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5.1 Introduction

In high energy physics (HEP), the study and use of machine learning

(ML)—the practice of solving problems by allowing machines to “discover”

algorithms using data or experience without explicit programming—

have been exploded in recent years. According to the INSPIRE HEP

database, the number of articles in HEP and related fields that refer

to ML and related topics has grown twenty times compared to ten

years ago.1 Notwithstanding this recent surge of interest, ML has deep

ties to HEP, especially instrumentation, with early work dating back to

the late 1980s and early 1990s [31, 33–35, 87–89]. In these early days,

the most popular techniques, including cellular automata and multi-layer

perceptrons, helped shape experimental particle physics. As deep neural

networks have achieved human-level performance for various tasks, such

as image classification [59, 79] in the early 2010s, they were adopted more

regularly in particle physics [14, 56, 61, 106]. Unlike traditional approaches,

deep learning techniques operate on lower-level information to extract

higher-level patterns directly from the data.

2024 © The Author(s). This is an Open Access chapter published by World Scientific
Publishing Company, licensed under the terms of the Creative Commons Attribution 4.0
International License (CC BY-NC 4.0). https://doi.org/10.1142/9789819801107 0005
1https://inspirehep.net/literature?q=%28deep%20learning%29%20OR%20%28neural

%20network%29%20OR%20%28machine%20learning%29%20OR%20%28artificial%20i
ntelligence%29.
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Figure 5.1. Nomological net of topics in ML in particle physics inspired by the HEP
ML Living Review [61].

ML in particle physics has become more than a tool and has emerged

as a subfield worthy of intense academic study in its own right. This can

be seen through the HEP ML Living Review [61], which as of January

20242 categorizes 1,252 articles, proceedings, reviews, book chapters, and

other contributions in this subfield. Inspired by this classification, we can

visualize the different topics of ML in particle physics as a nomological net

in Fig. 5.1. Use cases range from standard classification and regression to

simulation, uncertainty quantification, and real-time inference.

2https://github.com/iml-wg/HEPML-LivingReview/blob/2c7cd26/HEPML.bib.
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This chapter is meant to introduce the reader to the basic concepts of

ML that are widely used in HEP. After reviewing these concepts, we survey

popular applications in HEP.

5.2 Machine Learning Basics

5.2.1 Types of learning

The basic premise of ML is to use a set of observations to uncover an

underlying process corresponding to an unknown target function mapping

the inputs to the correct outputs. Within this framework, there are several

different types of learning paradigms, which differ in the information

contained in the dataset and how that information is used. When observa-

tions are coupled with correct outputs, known as labels, based on reliable

information from simulation or empirical observation (ground truth), and

the learning process that uses them, this is known as supervised learning.

This is the most prevalent and well-studied form of learning in HEP and

beyond, but other types are increasingly being applied. For example, in

unsupervised learning, the training data do not contain any desired output

or label information at all. For the remainder of this chapter, we focus

primarily on supervised learning, but we discuss some applications of

unsupervised learning.

5.2.2 Supervised learning

Within supervised learning, different tasks require different types of

outputs. Tasks that require producing continuous, real-valued predictions,

for example for quantities like mass, temperature, or energy, are known

as regression. On the contrary, the main goal of classification is to assign,

among a set of fixed options, the category to which a data sample belongs.

Typically, the output of the model is a set of values pi ∈ [0, 1], one for each

class, that represent the probabilities that the data sample belongs to a

particular class i.

Given a training dataset S = {(x1, y1), . . . , (xN , yN )} consisting of data

samples in an input domain xi ∈ X and labels in a target domain yi ∈ Y,
where i indexes the sample in the dataset, the goal is to learn a function

from the input to the output domain f : X → Y, parameterized by a vector

of parameters θ, that best approximates the labels. We denote the output

of the function for a given input x as f(x|θ). The space of functions under

consideration is known as the model or hypothesis class.
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(a) (b)

(c) (d)

Figure 5.2. Examples of data representations and supervised learning tasks in physics,
including (a) predicting the mass of a star given a measurement of its radius,

(b) classifying image data from the NOvA experiment as one of the four types of neutrino
interactions [6], (c) reducing noise in time series data to better identify gravitational
wave signals [101], and (d) reconstructing particles based on detector measurements in
a collider experiment [103, 104].

Examples of supervised learning are illustrated in Fig. 5.2:

(a) Predicting the mass of a star given a measurement of its radius. In this

case, the input domain corresponds to the set of real numbers X = R

and Y = R.

(b) Classifying image data from the NOvA experiment as one of four types

of neutrino interactions [6]. In this case, X = R
100×80×2 because there

are two detector views (x − z and y − z) with each image featuring

100 by 80 pixels of information. The target domain is a set of labels

Y = {νμ CC, νe CC, ντ CC, ν NC}, where each element is a different

type of neutrino interaction.

(c) Reducing noise in time series data to better identify gravitational wave

signals [101]. For this task, X = R
8192 and Y = R

8192, corresponding

to 8 s of the data sampled at a rate of 1024Hz, before and after noise

reduction.

(d) Reconstructing particles based on detector measurements in an LHC

experiment [103]. Here, X =
∏6,400

i=1 R
7×{track, cluster}×{−1, 0,+1},

where there are seven continuous features and two discrete features
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(whether the measurement is a calorimeter cluster or a track and the

measured charge of the track) for up to 6,400 measurements per event.

The target domain Y =
∏6,400

i=1 R
4 × {charged hadron, neutral hadron,

γ, e±, μ±}×{−1, 0,+1} because there are four continuous features (four
momentum of the particle) and two discrete features (particle type and

charge) for up to 6,400 particles per event.

5.2.3 Objective function

The objective function, often called the loss or cost function, L(yi, f(xi|θ))
measures the quality of predictions made by an ML algorithm. For example,

a simple choice for regression problems is the squared loss L(y, y′) =

(y′ − y)2. The farther away the predicted value y′ is from the true value y,

the larger the value of the loss function. The more accurate an ML algorithm

is, the smaller the loss value should be, on average, for a given set of data.

Therefore, our goal is to minimize the loss function.

The learning objective is to find the parameters that minimize the

loss function averaged over the entire training dataset, which we denote

l(θ). These optimal parameters, denoted θ∗, can be expressed using the

argmin operator, which returns the value where a given function attains

its minimum:

θ∗ = argmin
θ

l(θ) ≡ argmin
θ

1

N

N∑
i=1

L(yi, f(xi|θ)) (5.1)

Roughly speaking, θ∗ is the set of parameters that minimizes the difference

of the output of the algorithm and ground truth label.

Depending on the type of optimization process, there are additional

requirements for the loss function. For example, the gradient descent

algorithm discussed in Section 5.2.6 requires calculating the gradient of the

loss function with respect to the model parameters to determine how to

modify the parameters to reduce the loss function. Thus, the loss function

must be differentiable in the model parameters.

Training an ML algorithm is closely related to statistical inference

via the method of maximum likelihood [49]. In the maximum likelihood

method, observed data are modeled by a probability distribution function

with some free parameters. To estimate those parameters, we find their

values such that the observed data are the most probable under this

statistical model.
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There is a correspondence between commonly used loss functions and

likelihood functions. For example, minimizing the squared loss corresponds

to maximizing a Gaussian likelihood. A Gaussian likelihood with observed

value y′ and expected mean y and standard deviation σy is given by

G(y′|y, σy) =
1

σy

√
2π

exp

(−(y′ − y)2

2σ2
y

)
(5.2)

If we take the negative logarithm of this likelihood,

− lnG(y′|y, σy) = (y′ − y)2/(2σ2
y) + ln(σy

√
2π) (5.3)

= c(y′ − y)2 + b (5.4)

we see that up to a multiplicative constant c and an additive constant b,

this is equivalent to the squared loss.

