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文章编号:  1007-4627(2020)03–0329–35

强相互作用系统的对称性及其破缺

刘玉鑫

(北京大学物理学院理论物理研究所，北京  100871)

摘要:  本文简要介绍对称性及其破缺的概念和基本的数学上所说的幺正对称性等的微观粒子实现，从而为利

用抽象的数学描述物理问题奠定基础。本文还简要介绍早期宇宙强相互作用物质演化过程的对称性及其破缺，

尤其是可见物质质量的产生 (比如DCSB)以及强相互作用等基本相互作用的规范对称性和破缺，为有意向探

讨早期宇宙强相互作用物质演化的青年学者和研究生提供必要的知识储备，并打开一扇窗口。同时，还简要

讨论原子核的对称性及其破缺，尤其是作为强相互作用多体系统的束缚态研究中的基本理论方法、(多粒子)
壳模型及相互作用玻色子近似模型 (IBM)、集体运动的描述及集体运动模式演化 (形状相变)的研究方法及进

展简况，提供一些在基本理论方法与前沿研究课题之间建立桥梁的实例。
关键词:  对称性及其破缺；强相互作用系统；夸克、胶子及强子；原子核；集体运动及形状相变
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1    引言

人们已经熟知，对称性即物理系统在 (某种)变换

(或者说，操作)下的不变性 (invariance)。由于变换可

以是连续变换 (例如连续地进行无穷多步无穷小角度的

转动)也可以是分离变换 (例如一步进行有限角度的转

动)，因此对称性既可以是连续的也可以是分立的。描

述对称性的性质、规律等的学说称为群论，于是群论可

以分为连续群和离散群 (包括点群 (或者说空间群)和置

换群)。类似于前述的相应于转动任意角度都保持不变

的状态称为高对称 (性)态，仅在一些特殊转动角度下

才保持不变的状态称为低对称态。由高对称态到低对称

态变化的现象称为对称性破缺，由低对称性态到高对称

性态变化的现象称为对称性恢复。如果描述系统动力学

性质的拉格朗日量 (拉氏量)在变换下保持不变、但系

统的真空态 (即基态)发生变化，则称这样的对称性破

缺为自发破缺 (spontaneous symmetry breaking)，其

中拉氏量的表述形式保持不变、但其中的相互作用强度

变化引起真空态变化的破缺称为动力学破缺。如果系统

的拉氏量在变换下发生变化，则称相应的对称性破缺为

明显破缺 (explicit symmetry breaking)。

H2O

我们还知道，一个不均匀物质系统中、可以由力学

手段分离的组分完全形同、物理和化学性质完全相同的

均匀状态称为该物质的相，例如，冰、水、水蒸气分别

是物质   的固相、液相、气相。并且，在确定条件

下，物质由一相转变为另一相的现象称为相变。与前述

对称性的概念比较知，每一个物相都对应具有一个 (甚

至多个)对称性的物质状态，相变自然可以由对称性的

破缺或恢复来描述。另一方面，强相互作用系统包括原

子核和由原子核组成的物质系统、强子及由各种强子形

成的强子物质系统、由形成强子的夸克和胶子组成的夸

克胶子物质。并且，现在认识到的宇宙物质的演化过程

是：由最早出现的零质量的夸克、胶子和轻子到有有限

裸质量 (严格来讲是流质量，从而区分出三代六味)的

夸克、胶子和轻子，到强子 (具有色自由度的夸克和胶

子被禁闭，从而强子化)和轻子，到原子核 (强子核合

成为原子核)和轻子，再到原子核与轻子中的电子复合

成原子，然后形成星系、再到我们现在的宇宙。顾名思

义，轻子即静质量较小的物质粒子，例如处于真空中的

电子的静质量仅是质子的静质量的约 1/1836，由此知，

现代宇宙的组分单元中的主要质量携带者是原子核，或

者说是强子。而强子是由夸克和胶子形成的束缚态，于

是在宇宙演化的各不同阶段携带质量的主要成分都是夸

克和胶子，进而宇宙强相互作用物质的演化过程可以归

结为夸克胶子物质的相变过程。由于描述夸克、胶子及

其间相互作用的动力学理论是量子色动力学(简称为QCD)，

因此上述相变常简称为QCD相变。并且，QCD相变就

是强相互作用系统的对称性破缺 (或恢复)。

上述简述表明，强相互作用系统的对称性及其破缺
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是揭示宇宙演化各阶段中质量的主要携带者的性质及其

演化过程的性质和规律的载体，从而是现代物理学研究

的核心内容。本文仅对强相互作用物质在早期宇宙物质

演化过程中的对称性及其破缺予以简要介绍，并简要介

绍原子核的对称性及其破缺的一些内容。

2    微观粒子系统的对称性及其破缺

为方便具体讨论强相互作用系统的对称性及其破缺，

我们先讨论典型李代数 (李群)的费米子实现和玻色子

实现，以及这些系统的子代数 (子群)结构，并说明微

观粒子系统的最大对称性及其可能的主要破缺方式 [1−2]。

2.1    典型李代数的矩阵实现形式

n = {x1, x2, · · · , xn}
X −→ X ′=UX

我们知道，对  维矢量X  ，如果

变换  保证

⟨X ′
∣∣X ′⟩ = ⟨UX

∣∣UX⟩ = ⟨X
∣∣U †UX⟩ = ⟨X

∣∣X⟩ ,

Un×n n

U(n)
n∑

i=1

x∗
ixi U

U(n)
detU=1 U(n) SU(n)

n∑
i=1

x2
i On×n

detOn×n=1

O(n) SO(n) 2n X=

{x1, x2, · · · , xn, xn+1, xn+2, · · · , x2n} Y ={y1, y2, · · · ,
yn, yn+1, yn+2, · · · , y2n} X −→ X ′=MX

Y −→ Y ′=MY

则称所有这样的幺正矩阵   的集合构成的群为   维

幺正群 (  群)，即保持  不变的变换矩阵  的

集合形成的群为  群。其中保持变换矩阵的行列式

 的  群称为  群。并且，所有保持复二

次型   不变的变换矩阵   的集合形成的群称为

正交群。其中保持变换矩阵的行列式   的

 群 称 为   群 。 再 者 ， 对   维 矢 量  

 和  

 ， 在 变 换   和

 下，如果

n∑
i=1

(xiyn+i − yixn+i) =常数 ,

M2n×2n

SP(2n)
则称变换矩阵  的集合形成的群为斜交群，也称

为辛群 (symplectic group)，记为  .

(α1, α2, α3)

(β1, β2, β3)

(γ1, γ2, γ3)

γ = ϕ(α, β)

对于连续多步变换，人们常 (至少试图)采用一步

变换等价地表述连续多步变换达到的效果，例如，三维

空间中的一点 I经一步欧拉角为  的转动后紧

接一步欧拉角为  的转动变换到F，人们可以

把上述由 I到 F的两步变换表述为欧拉角为  

的一步转动所致，这种等效表述中欧拉角 (常一般地称

之为群参数)之间的函数关系  称为变换之间

的合成函数。合成函数连续可微的连续群称为李群。前

述的幺正群、正交群和斜交群都是李群。

系统的研究表明，李群的变换性质由无穷小生成元

表征，无穷小生成元则由合成函数的微商等决定。并且

一个李群的无穷小生成元的全体构成相应于该李群的李

n

n

代数。于是，抽象地讲，李群对应于  维空间中的微分

流形，而李代数对应上述流形的  维切空间—一个满

足所有初等几何原理的线性空间。

m m′

1 0 N ×N E′
mm

上述介绍表明，作为一个线性空间的李代数，既是

一组矢量，也是相应于反映原始的变换意义的一组算符。

从而，李代数既可以由矢量形式实现，也可以由矩阵形

式实现。系统研究表明，记第  行第  列的矩阵元为

 、其它矩阵元都为   的   矩阵为   ，显然这

样的矩阵之间有对易关系

[E′
mm, E

′
nn] = E′

mnδm′n − E′
nmδ

′
mn。 (1)

su(N) AN−1

N

Emm′

(N)

这些对易关系式显然与  李代数 (亦称为  李代

数)的对易关系 (李群理论中常称之为李乘积)完全相同。

这表明，这样的矩阵的集合构成 su(  )李代数。物理

上，为保证厄密性，常考虑其线性组合。根据李代数与

李群的关系，这些矩阵  (及其合适的线性组合)即

为SU  群的无穷小生成元。

Ξij=Eij − Eji引入反对称矩阵  ，其间的李乘积规

则为

[Ξij Ξkl] = δilΞjk + δjkΞil − δikΞjl − δjlΞik , (2)

Ξij N

Ξij (N)

(N) (N)

{Ξij} {Emm′}

这表明，这样的  的集合构成 so(  )李代数。根据李

代数与李群的关系，  为 SO  群的无穷小生成元。

显然，SO  群为 SU  群的一个子群，因为集合

  为  的一个子集。

Gij=Gji N

ei ēi=Gei

引入对称度规张量   ，记任一   维矢量的

基矢为  ，其对偶基为  ，定义

Sij = ei ēj + ej ēi , Hij = ēiej = − ējei ,

则有

[Sij Skl] = HjkSil +HjlSik +HikSjl +HilSjk 。 (3)

