a different quantity of Schwarzschild radius wavelength
quanta, but only to order 1 — for quanta of wavelength much less than Schwarzschild
radius (but not below the Planck length) all observers will agree that the state is a

vacuum, with little error [77].

For evaporating black holes the Schwarzschild solution (2.1) is valid — despite its time
independence — as the evaporation takes a very long time (much longer than the current
age of the universe). Therefore the solution applies at any chosen point during evap-
oration until the black hole’s radius diminishes to the Planck length [87]. Taking nice

spacelike slices through a spacetime containing a black hole must avoid the hole’s central
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singularity so as to satisfy the niceness conditions defined above. Let’s rigorously define
these slices by splitting them up into parts outside, inside, along with a connecting piece

across the horizon [77, 87

Inside horizon X;: % <r < % and r = constant. Can be smoothly connected to

Schwarzschild origin » = 0 at times before singularity formation.
Outside horizon Xp: r > 4M and t = constant.

Connection Y¢: Smoothly connects Yo and 3; across the event horizon. Both space

and time dimensions of ¥ are of order M.

The spacelike slice defined above may seem strange as outside of the hole it is param-
eterized by ¢t = constant (as expected) whereas inside the hole it is parameterized by
r = constant. This is purely as a result of the Schwarzschild metric’s pathology at the

horizon where time and space coordinates swap roles.

A whole spacelike slice ¥(t,r, C) is given by the union X5 U ¥p U X¢. Shifting forward

the parameters smoothly evolves one slice into another, i.e.
X1 = 2(151,7’1, Cl) — Yoy = 2(?52,7’2, CQ) = E(tl + ot,r1 + 0r,Cy + 50) (5.9)

When evolving forward the spacelike slices the geometry of ¥¢ can be taken to be
unchanged as long as dr < M [77]. This results in the ¥; segments getting longer
as Yo shifts forward in time — see Figure 5.2 for a simple diagram of this stretching.
A succession of these nice spacelike slices builds up an entire spacetime containing the
black hole. Evolving the slices along a timelike normal will leave the instrinsic geometries
of both Xy and ¥; (although it stretches) the same; however the connecting part ¢
must grow in order to connect these segments together and to account for the longer ¥;
at successive intervals — this stretching happens only in the neighbourhood of ¥ with

spatio-temporal dimensions of order M [77, 87].

This stretching of ¥ is the cause of the Hawking pair generation and we can now see
why it can only occur in the presence of a black hole and not in Minkowskian spacetime.
In flat spacetime ¢ would eventually become null and then timelike, but due to the

swapping of time and space coordinates at event horizons our choice of slices in black
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correlated pairs

B~——_. infalling
. matter

&

r=0 r=2M

FI1GURE 5.2: The stretching of nice slices during black hole evolution. Illustration from
[87].

hole backgrounds always stay spacelike throughout their evolution and Hawking pair

production carries on unimpeded until the hole reaches Planckian dimensions [77, 87].

Now let’s look at how the entanglement of Hawking pairs changes as the black hole
continually evaporates. This is key in understanding how Hawking radiation differs
from thermal radiation emitted normally by objects such as a burning encyclopedia or a
piece of coal; these objects emit radiation in a fundamentally different way that allows
information conservation and retrieval in principle. A series of nice spacelike slices as

time increases:

Slice 1: Collection of matter |1))marter exists on slice but hasn’t yet collapsed to form

black hole.

Slice 2: Black hole has now formed. “Middle” of slice stretches to create first Hawking

pair a la (5.3):

0) % [ ) matter © <%|o>qo>b1 + \g|1>q|1>bl) , (5.10)

giving entanglement entropy In2 between the Hawking radiation and the rest of the
system as we saw previously when we assumed [1))q1ter Was a simple two-level quantum

system (5.4).
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FIGURE 5.3: Hawking pair creation showing “pushing” of earlier ones away from the
horizon as new pairs emerge. [1)atter sShown as black boxes on left of figure. Illustra-
tion from [87].

Slice 3: The matter |¢)matter is unchanged, the by, ¢; pair gets “pushed” outwards —
see Figure 5.3 — by the stretching of 3¢ which also stimulates creation of a new Hawking

pair by, co giving full quantum state on the slice:

B ~ [ matter © <j§|o>qro>b1 n \}§|1>q|1>b1>

1 1
& <\/§|0>02’0>b2 + \/§|1>62|1>b2>

giving entanglement entropy 2In2 between the Hawking radiation and the rest of the

(5.11)

system.

Slice N+1: At the limit of the (N+1)-th slice N Hawking pairs have been created:

’\Ij> ~ |¢>matter ® (\}i|0>01’0>bl + \}5‘1>01|1>b1>

1 1
& <2|0>62’0>b2 + \@‘1>C2|1>b2> (5.12)

1 1
(\/§O>CN‘O>bN + E|1>0N |1>bN>

giving entanglement entropy NIn2 between the Hawking radiation and the rest of the

system.

Now the problem is clear. Once the black hole has emitted all of its mass in Hawking
radiation it ceases to exists, leaving only a radiation field: represented by b1, bo, ..., bx
above. This final Hawking radiation has entanglement entropy NIn2 but it is not entan-
gled with anything. Therefore the radiation can only be described by a density matrix,

it is now a mixed state [77]. Before the black hole had evaporated away completely
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the Hawking radiation was entangled with internal states of the hole and so the whole

quantum system had zero von Neumann entropy and was pure.

What is the effect of the Hawking pairs on each other? Could these corrections be
sufficient to encode the information about the matter making up the black hole in
correlations in the outgoing radiation? It can be shown [77, 87] that as each new Hawking
pair is created the entanglement entropy of the outgoing radiation increases steadily,
taking into account possible corrections, by an amount In2-2¢ per pair (¢ < 1 as before).
This increase in entropy is the minimum possible increase whenever any Hawking pair
is created. Therefore Hawking’s original derivation [24] is sturdy in the face of small

corrections and something more drastic is needed to solve the information paradox.

