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N ・＝ 4超対称ゲージ理論 、およびそれ に等価と考え られ る AdSs × s5 背景の 超弦

理論の 解析が 、近年 目覚しい 勢い で 進展 して い る 。そ の背景にある の は 4 年ほど

前か ら明 らか に な っ てき た可積分構造で あ る。AdS／CFT 対応 の 理解、　QCD へ

の 応用、曲が っ た背景で の 弦理論の 量子化、物性物理と の 関連など 、様々 な 方向

性の 発展が 期待され る本研究分野を、最近 の進展を交えて 紹介する 。

1　 は じめ に

A厂＝ 4超対称ゲー ジ理論は 、 強弱双対性を もつ 理 論として 、また AdS／CFT 対応の 舞

台 として 、 様々 な場所に 顔を出して きた。 この よ うな 大きな 超対称性を持つ 理 論で は 、

量子補正 の 取 り扱い が簡単な こ とか ら、 も っ ぱ ら BPS 状態に 関心が集ま りがちで あ

る 。しか しな が ら N ＝ 4 ゲ ージ 理論の 大 きな 対称性 は 、BPS スペ ク トラム を超 えて
一般の 状態の 量子補正 をも統制す る 。 これ を最大 限に利用す る こ とで 、 伝統的な摂 動

論の 到達範囲を超え て 、 系統的な量子 ス ペ ク トル の 解析が 可能にな りつ つ あ る。そ の

背景 には 、 Ar ＝ 4超対称性 と結び つ いた可積分構造が ある 。

　 本 稿で は可 積分構造が どの よ うな 形で ゲージ 理 論に 顔を 出し 、それ を利 用す る こ

と で 何が得 られ るか を 、 1ル ープ摂動 の 場合 （2 節）、全 次数 摂 動 の 場 合 （3 節）に 分 け

て 紹介す る。 また N ＝ 4超対称 ゲージ理 論は AdS ／CFT 対応を通 じて AdS5　x　S5 背

景の 超弦理論と等価 で あ る と考え られて い る。弦理論側で も独立 に可積分構造の 同定

と応用の 議論が 整備 され て きて い る ．こち ら も古典 論の場合 （4 節）、量子 論の 場合 （5

節）に分けて 紹介す る 。 最 後に 6 節で今後の 展望に つ い て 述べ る 。

2　人厂＝ 4ゲー ジ理論の 1ル
ー プ摂動とス ピンチ ェ イン

よ く知 られ て い る よ うに 、N ＝ 4ゲ ージ 理論は共形対称性を 持つ 理 論で あ る。共形対

称性は局所演算子 の 相関関数の 形 を大き く制限す る 。そ の 際 、演算子間 の 距離 に 関す

る 相関関数の ス ケ
ー

リング則は 、個 々 の 演算子の ス ケ
ー

リン グ次元 に支配 され る 。 こ

の よ うに局所演算子の ス ケ
ー

リン グ次元は 、共形場理論に おけ る基本的な 量 と言え る。

　 本稿で は U （N ）N ＝ 4ゲージ理論の ラ
ージ N 極限を考え る 。 ゲー

ジ不変 な複合演

算子に着 目する と 、シン グル トレ ー
ス 演算子が 支配的とな る 。 こ の クラ ス の 局所複合

演算子の スケー リング次元を考え よう。 構成場の 種類は 、 ス カラ
ー

場 、 フェ ル ミオ ン

場、ゲー ジ 場、お よび それ らの 微分 を含 めて任 意 とす る 。相互 作用を無視 した場合 、

ス ケー リン グ次元は古典的に 質量次元そ の も ので 与え られ る。別 の 言 い方をすれ ば 、

共形代数の 中の ディ ラテ
ー シ ョ ン （ス ケ

ー
ル変換）生成子は 、 演算子 を構成する場ひ と

つ ひ とつ に 自明に 作用す る。 と こ ろが 構成場問の 相 互作用 を加 味する と、シ ングル ト

レ
ー

ス演算子 はデ ィ ラテ
ー

シ ョ ン 生成子 の 作用 に よ っ て 、一般に 別の シ ン グル トレー

ス 演算子に移 り変 わ る。すなわ ち個 々 の シ ングル トレース 演算子は 、デ ィ ラテ
ー シ ョ

N 工工
一Eleotronlo 　Llbrary 　



Soryushiron Kenkyu

NII-Electronic Library Service

Soryushlron 　 Kenkyu

一F8 一
研　究　会　報　告

ン 生成子 の 固有状態で は な くな る。互 い に移 りあ うシ ングル トレース 演算子 全体の 張

る空間に おい て 、 デ ィ ラ テ
ー

シ ョ ン 生成子 を対角化する こ とで 、量子論的なス ケ
ー

リ

ング次元 の 固有 値が 求 まる 。

