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Abstract
We introduce a systematic approach to express generating functions for the
enumeration of maps on surfaces of high genus in terms of a single generating
function relevant to planar surfaces. Central to this work is the comparison of
two asymptotic expansions obtained from two different fields of mathematics:
the Riemann—Hilbert analysis of orthogonal polynomials and the theory of
discrete dynamical systems. By equating the coefficients of these expansions
in a common region of uniform validity in their parameters, we recover known
results and provide new expressions for generating functions associated with
graphical enumeration on surfaces of genera 0 through 7. Although the body of
the article focuses on 4-valent maps, the methodology presented here extends
to regular maps of arbitrary even valence and to some cases of odd valence, as
detailed in the appendices.

Keywords: graphical enumeration, asymptotic analysis, integrable systems
Mathematics Subject Classification: 37J65, 41A60, 05C30, 05A16, 60B20

(Some figures may appear in colour only in the online journal)

" Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

1361-6544/23/+36$33.00 © 2023 IOP Publishing Ltd & London Mathematical Society Printed in the UK 1663


https://doi.org/10.1088/1361-6544/acb47d
https://orcid.org/0000-0003-2010-4205
https://orcid.org/0000-0003-2064-229X
https://orcid.org/0000-0001-7309-7040
mailto:ercolani@math.arizona.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6544/acb47d&domain=pdf&date_stamp=2023-2-3
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

Nonlinearity 36 (2023) 1663 N Ercolani et al

1. Introduction

This paper combines ideas from random matrix theory and dynamical systems to address
a long-standing question relevant to a particular branch of graph theory, specifically the
enumeration of maps. This branch of graphical enumeration arose in the mid-twentieth cen-
tury as a first step in addressing the following general question: given a spatial graph, when can
that graph be embedded on a particular type of topological surface? Some graphs are planar,
meaning the graph can be embedded in a plane (or equivalently a sphere) without being forced
to cross itself. The same question can be posed for more general surfaces, thereby setting up
a kind of complexity classification of spatial graphs, or networks, in terms of the topology of
surfaces on which they can or cannot be embedded.

Being able to enumerate graphs subject to topological complexity serves as a first step in
understanding the general role of topological frustration in network theory. There have been
quite a few studies in the physics and mathematics literature related to this problem and in par-
ticular toward the construction of generating functions for this enumeration indexed by graph
size (the number of vertices, which we will denote j). Because the graph size is not bounded,
this potentially involves an infinite amount of information for each topological surface. How-
ever, it was shown in [Er11] that these generating functions depend only on a minimal, spe-
cific, finite set of rational parameters. The results discussed in this paper develop a systematic
method for identifying these parameters explicitly.

A map is a connected graph I embedded in a surface M that satisfies certain additional con-
ditions. The surfaces we consider are compact, oriented and connected topological surfaces,
each of them being uniquely specified, up to a homeomorphism, by its genus, g. Embedding
a graph, I, into M amounts to embedding its vertices and edges in such a way that the overall
placement of the graph on M is injective and continuous. The last additional condition required
is that after the surface is cut along the edges of the embedded graph, what remains is a dis-
joint union of contractible topological cells. For fixed genus g, we refer to maps satisfying
these conditions as g-maps.

A depiction of a map in a local chart on a surface is illustrated by the dashed black graph
embedded in a planar region shown in figure 1. Note that in this example all (black) vertices
have valence 4 (in the graph-theoretic sense). Maps whose vertices all have the same valence,
V, are referred to as V-regular maps in analogy with the terminology for graphs. Figure 1 also
(locally) illustrates the dual map (depicted in terms of the solid blue graph). The 4-regularity of
the original map results in the dual map being a tiling of the surface by topological rectangles.

Such surface tilings arise in a number of settings where one may be interested in modelling
some kind of large scale cellular growth subject to global topological constraints. Physical
applications arise in pattern formation in foams [Ba99], planar systems of interacting particles
[Lell], embryo gastrulation [MB14], and vertex dynamics [FOMG13]. For related statistical
or stochastic questions (such as statistical mechanics/dynamics on random networks [HS21]
or stochastic Loewner evolution of interfaces [CN06]) the large scale enumeration of maps
with fixed features is an important initial problem.

As mentioned earlier, we are interested in the enumeration of maps with a fixed number,
J, of vertices as j varies and becomes large. To reduce such enumerations to a combinator-
ial question, one needs to define when two maps are equivalent. One counts maps modulo
equivalence and the set of equivalence classes is finite. On a genus g surface, two maps are
equivalent if there is an orientation-preserving homeomorphism from the surface to itself that
induces a homeomorphism of the graph to itself preserving the sets of vertices and edges but
possibly respectively permuting them (while still preserving the incidence relations) [LZ04].
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a’

Figure 1. Illustration of a 4-valent map in a local chart and of its dual.

Equivalences for which such a permutation is non-trivial can arise. To avoid such technicalit-
ies at the outset, it is typical to consider the enumeration of labelled maps. These are maps in
which the vertices are labelled (or numbered) and the edges around each vertex on the surface
are also labelled consistent with the orientation of the surface. For the latter it suffices to label
one initial edge. The orientation (say clockwise) will then order the successive numbering of
the remaining edges around that vertex. This labelling breaks any symmetries that could yield
a non-trivial automorphism of T".

The earliest work on map enumeration goes back to Tutte [Tu68], using a purely combin-
atorial approach. Further results in this vein have continued up to the present time, producing
some remarkable combinatorial insights [LZ04, JV90, BGR0S, CMS09, Ch09]. Separately,
deep and surprising connections to random matrix theory have led to generating functions
for map enumeration. These generating functions are series, one for each genus g, whose jth
Taylor coefficient counts the number of labelled maps on the surface with j vertices of pre-
scribed valence. One of the earliest approaches was based on a formal application of resolvent
identities for random matrices that goes back to Ambjorn er al [ACKM93]. This is known as
the method of loop equations. Eynard [Ey11, Ey16] subsequently improved on this work to
establish a direct connection between loop equations and Tutte’s equations that are key to the
combinatorial method mentioned earlier. Finally, in [BIZ80] and, later in [FIK92], a different
random matrix approach to deriving generating functions was developed based on recurrence
relations for orthogonal polynomials. Subsequently, a rigorous basis for deriving map gener-
ating functions in general was established in [EM03, EMP08, BD16, EP12, EW22], and led
to further insights into their structure. The present work builds on these and recent results of
the authors to compare two expansions, both centred on recurrence coefficients for orthogonal
polynomials. One of the expansions considers these coefficients in terms of their combinat-
orial interpretation related to graphical enumeration discussed above. The other understands
these coefficients in terms of an orbit embedded in a dynamical system known as the discrete
Painlevé I equation. Comparing these two expansions in a region where they are both valid,
as illustrated in figure 2, provides a procedure to systematically count the number of regular
g-maps with fixed number of vertices, for arbitrary values of g. This procedure builds on an
approach first developed in [Tip20] (section 7.4).
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Figure 2. The two expansions for v = 2. Left: the genus expansion is valid as n — oo
for arbitrary values of » >0 and & = n/N ~ 1. Middle: the centre manifold expansion
is valid as n — oo for arbitrary positive values of r and N, here chosen such that r = n/¢
and N = n/a. As n — oo, both r and N increase linearly with n, as suggested by the red
arrow. Right: in (€, «,n) coordinates, the regions of validity of the expansions overlap
for fixed values of & ~ 1 and £ > 0.

The rest of this article is organized as follows. Section 2 introduces the two expansions,
which we call the genus expansion and the centre manifold expansion. Section 3 recasts them
using the same gauge as the asymptotic parameter n — co, and identifies a common region
of validity where they can be equated term by term. Section 4 uses the result of section 3 to
find closed-form expressions for the generating functions of labelled g-maps with 4-valent
vertices, and illustrates the methodology in calculating the number of g-maps with up to 15
vertices, for genera g between 0 and 7. Section 5 summarizes our results and considers a
range of extensions. These include a generalization to 2v-valent 2-legged maps that makes use
of asymptotic expansions available in the literature in lieu of the centre manifold expansion,
possible extensions of the method of [ELT22] to higher-order Painlevé equations, a discussion
of triangulations, and the existence of closed-form expressions for the number of 4-valent g-
maps with an arbitrary number of vertices. For clarity, the body of the article only considers
4-valent maps. Proofs of all of the theorems are presented in the appendices, in the more general
case of 2v-valent maps.

2. The two expansions

2.1. Recurrence relations and the genus expansion

We consider orthogonal polynomials defined on the real line with respect to an exponential
weight of the form w(\) = e~"1¥(Y) | where the potential V y is given by

J
1 .
Vin(A) =N 5/\2+Z;z,w . t=(11,...,1) Q2.1
=
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with J even. Although this paper will focus on a very particular case of (2.1), the general
expression of Vi y given above will be relevant in some of the appendices. Given the weight
w, one can define a family of monic orthogonal polynomials {7,} that satisfy the conditions

/R T\ T (AW(A)AA = 0, 7 % .

When the potential Vi y(\) in (2.1) is even, these polynomials are determined by a recurrence
of the form

A (A) = Tt (N) + b2 w1 (V). (2.2)
The results directly pertinent to map enumeration rest on a detailed analysis of the truncated
Mercer kernel associated to the family of monic orthogonal polynomials {7},

n—1

Kin(A) = o~ (/OO0 Sy () (1),
£=0

and its large n asymptotics. The fundamental result is the following so-called genus expansion.

Theorem 2.1 ([EMO3]). There exist T>0 and ~y>0 such that one has an asymp-

n

totic expansion, uniformly valid for o= % sufficiently close to 1 and all t € T(T,) =
{t ER LT, t;> WZJJ;II |t } of the form

/ FOVKin(O N\ = Fo(as) +n2Fy () +n*Fa(ont) + -

—00

provided the function F(\) is C* and grows no faster than polynomially. The coefficients F,,
depend analytically on o and t for t € T(T,~) and the asymptotic expansion may be differen-
tiated term by term with respect to o and t.