Another common loss function appropriate for binary classification tasks

is the binary cross-entropy (BCE), which can be derived from the Bernoulli

likelihood. Given two true classes, y = 0 or y = 1, and a model output y′

defined between 0 and 1, which represents the probability that the data

sample belongs to the y = 1 class, the Bernoulli distribution defines the

likelihood

B(y′|y) = (y′)δ[y=1](1− y′)δ[y=0] (5.5)

where the δ operator evaluates to 1 or 0 if the argument is true or false,

respectively. Note that only one of these two terms appears, depending on

the true value of y. Taking the negative logarithm of the likelihood yields

the BCE loss function:

LBCE(y, y
′) = − lnB(y′|y) = −δ[y = 1] ln y′ − δ[y = 0] ln(1− y′) (5.6)

This can also be generalized to the categorical cross-entropy (CCE) for

classification tasks with more than two target classes.

Figure 5.3 compares the squared loss and BCE for a given example

whose true label is y = 0. Although both losses increase the farther y′ is
from y, BCE is more appropriate for classification problems because it takes

into account that y′ = 1 is an extremely incorrect prediction and the loss

grows without bound as y′ → 1.
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Figure 5.3. Comparison of the squared and binary cross-entropy loss functions for a true
value of y = 0. The BCE loss grows without bound as the prediction y′ approaches 1.

5.2.4 Linear models

Despite their simplicity, linear models are the workhorse of machine

learning. Given a set of D features, each data point is a vector in

D-dimensional space x ∈ R
D, and a linear model can be expressed as

f(x|θ, b) = θᵀx+ b (5.7)

where the weight θ ∈ R
D and bias b ∈ R are unconstrained parameters

of the model. These parameters are chosen to minimize the loss function on

the training data. For notational convenience, we can absorb the bias into

the weight vector by extending the input vector with a constant feature

x(0) = 1 and setting the corresponding entry of the weight vector equal to

the bias θ(0) = b. This allows us to express linear models directly as

f(x|θ) = θᵀx (5.8)

To expand on the foundational ML concepts, we introduce an explicit

example of regressing the logarithm of the radius of stars in the so-called

main sequence as a function of the logarithm of the star mass. This means
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Figure 5.4. Training data points (crosses), testing data points (dots), and linear models
(lines) fit to the data. A linear model using the original features x (upper) and a linear

model after using a polynomial embedding φ(x) = (1, x, x2) (lower) are shown.

we will train a model to predict log10(R/R�) given log10(M/M�). Sample

data, split into training data (crosses) and testing data (dots), and a trained

linear model (line) are shown in Fig. 5.4 (upper).

Linear models can perform more challenging tasks by replacing our

input x with a transformation or embedding of x called φ(x). To illustrate

this, consider a classification task in which we want to separate the two

classes of data points in the (x1, x2) plane, represented by + and ◦
symbols, respectively, as shown in Fig. 5.5 (left). The two classes could

be separated by a circular boundary. Unfortunately, linear models can only

create boundaries that are straight lines. Thus, no linear model can perfectly

separate these two classes of data in the original input space of (x1, x2).

However, we can apply a simple transformation squaring both components

of the input φ(x1, x2) = (x2
1, x

2
2), as shown in Fig. 5.5 (lower). Now, the two
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Figure 5.5. Example of embedding for a classification task. Two classes of data points
in the (x1, x2) plane, represented by + and ◦ symbols, respectively, cannot be separated

by a straight line (left). After transforming the data φ(x1, x2) = (x2
1, x

2
2), the two classes

can be separated by a straight line (right).

classes are separable by the straight line shown, which we can implement

with a linear model.

More quantitatively, we can return to our regression task. If we use a

polynomial embedding φ(x) = (1, x, x2), then our model becomes

f(φ(x)|θ) = θᵀφ(x) = θ0 + θ1x+ θ2x
2 (5.9)

This model achieves a smaller training error than a linear model with the

original feature x, as shown in Fig. 5.4 (lower). We say that this model

is more expressive because it can represent a wider variety of functions.

Although this is equivalent to polynomial regression in the original feature

x, it is still a linear model in the new embedded features φ(x). For certain

models, it is even possible to use the discriminating power of the embedded

features without explicitly calculating them through the so-called “kernel

trick.” Further discussion of kernel methods can be found in Hofmann et al.

[67], Scholkopf and Smola [114].

Although we have not yet defined neural networks, we can already try

to build some intuition for how they work based on the concepts discussed

already. As shown in Fig. 5.6, neural networks have linear models as their

basic building block. A neural network can be thought of as a linear model

after inputs are mapped to features through a nonlinear transformation.

The initial layers of a neural network act as “automatic featurizers,” where
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Figure 5.6. More complex model classes like neural networks have linear models as
their basic building block. A neural network can be thought of as a linear model after
inputs are mapped to features through a nonlinear transformation. Neural networks are
“automatic featurizers.”

Figure 5.7. Decision boundary of a linear model after an embedding φ(x1, x2) =
(x2

1, x
2
2), corresponding to x2

1 + x2
2 = 2 (left). Decision boundary for a simple two-layer

neural network with three hidden features (right).

instead of us guessing a well-suited embedding of our input features, the

model learns one directly.

Revisiting the classification task of Fig. 5.5, a simple two-layer neural

network can map the two input features to three “hidden features” where

the two classes are separable. Figure 5.7 displays the decision boundaries
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for the linear model after the embedding described previously and a simple

neural network. Since the embedding is hand-tuned for this dataset, its

decision boundary can be thought of as ideal. The neural network’s decision

boundary is an imperfect approximation with jagged corners, but it has

the advantage that no feature engineering was necessary—the features

were learned by the neural network automatically. To gain intuition for

neural networks before we describe them fully in Section 5.3.2, readers are

encouraged to explore a visualization tool called TensorFlow Playground at

https://playground.tensorflow.org.

5.2.5 Generalization and bias-variance decomposition

One of the central goals of ML is to train models that generalize, meaning

that they perform well on test data outside the training set. But what

exactly does that mean? Generally, it means the expected test error is

small. As we see, two main sources of error prevent ML algorithms

from generalizing beyond their training set. One is bias arising from

erroneous assumptions in the ML algorithm and the other is variance

arising from sensitivity to statistical fluctuations in the training set.

A graphical visualization of bias and variance is shown in Fig. 5.8.

These ideas are connected to underfitting, when a model is unable to

capture the relationship between the inputs and labels accurately, resulting

in a large error rate in both training and test data, and overfitting,

when a model fits exactly (or nearly so) in training data but does not

perform accurately on test data. Explicit examples of both underfitting

and overfitting are shown in Fig. 5.9. In this case, either a zeroth-order

(upper) or fifth-order polynomial (lower) is used to fit the training data.

The zeroth-order polynomial underfits the training data, resulting in a large

Figure 5.8. Graphical visualization of bias and variance using a bulls-eye diagram. Each
hit represents a different, individual training of an ML model. The proximity to the
center of the bulls-eye target indicates how low the test error is. Three different cases
representing different combinations of high and low bias and variance are shown.
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Figure 5.9. Examples of underfitting with a zeroth-order polynomial (upper) and
overfitting with a fifth-order polynomial (lower). Training data points (crosses), testing

data points (dots), and models (solid lines) fit to the data.

test error due to its high bias. Correspondingly, the fifth-order polynomial

overfits the training data, also resulting in a large test error due to its high

variance.

The bias-variance decomposition is a way of analyzing an ML algo-

rithm’s expected test error as a sum of bias and variance terms. To formalize

this concept, we must introduce some statistical concepts and notation. For

a random variable x sampled from a probability density function (PDF)

P (x), which we denote x ∼ P (x), we can define its expected value as

Ex∼P (x)[x] =

∫ ∞

−∞
x′P (x′)dx′. (5.10)

The expectation operator E is a generalization of the weighted average,

where a subscript usually denotes the random variable(s) being sampled.