　 丿V ＝ ＝ 4超対称ゲージ 理 論は 共形対称性 SO （4，
2）と R 対称性 SU （4）を大域的対称

性 と して 持つ が 、 これ らは超対称性と組み合 わ さっ て 全体で PSU （2，
214）対称性 を形

成 する 。 複合演算子 を構成 する ひ とつ ひ とつ の 場を 、 こ の PSU （2，
214）対称性に 関す

る ス ピ ン とみ な すと 、シ ン グル トレ
ー

スを とっ た 複合演算子 は 、 周期的に 連な る 一次

元の ス ピン チ ェ イ ン と解釈で き る 。 2002 年の Minahan− Zarembo の 発見および 2003
年 の Beisert−Staudacherに よる拡張に よ っ て 、デ ィラテ

ーシ ョ ン 生成子 の 1ループ摂

動補正 は 、su （2 ，
214）量子 1 次元ス ピン チェ イン の ハ ミル トニ ア ン と同型 で ある こ と

△ ・−1・・P
＝ H

。Ut2，214） （1）

が 明 らか とな っ た ［1 ，
2］．この ス ピ ンチ ェ イン は su （2）ス ピ ンか ら成る XXX 　Heisenberg

ス ピン チ ェ イン の 自然な拡張にな っ て お り、 可解性 をもち 、 ハ ミル トニ ア ン は Bethe

仮設を用 い て 対角化す る こ とが で きる 。よ り具体的には 、ハ ミル トニ アン の 固有値 問

題は Bethe仮設方程式 と呼ばれ る連立代数方程式に 帰着され る 。エ ネル ギ
ー

固有値は 、

こ の 方程式の 解で ある Betheル ー トを 用 い て 表 され る。

　　まとめる と 、可積分性 を利用 する こ とで 、任意の シ ングル トレー
ス 演算子の 1 ル

ー

プ異常次元の 計算は 、 形式的に は Bethe仮設方程式を解 く代数計算に 帰着する 。
　Bethe

仮設方程式の 解は 物性物理 におい て 長 い研究の 歴史が ある 。た だ し AdS ／CFT 対応の

観点か らは 、 新種の熱 力学 的極限 （連続極限）に お ける解が 特に 重要で ある 。これ らの

クラスの 解は ご く最 近に な っ て 着 目され 、我々 は そ の
一般解 を分類 して い る ［10］。

3　N ＝ 4 ゲー ジ理論の 高次摂動と可解粒子模型

シ ン グル トレー ス演算子に 作用するデ ィ ラテ ー シ ョ ン 生成子 の 1ル ープ摂動部分の 可

積分性が示された の に 引き 続き 、 高次摂 動に お い て も可積分性が保たれ る可 能性が 強

く示唆され て い る。高次摂動まで 含め たデ ィ ラテ ーシ ョ ン 生成子が 、や は り既 知の 可

解模型のハ ミル トニ ア ン と 同
一

視 で き る の で は との 期待が 当初 あ っ たが 、問題はそ う

簡単で はなか っ た。その 主な理 由を二 つ 挙げる と 、 摂動の 次数が 上が る 毎に よ り離れ

たス ピン 同士 の 相互作用が 生じ る こ と 、 1ル
ープ摂 動を超え ると スカ ラ

ー
場 3 つ が フ ェ

ル ミオ ン 2 つ に 遷移する 相互 作用が加わ りそ の 結果ス ピ ン チ ェ イン の 長 さが変わ る こ

と 、が あ る。遠距離相互 作用を もつ ス ピンチ ェ イン は物性理論で もほとんど研究され

て お らず 、 長さの 変 化す る ス ピン チ ェ イン に つ いて は知 られて い る例がな い 。

　 しか しなが らス ピ ンチ ェ イン の 長さを無限大に とる極限で は 、摂動の 全次数を 含
め て デ ィ ラテ

ー
シ ョ ン 生成子 の 固有値 問題を可解模型 として 定式化で き る こ とが 分

か っ た 。 単一の 複素スカ ラー
場 （Z とす る）の みか らなる シ ン グル トレー

ス 演算子 は 、

ス ピ ンチ ェ イン の 描像で は 強磁性真空に 対応する。無限に 連な る Z の 間 に別種の 場
X1

，
X2

，
．．．を 一

個
一

個十分 な距離 を保 っ て 入れた 状態は 、 マ グ ノン粒子 X1
，
X2 ．．．か

らなる漸近状態と解釈で き る ［4］。こ の よ うに して 粒子模型 を定義する と き、マ グノン
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粒子 の 分散関係式 、二 体散乱行 列 （S行 列）を計 算する こ とがで き る。 こ れ らを元に 組