This is referred to as a genus expansion because for various choices of F(\) the coefficient of
n~?¢ is the generating function for some map enumeration problem on a surface of genus g.

Remark 2.2. The discrete variable 7 in this theorem, and the discussion preceding it, appears in
other related contexts. In the setting of random matrix theory, briefly mentioned in section 1,
n is the matrix size, and a probability density on n x n Hermitian matrices, M, is given by
exp (—Tr Vy n(M)) dM. In the dynamical setting of the discrete Painlevé I equation, to be dis-
cussed in section 2.2, n labels the discrete time step. The parameters in t of course determine
the precise polynomial potential but, more importantly, they serve to identify different univer-
sality classes for statistical or dynamical behaviours of the physical system being modelled.
Finally, the (continuous) parameter N acts as a kind of inverse temperature in the random mat-
rix setting and & = n/N is used to describe natural scaling invariances in all the systems just
mentioned, as well as in this paper. In random matrix theory, « is called the tHooft parameter
and is usually denoted by x. Here we use « to avoid confusion with the dynamic variable x,
which will be introduced later.

The particular form of the potential we will focus on for this paper is

V(N :N<;/\2+;/\4), 2.3)

1667



Nonlinearity 36 (2023) 1663 N Ercolani et al

Figure 3. Illustration of a 2-legged 4-valent map on the plane (0-map).

corresponding to t = (0,0,0,7) € R, t, = t = r/4. Although focusing on this quartic case may
seem restrictive from the viewpoint of general map enumeration, this was the case of original
interest in the physics literature [BIZ80]. For V given by equation (2.3), we have the following
result, obtained by setting F(A) = X in theorem 2.1, differentiating the resulting expansion
term by term with respect to #; and then setting #; = 0.

Theorem 2.3 ([EMPO08]). For the recurrence coefficients bn2 of the three-term recurrence (2.2),
associated to the weight with potential (2.3), let « = n/N be in a neighbourhood of 1, and let
t have positive real part. Then as n — oo, b2 has an asymptotic expansion of the form

b:=a (zg(t, o)+ %zl(t,a) : ) : (2.4)

uniformly valid on compact sets in t. The coefficients are analytic functions in a neighbourhood
of 0 with Taylor—-Maclaurin expansion

> 8 .
Ze (t,or) = (—1)]/,—'(04)’
=0 s

where /ﬁj(g) is the number of labelled g-maps with j 4-valent vertices and exactly two vertices

that are 1-valent.

A 1-valent vertex together with its unique edge is called a leg. An example of a 4-valent,
2-legged, g-map is shown in figure 3.

Remark 2.4. By this result, one may regard z,(z,1) as an exponential generating function
for counting inequivalent classes of 2-legged, 4-valent labelled g-maps. Making our earlier
variable replacement one has

H(g)

6 =z (3:1) = -0/
j=0

. &)
Alternatively, one may consider Zfil (—=1)/ ;e 38 =

3 ¥/, where k" = 5iz7>asan ordinary generat-
ing function for unlabelled 2-legged, 4-valent g-maps. Indeed, j! is the size of the permutation
group acting on vertex labels and 4/ is the size of the product of the cyclic groups acting on

the distinguished edge labelling at each vertex. Then j!4/ is the cardinality of the orbit under
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the action of relabelling. This can be related to the action of the cartographic group which
acts as a subgroup of the group of permutations of all the half-edges, called darts, attached
to vertices. We refer the reader to [LZ04, EMPO08] (section 5.10), and [Pi06] for more details
on these matters, but the important upshot of these considerations is that due to the presence
of legs in the maps being enumerated, there are no non-trivial equivalences of the type men-
tioned in section 1. Consequently, /%;g) will always be an integer. In what follows we will be
using zo( 7, ) where z¢ is uniquely determined by (2.4). We note, however, that the coefficients
in the Taylor-Maclaurin expansion of z¢(}, ) alternate in sign and so must be respectively
~(8)

multiplied by (—1)/ to recover R

We will also make use of the following results, corresponding to theorem B3 of [Er11].

Proposition 2.5 ([Er11]). The asymptotic expansion (2.4) is uniformly valid in a strip of con-
stant width around the positive real t-axis. In addition, the coefficients z;4(}, ) have a maximal
analytic continuation to the full complex r plane minus the ray (—oo, — ﬁ]

We remark that this stated uniformity also follows independently from a result due to Bleher
and Its [BIO5].

Going further to solve for these generating functions, one can prove that the z, may be
expressed as rational functions of zy [Er11]. In the case of 2v-valent maps, this rational function
takes the form:

~ 20(z0 — 1)P34—2(z0)
g = (1/ — (V — 1)20)53_1 ) (25)

where P3,_» is a polynomial of degree 3g — 2, whose coefficients depend on v. This informa-
tion is crucial for establishing our main results in section 3 because it reduces the problem of
finding z, to finding the finite set of coefficients of P3,_».

Remark 2.6. When v =2, equation (2.5) may be simplified as

20(z0 — 1)*Q,—1(z0)

8 (Z_ZO)Sg—l ’

where Q,_1 is a polynomial of degree g — 1. An explanation is provided in appendix D. Since
this does not extend to the case v > 2, we continue our discussion of 4-valent maps by setting
v =2 in the general form for z, stated in equation (2.5).

The next statement concerns the structure of zy. In [EMPO08], the authors establish the form of
20, which in our 4-valent case is given by:

(r ) —14++v14+12ar
20 =

-
’ 6ar

1 20(0,0) = 1. (2.6)

We note that z, is singular only at zo = 2, which corresponds to r = — ﬁ, consistent with the
last statement of proposition 2.5.

In summary, the genus expansion is the asymptotic expansion for the coefficients b? given
in (2.4), where the z, satisfy (2.5) and zg is expressed in (2.6). In particular, this expansion is

uniformly valid for o« = n/N sufficiently close to 1 and for all r > 0.
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2.2. The centre manifold expansion

In [ELT22], we provided a dynamical systems description of certain non-polar orbits of the
discrete Painlevé I equation (dpl),

1
M . neN, x,eR 2.7)
Nrx, r

Xpp1 X+ Xp—1 =

Our focus was on solutions that remain positive for all n € N.

Remark 2.7. In equation (2.4), zo(#,«) solves what is known as the string equation 1 =
20(t,a) + 12taz3(t,) (see appendix B). From (2.4) one sees that as n — oo, x, — azo.
Applying this in (2.7) and keeping in mind that o« =n/N, one immediately deduces that
3arzd +z0 — 1 =0, which is equivalent to the string equation with ¢ = r/4. This shows that
the string equation is nothing but the leading order form of the discrete Painlevé I equation in
the continuum limit.

It is natural to consider (2.7) as a first order non-autonomous system in the (x, y)-phase plane
given in terms of (x,,y,) = (x,,X,—1). In this formulation, the positivity condition of a solution
becomes the requirement that it remains in the first quadrant. Such solutions are of particular
interest since x, = b,% > 0 satisfies dpl when b,, solves the recurrence relation

Apn(/\) = bn+1pn+l()‘) +bnpn—l(>\)- 2.8)

In (2.8), the p, are orthonormal polynomials associated with the potential V() given in (2.3)
and satisfy

[ PPN =, w(3) = exp (N (;v i ;v)) .

This should be contrasted with the monic orthogonal polynomials 7, used in the previous
section. However, the coefficients b, in (2.8) are the same as in (2.2). We call the sequence
of x, = b? the Freud orbit, for n >0 [Fre76]. The centre manifold expansion describes how
x, = b? depends on n as n — oo as a solution of dpl. It therefore provides information on the
behaviour of b, as n — oo independently from the genus expansion. Matching the two in a
region where they are both valid will give an expression for the coefficients of the polyno-
mial P3,_»(z0) appearing in equation (2.5), which in turn will lead to an expression for the
generating functions z.

The approach of [ELT22] in which the centre manifold expansion is obtained, consists of
the following elements. First, a change of variables
LS A\

s:X+1+ 5
x rx X rx

rx’
transforms dpl, written as a three-dimensional autonomous dynamical system in (x,y,n)
coordinates, into a system in (s, f, ) coordinates that has two fixed points, P, and P.. Orbits
that converge to P, (resp. P_,) correspond to solutions of (2.7) that grow without bounds
as n — oo (resp. n — —o0). Second, a proof that the Freud orbit converges to P, combined
with compelling numerical evidence that this convergence occurs along the marginal eigen-
direction of the linearization about P, leads to the conjecture that the Freud orbit converges
to P, along its centre manifold. Third, an application of the centre manifold theorem provides
a Taylor expansion in powers of u of the centre manifold of P, valid to arbitrary order p:

P r
s:soo(u):Zsjuj+O(u”+'), f:foo(u):Zﬁu-i+O(up+l). (2.9)
=1 j=1
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The coefficients s; and f; may be found explicitly order by order. Fourth, the change of variables
from (s,f,u) back to (x,y,n),

1 s+u—1 n s+f4+u—1
X=——, y=————, 7:727
ru ru N ru

requires that any orbit (s00 () o foo (), un) on the centre manifold of P, should satisfy

n Soo(Un) +foo () +uy — 1
N ru?

— ’ynu,f —uy+ 1 =500 (up) +foo(un), (2.10)

where v = r/N (for v =2). Finally, substituting a Laurent series in powers of /a into the
rightmost equation of (2.10) and solving term by term, leads to the following result.