Sij 2N

Sij (2N)

(2N) (2N) {Sij}
{Emm′}

这表明，这样的   的集合构成 sp(  )李代数，并且

 为相应的 SP  群的无穷小生成元。显然，SP

 群为 SU  群的一个子群，因为集合    为

 的一个子集。

2.2    微观粒子系统的最大对称性

s

s

l⃗

|njm⟩

n

现在我们认识的微观粒子可以分为费米子和玻色子

两类。费米子为自旋量子数  为半奇数、统计规律满足

费米–狄拉克分布律的微观粒子，玻色子为自旋量子数

 为整数、统计规律满足玻色–爱因斯坦分布律的微观

粒子。由于在空间中运动的微观粒子还有轨道角动量  ，

因此微观粒子的状态常用  标记 (因为考虑自旋–轨

道耦合作用情况下，轨道角动量和自旋都不再是守恒量，

但总角动量仍为守恒量)，其中  为由粒子所受的动力
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j m

z

m=−j,−j + 1, · · · , j − 1, j

{l1, l2, l3}
j l⃗ s⃗

j⃗

l s

学作用决定的主量子数，  、  分别为总角动量量子数、

总角动量在   方向上的投影量子数 (具体取值为

 )。三维空间的转动在数学

上表述为以角动量的三个分量对应的角动量算符为无穷

小生成元的 SO(3)群表征的变换，转动不变即具有

SO(3)对称性。数学研究表明，SO(3)群 (准确到同构

意义上)唯一决定一个 so(3)李代数，so(3)李代数的元

素即SO(3)群的无穷小生成元  . 我们知道，前

述的总角动量量子数   为对应于轨道角动量   与自旋  

耦合而成的总角动量  的量子数，其取值由轨道角动量

量子数  和自旋量子数  决定，并可具体表述为

j =|l − s|, |l − s|+ 1, · · · , l + s− 1, l + s,
m =ml +ms,

SO(3)⊗ SO(3) ⊃ SO(3)

l

j j

|lm⟩
|jm⟩

b†lm blm

a†jm bjm

(数学上，上一式称为直积群按   

约化 (破缺)中的群表示的约化分支律，下一式称为约

化的权守恒条件)。由于  为整数，由上式则知，对于玻

色子，   为整数；对于费米子，   为半奇数。鉴于此，

对于玻色子，人们常用  标记其状态；对于费米子，

人们常用   标记其状态。进而，玻色子的产生、湮

灭算符常分别标记为   、   ，费米子的产生、湮灭

算符常分别标记为  、  。玻色子的产生、湮灭算

符之间有对易关系

[blm, bl′m′ ] = [b†lm, b
†
l′m′ ] = 0

[blm, b
†
l′m′ ] = δll′δmm′。

费米子的产生、湮灭算符之间有反对易关系

{ajm, aj′m′} = {a†jm, a†j′m′} = 0

{ajm, a†j′m′} = δll′δmm′。

j z m

a†m (= a†j m) am (= aj m)

a†mam′

m, m′=−j,−j + 1, · · · , j − 1, j m ̸= m′

对总角动量都为  、  方向投影为  的费密子，将

其产生、湮灭算符简写为   ，   ，

再记产生算符与湮灭算符的组合 (乘积)为   ，其

中   ，   ，直接计

算得 [
a†pap′ , a

†
qaq′

]
= δp′qa

†
paq′ − δpq′a

†
qap′。

su(N) (N=

2j + 1=偶数)

2C2
2j+1= 2 (2j+1)!

((2j+1)−2)!2!
=2j(2j + 1)

2n 2n=2j + 1=偶数

2j + 1 A2j

2j=奇数

a†mam′ 2j + 1

很显然，该对易关系与式 (1)所示的  

 李代数的李乘积规则完全相同。因为上

述组合的数目为     ，

与 su(  ) (其中   )李代数的非零根的

数目相同，所以 su(  )李代数 (亦即   李代数，

 )可以由 (全同)费米子来实现，其元素可以由

(全同)费米子的产生算符与湮灭算符的组合表述为

 。相应地，SU(  )群可以由 (全同)费米子来

a†mam′

实现，其无穷小生成元可以由 (全同)费米子的产生算

符与湮灭算符的组合表述为  。

l z

m 2l + 1 {−l −l + 1 · · ·
l − 1 l} 2l + 1

b†m (= b†l m) bm (= bl m)

b†mbm′

m, m′=−l,−l + 1, · · · , l − 1, l m ̸= m′

将全同玻色子系统中角动量为  (非负整数)、其在 

方向上投影为  (取  个数值：  、  、  、

 、  ，即自由度空间为  维)的玻色子的产生、

湮灭算符分别简记为   、   ，再记

产生算符与湮灭算符之间的组合 (乘积)为  ，其中

 ，  ，直接计算得[
b†pbp′ , b

†
qbq′
]
= δp′qb

†
pbq′ − δpq′b

†
qbp′。

N

2C2
21+1=2 (2l+1)!

((2l+1)−2)!2!
=2l(2l + 1) N

N=2l + 1=奇数

N AN−1 N=21 + 1=奇数

b†mbm′

N N=2l + 1=奇数

b†mbm′

很显然，该对易关系也与式 (1)所示的 su(  )李代

数的李乘积规则完全相同。因为上述组合的数目为

 ， 与 su(  )  (其 中

 )李代数的非零根的数目相同，所以

su(  )李代数 (  李代数)，   ，可

以由 (全同)玻色子来实现，其元素可以由 (全同)玻色

子的产生算符与湮灭算符的组合表述为  。相应的，

SU(  )(  )群可以由 (全同)玻色子来实

现，其无穷小生成元可以由 (全同)玻色子的产生算符

与湮灭算符的组合表述为  。

n

n费米子=2j + 1=偶数 n玻色子=2j + 1=奇数

上述讨论表明，全同玻色子系统和全同费米子系统

都具有幺正对称性。由一般线性群到特殊线性群、再到

正交群等的关系可知，幺正对称性为全同粒子系统的最

大对称性，其维数  即其中单粒子的角动量的自由度数，

亦即  ，  。

j=7/2

j=1/2

j=5/2

l=0 l = 3

由于不同角动量的玻色子/费米子的产生、湮灭算

符总是对易的，因此上述的全同玻色子系统的对称性和

全同费米子系统的对称性都可以推广到多种角动量的玻

色子/费米子形成的非全同多粒子系统，例如，SU(8)

对称性可以是对应总角动量   的全同费米子系统

的对称性，也可以是对应总角动量分别为   、

 的非全同费米子系统的对称性，还可以是对应

角动量  的 s玻色子与角动量  的 f玻色子形成的

非全同玻色子系统的对称性。

2.3    玻色子系统的正规子代数结构

AN N + 1 N=2l=偶数

l z m

b†m (= b†l m)

bm (= bl m) b†mbm′ − b†
m′bm=Ξmm′

m, m′=−l,−l + 1, · · · , l − 1, l m ̸= m′

与   李代数 (su(  )李代数 )  ，

的全同玻色子实现相同，记角动量为  、其  -分量为 

的全同玻色子的产生算符、湮灭算符分别为  、

 ， 并 记   ， 其 中

 ，  ，直接计算得[
Ξpp′ , Ξqq′

]
= δpq′Ξp′q + δp′qΞpq′ − δpqΞp′q′ − δp′q′Ξpq。

Ξmm′这表明，   的李乘积规则与式 (2)所示的 so

  第 3 期 刘玉鑫：强相互作用系统的对称性及其破缺 · 331 ·  



2l + 1

2l + 1 Bl l

(  )李代数的李乘积规则完全相同。所以李代数 so

(  )(  李代数)可以由角动量为   的全同玻色子来

实现，其元素可以由 (全同)玻色子的产生算符与湮灭

算符的组合表述为

Ξmm′ = b†mbm′ − b†
m′bm。

2l + 1相应地，SO(  )群可以由 (全同)玻色子来实

现，其无穷小生成元可以由 (全同)玻色子的产生算符

与湮灭算符的组合表述为

Ξmm′ = b†mbm′ − b†
m′bm。

l

SO(2l + 1) 2l + 1=奇数

U(
∑

i(2li + 1)) O(
∑

i(2li + 1))

n=
∑

i(2li + 1)

l = 0 l = 2

U(6) SO(6)
U(
∑

i(2li + 1))

O(
∑

i(2li + 1))

