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Abstract. The evolution properties of propagating particles produced at high
energies in a randomly distributed environment are studied. The finite size of the
phase space of the multiparticle production region as well as the chaoticity can
be derived.

1. Introduction

The particle collisions produced by the new generation of high-energy hadron machines—
Fermilab’s Tevatron for proton–antiproton (p̄p) collisions, Brookhaven’s RHIC for heavy ions
and CERN’s large hadron collider for proton–proton (pp) collisions and heavy ions—create or
will create many secondary particles. The investigation of these collisions with high multiplicity
is a central feature of modern particle physics. Interest in (charged) particles ‘moving’ in an
environment of quantum fields, taking into account the relations between quantum fluctuations
and chaoticity, attracts particle physicists. One of the most important tasks of (super)high-
energy particle studies is to analyse fluctuations and correlations such as the Bose–Einstein
(BE) correlation [1, 2] of produced particles. This is a rather instructive tool to study high
multiplicity hadron processes in detail. The most recent reviews of the presentation of the BE
correlations can be found in [3]. We understand the multiparticle production as the process of
colliding particles where the kinetic energy is dissipated into the mass of produced particles [4].
We consider the incident energy

√
s � Λ, where Λ means the quantum chromodynamics scale.

Phenomenological models [5, 6] describing the crucial properties of multiparticle correlations are
very useful for systematic investigations of the properties caused by fluctuations and correlations.
By considering them, one can obtain the characteristic properties of the internal structure of the
disordering of produced particles in order to extract the information on the space-time size of the
multiparticle production region, to estimate the lifetime of the particle emitter, etc. The analysis
of correlation functions and distribution functions was used in [7, 8] to understand the possible
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view of the quark–gluon plasma formation. In this paper, we present the model to describe the
very high multiplicity effects at high energies. The most characteristic point of our model is
that both distribution and correlation functions are taken into account on the quantum level (the
operators of production and annihilation are used) with the random source contributions coming
from the environment. It is well known that the cross section of the production of N particles at
a given centre of mass energy

√
s of two colliding particles with the momenta p and p̄ is defined

as

σN(s) =
∫
dΩN δ4

(
p+ p̄−

N∑
j=1

qj

)
|AN(p, q)|2,

where AN is the N particle production amplitude, qj are the four-momenta of produced particles
and ΩN is a phase space. In the simple nonrelativistic case, the multiplicity N depends on the
mean kinetic energy ε = 3

2kT at the temperature T as (see [4] and references therein)

ε
N − 1√
s−Nm

= 1,

where k is the Boltzmann constant and m is the mass of a particle. We define the average
mean multiplicity 〈N̄〉 (as a natural scale of the produced particle multiplicity N ) via the
multiparticle correlation function w(�k) as 〈N̄〉 = ∫

d3
�k w(�k), where �k is the spatial momentum

of a particle. Following a natural way we suppose 〈N̄〉 � N , while N � N0 =
√
s/m, where

m ∼ O(0.1 GeV). The main object in this investigation is the multiparticle thermal distribution
function W̃ (kµ, k

′
µ) related to 〈N〉 as

W̃ (kµ) = 〈N〉 f(kµ) = 〈N〉〈b+(kµ) b(kµ)〉β, (1.1)

where 〈N〉 is defined as the scale of the multiplicity N at four-momentum kµ (µ is the Lorenz
index), the normalized distribution function f(kµ) is finite, i.e.

∫
d4k f(kµ) < ∞ and the label

β in equation (1.1) means the temperature T (of the phase space occupied by operators b+(kµ)
and b(kµ)) inverse. The nature of operators b+(kµ) and b(kµ) is clarified in section 2.

At present, for BE correlations no (phenomenological) model can fit the experimental data
and no analysis from first principles is in sight. As a new theoretical idea, we use the method
combining different fields of physics to describe the BE correlations in multiparticle production
processes:

(i) a semiphenomenological transport theory which is formulated by means of an operator-field
evolution equation of the Langevin type;

(ii) an axiomatic quantum field theory in terms of distributions (generalized functions);

(iii) a statistical theory.

