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5.1 Introduction

In high energy physics (HEP), the study and use of machine learning
(ML)—the practice of solving problems by allowing machines to “discover”
algorithms using data or experience without explicit programming—
have been exploded in recent years. According to the INSPIRE HEP
database, the number of articles in HEP and related fields that refer
to ML and related topics has grown twenty times compared to ten
years ago.! Notwithstanding this recent surge of interest, ML has deep
ties to HEP, especially instrumentation, with early work dating back to
the late 1980s and early 1990s [31, 33-35,87-89]. In these early days,
the most popular techniques, including cellular automata and multi-layer
perceptrons, helped shape experimental particle physics. As deep neural
networks have achieved human-level performance for various tasks, such
as image classification [59,79] in the early 2010s, they were adopted more
regularly in particle physics [14,56,61,106]. Unlike traditional approaches,
deep learning techniques operate on lower-level information to extract
higher-level patterns directly from the data.
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Figure 5.1. Nomological net of topics in ML in particle physics inspired by the HEP
ML Living Review [61].

ML in particle physics has become more than a tool and has emerged
as a subfield worthy of intense academic study in its own right. This can
be seen through the HEP ML Living Review [61], which as of January
20242 categorizes 1,252 articles, proceedings, reviews, book chapters, and
other contributions in this subfield. Inspired by this classification, we can
visualize the different topics of ML in particle physics as a nomological net
in Fig. 5.1. Use cases range from standard classification and regression to
simulation, uncertainty quantification, and real-time inference.

2https://github.com/iml-wg/HEPML-LivingReview /blob/2c7cd26 /HEPML.bib.
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This chapter is meant to introduce the reader to the basic concepts of
ML that are widely used in HEP. After reviewing these concepts, we survey
popular applications in HEP.

5.2 Machine Learning Basics

5.2.1 Types of learning

The basic premise of ML is to use a set of observations to uncover an
underlying process corresponding to an unknown target function mapping
the inputs to the correct outputs. Within this framework, there are several
different types of learning paradigms, which differ in the information
contained in the dataset and how that information is used. When observa-
tions are coupled with correct outputs, known as labels, based on reliable
information from simulation or empirical observation (ground truth), and
the learning process that uses them, this is known as supervised learning.
This is the most prevalent and well-studied form of learning in HEP and
beyond, but other types are increasingly being applied. For example, in
unsupervised learning, the training data do not contain any desired output
or label information at all. For the remainder of this chapter, we focus
primarily on supervised learning, but we discuss some applications of
unsupervised learning.

5.2.2 Supervised learning

Within supervised learning, different tasks require different types of
outputs. Tasks that require producing continuous, real-valued predictions,
for example for quantities like mass, temperature, or energy, are known
as regression. On the contrary, the main goal of classification is to assign,
among a set of fixed options, the category to which a data sample belongs.
Typically, the output of the model is a set of values p; € [0, 1], one for each
class, that represent the probabilities that the data sample belongs to a
particular class .

Given a training dataset S = {(x1,91),..., (@n,yn)} consisting of data
samples in an input domain x; € X and labels in a target domain y; € ),
where 7 indexes the sample in the dataset, the goal is to learn a function
from the input to the output domain f: X — ), parameterized by a vector
of parameters 6, that best approximates the labels. We denote the output
of the function for a given input z as f(z|f). The space of functions under
consideration is known as the model or hypothesis class.
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Figure 5.2. Examples of data representations and supervised learning tasks in physics,
including (a) predicting the mass of a star given a measurement of its radius,

(b) classifying image data from the NOvA experiment as one of the four types of neutrino
interactions [6], (c¢) reducing noise in time series data to better identify gravitational
wave signals [101], and (d) reconstructing particles based on detector measurements in
a collider experiment [103,104].

(a)

(b)

Examples of supervised learning are illustrated in Fig. 5.2:

Predicting the mass of a star given a measurement of its radius. In this
case, the input domain corresponds to the set of real numbers X = R
and Y = R.

Classifying image data from the NOvA experiment as one of four types
of neutrino interactions [6]. In this case, X = R199%80%2 hecause there
are two detector views (r — z and y — z) with each image featuring
100 by 80 pixels of information. The target domain is a set of labels
Y = {v, CC,v. CC,v; CC,v NC}, where each element is a different
type of neutrino interaction.

Reducing noise in time series data to better identify gravitational wave
signals [101]. For this task, X = R®92 and ) = R3192_ corresponding
to 8s of the data sampled at a rate of 1024 Hz, before and after noise
reduction.

Reconstructing particles based on detector measurements in an LHC
experiment [103]. Here, X = H?,:4100 R x {track, cluster} x {—1,0,+1},
where there are seven continuous features and two discrete features
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(whether the measurement is a calorimeter cluster or a track and the
measured charge of the track) for up to 6,400 measurements per event.
The target domain ) = H6 A0 R4 {charged hadron, neutral hadron,
v, et pFyx{-1,0,+1} because there are four continuous features (four
momentum of the particle) and two discrete features (particle type and
charge) for up to 6,400 particles per event.

5.2.3 Objective function

The objective function, often called the loss or cost function, L(y;, f(x:|6))
measures the quality of predictions made by an ML algorithm. For example,
a simple choice for regression problems is the squared loss L(y,y’) =
(y' — y)?. The farther away the predicted value 3’ is from the true value y,
the larger the value of the loss function. The more accurate an ML algorithm
is, the smaller the loss value should be, on average, for a given set of data.
Therefore, our goal is to minimize the loss function.

The learning objective is to find the parameters that minimize the
loss function averaged over the entire training dataset, which we denote
1(f). These optimal parameters, denoted 6*, can be expressed using the
arg min operator, which returns the value where a given function attains
its minimum:

N
0" = argmeml(ﬁ) = argmin Z (yi, f(x4]0)) (5.1)

Roughly speaking, 8* is the set of parameters that minimizes the difference
of the output of the algorithm and ground truth label.

Depending on the type of optimization process, there are additional
requirements for the loss function. For example, the gradient descent
algorithm discussed in Section 5.2.6 requires calculating the gradient of the
loss function with respect to the model parameters to determine how to
modify the parameters to reduce the loss function. Thus, the loss function
must be differentiable in the model parameters.

Training an ML algorithm is closely related to statistical inference
via the method of maximum likelihood [49]. In the maximum likelihood
method, observed data are modeled by a probability distribution function
with some free parameters. To estimate those parameters, we find their
values such that the observed data are the most probable under this
statistical model.
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There is a correspondence between commonly used loss functions and
likelihood functions. For example, minimizing the squared loss corresponds
to maximizing a Gaussian likelihood. A Gaussian likelihood with observed
value 3’ and expected mean y and standard deviation o, is given by

6 ln.y) = — = enp (50 ) 5.2

202
If we take the negative logarithm of this likelihood,

Gy ly,0,) = (v —y)*/(20}) +In(0yV2m) (5.3)
=c(y —y)> +0 (5.4)

we see that up to a multiplicative constant ¢ and an additive constant b,
this is equivalent to the squared loss.

Another common loss function appropriate for binary classification tasks
is the binary cross-entropy (BCE), which can be derived from the Bernoulli
likelihood. Given two true classes, y = 0 or y = 1, and a model output 3’
defined between 0 and 1, which represents the probability that the data
sample belongs to the y = 1 class, the Bernoulli distribution defines the
likelihood

B(y'ly) = ()= (1 — /)’ l=0) (5.5)

where the § operator evaluates to 1 or 0 if the argument is true or false,
respectively. Note that only one of these two terms appears, depending on
the true value of y. Taking the negative logarithm of the likelihood yields
the BCE loss function:

Lece(y,y) = —InB(y'ly) = =0y = 1]Iny’ — [y =0]In(1 —3')  (5.6)

This can also be generalized to the categorical cross-entropy (CCE) for
classification tasks with more than two target classes.