Although evolution of a pure to a mixed state violates unitarity, this does not always
imply information loss — as emphasised in Mathur [87] in the context of black hole
evaporation. In some cases a mixed Hawking radiation field can contain all of the
information about the matter that had formed the hole, and on the other hand a final
pure state could result in information loss. Let’s look at some examples, firstly a process
which violates unitarity but conserves information. Starting with a quantum matter

state:

’7/}>matter = a|1>matte7" + /B‘O>matter' (513)

After this matter has collapsed to form a black hole and two Hawking pairs (b1, c1)
and (b, c2) have emerged from the vacuum, the complete quantum state of the system

becomes:

1 1
<\/§’1>matter‘0>01 + \/§|O>matt6r|1>cl>
® (L), + B10)e,) (5.14)

1 1
& <\/§|1>02’0>b2 + \/§‘O>62|1>52> :

In the above case the first Hawking radiation particle by contains all of the information
regarding the matter that collapsed to form the hole. This can be retrieved by an
observer and information in principle is now not lost. However the second Hawking
radiation particle by is entangled (with entanglement entropy In2) with its partner cy
within the hole; therefore after the hole has completely evaporated the final state is

mixed and we have violated unitarity of quantum evolution.
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What about a system with the opposite problem? Letting our original matter state
(5.13) now evolve into a black hole that has produced so far one Hawking pair (b, c)

given by:

(a‘ 1>matter|0>c + /8|O>matter|1>c)

o (510 5100

results in a Hawking radiation particle b existing in a pure state but carrying no infor-

(5.15)

mation about the original matter that we are interested in.

N.B. the two evolutions we just looked at are toy models and cannot result from normal
semiclassical processes in real black hole evaporation [87]. Normal black hole evaporation
suffers from both of issues shown above — non-unitarity and information loss — and a

satisfactory solution to the information paradox would need to find a remedy for both.

Why is information loss bad? One reason is that in theories containing the possibility of
information loss, energy seems to be unconserved; Preskill suggests a heuristic picture
of this process as analogous to the coupling of a signal to a source of random noise [88].
A quantum state in the universe can be thought of as a signal encoding information, if
the universe is then coupled to a source of noise it can overwhelm the signal destroying
the information and at the same time pump energy into the universe, violating energy
conservation. Another reason why information loss is undesirable is that, if violated,
quantum theory would have to be drastically altered if not completely overhauled, and
due to quantum theory’s great successes and continued experimental validations this

would seem unreasonable.

5.2 Proposed Solutions

In this section we shall look at a number of potential solutions to the information paradox
that have been put forward in the last few decades. Firstly taking a cursory look at
some of the less promising and less discussed candidate solutions before going into more

detail with regards to complementarity, the AMPS paradox, and the fuzzball conjecture.

Several other proposed solutions not covered here can be found in Mathur [89].
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5.2.1 Remnants

The point where the black hole vanishes seems to cause a violent shift from pure to mixed
state. Is there a way to terminate the evaporation before the black hole completely

disappears?

The Hawking evaporation process could cease when the hole reaches the Planck mass,
leaving what is known as a remnant [90]. This would leave unitarity intact but such
remnants would behave unlike any other known objects; as the remnant would be en-
tangled with entropy NIn2 with the emitted radiation it must have at least N possible
internal states [87] but be of finite size and energy. As N is arbitrary and not bounded
the remnant can have an abitrarily large degeneracy unlike normal quantum states, this
feature can also lead to divergences when formulating its interaction with normal matter

[77].

5.2.2 Bleaching

Bleaching posits that the information in a quantum system is somehow prevented from
entering the black hole — the horizon “bleaches” it — possibly decoupling the information
from the system’s energy and momentum allowing it to come out in Hawking radiation
[30, 77]. This would require a drastic alteration of the semiclassical assumptions of
the emptiness of the horizon that we assumed earlier when looking at Hawking pair
entanglement. The equivalence principle would be violated as a physical process must
occur at the horizon to decouple the information or to prevent the system from falling

in.

5.2.3 Quantum Hair

Could the information about infalling matter be contained in distortions of the event
horizon? This contradicts the “no-hair theorems” [76] and attempts to create “hair”
from quantum fields around the horizon have been shown to lead to divergent energy
tensors at the horizon [91]. Some of the attempts to derive quantum hair have utilised
discrete gauge symmetries, while this somewhat circumvents the no-hair theorems it

isn’t sufficient to explain the enormous degeneracy implied by the Bekenstein entropy
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formula [92, 93]. The fuzzball conjecture predicts quantum hair can be formed from

bound states of strings and branes which we will look at in more detail in section 5.2.10.

5.2.4 Baby Universes

This idea proposes that the matter normally thought of as collapsing to a singularity
during black hole formation actually generates a “baby universe” in which the matter
then resides, caused by quantum gravitational effects [30]. This new universe is causally
disconnected from our own and so the information is lost from our vantage point. How-
ever this new universe can be thought of as one section of a multiverse (another section
obviously being our own universe). From the point of view of an observer capable of
making measurements on the whole multiverse information is not destroyed, just trans-
ported. Therefore from our point of view the black hole seems to have evolved from
a pure to a mixed state, whereas in actuality our universe is just a subsystem which

becomes pure when combined with the baby universe subsystem [30, 94].

A deeper analysis of this idea actually shows that black hole evaporation does lead
to a final pure state in our universe [95], but we are still left with the problem of the
unknown mechanism by which the Hawking radiation encodes the information regarding
the collapsed matter, therefore the baby universe hypothesis seems to lack important

elements needed to solve the paradox satisfactorily.

5.2.5 Information Emergence at the End of Evaporation

What about if the information leaks out of a black hole right at the end of its evaporation

process, when the hole is of Planck scale?