In this paper, we claim that the observation of the size effect in a multiparticle production
is derived via the multiparticle correlation and distribution functions as well as the so-called
chaoticity which is introduced in section 3. The multiparticle correlation function formalism
concerns the statistical physics based on the Langevin-type equations. The Langevin equation,
introduced in section 3, is considered as a basis for studying the approach to equilibrium of the
particle(s). It is assumed that the heat bath being in essence infinite in size remains for all times in
equilibrium as well. We use the method applied to the model where a relativistic particle moving
in the Fock space is described by the number representation underlying the second quantization
formulation of the canonical field theory. We deal with the microscopic look at the problem
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with the elements of quantum field theory at the stochastic level with the semiphenomenological
noise embedded into the evolution dissipative equation of motion. The statistical distribution of
the particles is discussed in section 4. We conclude in section 5.

2. Stochastic model. Langevin equation

As was pointed out in the introduction, to derive the characteristic features of multiparticle
production physics at high energies, one should specify the model on the quantal level. Let us
assume that only the particles pi of the same kind of statistics labelled by index i are produced
just after the collision process occurred, e.g., pp, p̄p → pi. In order to extend the method of
stochastically distributed particles in the environment, we propose that the rather complicated
real physical processes which happened in the multiparticle formation region should be replaced
by a single-constituent propagation of particles provided by a special kernel operator (in the
stochastic evolution equation) considered as an input of the model and disturbed by the random
force F [7, 8]. We assume that F can be the external source being both a c-number function
and an operator. In such a hypothetical system of excited (thermal) local phase we deal with
the canonical operator a(�k, t) and its Hermitian conjugate a+(�k, t). We formulate distribution
functions of produced particles in terms of a point-to-point equal-time temperature-dependent
thermal correlation functions of two operators

w(�k,�k′, t;T ) = 〈a+(�k, t) a(�k′, t)〉β = Tr[a+(�k, t) a(�k′, t)e−Hβ]/Tr(e−Hβ). (2.1)

Here, 〈· · ·〉β means the procedure of thermal statistical averaging, �k and t are, respectively,
momentum and time variables, e−Hβ/Tr(e−Hβ) denotes the standard density operator in
equilibrium, and the Hamiltonian H is given by the squared form of the annihilation ap and
creation a+

p operators for Bose and Fermi particles, H =
∑

p εpa
+
p ap (the energy εp and operators

ap, a+
p carry some index p, where pα = 2π nα/L, nα = 0,±1,±2, . . . ;V = L3 is the volume of

the system considered). We define the thermal boson field as

ΦB(xµ) =
1√
2
[φ(xµ) + φ+(xµ)], (2.2)

where

φ(xµ) =
∫

d3�k vka(�k, t), vk =
ei�k�x

[(2π)3∆(�k)]1/2
,

φ+(xµ) =
∫

d3�k v+
k a

+(�k, t), v+
k =

e−i�k�x

[(2π)3∆(�k)]1/2

and ∆(�k) is an element of the invariant phase volume.
The standard canonical commutation relation

[a(�k, t), a+(�k′, t)]± = δ3(�k − �k′) (2.3)

at every time t is used as usual for Bose (−) and Fermi (+) operators.
The probability of finding the particles in the multiparticle production region with momenta

�k and �k′ in the same event at the time t is

R(�k,�k′, t) =W (�k,�k′, t)/[W (�k, t) ·W (�k′, t)], (2.4)
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where the multiparticle distribution function W (�k, t) in the simple version fluctuates only in its
normalization, e.g., the mean multiplicity 〈N〉.