Theorem 2.8 ([ELT22]). In (s,f,u) coordinates, the Freud orbit has the following asymptotic
expansion

__/3_r_ 1t —s/2
U, = o 2m (8\/§)(7n)3/2+0(n ) asn — oo. 2.11)

This expansion may be continued to arbitrary order by appropriately selecting the order p
to which the Taylor expansions s (1) and fo () are pushed in (2.9). Moreover, because the
Taylor remainder theorem provides control on the O(u’*1) terms in (2.9) as u — 0, and because
the Laurent series for u,, on the Freud orbit is such that u#, — 0 as n — oo, the expansion (2.11)
is asymptotic as n — oo. Since x, = —1/(ru,), equation (2.11) leads to the centre manifold
expansion of x, = b? in powers of n'/2. Although the existence of such an expansion was
known [MNZ85], the dynamical systems context illuminates the special nature of the Freud
orbit as a solution of dpl.

3. Bridging the two expansions

The previous section introduces two different asymptotic expansions of x, = b2 as n — oo,
one arising from the setting of map enumeration, the other arising from dynamical systems
theory. The aim of this section is to write these expansions in a common form, so that they can
be equated. Caution should of course be exercised to ascertain that such a matching occurs in
a region where both expansions are valid.

3.1. Statement of both expansions

We start by recording both expansions, to make clear which assumptions they involve and
where they are valid.

3.1.1 The genus expansion. Let a« =n/N be in a neighbourhood of 1, and take r > 0.
Then equation (2.4) tells us that the coefficients of the recurrence relation (2.2), which we
now denote by b2 = x, y.,, have the following expansion in terms of the generating functions
zg(n,N,r):

= N
w~a |30 3.1)
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so that

WV

m
zg(n,N,r) Kim(N,r)
x,,_,NJ—aZ o < PoTEE R m=>=0
g=0

uniformly for &« ~ 1 and r > 0.

Remark 3.1. On the notation of constants: due to the presence of many error bounds, we will
use the indexed constants K; or K; ,, throughout the rest of this paper. The subscript i will
denote the order of appearance in this paper whereas m will specify the largest index in the
expansion.

3.1.2. The centre manifold expansion.  For N,r > 0 fixed, equation (2.11), together with the

change of variable x = —1/(ru), tells us that the recurrence coefficients x, y , are of the form
=
k
Xn,N,r ™~ E W} (32)
k=—1
so that
“ KZ,m (Na I")

m>—1. (3.3)

Ck
TNy = Z A2 S

m+1)/2 °
= plm+1)/

The nature of the dependence of ¢, and K ,, on the parameters N and r will be revisited later
in a rescaling argument.

There are two main challenges in relating these expansions. The first is that they are in
different gauges, with the genus expansion in n? versus the centre manifold expansion in /7.
The second challenge stems from their different regimes of uniform validity with respect to
parameters; in the genus expansion, N and n go to infinity in a double scaling limit keeping
r > 0 free, while for the centre manifold expansion N and r are fixed but arbitrary as n goes to
infinity. We address both of these challenges in the next two sections, first by converting the
genus expansion to the 1/n gauge, and then by leveraging a rescaling argument for the centre
manifold expansion that allows us to send both N and r to infinity together with n, as depicted
by the red arrow in the middle panel of figure 2.

3.2. Genus expansion in \/n

Recall the explicit formula (2.6) for the genus O generating function, which we now express
as a function of n and v = r/N:

—14++/1412ny

For 1/12 < nry it is straightforward to express zq as a convergent Laurent series in /n:

0o 1\/2 = 1\ /2
Zo(l’l,’}/) = Zai’o (n*}/) = Zdi,o(’y> (n) . (34)
i=1 i=1

One can explicitly write the a;  in terms of the Newton combinatorial coefficient (1 { 2) , but for

collecting terms in the expansion (3.8) below it will be more convenient to leave (3.4) as it is,
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with indices evident. Given the rational form (2.5) for z, in terms of zo (recall that for clarity
v is set equal to 2 in the body of this article),

~20(z0 — 1)P342(20)
Zg - (2—Zo)5371 I

one derives a similar convergent series in \/n for the z,:

00 1 i/2 0o 1 i/2
zg(anaf,g( > Zang(v)(n) : (3.6)
i=1

n
i=1 v

(3.5)

The derivation is a simple application of the substitution of convergent series, whose validity
for 1/12 < nvy becomes apparent once one notes that z is bounded between 0 and 1 for positive
n,N,r. Let us denote the unknown coefficients of the polynomial P3,_» as follows:

P3g_2(20) = Bog + Brgz0+ -+ Brg—2.4(20) 2.
Remark 3.2. Fori < 3g— 1, a;, takes the form:

—1
Qig = <25g_13,/2> Bi—1,¢+Lig, (3.7

where L; ; is linear in 3; ; for j < i — 1. Proof of this fact is a consequence of the more general
result for valence 21 (see lemma A.1 of appendix A) and simply amounts to collecting terms
at the appropriate order. Given the form of dependence described in equation (3.7), one finds
that solving for these §; , is achieved by solving a simple triangular system. In the appendices,
the quantities a; ¢(7) := a; ¢ /7'/? are denoted by a; 4 »(7) to indicate that v =2.

With the z, expressed as convergent series in inverse half powers of n, we can derive the
following bivariate expansion for x, in the asymptotic gauge /7.

Lemma 3.3. Let o = §; be in a neighbourhood of 1, and let { = * be fixed or bounded. Then,
for n large, x,, has an asymptotic expansion as n,N,r — 0o, at relative rates given by o and &.
The precise meaning of this is as follows. Define the partial sums

L5t d—4 ai ()
@ ._ i

g =a Z Z n2+i/2” (3.8)

j=0 i=1
Then for n large we have the approximation:
K;.4(,7)
d ;
‘Xn,g,g—g()\<W7 d>1. (3.9

In the above, the parameter v = r/N = «/& is finite and independent of n.

The generalization of lemma 3.3 to valence 2v is proven in lemma A.5 of appendix A.

3.3. Scaling properties of the centre manifold expansion

We now move to extending the regime of the centre manifold expansion to variable N and r,
in order to allow these parameters to tend to infinity, so that we may equate coefficients with
those of (3.8). First, observe the following rescaling of the Freud orbit:

Lemma 3.4. The Freud orbit satisfies the rescaling relation

Xm

Xn,N,r = N (310)

B

)

S| =
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The proof of this lemma follows as a special case of theorem B.3 found in appendix B.1. The
explicit dependence of the coefficients c; of the centre manifold expansion (3.2) in terms of N
and r is given by the following lemma.

Lemma 3.5. The coefficients ci(N,r) of the centre manifold expansion (3.2) satisfy the rescal-
ing condition

ci(oN,or) = lc,-(N,r). (3.11)
o

The proof is given for the more general case of even, regular valence in lemma B.1 of
appendix B. Letting n — oo while keeping a = § and § = % constant in the above lemmas
leads to the following theorem.

Theorem 3.6. Ler « be in a neighbourhood of 1, and let & be bounded above and away from
0. Then, for n large we have the following approximation:

Zm: ck(év%) < KZ,m(l/aﬂl/g) m> —1. (312)

nltk/2 n(m+3)/2 ) =

Xp non—
-
k=—1
As before, we provide the proof, for general even valence, in lemma C.1 of appendix C. This
result enables a single vertical ray in the middle panel of figure 2 to be extended along the
direction given by the red arrow.

3.4. Comparison of the two expansions

Thus far, we have reformulated the centre manifold and genus expansions to use the same
gauge in an overlapping parameter regime. The following theorem establishes the equivalence
of the adapted expansions.

Theorem 3.7. Let o = % be in a neighbourhood of 1, and let £ = 1 be bounded above and
r

away from 0. Then, for n large the difference between the genus expansion in gauge /n and
the centre manifold expansion can be bounded

g _ 3 W) _Kan(l/ool/§ (3.13)

k72 a3z

A simple proof using the triangle inequality to combine previously established estimates, (3.9)
and (3.12), is provided in theorem C.2 of appendix C. This will establish the equivalence of
these two asymptotic sequences.

4. Closed-form expressions for z4, e, and map counts

We are now ready to extract the coefficients of P3,_, from the two expansions of x,, y., in order
to obtain a closed-form expression of z, in terms of zg for each value of g. Generating functions
for 4-regular (without legs) maps, eg, are obtained from the z, by solving an inhomogeneous
Cauchy-Euler equation, as described in [EMPOS, Er14].

4.1. Closed-form expressions for zg4(zo)

We note that a finite truncation of the centre manifold expansion is sufficient to solve for the
Zg. This follows from two essential facts about these expansions. First, the rescaled centre
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manifold expansion (3.2) is already written in the \/n gauge and it is therefore immediate to
identify which terms should be equated to those in the genus expansion (3.8). Second, and
critically, for a fixed genus g, the polynomial P3,_, has a finite number (3g — 1 to be precise)
of unknown coefficients 3; , and solving for these 3; , amounts to solving the simple triangular
system discussed in remark 3.2. Tracking the order of the first occurrence of 33,5 ,, we show
in appendix C.2 equation (C.3) that we must include terms in the centre manifold expansion
up to k = k,,, where

k, =5gv—2v—3g+1,
to obtain the expression of z, in terms of zo. When v =2, k, = 7g — 3.

Remark 4.1. Using the factored form of z, provided in remark 2.6, one can significantly reduce
the number of terms needed to solve for z,, down to ky = 5g — 2.