み 上げた 可解模型 が Beisertに よ り提唱された （5］。

　　も う少し具体的に 見て み よ う。無限個 の Z か らなる強磁性真 空は、大域的対称性

を ．Psu （2，
214）か らsひ（212）× su （212）に 破る。従 っ て 、この真空の まわ りで の マ グ

ノン 励起は、二 組の SO 「

（212）ス ピン を担 う粒子 と して 振る舞う。基本粒子 と して はそ

れぞれ の SU （2［2）に つ い て 2＋2 次元表現を考 えれ ば よい 。二 つ の 2＋2 次元表現 の テ

ン ソル 積か らボ ソ ン 8個 とフェ ル ミオン 8個 の 基本励起状態の 組が 得られ る 。マ グ ノ

ン粒子は ス ピンチ ェ イン に沿 っ て 運動量を持つ こ とがで き るが 、運動量を 持 っ た粒子

状態は、su （212）対称性を中心拡大し た Psu（212）xR3 代数の 表現 として 振 る舞 う。 こ

の 代数の もとで の 変換性の 考察から 、
マ グノン

ー粒子の エ ネルギ ー E と運 動量 p に 関

する分散関係式

　　　　　　　　　　　　・ 一 ・ ＋ ／（・）Sln2  
一・ 　 　 　 （・）

が 導かれ る 。

’

tHooft 結合定数 λに 関する依存性は 、既知の摂 動計算との 比較 （λ《 1）

及び BMN エ ネル ギー
公式 と の 比較 （λ》 1）か ら 、！（λ）＝ λ／π

2
とな る と考 え られ て

い る 。また 、 マ グ ノン の 二 体散乱の S行列は

8t
。t。1 − S・［転 ・1、）  飯 ・1・〉｝ （3）

の 形 を と るが 、各 S
。u （2i2）部分の形は表現論か ら完全に定 まる 。 5頭 212）は 、

ユ ニ タ リ

性お よび Yang−Baxter関係式 を満た す こ とが確 か め られ 、 マ グノン の 多体散乱が 全て

二 体散乱 に 分解 で きる こ とが 分か る 。 これ を元に 模型の 可積分な定式化が 可能と な る

［6］。さ らに 、Ssu（2【2）は 1 次元 Hubbard 模型 の 可 積分構造を記述する Shastryの R 行

列 に 一致する との 観 察が あ り 16】、 4次元の 丿V ＝ 4 ゲージ理 論と 1次元強相関電子 系の

研究の 問の 予想外 の つ なが りが示唆 され て い る。 一方、S行列 全体にか か る ス カラ
ー

係ta　SO（Pbp2 ；λ）は表現論か らは決 まらず ． これ を決定す る試 みが 現 在も進行中で あ

る 。 これに つ い て は 5 節で 再び触れ る 。

4　 AdS 背景の 古典弦理論

丿V ＝ 4超対称ゲー
ジ理論は AdS ／CFT 対応を通 じて AdS5 × S5背景の IIB 型 超弦理論

と等価で ある と考 え られ て い る。ゲージ 理 論の 共形対称性 SO （4，
2）と R 対称性 SO （6）

は 、そ れぞれ AdS5 と ss の 等張変換群と して現れ る。特にデ ィラテ
ーシ ョ ン は AdS5

内の 大域的時聞方 向の 並進に 対応す る 。ラ
ー ジ 1＞ 極限は弦相互作用 の な い 自由弦の

極限に対応し 、シ ングル トレ
ー

ス演算子は
一

本の 閉弦に 対応 する 。よ っ て シ ン グル ト

レ
ーズ演算子の ス ケ

ー
リング次元は 、弦理論側で は 一

本の 閉弦の エ ネル ギ
ー

とし て現

れ る。

　　また
’tHooft 結合定数 λは 、弦の テ ン シ ョ ン α

t
、　AdSs 及び S5 の 半径 R に 対して 、

　　　 R4
4π λ ＝

：万
　 　 　 α

（4）
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の 関係で 対応す る。すなわ ちゲー
ジ理論側で 相互作用が 強 くな る ほど、弦理論側で は