这表明，单玻色子角动量为  的全同玻色子系统具

有正规子代数   ，其中   。显然，

对于由多种非全同玻色子形成的多粒子体系，其最大对

称性   有正规子代数   。并

且，其维数   可以是奇数也可以是偶数，

例如，由角动量   的 s玻色子和角动量   的 d玻

色子系统具有最大对称性  ，并有正规子代数  。

由此知，玻色子系统的  对称性可能破缺

到   对称性，甚至更低的对称性 (例如表

征转动不变的SO(3)对称性)。

2.4    费米子系统的正规子代数

AN N + 1 N=2j=奇数

j z

m a†m

(=a†j m) am (=aj m) a†mam′+a†
m′am=

Ξmm′ m, m′=−j,−j + 1, · · · , j − 1, j m ̸= m′

与  李代数 (su(  )李代数)，  ，

的全同费米子实现相同，记总角动量为  、其  -分量为

 的全同费米子的产生算符、湮灭算符分别为  

 、   ，并进一步记  

 ，其中  ，  ，

直接计算得[
Ξpp′ , Ξqq′

]
= Hp′qΞpq′+Hp′q′Ξpq+HpqΞp′q′+Hpq′Ξp′q。

Ξmm′

2j+1 2j + 1

C(2j+1)/2 j =

j

这表明，   的李乘积规则与式 (3)所示的 sp

(  )李代数的李乘积规则完全相同。所以 sp(  )

李代数 (  李代数，  半奇数)可以由总角动量

为  的全同费米子来实现，其元素可以由全同费米子的

产生算符与湮灭算符的组合表述为

Ξmm′ = a†mam′ + a†
m′am。

2j + 1 j=相应地，SP(  )(  半奇数)群可以由全同费

米子来实现，其无穷小生成元可以由全同费米子的产生

算符与湮灭算符的组合表述为

Ξmm′ = a†mam′ + a†
m′am。

j

sp(2j + 1) 2j + 1=偶数

这表明，单费米子总角动量为  的全同费米子系统

具有正规子代数  ，其中  . 显然，

对于由多种非全同费米子形成的多粒子体系，其最大对

U
[∑

i(2ji + 1)
]

sp
[∑

i(2ji + 1)
]

n=
∑

i(2ji + 1)

j=1/2, 3/2, 5/2

U(12) sp(12)
U
[∑

i(2ji + 1)
]

SP
[∑

i(2ji+

1)
]

称性  有正规子代数  。并

且，其维数  只能是偶数，例如，由角动

量  的三类费米子形成的系统具有最大

对称性  ，并有正规子代数  。由此知，费米

子系统的  对称性可能破缺到 

 对称性，甚至更低的对称性 (例如表征转动不变的

SO(3)对称性)。

3    早期宇宙物质演化中强相互作用系统的

对称性及其破缺

按照现在的宇宙学说，我们的宇宙起源于一次大爆

炸。在大爆炸之后的极短时间内，引力可能是量子化的，

宇宙处于四种基本相互作用超大统一的状态。演化约

10–44 s(1019 GeV)，引力与其它三种相互作用分离开来，

但强相互作用、弱相互作用和电磁相互作用仍处于大统

一状态。再至约 10–35 s(1015 GeV)，弱相互作用与电磁

相互作用仍处于统一的状态，但强相互作用分离开来，

从而出现夸克、反夸克及电子和中微子等轻子。在从此

至约 10–10 s(102 GeV)的时间内，参与强相互作用的夸

克及反夸克各自没有差别，具有高度的对称性 (常称之

为具有味对称性，实际尚未出现不同味道 )。到约

10–10 s，电磁作用与弱相互作用分离，即发生电弱对称

性破缺，夸克分为三代六味。所谓六味即夸克分为具有

六种不同流质量 (近似来讲，即裸质量)的夸克 (反夸克)，

它们分别称为上夸克、下夸克、奇异夸克、粲夸克、底

夸克、顶夸克，常简记为 u、d、s、c、b、t夸克，这

些夸克还有被称为红、绿、蓝的三种颜色 (具体讨论见

3.2.2节)。到约 10–5 s (10–1 GeV)，色自由度禁闭，夸

克 (反夸克)及胶子强子化为强子。再到 102 s，强子开

始合成为原子核。再经复合阶段和星系形成阶段，形成

我们现在的宇宙。按照现在对于物质结构的认识，宏观

的物质由分子组成，分子由原子组成，原子由原子核和

电子组成，原子核由强子组成，强子由夸克 (和胶子)

组成，夸克又分为味对称性破缺和具有味对称性两个阶

段。由此知，正如引言中所述，我们现在的宇宙中携带

质量的主要成分是由处于不同状态的夸克胶子物质演化

而来，或者说，强相互作用物质的演化即夸克胶子物质

的演化。由于描述强相互作用的基本理论是QCD，因

此前述的强相互作用物质的演化过程常被称为QCD相

变过程。由于一个物质相对应于一种确定的对称性，相

变过程即对称性破缺或恢复过程。这里仅从强相互作用

系统的对称性及其破缺角度简要介绍早期宇宙物质中强

互作用物质的演化，尤其是可见物质质量的起源。
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3.1    早期宇宙物质演化中与强相互作用物质相关的核

心内容与手征对称性及其动力学破缺

3.4

10

939

1

如前所述，早期宇宙中强相互作用物质的演化过程

可以概括为：由零质量 (味对称)的夸克到非零质量 (味

对称性破缺)的夸克，再到囚禁于强子中的夸克 (少体

的夸克集团)，再到束缚在一起的多个夸克集团中的夸

克。从引言中已经提到的质量问题考虑，原初的夸克是

零质量的具有味对称性的夸克，经电弱破缺作用后夸克

的味对称性破缺，从而夸克获得流质量，对于组成核子

等强子的轻味夸克—u夸克和 d夸克，其流质量平均仅

约   MeV，由三个这样的夸克形成的核子 (质子和中

子)的质量仅约    MeV。但我们已经熟知，核子的质

量为约   MeV。由此知，由与电弱破缺相应的希格斯

机制产生的核子的质量仅占核子实际质量的约 1%。

99%的核子质量的来源自然成为关乎可见物质质量起

源 (或者说费米子质量起源)的物理学基本问题，甚至

可以说自然科学中的重大基本问题之一。相应地，具有

色自由的夸克和胶子由所处空间范围不受限制转变到囚

禁于半径不到    fm的很小的空间范围内，并且色自由

度不再可见，亦即出现色禁闭。显然，可见质量起源问

题和色禁闭机制问题是直接揭示可见物质及其质量起源

的基本问题。也基于此，在 20年前的世纪之交，人们

将这两个问题合并作为“世纪大奖”的七个基本问题之

一 [3]，并被《科学》杂志转引为其 125个重要基本科学

问题之一 [4]。

SUc(3) c

在关于强相互作用的基本理论——QCD下，其基

本自由度是夸克和胶子，由上一节的讨论知，对于夸克

的三维颜色自由度，其规范对称群为  ，其中  即

颜色的简称。拉氏量为

LQCD =

Nf∑
f=1

q̄f (x)(i D̸ −m0
f )qf (x)−

1

4
Ga

µν(x)G
µν
a (x),

qf (x) Nf m0
f f

Dµ = ∂µ − ig λa

2
Aa

µ g

λa SUc(3)

Ga
µν(x)

其中   为夸克场，   为夸克味道数，   为   味道

夸克的流质量。  为协变微分，  为耦

合常数，  为  的生成元 (即常说的Gell-Mann矩

阵)。  为胶子场的场强张量，定义为

Ga
µν(x) = ∂µA

a
ν(x)− ∂νA

a
µ(x) + gfabcAb

µ(x)A
c
ν(x) ,

Aa
µ(x) fabc SUc(3)

1/2

σk(k=1, 2, 3)

γ

其中   表示胶子场，   为   群的结构常数。

由上述两式可以看到，胶子之间具有自相互作用 (这是

QCD与QED的最重要区别)。为描述四维时空的性质，

人们推广描述量子数为   的自旋的泡利矩阵

 (数学上，它们即 SU(2)群的生成元)、定

义狄拉克矩阵 (  矩阵)：

γk =

(
0 −iσk

iσk 0

)
, γ4 =

(
I2×2 0
0 −I2×2

)
。

γ†
µ=γµ {γµ, γν}=2δµν (µ, ν=1, 2, 3, 4)显然有  ，  ，  。

再定义，

γ5 = γ1γ2γ3γ4 =

(
0 −I2×2

−I2×2 0

)
,

γ†
5=γ5 µ=1, 2, 3, 4 {γ5, γµ}=0

γ5

显然有   ，并且对   ，   。人

们常称  为螺旋度算符。

引入算符

PL =
1

2
(1 + γ5) , PR =

1

2
(1− γ5) , (4)

PL PR根据其直观图像，人们分别称  、  为左、右手转动

投影算符。由之对夸克场作用，则将夸克分为左手和右

手转动两类，即有

PL,Rq =
1

2
(1± γ5)q = qL,R。 (5)

相应地，

qL,R = (γ4q
L,R)† = q

1

2
(1∓ γ5)。

于是有

q̄f (x) D̸qf (x) = q̄Lf (x) D̸q
L
f (x) + q̄Rf (x) D̸q

R
f (x)。 (6)

这表明，左手夸克与右手夸克不会通过胶子直接发生相

互作用。

e−iγ5Θ在手征转动变换  下，

qLf → e−iΘLqLf , qRf → e−iΘRqRf , (7)