We briefly illustrate the matching process for z;. The first few terms of the centre manifold
expansion (3.2) are

Vi L N ey 1
V3N 6r 24V3nP  1152V3r2iN 144m?
For o and ¢ fixed as n — oo, this leads to
—-1/2 -1 -3/2 48~—1/2 _ ~=5/2 -1
xn:a(7 1/2_L+ 2 + 7 i _,‘Y 3
3n 6n  244/3n3/2 1152+/3n5/2 144n

On the other hand, the genus expansion reads

Xn

) +0m™?. @)

X, = aio azo as.o as.o as.o ag.o
! (7”)1/2 ('7”)2/2 ('7”)3/2 (7")4/2 (7”)5/2 (7”)6/2
ar a) 7/
~12572 + ~2/25]2 +0(n~" )) : (4.2)

Our goal is to compare the two expansions above to find P3.;_, = P, with two unknowns
coefficients, 5y 1 and 51 1, which can be obtained from a;; and a, ;. From the terms of degrees

v~ 1/2n=5/2 and v~'n =3, we readily see that

48 -1
aj|1=—, 1= —.
1,1 115273 217 T

Relating a; ; and a, ; back to By ; and 3, ; (as described in remark 3.2), we have the triangular
system:

B Py =1 _ (i +26)
1152¢/3  16V/3~ 144 96
whose unique solution is 8y ; = —2/3 and 3;,; = 2/3. Thus, we obtain
. ~20(zo—1)(=5+320)  2z0(z0—1)2 ws)
1 2-20)° 32—2) :

which agrees with the computation of z; found in [EMP08].

The methodology introduced in this article works because we can equate coefficients in the
genus and centre manifold expansions, once these are truncated to a particular order. The coef-
ficients a; ¢ are thus obtained by equating two bivariate polynomials in 1/,/7 and 1//n. From
a computational point of view, it is easier to set & = 1 and rewrite these polynomials as func-
tions of 1/¢ = yand 1/y/r = \/&/n. As explained at the end of section C.2, this transformation
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is such that the unknowns a; , only appear in terms that involve § ~2¢ (when v =2), thereby
making it easier to locate those coefficients in the truncated expansions. For illustration, in the
above example this change of variable gives vy~ '/2n=5/2 = £=2y75/2 and v~ 1n=3 = €729 73,
where the exponent of 1/¢ is equal to 2 g in both terms. The closed-form expression of any
Z¢ in terms of zg may be obtained by equating the relevant terms in the two expansions and
solving for the 3; ;. Below, we give expressions for z through z7, which were derived in this
manner, with the help of Mathematica [Mat20],

~ 14zp (20 — 1)* (920 — 4)

: 4.4)
9(2—2z)’
4z (20 — 1)° (809723 — 661620 + 444)
3= 7 : 4.5)
27(2 - z)
_ 2z0(20— 1)8 3 2
2= —————5 (9348347z) — 1089946023 -+ 168328479 + 743704) ,  (4.6)
81 (2 — Z())
25 = 28z0(z0 1) (22814628375 — 3433794567 + 893499362
> T 81(2—z0)# 0 0 0
+50426664z9 — 16460352), @.7)
26 = 420z =" (7669263871659z — 14108672477756z + 5354520803304
729(2 — z9)®
+298933831798423 — 20408800281762 -+ 236635393760) , (4.8)
820 (z0 — 1) 6 5
27 = (8837111271832321z) — 191914945042748567,

2187(2—z)*
+975809846919160425 + 48499612658033442)
— 54228845375867362 + 12377583415665282
— 26678563494080). (4.9)

Consistent with remark 2.6, each expression for z, above involves a polynomial, Q,_;, of
degree g — 1 in z. These polynomials, normalized so that their L? norm over the interval
[—1,1] is equal to 1, are plotted in the top panel of figure 4. We note that their roots are real
and interlaced. The bottom panel shows normalized histograms of the roots with 5, 6, and 7
bins over the [—1, 1] interval, together with a possible limit of the empirical distribution of the
zeros of the Q,_, given by

exp(x—1)

@)= erf(v/2)y/m(1—x)

Providing an explanation for these remarkable observations will be the subject of future explor-
ation.

As indicated in theorem 2.3, explicit map counts for a surface of genus g are obtained by
repeated differentiation of zg:

(-1) &z

Jvoodri

Count of unlabelled 4-valent, 2-legged g-maps with j vertices =

(4.10)

. . . . . . dz
where z, is expressed in terms of 7, 2o is a function of r obtained from (2.6) with o = 1, 5 0 _
r

—3zg /(2 —2zp), and zg = 1 when r = 0. For reference, we used Maple [Map21] to calculate the
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exp(r—1

erf(v2)y/z(1-x)
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Figure 4. Top: graphs of the normalized polynomials Q,_1, for 2 < g < 7. Bottom: his-
tograms of the zeros of these polynomials, using 5 (Hs), 6 (Hs), and 7 (H7) bins, together
with a possible asymptotic fit for the empirical distributions.

counts for genera 0 through 7 and a low number of vertices. These are recorded in table 1 of
appendix D.

4.2. Closed-form expressions for eq4(zo)

Using the procedure described in [EMPO08, Er14], the generating functions e4(zo) for 4-valent
g-maps can be recursively derived from the expressions for z,(zo). Specifically, e, solves a
forced Cauchy—Euler equation of the form

& d
szﬁ —4(g— mf +2e,(2g — 1)(g — 1) = drivers,,
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where drivers, is a function of {ex(zo) }k<g and {z(z0) }k<g, s = —t= —r/4, 79 is understood

d
as a function of s, and —° = 1223 /(2 — z9). Knowledge of the z; for k < g is therefore suf-

ficient to obtain e,. Using equations (2.6) and (4.3) through (4.9), we find, with the help of
Maple [Map21], the following generating functions e, for genera 0 through 7,

1 3 5z Z(z)
_ 21 2_ 2% %W 4.11
€o 2111(10)+8 o T 4.11)
er =35 0(2~z), (4.12)
1)} (32 —21z — 82
ezz_(z" )" (3% 2 ), (4.13)
720(2 — z)
-1y
= (107)10 (925 — 13574 -+ 85525 — 292523 — 32704z + 17260) , (4.14)
9072 (2 — z0)
(20— 1)

-0 (278 — 6217] + 642675 — 393127 + 156870z
38880(2—zo)15( 0 ’ ° ’ ’

— 423738z — 1371979622 + 12438536z — 1421392), (4.15)

_ (20— 1)9 (
85536/(2 — 29)”°

81zy' — 251120 + 36045z — 317115z + 19063352

— 825884125 +26471691z) — 633197257 — 61148077762,
+ 759211471225 — 157398161620 — 383964880), (4.16)
6= — (- 1)" < (167913z5* — 6548607z + 120225708z)” — 1379237382z
79606800 (2 — 7o)
+ 11065634613z)° — 658230713912 + 3001777342745
— 1069792529256z + 300738865937425 — 6676436144466z
— 19877451674005327 + 31134975710952487;
—955888270184512z5 — 369974786833952z
+139728961867968) , (4.17)

(- 1
104976 (2 — )™

(729257 — 34263z)° + 766179z — 10836585z)* + 108693900z

— 8215421762} 4 4852565172z} — 229202003162)°

+ 87835205250z) — 275401525230z5 + 708906419910z

— 1496166685650z5 — 14139401925936647;

+2672305782348584z5 — 11193217977943362;

— 47934725699350423 + 370359088049920z

—46240156833920). (4.18)
While expressions for z; and ¢; with j < 3 are known, we believe the above formulations

for z4 through z7 and e4 through e; are new. Counts of unlabelled 4-valent maps are obtained
by taking derivatives of e, with respect to s and setting s =0 (recall that zy(0) = 1):
d’e,

1
Count of unlabelled 4-valent g-maps with j vertices = — — . (4.19)
4Gl dst | _,
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These counts (obtained with Maple [Map21]) are given in table 2 of appendix E for maps with
up to 15 vertices on surfaces of genera 0 < g < 7. Unlike the situation described in remark 2.4
for the zg, there are no legs in the enumerations corresponding to the e, to break symmetry. So
there will be non-trivial equivalences, which are reflected in the fact that the unlabelled counts
given by (4.19) are often rational numbers.

4.3. Comparison with known results in the literature

We checked that the expressions for zj, 25, and z3 provided above are equal to those given
on pages 62, 63, and 66-67 of [EMPOS8] for v =2.! Because z4 through z; are new, no direct
comparisons are available. However, [Erl11] (see also section 5.2) provides a recurrence for-
mulation of the coefficient a(g ) (V) of (v — (v — 1)z9) =8~ in the partial fraction expansion
of z,/zo (proposition 4.3 on page 511 of [Erl 1]),

+1 (258 _1) m —m+1 1 v?
0y 100 =N 1) Ul i ), =
m=1

(4.20)

which we confirmed was satisfied by the corresponding terms in all of the z, expressions
presented in this article (for which v =2). Similarly, the expressions for ey, e, and e, stated
above are identical to those provided in [EMPOS8] (pages 70-72 with the constants K] set to 0)
and to those on page 489 of [Erl11]. A recent preprint by Bleher, Gharakhloo, and McLaughlin
contains a closed-form formula for the number of labelled 4-valent maps on surfaces of genus
3 ([BGM21] theorem 1.6), which we used to check our expression for e3(zp). In addition,
for g > 2, we confirmed that the coefficients of the highest order terms in the partial fraction
expansions of e, and z,/zo in powers of (2 —zo) ™! are related according to equation (2-14)

of [Erl4], and that the constant term aég) in the partial fraction expansion of e, satisfies the
recurrence relation stated in equation (2—15) of [Er14],

© _ (231 [ -1 1 o (I 2 —2—)))aff >2
4 =228 =3I o T T2 e T 2g71' (28 — 2k +2)! 825

k=2

where the summation is set to zero for g — 1 < 2.

Finally, the counts given in tables 1 and 2 of appendices D and E were compared to (and
agreed with) the numerical values obtained by running a combinatorial code developed by
Pierce [Pi06], for 0 < g < 2 and maps with up to 4 vertices. The algorithm underlying this
code is based on cartographic group methods, mentioned in remark 2.4. Similarly, the number
of labelled 4-valent 3-maps with 5 vertices was reported in section 5.11 of [EMPOS8] and is in
agreement with table 2. We also checked that the results of table 2 of the present article (in
appendix E) are in agreement with the counts shown in table 2 of [DY 17], for genera 1 through
5 (see footnote? for g = 0). This provides a verification of the expressions for e4 and es, and
indirectly z4 and zs, since the former are obtained from the latter. The algorithm underlying
the code used in [DY17] is based on the resolvent for the Lax difference operator appearing

1 Our analysis revealed a small typo in the expression for z,,, given in section 5.4 on page 63 of [EMP08], where the
coefficient 25551 should instead be 2551. Equations (4.4) and (5.4) are in agreement with the corrected expression.
2 For genus zero, we found a typo in table 2 of [DY17] for row k=8: 154928203970560 should read
154948203970560. All of the other entries for g =0 agree with the present work.
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in the Toda Lattice equations associated to orthogonal polynomials. (We note that a similar
algorithm was developed at the continuum limit level in [W15].) The relation between this
resolvent and the discrete string equations used in the present paper is explained in sections
1.2.2 and 4.1 of [EW22].