半古典的な シ グマ 模型 として の 記述の 精度が よ くな る。従 っ て 、ゲージ理論の摂動論

で は 捉え に くい 領域が 、弦シグ マ 模型 の 古典論を解 く こ とで 調べ られ る こ とに な る 。

　　AdS5 × S5 上 の 超弦 理論は 、
　 Green−Schwarz形式 を用 い る と 、 超 コ セ ッ ト空 間

PSU （2，
214）／（SO （4，

2）× 50 （6））上 の シ グマ 模型 （に Virasoro拘束を課した もの ）と

して 記述 で き る ［71． シグ マ 模型 の 運動方程式は 一般に 非線形二 階微分方程式で ある

が 、こ れ を線形 の
一

階微分 作用素 の 対 （Lax 対）を用 い て 書 き換 え られ る 場合 、 無 限

個の 保存チャ
ージ の 組を系統的に構成で きる。すなわ ち Lax対、別の 言葉で は 1パ ラ

メ
ー

タ フ ァ ミ リ
ー

をな す平坦 保存 カ レ ン トが存在すれば 、 シグ マ 模型は古典的に 可積

分で ある 。2003 年 Bena −Roiban − Polchinskiは上述の 超コ セ ッ トシ グマ 模型に おける

1パ ラメー
タ平坦 保存カ レ ン トを構成し 、 AdSs × S5 上 の 超弦理 論が 古典 的に 可積分

で ある こ とを示した ［8亅。

　 可積分な古典シ グマ 模型 の 解に関し て もう少し 詳し く見て み よ う。今は相互 作用

しな い 一本の 閉弦に 着 目して い る の で 、シグ マ 模型 の 世界面と して は 円筒を考え る 。

運動方程式の 解がひ とつ 与え られ た と して 、 1パ ラ メ
ー

タ平坦 保存カレン トを閉弦に

沿 っ て 一
周積分する こ とで Wilson 線が 得 られ る 。 これ は Lax 微分方程式 の 解に つ い

て の モ ノ ドロ ミ行 列 を 表 して い る 。モ ノ ドロ ミ 行列は 、相似変 換 の 自由度 を除い て 、

世界面上 の積分路の 取 り方に 依 らな い 。すな わ ちモ ノ ドロ ミ行列 の 固有値は保存量を

な す。こ れ らの 固有値を 、平坦 カ レ ン トをパ ラ メ トライズして い た スペ ク トラルパ ラ

メー タの 複素関数 として み た と き、そ の 関数の Riemann 面と して 代数 曲線が ひ とつ

定 ま る。 これ は元の 運動方程式の 解に 対するス ペ ク トラル 曲線 と呼ばれ る。

　 運動方程式の解それぞれに対して ひ とつ の ス ペ ク トラル 曲線が対応する こ とを見た

が 、 逆に ス ペ ク トラル 曲線を土台に 運動方程式の 解 を構成する こ とが可能で ある。従 っ

て 、 可能なス ペ ク トラル曲線の 形を全て 調べ 尽 くす こ とで 、運動方程式 の一般解の分類

が 達成 され る。こ の 方法は 有限ギ ャ ップ解 の 理論 として 20 年以上前か ら知 られて い る。

最近 シ グ マ 模型の 場合に も応用 され ［9 ，
101、我々 は これ を発展 させ AdS5 × S5 背景 の

古典超弦 理論の
一

般解を分 類 した ［11亅。スペ ク トラル 曲線 を通じて 、こ れ らの
一般解

と 2 節の 最後で触れた 1ル
ー

プ摂動ゲージ 理論の連続
一

般解 ［3］との 精密な AdS／CFT
対応 も確 立で きて い る 。

5　 AdS 背景の 量子弦理論

現時点で は AdSs × S5 背景の 弦理論の 量子化には誰も成功して い ない 。　Green−Schwarz
形式や ピ ュ アス ピナ

ー
形式で の 作用 の 形は知 られて い るの で 、おそ らく多くの人に と っ

ては 、 共形ゲージをと っ て 2次元 CFT の 言葉で 定式化で きれば満足 がゆ くと思 われ る

が 、現状で は 様々な障害が ある。
一

方 で共形ゲー
ジとは別 に 、光錐ゲージやユ ニ フ ォ

ー

ムゲージ など別 の ゲー
ジ 固定に基づ き 、CFT で な く粒子 模型 と して 弦理 論を量子化し

よ うと い う試みが 近年盛ん に行われ て い る ［121e特に BMN 極限の近 くか ら AdS／GFT

対応 を調べ る とい う観点か らは 、 これ ら のゲージ に よ る定式化 の 方がゲージ 理論 との

対応が見やす い と考え られ る 。

　 ユ ニ フ ォ
ーム 光錐ゲ ージ を と り、無限に 伸び た弦 の 世界面を考 え る と、光錐ハ ミ
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ル トニ ア ン が保つ 対称性は 、 ゲー
ジ 理論の 場合と同じ くsu （212）  su （212）の 中心拡大