Here, the one-particle thermal distribution function looks like

W (�k, t) = 〈N〉 · f(�k, t),
defining the single spectrum, while

W (�k,�k′, t) = 〈N(N ′ − δij)〉 · f(�k,�k′, t)

for i- and j-types of particles. Here, δij = 1 if i = j and 0 otherwise. Distribution functions
f(�k, t) and f(�k,�k′, t) look like (hereafter the labelβ will be omitted in the sense of equations (1.1)
and (2.1))

f(�k, t) = 〈b+(�k, t)b(�k, t)〉,
f(�k,�k′, t) = 〈b+(�k, t) b+(�k′, t) b(�k, t) b(�k′, t)〉,

where

b(�k, t) = a(�k, t) +R(�k, t)

under the assumption of the random source function R(�k, t) being an operator, in general. One
can rewrite equation (2.4) in the following form

R(�k,�k′, t) = ξ(N)
f(�k,�k′, t)

f(�k, t)f(�k′, t)
,

where

ξ(N) =
〈N(N ′ − δij)〉

〈N〉〈N ′〉 .

For simplicity, we deal with operators a and b as if they are the single boson or fermion
operators. Considering the ‘propagation’ of a particle with the momentum �k in the quantum
equilibrium phase space under the influence of a random force coming from surrounding
particles, the dissipative dynamics of the relevant system is described by the equation containing
only the first-order time derivatives of the dynamic degrees of freedom, the operators b(�k, t) and
b+(�k, t) [7]:

i ∂tb(�k, t) = F (�k, t) − A(�k, t) + P, (2.5)

i ∂tb
+(�k, t) = A∗(�k, t) − F+(�k, t) − P. (2.6)

Here, the interaction of particles under consideration with surroundings as well as providing the
propagation is given by the operator A(�k, t) defined as the one closely related to the dissipation
force:

A(�k, t) =
∫ +∞

−∞
K(�k, t− τ)b(�k, τ) dτ. (2.7)

The particle transitions are provided by the random source operator F (�k, t) while P represents a
stationary external force. An interplay of particles with surroundings is embedded into the
interaction complex kernel K(�k, t), while the real physical transitions are provided by the
random source operator F (�k, t) with the zeroth value of the statistical average, 〈F 〉 = 0.
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The random evolution field operator K(�k, t) in equation (2.7) denotes the random noise and
it is assumed to vary stochastically with a δ-like equal time correlation function

〈K+(�k, τ)K(�k′, τ)〉 = 2(πρ)1/2κδ(�k − �k′),

where both the strength of the noise κ and the positive constant ρ → ∞ define the effect of the
Gaussian noise on the evolution of particles in the thermalized environment.

The formal solutions of equations (2.5) and (2.6) in the operator form in the four-momentum
space-time S(
4) (kµ = (ω = k0, kj)) are respectively

b̃(kµ) = ã(kµ) + R̃(kµ), b̃+(kµ) = ã+(kµ) + R̃∗(kµ),

where the operator ã(kµ) is expressed via the Fourier transformed operator F̃ (kµ) and the Fourier
transformed kernel function K̃(kµ) (coming from equation (2.7)) as

ã(kµ) = F̃ (kµ) · [K̃(kµ) − ω]−1,

while the function R̃(kµ) ∼ P · [K̃(kµ) − ω]−1. In our model, we suppose that a heat bath (an
environment) is an assembly of damped oscillators coupled to the produced particles which in
turn are distributed by the random force F̃ (kµ). In addition, there is the assumption that the heat
bath is statistically distributed. The random force operator F (�k, t) can be expanded by using the
Fourier integral

F (�k, t) =
∫ +∞

−∞
dω
2π

ψ(kµ)ĉ(kµ) e−iωt, (2.8)

where the form ψ(kµ) · ĉ(kµ) is just the Fourier operator F̃ (kµ) = ψ(kµ) · ĉ(kµ), and the
canonical operator ĉ(kµ) obeys the commutation relation

[ĉ(kµ), ĉ+(k′
µ)]± = δ4(kµ − k′

µ).