Informally, the expected value is the arithmetic mean of a large number
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of independently selected outcomes of a random variable. For a continuous

random variable, we effectively weight the integral by the PDF. For an

integrable function f(x) of the random variable, we can obtain its expected

value in an analogous way:

Ex∼P (x)[f(x)] =

∫ ∞

−∞
f(x′)P (x′)dx′ (5.11)

Returning to the question of the generalizability of our models, we

examine the test error. Assuming each training data point (xi, yi) is sampled

independently from P (x, y) the “true” unknown probability distribution,

then a trained model f(x|θ) has a true test error

LP (f) = E(x,y)∼P (x,y) [L(y, f(x|θ))] (5.12)

In general, we cannot compute this quantity, but we can estimate it using a

test set of independent samples from P (x, y). The training error is generally

smaller than the test error. Overfitting occurs when the test error is much

larger than the training error, while underfitting corresponds to the case

when the training and test error are similar, but both are high.

The optimal set of model parameters θ∗S is a function of the training

dataset S. We can rewrite Eq. (5.1) to make this dependence explicit,

θ∗S = argmin
θ

1

|S|
∑

(x,y)∈S

L(y, f(x|θ)) (5.13)

that is, if we change the training dataset S, the optimal set of parameters

may change as well. The optimal parameters θ∗S are themselves random

variables because the training dataset S is randomly sampled.

We can write the expected test error over all possible training

datasets as

ES [LP (f(x|θS)] = ES

[
E(x,y)∼P (x,y) [L(y, f(x|θS))]

]
(5.14)

If L is the squared loss, we leave it as an exercise to the reader to show

that we can decompose this expected test error into two terms:

ES [LP (f(x|θS)] = E(x,y)∼P (x,y)

⎡
⎢⎣ES

[
(f(x|θS)− F (x))2

]
︸ ︷︷ ︸

variance

+(F (x)− y)2︸ ︷︷ ︸
bias

⎤
⎥⎦

(5.15)

where F (x) ≡ ES [f(x|θS)] can be thought of as the “average” prediction

of our model over different possible training datasets.
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Figure 5.10. Bias-variance decomposition of test error as a function of model complexity.

How can we interpret Eq. (5.15)? The first term inside the expectation

operator quantifies the variance: the difference in predictions when training

on different datasets. The second term quantifies the bias : the difference of

the average prediction from the ground truth. Thus, there is naturally a

tradeoff: models with high variance tend to have low bias and vice versa.

We can relate overfitting and underfitting to the concepts of bias and

variance. Overfitting implies high variance: the model class is too complex

and retraining yields vastly different models. Variance tends to increase

with model complexity and decrease with more training data. Underfitting

implies high bias: the model class is too simple and has a large error rate.

This relationship is shown schematically in Fig. 5.10.

5.2.6 Optimization

Gradient descent is a first-order iterative optimization algorithm for finding

a local minimum of a differentiable function. It is the basis for many of

the optimization algorithms commonly used in modern ML. “First order”

means it only requires first derivatives of the function. The idea is to start

with some (possibly random) initial values for all the parameters and then

compute the gradient of the function with respect to all the parameters.

The gradient represents the direction of the steepest ascent of the function

in parameter space. Since we want to minimize the function, we take a small

step in the opposite direction of the gradient by updating the parameter

values. Then, we repeat this process until we reach a minimum.

More precisely, the gradient descent algorithm proceeds as follows. Each

iteration of the algorithm is indexed by an integer t, starting with t = 0, and

the current values of the parameters are θt. We set the parameters to some

initial values, for example θ0 = 0 or randomly sampled from a Gaussian
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distribution θ0 ∼ N (μ = 0, σ = 1) or some other distribution specific to

a particular type of learning algorithm. At iteration t, the parameters are

updated using the negative of the loss function gradient:

θt+1 = θt − η∇θl(θt) (5.16)

= θt − η

N
∇θ

N∑
i=1

L(yi, f(xi|θt)) (5.17)

where η is a hyperparameter known as the step size or learning rate. The

learning rate controls how large a step the algorithm takes during each

update.

Unfortunately, we cannot determine a priori the optimal learning rate

for a given model on a given dataset. Instead, a good (or good enough)

learning rate must be discovered through trial and error. Typical values to

consider are in the range of η ∈ [10−6, 1], while a good starting point is

generally 10−3 or 10−2. If you set the learning rate too high, your training

may not converge because the weight updates “overshoot” the minimum

of the loss function. If you set the learning rate too high, your model may

also not converge (or converge too slowly) because the weight updates are

tiny. Hyperparameter optimization procedures, like grid search, Bayesian

optimization, or the asynchronous successive halving algorithm [84], can

help find a good learning rates.

Note that in Eq. (5.17), the entire “batch” of training data is used to

determine the gradient. In principle, this can give a more accurate estimate

of the test loss that is less susceptible to statistical fluctuations, at the

cost of more computation, that is, iterating over the full training dataset

for each update. We repeat these updates until we reach some predefined

convergence criteria.

A popular variant of this algorithm is stochastic gradient descent (SGD).

In this case, the true gradient over the entire dataset is approximated by

that for a single data point. In other words, the update rule is modified to

consider only one, usually shuffled, data point (xi, yi) at a time:

θt+1 = θt − η∇θL(yi, f(xi|θt)) (5.18)

Although this is much more computationally efficient, it can be subject to

large statistical fluctuations.

At this point, it may be helpful to work through an end-to-end example

of SGD for a regression problem, as shown in Fig. 5.11. Consider a training

dataset consisting of two labeled data points (x1 = (1, 1), y1 = 1) and
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Figure 5.11. Example of stochastic gradient descent with two data points. Each frame
from left to right represents an SGD iteration. The dotted line represents the current
model with the current parameters listed on the canvas. The starred data point represents
the one being used to compute the next parameter update. SGD converges after the
second iteration.

(x2 = (1, 0), y2 = 0), where we have augmented the input with the

“dummy” feature of 1 to simplify notation as described earlier. We use

the squared loss function, a learning rate of η = 0.5, and an initial set of

parameters θ0 = (0, 0), which includes the bias as the first component.

First, we can calculate the gradient of the loss with respect to the

parameters:

∇θL(y, f(x|θ)) = ∇θ(y − θᵀx)2 = −2(y − θᵀx)x (5.19)

Now we can write the SGD update rule of Eq. (5.18) as

θt+1 = θt + 2η(y − θᵀt x)x (5.20)

= θt + (y − θᵀt x)x (5.21)

where in the second line we use the fact that η = 0.5. Performing the first

update with the data point (x1, y1) yields

θ1 = θ0 + (y1 − θᵀ0x1) = θ0 + x1 (5.22)

= (0, 0) + (1, 1) = (1, 1) (5.23)

Similarly, the second update with the data point (x2, y2) gives

θ2 = θ1 + (y2 − θᵀ1x2) = θ1 − x2 (5.24)

= (1, 1)− (1, 0) = (0, 1) (5.25)

which is exactly the optimal set of parameters. In this example, SGD

converges after two iterations and will not give any further updates to the

parameters because the loss is now zero for all data points, i.e., the data
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are fit perfectly. We note that the example here was carefully chosen, and,

in general, many more updates are required.

