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Abstract: For a new parameterization of the modified effective chiral model, developed

primarily to regulate the density content of the symmetry energy and its higher order terms,

equations of state (EoSs) for hyperon-rich matter (H) and delta baryon matter (∆) were

obtained. The models were used to investigate the emission of gravitational waves (GWs)

through f -mode oscillations in the corresponding neutron stars. We obtained the stellar

structure, f -mode frequency and tidal deformability Λ for our models. We report that the

∆ EoS is stiffer compared to the H EoS. We also analyzed the velocity of sound in these

media. The corresponding mass–radius relationships were obtained and compared with

various observations. We studied the dependence of f -mode frequencies on the stellar mass,

redshift and tidal deformability. We employed the well known Cowling approximation to

obtain the f -mode frequencies for l = 2, 3 and 4 modes of oscillation. We found that the

f -mode frequencies of the H and ∆ EoSs were almost the same in the lower mass region,

while we observed a substantial difference between them in the high-mass region. We also

obtained an empirical relation for the EoSs considered. The various attributes obtained for

our models showed close agreement with various observational constraints from pulsars

and GW events.

Keywords: neutron stars, oscillations, equations of state

1. Introduction

The detection of gravitational waves (GWs) from binary neutron star mergers [1–3]

has opened up a new way to constrain the equation of state (EoS) of dense matter found

inside neutron stars. This is in addition to the basic constraint of meeting the maximal

mass criteria set by the most massive of the observed pulsars, examples of which are PSR

J0348-0432 [4], PSR J1614-2230 [5] and PSR J0740+6620 [6]. Neutron stars (NSs) could

experience a significant loss in angular momentum through the emission of GWs, which

could potentially be detected by the upcoming Einstein Telescope or even by the Advanced

LIGO/VIRGO.

External perturbations can send NSs into oscillation in various quasi-normal modes,

and these modes emit gravitational waves. Well-known NS oscillation modes include the

fundamental ( f ) modes, pressure (p) modes, rotational (r) modes and gravitational (g)

modes. Gravitational radiation can cause both the f - and r-modes to become unstable

through the Chandrasekhar–Friedman–Schutz mechanism [7,8], and this instability can be

damped by dissipative effects such as the shear and bulk viscosities [9–14]. However, it

was found that unlike with r-modes, the damping of f -modes leaves only a small region
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of instability [11] in the plot between the angular velocity Ω and core temperature T. An

unstable f -mode could have enough strength to be detected by gravitational wave observa-

tories [15]. If detected, these gravitational waves could provide a better understanding of

the nature of the matter within NSs.

The study of these oscillation modes requires solving the perturbed fluid equations in

general relativity. The first integrated numerical solution for f -modes was obtained by the

authors of Ref. [16] for various EoSs. The relativistic Cowling approximation [17], obtained

by neglecting the metric perturbations while considering the fluid oscillations, is widely

used to study f -mode oscillations in compact stars. This approximation was found to differ

from the general relativistic treatment by less than 20% [18]. It was used to study non-radial

oscillations in compact stars in Refs. [19–21]. More recently, the Cowling approximation

was used to estimate the f -mode frequencies for various other stellar configurations, such

as bosonic dark matter [22], hyperon [23], hybrid [24], dark matter-admixed hyperon [25]

and dark energy [26] stars. An important constraint on the EoS is given by the analysis of

the gravitational wave signal emitted during a binary inspiral, which is characterized by

the tidal deformability (Λ). It measures the quadrupole deformation of the star due to the

tidal field of a companion star. This is over and above the constraints already provided

by the electromagnetic observations of neutron stars, which include their masses, radii,

gravitational redshift and spin among others (see Ref. [27]). The GW170817 measurements

provided limits on the radius and tidal deformability of a canonical NS (1.4M⊙) in the

range of R1.4 = 12–13.5 km and Λ1.4 = 190+390
−120, respectively [2]. Additionally, a range

for the f -mode frequency was obtained as 1.67–2.18 kHz [28]. Future measurements from

binary NS mergers may impose more strict limits on f -mode frequencies.