Assuming a black hole follows the normal semiclassical evaporation process until its
radius is around the Planck distance, then this takes time roughly of the initial black
hole mass cubed M3 [30]. But then the time required for the Planck-dimensional hole
to completely disappear is of order ¢t ~ M* as we now show. Assuming the remnant
emits quanta, the number of which is of order Bekenstein entropy S ~ M?, and taking
the energy of the remnant to be of order one £ ~ 1, then each quantum emitted has
energy of order M2 with wavelength given by inverse of the energy. For the quanta

to encode the information that was contained in the remnant then the quanta must
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emerge with minimal overlap; given that the time taken per quantum emission is ~ M?
and there are ~ M? quanta to come out we arrive at a minimum time required for the
Planck-dimensional hole to disappear given by ¢ ~ M* [30, 96]. This leaves us with very
long-lived remnants of the type we looked at in 5.2.1, therefore we are burdened with
the same problems we encountered there, namely the potentially infinite degeneracy of

the remnants.

Recent work [97] has shown that even if we postpone information emergence until after
the black hole has reached Planckian dimensions this does not imply that the remnant
contains all of the information. This counterintuitive result is due to the fact that
information isn’t additive, a small amount of quanta can “lock” (render inaccessible)
a large amount of information, with the information only emerging when the hole has

completely evaporated [90].

5.2.6 Treating Black Holes as Rubik’s Cubes

Recently a proposal was put forward to treat black holes as a collection of “Rubik’s
cubes”, configurations of which represent the microstates of a black hole. Let’s look at

this proposal in more detail before explaining its flaws [89, 98].

For simplicity a Rubik’s cube is represented by a 2-by-2 grid of numerals. A possible
grid being:

These numerals span the internal Hilbert space of the black hole (the black holes we
are looking at have zero angular momentum and charge), their combinations in grids

representing orthogonal states, with the vacuum state represented by

112
4

%
Czech et al [98] also define four operators: L which swaps the numerals in the first
column, % swaps numerals in the second column, F swaps numerals in the top row,

and W leaving states unchanged. The Hawking pairs created by a black hole are split
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into ingoing and outgoing particles as we have seen. In this model the ingoing Hawking
particles act as operators on the internal state of the black hole with the accompanying
outgoing particles — contingent on this operation — being of four possible types n, [, r, u.
For clarification: if during the Hawking process an ingoing particle represented by op-
erator R is created then the internal state of the hole will change (the numerals in the
right column will swap) and an outgoing Hawking radiation particle will be emitted in
state r, the other operators working in analogous ways. The W operator will leave the
internal state unchanged and emit an “n-particle” which is in actuality the absence of
a particle. An appropriate unitary operator acting on the internal state of the hole and

the state describing the previously emitted Hawking radiation is given by [98]

(_

5 = (N®n+f®l+<§®r+<ﬁ®u). (5.16)

N | =

In order to more realistically model the black hole, a collection of EE number of grids is
used to represent internal state of the hole (the letter E is suggested by Czech et al [98]
as the variable is designed to be redolent of the entropy, energy, or inverse temperature
of the hole as it evaporates, i.e. E decreases until the hole is no more). When the
evaporation operator S “solves” a grid (evolves it to the vacuum configuration), the grid
is removed from the state and a particle is emitted representing a drop in energy of the
hole (detectable by an outside observer) [98]. After the unitary operator S has acted
on the hole many times (analogous to the hole evaporating over a long time period)
then the number of “unsolved” grids E decreases and the entanglement entropy between
outside and inside states of the hole drops to zero at the point of evaporation. Therefore
this model seems to describe an evaporating black hole losing all of its energy to pure
Hawking radiation, seemingly without information loss or pure-to-mixed state evolution.

Is this model physical?

Unfortunately the Rubik’s model is not a physical analogue of Hawking radiation. The
evolution of the system given in Czech et al [98] cannot be physically realised by a hole
well-described by the Schwarzschild metric [89] — the no-hair theorems show that this
metric cannot be significantly deformed [76] — and is in fact a model of a generic burning
object. This model could be used to describe a burning encyclopedia, in which case the
entanglement entropy does drop to zero after it has been completely burnt leaving a pure
radiation field, however black hole evaporation creates a steadily increasing entanglement

entropy as we saw earlier which this model does not address [89].
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5.2.7 Tunnelling

Research has been done [77, 89, 99, 100] treating the black hole evaporation process
as a case of quantum tunnelling. Tunnelling is normally thought of in the context of
a classically forbidden transition of a particle from one side of a potential barrier to
another; in the black hole context the Hawking radiation particle is thought of as trav-
elling from the inside to the outside of the hole, another classically forbidden process.
Parikh and Wilczek [99] showed that Hawking radiation can be derived using tunnelling
considerations but that the emission spectrum deviates from a thermal spectrum, the
authors believed this to be suggestive of the radiation encoding information within its
non-thermal correlations. However as pointed out in Mathur [89] the non-thermal spec-
trum has no direct bearing on the information paradox as the entanglement between

outside and inside Hawking modes still increases steadily as we saw in section 5.1.

Studying Hawking radiation in the context of tunnelling does have certain advantages
however. It is one of a handful of methods that can be used to investigate fermionic
spin-1/2 emission (and that of higher spins) [77, 101] from black holes; and provides an
independent check of their thermodynamical properties, including the Hawking temper-

ature and more generally the Unruh temperature in Rindler spacetimes [101].

5.2.8 Complementarity, Firewalls, and ER=EPR

Black hole complementarity is a very intriguing idea, introduced in the early 1990s,
based on the proposition that a physical theory doesn’t need to be able to describe an
observer who can measure phenomena both inside and outside of a black hole because

such an observer cannot exist [36, 102].