5. Conclusions

In this paper we have made a detailed comparison of two asymptotic expansions for the Freud
orbit, a particular solution of the discrete Painlevé I equation (dpl): the genus expansion, which
is based on a Riemann—Hilbert analysis of orthogonal polynomial systems, and the centre
manifold expansion, which is based on a dynamical systems analysis of dpl. The difference
between them stems from the fact that the two expansions are obtained under different scaling
limit assumptions, which have potentially different a priori parameter domains of validity
in the large n limit. However, in rescaling these expansions, we find there is a large overlap
between their respective regions of uniform validity. Connecting the two expansions in this
common parameter regime is the key technical mechanism that leads to the main result of
the paper concerning map enumeration. That result is two-fold. First, it provides an effective
elementary means for counting the number of genus g, 4-valent maps with an arbitrary number
of vertices. For illustration, counts of maps with up to 15 vertices on surfaces of genera 0
through 7 are provided in appendices D and E. Second, it yields an optimal bound on the finite
number of steps required for evaluating all these counts, independent of the number of vertices.

The work presented here goes beyond the question of enumerating 4-valent g-maps. Indeed,
the methodology we have introduced extends to maps of even valence 2v, through the lemmas
provided in appendices A through C. In addition, knowledge of how map counts change with
parameters may provide insights into connections between generating functions and hierarch-
ies of continuous Painlevé equations. Finally, the dynamical systems approach of [ELT22],
which led to one of the asymptotic expansions used here, raises interesting questions on the
role played by special solutions of dynamical systems in other areas of physics and mathem-
atics. We elaborate on these ideas below.

5.1. Generating functions for higher v

The present methodology may be extended to other forms of the potential Vi n(\) (see
equation (2.1)), as long as the two asymptotic expansions of 5> are available. For the genus
expansion, we have the work of Ercolani ef al [EMO03, EMPOS, Er11] on potentials of the form

/\2
Vin(A) = (2 —qu)\Z”) .

They proved that the expansion

2 n 1
b”’NN N (ZO’V(S)—’—HZZO’V(S)'”) (5])
and rational expression

= ZO,V(ZO,V - 1)P3g—2,u(20,v)

R O e D
hold for these general types of potentials, where the z,, are now generating functions for
2v-valent 2-legged g-maps, as stated in equation (2.5). The coefficients of P3z_» ,, are still

(5.2)
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unknown for general g, although expressions for the generating functions z, , with0 < g < 3,
are provided in [EMO03, EMPO0S, Er11]. For the centre manifold expansion, we have the results
of [MNZ385], which rely on an ordinary difference equation approach stemming from Poincaré-
Perron type methods. They suffice to establish asymptotic expansions for the b2, as needed for
the higher v case considered in appendices A through C.

As an example, Freud’s equation for v =3 is

Xn 66X (Xn—1Xn—2 + X + X, + 2XnXn—1 + Xn_1Xnt1 + 2XnXnp1
n

X1+ X 1Xn2) = N (5.3)
where x, = bf. From theorem 1 of Maté et al [MNZ85] (see also [BMNS88]), we know that x,
will have an asymptotic expansion in powers of n'/3. Using Mathematica [Mat20] to compute
this expansion to order n~2%/3 and mirroring the procedure described in section 3, we recover
the closed form expression for z; 3 derived in [EMPOS]. In addition this method provides the

following result regarding z5 3, also in agreement with [EMPOS8] (see footnote 1).

Proposition 5.1. The generating function for labelled 6-valent, 2-legged maps on a genus 2
surface can be expressed as

_ wa(s—1) (2673 62451 25407 , 27386 5 8567 4
23 = (3—2203)° 5 20 20,3 4 <03 3 20,3 5 20,3
—1)?
_ 0323 = 1) (3426825 5 — 7527625 3 + 51759203 — 10692), (5.4)

T 20(3 - 2203)°

where zg 3 is the generating function for labelled planar 6-valent, 2-legged maps.

5.2. Links with higher-order continuous Painlevé equations

One of the principal interests and applications for the paper [Er11] was to provide a foundation
for resolving the relation between a double scaling limit of dpl and the continuous Painlevé
I equations that physicists had conjectured in some of the earliest explorations on quantum
gravity [BK90, FIK91, FIKNO6]. In [Er11] it was shown that the rational function in (2.5) has
a global Laurent polynomial representation of the form

al® a® agi) |
_ R St 5.5
2(20) =20 (2—270)% * (2 —zp)%et! o (2—z0)%! ©-)

It was further established that in the double scaling limit for ( = 219/53%/SN*/3(r 4 L), as

N — 0o and simultaneously r — — £ from above, the sequence, in g, of top coefficients agill

precisely equals the coefficients of the asymptotic expansion of the tri-tronquee solution to
the continuous Painlevé I equation, d?y/d¢? = 6y? + ¢, in the non-polar sector. This ana-
lysis is the source of the recursion formula (4.20) for these asymptotic expansion coefficients,
which we used in section 4.3 to confirm our counts. It is natural to wonder if there are asymp-
totic structures of interest related to the lower coefficients in (5.5). That question continues to
motivate applications of the explicit calculations carried out in the present paper.

The work in [Er11] also derives a novel extension of all these results to the general class
of potentials of the form V3, (A) = N (3A%+ 55A%), but in which the Painlevé I equation
is replaced by the vth equation in the associated continuous Painlevé 1 hierarchy. This is
the continuous analogue of the hierarchy of discrete string, or Freud, equations mentioned
in appendix B. A detailed exploration of the connections between generating functions and
higher-order continuous Painlevé equations remains to be performed.
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5.3. Dynamical systems perspective

The bridge between the two expansions we have described corresponds to the unification of
two perspectives: a Plancherel-Rotach type analysis initiated by Freud [Fre76] and further
developed by Maté er al [MNZ85], and more recent advances in Riemann—Hilbert analysis,
related to integrable systems theory, as seen in the work of [FIK92, EMPOS]. The relation
with discrete dynamical systems goes back to Freud who used that perspective to describe
the leading order asymptotics of recurrence coefficients for families of orthogonal polynomi-
als with exponential weights [Fre76]. Later, motivations coming from random matrix theory
and quantum gravity revived interest in these questions and led to re-interpretations of discrete
Painlevé equations as discrete string equations [FIK92]. We saw in section 5.2 deep, physically
meaningful, connections between multiple scaling limits of solutions to discrete and continu-
ous Painlevé systems. Such connections arise elsewhere in the literature [HFC20] and it will
be of interest to compare such results to our own.

Lew and Quarles [LQ83] broadened the dynamical perspective for dPI to include other
non-polar orbits, different from Freud’s. More specifically, they used contraction mapping
techniques to prove the existence of a one-dimensional family of solutions that remain positive
under the dPI evolution. The overlap analysis presented in this paper solves, from a dynamical
systems perspective, a connection problem for the non-polar solution between the regime r >
1 where the purely quartic part of the potential is dominant and that near r = —1/12 related
to the double-scaling limit mentioned at the start of section 5.2. This has relevance for non-
perturbative string theory [BK90].

The global dynamical systems framework of [ELT22] suggests two directions of future
exploration. First, extending the analysis of [ELT22] to general v seems natural but presents
some challenges, not least of which is that the phase space dimension of the dynamical sys-
tem increases with v. However, for odd valence there is one important case, that of 3-valent
(v = 3/2) graphs or, dually, triangulations that is dynamically tractable. As was the case for
quadrangulations, formulas for e,(zo) are already known for 3-valent maps when 0 < g <2
[EP12, BD13]. Corresponding counts (calculated with Maple [Map21]) for graphs with up to
16 vertices are given in appendix F. The methodology introduced in the present article lays out
a path toward obtaining counts for higher values of g. Interestingly, the results of [MNZ85]
do not help here since there is no corresponding family of classical orthogonal polynomials.
However, our dynamical systems approach does apply, thereby providing a means to get a full
asymptotic expansion of centre manifold type. For instance, formally seeking an expression
corresponding to the centre manifold expansion leads to the following formula for z; 3 /5:

20,3/2 (243 15513 4 9705 ¢ 9045 3 93 1o

2
23/2 = ( T6 2972032 + 6 2032~ g %0372 + 6 20372 T w032

2
2032 3)°

(9B 9
16 20,3/2 820,3/2

4
3z 22, —1
_Fon Goap =) (628372 +355232 + 126035 3/, 81) .

16 (Z%,3/2 - 3)9
Combining the genus and centre manifold expansions to obtain triangulation counts for topo-
logical surfaces of higher genus is something we will explore in future work. Indeed, triangu-
lations are, from many mathematical perspectives, the class of maps of broadest interest.
Second, from the viewpoint of dynamics, many critical features go beyond all orders from
what can be seen in just asymptotics. This was already evident in the pioneering work of
Lew and Quarles [LQS83] and such a realization is manifest in the results, both theoretical
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and numerical, found in [ELT22]. Consequently, many of the algebraic structures we have
been working with in this paper, such as string equations and generating functions, which are
based on asymptotic expansions of particular orbits, necessarily extend to a plethora of other
orbits that differ from the particular orbit only beyond all orders. This opens many avenues for
dynamical and numerical exploration that we plan to pursue.