The present model was treated very similarly to the well-known relativistic mean field

approach to account for many baryon systems. Introduced by Gell-Mann and Levy [29],

it was subsequently applied to nuclear matter studies [30]. After a series of modifica-

tions [30–36], the model was used to describe finite nuclear properties [37–39]. Further,

the inclusion of the dynamically generated mass of the vector meson in the model [40,41]

resulted in an unrealistically high nuclear incompressibility (K) value, which was reduced

to an acceptable range by introducing higher order terms of the scalar meson field and then

applied to nuclear matter studies [42]. Lately, mesonic cross-couplings have been incor-

porated [43] to regulate the density dependence of the symmetry energy parameters, and

this was applied to study magnetized neutron stars [44]. It is to be noted that higher order

interactions in the chiral fields are desirable as they are known to mimic three-body forces,

which may play a vital role in dense matter studies.

With the ever-growing observations of massive stars, the role of exotic matter such as

quarks, hyperons, etc., in compact stars has become interesting and important, particularly

since very little is known about nucleon–hyperon, hyperon–hyperon or delta’s interaction

in matter. The observation of high-mass pulsars severely constrains the EoS and therefore

the particle interactions, particularly when one considers exotics like hyperons or quarks

in their inner shells. Their presence is known to have a softening effect on the EoS on

one hand, while on the other hand we require a stiffer EoS in order to achieve a massive

neutron star configuration. There are several prescriptions available in the literature to

obtain high-mass stars; for example, one may consider the effect of repulsive hyperon–

hyperon interactions [45,46] or repulsive hyperonic three-body forces [47–49] or even a

phase transition to deconfined quark matter [50,51].

In this work, we obtained two different models of neutron stars within the effective

chiral model [43], namely, one which includes the octet of baryons (n, p, Λ0, Σ−,0,+, Ξ−,0)

and another with delta baryons (n, p, ∆++,+,0,−). There have been studies on the impact of

the ∆ baryons of NSs within the density-dependent relativistic mean field formalism on
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various stellar oscillations like radial [52,53] and non-radial [54] oscillations. Our aim was

to investigate the effects of hyperons and ∆ baryons on the non-radial f -mode oscillations.

This work is organized as follows. In Section 2, we give the details of the model

considered. Subsequently, we describe the formulation of f -mode analysis in Section 3,

which discusses the stellar structure, Cowling approximation and tidal deformability.

The results obtained are discussed in Section 4. Finally, we provide a conclusion in Section 5.

Throughout this paper, we choose units such that G = h̄ = c = 1, where G is the universal

gravitational constant, h̄ is the reduced Planck constant and c is the speed of light.

2. Model

The effective Lagrangian introduced in Ref. [43] was applied here, in which the nucleon

isospin doublet ψB interacts through the exchange of the pseudo-scalar meson π, the scalar

meson σ, the iso-vector meson ρ and the vector meson ω:

L = ψ̄B

[

(

iγµ∂µ − gωBγµωµ − 1

2
gρBρ⃗µ · τ⃗γµ

)

− gσB(σ + iγ5τ⃗ · π⃗)
]

ψB

+
1

2
(∂µπ⃗ · ∂µπ⃗ + ∂µσ∂µσ)− λ

4

(

x2 − x2
0

)2
− λb

6m2
B

(x2 − x2
0)

3

− λc

8m4
B

(x2 − x2
0)

4 − 1

4
FµνFµν +

1

2
g2

ωBx2
(

ωµωµ
)

− 1

4
R⃗µν · R⃗µν +

1

2
m′

ρ
2
ρ⃗µ · ρ⃗µ + η1

(

1

2
g2

ρBx2ρ⃗µ · ρ⃗µ

)

.

Following the interaction terms of the isospin doublet ψB, we have the kinetic and the

non-linear terms in the pion field π and the scalar field σ and the higher order terms of

the scalar field in terms of x2 = π2 + σ2. The last two lines include the field strength and

the mass term for the fields ω and ρ. The final term includes the effects of cross-coupling

between the σ and ρ mesons, and the coupling strength is denoted by η1. We consider only

the normal non-pion condensed state of matter and hence we take < π >= 0 and mπ = 0.