Figure 5.3 compares the squared loss and BCE for a given example
whose true label is y = 0. Although both losses increase the farther g’ is
from y, BCE is more appropriate for classification problems because it takes
into account that ' = 1 is an extremely incorrect prediction and the loss
grows without bound as 3’ — 1.
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Figure 5.3. Comparison of the squared and binary cross-entropy loss functions for a true
value of y = 0. The BCE loss grows without bound as the prediction 3’ approaches 1.

5.2.4 Linear models

Despite their simplicity, linear models are the workhorse of machine
learning. Given a set of D features, each data point is a vector in
D-dimensional space z € R”, and a linear model can be expressed as

F(x]0,0) =0T +b (5.7)

where the weight & € RP and bias b € R are unconstrained parameters
of the model. These parameters are chosen to minimize the loss function on
the training data. For notational convenience, we can absorb the bias into
the weight vector by extending the input vector with a constant feature
2(©) =1 and setting the corresponding entry of the weight vector equal to
the bias 8(©) = b. This allows us to express linear models directly as

f(z]0) =0Tz (5.8)

To expand on the foundational ML concepts, we introduce an explicit
example of regressing the logarithm of the radius of stars in the so-called
main sequence as a function of the logarithm of the star mass. This means
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Figure 5.4. Training data points (crosses), testing data points (dots), and linear models
(lines) fit to the data. A linear model using the original features = (upper) and a linear
model after using a polynomial embedding ¢(x) = (1, , 22) (lower) are shown.

we will train a model to predict log,o(R/Re) given log,,(M/Mg). Sample
data, split into training data (crosses) and testing data (dots), and a trained
linear model (line) are shown in Fig. 5.4 (upper).

Linear models can perform more challenging tasks by replacing our
input z with a transformation or embedding of z called ¢(z). To illustrate
this, consider a classification task in which we want to separate the two
classes of data points in the (z1,x2) plane, represented by + and o
symbols, respectively, as shown in Fig. 5.5 (left). The two classes could
be separated by a circular boundary. Unfortunately, linear models can only
create boundaries that are straight lines. Thus, no linear model can perfectly
separate these two classes of data in the original input space of (z1,x2).
However, we can apply a simple transformation squaring both components
of the input ¢(z1,22) = (2%, 23), as shown in Fig. 5.5 (lower). Now, the two
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Figure 5.5. Example of embedding for a classification task. Two classes of data points

in the (z1,z2) plane, represented by + and o symbols, respectively, cannot be separated

by a straight line (left). After transforming the data ¢(z1,x2) = (z2, 22), the two classes

can be separated by a straight line (right).

classes are separable by the straight line shown, which we can implement
with a linear model.

More quantitatively, we can return to our regression task. If we use a
polynomial embedding ¢(z) = (1, x,2?), then our model becomes

f(o(x)|0) = 0T¢(x) = b0 + b1z + O22” (5.9)

This model achieves a smaller training error than a linear model with the
original feature x, as shown in Fig. 5.4 (lower). We say that this model
is more expressive because it can represent a wider variety of functions.
Although this is equivalent to polynomial regression in the original feature
x, it is still a linear model in the new embedded features ¢(z). For certain
models, it is even possible to use the discriminating power of the embedded
features without explicitly calculating them through the so-called “kernel
trick.” Further discussion of kernel methods can be found in Hofmann et al.
[67], Scholkopf and Smola [114].

Although we have not yet defined neural networks, we can already try
to build some intuition for how they work based on the concepts discussed
already. As shown in Fig. 5.6, neural networks have linear models as their
basic building block. A neural network can be thought of as a linear model
after inputs are mapped to features through a nonlinear transformation.
The initial layers of a neural network act as “automatic featurizers,” where
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Neural network: linear model after
inputs are mapped to features
through a nonlinear transformation
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Figure 5.6. More complex model classes like neural networks have linear models as
their basic building block. A neural network can be thought of as a linear model after
inputs are mapped to features through a nonlinear transformation. Neural networks are
“automatic featurizers.”
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Figure 5.7. Decision boundary of a linear model after an embedding ¢(z1,z2) =
(x%,a:%), corresponding to x% + x% = 2 (left). Decision boundary for a simple two-layer
neural network with three hidden features (right).

instead of us guessing a well-suited embedding of our input features, the
model learns one directly.

Revisiting the classification task of Fig. 5.5, a simple two-layer neural
network can map the two input features to three “hidden features” where
the two classes are separable. Figure 5.7 displays the decision boundaries
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for the linear model after the embedding described previously and a simple
neural network. Since the embedding is hand-tuned for this dataset, its
decision boundary can be thought of as ideal. The neural network’s decision
boundary is an imperfect approximation with jagged corners, but it has
the advantage that no feature engineering was necessary—the features
were learned by the neural network automatically. To gain intuition for
neural networks before we describe them fully in Section 5.3.2, readers are
encouraged to explore a visualization tool called TensorFlow Playground at
https://playground.tensorflow.org.

5.2.5 Generalization and bias-variance decomposition

One of the central goals of ML is to train models that generalize, meaning
that they perform well on test data outside the training set. But what
exactly does that mean? Generally, it means the expected test error is
small. As we see, two main sources of error prevent ML algorithms
from generalizing beyond their training set. One is bias arising from
erroneous assumptions in the ML algorithm and the other is wvariance
arising from sensitivity to statistical fluctuations in the training set.
A graphical visualization of bias and variance is shown in Fig. 5.8.

These ideas are connected to underfitting, when a model is unable to
capture the relationship between the inputs and labels accurately, resulting
in a large error rate in both training and test data, and overfitting,
when a model fits exactly (or nearly so) in training data but does not
perform accurately on test data. Explicit examples of both underfitting
and overfitting are shown in Fig. 5.9. In this case, either a zeroth-order
(upper) or fifth-order polynomial (lower) is used to fit the training data.
The zeroth-order polynomial underfits the training data, resulting in a large

Low variance High variance

High bias Low bias

Figure 5.8. Graphical visualization of bias and variance using a bulls-eye diagram. Each
hit represents a different, individual training of an ML model. The proximity to the
center of the bulls-eye target indicates how low the test error is. Three different cases
representing different combinations of high and low bias and variance are shown.
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Figure 5.9. Examples of underfitting with a zeroth-order polynomial (upper) and
overfitting with a fifth-order polynomial (lower). Training data points (crosses), testing
data points (dots), and models (solid lines) fit to the data.

test error due to its high bias. Correspondingly, the fifth-order polynomial
overfits the training data, also resulting in a large test error due to its high
variance.

The bias-variance decomposition is a way of analyzing an ML algo-
rithm’s expected test error as a sum of bias and variance terms. To formalize
this concept, we must introduce some statistical concepts and notation. For
a random variable x sampled from a probability density function (PDF)
P(z), which we denote z ~ P(x), we can define its expected value as

o0

By [2] = / ¥ P(a)da. (5.10)
— 00

The expectation operator E is a generalization of the weighted average,

where a subscript usually denotes the random variable(s) being sampled.