5.4. Closed-form expressions for the map counts

The number of regular g-maps may be obtained by taking successive derivatives of z4(zo)
or e,(zo) and evaluating the result at r =0 or s =0 (corresponding to zop = 1), as indicated
in equations (4.10) and (4.19). Knowledge of z, and e, as functions of zg is therefore suffi-
cient to obtain such counts. A remaining challenge is to formulate the result as a closed-form
expression that is solely a function of the regular valence 2 and the number of vertices j. For
instance, the number of 2v-valent O-maps with j vertices is [EMP08]

) 2v—-1\\" (vj—1)!
2= ((0)) @l 0
A few similar results are known for low values of g [BD13, BGM21]. When v = 2, the expres-
sions for z, and e, presented in this article may be used to derive closed-form expressions for
N, (j) for all genera for which z4(zo) is known. This work is beyond the scope of the present
article and will be described separately [ELT22b].

In summary, the present article illustrates how results from Riemann—Hilbert analysis and
either Plancherel-Rotach asymptotics or centre manifold theory may be combined to provide
a solution to a longstanding combinatorial problem in map enumeration. In addition, including
a dynamical systems perspective opens the door to further explorations that have the potential
to reveal deep connections between various branches of mathematics.

Appendix A. Genus expansion in the n'/* gauge

In this appendix, we reformulate the genus expansion for x,, in the gauge n'/¥, where v > 1 is
an integer. From [EMPO8] we have the following (rescaled) polynomial equation, known as
the string equation, that implicitly defines zg ,:

2v—1Y\ /n\v—! y
1=zO,u+<V_1>(N) 22 (A1)

where r,,, here is related to the variables in (2.1) as f,,, = r,, /2v. The parameter r used previ-
ously in this article may be expressed in this notation as r = r4. Defining 7 := 5, /N" ™1, we
rewrite the string equation:

2v—1
1= 20,v + < v—1 ),YnV1Z10/7V. (AZ)

Using the Newton—Puiseux theorem [BK86], we can derive the following convergent expan-
sion for z9 ,:

2= aiop(y)n . (A3)

i=v—1
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Note that the value of the lower bound of summation reflects the balance in equation (A.2).
Using the expansion (A.3) for zo and the rational form for z:

z _ ZO,V(ZO,V - I)P3g72,u(ZO,V)
8,V (V—(V_l)ZO,y)5g71

where P3;_5 ., is a polynomial in 7o ,, of degree 3g — 2, we can derive a convergent expansion
for zy ,:

(A4)

Zow =Y Gigu(y)n ", (A.5)

i=v—1
where the dependence of the coefficients a; , ,, on 7y has been made explicit. Denote the coef-
ficients of P3g_» ,, as B4, for 0 <i<3g—2.

Lemma A.1. For 1 <i< 3g— L, the coefficient a;, 1) ,,, takes the form

1581

. _aixfl,o,u A6
ai(v—l),g,v_ s, Bifl,g,u +Li,g,1/7 ( . )

where L 4, is linear in B; , ,, forj < i — 1. Although this dependence is implicit, the coefficients
Qg are functions of 7.

Proof. With a;,_1),,, being the coefficient of n~ =1/ in the expansion (A.5) for z, ,,, we
simply need to collect terms in (A.4) at this order. We will view the rational function (A.4) as
the product of two terms

k
3g—2

i—2 00
k —k(v—1 —j
Py 20(200) = Y Brgwzbn = Begwn VA a1 0
k=0 k=0 =0
i—1

o0
+ By, g UTDEEDI Zaj+u—1,o,un_j/y

j=0
3g—2 IS k
+ Z Brgun DI Zajwfl,o,un_j/”
k=i j=0
aifll . )
. v—1.9v ) —(((=D)(v=D+1)/v
= Lz,g,l/ + n(l’fl)(V*l)/V /Bz—l’g,y + O (}’L 1 )
(A7)
and
20,0(200 — 1) _ _ZO”’(I— ) I—V_l 1-5¢g
(= (= Dzg, )5~ pie T 0 oo

g n= DY =y
_ ay—1,00N Vﬁg_gl—&-(’)(n )) (1_(’)(n—(”—1)/”>)

< (1-0(u-0m)) 7

7 -1
= —sioonm tO0T), (A8)
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where I:,«yg,,j are the terms collected from Bj,&yz{;,y (forj <i—1)in P3,_» ,, which is linear by
inspection. Since none of the terms in (A.8) depend on any of the 3; 4 ,, the result follows. []

Remark A.2. Per lemma A.1, knowing the 3g — 1 coefficients {ai(u_1)7g7y}?ifl in the expan-
sion of z, ,, guarantees that one can always solve for all 3; 4 ,,, through a non-singular triangular
system. In turn, one then has the entirety of the z, , expansion (A.5), by expanding its rational
form (A.4).

Lemma A.3. Let n,N,ry, — oo at related rates o =n/N and & =n"~"/ry,, then X e

o €
has an asymptotic expansion in this multi-scale regime of the form
X . _azm:zgﬂ/(’}/) < K57m(a7'y) m=>0 (A9)
& e - n2g 22t T '
o=

where 7y = ry,, /N'~! = a1 /¢ is independent of n.

Proof. First, similar to theorem 2.3, when n, N — oo at the related rate o = n/N, the coefficient
Xn,N,rs, = Xn,n/a,r,, Nasanasymptotic expansion (the genus expansion) of the form [EMPO03]

S zea(cor) | _ Kin

g, v\ 2y 1,m

Xn, 2 r — Q - 2 < p2mt2 m>07 (A.10)
g=

where it was also shown in [Er11] that the constants K| ,, are uniform for r,,, > 0. This fact is

critical as it allows us to vary r,,, and still maintain control over the error in (A.10). Applying
v—I1

3

the reverse triangle inequality with this bound, we have the inequalities (recall that r,, =~
by definition of &):

_ Zgw(7) _ Zmt1,0(7) _ izgw('y) _ Znt1,0(7)
xn,ﬁ,% @ n2s n2m+2 = xn,i,% @ n2e @ n2m+2
g=0 g=0
m—+1
Zg,v\Y
S g
g=0
Kimi1(a)
n2m+4

From the leading order term observed in (A.5), we know that z,,(y)=

ay—1,6,(7) (n = ) +O(n~") and that ~y is independent of n when n, N, r5,, — oo at related

rates « =n/N and & = n”—l/rzl,. With v > 2 we also have that 2m+4 >2m+2+ "T’l
Combining these facts with the previous inequality completes the proof:

m
Zg,V('V) Zm+1,u(7) Kim (a) KS,m(a77)
Ty et _O‘Z e | < ‘O‘ 22 P 2t
g=0
O
Lemma A.4. Ford,v € Z,d > v — 1, and v > 2, we have the inequality
d—v+1 v—1_d+1
2| |+2+ > .
2v v v
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Proof. Write
0<d—v+1=2vm+r, with0<r<2v—-1, rmeZ (A.11)
so that =%t | = m > 0. Then,

d+1 r+v
2v =m v

Thus,
— 1 —1 1 —1
di —|—1—|—V Zh@m—l—l—&—L}m—l—r—Hj(:)ZV—l}n
2v 2v 2v 2v 2v
and the result follows. O

Lemma A.5. Let n,N,ry, — oo at related rates o =n/N and & =n"~'/ry, and define the
partial sums

LL’ v41

Jd 2jv

G .— Z 3 CZZFIW (A.12)

i=v—1

Then, these partial sums serve as an equivalent asymptotic sequence for x, y.r,, in this scaling
limit, meaning that

’ K3 q4(a,7)

d)
X o oav—l _g( (dJrl)/l, )

Masr €

d>v—1 (A.13)

for constants K3 4(cv,7y) depending on o and .

Proof. First we use the convergent series (A.5) to express Z,,,, as a finite sum plus remainder:

d—2gv
_ilv d—v+1
2w (M) =Y @igu (V)" + Rea(n,”), §< —5,— (A.14)
i=v—1

with R, 4(n,~y) asymptotically bounded by K , 4(7)n~¢=28+1)/¥ We denote the partial sums
of the genus expansion as

| d=pt u+lJ

Gi=a Z nzf : (A.15)

The difference between G, and G(9) may be bounded as follows.

Bl ! d—2jv d—2jv aiiu(7)
G- =a| 3 (nz,(za[ﬁj’y@)n_,/”,e,,d(n,w)— > )

=0 i=v—1 i=v—1
Ld 1/+]J 1 Ld u+1j

=o| X atn) <o 3 Koo e
=0

j
< K7 g(o,y)n~ @D/,
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A simple application of the triangle inequality brings together the bound above, the estimate
provided in equation (A.9), and the inequality provided by lemma A.4, to complete the proof:

xn ﬂ_g(d)’ <

n
‘o €

i gd' + ’gd - g(d)‘

n
sa €

X
n

2Ldfu+l

) 4 Ky (a,y)n @D

< KS:LW;:,H ] (Oé,’y)nf(

< K (o, y)n= 0,
O

This enables us to define a new asymptotic expansion for x,, in the gauge n~'/, derived from
the genus expansion, which we write

N ()

i,j,V

xm%»”vgl Naz Z n2iti/v -’ (A.16)
) j=0 i=v—1

Appendix B. Centre manifold expansion with « and ¢ fixed

In what follows, for consistency with the main text, we use the phrase ‘centre manifold expan-
sion’ to refer to the asymptotic expansion of the Freud orbit as n — oo. It should be noted that
although the connection to a centre manifold has only been established when v =2 [ELT22],
the existence of an asymptotic expansion for v >2 is known from the work of Maté et al
[MNZS85]. To extend the discussion to the case of 2v-valent maps, we start from the Freud
equation (B.2) instead of dpl. Establishing the validity of the centre manifold expansion when
N and rp, grow with n amounts to showing that its partial sums satisfy a rescaling condi-
tion hinted at by the string equation (A.2). Specifically, we will apply the transformation
N — oN,ry, — 0”"'ry,. By letting n play the role of o, we will see that the parameters N
and r, can be made to go to infinity with n, while keeping control of the error term. This
occurs because the error bounds for the rescaled expansion can be related back to the error
bounds for N and r,, finite by scaling out the asymptotic variable n.
Take the general even weight of the form