The scalar field attains the vacuum expectation value x0 due to the spontaneous symmetry

breaking (SSB) of the chiral symmetry. The masses of the baryon (mB), the scalar meson

(mσ) and the vector meson (mω) are then given by

mB = gσBx0, mσ =
√

2λx0, mω = gωBx0 , (1)

where λ = (m2
σ − m2

π)/2 f 2
π , with fπ being the pion decay constant which reflects the

strength of the SSB. Due to the cross-coupling between the σ and ρ mesons, the mass

of the ρ meson gets modified by the vacuum expectation value of the σ meson as m2
ρ =

m′2
ρ + η1g2

ρBx2
0.

This model was earlier applied to study matter at a finite temperature and low density,

and also the structure and composition of neutron stars [42,55]. The details of the model

considered in this work can be found in [13], where its role in the suppression of r-mode

oscillations was also studied in detail. As mentioned before, here we studied two different

models, one that incorporates the octet of baryons (B = n0, p+, Λ0, Σ+,0,−, Ξ−,0) and another

that includes delta baryons (n0, p+, ∆++,+,0,−), within the same parameterization. The

expressions for the energy density and the pressure of the models considered are given by
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ϵ =
1

π2 ∑
B

∫ kFB

0
k2
√

k2 + m∗
B

2dk +
m2

B

8CσB
(1 − Y2)2

− b

12CσBCωB
(1 − Y2)3 +

c

16m2
BCσBC2

ωB

(1 − Y2)4

+
1

2
m2

ρ

[

1 − η1(1 − Y2)(CρB/CωB)
]

(ρ0
3B)

2

+
1

2
m2

ωω2
0Y2 +

1

π2 ∑
L

∫ kFL

0
k2
√

k2 + mL
2dk, (2)

p =
1

3π2 ∑
B

∫ kFB

0

k4

√

k2 + m∗
B

2
dk − m2

B

8CσB
(1 − Y2)2

+
b

12CσBCωB
(1 − Y2)3 − c

16m2
BCσBC2

ωB

(1 − Y2)4

+
1

2
m2

ρ

[

1 − η1(1 − Y2)(CρB/CωB)
]

(ρ0
3B)

2

+
1

2
m2

ωω2
0Y2 +

1

3π2 ∑
L

∫ kFL

0

k4

√

k2 + mL
2

dk. (3)

Here, kFB is the fermi momentum of baryons, and Y is a dimensionless variable defined

as x/x0. Also, CσB, CωB and CρB, for a given baryon, B, are the coupling constants for

σ, ω and ρ respectively. The subscripts B and L denote the baryons and leptons under

consideration, respectively. To obtain the EoS, the stellar matter must satisfy the conditions

of charge neutrality and chemical equilibrium. The model parameters are listed in Table 1,

along with their saturation properties.

Table 1. Parameters of the present model, such as the scalar, vector and iso-vector nucleon–meson cou-

pling and its higher order interaction terms (top two rows), and the respective saturation properties

(bottom two rows) are displayed.

Cσ Cω Cρ b c η1

( f m2) ( f m2) ( f m2) ( f m2) ( f m4)

8.81 2.16 13.00 12.08 −36.47 −0.85

E/A (m∗/m) K J0 L0 J1

(MeV) (MeV) (MeV) (MeV) (MeV)

−16 0.84 210 32 60 24

3. F-Mode Analysis

In this section, we describe the well-known Cowling approximation for non-radial

oscillations along with the stellar structure equations and tidal deformability. The line

element for a static, spherically symmetric relativistic NS is given as

ds2 = e2Φ(r)dt2 − e2λ̄(r)dr2 − r2
(

dθ2 + sin2 θdϕ2
)

. (4)

Here, Φ(r) and λ̄(r) are the metric functions. The solutions obtained by solving the

Einstein Field equations for the given metric are the Tolman–Oppenheimer–Volkoff (TOV)

equations [56,57]. They are as follows:

dp

dr
= − [ϵ + p]

[

m + 4πr3 p
]

r(r − 2m)
, (5)

dm

dr
= 4πr2ϵ. (6)
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The TOV equations were integrated from the center to the surface of the NS to obtain

the mass (M) and radius (R) of the star. Towards the center of the star, the value of the

pressure pc = p(r = 0) = p(ρc) and mc = m(r = 0) = 0, where ρc is the central density.

The pressure tends to zero as it approaches the surface of the star. We obtained different

configurations of the global properties (like M, R and the compactness (C = M/R)) of the

NS by repeating the integration for different central densities.