A compromise between batch and stochastic gradient descent is mini-

batch stochastic gradient descent, where the gradient is approximated by

the average over a mini-batch of Nb samples:

θt+1 = θt − η

Nb
∇θ

Nb∑
i=1

L(yi, f(xi|θt)) (5.26)

This is more computationally efficient and may result in smoother con-

vergence, as the gradient computed at each step is averaged over more

training samples. The hyperparameter Nb is known as the mini-batch size,

which is typically taken to be a power of 2. It has been observed that

choosing a large mini-batch size to train deep neural networks appears

to deteriorate generalization [82]. One explanation for this phenomenon

is that large mini-batch SGD produces “sharp” minima that generalize

worse [64,74]. Specialized training procedures to achieve good performance

with large mini-batch sizes have also been proposed [55, 66, 126].

Many alternatives to SGD have been developed to improve training

dynamics and avoid common pitfalls, such as slow progress along shallow

parameter dimensions, “jitter” or oscillations along steep parameter dimen-

sions, sensitivity to parameter initialization, excessively noisy gradient

estimates, and getting stuck in local or sharp minima. SGD with momen-

tum, named by analogy with physical momentum, remembers previous

updates in an attempt to accelerate training, reduce the impact of statistical

fluctuations, and prevent getting stuck in local minima [100, 110, 118].

Adaptive momentum estimation (Adam) [76] is an extremely popular

SGD variant that combines many improvements from its predecessors [44,

62, 127] to make it more robust. In particular, it uses an adaptive learning

rate specialized for each parameter. Figure 5.12 illustrates a comparison

of SGD-based methods. Momentum can be seen as a ball running down a

slope while Adam behaves like a heavy ball with friction that prefers flat

minima in the error surface.

5.2.7 Regularization

Regularization refers to the practice of applying constraints, either implic-

itly or explicitly, to a model in order to guide optimization toward a

simpler solution to prevent overfitting and improve generalization. As the

complexity, capacity, and sheer number of parameters of ML models have
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Figure 5.12. Comparison of different SGD methods optimizing the Beale function
f(x, y) = (1.5− x+ xy)2 +

(
2.25− x+ xy2

)2
with global minimum f(3, 0.5) = 0.

grown in recent years, the likelihood of overfitting becomes greater, making

regularization a critical component of modern ML. Explicit regularization

refers to when an explicit term is added to the loss function, while implicit

regularization includes other forms of regularization, for example, early

stopping, using a robust loss function, and discarding outliers. Implicit

regularization is ubiquitous in modern ML approaches, including stochastic

gradient descent for training deep neural networks, and ensemble methods

(such as random forests and gradient boosted trees).

The most common type of explicit regularization is Ln regularization,

in which a term is added to the loss that penalizes large weights and biases:

Ln = −λ1

Nθ∑
i=1

|θi|n (5.27)

where θi is parameter of the model. Usually, n = 1 (called L1 regularization

or lasso regression) or n = 2 (called L2 regularization or ridge regression)

is chosen. L1 regularization naturally induces sparsity, whereas L2 regular-

ization tends to keep all parameters with lower magnitudes. The reason for

this is illustrated in Fig. 5.13. In these two parameters, the constraint region

for L1 regularization is diamond-shaped, while for L2, it is elliptical. Since
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Figure 5.13. Depiction of L1 (left) and L2 (right) regularization constraint regions. The
contours of an unregularized loss function are shown. The intersection with the constraint
region from L1 regularization gives an optimum value θ∗ that is sparse, i.e., θ1 = 0. On
the other hand, L2 regularization yields an optimum value θ∗ where both θ1 and θ2 are
small but non-zero.

L1 regularization sets certain weights to zero, it is often used as part of

feature selection and model compression techniques. On the other hand, L2

regularization reduces the contribution of high outlier nodes and distributes

the weight given to correlated features, potentially leading to a more robust

model.

A popular implicit regularization method is known as dropout [116], in

which certain units are randomly dropped (along with their connections)

from a neural network during training. This prevents units from co-adapting

too much. During training, dropout samples from an exponential number of

different “thinned” networks. At test time, a single “unthinned” network is

used that effectively averages the predictions of all these thinned networks.

Dropout introduces a new hyperparameter p (typically between 0.1 and

0.5) that specifies the probability of dropping units in a given layer.

To illustrate the effectiveness of regularization, we use a highly over-

parameterized neural network (three hidden layers of 100 nodes each) to

classify data generated according to spiral patterns, both with and without

dropout (p = 0.15). The results are shown in Fig. 5.14. The unregularized

network (left) overfits the data as the decision boundary encircles single

data points. The regularized network (right) learns a decision boundary

that is much more faithful to the underlying spiral pattern.

5.2.8 Compression

In recent years, ML models have grown dramatically in their computational

complexity, from thousands of parameters and operations to millions or even

billions. However, many real-world and HEP applications require real-time

on-device processing capabilities. The main challenge is that the devices
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Figure 5.14. Decision boundary for a highly overparameterized network fitting spiral
data with (right) and without (left) dropout (p = 0.15). The unregularized network (left)

overfits the data as the decision boundary encircles single data points. The regularized
network (right) learns a decision boundary that is much more faithful to the underlying
spiral pattern.

used in these scenarios are resource-constrained, with limited memory,

processing capabilities, and usually a strict latency budget. Reducing the

size of ML models with compression can enable their use.

Compression techniques aim to improve the computational efficiency of

models while keeping the performance as close as possible to the original.

The two most ubiquitous methods are quantization [7, 30, 36, 41–43, 57, 70,

83, 92, 93, 95, 98, 107, 123, 128, 129, 131, 132], which modifies the number of

bits used to calculate and store results in the model, and pruning [8,46,57,

81, 108, 130], which removes connections in a neural network.

In CPU- and GPU-based ML inference, it is common to use 32-bit

floating-point precision. This allows the network to capture a very large

range of values; the largest magnitude number that can be stored in

32-bit floating point format is 3.402823466 × 1038 and the smallest is

1.175494351 × 10−38. However, for many applications, the full floating-

point precision range may not be required. Reduced-precision formats, such

as integer or fixed-point precision, are commonly used instead, as shown in

Fig. 5.15.

One disadvantage of reduced-precision formats with respect to floating

point is a reduced dynamic range. Thus, care must be taken to ensure that

weights or outputs of the ML model do not underflow or overflow in the
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Figure 5.15. Comparison between 32-bit floating-point (upper), 16-bit fixed-point (lower
left), and 8-bit integer (lower right) representations.

reduced-precision format. However, reduced-precision representations are

much more amenable to computations on specialized hardware, such as

field-programmable gate arrays (FPGAs).

We can distinguish post-training quantization (PTQ), in which model

parameters are quantized after a traditional training is performed with

32-bit floating-point precision, and quantization-aware training (QAT), in

which training is performed with a modified procedure designed to emulate

reduced precision formats.

Pruning is the removal of unimportant weights, quantified in some

way, from a neural network. The two main categories are unstructured

pruning, where weights are removed without considering their location

within a network, and structured pruning, where weights connected to

a particular node, channel, or layer are removed. These are depicted in

Fig. 5.16. Pruning reduces the number of computations that must be

performed to produce an inference result, thus reducing the hardware

resources or algorithm latency. There are many different ways to decide

which connections can be removed in a network, and the development of

pruning algorithms and understanding their behavior are active areas of

research.

One relatively simple method of pruning weights is called iterative,

magnitude-based pruning, illustrated in Fig. 5.17. In this process, an L1

regularization term is added to the loss that penalizes large weights.

Training with this loss term typically produces two populations in the

weights for a given layer. The weights that are deemed unnecessary by
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Figure 5.16. Pruning removes “unimportant” parameters and operations from a
neural network. Removed connections are illustrated as gray dotted lines, while the

remaining connections are solid black lines. Unstructured pruning (left) removes weights
without considering their location within a network. Structured pruning (right) removes
weights connected to a particular node, channel, or layer.