从而式 (6)的形式保持不变，即具有手征转动不变性。

对于纯规范场部分，由于其不含夸克，在手征变换下自

然保持不变。那么，零质量的费米子系统具有手征 (转

动)对称性。

但是，由手征转动变换算符知，费米子的质量项

m0
f q̄f (x)qf (x) = m0

f

[
q̄Rf (x)q

L
f (x) + q̄Lf (x)q

R
f (x)

]
, (8)

会破坏手征对称性。

m0
f =0

m0
f ̸= 0

总之，在  的情况下，QCD的拉氏量具有手

征对称性；当  时，手征对称性发生破缺。这也

说明，手征对称性破缺使零质量的费米子转变为有质量

的费米子。更进一步，手征对称性破缺是费米子获得质

量的源泉。然而，如本小节开头所言，仅由具有较小固

有质量 (流质量)的三个夸克根本不可能形成实验观测

到的核子的质量，因为相应于电弱破缺的希格斯机制引
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起的夸克的流质量确实很小。由此知，可见物质质量的

起源应该不仅仅是通常所说的电弱破缺引起的味对称性

破缺，而应该还有其它因素。

对手征对称性破缺的深入研究表明，其破缺方式有

两种，一种称为手征对称性明显破缺 (Explicit Chiral

Symmetry Breaking，常简记为ECSB)，另一种是手征

对 称 性 自 发 破 缺 (Spontaneous  Chiral  Symmetry

Breaking，常简记为 SCSB)。手征对称性明显破缺

(ECSB)即相应于上述拉氏量的固有质量的破缺。上述

固有质量 (实际为流质量，或重整化标度不变的质量)

起源于电弱层次上的真空破缺，从而有人认为传统意义

上的电弱层次上的真空自发破缺，相应于狭义的Higgs

机制，不可能产生实验上观测到的可见物质的质量。手

征对称性自发破缺指系统的拉格朗日量的形式保持不变、

但系统的真空发生破缺。考察系统的拉氏量可知，拉氏

量的形式保持不变情况下，其中的相应于耦合常数的相

互作用强度可以发生变化。事实上，QCD的耦合常数

确实不是不变的，而是动量依赖的，因此人们称之为跑

动耦合常数，从而有微扰QCD与非微扰QCD之分 (大

动量情况下，相互作用很弱，即有渐近自由 [5]，从而可

以采用微扰方法求解QCD，即有微扰QCD。然而，在

小动量情况下，相互作用强度很强，跑动耦合常数接

近 1、甚至大于 1，无法采用微扰方法进行求解，从而

必须直接在非微扰情况下进行求解。由此知，相应于强

子结构、QCD相变等的问题都是非微扰QCD的典型问

题。这些正是非微扰QCD的困难和重要之所在)。这种

由动力学相互作用 (可能是上述的仅相互作用强度变化，

也可能相互作用的形式就发生变化)导致的手征对称性

破缺称为手征对称性动力学破缺 (Dynamical  Chiral

Symmetry  Breaking，常简记为 DCSB)。如果 DC-

SB仅仅由作用强度变化引起，而相互作用的形式保持

不变，则它实际是 (广义的)SCSB。

⟨q̄q⟩

π

π

为具体表征QCD的真空结构及其破缺，人们引入

手征夸克凝聚  等概念，并以之作为DCSB的序参量。

相应于表征手征对称性及其破缺的Goldstone定理，人

们采用   -介子的质量和弱衰变常数等作为表征 DC-

SB的观测量，更直观地，人们采用夸克的动力学质量

在零动量极限的值 (简称之为组分夸克质量)或欧几里

得质量 (由在壳条件决定的质量 )表征 DCSB。利用

QCD的Dyson-Schwinger(DS)方程方法 [6](目前建立的

几乎唯一的既具有手征对称性破缺的性质又具有禁闭性

质的连续场论方法 [7])计算得到的表征手征对称性破缺

的一些特征量 (夸克质量、夸克凝聚、  介子质量等)随

相互作用强度变化的行为如图1所示。 

0.9

0.6

0.3

0
0.9

0.6

0.3

0

MT+Bare
mπ

M (0)
<qq>1/3

fπ

MT+1BC

IC+Bare

1C+1BC

O
bs

er
va

bl
es

/G
eV

3

(a)

0 630
D/ω2

0.9

0.6

0.3

0
0.9

0.6

0.3

0

MT+Baremπ M (0)
<qq>1/3fπ

MT+1BC

IC+Bare

1C+1BC

O
bs

er
va

bl
es

/G
eV

3

(b)

0 630
D/ω2

π

m0
f =0

m0
f =5

图 1    (在线彩图)组分夸克质量、夸克凝聚、  介子质

量和衰变常数随夸克-胶子相互作用的有效强度变化

的行为 (取自文献 [8])，其中 (a)为对应手征极限

(  )情况的结果， (b)为对应超越手征极限

(   MeV)情况的结果
 

 

π

π

π

π

由图 1可知，在手征极限下，如果相互作用强度不

够大，组分夸克质量、手征夸克凝聚和  介子衰变常数

都保持手征对称情况下的零值；在相互作用强度大于一

个临界值的情况下，组分夸克质量、手征夸克凝聚和 

介子衰变常数才具有相应于手征对称性破缺的非零值，

 介子质量变为相应于 (Goldstone定理决定的)手征对

称性破缺的零值，并且这些非零值的绝对值随相互作用

强度增大而增大，而  介子的质量保持零值不变。

这些结果表明，相互作用是手征对称性破缺的另一

个源泉，也就是一定存在DCSB。所以，DCSB是夸克

组分质量及可见物质质量的最主要来源的物理机制。并

且，在超越手征极限情况下，也就是具有硬破缺的情况

下，DCSB仍然是可见物质的质量的最主要来源。比较

具有硬破缺与没有硬破缺情况可知，质量产生的过程和

机制基本相同，只是具有硬破缺情况下，在临界作用强

度附近各特征量的绝对值渐变增大，而在无硬破缺情况
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下，其演化行为的变化率有突变。更精细的研究表明，

无硬破缺情况下的质量产生过程 (即DCSB)是二级相变，

有硬破缺情况下的质量产生过程是连续过渡 [9−10]。

u d具体到现实的包含  、  两味夸克的系统，手征极

限下的手征对称性可以改写为

SUL(2)⊗ SUR(2) = SUV(2)⊗ SUA(2)。

JP =0−

π JP =0+ σ

JP =1− ρ

JP =1+ a1

这表明，由这样的夸克 (反夸克)组成的每一个 (零质

量)强子都有一个自旋和重子数等都分别相同但宇称相

反的 (零质量)强子与之对应。但实验测得的强子谱中

并没有这样的宇称伙伴态 (例如，   的基态赝标

量介子  的质量为约 138 MeV，而  的标量介子 

的质量约为 (400~550) MeV；  的基态矢量介子 

的质量为约 775 MeV，而  的轴矢量介子  的质

量约为 1 230 MeV)。由此可知，上述对称性一定发生了

破缺。由于重子数守恒 (或者说，同位旋转动对称性仍

然保持)，则手征对称性破缺可以表述为

SUL(2)⊗ SUR(2) ⊃ SUV(2)⊗ UA(1) ,

从而手征对称变换使得每一个强子变换为一个宇称相反

的强子和一个零质量的Goldstone玻色子。在超越手征

极限情况下，上述零质量的 Goldstone玻色子变为赝

Goldstone玻色子。并且可以得到能够描述强子性质等

的以介子为自由度的拉氏量 (即有手征展开理论)。

u d s
SUL(3)⊗ SUR(3)