Complementarity attempts to get around the information paradox by positing that mat-
ter falling into a black hole, rather than passing through unimpeded, hits a “stretched
horizon” located a Planck distance above the Schwarzschild horizon, which absorbs
and unitarily reemits it as Hawking radiation [103]. As we saw in section 2.1 the
Schwarzschild coordinates (2.1) seem to show that an observer falling towards a black
hole would take an infinite amount of time to reach the horizon, this was taken as
evidence that the Schwarzschild time coordinate ¢ was unphysical. Complementarity

implies that infalling matter indeed never falls into the hole and passes through at the
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same time without implying a contradiction. In other words after throwing a bit of
information into a black hole, an infalling observer sees it inside whereas an external
observer sees the same bit outside, but there is no one who can see both [104]. The
word complementarity is used because just as in the Bohrian concept of complementar-
ity (where the wave and particle properties of light cannot be measured simultaneously)
trying to measure a bit of information inside a black hole precludes being able to mea-
sure it outside and vice versa, therefore there is no contradiction as no one observer
can achieve both [28]. Black hole complementarity assumes that information emerges in
Hawking radiation, so what would happen if a bit of information fell into a black hole
and an external observer waited long enough to decode the radiation and retrieve the
bit? Could they then carry that bit into the hole and compare it with the bit (the same
bit) that fell in? This would effectively break down the complementarity framework
and also imply that the black hole acted as a cloning machine (forbidden by quantum
information theory); in actual fact this scenario is prohibited as the time it would take
for an external observer to gather and decode the bit from the Hawking radiation would
be much longer than the time taken for the infalling bit to reach and be destroyed by
the singularity [28, 63, 105].

The postulates underlying black hole complementarity are [36, 104]:

A distant, external observer describes the formation and evaporation of a black
hole as unitary, i.e. in principle there exists a unitary S-matrix describing the

whole process.

e Outside of the stretched horizon of the black hole (at distances > Rg +¢,) physics

can be described using semiclassical field theory.

e The subspace of states describing a hole has dimensions of e¢°, where S is the

Bekenstein entropy: S = 4.

e To an infalling observer the horizon seems like any other region of spacetime — in

other words the equivalence principle holds.

Let’s look at the original reasoning of Susskind et al [36] which led to the idea of black

complementarity.
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The Penrose diagram for an evaporating black hole is given in Figure 5.4. Assuming the
spacetime in which the black hole lives is globally hyperbolic we can foliate it using a
series of Cauchy surfaces — cf. section 3.1. A Cauchy surface for an evaporating black
hole can be defined which is partially inside and outside of the hole, split into >y}, and
Yout in Figure 5.4, where ¥p = Y, U Yoyt — the Cauchy surfaces we are looking at
satisfy the niceness conditions defined in section 5.1. (The Hilbert space of states on
Yp is a product state of Hilbert spaces defined for the inside and outside of the black
hole [36].) The last of the niceness conditions says that states defined on one slice can
be evolved smoothly to states on slices at later times, therefore a state [(X)) on ¥ can
be evolved smoothly to a state [¢)(Xp)) on Xp which can then further evolve to |¢ (X))
defined on X’ (this last space-like slice describes the universe after the black hole has
fully evaporated). As stated above, the first postulate of black hole complementarity
says that |¢(X)) evolves from [¢(X)) by a unitary S-matrix — also |[¢)(¥')) must be a
pure state as we assume that the Hawking radiation is pure after complete black hole
evaporation [36]. It is also assumed that the state [)(X')) evolves smoothly from a state
|€(Zout)) defined on Yoyt [36]. This implies (along with the fact that the Hilbert space
on Yp is a product space) that |¢(2Xp)) = [II(Zpn)) @ [£(Zout)) where |II(Xpy) is a state
defined on Xyy.

The product state defined on slice Yp, |¢)(Xp)), evolves linearly from [y (X)) however
|€(Xout)) also evolves linearly from [¢)(X)), therefore it seems to follow that |[II(Xpy))
does not depend on the pre-black hole formation initial state |¢)(X)) — the event horizon
seems to bleach (see section 5.2.2) the information of an infalling state [36, 77]. Comple-
mentarity removes this bleaching effect by arguing that the assumption that there exists
a state Xp simultaneously describing the inside and outside of a hole is unphysical and

so the above argument collapses [36].

N.B. the stretched horizon of the black hole must be “virtual” as an infalling observer
does not measure it and complementarity doesn’t provide any hair with which a stretched

horizon could thermalise and unitarily reemit the infalling information [77, 106].

As we have seen previously, if semiclassical physics is valid on nice slices through a
black hole spacetime then Hawking pairs will inevitably emerge from the vacuum not
from a stretched horizon, therefore complementarity demands that some new non-local

physics must be important over Schwarzschild horizon scales [77, 106]. A recent paper
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FIGURE 5.4: Penrose diagram for evaporating black hole foliated by space-like Cauchy
surfaces. Past and future null infinites, singularity and event horizon also shown. Illus-
tration from [36].

[37] — known as AMPS after its authors — argues that the postulates of complementarity
lead to a contradiction, and that assuming information conservation and the validity of
effective field theory away from the horizon implies the existence of a “firewall” at the
horizon — a region of Planck density radiation that would destroy any infalling matter
— thus doing away with the equivalence principle which many authors believe to be too

radical a step [77, 104, 107].

The AMPS argument can be put as follows [106]. Assuming the tenets of comple-
mentarity to be correct, a faraway external observer (A) receives Hawking radiation
emitted from a stretched horizon whereas an infalling observer (B) experiences nothing

unusual as they fall into the hole. For observer A early Hawking radiation is located
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far away from the hole whereas recently emitted radiation is just outside the stretched
horizon; observers A and B find no discrepancies between measurements of early and
recent Hawking quanta [106]. Observer B measures a vacuum at the horizon and so as
we saw at the end of section 5.1 the entanglement entropy of the hole with Hawking
radiation must steadily grow as each new Hawking pair is created. However based on
the assumption that observers A and B measure the same early- and late-time Hawk-
ing quanta, the entanglement entropy between the hole and the outgoing radiation also
appears to steadily increase for observer A; this leads to a contradiction as observer A
should measure the entanglement entropy to decrease after the hole is halfway through
its evaporation in order for the final Hawking quanta field to be pure [106, 108]. By
removing the assumption that observer B experiences nothing at the horizon this allows
the information to be retrieved by observer A however observer B then is burnt up at

the horizon by the firewall [37].

Complementarity demanded non-locality limited to Schwarzschild horizon scales however
it assumed local physics exterior to the stretched horizon, the AMPS argument suggests
that this limitation leads to a seemingly unphysical firewall [77, 106], therefore the
original idea of complementarity [36] does not appear to provide a consistent mechanism

by which information is conserved in black hole evaporation.