Next, we proceeded to obtain the f -mode frequencies using the Cowling approxima-

tion [17], as given in Refs. [19–21], for which we made use of the solutions obtained from

Equations (5) and (6) to solve the following set of coupled differential equations:

dW(r)

dr
=

dϵ

dp

[

ω2r2eλ̄(r)−2ϕ(r)V(r) +
dΦ(r)

dr
W(r)

]

(7)

− l(l + 1)eλ̄(r)V(r),

dV(r)

dr
= 2

dΦ(r)

dr
V(r)− 1

r2
eλ̄(r)W(r). (8)

The functions V(r) and W(r), along with the frequency ω, characterize the Lagrange

displacement vector (ηi) associated with perturbed fluid:

ηi =
(

e−λ̄(r)W(r),−V(r)∂θ ,−V(r) sin−2 θ ∂ϕ
)Ylm(θ, ϕ)

r2
,

where Ylm(θ, ϕ) are the spherical harmonics. The differential Equations (7) and (8) obey the

following boundary conditions towards the center of the star:

W(r) = Arl+1, V(r) = − A

l
rl . (9)

Here, A is an arbitrary constant, and l can take values of 2, 3, 4, etc. We did not consider

l = 1 because dipole oscillations do not give rise to gravitational waves [58]. The above

differential equations were solved with some initial guess for ω2. The eigen frequency ω

should satisfy the boundary condition at the surface given below:

ω2eλ̄(R)−2Φ(R)V(R) +
1

R2

dΦ(r)

dr

∣

∣

∣

r=R
W(R) = 0. (10)

Equations (7) and (8) were integrated from the center (r = 0) to the surface (r = R), such

that the boundary condition above was met. After each integration, the initial guess of

ω2 was modified and the calculations were repeated. Here, we used Ridders’s method to

obtain the f -mode or eigen frequency.

The tidal deformability Λ depends on the EoS through both the neutron star radius R

and the dimensionless Love number k2 as Λ = 2k2R5/3. To calculate k2 for our EoS, we

used the equations described in [59,60]. For a static, spherically symmetric star in a static

external quadrupolar tidal field, Eij, the tidal deformability of a linear order is defined as

Qij = −ΛEij, where Qij is the star’s induced quadrupole moment. The l = 2 tidal Love

number k2 in terms of Λ and R is given as k2 = (3/2)ΛR−5. To calculate Λ, we solved the

following set of coupled first-order differential equations [60]:
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dH

dr
= β, (11)

dβ

dr
= 2

(

1 − 2
m

r

)−1
H

{

−2π[5ϵ + 9p +A(ϵ + p)]

+
3

r2
+ 2

(

1 − 2
m

r

)−1(m

r2
+ 4πrp

)2
}

+
2β

r

(

1 − 2
m

r

)−1{

−1 +
m

r
+ 2πr2(ϵ − p)

}

. (12)

Here, β(r) = dH/dr and A = dϵ/dp. The above equations were combined with

Equations (5) and (6) and solved simultaneously. The integration is performed outwards

starting at the values H(r) = a0r2 and β(r) = 2a0r as r → 0. The constant a0 cancels out in

the expression of the Love number and can therefore be chosen arbitrarily. It measures the

deformation of the star. Since the stress–energy tensor Tµν = 0 outside the star, H(r) is given

in terms of the associated Legendre functions Q2
2(r/m − 1) ∼ r−3 and P2

2 (r/m − 1) ∼ r2

at a large r. The interior and exterior solutions are matched at r = R to obtain a unique

solution. Defining the following quantity, y = Rβ(R)/H(R), for the solution at the interior,

the l = 2 Love number is given as [60]

k2 =
8C5

5
(1 − 2C)2[2 + 2C(y − 1)− y] (13)

×
{

2C[6 − 3y + 3C(5y − 8)]

+ 4C3[13 − 11y + C(3y − 2) + 2C2(1 + y)]

+ 3(1 − 2C)2[2 − y + 2C(y − 1)] ln(1 − 2C)

}−1

,

where C = M/R denotes the compactness of the star. We used the prescriptions given

above for the stellar structure, non-radial oscillations and tidal deformability to study the

f -mode oscillations for both hyperon and ∆ baryon EoSs.