Figure 5.17. Illustration of the iterative magnitude-based parameter pruning and
retraining with L1 regularization procedure [43]. The distribution of the absolute value
of the weights relative to the maximum absolute value of the weights is shown after each
step of the pruning and retraining procedure. In the top left, the distribution before
compression is shown, while in the bottom right, the distribution after compression is
displayed.
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the training will have very small values, while the weights that are deemed

necessary will have larger values. Then, those weights with small values can

be fixed to 0 (thereby removing that connection from the network), and

training can be repeated. In many cases, successive training will identify

additional weights that can be made small and thus removed. Repetition

of this procedure can remove more weights until the desired reduction in

connections, or sparsity, is achieved. This process usually results in networks

that have slightly reduced performance compared to the full network,

although the performance loss can be negligible depending on the target

sparsity.

Both quantization and pruning can be applied together or individually

depending on the problem at hand and implementation requirements, and

the exact tradeoff between performance and sparsity or quantization is

model-specific and depends on the model size, complexity, and task.

5.3 Models

In this section, we explore some of the most frequently used models in HEP.

5.3.1 Decision trees

Decision trees are among the simplest and most robust nonlinear models

first invented in the context of data mining and pattern recognition as

classification and regression trees (CART) [16]. Roughly speaking, they

ask a series of yes-or-no questions based on individual features in order

to categorize data. An example of a simple decision tree is shown in

Fig. 5.18 to differentiate electron neutrino signal interactions (νen →
pe−) from muon neutrino background interactions (νμn → pμ−) in the

MiniBooNE detector [109]. In this case, the features used are relevant

for this classification task, including the number of photomultiplier tube

(PMT) hits, the total deposited energy, and the radius of the Cherenkov

radiation ring. Distinguishing these two classes is essential to measure

the quantum mechanical phenomenon of neutrino oscillation, in which a

neutrino of one flavor (electron, muon, or tau) can later be measured to

have a different flavor [53].

Formally, decision trees consist of a set of internal, or branch, nodes,

that lead to two further nodes, and terminal, or leaf, nodes with no further

branching. Every branch node i has a binary query function qi(x) that maps

the input x to 0 or 1 and determines the subsequent node. The basic form
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Figure 5.18. A schematic decision tree for event classification in the MiniBooNE
experiment [109]. The goal is to differentiate signal νen → pe− charged current
quasi-elastic (νe CCQE) interactions from background νμn → pμ− (νμ CCQE)
interactions based on the Cherenkov radiation patterns measured by the photomultiplier
tubes.

of the query function is a cut in an individual component x(di) of x:

qi(x) = δ[x(di) > ci] (5.28)

Every leaf node makes a constant prediction. For a given sample x,

prediction begins at the root node, calling the query function for each visited

node. If the returned value is 1, the left child node is chosen, while the right

child node is chosen otherwise. This process is repeated until a leaf node is

reached.
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Decision trees express piecewise-constant functions. A given tree creates

J axis-aligned partitions of the input space X = X 1
⋃ · · ·⋃X J , through

a sequence of binary splits, where the length of the sequence is the depth

of the tree. The number of leaf nodes is J . Each partition has a constant

prediction bj. The model can be written as

f(x|θ) =
∑
j

bjδ[x ∈ X j ] (5.29)

where j ∈ {1, . . . , J} indexes each leaf node.

Decision trees can often outperform linear models because they can learn

nonlinear decision boundaries, as shown in Fig. 5.19 (upper). However,

because most tree-based models consider splits aligned with individual

feature components, there are some failure modes. In particular, it can

be difficult to learn decision boundaries diagonally across two components,

as shown in Fig. 5.19 (lower). Nonetheless, tree-based models are often

preferred over other models because they work well with tabular data that

Figure 5.19. Two different cases demonstrating the strengths and weaknesses of linear
models and decision trees. A decision tree can learn a nonlinear decision boundary
unlike a linear model (upper). A simple linear model can learn a decision boundary
diagonally across two feature components, while it requires a more complex decision tree
to approximate the same decision boundary (lower).
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may comprise a mix of continuous and discrete features, and there is less

need for preprocessing.

So far we have described how decision trees look, but how are they

constructed in the first place? A common (top-down) approach to building

a decision tree starts with a root node and grows the tree with splits based

on individual components of x. To decide when a given split is advantageous,

we need to use a metric, called an impurity measure. Generally, they

quantify to what degree a split refines the terminal nodes to be more

pure than the parent node. The most widely used measure is the Gini

impurity [16] defined as

IGini =
(
1− p2 − (1− p)2

)
(5.30)

where p is the fraction of positive examples (y = 1) in the partition.

Intuitively, the Gini impurity is the probability of incorrectly classifying

a randomly chosen element in the dataset if it were randomly labeled

according to the class distribution in the dataset. Other popular impurity

measures include (cross-)entropy (also known as information gain) and

Bernoulli variance.

Regularization is an important consideration with tree-based models as

one can always learn a tree that assigns exactly one training data point

to each leaf node, memorizing the training dataset exactly. Regularization

methods include restricting the tree building process, based on

• minimum size: stop splitting if the resulting children are smaller than

a minimum size;

• maximum depth: stop splitting if the the resulting children are beyond

some maximum tree depth;

• maximum number of nodes : stop splitting if the tree already has

maximum number of allowable nodes; and

• minimum reduction in impurity: stop splitting if resulting children do

not reduce impurity by at least δ%.

Individual trees are known as weak learners because they generally

perform only slightly better than random guessing. Multiple trees can

be combined in various ways via ensemble methods to create stronger

classifiers. The two main types of tree ensemble methods are bootstrap

aggregation (bagging) [17], which aims to reduce the variance of low-bias

models, and boosting [48], which aims to reduce the bias of many low-

variance models. The differences between the two methods are illustrated

in Fig. 5.20.
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Figure 5.20. Comparison between bagging (left) and boosting (right) ensemble methods
for decision trees. In bagging, N models are trained (potentially in parallel) after
randomly sampling N subsets from the original training data with replacement. In
boosting, N models are trained sequentially by placing higher weight on those events
that are misclassified by previous models.

In bagging, the goal is to learn T models and then average the prediction

for regression tasks

f(x|θ) = 1

T

T∑
t=1

ft(x|θt) (5.31)

or return the class selected by most trees for classification tasks. Typically,

the T training datasets B1, . . . , BT , each of size N , are resampled with

replacement from the original training dataset S (bootstrap resampling).

If the T training datasets were completely independent, then the bias of the

average model would be the same as the original model, but the variance

would be reduced by a factor of T . With bootstrap resampling, the bias

may increase, but reducing the variance often improves performance.

Random forests [63] combine bagging with the selection of random

subsets of attributes. Instead of choosing the best split among all attributes,

the best split among a random subset of k attributes is chosen. Random

forests are more resistant to overfitting their training set.

One of the first boosting algorithms, adaptive boosting (AdaBoost) [47],

builds a sequence of trees f1, . . . , fT , each trained with reweighted versions

of the original training dataset. The weight of an individual training sample

is based on the prediction error of the previous iteration. The loss function
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and training procedure for each iteration are modified to account for the

weighted training dataset {xi, yi, wi}, i = 1, . . . , N .

The procedure is initiated by setting uniform weights w(t=0) = 1/N .

For classification, the weighted error of the tth model is

Et =

∑N
i=1 w

(t)
i δ[yi 	= ft(xi|θt)]∑N

i=1 w
(t)
i

(5.32)

For highly accurate models, this error is small, Et ∼ 0, while for highly

inaccurate models, this error may be large, e.g., Et ∼ 0.5. Unlike in

Eq. (5.31), where the weight of each model is 1, we set a different weight βt

for each model depending on the error βt = ln[(1−Et)/Et]. For the ensemble

prediction, we return the class selected by the trees with the largest sum of

weights. Since βt is larger for more accurate models, we prioritize those in

the ensemble prediction.