/\2 y)\2u
w(\) = exp [—N(2+ rzzy )] (B.1)

where v > 1 is a positive integer. Freud’s equation [Fre76] in this context, also referred to as
the discrete string equation [EW22], gives:

n=>b,N(J+ryJ* ") (B.2)

nn—1"’
where the subscript is the (1,7 — 1) entry of the matrix sum J + 75, J**~! (starting row/column
indexing at 0), and J is the semi-infinite Jacobi matrix

0 b 0 0 O0 O
by 0 b, 0 O
0 b, 0 b3 O
0 0 b3 0 by

0 0 O

(B.3)

(=R e]
S oo oo
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Note that this matrix simply encodes the recurrence (2.8). Expressed in terms of x,, we find
that (B.2) gives

=X+ rZI/MIJ7 (B4)

==

where
174

My, =My (xny 2 |jl <v) = Z H br%—&-é,,,(P) = Z Hxn-i-fm(P) (B.5)
P

m=1 P m=1

so that M, is a polynomial of degree v in x,,; for | j| < v. The sum here runs over a set of planar
lattice walks, P, known as Dyck paths, which start at height n and terminate at height n — 1
and are of length 2v — 1. £,,(P) denotes the deviation of the path P from height n at step m.
This representation implies that |£,,(P)| < v. See [Er14] for more details on this combinatorial
interpretation.

The key feature of M, for us is the useful rescaling condition:

M, (ox,4j: |j| <v) ="M, (xny) - |J] < V). (B.6)

With this known structure of M, let us denote the centre manifold expansion, for general
v, as
oo . o0
Xy~ Z cn v =: Z ci(N,rp)n™v. (B.7)
i=—1 i=—1

As mentioned above, its existence is known from [MNZ85].

Lemma B.1. The coefficients c;(N,r2,) of the centre manifold expansion (B.7) satisfy the res-
caling condition

¢i(oN,0" " 'r2) = —ci(N,r2). (B.8)

s
o
Proof. This result is proved by strong induction.

Base case: considering the dominant balance of the equation (B.4), we find that c_; is
defined by the equation

1 .
N rac” M, (1) (B.9)

where the notation 1 means that all the coefficients Xn4; in (B.5) have been set equal to 1; in

-,

other words, M, (1) simply counts unweighted paths. Thus

1 1 c_| ) v -

— = (0"""r)|— ) M,(1),
oN (J "2 )( o (M

indicating that c_ satisfies the desired scaling.

Inductive step: assume this rescaling holds for all ¢; with i < m and take m > —1. The defin-
. . . . . . . 1— mt1 .
ing equation for ¢,, is derived from satisfying equation (B.4) at order n' ~ >~ , when x,, is sub-

stituted with

m .
> env. (B.10)
i=—1
At this order we find
e — Cm+1—v R(Cj)
0=Cpmii—p+rw[emM(1)c" T +R(c))] <= e = — = — = (B.11)
+1 2 [ ( ) 1 (J)] l"zyMl,(l) i_1] My(l)Cli_ll
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where we can define ¢; = 0, for j < —1, and R(c;) is a homogeneous polynomial of degree v

in ¢; for j < m (the remaining terms from M, at order n!="% which did not contain Cm)-
Thus by the homogeneity of R and the inductive hypothesis, we have that the lemma follows.

O

Corollary B.2. Partial sums of the centre manifold expansion (B.7) satisfy the rescaling

Z ci(oN, 0" 'y )nv = p Z ¢i(N,r)n~v.

i=—1 i=—1
B.1. Freud orbit rescaling
Let us write x, y.,, =: X, (N, rp,) to emphasize dependence on parameters N and ry,,.
Theorem B.3. The x, n.r,, satisfy the following rescaling:

1
anN,auflrzu = ;xn,N,m. (BIZ)

Proof. Denote the ith moment for the weight (B.1) as p; = p;(N, r2,). The work of Szegd
[Sz39] provides explicit formulas for x,, in terms of Hankel determinants, which read

MO u] e ,Uzn
DD M1 H2 o Ml
X, = 1")_22 " where D, = D,(N,r2,) :=| : D e (B.13)
—1
" Mn—1 Hn Tt M2n—1
Hn Mpt1 0 H2n

The proof of theorem B.3 relies on the two following lemmas.
Lemma B.4. The moments 1, (N, ry,) satisfy the rescaling relation:

fin(ON, 0" " ry)) = o~ D21 (N 7). (B.14)
Proof. The proof of the lemma follows from a straightforward change of variables.

/\2 O.uflr 1/>\2U
tn(oN, 0" ry,)) = /R/\”exp [—UN(Z + 25)] d\

() e |-om (=) 7 (5) o(2)

Vo 2 2v

2 2v
= a’("“)/z/ 0" exp [N(a + ravt )] do
R 2 2V

= a_("+l)/2un(N,r21,).

O
Lemma B.5. The Hankel determinants D,, satisfy the rescaling relation:
Du(oN,0"'r2,) = 0T Du(N, 1), (B.15)
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Proof.
n+1
Dn(O'N,O'VierV) = Z Sgn(ﬂ) Hﬂiﬂ—p(z‘)—Z(O’N?UV?eru)
/)ES/1+] i=1
tl (i+p()—1)
it (-
= Z sgn(p) HU T i p(iy—2(Nsraw)
PESut1 i=1
— (1) (n42) + (- 1)
=0 2 n(N7 r2v)
—(+D?
— o D, (N,rp,).
O
Finally we directly deduce theorem B.3:
Dy, _2(oN,0" "2, )Dy(oN, 0" "1,
X v =
n,oN,o0" = 1ry, Dn,1(0N7UV_17'2u)2
—(=n2 —(n+1)?
_ 2 Dn—Z(NarZV)U 2 Dn(N>r2y)
o "*D,_1(N,rs,)?
_ l Dn—Z(Na rZU)Dn(N; r2u)
o D, 1(N,ry,)?
1
= E'me;rzu'
O

Appendix C. Comparison of expansions

Let r, =n*~! /¢ and N = n/a. We can now let 15, and N go to infinity with 7 at these relative
rates. First, we derive an error bound for the rescaled centre manifold expansion, now that it
is clear how its partial sums and the x,, v, behave under the above rescaling.

C.1. Equivalence of the genus and centre manifold expansions

Lemma C.1. With ry, and N related to n as above, as n goes to infinity, the partial sums of the
centre manifold expansion can be rescaled with x,, to derive the following error bound:

(C.1)

11
Gk (av E) Kym(1/0, 1/€)
Tngot T g; e | S e 0 M > -1
where the constant K, ,, from the centre manifold estimate (3.3) only depends on o and &.

Proof. Recall that the centre manifold expansion is defined in equation (B.7) as

oo
Xn,N,ry, ™ Z Ci(N7 rZU)n_i (CZ)

i=—1
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where N and r,, are assumed to be arbitrary but finite. The proof reduces to using the estimate

KZ,m(Nv rZV)
p(m+)/v 7

m
(N
G, — 3 GNe)

ni/v m=—1

i=—1

implied by (C.2) (and corresponding to (3.3) of the main text), once we leverage the rescalings
established in corollary B.2 and theorem B.3:

11 11
=z Ck(ag) 1 1 & Ck(a@)
xn’g’nyé_l :Z_:l nlJrk/V an’é’%_ﬁk:z_:l nk/l’
< 1K2,m(1/aa 1/5) _ KZ,m(l/Oéal/f)
n p(m+1)/v T gty v

O

Theorem C.2. Let 5, and N go to infinity with n at relative rates r,, = n"~' /¢ and N = n/ .
The genus expansion in the '/ gauge (A.16) and the centre manifold (B.7) are equivalent.

Proof. The proof follows from a simple application of the triangle inequality, together with
the bounds established in lemmas A.5 and C.1. Form > —1,

m e (; 1) m (; 1)
k\are Ck\ o €
g(m+v) _ E < B _g(m+u) +lx E

v—1 —

nl+k/1/ = na e n, &t nl+k/1/
=— =—1
K37m+l/ (avf)/) K2,m(1/a7 1/5)
n(ﬂ’l—‘rl-‘rl/)/l/ n(ln—‘rl-‘rl/)/l/
< K4,m(1/a7 l/é-)
p(m+1+v)/v 2
where we have used the fact that ¥ = o¥~! /¢ is independent of 7. O

C.2. Finding the a; g4,

As noted in remark A.2, we only need to know the 3g — 1 coefficients {a,»(y_l)gm}?i Il to
obtain a closed-form expression for z, ,, in terms of 7o ,,. By theorem C.2, it suffices to extract
these coefficients from the centre manifold expansion, as it is equivalent to the genus expan-
sion in the n'/* gauge. Since the aj g, €nter into Gm+v) sequentially, we only need to track
the last coefficient needed to solve for z,,,,, which is a(3g_1)(,—1),4,,,- Using theorem C.2 and
equation (A.12) to determine which ¢ this equates to, we find

k 28+(3g—11)/(1/—1)

1+ = = =k, =5gv—2v—3g+1. (C.3)
14

Returning to the defining equation (A.2) for zg ,,, but letting A1/ =1y play the role of n,
we can rewrite the convergent series (A.3) to illustrate the dependence on ~y explicitly:

e .
0,0 = Z ai,O,lI(])(’yﬁn)_l/V7

i=v—1
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In other words, we find that

ai,0.(7) = 10,0 (1) Y70 .