The function ψ(kµ) in equation (2.8) is determined by the condition (the canonical commutation
relation (2.3) is taken into account)∫ +∞

−∞
dω
2π

[
ψ(kµ)

K̃(kµ) − ω

]2
= 1.

3. The ratio R in S(�4)

The enhanced probability for emission of identical particles is given by the ratioR of distribution
functions in S(
4) as follows:

R(kµ, k
′
µ;T ) = ξ(N)

f̃(kµ, k
′
µ;T )

f̃(kµ) · f̃(k′
µ)
, (3.1)

where f̃(kµ, k
′
µ;T ) = 〈b̃+(kµ)b̃+(k′

µ)b̃(kµ) b̃(k′
µ)〉 and f̃(kµ) = 〈b̃+(kµ)b̃(kµ)〉. Using Fourier

solutions of equations (2.5) and (2.6) in S(
4), one can get

R(kµ, k
′
µ;T ) = ξ(N)[1 +D(kµ, k

′
µ;T )], (3.2)

where

D(kµ, k
′
µ;T ) =

Ξ(kµ, k
′
µ)[Ξ(k

′
µ, kµ) + R̃+(k′

µ)R̃(kµ)] + Ξ(k′
µ, kµ)R̃+(kµ)R̃(k′

µ)

f̃(kµ) · f̃(k′
µ)

(3.3)
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and the BE correlation function Ξ(kµ, k
′
µ) looks like

Ξ(kµ, k
′
µ) = 〈ã+(kµ) ã(k′

µ)〉 =
ψ∗(kµ) · ψ(k′

µ)

[K̃∗(kµ) − ω] · [K̃(k′
µ) − ω′]

· 〈ĉ+(kµ) ĉ(k′
µ)〉. (3.4)

Inserting equation (3.4) into (3.3) and taking into account the trick with the δ4(kµ −k′
µ)-function

to be replaced by the δ-like consequence such as Ω(r) exp[−(k− k′)2r2] [9], one can obtain the
following expression for the D-function instead of equation (3.3)

D(kµ, k
′
µ;T ) = λ(kµ, k

′
µ;T ) exp(−q2/2)

× [n(ω̄, T )Ω(r) exp(−q2/2) + R̃∗(k′
µ)R̃(kµ) + R̃∗(kµ)R̃(k′

µ)], (3.5)

where

λ(kµ, k
′
µ;T ) =

Ω(r)
f̃(kµ) · f̃(k′

µ)
n(ω̄, T ), ω̄ =

1
2
(ω + ω′),

while q2 ≡ Q2r2 and the function Ω(r)n(ω;T ) exp(−q2/2) in (3.5) describes the space-time
size of the multiparticle production region. Choosing the z-axis along the pp or p̄p collision axis
one can put

Qµ = (k − k′)µ, Q0 = ε�k − ε�k′ , Qz = kz − k′
z,

Qt = [(kx − k′
x)

2 + (ky − k′
y)

2]
1/2
, Ω(r) =

1
π2 r0rzr

2
t ,

where r0, rz and rt are time-like, longitudinal and transverse ‘size’ components of the
multiparticle production region. To derive equation (3.5), the Kubo–Martin–Schwinger
condition (µ is the chemical potential)

〈a(�k′, t′) a+(�k, t)〉 = 〈a+(�k, t) a(�k′, t− iβ)〉 · exp(−β µ)

has been used, and the thermal statistical averages for the ĉ(kµ)-operator should be represented
in the following form:

〈ĉ+(kµ) ĉ(k′
µ)〉 = δ4(kµ − k′

µ) · n(ω, T ), (3.6)