At each iteration, the weights of the misclassified events are updated

as w(t+1) = w(t) exp(βt) and then normalized so that the sum of all the

weights is 1. This reweighted dataset is then used to train the next model

ft+1(x|θt+1). As an example, a mediocre classifier, with a misclassification

rate Et = 30%, would have a corresponding βt = ln[(1 − 0.3)/0.3)] = 0.85.

So, misclassified events get their weights multiplied by exp(0.85) = 2.3,

and the next tree will consider these events to be about twice as important.

Now, consider an excellent classifier with an error rate Et = 1% and βt =

ln[(1− 0.01)/0.01)] = 4.6. Misclassified events have their influence boosted

by a factor of exp(4.6) = 99.5 and thus contribute significantly to the next

tree.

In HEP, a popular framework for training BDTs is the Toolkit for

Multivariate Data Analysis (TMVA) [65]. More recently, XGBoost [25],

which implements a variant of gradient boosting [48], has found widespread

use in HEP due to its speed, support for GPU acceleration, and integration

with the scientific Python ecosystem. Models built with XGBoost have been

successfully applied in many HEP data analyses, including winning first

place in the Higgs Boson Machine Learning Challenge, hosted on Kaggle [3].

5.3.2 Neural networks

A feedforward, artificial neural network, also referred to as a multi-layer

perceptron, is a collection of units organized into L layers f = fL ◦ · · · ◦
f1. The �th layer is a mapping from d�−1 real-valued inputs to d� real-

valued outputs, f�: R
d�−1 → R

d� . Each layer is implemented as an affine
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x ∈ R
4 f1: → R

10 f2: → R
10 f3: → R

10 f4: → R

Figure 5.21. Example of a neural network with four layers.

transformation — a multiplication of the input vector u ∈ R
d�−1 by a weight

matrix W ∈ R
d�×d�−1 and the addition of a bias vector b ∈ R

d�—together

with a pointwise nonlinear activation function σ:

f�(u) = σ(W�u+ b�) (5.33)

The purpose of the activation function is to enable learning more com-

plex functions of the input. Without these nonlinearities, the network

would be equivalent to a linear model. The parameters of the neural

network are the complete set of weights and biases for each layer θ =

(W1, . . . ,WL, b1, . . . , bL). An example of a four-layer neural network is

shown in Fig. 5.21.

Traditionally, biologically inspired saturating activation functions have

been used, including the sigmoid function sigmoid(u) = 1/(1 + e−u) and

the hyperbolic tangent function tanh(u) = (eu − e−u)/(eu + e−u). Far

from zero input, both sigmoid and tanh saturate at nearly constant values.

This can create a problem for gradient-based optimization, especially if the

inputs, weights, and biases are not properly scaled so that they take on

large positive or negative values. This is known as the “vanishing gradient

problem.” A popular activation function that partially circumvents this

issue is the rectified linear unit (ReLU) [51, 99], ReLU(u) = max(u, 0),

which is widely used in deep neural networks [59]. However, ReLU suffers a

similar saturation problem for negative inputs, known as the “dying ReLU

problem,” so a variety of alternative solutions have been proposed, including

leaky ReLU [91], parameterized ReLU (PReLU) [58], exponential linear unit
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Figure 5.22. Activation functions, including biologically inspired saturating ones, such
as sigmoid and tanh, and non-saturating ones, such as ReLU, leaky ReLU, PReLU, ELU,
and GELU.

(ELU) [27], and Gaussian error linear unit (GELU) [60]. Visualizations of

these different kinds of activation functions are shown in Fig. 5.22.

A softmax function is often used to normalize elements of a discrete

vector u, or to interpret the output as a probability over a set of nC discrete

categories as in multi-classification tasks. Given a real-valued input vector

u ∈ R
nC , the softmax function computes an output vector v ∈ R

nC , whose

ith component is given by

softmax(u)i = vi =
exp(ui)∑nC

j=1 exp(uj)
(5.34)

The output has the property that vi ∈ (0, 1) and
∑

i vi = 1. The input

vector components ui are often referred to as logits, and the softmax

function is commonly used as the last layer in multi-class classifier because

it is compatible with the CCE loss.

5.3.2.1 Backpropagation

To train neural networks with gradient descent, we must compute the

gradient of the loss function with respect to each parameter. Naively, this
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requires many individual computations, but by organizing these computa-

tions in a specific way and reusing the outputs of previous computations,

we can efficiently compute all of the needed gradients. This is known as the

backpropagation [111] algorithm, and its basis is the chain rule of calculus.

As an explicit example, consider a two-layer neural network. For

simplicity, we ignore the bias parameters. It is a composite function, where

we can perform the computations layer by layer. Then, to compute the loss

function, we only need the output of the neural network and the target y.

Writing out these steps explicitly, given an input x,

z1 = W1x (5.35)

u1 = σ(z1) (5.36)

z2 = W2u1 (5.37)

u2 = σ(z2) (5.38)

l = L(y, u2) (5.39)

where W1 (W2) is the weight matrix of the first (second) layer, z1 (z2)

is the pre-activation output of the first (second) layer, σ is the activation

function, u1 (u2) is the post-activation output of the first (second) layer,

and l is the loss function value. These computational steps are called the

“forward pass” because we progress through the network in the forward

direction.

To compute the gradient of the loss function with respect to all

parameters, it is natural to begin from the last layer. So, let us compute

the gradient with respect to W2 in the second layer, denoted ∂l/∂W2. To

do this, we can apply the chain rule to decompose the gradient into three

terms:

∂l

∂W2
=

(
∂l

∂u2

)(
∂u2

∂z2

)(
∂z2
∂W2

)
(5.40)

The term ∂u2/∂z2 is just the derivative of the nonlinear activation function,

which is often easy to compute. We can save the numerical values for each

of these separate terms.

Working backward through the network, we can proceed to compute

the gradient with respect to W1 in the first layer with the chain rule:

∂l

∂W1
=

(
∂l

∂u2

)(
∂u2

∂z2

)(
∂z2
∂u1

)(
∂u1

∂z1

)(
∂z1
∂W1

)
(5.41)
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Figure 5.23. Visualizations of the backpropagation algorithm for the computation of
∂l

∂W2
(upper) and ∂l

∂W1
(lower). The forward pass is shown with straight gray lines, while

the backward pass is shown with curved black lines. For the second computation of ∂l
∂W1

,
the reused computations are shown with dotted lines.

Of the five terms, two of them (highlighted in gray) have already been

computed in Eq. (5.40). Furthermore, one of the remaining terms is the

derivative of the first activation function with respect to its input ∂u1/∂z1,

which is equal to the previously calculated ∂u2/∂z2. So, in order to find

the gradient with respect to W1, we only need to perform two additional

computations. This is the essence of the backpropagation algorithm. This

process of computing and multiplying gradients is known as the “backward

pass.” These rules can be extended to arbitrarily deep neural networks, as

long as each layer and the loss function are differentiable.

Figure 5.23 shows the computational graph of the network, highlighting

the computations needed for ∂l
∂W2

(upper) and ∂l
∂W1

(lower). Each node is

an input, output, or parameter. The forward pass is shown with straight

gray lines, while the backward pass is shown with curved black lines. For

the second computation of ∂l
∂W1

, the reused computations are shown with

dotted lines.

Modern ML software packages implement automatic differentiation

(AD), exploiting the fact that neural networks consist of a sequence of

elementary arithmetic operations and functions with known derivatives and

repeatedly applying the chain rule to compute the target partial derivative

automatically.

5.3.3 Convolutional neural networks

An inductive bias expresses assumptions about the data-generating process

or the space of solutions, allowing a learning algorithm to prioritize one

solution over another [94]. Incorporating an inductive bias into an ML
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algorithm can enable them to learn more efficiently, for example, with

less data or fewer parameters. These models may also generalize better

to unseen data.