对于   、   、   三味夸克系统，在手征极限下，系

统具有手征对称性  ，并有破缺方式

SUL(3)⊗ SUR(3) ⊃ SUV(3)⊗ UA(1)。

π

m0
u m0

d

m0
s ⟨q̄q⟩

在超越手征极限情况下，当然应该考虑流质量引起

的明显破缺的贡献，由之也可以得到能够描述强子性质

等的以介子为自由度的拉格朗日量，并相当好地描述强

子等的性质，例如，赝标量的赝 Goldstone玻色子–  

等介子的质量、轻衰变常数与夸克的流质量 (  、  、

 )及由 DCSB引起的手征夸克凝聚 (  )之间有关

系 (常被称为Gell-Mann–Oakes–Renner关系)[11]：

m2
πf

2
π =−

(
m0

u +m0
d

)⟨
q̄q
⟩
0
,

m2
K+f

2
π =−

(
m0

u +m0
s

)⟨
q̄q
⟩
0
,

m2
K0f

2
π =−

(
m0

d +m0
s

)⟨
q̄q
⟩
0
,

m2
η0
f2
π =− 1

3

(
m0

u +m0
d + 4m0

s

)⟨
q̄q
⟩
0
,

m2
πηf

2
π =− 1√

3

(
m0

u −m0
d

)⟨
q̄q
⟩
0
,

mπη π0 η0其中  为  与  的混合态的质量。

具体计算表明，自发破缺赋予宇称相反的强子伙伴

态的质量差异不会太大，然而实验上测得的质量差异却

ρ

a1

很大，例如，矢量介子  的质量为约 775 MeV，轴矢量

介子  的质量为约 1 230，450 MeV的质量差异一定不

仅源自狭义的SCSB，而且DCSB发挥了更重要的作用，

精细的计算 [12]表明，只有在同时考虑DCSB对夸克传

播子和对夸克–胶子相互作用顶角的贡献的情况下，这

一质量劈裂才能得以较好描述。关于考虑了DCSB效

应的夸克–胶子相互作用顶角的表述，目前建立的有

Chang–Liu–Roberts-Qin模型 [13]。由基于 DCSB理论

在描述强子质量谱和强子结构等方面的成功 (例如文

献 [6, 12, 14−16]等)知道，DCSB确实是可见物质质量

的最主要源泉。

总之，手征对称性及DCSB是强相互作用的基本

特征 (性质)，是利用QCD研究可见物质质量起源和强

子质量谱及强子结构的最重要的因素。目前，手征对称

性及其破缺的概念和研究方法还已被应用于宇宙学、凝

聚态物理等学科的研究中，例如：电弱对称性破缺、

(反)铁磁相变、超流现象、光的偏振、等等。限于篇幅

和本文的范畴，这里不展开介绍。

3.2    基本相互作用的规范对称性

前已述及，在涉及原子核、强子、轻子以及夸克、

胶子的现象和过程中，起主要作用的有电磁作用、强作

用和弱作用。强相互作用物质的演化自然涉及强作用、

弱作用和电磁作用这三种基本相互作用。

3.2.1    规范与规范对称性的基本概念

E B

φ A

我们知道，电磁场的性质和规律既可以由电场强度

 、磁感应强度   及麦克斯韦方程组描述，也可以由

电势  和磁矢势  描述，其间的关系为

E = −∇φ− ∂A

∂t
, B = ∇×A。

并且麦克斯韦方程组可以改写为

∇2A− 1

c2
∂2A

∂t2
= −µ0J ,

∇2φ− 1

c2
∂2φ

∂t2
= − ρ

ε0
。 (9)

A φ考虑对矢量势  和标量势  各做变换，

A −→ A′ = A+∇Θ , φ −→ φ′ = φ− ∂Θ

∂t
, (10)

Θ

Θ

其中  为任意的关于时空坐标的函数，直接计算可知，

无论对该变换中的函数   取什么形式，变换之后的电

场强度和磁感应强度都与变换之前的相同。

Θ

{A, φ}
这表明，给定一个函数   ，即对式 (10)所示的变

换给定一个条件，就确定一组电磁势   ，进而可
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E B以确定电场强度  和磁感应强度  。这样的每一个确

定电磁势的条件，称为一种规范 (gauge)，式 (10)所示

的变换则称为规范变换 (gauge transformation)，可直

接观测的电场强度和磁感应强度不依赖于所取规范的基

本性质称为规范不变性 (gauge invariance)，或规范对

称性 (gauge symmetry)。经典电磁理论是第一个规范

场论 (gauge field theory)。

根据上述规范不变性，对电磁场问题实际求解时常

采用库仑规范

∇ ·A = 0,

∇2Θ = 0(相应地，应有  )，或洛仑兹规范

∇ ·A+
1

c2
∂φ

∂t
= 0,

c2= 1
ε0µ0

(其中  )，以降低实际计算的复杂度。

我们还知道，记一维时间和三维空间中的矢量为四

维空间矢量

xµ = (X, ict) ,

gµν =δµν x′
µ=Uµνxν

(µ, ν=1, 2, 3, 4)

空间的度规为   ，对之可作变换  

 。在古典的时空观中，时间与三维空间

各自独立，互不影响，变换时各自按伽利略变换而变换。

然而，在考虑高速运动情况下，时间和空间不是相

互独立的，并且物理规律具有协变性。时空变换的协变

性由洛仑兹协变性表述为

x′
1
2 + x′

2
2 + x′

3
2 − c2t′2 = x1

2 + x2
2 + x3

2 − c2t2 =常量 ,

v x也就是要求变换为幺正保模变换。对速度为   的沿   -

轴 (即1轴)方向的惯性运动，洛仑兹变换矩阵为

U =


γ 0 0 iβγ
0 1 0 0

0 0 1 0

−iβγ 0 0 γ

 ,

β=
v

c
γ= 1√

1−β2
c其中  ，  ，  为真空中的光速。

类似地，动量和能量可以构成四动量

pµ = (P , i
E

c
) ,

pµpµ=P 2 − E2

c2
=常量 ,能量和动量守恒表述为  即

m2c4 = P 2c2 +m2
0c

4 , m = γm0。

电磁场中的电流密度和电荷密度则可以构成四维电

流密度矢量

Jµ = (J , icρ) ,

∇ · J + ∂ρ

∂t
=0电荷守恒定律  则表述为

∂µJµ =
∂Jµ

∂xµ

= 0。

A φ记矢量势  和标量势  构成电磁场四矢势为

Aµ =
(
A , i

φ

c

)
,

式 (9)所述的确定电磁场的矢量势和标量势的方程可以

(合并)表述为

∂µ
2Aν = −µ0Jν ,

∂µ
2= ∂

∂xµ

∂
∂xµ

=∇2 − 1

c2
∂2

∂t2
。其中 

更进一步，定义反对称四维张量

Fµν = ∂µAν − ∂νAµ =
∂Aν

∂xµ

−
∂Aµ

∂xν

, (11)

则麦克斯韦方程组中关于电荷的高斯定理和推广的安培

环路定理可以合并表述为

∂νFµν = µ0Jµ , (12)

另两个方程 (磁场的高斯定理和法拉第电磁感应定律)

可以合并表述为

∂λFµν + ∂µFνλ + ∂νFλµ = 0。 (13)

电磁作用中的电荷守恒则表述为

∂µJµ = 0 ,

{ψi}
{qi}

其中的电流密度由系统中的费米子场   及标记其相

应的电荷算符的本征值的参数  表述为

Jµ =
∑
i

qiψ̄iγµψi ,

γµ其中  为费米子与电磁场 (规范场)的相互作用顶角的

表述形式。该守恒律对应U(1) 规范不变性。

根据群的指数实现形式，该U(1)变换群可表述为

U = eiqΘ,

于是，费米子场的变换为

ψi −→ ψ′
i = eiqiΘ(x)ψi(x)。

并且，由四维空间坐标的定义和电磁场四矢量的定义知，

式 (10)所示的电磁场的矢量势和标量势的规范变换，

即规范场的规范变换，可以由四维形式表述为

Aµ(x) −→ A′
µ(x) = Aµ(x) + ∂µΘ。 (14)

FµνF
µν

显然，在此规范变换下，式 (11)所示的电磁场张

量保持不变，从而电磁作用系统的规范场部分 

具有规范不变性。
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再考察费米子场部分

LF =
∑
k

ψ̄k

(
iγµ∂µ −m

)
ψk ,

由于

∂µψ
′
k = eiqkΘ

(
∂µ + iqk∂µΘ

)
ψk ,(

iqk∂µΘ
)
ψk

∂µ ∂µ − iqAµ(x)

∂µΘ

∂µ − iqAµ(x)

Dµ

即多出   项，为保证规范不变，考虑前述的

规范场的变换形式，如果将微分  修改为  ，

则前述的多出项恰好可以与规范场的变换中的   项

抵消。这样的修改之后的微分算符  称为协

变微分算符，常记为   . 因此电磁场中规范不变的费

米子场部分的拉氏量为

LF =
∑
k

ψ̄k

(
iγµDµ −m

)
ψk ,

Dµ = ∂µ − iqAµ(x)其中  为协变微分算符。

总之，电磁作用系统具有U(1)规范对称性，其拉

氏量为

LEM =
∑
k

ψ̄k

(
iγµDµ −m

)
ψk −

1

4
F µνFµν , (15)

运动方程为 (
iγµ∂µ −m

)
ψ = qγµAµψ , (16)

∂µF
µν = qψ̄γνψ。 (17)

至此，我们简要介绍了关于电磁场及其中运动的粒

子的基本理论，给出了系统的拉氏密度和运动方程，对

之求解即可确定系统的性质。尤其说明了系统具有

U(1)规范对称性，因此，可以选择合适的规范 (条件)，

以简化对实际问题进行求解的复杂度和难度。

上述讨论表明，规范场论是基于对称性变换可以全

局实施也可以局部实施的思想的一类物理理论，规范对

称性是物理系统遵循的基本原理，这就是说，在某种变

换下，物理系统的拉格朗日量的表述形式及物理可观测

量 (的值)保持不变。较具体地，如果在每一时空点同

时实施变换时系统的拉氏量都保持不变，则系统具有全

局对称性，例如上一小节讨论的手征对称性。如果在时

空的特定区域实施一些对称变换而不影响到另外一个区

域，则系统具有局部对称性 (local symmetry)，规范场

论即是反映局部对称性的物理理论。另一方面，对称性

即不变性、简并性，因此规范对称性反映了系统表述的

一个冗余性，正是这种冗余性使得我们在实际应用时可

以通过考虑规范条件 (选用规范)，简化计算。

再者，前述的关于电磁场的讨论仅是在经典层面上

的讨论，尚未量子化。第一个量子化的规范理论即是关

于电磁场的量子理论-量子电动力学 (Quantum Electro-

dynamics，QED)，它涉及量子化方案、规范固定、重

整化、正规化等等一系列专门的理论方法和技术，这里

不予介绍。建议读者参阅量子规范场论的专著或教科书。

下面的讨论也局限在对称性及其破缺层面，不涉及量

子化。

3.2.2    强相互作用的规范对称性

∆++( 3
2
)