Much work has been done attempting to bypass the existence of firewalls (see Mann [77]
for a summary of recent attempts) including string theoretic studies of black holes [26]

(see section 5.2.10), and a very intriguing idea known as the ER=EPR proposal [109].

ER=EPR — the name deriving from the conjectured general equivalence of entanglement
(cf. the Einstein-Podolsky-Rosen paradox) and wormholes (also known as Einstein-
Rosen bridges) — suggests that outgoing Hawking particles are connected to their part-
ners via wormholes [110]. Let’s see how this may help with removing firewalls. Another
way of stating the AMPS paradox is that an outgoing Hawking quantum has to be
entangled with all the previously emitted Hawking radiation if information is to be con-
served, however the outgoing quantum is also entangled with its infalling partner as
we have seen, both of these entanglements experienced by the outgoing quantum are
mazrimal — meaning that making a measurement just on the outgoing quantum provides
no information about the complete entangled state [111] — which is forbidden by the

well-established monogamy of entanglement [107]. The AMPS authors did not want
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to sacrifice information conservation so they proposed that the entanglement between
Hawking pairs had to be broken, thereby releasing a huge amount of energy at the hori-
zon forming a firewall [37, 107]. The ER=EPR proposal says that the Hawking pairs
are related by wormholes and are therefore not independent systems, allowing them
to interact and leaving the entanglement between outgoing Hawking quanta untouched
[109, 112]. The ER=EPR authors stress that the idea does not disprove the existence
of firewalls however they state that “if it can be shown that the Einstein-Rosen bridge
connecting the black hole to its radiation is smooth near the black hole, then there will
be no firewall” [109] unless the outgoing radiation is manipulated in a very contrived

way. This idea is very recent and is subject to much debate [112].

5.2.9 The AdS/CFT Correspondence

One of the most striking recent discoveries in physics is that string theory in a particular
spacetime background is dual to a supersymmetric gauge theory on the boundary of that
spacetime — the AdS/CFT correspondence [31, 33]. Before looking into the applicability
of this duality to the information paradox let’s introduce the AdS/CFT correspondence

along with it most significant features.

The AdS/CFT correspondence emerged in the late 1990s [31] and is considered to be one
of the most important and interesting results string theory has yet produced [113, 114].
In the simplest possible terms it posits a duality between gravitational theories and
theories without gravity. The original formulation given by Maldacena [31] treated the
equivalence of type IIB string theory compactified on AdSs x S° and N = 4 supersym-

metric Yang-Mills theory in 3+1 dimensions.

Definition: Anti-de Sitter (AdS) space is a mazimally symmetric solution of Einstein’s

field equations with a negative cosmological constant [115].

Definition: A conformal field theory (CFT) has no dimensional parameters and is
generally also scale invariant (this last point is subtle, see last two of references at end
of this definition). A CFT is particularly useful as it exists at a fized point of the
renormalization group’s flow and one can easily study its geometry, i.e. define its metric.

3, 116-118].
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Definition: AdSs x S° denotes the ten-dimensional product space of five-dimensional

AdS space and 5-sphere S° [3].

Definition: N = J supersymmetric Yang-Mills theory is a quantum field theory with
non-abelian gauge symmetry that relates bosonic and fermionic fields using four super-

symmetries [3, 119].

Definition: Type IIB string theory describes closed, oriented superstrings of two types:
left-moving and right-moving, which transform under separate supersymmetries having

the same chirality [53].

Since its discovery the correspondence has been applied to areas not originally thought to
have been pertinent including condensed matter physics and relativistic hydrodynamics

[116].

The AdS/CFT correspondence emerges from the duality between open and closed strings
in string theory [113], however the duality can also be motivated by looking at lattice
systems using renormalisation group methods following the approach given in Ramallo
[116]. The renormalisation group treats the running of physical couplings at varying
energy scales. The best known example of this phenomenon being the varying electron
charge in QED [120]. The Hamiltonian of a system without gravity on a lattice, of
spacing a, is given by [116]

H=> Ji(z,a)0 (z) (5.17)

i
where i numbers the different operators O, & parameterizes the lattice position, and
Ji(x, a) are the sources for the operators at each point on the lattice. By coarse-graining
the lattice (increasing the spacing between lattice points and averaging the lattice vari-
ables) each operator O must be weighted differently, and the sources J;(z, a) must vary
as the coarse-graining progresses [116]. For example, continually increasing the spacing

between lattice points by a factor of four evolves the sources as
Ji(z,a) = Ji(z,4a) — J;(xz,16a) — ... (5.18)

and so on. As can be seen, during the above evolution the J;(z,a) are dependent on
the scale s = (a,4a, 16a,...). At weak coupling the variation of J;(z,a) with respect to
the scale (i.e. the familiar 5 function) can be found using perturbation theory methods,

however when the coupling becomes strong the AdS/CFT method suggests treating s as
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an additional dimension [116]. J;(z, a) are then defined as quantum fields in a space with
one extra dimension with dynamics given by a particular metric (i.e. defining gravity),
with the operators O defined on the boundary of this manifold. It may be thought of as
strange that all of the bulk physics can be described by studying the space’s boundary,
however as we saw earlier the entropy of a black hole, all of its hidden information, is
proportional to its area measured in Planck units, not its volume. Some authors have
stated that the breakdown of local gravity theory at some scale due to the AdS/CFT

duality may hold the key the solution of the information paradox [113].

What does a black hole look like in anti-de Sitter space? AdS space has constant negative
scalar curvature creating an effective gravitational field that pulls objects to the center
of the space, irrelevant of the mass distribution in the spacetime. A black hole formed
in AdS space won’t evaporate, the Hawking emission particles from the surface fall back

to the surface [28].

If a black hole were created in AdS space this could, by Maldacena’s duality [31], be
equated with a CF'T on the space’s boundary. If the CFT were unitary then we would
expect the bulk evolution to be unitary as well thereby conserving information and
bypassing the information paradox; as stated in Lowe and Thorlacius [33]: the unitarity
property of the boundary CFT “strongly suggests that all information about an initial
state that forms a black hole is returned in the Hawking radiation”. Does the AdS/CFT
correspondence really provide a simple solution to the information problem or as Lowe
and Thorlacius state does it just strongly suggest information conservation without

providing the physical mechanisms for a satisfactory explanation?