〈ĉ(kµ) ĉ+(k′
µ)〉 = δ4(kµ − k′

µ) · [1 ± n(ω, T )] (3.7)

for Bose (+) and Fermi (−) statistics, where n(ω, T ) = {exp[(ω− µ)β]± 1}−1. Formula (3.5)
indicates that the chaotic multiparticle source emanating from the thermalized multiparticle
production region exists. Taking into account equations (3.6) and (3.7), it is easy to see that
the correlation functions containing the random force functions F (�k, t) (2.8) carry the quantum
features in the thermalized stationary equilibrium, namely

〈F (�k, t)F+(�k′, t′)〉 = δ3(�k − �k′))Γ1(�k,−∆t),

Γ1(�k,−∆t) =
∫ dω

2π
|ψ(kµ)|2[1 ± n(ω, β)] exp(−iω∆t), ∆t = t− t′;

〈F+(�k, t)F+(�k′, t′)〉 = δ3(�k − �k′))Γ2(�k,∆t),

Γ2(�k,∆t) =
∫ dω

2π
|ψ(kµ)|2n(ω, β) exp(iω∆t).
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Therefore, one can say that every dynamical quantity can be written in terms of only operators ĉ
and ĉ+ in the stationary state or thermal equilibrium. The quantitative information (longitudinal
rz and transverse rt components of the multiparticle production region, the temperature T of
the environment) could be extracted by fitting the theoretical formula (3.5) to the measured
D-function and estimating the errors of the fit parameters. Hence, the measurement of the
space-time evolution of the multiparticle source would provide information of the multiparticle
process and the general reaction mechanism. The temperature of the environment enters into
formula (3.5) through the two-particle correlation function Ξ(kµ, k

′
µ;T ). The function R (3.1) is

temperature-dependent because of the T -dependence of the two-particle distribution function f̃
which, in fact, can be considered as an effective density of the multiparticle source. Formula (3.1)
looks like the fitting R-ratio using a source parameterization:

RF (r) = const[1 + λF (r) exp(−r2
tQ

2
t/2 − r2

zQ
2
z/2)],

where rt(rz) is the transverse (longitudinal) radius parameter of the source with respect to the
beam axis, and λF denotes the effective intercept parameter (chaoticity parameter) which has a
general dependence on the mean momentum of the observed particle pair. Here, the dependence
on the source lifetime is omitted. The chaoticity parameter λF is temperature-dependent and the
positive one defined by

λF (r) =
|Ω(r)n(ω̄;T )|2
f̃(kµ) · f̃(k′

µ)
.

Comparing equations (3.3) and (3.4) one can identify

Ξ(kµ, k
′
µ) = Ω(r)n(ω̄;T ) exp(−q2/2).

Hence, the correlation function Ξ(kµ, k
′
µ) defines uniquely the size r of the multiparticle

production region. There is no satisfactory tool to derive the precise analytic form of the random
source function R̃(kµ) in equation (3.3), but one can put (see equation (3.4) and taking into
account R̃(kµ) ∼ P [K̃(kµ) − ω]−1) [7, 8, 10] that

R̃(kµ) = [α · Ξ(kµ)]
1/2,

where α is of the order O(P 2/n(ω, T ) · |ψ(kµ)|2). Thus,

D(q2;T ) =
λ̃1/2(ω̄;T )

(1 + α)(1 + α′)
e−q2/2[λ̃1/2(ω̄;T )e−q2/2 + 2(αα′)1/2], (3.8)

where

λ̃(ω̄;T ) =
n2(ω̄;T )

n(ω;T )n(ω′;T )
.

It is easy to see that, in the vicinity of q2 ≈ 0, one can obtain the full correlation if α = α′ = 0
and λ̃(ω̄;T ) = 1. Putting α = α′ in equation (3.8), we find the formal lower bound on the
space-time dimensionless size of the multiparticle production region of the bosons

q2 ≥ ln
λ̃(ω̄;T )

[
√
(α+ 1)2 + α2 − α]

2 .