4. Results and Discussions

As mentioned before, we considered charge-neutral neutron star matter populated

with hyperons and another EoS with ∆ baryons, along with nucleons and leptons. In the

present work, we chose a scalar coupling, and while keeping it alike for different hy-

peron species, we tuned the vector counterpart so as to reproduce the respective hyperon

potentials and analyze the resulting effect on the EoS and the neutron star properties.

The hyperon couplings were defined with respect to the nucleon, such as the scalar cou-

pling xσH = gσH
gσN

, the vector coupling xωH = gωH
gωN

and the iso-vector coupling xρH =
gρH

gρN
for

any hyperon species, H. The binding energy of the hyperon species in symmetric nuclear

matter could then be reproduced by the equation

(

B

A

)

H

= xωH gωNω0 + m∗
H − mH . (14)

In the equation above, m∗
H = mH × Y is the effective mass of a particular hyperon species

in matter. Recent experimental data indicate that the Λ and Ξ hyperons are bound with

energies of −28 MeV and −14 MeV, respectively [61,62]. It may also be noted that a very

recent study reported the potential depth of Ξ to be ≈−20 MeV [63]. Therefore, in the

present work, we set UΞ = −20 MeV. Also, we fixed the Σ coupling by choosing the

potential depth UΣ = 30 MeV [62]. Throughout our calculation, we fixed xρH = xωH .
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In the absence of any experimental data on the ∆ potential, we fixed the corresponding

couplings xσ∆ = xρ∆ = xω∆ = 1.2 [64], similarly to the ratio of the mass of ∆ to nucleons.

The energy density versus the pressure of the models considered here is plotted in

Figure 1a. It can be seen that the softening effect of the EoS was much prominent in the

case of hyperon-rich matter. This is understandable because most of the hyperons which

appear in the neutron star matter happen to be lighter than the ∆ baryons and hence appear

early, as well as constituting an appreciable percentage of the neutron star matter. This is

in contrast to the case of the ∆ (1232) baryons, for which the only species that appeared

substantially in the charge-neutral star matter was ∆−. This underlying difference in the

EoS and the composition of the neutron star matter must be reflected in the related global

properties of the neutron star, which we discuss next.

0.0 0.5 1.0 1.5 2.0

ǫ (×1015 gcm−3)

0

1

2

3

4

5

6

P
(×

1
0
3
5
g
cm

−
1
s
−
2
)

H

∆

(a)

0.0 0.5 1.0 1.5 2.0

ǫ (×1015 gcm−3)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

c
2 s

1/3

H

∆

(b)

Figure 1. (a) Hyperonic (H) and delta (∆) equations of state of the models considered and (b) the

square of the speed of sound as a function of the energy density for the EoSs. The conformal limit

c2
s = 1/3 is given by the dotted gray line.

We plotted the square of the speed of sound (c2
s = dp/dϵ) as a function of the energy

density ϵ in Figure 1b. The speed of sound is a measure of the stiffness of stellar matter, as

evident from the plot, which shows that the hyperon-rich star matter was softer than the

matter with ∆ baryons. At roughly 2ρ0, where ρ0 is the normal nuclear density, the exotic

particles started to appear, and therefore the softening effect on the EoS could be seen at that

particular density. Causality requires the speed of sound to satisfy the constraint c2
s ≤ 1,

while it has to satisfy the condition c2
s > 0 for thermodynamic stability. Furthermore,

the perturbative quantum chromodynamics (QCD) results for extreme-density matter

assume an upper limit of c2
s = 1/3. The EoS with ∆ baryons did not satisfy the perturbative

QCD results beyond 2ρ0. Recently, several studies [65–67] have shown that the 2M⊙
constraints require a speed of sound squared that is greater than the conformal limit

(c2
s = 1/3), indicating that the matter within the NS is a strongly interacting system. Our

model with ∆ baryons resulted in a stiffer EoS. Therefore, we note that the value of c2
s

depends greatly on the internal composition of the model considered.

We plotted the mass–radius profiles obtained by numerically solving the TOV equa-

tions given by Equations (5) and (6) from the center to the surface of the star for the H

and ∆ EoSs, shown in Figure 2. We obtained the maximum mass (and corresponding

radius) for the H and ∆ EoSs as 2.03M⊙ (12.11 km) and 2.20M⊙ (12.26 km), respectively.