As pointed out in Mathur [114], the statement that AdS/CFT proves information preser-
vation in black hole evaporations is a circular argument. A black hole in AdS, just like
in the Schwarzschild case looked at earlier, has a horizon where the state of quantum
fields is the vacuum arising from normal gravitational collapse [89, 114], this vacuum
state at the horizon is “stretched” during black hole evaporation creating entangled
Hawking pairs. This evaporation process must result in either a breakdown of locality,
pure-to-mixed state evolution, or a final remnant state [114]. As we saw at the end of
section 5.1, the hole evaporation necessarily creates a steady increase of entanglement
entropy between the interior and exterior of the hole, this result also holds in AdS space

therefore the only way to ensure a pure final radiation state is to undermine some of
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the assumptions we made in our derivation of Hawking radiation in section 5.1 (we shall
see which in particular in section 5.2.10). So we see that AdS/CFT does not solve the
paradox. Black hole information conservation must be understood on the gravity side

of the coin, not just by considering the CFT side.

5.2.10 Fuzzballs

Arguably the most successful potential solution to the information paradox is the “fuzzball”

proposal [121-123].

In section 5.1 our derivation of Hawking radiation was explicitly predicated on the
horizon having small spacetime curvature to leading order. Let’s quantify the evolution
of modes on the horizon, letting v; be low-energy quanta (neither trans-Planckian nor
larger in wavelength than the horizon radius) and evolving these forward in a time

interval of order Schwarzchild radius of the hole gives matrix element:

(il H|1py). (5.19)

Defining the matrix element for the semiclassical evolution of a quantum field on generic

low-curvature spacetime as

(il Holvy) (5.20)

gives

(il H|tpz) = (il Holibz) + Ofe) (5.21)

where € is much less than unity. As pointed out in Mathur [114] if (5.21) is valid at
the horizon of a black hole then evaporation will inevitably lead to information loss or

remnants.

The fuzzball proposal undermines the horizon assumption (5.21), it states that there are
corrections at order unity to the evolution of low-energy quanta at the horizon [114]. Tt
also posits that black holes do indeed have “hair” (string configurations) which when
taken into account can explain the origin of its large entropy, as suggested by Susskind
[124]. Let’s look now in more detail at how the fuzzball construction can explain the

origin of black hole entropy and also potentially solve the information paradox. In the
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following we mainly follow the treatment of fuzzball construction laid out by Mathur

[121] as well as several other sources cited below.

The information paradox relies on quantum gravity effects being confined to within a
given distance — fuzzballs contradict this and undermine Hawking’s argument. Hair
wasn’t found before as perturbative methods were used, the fuzzball constructions are
nonperturbative and construct the hair required for unitary emission of Hawking radi-
ation [121]. The fuzzball proposal emerges from string theory. Since string theory is
thought to be complete and consistent then we must only use objects present within the
theory when forming a black hole (i.e. strings, branes, 2-form fields, 4-form fields, and

so on) [121].

A very important feature of string theory is compactification: whereby degrees of freedom
are said to be compact or non-compact, allowing for dimensional reduction, generalising
the beautiful work of Kaluza and Klein at the start of the last century [52, 125]. For a
string existing in 9+1 dimensions, we can evidently compactify 6 of the spatial dimen-
sions at such a scale that an observer (observer A) sees only 3+1 dimensions. Figure 5.5
shows an example of a dimension wrapped around a cylinder, invisible to observer A who
cannot resolve this compactification. If we let a quantum of gravity, a graviton, travel
around this compact dimension, observer A sees a point mass lying on the non-compact
direction; this point mass then carries “momentum charge” n,, (if this charge is equal to
the mass of the point seen by observer A then this is called a “BPS object”) [121]. In
a way analogous to above we can wrap a string around the compact dimension (around
the cylinder), again this system appears as a point mass to observer A; now the point
carries “winding charge” [5]. We now have some objects defined in string theory from

which to construct a black hole.

The simplest construction is that of a “1-charge” black hole (using one type of object, i.e.
a graviton or a wound string or some other objects we have yet to introduce) [26]. Firstly
let’s look at a 1-charge hole made from wound strings. Black holes normally studied are
very massive and so to form a realistic hole we should not use a string wound around a
compact direction once, but a string wrapped around many times (with its ends joined)
in order to create an object with a higher winding charge n; and therefore higher mass

(remember we are treating BPS objects: mass=charge) [121].
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FIGURE 5.5: Top: Illustration of compactification. Middle: graviton travelling around
compact dimension. Bottom: point mass appearance of graviton to observer A. Illus-
tration from [121].

Counting the number of states of this string wound several times around the compact
direction, taking into account supersymmetry, gives 256 configurations and so an entropy
value given by the logarithm of this number [26, 121]. This entropy value is very small
and more importantly it is fized, it doesn’t have a functional dependence on the winding
charge n;. The metric produced by this wound string gives a singular horizon and a
zero-valued entropy, as expected from the count of states (In256 is almost zero); another
type of 1-charge hole, made from a high-energy graviton travelling around the compact

direction, gives the exact same results as the wound string case [121].

What about a 2-charge hole? A wound string can maintain travelling waves (of mo-
mentum otherwise given by a graviton). This is called a NS1-P system, see Figure 5.6
— NS1 referring to the string and P to the momentum of the wave. The momentum
of the travelling wave can be partitioned between different harmonics (i.e. all of the
momentum could be put in the ground state or be more spread out amongst the modes)
and these partitions give different configurations and thus their count can be used to
find a microscopic value of the entropy of the system [121]. As can be seen pictorially
in Figure 5.6 the total length of the NS1 string Lt is given by the circumference of the
compact direction (thought of as a cylinder; c.f. Figure 5.5) multiplied by the winding

charge n; [121]. A single k-th harmonic mode has momentum

27k

= — 22
i (522

b
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whereas the total momentum carried by the string is given by [91, 121]

_ 2mny,  2mnang
Ptotal = I = LT .