In fact, the functionD(kµ, k
′
µ;T ) in equation (3.5) could not be observed because of some model

uncertainties. In the real world, the D-function has to contain background contributions which
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have not been included in the calculation. To be close to the experimental data, one has to expand
the D-function as projected on some well-defined function (in S(
4)) of the relative momentum
of bosons produced D(kµ, k

′
µ;T ) → D(Q2

µ;T ). Thus, it will be very instructive to use the
polynomial expansion which is suitable to avoid any uncertainties as well as to characterize the
degree of deviation from the Gaussian distribution, for example. The complete orthogonal set
of functions can be obtained with the help of the Hermite polynomials in the Hilbert space of
the square integrable functions with the measure dµ (z) = exp(−z2/2) dz. The function D
corresponds to this class if∫ +∞

−∞
dq exp(−q2/2) |D(q)|n < ∞, n = 0, 1, 2, . . . .

The expansion in terms of the Hermite polynomials Hn(q)

D(q) = λ
∑
n

cnHn(q) exp(−q2/2) (3.9)

is well suited for the study of possible deviations both from the experimental shape and from the
exact theoretical form of the function D (3.5). The coefficients cn in equation (3.9) are defined
via the integrals over the expanded functions D because of the orthogonality condition∫ +∞

−∞
Hn(x) Hm(x) exp(−x2/2) dx = δn,m.

Thus, the observation of the multiparticle correlation enables one to extract the properties of the
structure of q2, i.e. the space-time size of multiparticle production region. The other possibility
is related to the replacement of the R-function (3.2) with respect to the cylindrical symmetry
angles θ and φ which are non-observable ones at fixed Qt

R(kµ, k
′
µ;T ) → R̄(Qt;T ) = C−1

N ξ(N)
∫
dqt dQz dθ dφ f̃(kµ, k

′
µ;T ),

where

CN =
∫
dqt dQz dθ dφ f̃(kµ) f̃(k′

µ),

qt =
1

cos θ + sin θ

{
kx + ky ∓ 1

2
Qt[cos(θ + φ) + sin(θ + φ)]

}
.

Then, R̄(Qt;T ) = ξ(N) [1 + D̄(Qt;T )] with

D̄(Qt;T ) =
C̄N

−1(T )
(1 + α)(1 + α′)

exp[−(r2
t Q

2
t )]F (Qt;T ),

F (Qt;T ) =
∫
dqt dQz dθ dφn2(ω̄;T ) e−β0z

[
1 + 2

√
αα′λ̃−1(ω̄;T ) eq2/2

]
,

β0z ≡ r2
0 Q

2
0 + r2

z Q
2
z, C̄N(T ) =

∫
dqt dQz dθ dφn(ω;T )n(ω′;T ).

It remains to show how one goes about calculating the thermodynamical quantities in a
local thermalized system of produced particles. Taking into account the positive- and negative-
frequency parts of the boson field operator (2.2) to be applied to the energy–momentum tensor

Tµν(x) =: ΦB(x) �̃kµ
�̃kν ΦB(x) : and the particle flow operator Πµ(x) =: ΦB(x) �̃kµ ΦB(x): we

can calculate the energy density E(β), the pressure V (β) and the entropy density S(β) in the
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local system of the volume v for bosons in the equilibrium thermalized phase space. The simple
straightforward calculations give (see also [11])

E(β) =
1

(2π)2 v

∫
d3
�k dω ω2 M(kµ, β),

V (β) =
1

6π2 v

∫
d3
�k �k2 dωM(kµ, β),

S(β) =
1

2π v

∫
d3
�k {[1 + Π0(�k, β)] ln[1 + Π0(�k, β)] − Π0(�k, β) lnΠ0(�k, β)},

where

Π0(�k, β) = 1
2

∫ +∞

−∞
d2ωM(kµ, β),

M(kµ, β) =
ψ2(kµ)

|K̃(kµ) − ω|2n(ω, β), d3
�k ≡ d3�k√

(2π)3 ∆(�k)
,

ΦB(x) �̃kµ ΦB(x) ≡ 1
2 [ΦB(x) (kµΦB(x)) − (kµΦB(x)) ΦB(x)].