The corresponding central densities were (1.89 and 1.84) ×1015 g cm−3, respectively. We

noted that the ∆ baryon matter resulted in a stiffer equation of state, which thereby gave

a higher value for the maximum mass. In Figure 2, we have also given the observational

constraints from PSR J0348 + 0432 (M = 2.01+0.04
−0.04M⊙ (1-σ confidence interval)) [4] and the

pulsar PSR J0740 + 6620 (2.14+0.10
−0.09M⊙ (1-σ confidence interval; the 2-σ confidence interval

is 2.14+0.20
−0.18M⊙)) [6,68]. We found that the maximum masses of the H and ∆ EoSs satisfied
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the given observational constraints. Furthermore, the radius corresponding to the canonical

mass M1.4 for both the H and ∆ EoSs was 13.38 and 13.31 km, respectively, which is in

good agreement with the NICER data of the pulsar PSR J0030+0451 [69,70] and GW170817

observations [2].

8 10 12 14 16
R (km)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

M
(M

⊙
)

GW170817 M2

GW170817 M1

PSRJ0740 + 6620

PSRJ0030 + 0451

PSRJ0348 + 0432

H

∆

Figure 2. Maximum mass, M, versus radius, R, plot of the non-rotating hyperon H and ∆ baryon

EoSs. The horizontal band represent the observational limit of PSR J0348+0432 (M = 2.01+0.04
−0.04 M⊙) [4].

Other limits from the NICER data of PSR J0740 + 6620 (2.14+0.20
−0.18 M⊙ (2-σ confidence interval) [6,68])

and PSR J0030 + 0451 [69,70] are also given. The observational constraints from the GW170817 [2]

event are also shown.

Next, we proceeded to calculate the f -mode oscillation frequencies using Cowling

approximation as discussed in Section 3. We solved the differential equations given by

Equations (7) and (8) and repeated the integration for different values of ω until the

condition given in Equation (10) was satisfied. In Figure 3a, we show the plot of the f -mode

frequencies as a function of the mass for the l = 2, 3 and 4 modes for both the H and ∆

EoSs. We found that the f -mode frequencies of the H and ∆ EoSs showed a noticeable

change in the higher mass region (M > 1.2M⊙), while the mode frequencies were similar in

the lower mass region. The l = 2 mode frequencies ( fmax) corresponding to the maximum

mass for the H and ∆ baryon EoSs were 2.42 and 2.39 kHz. We found that fmax was slightly

decreased for the ∆ EoS. The fmax values for l = 3 (4) for the H and ∆ EoSs were 2.94 (3.42)

kHz and 2.98 (3.43) kHz, respectively. It is seen from Figure 3a that the f -mode frequencies

of both the EoSs increased with the mass until it attained a certain value. The f -mode

frequencies for l = 2, 3 and 4 for both H and ∆ lay approximately in the ranges of 1.84–2.42,

2.24–3 and 2.56–3.43 kHz, respectively, for a mass ranging from 0.8M⊙ to the maximum

mass profile. We found that the frequencies of the l = 2 mode obtained for the ∆ EoS model

lay within the range of mode frequencies obtained in Ref. [54] with different ∆ EoSs.

Next, we obtained the values of compactness, C = M/R, and surface redshift,

Zs = 1/
√

1 − 2C − 1, as a function of the f -mode frequency for the stellar models con-

sidered. The compactness of an NS quantifies how tightly its mass is packed within its

radius, whereas the surface redshift measures how much light is redshifted as it escapes

from the intense gravitational field of the star. The f -mode frequencies as a function of

Zs were plotted and are shown in Figure 3b. The values of compactness (Cmax) and red-

shift (Zmax
s ) corresponding to the maximum mass for the H (∆) EoSs were 0.246 (0.266)

and 0.403 (0.462), respectively. The Cmax obtained for the ∆ EoS was higher than that

of the H EoS due to the stiffness of the ∆ EoS. Various observations have provided the

values for redshift as Zs = 0.12–0.23 (E 1207.4-5209 [71]) and Zs = 0.205+0.006
−0.003 (RX J0720.4-

3125 [72]). We found that the values of redshift obtained for the H and ∆ EoSs satisfied

these observational limits.
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Figure 3. f -mode frequencies as function of NS mass M (a) and redshift Zs (b) for l = 2, 3 and 4

modes of oscillation.