For image-like data, there are inductive biases that help carry out

common tasks, such as classification, regression, and segmentation:

• Locality: Nearby areas within an image tend to contain stronger

patterns.

• Translation equivariance: Only relative positions within an image are

relevant.

As an example task, consider classifying galaxy morphologies [5, 38], e.g.,

spiral, elliptical, or lenticular. For this task, the solution should not depend

on the location of the galaxy within an image. Moreover, many of the

identifying characteristics of different types of galaxies are localized in small

patches of an image.

Convolutional neural networks (CNNs), as shown in Fig. 5.24, incorpo-

rate these inductive biases through their design. An input image is described

by a tensor x ∈ R
H×W×C , where H is the height of the image in pixels and

W is the width of the image in pixels, and at each pixel location, there is

a vector of C features or channels. For natural images, there are typically

three channels representing the red, green, and blue color channels. CNNs

implement a convolution of the input image and a filter, or kernel, with

height J and width K. The parameters of the filter are learnable and the

convolution involves traversing over input and calculating the product of

the filter W with a patch of the input, which has the same spatial shape

as the filter and is centered at the target pixel. In practice, M filters are

combined into a single tensor W ∈ R
J×K×M .

We can calculate one element of the output tensor y ∈ R
V ×U×M from

the input tensor x, filter tensor W , and length-M bias vector b as3

y[v, u,m] =

⎛
⎝ C∑

c=1

J∑
j=1

K∑
k=1

W [j, k, c,m]x[v + j, u+ k, c]

⎞
⎠+ b[m] (5.42)

For simplicity, we typically assume J = K (square kernel). By repeating

the operation over all the input pixels, the result of a kernel convolution is

also an image.

3Note that in practice x is shifted by, e.g.,
(

J+1
2

, K+1
2

)
in order to be symmetric

around (v, u).
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Figure 5.24. Convolutional neural networks incorporate the inductive biases of locality
and translation equivariance through their design. A CNN can be interpreted as an MLP

with shared weights.

A key feature of convolutions is that they are equivariant to translations:

if the input image is shifted x[i, . . . ] → x[i − j, . . . ], then the output is

also shifted by the same amount y[v, . . . ] → y[v − j, . . . ]. Another way

of looking at this is to compare this to a fully connected MLP. A fully

connected MLP acting on the same image as a fully unrolled vector would

generally not have this symmetry. Another way of interpreting a CNN is

as a very specific type of MLP with shared weights. CNNs generally have

fewer parameters than the corresponding fully connected MLP, which can

improve the optimization process. The CNN structure allows for patterns

in one part of an image in the training dataset effectively contribute to

learning that pattern anywhere in the image.

A kernel convolution involves three hyperparameters: the kernel size

(typically an odd number so that the filter has an unambiguous center),

stride, and padding. In practice, kernel sizes of 1×1, 3× 3, or 5×5 are

frequently used. A 1× 1 convolution cannot capture correlations among

different pixels, but it can increase or decrease the number of features per

pixel [59, 86, 119]. The stride is the number of pixels between each target

pixel. For example, for a stride of 1, the target pixels are adjacent, whereas

for a stride of 2, 1 pixel is skipped along each axis. Padding expands the
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Layer 1
Layer 2

Layer 3

Figure 5.25. Illustration of receptive field in CNNs. Stacking two 3× 3 kernels will lead
to a larger receptive field equivalent to a 5× 5 kernel.

input image by a specified number of pixels for when the target pixel is

near the edge and the filter would extend beyond the input image.

CNNs can identify features with a spatial size larger than the kernel

size by stacking multiple convolutional layers. For example, stacking two

3× 3 kernels will lead to a larger receptive field equivalent to a 5× 5 kernel,

as shown in Fig. 5.25. Another approach, known as an inception module,

extracts features using kernels of different sizes simultaneously [119, 120].

CNNs often use pooling to downsample the image, further extending

the receptive field. A pooling operation is a type of aggregation that takes

many input pixels and produces one output pixel. The most popular pooling

operations are max pooling and average pooling. Max pooling picks the

highest activation pixel value within the specified receptive field, while

average pooling computes the average pixel value in the receptive field.

Average pooling tends to smooth out an image, so sharp features may not

be preserved. However, a drawback of max pooling is that all pixels other

than the maximum one are ignored. Examples of the two operations are

shown in Fig. 5.26.

By globally pooling over the entire image, a single feature vector with

no spatial index can be created, giving rise to a potentially translation-

invariant CNN. Reducing the image size, either through pooling or a con-

volution with stride larger than 1, can also be computationally beneficial.

The reduction in the spatial size of an image is carried out gradually,

typically by a factor of 2. After the spatial size is reduced, the number of

channels is typically increased (usually by the same factor of 2). CNNs can

consist of dozens or sometimes hundreds of convolutional layers, and their
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Figure 5.26. Max (upper) and average (lower) pooling in CNNs. Max pooling picks the
highest activation pixel value within the specified receptive field, while average pooling
computes the average pixel value in the receptive field.

optimization may be challenging due to the vanishing gradient problem.

Techniques such as batch normalization [73], which normalize the tensors

at each convolution layer, and skip connections [59] can mitigate this and

have contributed to the tremendous success of CNNs for image-based tasks.

5.4 Applications

Machine learning has found numerous natural applications in analysis

reconstruction in particle physics. At the lowest level, machine learning

tools can perform hit reconstruction or track finding in individual detector

systems. These tools can also identify objects such as electrons, photons, τ

leptons, and jets, using information from various detector systems. Recently,

researchers have also explored the use of ML to accelerate or replace

computationally intensive detector simulation [4,19]. Finally, ML tools have

been widely used to classify entire events as background- or signal-like, both

in the final statistical analysis and at the initial trigger decision.

ML tools have found high-profile applications in particle physics. For

example, BDTs were instrumental in the discovery of the Higgs boson [1,

23, 24], including in the CMS H → γγ, CMS V H → bb, and ATLAS

H → ττ analyses. For five key Higgs boson analyses, ML greatly increased

the sensitivity of the LHC experiments, improving the discovery p-values

by factors ranging from about 2–20, or equivalently, reducing the amount

of data that would need to be collected by about 13–56% [106].

In this section, we discuss two representative use cases of ML in HEP,

intended to highlight unique aspects of HEP data and requirements: jet

tagging and trigger applications.
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5.4.1 Jet tagging

Quarks and gluons originating from high energy particle collisions, such

as the proton–proton collisions at the LHC, generate a cascade of other

particles (mainly other quarks or gluons) that then arrange themselves into

hadrons. The stable and unstable hadrons’ decay products are observed

by large particle detectors, reconstructed by algorithms that combine the

information from different detector components and then clustered into jets,

using physics-motivated sequential recombination algorithms [20–22, 39].

Jet identification, or tagging, algorithms are designed to identify the nature

of the particle that initiated a given cascade, inferring it from the collective

features of the particles generated in the cascade. This is illustrated in

Fig. 5.27.

Traditionally, jet tagging was meant to distinguish three classes of jets:

light flavor quarks, gluons, or bottom quarks. At the LHC, due to the large

collision energy, new jet topologies emerge when heavy particles, e.g., W ,

Z, or Higgs bosons or top quarks, are produced with large momentum

and decay to all-quark final states. In this case, the resulting jets contain

Figure 5.27. A visual representation of a collision event at the LHC and the task of jet
tagging. Proton beams (purple arrows) cross at a collision point (blue cross). Outgoing
particles make tracks (curved orange lines), energy deposits in the electromagnetic
calorimeter (green boxes), and energy deposits in the hadron calorimeter (blue boxes).
The orange cone represents a cluster of tracks and energy deposits reconstructed as a
jet. The task of jet tagging is to infer, on a statistical basis, the origin of a jet based on
its measured characteristics.
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Figure 5.28. Visualization of different jet representations, including high-level features,
sequences, images, and graphs.

the overlapping showers of these decay products and can appear similar

to showers from single quarks or gluons. These jets are characterized

by a large invariant mass and differ from quark and gluon jets in their

energy correlations. Several techniques have been proposed to identify these

jets by using physics-motivated quantities, collectively referred to as “jet

substructure” variables [80].