Informally, the expected value is the arithmetic mean of a large number
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of independently selected outcomes of a random variable. For a continuous
random variable, we effectively weight the integral by the PDF. For an
integrable function f(x) of the random variable, we can obtain its expected
value in an analogous way:

Barlf@)] = [ P! (5.11)

Returning to the question of the generalizability of our models, we
examine the test error. Assuming each training data point (z;, y;) is sampled
independently from P(z,y) the “true” unknown probability distribution,
then a trained model f(z|f) has a true test error

In general, we cannot compute this quantity, but we can estimate it using a
test set of independent samples from P(z,y). The training error is generally
smaller than the test error. Overfitting occurs when the test error is much
larger than the training error, while underfitting corresponds to the case
when the training and test error are similar, but both are high.

The optimal set of model parameters % is a function of the training
dataset S. We can rewrite Eq. (5.1) to make this dependence explicit,

o5 — argmgnﬁ S Ly, £(=19)) (5.13)
(z,y)€S
that is, if we change the training dataset S, the optimal set of parameters
may change as well. The optimal parameters 05 are themselves random
variables because the training dataset S is randomly sampled.
We can write the expected test error over all possible training
datasets as

Es [Lp(f(2]0s)] = Es [Eqy)~py) LY, f(z]0s))] (5.14)

If L is the squared loss, we leave it as an exercise to the reader to show
that we can decompose this expected test error into two terms:

Es [Lp(f(#]0s)] = Eqy)~py |Es [(f(@]0s) — F(2))?] + (F(z) — y)?

variance bias

(5.15)

where F(x) = Eg [f(x]0s)] can be thought of as the “average” prediction
of our model over different possible training datasets.



Instrumentation and Techniquesin High Energy Physics Downloaded from www.worldscientific.com

by FERMI NATIONAL ACCELERATOR LABORATORY on 12/12/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

138 Instrumentation and Techniques in High Energy Physics
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Figure 5.10. Bias-variance decomposition of test error as a function of model complexity.

How can we interpret Eq. (5.15)7 The first term inside the expectation
operator quantifies the variance: the difference in predictions when training
on different datasets. The second term quantifies the bias: the difference of
the average prediction from the ground truth. Thus, there is naturally a
tradeoff: models with high variance tend to have low bias and vice versa.

We can relate overfitting and underfitting to the concepts of bias and
variance. Overfitting implies high variance: the model class is too complex
and retraining yields vastly different models. Variance tends to increase
with model complexity and decrease with more training data. Underfitting
implies high bias: the model class is too simple and has a large error rate.
This relationship is shown schematically in Fig. 5.10.

5.2.6 Optimization

Gradient descent is a first-order iterative optimization algorithm for finding
a local minimum of a differentiable function. It is the basis for many of
the optimization algorithms commonly used in modern ML. “First order”
means it only requires first derivatives of the function. The idea is to start
with some (possibly random) initial values for all the parameters and then
compute the gradient of the function with respect to all the parameters.
The gradient represents the direction of the steepest ascent of the function
in parameter space. Since we want to minimize the function, we take a small
step in the opposite direction of the gradient by updating the parameter
values. Then, we repeat this process until we reach a minimum.

More precisely, the gradient descent algorithm proceeds as follows. Each
iteration of the algorithm is indexed by an integer ¢, starting with ¢ = 0, and
the current values of the parameters are 6;. We set the parameters to some
initial values, for example 6y = 0 or randomly sampled from a Gaussian
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distribution 6y ~ N (= 0,0 = 1) or some other distribution specific to
a particular type of learning algorithm. At iteration ¢, the parameters are
updated using the negative of the loss function gradient:

9t+1 = Ht - T]Vel(at) (516)
N
= 6 = 2LV ;L@i, F(il01)) (5.17)

where 7 is a hyperparameter known as the step size or learning rate. The
learning rate controls how large a step the algorithm takes during each
update.

Unfortunately, we cannot determine a priori the optimal learning rate
for a given model on a given dataset. Instead, a good (or good enough)
learning rate must be discovered through trial and error. Typical values to
consider are in the range of n € [1075,1], while a good starting point is
generally 1072 or 10~2. If you set the learning rate too high, your training
may not converge because the weight updates “overshoot” the minimum
of the loss function. If you set the learning rate too high, your model may
also not converge (or converge too slowly) because the weight updates are
tiny. Hyperparameter optimization procedures, like grid search, Bayesian
optimization, or the asynchronous successive halving algorithm [84], can
help find a good learning rates.

Note that in Eq. (5.17), the entire “batch” of training data is used to
determine the gradient. In principle, this can give a more accurate estimate
of the test loss that is less susceptible to statistical fluctuations, at the
cost of more computation, that is, iterating over the full training dataset
for each update. We repeat these updates until we reach some predefined
convergence criteria.

A popular variant of this algorithm is stochastic gradient descent (SGD).
In this case, the true gradient over the entire dataset is approximated by
that for a single data point. In other words, the update rule is modified to
consider only one, usually shuffled, data point (z;,y;) at a time:

0141 =0, — Vo L(yi, f(xi]0:)) (5.18)

Although this is much more computationally efficient, it can be subject to
large statistical fluctuations.

At this point, it may be helpful to work through an end-to-end example
of SGD for a regression problem, as shown in Fig. 5.11. Consider a training
dataset consisting of two labeled data points (z; = (1,1),y; = 1) and
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Figure 5.11. Example of stochastic gradient descent with two data points. Each frame
from left to right represents an SGD iteration. The dotted line represents the current
model with the current parameters listed on the canvas. The starred data point represents
the one being used to compute the next parameter update. SGD converges after the
second iteration.

(xz2 = (1,0),y2 = 0), where we have augmented the input with the
“dummy” feature of 1 to simplify notation as described earlier. We use
the squared loss function, a learning rate of n = 0.5, and an initial set of
parameters 6y = (0,0), which includes the bias as the first component.

First, we can calculate the gradient of the loss with respect to the
parameters:

VoL(y, f(2]0)) = Ve(y — 072)* = —2(y — §Tz)z (5.19)

Now we can write the SGD update rule of Eq. (5.18) as
Or11 = 0: + 2n(y — 0] x)x (5.20)
=0+ (y— 0] x)x (5.21)

where in the second line we use the fact that n = 0.5. Performing the first
update with the data point (z1,y1) yields

61 =00+ (y1 — Ofx1) = 0 + 21 (5.22)
=(0,0)+(1,1) =(1,1) (5.23)
Similarly, the second update with the data point (z2,y2) gives
Oy =01+ (y2 — 0] x2) = 01 — o (5.24)
=(1,1)—(1,0) =(0,1) (5.25)

which is exactly the optimal set of parameters. In this example, SGD
converges after two iterations and will not give any further updates to the
parameters because the loss is now zero for all data points, i.e., the data
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are fit perfectly. We note that the example here was carefully chosen, and,
in general, many more updates are required.

A compromise between batch and stochastic gradient descent is mini-
batch stochastic gradient descent, where the gradient is approximated by
the average over a mini-batch of N samples:

Ny,
Orp1 =0, — %Ve ZL(yzv f(let%)) (5-26)
i=1

This is more computationally efficient and may result in smoother con-
vergence, as the gradient computed at each step is averaged over more
training samples. The hyperparameter N, is known as the mini-batch size,
which is typically taken to be a power of 2. It has been observed that
choosing a large mini-batch size to train deep neural networks appears
to deteriorate generalization [82]. One explanation for this phenomenon
is that large mini-batch SGD produces “sharp” minima that generalize
worse [64,74]. Specialized training procedures to achieve good performance
with large mini-batch sizes have also been proposed [55,66,126].