The tidal deformability provides key information about the neutron star matter. We

calculated the dimensionless Love number (k2) using Equation (14). In Figure 4a, we

display a plot of k2 versus the mass, M, of the stellar models considered. The value of k2

remained the same for both of the EoSs considered until it attained a maximum value of

∼ 0.137, which had a corresponding mass value of ∼0.9M⊙. Then, the value of k2 decreased

gradually and attained a value corresponding to the maximum mass (kmax
2 ) of 0.042 and

0.036 for the H and ∆ EoSs, respectively. The tidal deformability (Λ) could be obtained

from the Love number k2 and the stellar radius (R) using the relation k2 = 2ΛR−5/3. We

plotted the f -mode frequencies as a function of Λ for the models considered, displayed

in Figure 4b. The f -mode frequencies as a function of Λ for the H and ∆ EoSs were easily

distinguishable, and in both cases the Λ values decreased with an increase in the f -mode

frequency until a certain value, and then they remained almost constant. The values of Λ

corresponding to the maximum mass for the H and ∆ EoSs were 30.5 and 17.8, respectively.

The event GW190814 set a limit on the canonical tidal deformability of Λ1.4 = 616+273
−158 [3].

The values of Λ1.4 for the H and ∆ EoSs were around ∼800, which was in agreement with

the constraint given by the GW event. Furthermore, in Ref. [28], the authors combined the

constraints on the EoSs allowed by terrestrial nuclear experiments and tidal deformability

data from GW170817. This gave them the limit for the f -mode frequency of a NS with

1.4M⊙ as 1.67–2.18 kHz. We noted that the f -mode frequencies corresponding to a 1.4M⊙
configuration for both the H and ∆ EoSs were approximately ∼2 kHz, which was in

agreement with the given limit.

Next, we studied the f -mode oscillations by varying the potential depth UΣ for H

models and the coupling constants for ∆ baryons. In Figure 5, we display the plot of

the f -mode frequencies for the l = 2 mode as a function of the NS mass for different

parameterizations: UΣ = −10 MeV and +30 MeV, and xσ∆ = xρ∆ = xω∆ = 0.8, 1.0, 1.2. We

noted that the maximum mass increased when UΣ was decreased from +30 to −10 MeV.

However, we found that the maximum mass showed only a negligible change when

we varied the coupling constants of ∆ baryons. We found that the range of f -mode

frequencies did not change when varying the values of the Σ potential and delta coupling

constants. The f -mode frequencies corresponding to the maximum mass ( fmax) did not

change considerably when either the Σ potentials or coupling constants were varied.
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Figure 4. (a) The tidal Love number k2 versus the stellar mass M and (b) the f -mode frequencies, f ,

as a function of the tidal deformability Λ for the EoSs considered.

The fundamental idea behind gravitational wave asteroseismology is the same as that

in traditional helioseismology, where stellar oscillations are studied to infer the properties

of the interior of a star. Here, we proceeded to obtain a linear fit of the f -mode frequencies

as a function of the average density, which was given as f (kHz) ≈ a + b
√

M̃/R̃3 (here,

M̃ = M/1.4M⊙ and R̃ = R/10 km) for our EoSs. In Ref. [73], the authors calculated the

fitting relation using a polytropic EoS for the first time as f (kHz) ≈ 0.17 + 2.3
√

M̃/R̃3.

This relation was later modified by the authors for relativistic EoSs [74] to f (kHz) ≈
0.78 + 1.635

√

M̃/R̃3. Furthermore, in Ref. [75], the authors obtained empirical relations

using hybrid EoSs. Recently, empirical relations using hyperonic and dark matter EoSs have

been obtained in [23] and [25], respectively. We plotted the f -mode frequencies as a function

of the average density for different parameterizations of the H and ∆ baryon models, shown

in Figure 6. We also calculated a linear fit between the frequency and average density for the

models considered, which was obtained as 1.148 kHz + 1.358
√

M̄/R̄3 kHz. We compare

the values of coefficients a and b obtained from different analyses in Table 2, and the fitting

relations obtained are plotted in Figure 6. The empirical relations obtained in each case

were different from one another, which was due to the difference in the composition of the

matter considered inside the NS. We found that our data were closer to the fit obtained in

Ref. [23]. The fitting relations can be used in order to constrain the EoS by measuring the

f -mode frequency, which can be used to infer the mass and radius values.