3
2

∣∣ 1
2

1
2

⟩
2
3
e

截止到 20世纪 60年代前期对强子谱的研究表明，

在夸克模型框架下，如果夸克仅具有 (固有)质量、自

旋、宇称、电荷、超荷、同位旋、重子数、奇异数等内

禀自由度，则无法解释实验观测到的  的存在性

(自旋量子数   说明其中的 3个夸克都处于   状态，

带 2个单位正电荷说明其中的 3个夸克都带电荷  ，即

该粒子是由 3个处于相同状态的 u夸克组合而成。这显

然与泡利不相容原理矛盾)。那么，夸克 (反夸克)除具

有前述的自旋等内禀自由度外，还有一个重要的自由度，

人们称之为颜色。由于实验上观测到的强子都不带颜色

自由度，也就是无色的，因此人们认为颜色自由度相应

于通常的三原色，因此人们常用红 (red, r)、绿 (green,

g)、兰 (blue, b)对之进行标记。

[1]3

µ+µ−

前述关于强子结构的讨论说明夸克一定具有新的自

由度 (例如命名为色自由度)，但关于色自由度为 3维、

具有 SU(3)对称性、且夸克处于其基础表示  等基本

概念的建立，正负电子碰撞产物和介子衰变产物等的实

验研究具有决定性作用。按照夸克模型，正负电子碰撞

可以湮灭成光子，进而衰变成多种强子，产生强子的总

截面与产生  的截面的比值为

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

=
e2
∑

q
Qq

2

e2
=
∑
q

Qq
2 ,

Qq q
11
3

其中  为夸克  携带的电荷数。截止最近的考虑到 u、

d、s、c和 b夸克组成的强子的实验结果为  ，这与上

述求和中关于每一味夸克都有系数 3的情况下的结果完

全相同，而不考虑系数 3情况下的理论结果与实验结果

相差 3倍。这显然与夸克具有色自由度、且处于色

SU(3)对称群的基础表示 (3维表示)的物理图像一致。

由关于李群和李代数的基本理论、尤其是关于李代数的

实现方式的讨论可知，具有 3个维度的空间的变换矩阵

对应的行列式确定 (为 1)的最大对称群为 SU(3)群，况

且 su(3)李代数可以由全同粒子实现，因此色空间具有

SU(3)对称性。在进一步的QCD的框架下，传递夸克

间相互作用的规范场为胶子场。

根据群的指数实现形式，该 SU(3)变换群可以表
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述为

U = eiΘ
aλa ,

λa其中  为SU(3)群的生成元 (即Gell-Mann矩阵)

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 ,

λ3 =

 1 0 0
0 −1 0
0 0 0

 , λ4 =

 0 0 1
0 0 0
1 0 0

 ,

λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,

λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

。
相应地，费米子场的变换为

ψ(x) −→ ψ′(x) = eiΘ
a(x)λaψ(x)。

对拉氏量中的费米子场部分

LF =
∑
k

ψ̄k

(
iγµ∂µ −m

)
ψk ,

∂µ (µ=1, 2, 3, 4)

仿照关于U(1)规范下 (电磁场中)的讨论，将微分算符

 扩展为协变微分算符

Dµ = ∂µ − igAa
µ(x)λ

a , (18)

g Aa
µ(x)其中  为 (待定)常量，  为规范场 (胶子场)四矢量，

则SU(3)对称的规范场 (胶子场)中与费米子相关的拉氏

量可以表述为

LF =
∑
k

ψ̄k

(
iγµDµ −m

)
ψk。

SUC(3)进一步具体计算可知，保持  规范不变的胶

子场场强张量由规范场 (胶子场)在色空间中的分量表

述为

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν。 (19)

fabc其中的  为SU(3)群的结构常数。

总之，强相互作用具有色 SU(3)(非阿贝尔)规范对

称性，夸克场对应于 SU(3)群的基础表示 (3维表示)，

规范场 (胶子场)对应于SU(3)群的伴随表示 (8维表示)，

系统的拉氏量 (的经典形式)为

LQCD =
∑
k

ψ̄k

(
iγµDµ −m

)
ψk −

1

4
GµνGµν , (20)

其中的协变微分的表述形式和规范场场强张量的表述形

式分别如式 (18)、(19)所示。

至此，我们简要介绍了关于强相互作用的规范场

(胶子场)及其中运动的费米子的基本理论，给出了系统

的拉氏密度，说明了系统具有SU(3)规范对称性，因此，

我们可以选择合适的规范 (规范条件)，以简化对实际问

题进行求解的复杂度和难度。由于表述形式非常复杂，

我们没有具体讨论运动方程。实际应用时应考虑其量子

化、规范固定、重整化和正规化等。对于SU(3)规范场

的量子化，它远比U(1)规范下的复杂，虽然已经发展

了 Faddeev-Popov等量子化方案 [17]，但其中仍存在

Gribov拷贝 (规范条件存在多个解)的问题 [17−18]。对于

这些问题的研究仍然是当今非阿贝尔规范场理论研究中

的重要课题。并且，在关于强相互作用的研究中，很多

重要问题都是非微扰的，例如色禁闭的机制、强子内部

的夸克和胶子结构等等，虽然已经发展建立了可以实际

应用的DS方程方法，但相关研究仍然是当今强相互作

用理论研究中的最重要课题。

3.2.3    电弱统一作用的规范对称性及标准模型的规范

对称性

(1) 电弱统一作用的规范对称性

β

我们知道，电磁作用中电场部分是有源无旋场、磁

场部分为无源有旋场，电荷是守恒量，于是系统具有

U(1)规范对称性 (3.2.1节中已予介绍和讨论)。弱作用

的发现可以追溯到原子核的  衰变，其元过程是中子转

变为质子、放出电子和 (反电子型)中微子，即

n −→ p+ e− + ν̄e。

Λ后来又发现了  超子转变为质子、并放出电子和 (反电

子型)中微子的过程

Λ −→ p+ e− + ν̄e。

β

β

由于  衰变过程涉及的粒子的质量差异很小，因此

弱作用过程涉及的质子和中子通常表述为同位旋的二重

态。早期建立的描述   衰变的理论是矢量流-轴矢流理

论，其有效拉氏量为

Leff = −2
√
2GJ†

µ(x)J
µ(x) ,

G β

G=1.165× 10−5 GeV−2 Jµ

Jµ

其中   为费米的   衰变常数，在自然单位之下

 ，带电流  可以表述为矢量流

与轴矢流叠加的形式。在夸克为基本自由度的层面上，

 常一般地表述为

Jµ =
∑
f

Ψ
f
γµT−Ψ

f , (21)

T−其中  为同位旋的降算符 (与中子转变为质子过程中同
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位旋第 3分量变化的表述习惯一致)，并可由矩阵形式