Many alternatives to SGD have been developed to improve training
dynamics and avoid common pitfalls, such as slow progress along shallow
parameter dimensions, “jitter” or oscillations along steep parameter dimen-
sions, sensitivity to parameter initialization, excessively noisy gradient
estimates, and getting stuck in local or sharp minima. SGD with momen-
tum, named by analogy with physical momentum, remembers previous
updates in an attempt to accelerate training, reduce the impact of statistical
fluctuations, and prevent getting stuck in local minima [100,110,118].

Adaptive momentum estimation (Adam) [76] is an extremely popular
SGD variant that combines many improvements from its predecessors [44,
62,127] to make it more robust. In particular, it uses an adaptive learning
rate specialized for each parameter. Figure 5.12 illustrates a comparison
of SGD-based methods. Momentum can be seen as a ball running down a
slope while Adam behaves like a heavy ball with friction that prefers flat
minima in the error surface.

5.2.7 Regularization

Regularization refers to the practice of applying constraints, either implic-
itly or explicitly, to a model in order to guide optimization toward a
simpler solution to prevent overfitting and improve generalization. As the
complexity, capacity, and sheer number of parameters of ML models have
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Figure 5.12. Comparison of different SGD methods optimizing the Beale function
f(@,y) = (1.5 — 2 + zy) + (2.25 — = + 2y2)” with global minimum f(3,0.5) = 0.

grown in recent years, the likelihood of overfitting becomes greater, making
regularization a critical component of modern ML. Explicit regularization
refers to when an explicit term is added to the loss function, while implicit
regularization includes other forms of regularization, for example, early
stopping, using a robust loss function, and discarding outliers. Implicit
regularization is ubiquitous in modern ML approaches, including stochastic
gradient descent for training deep neural networks, and ensemble methods
(such as random forests and gradient boosted trees).

The most common type of explicit regularization is L,, regularization,
in which a term is added to the loss that penalizes large weights and biases:

No
Ln=-=\Y_|6i|" (5.27)
=1

where 6; is parameter of the model. Usually, n = 1 (called Ly regularization
or lasso regression) or n = 2 (called Ly regularization or ridge regression)
is chosen. L; regularization naturally induces sparsity, whereas Lo regular-
ization tends to keep all parameters with lower magnitudes. The reason for
this is illustrated in Fig. 5.13. In these two parameters, the constraint region
for L; regularization is diamond-shaped, while for L, it is elliptical. Since
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Figure 5.13. Depiction of L1 (left) and L2 (right) regularization constraint regions. The
contours of an unregularized loss function are shown. The intersection with the constraint
region from L; regularization gives an optimum value 6* that is sparse, i.e., 1 = 0. On
the other hand, Lo regularization yields an optimum value 8* where both 61 and 03 are
small but non-zero.

L, regularization sets certain weights to zero, it is often used as part of
feature selection and model compression techniques. On the other hand, Lo
regularization reduces the contribution of high outlier nodes and distributes
the weight given to correlated features, potentially leading to a more robust
model.

A popular implicit regularization method is known as dropout [116], in
which certain units are randomly dropped (along with their connections)
from a neural network during training. This prevents units from co-adapting
too much. During training, dropout samples from an exponential number of
different “thinned” networks. At test time, a single “unthinned” network is
used that effectively averages the predictions of all these thinned networks.
Dropout introduces a new hyperparameter p (typically between 0.1 and
0.5) that specifies the probability of dropping units in a given layer.

To illustrate the effectiveness of regularization, we use a highly over-
parameterized neural network (three hidden layers of 100 nodes each) to
classify data generated according to spiral patterns, both with and without
dropout (p = 0.15). The results are shown in Fig. 5.14. The unregularized
network (left) overfits the data as the decision boundary encircles single
data points. The regularized network (right) learns a decision boundary
that is much more faithful to the underlying spiral pattern.

5.2.8 Compression

In recent years, ML models have grown dramatically in their computational
complexity, from thousands of parameters and operations to millions or even
billions. However, many real-world and HEP applications require real-time
on-device processing capabilities. The main challenge is that the devices
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Figure 5.14. Decision boundary for a highly overparameterized network fitting spiral
data with (right) and without (left) dropout (p = 0.15). The unregularized network (left)
overfits the data as the decision boundary encircles single data points. The regularized
network (right) learns a decision boundary that is much more faithful to the underlying
spiral pattern.

used in these scenarios are resource-constrained, with limited memory,
processing capabilities, and usually a strict latency budget. Reducing the
size of ML models with compression can enable their use.

Compression techniques aim to improve the computational efficiency of
models while keeping the performance as close as possible to the original.
The two most ubiquitous methods are quantization [7,30,36,41-43,57,70,
83,92,93,95,98,107,123, 128,129, 131, 132], which modifies the number of
bits used to calculate and store results in the model, and pruning [8,46,57,
81,108,130], which removes connections in a neural network.

In CPU- and GPU-based ML inference, it is common to use 32-bit
floating-point precision. This allows the network to capture a very large
range of values; the largest magnitude number that can be stored in
32-bit floating point format is 3.402823466 x 103® and the smallest is
1.175494351 x 10738, However, for many applications, the full floating-
point precision range may not be required. Reduced-precision formats, such
as integer or fixed-point precision, are commonly used instead, as shown in
Fig. 5.15.

One disadvantage of reduced-precision formats with respect to floating
point is a reduced dynamic range. Thus, care must be taken to ensure that
weights or outputs of the ML model do not underflow or overflow in the
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32-bit floating point
[IRIBIBIBIBHIGIE 1 ololo]1]o[1 [ololololo]1]o[olofololololololo
1-bit 8-bit 23-bit
sign exponent fraction
(=1)¥(1 + fraction)2©Ponent=127) — _ (] 4 0.5391845703125)2(132712) = _ 4925390625

16-bit fixed point 8-bit integer
[il1]olol1[1[1]ol1[1]clololololo] [1[olo[1]1]1]1]
1-bit  7-bit 8-bit 1-bit 7-bit

sign integer fraction sign integer

(=27 +204+23 422421 4271 4 (2)2 = - 4925 (=2)7 +20 428422421 420 = —49

Figure 5.15. Comparison between 32-bit floating-point (upper), 16-bit fixed-point (lower
left), and 8-bit integer (lower right) representations.

reduced-precision format. However, reduced-precision representations are
much more amenable to computations on specialized hardware, such as
field-programmable gate arrays (FPGAs).

We can distinguish post-training quantization (PTQ), in which model
parameters are quantized after a traditional training is performed with
32-bit floating-point precision, and quantization-aware training (QAT), in
which training is performed with a modified procedure designed to emulate
reduced precision formats.

Pruning is the removal of unimportant weights, quantified in some
way, from a neural network. The two main categories are unstructured
pruning, where weights are removed without considering their location
within a network, and structured pruning, where weights connected to
a particular node, channel, or layer are removed. These are depicted in
Fig. 5.16. Pruning reduces the number of computations that must be
performed to produce an inference result, thus reducing the hardware
resources or algorithm latency. There are many different ways to decide
which connections can be removed in a network, and the development of
pruning algorithms and understanding their behavior are active areas of
research.