Similarly for higher genus, we can write z, ,, as a doubly infinite sum

[e%s} ) e o] o0 . . J
Zow =D _WiZh, = D _wj ( > ai,o,u(l)(V”‘”>_l/V> ;
=0 =0

i=v—1

since z, ., is a rational function of the convergent series for zo in powers of n~'/"_ When col-
lecting terms in powers of 7 in the above expression, the coefficient of n=*/* involves terms
in y~!/(*(*=1) whose exponents add up to k. Therefore, we can write

o= argu(D)(y7n) "

k=v—1

Consequently,

ai g () = Gigw(1)y@=D.
Thus, (A.16) may be re-expressed as a bivariate expansion in which g; ¢ ,, arises as the unique

term which is a multiple of the monomial 'y"(;w n—(2e+i/v) - Ag a result, we can easily find
the a;,,, from inspection of order, just as was witnessed when comparing expansions (4.1)
and (4.2). In practice, since « is arbitrary but near 1, we may set « = 1. Then, v = a”’l/f =
1/ and since 5, = n" "1/,

v—1)

,Yl,(%il)nf(2g+i/u) _ (572gr2—’/(2g+i/y)) 1/(

This shows that the unknown q; ¢z, may be easily located in the expansion (A.16) first by

collecting terms in £~28/(*=1) and then by identifying the coefficient of r;y(2g+i/ M/ w=1),

Appendix D. Counts of 4-valent 2-legged maps for genera 0 through 7

Table 1 shows counts of unlabelled 2-legged g-maps obtained using the Taylor expansion of
Zg, as described in equation (4.10). As explained in remark 2.4 these counts are all integral.
The number of labelled 2-legged g-maps is obtained by multiplying each row by 4/ - j!, where j
is the corresponding number of vertices. Considering the Euler characteristic  of the cellular
polyhedron determined by a g-map with V 2v-valent vertices and 2 legs, we see that

X=2-2¢=(V+2)—E+F=(V4+2)— = 2uV+2)+F > V(1 —v) +2,

1

2
where the number of edges is E=vV+1, and F > 1 is the number of faces. The above
equation thus implies

2g

v—1

V> forv > 1.

Consequently, counts for maps with a number of vertices strictly less than 2g/(v — 1) are all

zero, as observed below in table 1 (for which v =2). In addition, given that the counts are
obtained from equation (4.10), z,, as a function of zy, will have a factor of (zo — 1) [2g/(v=1)1,
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Table 1. Counts of unlabelled 2-legged 4-valent g-maps with a fixed number of vertices,

for genera O through 7.

Vertices Genus 0 Genus 1 Genus 2

1 3 0 0

2 18 6 0

3 135 162 0

4 1134 3132 630

5 10206 52650 37422

6 96228 819396 1326780

7 938223 12145140 36506862

8 9382230 174067704 860304564

9 95698746 2434354074 18243857772

10 991787004 33415041780 358304450616

11 10413763542 451988208540 6637515628590

12 110546105292 6041901710664 117426287155716

13 1184422556700 79981821607428 2001523611771684
14 12791763612360 1050193148874408 33083648147905992
15 139110429284415 13694359796856360 532922312613419820
Vertices Genus 3 Genus 4 Genus 5

1-5 0 0 0

6 207900 0 0

7 19943172 0 0

8 1061845848 141891750 0

9 41576155956 19177999830 0

10 1337625029736 1385054577468 164991726900

11 37475824661352 71327306912598 29106185730300

12 946821516450480 2942589735251316 2681355887787528
13 22071416300654292 103495914888426684  172697001236536140
14 482336962749597384  3224203267738773816 8760448586644050744
15 9996484963729255992 91261924159660147350 373335639088458314520
Vertices Genus 6 Genus 7

1-11 0 0

12 292200348339900 0

13 64071279522665100 0

14 7226119529305407000 732588016195035000

15 562103677531247569740 193018419151189720200

Appendix E. Counts of 4-valent maps for genera 0 through 7

Table 2 shows counts of unlabelled g-maps obtained using the Taylor expansion of e, as
described in equation (4.19). The number of labelled g-maps is obtained by multiplying each
row by 4/ - j!, where j is the corresponding number of vertices. When g = 0, the resulting count
is given by equation (5.6) with ¥ =2. In the case of regular maps without legs, we do not
expect integral counts before multiplication by 4/ - j!, due to the presence of symmetries. As
before, if one considers the Euler characteristic y of the cellular polyhedron determined by a
2v-valent g-map with V vertices, we see that
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Table 2. Counts of unlabelled 4-valent g-maps with a fixed number of vertices, for gen-

era 0 through 7.

Vertices Genus 0 Genus 1 Genus 2

1 12 1/4 0

2 9/8 15/8 0

3 9/2 33/2 15/4

4 189/8 2511/16 2007/16

5 729/5 15633/10 28323/10

6 8019/8 64233/4 430029/8

7 104247/14 1180251/7 1848015/2

8 938223/16 57590271/32 238356027/16

9 483327 38914749/2 229637187

10 82648917/20 850128453/4 136971261063/40

11 400529367/11 25751800341/11 9955151610372

12 1316025063/4 207750029985/8 5672523466467/8

13 39480751890/13 3767137066053/13 9936375583257

14 1598970451545/56 45501750431811/14 549453974272749/4

15 545531095233/2 183072982028274/5 1877386504673043

Vertices Genus 3 Genus 4 Genus 5

14 0 0 0

5 945/2 0 0

6 125127/4 0 0

7 8500491/7 675675/4 0

8 577843065/16 555627195/32 0

9 910934829 1967095611/2 241215975/2

10 41037618141/2 1628891511507/40 68510089575/4

11 425429109954 2756680837155/2 14249112872697/11

12 66226454940987/8 323610729315237/8 557088690933189/8

13 153195852757365 1066627646812359 2990111952325347

14 38104924294385091/14 206945320458060549/8 218346687499327569/2

15 46752178744763622 11730504561542248 3522319537506492078
59/2

Vertices Genus 6 Genus 7

1-10 0 0

11 288735522075/2 0

12 211615589730825/8 0

13 32850823889930175/13 260893168160625

14 4717322888871388995/28 117949180927619475/2

15 44155396587351637287/5 6851883252610003770

X=2-2¢=V—E4+F=V—-vV+F>V(l-v)+

1,

where the number of edges is £ = vV, and F > 1 is the number of faces. The above equation

thus implies

V=

>2g—1

forv > 1.

v—1
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Consequently, counts for maps with a number of vertices strictly less than (2g —1)/(v — 1)
are all zero, as observed below in tables 2 (for which v =2) and 3 (for v = 3/2). This is in
accord with theorem (2.3) of [Er14], which established a conjecture due to [BIZ80].

Appendix F. Counts of 3-valent maps for genera 0 through 2

Formulas for ey, e, and e, as functions of zy in the case of 3-valent maps were obtained in
[EP12] and read

In(ao() @00 —1) (20(r)” — 620(r) - 3)
eo(t) = 5 + e 12 :

2
el(l‘) :_2141.11‘1(;_ Z()gt) )7

(Zo(t)2 _ 1)3 <4zO(z)4 —93z(1)* — 261)

5 5

960 (zo(z) . 3)

where zo(7) is implicitly defined by the string equation
1=20(1)* = 7272(1)° .

Table 3 below shows counts of unlabelled 3-valent g-maps obtained using the Taylor expansion
of e,:

ez(t) =

)

Count of unlabelled 3-valent g-maps with j vertices = L dj—e.g . FD
350 dv |,

The number of labelled g-maps is obtained by multiplying each row by 3/ -j!, where j is the
corresponding number of vertices. As before, we do not expect integral counts before mul-
tiplication by 37! due to the presence of symmetries. In addition, because zq is a function
of 72 (due to the form of the string equation), odd derivatives of e,, and thus counts of maps
with odd numbers of vertices, are all zero. This was to be expected since the edges of the cel-
lular decomposition provided by the 3-valent map graph arise by a perfect pairing of the 3
half edges (the darts mentioned in remark 2.4) coming from the triplets of edges around the j
vertices. This leads to a total edge count of 3j/2. But this edge count can be an integer if and
only if j is even. Hence all map counts must be zero when the number of vertices is odd. This
feature continues to be true for all regular maps of odd valence.

The counts in table 3 agree with the closed-form expressions given in equations (1.18) and
(1.21) of Bleher and Deano [BD13] for g =0 and g =1, as well as with the coefficients they
provide in equation (1.29) for g = 2. Independently, table 3 agrees with the formulas for g =0
and g =2 presented in [EW22] (equations (11-30) and (11-32) respectively)® and with the
counts shown in table 1 of [DY 17] for g = 0 through g =2, which are provided for up toj =12
vertices.

3 Unfortunately, a term was dropped in the expression of de; /dyo appearing in equation (11-31) of [EW22], leading
to incorrect counts being presented for g =1 just below that equation (and also below (2-9)). Restoring this omission
leads to counts consistent with the numbers shown in table 3, and in agreement with the closed-form expression of
[BD13].
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Table 3. Counts of unlabelled 3-valent g-maps with a fixed number of vertices, for
genera 0 through 2. Only counts for even numbers of vertices are provided since there
are no regular odd-valent g-maps with an odd number of vertices.

Vertices Genus (0 Genus 1 Genus 2

2 2/3 1/6 0

4 8/3 7/3 0

6 56/3 332/9 35/6

8 512/3 1864/3 338

10 9152/5 54416/5 66132/5

12 65536/3 1762048/9 1305280/3

14 5912192721 25136768/7 12963696

16 11534336/3 66841600 362264064

18 494474240/9 33984353024/27 29035470208/3

20 12213813248/15 358871662592/15 1250634104832/5

22 136779182080/11 5041100158976/11 6301063932672

24 584115552256/3 79519344492544/9 466648673681408/3
26 40486637895680/13 2226722215862272/13 3777286156007424
28 355142255771648/7 3336406411771904 90485142526623744
30 839740501295104  978867411892895744/15 2142890102656491520
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