表述为

T± = T1 ± iT2 =
1

2

(
σ1 ± iσ2

)
,

σk T+其中  为泡利矩阵，  为同位旋的升算符。

β考察放出电子的  衰变及强子的夸克结构可知，该

过程可以在夸克层面上表述为

d −→ u+ e− + νe，

s −→ u+ e− + νe。

d

d s

这表明，强子中的所谓的  夸克很可能实际上是通

常意义上的   夸克与具有相同电荷的   夸克的混合态，

并记之为

d′ = d cosΘc + s sinΘC ,

ΘC其中  称为Cabibbo角。于是，弱作用中涉及的费米

子场可以统一标记为

Ψf
L =

1

2

(
1 + γ5

){( νe
e−

)
,
( νµ
µ−

)
,
( u
d′

)}
。

Tνe,3
=Tνµ,3=

1
2

Te−,3=Tµ−,3=− 1
2

[
T+ , T−

]
=2T3=2σ3

T3

K0
L → µ+µ− K0 ↔ �K0

s′=−d sinΘC + s cosΘC

类似于强作用中的质子、中子为同位旋二重态，这

里的同位旋为弱同位旋，相应的粒子都为弱同位旋二重

态，例如，  ，  。于是，

人们认为这些费米子具有 (整体的)SU(2)对称性。相应

地，由SU(2)的生成元的对易关系 

知，应该存在与前述的带电流强度相当的 (电)中性流

(相应于   )。然而，实验发现奇异数不守恒的中性流

转变 (例如，   ，或   )振幅相比于通

常的弱作用过程被压低了多个数量级。为解决这一问题，

Glashow与合作者引入粲夸克 (c夸克)，并将 s夸克也

视为 s与 d的混合态  ，并有第 4

组费米子二重态 (
c
s′

)
。

按照截止现在的认识，上述左手费米子二重态还包

括第三代夸克和第三代轻子，即(
ντ
τ

)
,

(
t
b

)
。

与弱作用 (左手粒子)流相对应的 (弱)荷算符为

T̂ L
i =

w
J i
4d

3x ,

i

i

被积函数中的下标 4代表流的时空第 4分量，上标   代

表流中同位旋的第  分量。这些荷算符满足对易关系

[
T̂ L
i , T̂

L
j

]
= iεijkT̂

L
k ,

εijk其中  为原同位旋 SU(2)群的结构常数。由此知，这

些算符构成一个 su(2)代数，由之可生成SU(2)群。

β

T−

上述讨论表明，弱作用具有SU(2)对称性，尤其是

原始的标准的  衰变过程即在该对称性下由同位旋降算

符 (  )作用而实现的过程，而同位旋的三分量对应中

性流。

根据前述的规范理论的基本概念，为将弱作用与电

磁作用纳入到同一个理论框架之下，应该从其电荷守恒

出发考虑。

为清楚表示弱作用过程中涉及的粒子的电荷、弱同

位旋及超荷之间的关系，定义弱超荷算符

Ŷ = Q̂− T̂ L
3。

− 1
2

这样，前述的左手轻子 (中微子、电子等)都对应该弱

超荷算符的本征态 (弱超荷都为  )。显然，[
T L
i , Ŷ

]
= 0。

SUL(2)⊗ UY(1)

W a (a = 1, 2, 3) B SUL(2)⊗ UY(1)

总之，弱作用中的弱荷和包含电荷的弱超荷构成

 对称性的四个生成元，与它们相应，在

电弱统一理论中有四个规范玻色场。记这四个玻色场分

别为   、   ，则它们与  

的流间的耦合作用为

gJa
µW

a
µ + g′JY

µ Bµ ,

g g′其中  、  为相互独立的参数。

W 1,2
µ

与通常的SU(2)群的生成元之间的关系一样，由上

述的  可得到荷电的规范玻色子

W±
µ =

1√
2

(
W 1

µ ± iW 2
µ

)
。

Aµ W 3 B

Z ΘW

tanΘW = g′
g

根据弱超荷为电荷与同位旋第三分量的线性叠加，

电磁作用的规范场 (光子场)  相应的   与   的线性

组合则得到  玻色子，并有温伯格角  表征其间的耦

合 (  )。

W± Z

sin2 ΘW ≈
0.23 MW ≈80GeV MZ ≈92GeV

W± Z

如果这里所有的矢量玻色子都与光子一样，是零质

量的，则显然无法描述实验测得的弱作用强度远小于电

磁作用强度的事实，因此这里的规范玻色子  和  不

仅应该是非零质量的，而且是相当重的。1982年CERN

的关于宇称不守恒的中性流过程的实验得到 

 ，进而得到   ，   。 这些

规范玻色子的质量与理论预言结果符合得相当好，从而

确立了电弱统一理论。并且，使  和  获得质量的机

制是使非阿贝尔规范不变性自发破缺的Higgs机制 [19−21]。
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(2) 标准模型的规范对称性及进一步发展

SUC(3) SUL(2)⊗ UY(1)

包含已经实现了量子化的强作用、弱作用和电磁作

用的物理理论称为 (粒子)物理学的标准模型 (Standard

Model)理论。根据标准模型中的强作用部分具有

 规范对称性和电弱作用部分具有 

对称性，标准模型具有规范对称性

SUC(3)⊗ SUL(2)⊗ UY(1)。

但标准模型存在参数多、无法解释三代夸克和三代

轻子中分别具有相同的量子数、无法给出质子和电子具

有数值相同符号相反的电荷的机制、无法给出存在三个

独立的规范作用参数且其数值差异可能巨大的机制等问

题。为解决这些问题，物理学家已在建立真正实现强作

用、弱作用和电磁作用统一描述的探索方面付出了巨大

努力，并取得了一些实质性的进展。人们称实现了强作

用、弱作用和电磁作用统一描述的理论为大统一模型。

大统一模型的一个原则是，其规范对称群必须

包含

SUC(3)⊗ SUL(2)⊗ UY(1),

τp ≈ 1032

1030

为其子群。目前建立的大统一模型有 SU(5)模型、

SO(10)模型等等。这些模型已经在很大程度解决了前

述的问题，但仍存在诸如质子寿命与实验相差两个数量

级 (实验测得质子寿命的下限为    a，但 SU(5)

模型给出约    a的结果)等问题。因此，人们仍在致

力解决这些问题。解决这些问题的方案一个方面是对现

有的理论进行修正和补充，另一方面发展建立了超对

称 (Supersymmetry)模型、人工色 (Techincolor)模型、

复合希格斯 (Composite Higgs)模型等。由于这些方案

比较专门，这里不予具体介绍。

近年致力于统一四种基本相互作用的超大统一理论

的研究也很活跃，并且我国学者已取得可喜进展 (如文

献 [22]等)。但其量子化仍是需要解决的问题。

4    原子核的对称性及其破缺

我们知道，原子核由强子组成①，并且，轻原子核

是典型的量子少体束缚态，重原子核是典型的量子多体

束缚态。由于核子和超子是费米子，而介子为玻色子，

那么通常的不考虑介子组分的原子核为多费米子系统。

如果考虑核子等费米子之间的配对效应，这些核子对可

以近似为玻色子，于是偶偶原子核和奇奇原子核也可以

近似为玻色子系统。并且奇质量数原子核 (常简记为奇

A核)可近似为既包含费米子又包含玻色子的多粒子系

统 (重核和中重核)或少体系统 (轻核)。由本文第 2节的

讨论可知，多粒子系统具有幺正对称性，并且幺正对称

性可以破缺到正交对称性 (玻色子系统)或斜交对称性

(费米子系统)，因此作为量子束缚态的原子核具有对称

性，并且其对称性可能破缺。考虑篇幅限制，本节对原

子核的对称性也仅作简要介绍。

4.1    对原子核结构的基本问题的描述

4.1.1    概述

U(
∑

i(2li + 1)) N=
∑

i(2li + 1)

回顾上述讨论知，多玻色子系统具有最大对称性

 ，其中的维数   为其组分

粒子的内禀空间的自由度的维数，并且有子代数链

su(
∑
i

(2li + 1)) ⊃ so(
∑
i

(2li + 1))。

U(
∑

i(2ji + 1))

N=
∑

i(2ji + 1)

多费米子系统具有最大对称性  ，其中的

维数   亦为其组分粒子的内禀空间的自

由度的维数，并且有子代数链

su(
∑
i

(2ji + 1)) ⊃ sp(
∑
i

(2ji + 1))。

l=0

l=2

这表明，玻色子系统的对称性可以由最大的幺正对

称性破缺到维数相同的正交对称性。当然也可以破缺到

维数较低的幺正对称性，例如，前述的由角动量  

的 s玻色子和角动量  的 d玻色子系统的最大对称性
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Ξ Ξ Λ

K+

①通常，我们说原子核由质子和中子组成，或者说原子核的组分单元是核子 (质子和中子的统称)。但这是到 20世纪 30年代中期的认识水

平。 1952年，波兰科学家M. 丹尼什 (M. Danysz)和J. 普涅夫斯基 (J. Pniewski)在观测暴露于宇宙线中的核乳胶时发现，存在一些推迟裂解的

较重的核碎块 (Phil. Mag.，44: 348 (1953))，这些推迟裂解的较重的核碎块 (原子核)除具有与通常的由质子与中子结合而成的原子核类似的性

质外，其中还包含有性质与中子基本相同、但质量较大的粒子。由于当时对这类原子核的本质不清楚，就沿用对超导体、超流体的命名方案，

称这类原子核为超核 (hypernucleus)，并称性质与中子基本相同、但质量较大的粒子为超子 (hyperon)。随着研究的深入，人们称这类组成原子

核的粒子为   超子。后来，人们逐渐发现了包含带负电荷的   超子的原子核 (  超核；Nucl.  Phys.  A  508:99c(1990),  Nucl.  Phys.  A

639:103c(1998))以及包含带负电荷的  超子的原子核 (  超核；Ann. Phys. 146: 309 (1983))。近年还发现了包含反  超子的氢原子核 (Science

328: 58 (2010))。这些发现表明，原子核组分主要是质子和中子，但超子也是原子核 (至少一部分原子核)的重要组成单元。对这些粒子的结构

的研究表明，核子主要由上夸克和下夸克组成 (质子由两个上夸克和一个下夸克组成，中子由一个上夸克和两个下夸克组成)，超子还包含有奇

异夸克，因此通常称超核为奇异性原子核 (或奇异核)。另一方面，我们知道，使核子 (以及超子)束缚成原子核的媒介粒子为介子 (meson)。因

此，传统上，人们认为，介子仅仅是媒介粒子，对原子核的组分结构和质量没有直观可见的贡献。到 20世纪 90年代，对  与原子核之间的散

射等实验的研究 (Phys. Rev. Lett. 68: 290 (1992)；Science 259: 773 (1993))和我国学者吴式枢先生等的理论研究 (Chin. Phys. Lett. 12: 344