Here, we suppose that the thermalized multiparticle production region is isotropic, and one can
use the space-averaged operators normalized to the volume v, taking ensemble averages (3.6)
and (3.7). It is easy to see that both E(β) and V (β) tend to their maximum values with rising
T , while the entropy S(β) does not change so much essentially even if T → ∞.

4. Statistical distributions

From a widely accepted point of view, at high energies, there are two channels, at least, for
multiparticle production where produced particles occupy the multiparticle production region
consisting of i elementary cells. These main channels are (a) a direct channel assuming that all
particles pj are produced directly within the quark (q)-antiquark (q̄) annihilation or the gauge–
boson fusion, e.g., qq̄ → pjpj . . .; (b) an indirect channel which means that the particles are
produced via the decays of intermediate vector bosons χ∗ in both heavy and light sectors in the
kinematically allowed region, e.g., qq̄ → χ∗χ∗ . . . → pjpj . . . . All the particles produced are
classified by the like-sign constituents that are labelled as p+, p−, p0 subsystems, where p: µ,
π, K . . . . The mean multiplicity 〈N〉 and the mean energy 〈E〉 of the pj subsystem are defined
as [5]

〈N〉 = ∑
j

∑
mj

mj ζ
(mj)
j , 〈E〉 = ∑

j

∑
mj

mj εj ζ
(mj)
j ,

where εj is the energy of a p-particle in the jth elementary cell and ζ(mj)
j represents the probability

of finding mj p-particles in the jth cell and is normalized as
∞∑

mj=0
ζ

(mj)
j = 1.

In the direct channel, for charged produced mesons 〈N〉 is defined uniquely for a given β as

〈N〉 = 2
∑
j

[exp(εj β) − 1]−1,
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while 〈E〉 is

〈E〉 = 1
3

√
s =

∑
j

εj
exp(εj β) − 1

.

Going into y-rapidity space in the longitudinal phase space with many cells of equal size δy, the
energy εj should be expressed in terms of the transverse mass mt =

√
〈kt〉2 +m2

p (where 〈kt〉
and mp are the transverse average momentum and the mass of a p-particle):

εj(s) =
mt

2
[gj(s̃) + g−1

j (s̃)], s̃ =
s

4m2
t

,

gj(s̃) =
(√

s̃+
√
s̃− 1

)
exp[−(j − 1/2) δy].

Here, the four-momentum of a p-particle is given as

kµ =
(√

〈kt〉2 +m2
p cosh y, kt cosϕ, kt sinϕ,

√
〈kt〉2 +m2

p sinh y
)
,

where the azimuthal angle of kt is in the range 0 < ϕ < 2π. Our model produces an enhancement
of R(Q, β) in the small enough region of Q where R is defined only by the model parameter α
and the mean multiplicity 〈N(s)〉 at a fixed value of β, namely

R(Q, β) � ξ(〈N〉)

1 +

√
λ̃(ω̄, β)

(1 + α)2

[√
λ̃(ω̄, β) + 2α −

(√
λ̃(ω̄, β) + α

)
Q2 r2

]
 . (4.1)

It is clear that the R(Q, β)-function at Q2 = 0

R(Q, β) � ξ(〈N(s)〉)
[
2 −

(
α

1 + α

)2]
(4.2)

cannot exceed 2 because α �= 0 and ξ(N(s)) < 1 even at large multiplicity. The Boltzmann
behaviour should be realized in the case when α → ∞, i.e. the main contribution to the
fluctuating behaviour of theR(Q, β)-function should come from the random source contribution
(see equations (3.5) and (3.8)). We found that the enhancement of theR(Q, β)-function, mainly,
the shape of this function, strongly depends on the transverse size rt of the phase space and has
a very weak dependence of the δy size of a separate elementary cell. The increase of rt makes
the shape of the R(Q, β)-function become more crucial.