One relatively simple method of pruning weights is called iterative,
magnitude-based pruning, illustrated in Fig. 5.17. In this process, an L1
regularization term is added to the loss that penalizes large weights.
Training with this loss term typically produces two populations in the
weights for a given layer. The weights that are deemed unnecessary by
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Unstructured pruning Structured pruning

Figure 5.16. Pruning removes “unimportant” parameters and operations from a
neural network. Removed connections are illustrated as gray dotted lines, while the
remaining connections are solid black lines. Unstructured pruning (left) removes weights
without considering their location within a network. Structured pruning (right) removes
weights connected to a particular node, channel, or layer.
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Figure 5.17. Illustration of the iterative magnitude-based parameter pruning and
retraining with L regularization procedure [43]. The distribution of the absolute value
of the weights relative to the maximum absolute value of the weights is shown after each
step of the pruning and retraining procedure. In the top left, the distribution before
compression is shown, while in the bottom right, the distribution after compression is
displayed.
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the training will have very small values, while the weights that are deemed
necessary will have larger values. Then, those weights with small values can
be fixed to 0 (thereby removing that connection from the network), and
training can be repeated. In many cases, successive training will identify
additional weights that can be made small and thus removed. Repetition
of this procedure can remove more weights until the desired reduction in
connections, or sparsity, is achieved. This process usually results in networks
that have slightly reduced performance compared to the full network,
although the performance loss can be negligible depending on the target
sparsity.

Both quantization and pruning can be applied together or individually
depending on the problem at hand and implementation requirements, and
the exact tradeoff between performance and sparsity or quantization is
model-specific and depends on the model size, complexity, and task.

5.3 Models

In this section, we explore some of the most frequently used models in HEP.

5.3.1 Decision trees

Decision trees are among the simplest and most robust nonlinear models
first invented in the context of data mining and pattern recognition as
classification and regression trees (CART) [16]. Roughly speaking, they
ask a series of yes-or-no questions based on individual features in order
to categorize data. An example of a simple decision tree is shown in
Fig. 5.18 to differentiate electron neutrino signal interactions (ven —
pe”) from muon neutrino background interactions (v,n — pu~) in the
MiniBooNE detector [109]. In this case, the features used are relevant
for this classification task, including the number of photomultiplier tube
(PMT) hits, the total deposited energy, and the radius of the Cherenkov
radiation ring. Distinguishing these two classes is essential to measure
the quantum mechanical phenomenon of neutrino oscillation, in which a
neutrino of one flavor (electron, muon, or tau) can later be measured to
have a different flavor [53].

Formally, decision trees consist of a set of internal, or branch, nodes,
that lead to two further nodes, and terminal, or leaf, nodes with no further
branching. Every branch node ¢ has a binary query function g;(x) that maps
the input x to 0 or 1 and determines the subsequent node. The basic form
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Figure 5.18. A schematic decision tree for event classification in the MiniBooNE
experiment [109]. The goal is to differentiate signal vem — pe~ charged current
quasi-elastic (ve CCQE) interactions from background vyn — pu~ (v, CCQE)
interactions based on the Cherenkov radiation patterns measured by the photomultiplier
tubes.

of the query function is a cut in an individual component (%) of x:
gi(z) = 6[z(4) > ¢] (5.28)

Every leaf node makes a constant prediction. For a given sample x,
prediction begins at the root node, calling the query function for each visited
node. If the returned value is 1, the left child node is chosen, while the right
child node is chosen otherwise. This process is repeated until a leaf node is
reached.
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Decision trees express piecewise-constant functions. A given tree creates
J azis-aligned partitions of the input space X = X1 J---|J &7, through
a sequence of binary splits, where the length of the sequence is the depth
of the tree. The number of leaf nodes is J. Each partition has a constant
prediction b;. The model can be written as

f(x]0) = ijé[x € X (5.29)

where j € {1,...,J} indexes each leaf node.

Decision trees can often outperform linear models because they can learn
nonlinear decision boundaries, as shown in Fig. 5.19 (upper). However,
because most tree-based models consider splits aligned with individual
feature components, there are some failure modes. In particular, it can
be difficult to learn decision boundaries diagonally across two components,
as shown in Fig. 5.19 (lower). Nonetheless, tree-based models are often
preferred over other models because they work well with tabular data that
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Figure 5.19. Two different cases demonstrating the strengths and weaknesses of linear
models and decision trees. A decision tree can learn a nonlinear decision boundary
unlike a linear model (upper). A simple linear model can learn a decision boundary
diagonally across two feature components, while it requires a more complex decision tree
to approximate the same decision boundary (lower).
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may comprise a mix of continuous and discrete features, and there is less
need for preprocessing.

So far we have described how decision trees look, but how are they
constructed in the first place? A common (top-down) approach to building
a decision tree starts with a root node and grows the tree with splits based
on individual components of x. To decide when a given split is advantageous,
we need to use a metric, called an impurity measure. Generally, they
quantify to what degree a split refines the terminal nodes to be more
pure than the parent node. The most widely used measure is the Gini
impurity [16] defined as

Igini = (1= p* = (1 —p)?) (5.30)

where p is the fraction of positive examples (y = 1) in the partition.
Intuitively, the Gini impurity is the probability of incorrectly classifying
a randomly chosen element in the dataset if it were randomly labeled
according to the class distribution in the dataset. Other popular impurity
measures include (cross-)entropy (also known as information gain) and
Bernoulli variance.

Regularization is an important consideration with tree-based models as
one can always learn a tree that assigns exactly one training data point
to each leaf node, memorizing the training dataset exactly. Regularization
methods include restricting the tree building process, based on

e minimum size: stop splitting if the resulting children are smaller than
a minimum size;

o mazimum depth: stop splitting if the the resulting children are beyond
some maximum tree depth;

o mazimum number of nodes: stop splitting if the tree already has
maximum number of allowable nodes; and

o minimum reduction in impurity: stop splitting if resulting children do
not reduce impurity by at least §%.

Individual trees are known as weak learners because they generally
perform only slightly better than random guessing. Multiple trees can
be combined in various ways via ensemble methods to create stronger
classifiers. The two main types of tree ensemble methods are bootstrap
aggregation (bagging) [17], which aims to reduce the variance of low-bias
models, and boosting [48], which aims to reduce the bias of many low-
variance models. The differences between the two methods are illustrated
in Fig. 5.20.
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Figure 5.20. Comparison between bagging (left) and boosting (right) ensemble methods
for decision trees. In bagging, N models are trained (potentially in parallel) after
randomly sampling N subsets from the original training data with replacement. In
boosting, N models are trained sequentially by placing higher weight on those events
that are misclassified by previous models.

In bagging, the goal is to learn 7" models and then average the prediction
for regression tasks

f(z]0) = th 16;) (5.31)

or return the class selected by most trees for classification tasks. Typically,
the T training datasets Bi,..., Bp, each of size N, are resampled with
replacement from the original training dataset S (bootstrap resampling).
If the T training datasets were completely independent, then the bias of the
average model would be the same as the original model, but the variance
would be reduced by a factor of T'. With bootstrap resampling, the bias
may increase, but reducing the variance often improves performance.

Random forests [63] combine bagging with the selection of random
subsets of attributes. Instead of choosing the best split among all attributes,
the best split among a random subset of k attributes is chosen. Random
forests are more resistant to overfitting their training set.

One of the first boosting algorithms, adaptive boosting (AdaBoost) [47],
builds a sequence of trees fi, ..., fr, each trained with reweighted versions
of the original training dataset. The weight of an individual training sample
is based on the prediction error of the previous iteration. The loss function
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and training procedure for each iteration are modified to account for the
weighted training dataset {x;, y;,w;},i=1,..., N.

The procedure is initiated by setting uniform weights w(=% = 1/N.
For classification, the weighted error of the tth model is

SN w6y # filw]0,)]
SV W@

For highly accurate models, this error is small, F; ~ 0, while for highly
inaccurate models, this error may be large, e.g., E; ~ 0.5. Unlike in
Eq. (5.31), where the weight of each model is 1, we set a different weight 5;
for each model depending on the error 8; = In[(1—E})/E}]. For the ensemble
prediction, we return the class selected by the trees with the largest sum of
weights. Since f; is larger for more accurate models, we prioritize those in
the ensemble prediction.