(5.23)

If each harmonic k£ has m; modes then by equating two forms for the total momentum

it trivially follows that
Z kmy, = niny,. (5.24)
k

The number of different configurations is of order [121]

ninp
eV e (5.25)
partitioning these between ¢ degrees of freedom (from the freedom to vibrate in the 8
spatial dimensions left available in the 9+1 dimensional system) alters the formula for

the number of different configurations, now of order
C”Lln
2V o (5.26)

Exponentiating this number gives a value for the microscopic entropy (using supersym-

metry to account for both bosonic and fermionic modes) [121] of
Smicro = 27r\/2n1np. (5.27)

Let’s put the above structures into the framework of type IIB string theory in order to
take advantage of its dualities [53] and to find more complicated (3-charge, 4-charge, ...)

constructions. First we compactify the spacetime thusly:
My — Myy x T* x St (5.28)

where T* is a 4-torus and the NS1 and P of the 2-charge system we looked at previously
will be contained on/around the circle S* [121]. Using both S- and T-dualities we find
that for the NS1-P system, NS1 around S! is dual to a D5 brane wrapped in 7% x S!,
and the P charge becomes D1 around S* [52, 53, 121]. These dualities do not affect the
non-compact directions which is useful as later we will see that the tranverse spreading

of the modes is the source of the fuzzball’s size; the dualities are only in the compact
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T ny

L?. =T L

FIGURE 5.6: Top: 2-charge NSI1-P system showing compact, and non-compact (left-
to-right) directions. Bottom: Compact direction “rolled out” showing the string’s full
length. Tllustration from [121].

directions and so do not affect this result [91, 121].

A brief aside: a P momentum state on an NS1 string with winding charge n is split
into “fractional units” of momentum: n%, this will be an important feature which we

will use below [121, 126].

What does our above 2-charge system look like in terms of D1-D5 branes, after using the
above dualities? Just as P momentum states on n; NS1 strings are split into “fractional
units” the D1 branes, after being bound to ns D5 branes, are split into fractional units
of n%) times their unbound values [121]. In Figure 5.7 we see that taking n; D1 branes
(wrapped on S') and binding this to ns D5 branes (wrapped on 7% x S') produces an
“effective” D1 brane with winding number nins; this is due to the fact that the D1 brane
wrapped on D5 has its tension (originating from its Planckian dimensions) reduced by
a factor nz [121]. This multiplicative winding number nins is redolent of the one we
found for the 2-charge entropy in (5.27), this factor reappearing is unsurprising as each
case is equivalent after taking into account dualities; to be clear, P wrapped on NS1

is dual to D1 wrapped on D5, therefore the same physical results should emerge from

studying either case.



The Information Paradox 68

T4

M1 g ‘Effective string’ with total winding
number 11MNs5

FI1GURE 5.7: Pictorial view of the effect of binding ny; D1 branes to ns D5 branes.
Nlustration from [121].

Adding momentum P to a D1-D5 bound state gives us a 3-charge system — see Figure

5.8 — with microscopic entropy

Smicro = 2T\/Ninsn, (5.29)

where n1 and ns are the number of D1 and D5 branes respectively, and n, is the
momentum charge of P; this result is derived by using supersymmetric arguments to
account for the bosonic and fermionic modes, and by taking into account that the D1
branes are constrained by the D5 brane thus limiting their degrees of freedom [84, 121].
An RN black hole made in type IIB supergravity with the mass (and therefore also
charge) of the BPS 3-charge system we just looked at gives a Bekenstein entropy equal
to the value given in (5.29) [26], therefore the fuzzball microstate count for a 3-charge
system produces the expected entropy of the associated black hole — a very suggestive
result that fuzzballs may provide the hair required to resolve the long-standing entropy

puzzle.

It would be nice to be able to determine the entropy of the more general non-BPS states.
This can be done by allowing momentum modes P to run in opposite directions around
the NS1 string, in this case the momentum charge cancels but the energy adds; therefore
we get states in which the mass is greater than the charge, this has reproduced the cor-

rect entropy in the non-BPS 2-charge and 3-charge cases [121]. These P modes can also
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DI+D5 P DI+D5+P

FIGURE 5.8: Pictorial view of D1-D5-P 3-charge system. Illustration from [121].

collide and “come off”, exiting the system at a certain rate, the associated supergrav-
ity black holes emit Hawking radiation at the same rate, suggesting that the collision
of momentum modes (or any phenomena related by dualities) present an alternative

viewpoint of the Hawking emission mechanism [26, 121, 127, 128].

Do the brane-systems we looked at have a size of order the black hole horizon? This
would explain the classical size of the black hole. The key to explaining the size of
brane-systems is — as already mentioned — that branes bound to other branes have their
tension reduced, thus giving a larger size than if they were unbound and had higher
tension [121]. It turns out that the size of the brane-system grows with the number of
charges (momentum, winding etc.) and in certain cases reproduces the Schwarzschild

radius of the black hole [129].

The P modes on an NS1 string that we looked at above can only vibrate in transverse
directions, not longitudinal, because the NS1 string is fundamental, it isn’t made of
smaller elements — these transverse vibrations create a non-zero spread in the non-
compact directions [26, 121]. This spread turns out to be equal to the horizon size of
the associated black hole [91]. If all the available energy is put in a few harmonics of the
NS1 string then we get coherent states, if it’s shared over many different harmonics then
we get a generic quantum state (fuzzball) which has area of order microscopic entropy,

suggesting that black holes may indeed be described by fuzzballs [91].

A collapsing shell of matter has a very small tunnelling amplitude to a fuzzball state
however this is compensated by the very large amount of available fuzzball states — these
factors cancel to give an order 1 probability for the matter to tunnel to a fuzzball state

for times less than the Hawking evaporation time [121].
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The fuzzball proposal is very persuasive as it removes the vacuum state at the black hole
horizon, replacing it by a bound state of strings and branes. The horizon vacuum state —
when stretched during hole evaporation — directly led to a mixed, information-less state
whereas fuzzball radiation does not emerge from a vacuum region. It emerges from
regions (microstate constructions) containing information about the system, therefore

radiating in a way analogous to a macroscopic object [91, 103, 106].