Obviously, ξ(〈N(s)〉) is the normalization constant in equation (3.2), where 〈N(s)〉 should
be derived at the origin of Q2 precisely from R(Q = 0, β) ≡ R0(s) as

〈N(s)〉 � 1
ε
,

where

ε = 1 − R0(s)
2 − ( α

1+α
)2

can be extracted from the experiment at some chosen value of α (α = 0 should also be
taken into account). On the other hand, the R(Q, β)-function allows one to measure α = α′

which parameterizes the random source contribution as well as the splitting between α and
α′. Neglecting the random source contribution (i.e., putting α = α′ = 0) we can estimate the
chaoticity λ̃(ω̄, β) by measuring R(Q, β) as Q2 → 0.
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In fact, the theoretical prediction that D(Q, β) > 1 means that in the multiparticle
production region one should select the single boson ‘dressing’ of some quantum numbers,
and the particles suited near it in the phase space are ‘dressed’ with the same set of quantum
numbers. The amount of such neighbour particles has to be as many as possible. This
allows a cell to form in the space-time occupied by equal-statistics particles only. Such a
procedure can be repeated while all the particles will occur in the multiparticle production
region. This leads to the space-time BE distribution of produced particles in the phase-
space cells formed only for bosons. In fact, there is no restriction of the number of bosons
occupying the chosen elementary cells. This means that the D(Q, β)-functions are defined for
all orders.

5. Summary and discussion

We have investigated the finite temperature BE correlations of identical particles in the
multiparticle production using the solutions of the operator field Langevin-type equation in
S(
4), the quantum version of the Nyquist theorem and the quantum statistical methods. The
model considered states that all the particles are produced directly from a high-energy collision
process. We presented the crucial role of the model in describing the BE correlations via
calculations of distribution functions as the functions of the mean multiplicity and chaoticity
at each four-momentum

√
Q2

µ. Based on this model, one can compare the effects on single
particle spectra and multiparticle distribution caused by multiparticle correlations. There are
several parameters in the model: β, δy, α(α′). One can focus on the statement that the deviation
of the D(Q, β)-function from zero at finite values of the physical variables q2 and the model
parameter α indicates that the multiparticle production region should be considered as the phase-
space consisting of the elementary cells (each with the size δy) which are occupied by the
particles of identical statistics. The Boltzmann behaviour of the R-function is available only
at large enough values of α which means the leading role of the random source contribution to
the distribution function. An important feature of the model is getting the information on the
space-time structure of the multiparticle production region. We are able to predict the source
size and the intercept parameter—the chaoticity λ as well. We have found that the distribution
function R(Q, β) depends on the number of elementary cells defined by the equal size δy in the
rapidity y-space.

Of course, the best check of any model could be done if various kinds of high-energy
experimental data on the multiparticle correlations would be well reproduced by the model in
consideration. The model considered in this work can be applied to the experimental data. This
will be our task in our next work. Here, we are just going to give a brief example. The ALEPH
data [12] at

√
s = 91.2 GeV applied to the R(Q)-function (4.1) in the region 0.1 ≤ Q ≤ 1 GeV

have an essential nonmonotonic behaviour. This means that the sign of the slope parameter of
R(Q) changes in this region, and the values of R(Q) are <1. In accordance with our model,
this effect could be interpreted as the fact that in the domain 0.1 ≤ Q ≤ 1 GeV the mean
multiplicity 〈N(s)〉 has a small value which gives the strong suppression for the R(Q)-function
normalized to ξ(〈N(s)〉). In the case of higher energies of colliding particles (Tevatron, LHC),
the expected (from our model) averaged multiplicity should be very large ∼300–400, and the
nonmonotonic effect will not occur. We hope that experiments at the Tevatron’s Run II and the
LHC will measure observables such as R(Q) more precisely.
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