At each iteration, the weights of the misclassified events are updated
as w1 = w® exp(B;) and then normalized so that the sum of all the

E, =

(5.32)

weights is 1. This reweighted dataset is then used to train the next model
fr41(x]0:41). As an example, a mediocre classifier, with a misclassification
rate F; = 30%, would have a corresponding 8; = In[(1 — 0.3)/0.3)] = 0.85.
So, misclassified events get their weights multiplied by exp(0.85) = 2.3,
and the next tree will consider these events to be about twice as important.
Now, consider an excellent classifier with an error rate E; = 1% and f3; =
In[(1 —0.01)/0.01)] = 4.6. Misclassified events have their influence boosted
by a factor of exp(4.6) = 99.5 and thus contribute significantly to the next
tree.

In HEP, a popular framework for training BDTs is the Toolkit for
Multivariate Data Analysis (TMVA) [65]. More recently, XGBoost [25],
which implements a variant of gradient boosting [48], has found widespread
use in HEP due to its speed, support for GPU acceleration, and integration
with the scientific Python ecosystem. Models built with XGBoost have been
successfully applied in many HEP data analyses, including winning first
place in the Higgs Boson Machine Learning Challenge, hosted on Kaggle [3].

5.3.2 Neural networks

A feedforward, artificial neural network, also referred to as a multi-layer
perceptron, is a collection of units organized into L layers f = fr o---o0
fi. The ¢th layer is a mapping from dy;_; real-valued inputs to dy real-
valued outputs, f;: R%“-1 — R%. Each layer is implemented as an affine
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Figure 5.21. Example of a neural network with four layers.

transformation — a multiplication of the input vector u € R%-1 by a weight
matriz W € R%>de-1 and the addition of a bias vector b € R%—together
with a pointwise nonlinear activation function o:

fe(u) = oc(Weu + be) (5.33)

The purpose of the activation function is to enable learning more com-
plex functions of the input. Without these nonlinearities, the network
would be equivalent to a linear model. The parameters of the neural
network are the complete set of weights and biases for each layer 6 =
(Wr,...,Wyg,b1,...,b). An example of a four-layer neural network is
shown in Fig. 5.21.

Traditionally, biologically inspired saturating activation functions have
been used, including the sigmoid function sigmoid(u) = 1/(1 + e~ %) and
the hyperbolic tangent function tanh(u) = (e* — e *)/(e" + e~ *). Far
from zero input, both sigmoid and tanh saturate at nearly constant values.
This can create a problem for gradient-based optimization, especially if the
inputs, weights, and biases are not properly scaled so that they take on
large positive or negative values. This is known as the “vanishing gradient
problem.” A popular activation function that partially circumvents this
issue is the rectified linear unit (ReLU) [51,99], ReLU(u) = max(u,0),
which is widely used in deep neural networks [59]. However, ReLU suffers a
similar saturation problem for negative inputs, known as the “dying ReLU
problem,” so a variety of alternative solutions have been proposed, including
leaky ReLU [91], parameterized ReLU (PReLU) [58], exponential linear unit
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Figure 5.22. Activation functions, including biologically inspired saturating ones, such
as sigmoid and tanh, and non-saturating ones, such as ReLU, leaky ReLU, PReLU, ELU,
and GELU.

(ELU) [27], and Gaussian error linear unit (GELU) [60]. Visualizations of
these different kinds of activation functions are shown in Fig. 5.22.

A softmax function is often used to normalize elements of a discrete
vector u, or to interpret the output as a probability over a set of n¢o discrete
categories as in multi-classification tasks. Given a real-valued input vector
u € R™?, the softmax function computes an output vector v € R™°, whose
tth component is given by

exp(u;)

—_— 5.34
™, exp(u;) (5:34)

softmax(u); = v; =

The output has the property that v; € (0,1) and >, v; = 1. The input
vector components u; are often referred to as logits, and the softmax
function is commonly used as the last layer in multi-class classifier because
it is compatible with the CCE loss.

5.3.2.1 Backpropagation

To train neural networks with gradient descent, we must compute the
gradient of the loss function with respect to each parameter. Naively, this
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requires many individual computations, but by organizing these computa-
tions in a specific way and reusing the outputs of previous computations,
we can efficiently compute all of the needed gradients. This is known as the
backpropagation [111] algorithm, and its basis is the chain rule of calculus.

As an explicit example, consider a two-layer neural network. For
simplicity, we ignore the bias parameters. It is a composite function, where
we can perform the computations layer by layer. Then, to compute the loss
function, we only need the output of the neural network and the target y.
Writing out these steps explicitly, given an input x,

zZ1 = Wla: (535)
up = o(z1) (5.36)
zZ9 = W2u1 (537)
ug = o(22) (5.38)

= L(y,u2) (5.39)

where Wy (W3) is the weight matrix of the first (second) layer, z; (z2)
is the pre-activation output of the first (second) layer, o is the activation
function, uy (u2) is the post-activation output of the first (second) layer,
and [ is the loss function value. These computational steps are called the
“forward pass” because we progress through the network in the forward
direction.

To compute the gradient of the loss function with respect to all
parameters, it is natural to begin from the last layer. So, let us compute
the gradient with respect to Ws in the second layer, denoted 91/0Ws. To
do this, we can apply the chain rule to decompose the gradient into three

terms:
ol ol 0 0
= (=) (SR (L2 (5.40)
8W2 8U2 822 8W2
The term dug /022 is just the derivative of the nonlinear activation function,
which is often easy to compute. We can save the numerical values for each

of these separate terms.
Working backward through the network, we can proceed to compute
the gradient with respect to Wi in the first layer with the chain rule:

oL [ 0l Ous 0z ouy 0z,
own B <(')112> <(),_)> (8u1> <(-)51> <8W1> (5.41)
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Figure 5.23. Visualizations of the backpropagation algorithm for the computation of

38712 (upper) and aa_vxl/l (lower). The forward pass is shown with straight gray lines, while
£ ol

the backward pass is shown with curved black lines. For the second computation o BYR
the reused computations are shown with dotted lines.

Of the five terms, two of them (highlighted in gray) have already been
computed in Eq. (5.40). Furthermore, one of the remaining terms is the
derivative of the first activation function with respect to its input uq/9z1,
which is equal to the previously calculated dus/90z3. So, in order to find
the gradient with respect to Wi, we only need to perform two additional
computations. This is the essence of the backpropagation algorithm. This
process of computing and multiplying gradients is known as the “backward
pass.” These rules can be extended to arbitrarily deep neural networks, as
long as each layer and the loss function are differentiable.

Figure 5.23 shows the computational graph of the network, highlighting
the computations needed for 66_Vil/2 (upper) and aa—mlfl (lower). Each node is
an input, output, or parameter. The forward pass is shown with straight

gray lines, while the backward pass is shown with curved black lines. For

ol

Bl the reused computations are shown with

the second computation of
dotted lines.

Modern ML software packages implement automatic differentiation
(AD), exploiting the fact that neural networks consist of a sequence of
elementary arithmetic operations and functions with known derivatives and
repeatedly applying the chain rule to compute the target partial derivative

automatically.