In the future further research needs to be done on the dynamics of fuzzballs and a study
into more general nonextremal microstate constructions, as well as a more quantitative
look at the tunnelling of normal matter into fuzzball states [121]. This will illuminate
the relation between fuzzballs and black holes and put this solution to the information

paradox on firmer ground.

5.2.11 Supertranslations

Recently an idea was put forward that the information of a particle falling into a black

hole is encoded on its horizon by “supertranslations” [130].

Supertranslations refers to the symmetries of future null infinity under the BMS group
which describes asymptotic isometries of spacetime [131, 132]. The vacuum in general
relativity is considered to be highly degenerate with the vacua related by supertransla-
tions associated with a spontaneously broken BMS symmetry — the presence of radiation
can induce transitions between these vacua [133]. An effect called “quantum memory”
(shifts in detector positions and times due to nearby energy-momentum) can in theory
be measured and has been shown to be equivalent to BMS transformations [133, 134].
A supertranslation can therefore shift spacetime coordinates at future null infinity and
so if matter falling into a black hole radiates this can leave an imprint — a form of sought
after hair cf. section 5.2.3 — at infinity as the vacuum there is shifted. This opens up
the possibility that detectors positioned near future null infinity could measurably shift,

recording the information about how the black hole formed [133].

Professor Stephen Hawking [130] has suggested that the horizons of stationary black
holes also experience supertranslations, as the generators of the horizon are shifted by

infalling particles. Further evidence for this can be found in Polchinski [135].
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These supertranslations would manifest as delays in the emission of Hawking radiation by
the hole — encoding the information about what fell in — therefore information is indeed
conserved; the S-matrix is also invariant under these supertranslations and so there is
no pure-to-mixed state evolution [130]. Further, this suggestion would be satisfying if
shown to be correct as it would presumably remove the need for certain unfavoured

concepts such as interiors of black holes leading to other universes and remnants.

The idea seems to avoid the problem of steadily increasing entanglement entropy between
the interior and exterior of black holes during evaporation that we looked at earlier in
section 5.1. The increasing entanglement result was predicated on the horizon being a
vacuum — information-free — creating Hawking pairs with no relation to whatever formed
the hole. Supertranslations may undermine this assumption by providing a horizon rich
with information, which can then be carried out by the Hawking radiation thus solving

the information paradox.

Applications of supertranslations to black hole horizons is still in its infancy and further

work is due to be published on the subject in the coming months [130].



Chapter 6

Conclusion

In this dissertation we have set up the black hole information paradox and reviewed the

most promising attempts so far at toppling it.

We began with a short look at the history of black holes as an idea and some of the most
powerful mathematical tools that are commonly used to study them. A comparison of
the rules that have been developed for describing black holes and the laws of classical
thermodynamics was also included to show the striking similarities. We chose to derive
Hawking radiation from black holes by way of the Unruh effect as we found this to be
illuminating in showing how the concepts of particles and the vacuum are contingent
on the state of observers in quantum field theory. Information and its relationship with
entropy — specifically entanglement entropy — was introduced in order to clarify the main
conceptual points involved in the paradox, before moving on to an appraisal of possible

solutions.

The first potential solution we looked at involved remnants, a relatively old idea which
suggested that holes stop evaporating before becoming Planck-sized where it was as-
sumed quantum gravity effects would become important. This suffered from numerous
problems as discussed, information emerging from black holes right at the end of evap-
oration led to some of the same issues. We also looked at a recent interesting paper
treating black holes as a collection of Rubik’s cubes, although this turned out only to
be able to model the burning (and emission of radiation) of macroscopic objects, not

including black holes. Another intriguing paper concerned the conjectured equivalence

72
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of entanglement and wormholes and its applicability to the information paradox, it is

not clear at this time how applicable this equivalence will prove to be.

A very important event in the history of the paradox involves the AdS/CFT duality.
This relationship convinced many physicists that information had to be conserved in all
physical processes. Of course this didn’t solve the problem but it did frame the paradox

in a new way, most researchers now are convinced black holes evolve unitarily.

Several of the proposed solutions had unappealing elements which we discussed includ-
ing: the infinite degeneracy of suggested Planck-sized remnants, the contradictions in-
herent in complementarity as shown by the AMPS paper authors, as well as the conclu-
sion of the AMPS authors that the horizon of a black hole must be a highly energetic
and lethal place for infalling observers — contradicting the well-established equivalence

principle of general relativity.

In the author’s opinion the most promising attempt at a solution to the paradox so
far is given by the fuzzball, emerging from superstring theory. This has allowed the
microscopic entropy of several types of holes to be accurately rederived by a count of
bound states of strings and branes. Fuzzballs also provide a mechanism for unitary
emission of radiation, and again the rate of emission agrees with that predicted by
semiclassical theory. Further investigations into the tunnelling of collapsing matter into
fuzzball states and their use in describing more general black holes will shed more light

on these exotic objects and their link to semiclassical black holes.

The root cause of the paradox is the information-free vacuum state at the event horizon
as predicted by general relativity. As black holes evaporate this vacuum “stretches”
producing Hawking pairs independent of the matter that originally formed the hole. The
recent proposal by Professor Stephen Hawking that supertranslations encode information
at the horizon may remove this information-free property providing a mechanism for
information emission. This idea is encouraging as it is not reliant on small corrections to

the semiclassical derivation of Hawking radiation — which as we saw would be insufficient.

From our consideration of the current state of the paradox it seems as if research at this
time is as active — if not more so — than at any time in the past, stimulated in large
part by the discovery of the AMPS firewall. A resolution of the paradox, irrespective

of whatever particular idea or framework provides the answer, would be a major step
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forward in our understanding of the universe and the next few years ought to be a very

exciting time in this area of physics.
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