とな る ［131。真空か らの 基本励起 もゲ ー ジ理論の場 合 と同じ くそれぞれ の su （212）に

対し て 2＋2表現をなす と考 えられ る 。 こ れ らの 対称性の 表現論か らの 制限に よ り、 基

本粒子の 分散関係式および 二 体散乱行列は 、それぞれ ゲージ 理 論の 場合 と同じ （2）お

よび （3）の 形 を と るは ずで あ る．

　 一
方で 3節 で も述 べ た よ うに S 行列 の ス カ ラ

ー係数 So（p1，p2；λ）の 形は対称 性の

考察だけか らは定 まらな い 。しか しなが ら、粒子 と荷電共役粒子 の 入れ替えに 関する

交差対称性が 成 り立 つ と い う 自然な要請をお くこ とで 、 So の 満たすべ き 関係式が 得 ら

れ る ［14】． また 、 古典弦の エ ネル ギー
ス ペ ク トラ ム およびそ の 量子補正 を正 し く再現

す る よ うに 、Soを α
t

（x λ
『1／2 に よ る 展 開の 形

s・　・・＝　exp （・ぬ 嵩幗 （x）り （5）

で 定めて ゆ く試みが な され て い る 。 古典論と 弦の 1 ル ープ補正 か ら決 め られ る の は

θo ，
θ1 までだが 、全次数で の θn の 形 の 予 想 もな され て い る ［151。

　 一方ゲージ理 論に おい て は 、 通 常の 場 の 理 論の 摂動計算の結果と比較す る こ とが

で き る。現時点で は
’t　Hooft結合定数 につ いて の 正 巾の 展 開が

So＝ 1 ＋ 0 （λ
3
） （6）

とな る こ とが 分か っ て い る 。 弦理 論側で の ゲー
ジ 固定が適切で あれ ば 、AdS ／CFT 対

応に よ り （5）と （6）は 同
一

の 関数 を記述 して い る と期待され る ．So は 複雑な特異点構

造 を持つ た め 、現状で は これ らが 一致 するかど うか定かでは ない 。さ らな る研究の 進

展が期待 され る と こ ろで ある。

6　 展望

4 年ほど前か ら急速に 成長を続けて きた こ の 分野は 、今年に 入 っ て も 日進月歩の 発展

を続 けて い る。様々な 興味深 い 問題が 残 っ て い るが 、現 時点で の 分野全体と して の 主

な 目標をひ とつ 挙げるな らば 、 5節で紹介した S 行列 の ス カラ
ー
係tw　So の 決定で あ る

と思 われ る 。
’t　Hooft結合定数に 関す る正 巾展 開と負巾展 開の双 方を矛盾な くつ なげ

る S 行列が 決定 されるな らば 、 真に 量子論的なレ ベ ル で の AdS ／CFT 対応が初 めて 明

らか にな る。ゲ
ー

ジ理論、弦理論双方 の 量子 ス ペ ク トル に つ い て も多 くの 知見が得 ら

れ る だろ う。

　 丿V ； 4 ゲー ジ理論は対称性が 非常に高い こ とか ら 、現実の 物理 か ら乖離した理

論 と見な され る き らい が あ るが 、実際に は超対称性 の な い QCD と も直接的な か かわ

りが ある 。 例えば基本的な ソ フ ト異常次元の 摂動展 開に お い て 、超越度の 最も高 い

（maxlmally 　trancendenta］）部分は あ らゆる QCD に おいて 共通し ・これ は 丿V ＝ 4ゲー

ジ理論の ソ フ ト異 常次元 その もの で 与え られ るこ とが知られ て い る 。 摂動 の 次数が増

すに つ れ 複雑さ を極め る QCD ル
ープ計算の 結果が 、一部と いえど も可積分性 を利用
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する こ と で はるか に簡単に計算で き るな らば 、 QCD 研 究に も大きな 波及効果が あ る

だ ろ う。

　　また 3 節の 最後で も
一

例 を挙げたが 、 全 摂動ゲ ージ 理論の 可 積分 性 の 背後に は

Hubbard 模 型の 構造が存在する 。　 Hubbard 模型は可解模型の 中で も特殊な クラス に

属して お り、 その 可解性が代数的な見地か ら完全に理解 され て い る とは まだ言えな い 。

Psu（212）×　R3 代数の 表現論に基づ く Hubbard模 型の可解構造の 定式化な ど、可解模

型分野 へ の 技術の 還元 も今後楽 しみ で ある。
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