5.3.3 Convolutional neural networks

An inductive bias expresses assumptions about the data-generating process
or the space of solutions, allowing a learning algorithm to prioritize one
solution over another [94]. Incorporating an inductive bias into an ML
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algorithm can enable them to learn more efficiently, for example, with
less data or fewer parameters. These models may also generalize better
to unseen data.

For image-like data, there are inductive biases that help carry out
common tasks, such as classification, regression, and segmentation:

e Locality: Nearby areas within an image tend to contain stronger
patterns.

o Translation equivariance: Only relative positions within an image are
relevant.

As an example task, consider classifying galaxy morphologies [5, 38], e.g.,
spiral, elliptical, or lenticular. For this task, the solution should not depend
on the location of the galaxy within an image. Moreover, many of the
identifying characteristics of different types of galaxies are localized in small
patches of an image.

Convolutional neural networks (CNNs), as shown in Fig. 5.24, incorpo-
rate these inductive biases through their design. An input image is described
by a tensor & € RFXWXC where H is the height of the image in pixels and
W is the width of the image in pixels, and at each pixel location, there is
a vector of C' features or channels. For natural images, there are typically
three channels representing the red, green, and blue color channels. CNNs
implement a convolution of the input image and a filter, or kernel, with
height J and width K. The parameters of the filter are learnable and the
convolution involves traversing over input and calculating the product of
the filter W with a patch of the input, which has the same spatial shape
as the filter and is centered at the target pixel. In practice, M filters are
combined into a single tensor W € R/*EXM

We can calculate one element of the output tensor y € RV*UXM from
the input tensor z, filter tensor W, and length-M bias vector b as®

c J K
ylv,u,m| = ZZZW[j,k,c,m]x[v+j,u+k,c] +0blm] (5.42)

For simplicity, we typically assume J = K (square kernel). By repeating
the operation over all the input pixels, the result of a kernel convolution is
also an image.

3Note that in practice z is shifted by, e.g., (%, %) in order to be symmetric

around (v, u).
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—
Shared weights
(translation invariance)

Figure 5.24. Convolutional neural networks incorporate the inductive biases of locality
and translation equivariance through their design. A CNN can be interpreted as an MLP
with shared weights.

A key feature of convolutions is that they are equivariant to translations:
if the input image is shifted z[i,...] — z[i — j,...], then the output is
also shifted by the same amount y[v,...] — y[v — j,...]. Another way
of looking at this is to compare this to a fully connected MLP. A fully
connected MLP acting on the same image as a fully unrolled vector would
generally not have this symmetry. Another way of interpreting a CNN is
as a very specific type of MLP with shared weights. CNNs generally have
fewer parameters than the corresponding fully connected MLP, which can
improve the optimization process. The CNN structure allows for patterns
in one part of an image in the training dataset effectively contribute to
learning that pattern anywhere in the image.

A kernel convolution involves three hyperparameters: the kernel size
(typically an odd number so that the filter has an unambiguous center),
stride, and padding. In practice, kernel sizes of 1 x1, 3 x 3, or 5 x5 are
frequently used. A 1x 1 convolution cannot capture correlations among
different pixels, but it can increase or decrease the number of features per
pixel [59,86,119]. The stride is the number of pixels between each target
pixel. For example, for a stride of 1, the target pixels are adjacent, whereas
for a stride of 2, 1 pixel is skipped along each axis. Padding expands the
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Figure 5.25. Illustration of receptive field in CNNs. Stacking two 3 x 3 kernels will lead
to a larger receptive field equivalent to a 5 X 5 kernel.

input image by a specified number of pixels for when the target pixel is
near the edge and the filter would extend beyond the input image.

CNNs can identify features with a spatial size larger than the kernel
size by stacking multiple convolutional layers. For example, stacking two
3 x 3 kernels will lead to a larger receptive field equivalent to a 5 x 5 kernel,
as shown in Fig. 5.25. Another approach, known as an inception module,
extracts features using kernels of different sizes simultaneously [119,120].

CNNs often use pooling to downsample the image, further extending
the receptive field. A pooling operation is a type of aggregation that takes
many input pixels and produces one output pixel. The most popular pooling
operations are max pooling and average pooling. Max pooling picks the
highest activation pixel value within the specified receptive field, while
average pooling computes the average pixel value in the receptive field.
Average pooling tends to smooth out an image, so sharp features may not
be preserved. However, a drawback of max pooling is that all pixels other
than the maximum one are ignored. Examples of the two operations are
shown in Fig. 5.26.

By globally pooling over the entire image, a single feature vector with
no spatial index can be created, giving rise to a potentially translation-
invariant CNN. Reducing the image size, either through pooling or a con-
volution with stride larger than 1, can also be computationally beneficial.
The reduction in the spatial size of an image is carried out gradually,
typically by a factor of 2. After the spatial size is reduced, the number of
channels is typically increased (usually by the same factor of 2). CNNs can
consist of dozens or sometimes hundreds of convolutional layers, and their
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Figure 5.26. Max (upper) and average (lower) pooling in CNNs. Max pooling picks the
highest activation pixel value within the specified receptive field, while average pooling
computes the average pixel value in the receptive field.

optimization may be challenging due to the vanishing gradient problem.
Techniques such as batch normalization [73], which normalize the tensors
at each convolution layer, and skip connections [59] can mitigate this and
have contributed to the tremendous success of CNNs for image-based tasks.

5.4 Applications

Machine learning has found numerous natural applications in analysis
reconstruction in particle physics. At the lowest level, machine learning
tools can perform hit reconstruction or track finding in individual detector
systems. These tools can also identify objects such as electrons, photons, 7
leptons, and jets, using information from various detector systems. Recently,
researchers have also explored the use of ML to accelerate or replace
computationally intensive detector simulation [4,19]. Finally, ML tools have
been widely used to classify entire events as background- or signal-like, both
in the final statistical analysis and at the initial trigger decision.

ML tools have found high-profile applications in particle physics. For
example, BDTs were instrumental in the discovery of the Higgs boson [1,
23, 24], including in the CMS H — ~vy, CMS VH — bb, and ATLAS
H — 77 analyses. For five key Higgs boson analyses, ML greatly increased
the sensitivity of the LHC experiments, improving the discovery p-values
by factors ranging from about 2-20, or equivalently, reducing the amount
of data that would need to be collected by about 13-56% [106].

In this section, we discuss two representative use cases of ML in HEP,
intended to highlight unique aspects of HEP data and requirements: jet
tagging and trigger applications.
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5.4.1 Jet tagging

Quarks and gluons originating from high energy particle collisions, such
as the proton—proton collisions at the LHC, generate a cascade of other
particles (mainly other quarks or gluons) that then arrange themselves into
hadrons. The stable and unstable hadrons’ decay products are observed
by large particle detectors, reconstructed by algorithms that combine the
information from different detector components and then clustered into jets,
using physics-motivated sequential recombination algorithms [20-22, 39].
Jet identification, or tagging, algorithms are designed to identify the nature
of the particle that initiated a given cascade, inferring it from the collective
features of the particles generated in the cascade. This is illustrated in
Fig. 5.27.

Traditionally, jet tagging was meant to distinguish three classes of jets:
light flavor quarks, gluons, or bottom quarks. At the LHC, due to the large
collision energy, new jet topologies emerge when heavy particles, e.g., W,
Z, or Higgs bosons or top quarks, are produced with large momentum
and decay to all-quark final states. In this case, the resulting jets contain

Proton.beams
Higgs boson?

QOutgoing particles:

Top quark?

Jet

Collision point Gluon?

Jet tagging

Collision event

Bottom quark?