Machine learning approaches for jet tagging have been extensively inves-

tigated using different representations of the jet, i.e., ways to encode and

preprocess the information, as shown in Fig. 5.28. Different representations

are naturally coupled to different kinds of ML models. For example, physics-

motivated quantities, also known as high-level features, such as mass,

particle multiplicity, or N -subjettiness [121] can be processed with fully

connected neural networks or BDTs. A lower-level representation consists of

treating the particle features as a sequence, list, or set of inputs. This type of

representation can be processed by recurrent neural networks (RNNs) [90],

which act on each element in a sequence and contain an internal memory, or

deep sets [78], whose output is invariant under permutations of the inputs.

Jets can also be preprocessed into two-dimensional images in the (η, φ)

plane, in which each pixel value represents the sum of the particle transverse

momenta pT or energies deposited in a given spatial detector cell. Unlike

natural images, jet images are typically sparse, with only a small fraction

of non-zero pixels. Jet images can be processed by CNNs, albeit potentially
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with some modifications, such as larger kernel sizes [32] or specialized layers

optimized for sparse inputs [40].

Finally, jets can also be represented as graphs, with nodes representing

particles and edges representing pairwise relationships between particles.

This graph data can be processed by graph neural networks (GNNs), a class

of models for reasoning about explicitly structured data [18, 50, 77, 85, 112,

113, 124]. GNNs have been successfully applied to identify Higgs bosons

decaying to bottom quarks and several other types of jets [96, 97, 105]. It

is also possible to encode symmetries, such as Lorentz symmetry, or other

physics-inspired inductive biases in GNN models [10–13,52].

5.4.2 Trigger applications

In HEP, a significant amount of data processing, including data com-

pression, filtering, and selection, takes place in real time even before the

data is written to disk. For example, at the LHC, proton–proton collisions

occur at a rate of 40MHz, but only roughly 1 kHz of this can be saved

for offline analysis. Out of this factor of 40 000 rejection, a factor of 400

must occur within a few microseconds of the collision, and the remaining

factor of 100 must occur in the next ∼100ms. In addition, resources are

often limited and some applications use specialized hardware such as field-

programmable gate arrays (FPGAs) and application-specific integrated

circuits (ASICs). Developing ML algorithms for low-latency and resource-

constrained environments requires specialized techniques.

FPGAs and ASICs are designed for fast parallel processing with low

power usage. The most significant difference between FPGAs and ASICs

is that FPGAs can be reprogrammed, while ASICs cannot be changed

once manufactured. Therefore, FPGA designs are more flexible, typically

consume more power, and have slightly larger latencies than the equivalent

ASIC designs. ASICs can also be designed to tolerate high levels of radiation

through methods like triplication.

FPGAs contain building blocks of logic gates which can be used

to construct algorithms by programming the interconnects between the

components. The primary building blocks are dedicated arithmetic units

or digital signal processors (DSPs), lookup tables (LUTs) for implementing

logic, and two different units for storing information: registers or flip-flops

(FFs) and block random-access memory (BRAM). FPGAs also contain a

large number of input–output (I/O) links to receive input data and transmit

output data. A schematic of a generic FPGA is shown in Fig 5.29. Unlike
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Figure 5.29. Schematic of a generic FPGA. The primary building blocks are digital
signal processors (DSPs), lookup tables (LUTs), flip-flops (FFs), block random-access
memory (BRAM), and input–output (I/O) links. FFs and LUTs are combined into
configurable logic blocks (CLBs).

traditional CPUs, these devices are only capable of running the algorithm(s)

that have been programmed. As a result of this specialization and their high

clock frequencies (typically hundreds of MHz), algorithms can be executed

in O(ns).
Programming FPGAs requires the use of dedicated hardware description

languages (HDLs) such as VHDL or Verilog as well as a design methodology

that is aware of the limitations and nature of the relevant device. All

components of an FPGA program must be synchronized with the rising

and falling edges of the clock, and the relations between components

must be thought of in relation to these clock periods. Recently, high-

level synthesis (HLS) tools [72, 115, 125], which take algorithms written

in untimed (typically C) code decorated with directives and produce

equivalent HDL algorithms, have lowered the barrier to entry for using

FPGAs and ASICs.

Several tools, including hls4ml [43], FINN [9, 122], Conifer [117], and

fwXmachina [68], have been developed to automatically create firmware

from ML algorithms, as shown in Fig. 5.30. These tools have been used

for applications ranging from jet tagging [75] to muon pT regression [28],

 I
ns

tr
um

en
ta

tio
n 

an
d 

T
ec

hn
iq

ue
s 

in
 H

ig
h 

E
ne

rg
y 

Ph
ys

ic
s 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 F
E

R
M

I 
N

A
T

IO
N

A
L

 A
C

C
E

L
E

R
A

T
O

R
 L

A
B

O
R

A
T

O
R

Y
 o

n 
12

/1
2/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



Machine Learning for Analysis and Instrumentation in High Energy Physics 165

Figure 5.30. Tools like hls4ml [43], FINN [9, 122], Conifer [117], and fwXmachina [68]
can translate ML algorithms from libraries like TensorFlow, Keras, PyTorch, ONNX,
Scikit-learn, TMVA, or XGBoost into firmware for FPGAs.

on-detector data compression [37], charged particle tracking [45, 69],

calorimeter reconstruction [71], and anomaly detection [54]. Hardware-

AI co-design principles, including pruning [57], quantization [29], and

parallelization [43], are important to consider to produce optimal designs

that satisfy strict latency and resource constraints.

5.5 Summary and Outlook

Machine learning (ML) is now an integral part of research in high energy

physics (HEP), from analysis to instrumentation, reconstruction, and

simulation. Beyond being an essential tool, computational methods like ML

are a third fundamental approach for studying physics on the same logical

level as theory and experiment. In this chapter, we gave an overview of ML

basics, types of models, and advanced techniques like model compression

and surveyed some recent ML applications in HEP. There are, of course, a

plethora of techniques and tools that we could not cover, many of which

can be found in the HEP ML Living Review [61].

The ML in HEP research community benefits tremendously from the

proliferation of public datasets and research code on GitHub, open-source

software packages, such as TensorFlow [2], Keras [26], PyTorch [102], and

JAX [15], commercial hardware for ML training and inference, such as

NVIDIA GPUs, and widely available learning resources. This culture of

openness advances the fast-paced nature of ML development, in which
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the latest state-of-the-art methods can be quickly extended and even

superseded within months.

Strides in ML and HEP research benefit each other. In one direction,

ML has helped revolutionize HEP research by enabling discoveries with less

data, model-agnostic searches for exotic new physics, and exploration of

final states previously thought impossible. In the other direction, HEP has

unique characteristics and challenges, such as the petabyte-scale datasets,

enormous data throughput, strict latency and resource constraints, and

the physics and symmetry structures underpinning the data, that drive

innovation in ML. Despite these benefits, there are valid criticisms of using

ML in HEP research, such as the possibility of bias, the need for careful

validation and calibration of ML models in data, and the difficulty of

reinterpretation of HEP results that heavily rely on ML models.

Beyond the dizzying array of existing HEP applications, there continue

to be many new opportunities to apply ML in surprising ways. If advances

continue at the current pace, the future is bright for this (still) growing

subfield.
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