1.0 1.2 1.4 1.6 1.8 2.0 2.2
M (M⊙)

1.9

2.0

2.1

2.2

2.3
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UΣ = +30 MeV
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Figure 5. The l = 2 f -mode frequencies as a function of the NS mass M for different EoSs obtained

by varying the coupling constants and the potential depth of Σ within the effective chiral model.
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Figure 6. f -mode frequency as a function of the average density for the EoSs considered, indicated

by the same legend as in Figure 5. The empirical relation obtained for our EoSs is given by the dark

blue solid line. Other empirical relations taken from different works (N. Andersson & K. D. Kokkotas

(1998) (AK) [73], O. Benhar et al. (2004) (BFG) [75], D.Doneva et al. (2013) (DGK) [11] and B. K.

Pradhan & D. Chatterjee (2021) (PC) [23]) are given in an olive color.

Table 2. Coefficients a and b of the fitting relation, f (kHz) ≈ a + b
√

M̃/R̃3, obtained from different

works, for the l = 2 mode.

Works a (kHz) b (kHz)

N. Andersson and K. D. Kokkotas (1998) [73] 0.780 1.635

O. Benhar et al. (2004) [75] 0.790 1.500

D.Doneva et al. (2013) [11] 1.562 1.151

B. K. Pradhan and D. Chatterjee (2021) [23] 1.075 1.412

Our work 1.148 1.358

5. Conclusions

In this work, we studied f -mode oscillations by employing Cowling approximation in

neutron stars (NSs) with hyperons (H) and ∆ baryons, using the effective chiral model with

mesonic cross-coupling within the relativistic mean field theory. We found that the square

of the speed of sound violated the conformal limit (c2
s = 1/3) for the ∆ EoS, indicating

a strongly interacting system. The hyperonic system, on the other hand, gave a value of

c2
s , which was lower but closer to the conformal limit. We then obtained the static stellar

properties of the models considered. We found that the maximum masses obtained for

both the H and ∆ EoSs were consistent with the observational data of PSR J0348 + 0432,

PSR J0740 + 6620 and GW170817. Then, we calculated the f -mode frequencies by employ-

ing Cowling approximation, which neglects the metric perturbations as a result of fluid

oscillations. We calculated the f -mode frequency as a function of the stellar mass (M) and

redshift (Zs) for both the H and ∆ EoSs. We obtained the mode frequencies for masses rang-

ing from 0.8M⊙ to the maximum mass configuration in the ranges of 1.84–2.42, 2.24–3 and

2.56–3.43 kHz for l = 2, 3 and 4 modes, respectively. We found that the f -mode frequency

( fmax) corresponding to the maximum mass was relatively higher for the stars with the ∆

model. This was due to the greater stiffness of the ∆ EoS compared to the hyperon EoS. The

results obtained from our analysis were found to agree with the observational data from

different pulsars and GW events.

We also studied the tidal properties of the models considered and it was found that

the values of tidal deformability (Λ) for both the H and ∆ EoSs were in close agreement

with the observational constraints obtained from the GW190814 event. We also obtained

the f -mode frequencies as a function of Λ, and it was found that the mode frequency of a

1.4M⊙ star was approximately ∼2 kHz for both the H and ∆ NSs. We found that our results
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were in agreement with the limit provided in Ref. [28]. We hope that future observations

from binary neutron star mergers could possibly provide more insights about the f -mode

oscillations of NSs.

Next, we calculated the f -mode frequencies for the l = 2 mode by varying the coupling

constants and potential depth (UΣ) for ∆ baryons and hyperons, respectively. Our results

show that the coupling constant had a negligible effect on both the frequencies and the

mass of the stellar configuration. We also found that the ranges of the f -mode frequencies

were almost the same for the models considered in our work. Further, we obtained an

empirical relation (a relation obtained between the f -mode frequency and average density)

for the set of EoSs considered. We also compared the relations obtained in other works with

our work. We found that the empirical relations depend greatly on the internal composition

of the stars.
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