Figure 5.27. A visual representation of a collision event at the LHC and the task of jet
tagging. Proton beams (purple arrows) cross at a collision point (blue cross). Outgoing
particles make tracks (curved orange lines), energy deposits in the electromagnetic
calorimeter (green boxes), and energy deposits in the hadron calorimeter (blue boxes).
The orange cone represents a cluster of tracks and energy deposits reconstructed as a
jet. The task of jet tagging is to infer, on a statistical basis, the origin of a jet based on
its measured characteristics.
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Figure 5.28. Visualization of different jet representations, including high-level features,
sequences, images, and graphs.

the overlapping showers of these decay products and can appear similar
to showers from single quarks or gluons. These jets are characterized
by a large invariant mass and differ from quark and gluon jets in their
energy correlations. Several techniques have been proposed to identify these
jets by using physics-motivated quantities, collectively referred to as “jet
substructure” variables [80].

Machine learning approaches for jet tagging have been extensively inves-
tigated using different representations of the jet, i.e., ways to encode and
preprocess the information, as shown in Fig. 5.28. Different representations
are naturally coupled to different kinds of ML models. For example, physics-
motivated quantities, also known as high-level features, such as mass,
particle multiplicity, or N-subjettiness [121] can be processed with fully
connected neural networks or BDTs. A lower-level representation consists of
treating the particle features as a sequence, list, or set of inputs. This type of
representation can be processed by recurrent neural networks (RNNs) [90],
which act on each element in a sequence and contain an internal memory, or
deep sets [78], whose output is invariant under permutations of the inputs.

Jets can also be preprocessed into two-dimensional images in the (7, ¢)
plane, in which each pixel value represents the sum of the particle transverse
momenta pr or energies deposited in a given spatial detector cell. Unlike
natural images, jet images are typically sparse, with only a small fraction
of non-zero pixels. Jet images can be processed by CNNs, albeit potentially
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with some modifications, such as larger kernel sizes [32] or specialized layers
optimized for sparse inputs [40].

Finally, jets can also be represented as graphs, with nodes representing
particles and edges representing pairwise relationships between particles.
This graph data can be processed by graph neural networks (GNNs), a class
of models for reasoning about explicitly structured data [18,50,77,85,112,
113,124]. GNNs have been successfully applied to identify Higgs bosons
decaying to bottom quarks and several other types of jets [96,97,105]. It
is also possible to encode symmetries, such as Lorentz symmetry, or other
physics-inspired inductive biases in GNN models [10-13,52].

5.4.2 Trigger applications

In HEP, a significant amount of data processing, including data com-
pression, filtering, and selection, takes place in real time even before the
data is written to disk. For example, at the LHC, proton—proton collisions
occur at a rate of 40 MHz, but only roughly 1kHz of this can be saved
for offline analysis. Out of this factor of 40000 rejection, a factor of 400
must occur within a few microseconds of the collision, and the remaining
factor of 100 must occur in the next ~100ms. In addition, resources are
often limited and some applications use specialized hardware such as field-
programmable gate arrays (FPGAs) and application-specific integrated
circuits (ASICs). Developing ML algorithms for low-latency and resource-
constrained environments requires specialized techniques.

FPGAs and ASICs are designed for fast parallel processing with low
power usage. The most significant difference between FPGAs and ASICs
is that FPGAs can be reprogrammed, while ASICs cannot be changed
once manufactured. Therefore, FPGA designs are more flexible, typically
consume more power, and have slightly larger latencies than the equivalent
ASIC designs. ASICs can also be designed to tolerate high levels of radiation
through methods like triplication.

FPGAs contain building blocks of logic gates which can be used
to construct algorithms by programming the interconnects between the
components. The primary building blocks are dedicated arithmetic units
or digital signal processors (DSPs), lookup tables (LUTSs) for implementing
logic, and two different units for storing information: registers or flip-flops
(FFs) and block random-access memory (BRAM). FPGAs also contain a
large number of input—output (I/O) links to receive input data and transmit
output data. A schematic of a generic FPGA is shown in Fig 5.29. Unlike
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Figure 5.29. Schematic of a generic FPGA. The primary building blocks are digital
signal processors (DSPs), lookup tables (LUTs), flip-flops (FFs), block random-access
memory (BRAM), and input—output (I/O) links. FFs and LUTs are combined into
configurable logic blocks (CLBs).

traditional CPUs, these devices are only capable of running the algorithm(s)
that have been programmed. As a result of this specialization and their high
clock frequencies (typically hundreds of MHz), algorithms can be executed
in O(ns).

Programming FPGAs requires the use of dedicated hardware description
languages (HDLs) such as VHDL or Verilog as well as a design methodology
that is aware of the limitations and nature of the relevant device. All
components of an FPGA program must be synchronized with the rising
and falling edges of the clock, and the relations between components
must be thought of in relation to these clock periods. Recently, high-
level synthesis (HLS) tools [72,115,125], which take algorithms written
in untimed (typically C) code decorated with directives and produce
equivalent HDL algorithms, have lowered the barrier to entry for using
FPGAs and ASICs.

Several tools, including hlsdml [43], FINN [9, 122], Conifer [117], and
fwXmachina [68], have been developed to automatically create firmware
from ML algorithms, as shown in Fig. 5.30. These tools have been used
for applications ranging from jet tagging [75] to muon pr regression [28],
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Figure 5.30. Tools like hls4dml [43], FINN [9,122], Conifer [117], and fwXmachina [68]
can translate ML algorithms from libraries like TensorFlow, Keras, PyTorch, ONNX,
Scikit-learn, TMVA, or XGBoost into firmware for FPGAs.

on-detector data compression [37], charged particle tracking [45, 69],
calorimeter reconstruction [71], and anomaly detection [54]. Hardware-
AT co-design principles, including pruning [57], quantization [29], and
parallelization [43], are important to consider to produce optimal designs
that satisfy strict latency and resource constraints.

5.5 Summary and Outlook

Machine learning (ML) is now an integral part of research in high energy
physics (HEP), from analysis to instrumentation, reconstruction, and
simulation. Beyond being an essential tool, computational methods like ML
are a third fundamental approach for studying physics on the same logical
level as theory and experiment. In this chapter, we gave an overview of ML
basics, types of models, and advanced techniques like model compression
and surveyed some recent ML applications in HEP. There are, of course, a
plethora of techniques and tools that we could not cover, many of which
can be found in the HEP ML Living Review [61].

The ML in HEP research community benefits tremendously from the
proliferation of public datasets and research code on GitHub, open-source
software packages, such as TensorFlow [2], Keras [26], PyTorch [102], and
JAX [15], commercial hardware for ML training and inference, such as
NVIDIA GPUs, and widely available learning resources. This culture of
openness advances the fast-paced nature of ML development, in which
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the latest state-of-the-art methods can be quickly extended and even
superseded within months.

Strides in ML and HEP research benefit each other. In one direction,
ML has helped revolutionize HEP research by enabling discoveries with less
data, model-agnostic searches for exotic new physics, and exploration of
final states previously thought impossible. In the other direction, HEP has
unique characteristics and challenges, such as the petabyte-scale datasets,
enormous data throughput, strict latency and resource constraints, and
the physics and symmetry structures underpinning the data, that drive
innovation in ML. Despite these benefits, there are valid criticisms of using
ML in HEP research, such as the possibility of bias, the need for careful
validation and calibration of ML models in data, and the difficulty of
reinterpretation of HEP results that heavily rely on ML models.

Beyond the dizzying array of existing HEP applications, there continue
to be many new opportunities to apply ML in surprising ways. If advances
continue at the current pace, the future is bright for this (still) growing
subfield.
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