(1995), ibid 13: 347(1996))表明，介子对原子核的基态性质有相当可观的贡献 (可能高达 10%)。由于核子 (质子和中子)、超子和介子都是参与

强相互作用的粒子，因此统称为强子。那么，广义来讲，原子核由强子组成。



U(6) SO(6)

j=1/2, 3/2, 5/2

U(12)
SP(12)

 可以破缺到   (同构于 SU(4))也可以破缺到

SU(5)，还可以破缺到 SU(3)。并且，费米子系统的对

称性可以由最大的幺正对称性破缺到维数相同的斜交对

称性 (亦即辛对称性)。当然也可以破缺到维数较低的幺

正对称性，例如，前述的由总角动量  

的费米子形成的系统的最大对称性   可以破缺到

 ，还可以破缺到U(10)，甚至U(6)。

SU(
∑

i(2ji + 1))

由于多粒子系统通常都具有转动不变性，亦即

SO(3)对称性，并且原子核的主要成分是费米子 (核子

和超子)，因此，原子核具有幺正对称性  ，

并有下述群链标记的动力学破缺

SU(
∑
i

(2ji + 1)) ⊃ SP(
∑
i

(2ji + 1)) ⊃ · · · ⊃ SO(3)。

如果再考虑同位旋对称性，则有

SU(
∑
i

(4ji + 2)) ⊃ SP(
∑
i

(4ji + 2)) ⊃ · · · ⊃ SO(3)。

SU(
∑

i(2li + 1))

考虑将核子对近似为玻色子，从而原子核可以近似

为玻色子情况下，原子核具有幺正对称性  ，

并有下述群链标记的动力学破缺

SU(
∑
i

(2li + 1)) ⊃ SO(
∑
i

(2li + 1)) ⊃ · · · ⊃ SO(3)。

4.1.2    原子核的总角动量及其重复度

J j

由于不同 (总)角动量的粒子的产生算符、湮灭算

符都相互对易，因此需要认真处理的重要部分为全同粒

子部分。前已说明，原子核具有SO(3)不变性，即有确

定的总角动量  ，从而由单粒子角动量为  的全同费密

子形成的原子核的波函数可以写为

|n ν α J M⟩,
n j ν

j 0

J

其中  为单粒子轨道  上的粒子数，  为单粒子角动量

为  的粒子系统的辛弱数 (即不配成角动量为  的对的粒

子数)。显然总角动量  的可能取值及其出现的次数是

描述这样的原子核状态的关键物理量。

ν (2j + 1)

IRREP [1n] (2j + 1) ⊃ SP(2j + 1)

[1n]=⊕ν(1
ν)

按照前述的原子核的对称性及其破缺的方式，原子

核的辛弱数  可以由U  的不可约表示 (常简记为

 )  按 群 链 U  约 化 (即

 )的规则确定，并可简单表述为

ν =

{
n, n− 2, · · · , 0 , n =偶数;
n, n− 2, · · · , 1 , n =奇数。

(22)

J j n ν

(2j + 1) (1ν)

(2j + 1) ⊃ SO(3)
(N) ⊃ SO(3)

J ν

  为单粒子轨道  上的粒子数为  、辛弱数为  的态的

角 动 量 ， 即 SP  群 的 表 示   按 群 链 SP

 约化时得到的 SO(3)群的 IRREP. 因

为 SP  的约化为非简单可约，即可能有多

个态对应于同一个  和同一个  ，所以需要引入附加量

α n ν J

α (N) ⊃ SO(3)
η η=0 J

η ̸= 0 η J α ∈ [1, η]

子数  来区分  、  、  都分别相同的态。一个简单的

确定附加量子数  的方案是先确定SP  约化

的重复度    (  表明不存在总角动量为   的态，

 表明存在  个总角动量为  的态)，那么取 

即可确定附加量子数。

SP(N) ⊃ SO(3)

j=7/2 j=9/2 j=11/2

j=13/2 j=15/2

关于  约化的重复度，乍看起来，是

一个简单的问题。但事实上，虽经长期研究 (例如文

献 [23−29]等)，到现在尚无直观表述的一般公式，但人

们发展建立了通过划分进行递推 (标准的由最高权态递

推确定所有权集合)的方案，并已有相应的计算机程

序 [23−24]。实用中常见的   、   、   、

 、  系统的具体数值可参见文献 [2]。

ν

L

2l + 1 =奇数 (2j + 1)

(2l + 1) d

d f g h i

关于全同玻色子系统的具有确定辛弱数  的总角动

量为   的重复度，确定方案与全同费密子系统的相

同 [23−24]，只是因为  ，SP  群应换

为SO  。并且，对  玻色子系统已有解析计算公

式 [30]。   玻色子、   玻色子、   玻色子、   玻色子和  

玻色子等系统的一些具体数值可参见文献 [2].

4.1.3    原子核结构等研究中全同粒子的单体矩阵元

a†jm

ajm

我们知道，对于多体系统，确定相互作用的哈密顿

量 (计算相互作用矩阵元)及计算跃迁矩阵元的关键问

题是计算全同粒子系统的矩阵元，即计算产生算符 

和湮灭算符  的矩阵元

⟨jn τ α J
∣∣a†j∣∣jn−1 τ ′ α′ J ′⟩ , ⟨jn τ α J

∣∣ãj∣∣jn+1 τ ′ α′ J ′⟩ ,

ãjm=(1)j−maj −m

j= l=整数 j=半奇数

n− 1

τ ′ J ′

n τ J

n+ 1 τ ′

J ′

n τ J

其中  为与产生算符相应的不可约张量，

 对应玻色子系统，  对应费米子系

统。这两类矩阵元分别为由粒子数为  、辛弱数为

 、总角动量为   的全 (反)对称态添加一个粒子形成

粒子数为  、辛弱数为  、总角动量为  的全 (反)对称

态的矩阵元，或者由粒子数为  、辛弱数为  、总

角动量为   的全 (反)对称态减少一个粒子形成粒子数

为  、辛弱数为  、总角动量为  的全 (反)对称态的矩

阵元。

j J ′ J

|jn τ α J M⟩
|[(jn−1 τ ′ α′ J ′M ′)(jm)] JM⟩

|jn τ α J M⟩

由于在考虑角动量  与  耦合形成的角动量为  的

态中既有全 (反)对称的成分，又有非全 (反)对称的成

分，但  为全 (反)对称态，因此通常称角动

量层次上的耦合态  为母态，

物理态 (全 (反)对称态)  为母态中包含的全

(反)对称部分，即有∣∣jn τ α J M⟩ =
∑
α′ J′

⟨(n− 1) τ ′ α′ J ′jJ
∣∣}n τ α J⟩×∣∣[(jn−1 τ ′ α′ J ′M ′)(jm)
]
JM⟩ , (23)

或者说
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⟨n τ α J M
∣∣a†jm∣∣n− 1 τ ′ α′ J ′ M ′⟩

=⟨J ′M ′ j m
∣∣J M⟩⟨(n− 1) τ ′ α′ J ′ j J

∣∣}n τ αJ⟩×
⟨n∥a†∥(n− 1)⟩U(N) , (24)

⟨J ′M ′ j m|J M⟩
⟨(n− 1) τ ′ α′ J ′ j J |}n τ αJ⟩

⟨n∥a†∥(n− 1)⟩U(N) U(N)

其中   为角动量耦合的 CG(Clebsch-

Gordancoefficients)系数； 

称为母分系数 (coefficient of fractional parentage，简

称为CFP)，即母态中包含的全 (反)对称的成分的概率

幅；  为产生算符的  对称层次上

的约化矩阵元，即仅考虑粒子数变化的约化矩阵元。由

此还可以知道，对于确定全同粒子系统的波函数，母分

系数是其核心，尽管这一问题在多粒子壳模型开始发展

时就被提出 [31−32]，直到 20世纪 90年代中前期，人们

才给出了计算具有确定辛弱数的系统的母分系数的理论

方法和计算程序 [24, 33−34]。

a†jm ãjm

U(N) ⊃ SP(N) ⊃ SO(3) N=2j + 1

a†jm

ãjm (N)

(N) (3) j

a†jm −ãjm SU(2)q 1/2

{1/2,−1/2} {1/2, 1/2}
(N) (N) (3)

IRREP (N)

(N)

通过直接计算   、   与标记系统状态的群链

  (其中   )中的各个群

的生成元间的对易关系可知，产生算符  及与湮灭算

符相联系的算符  是U  群的 1秩不可约张量、SP

 群的 1秩不可约张量、SO  群的  秩不可约张量，

并且   和   还构成准自旋群   的   秩不可

约张量，分别对应于   、   分量。

那么，上述矩阵元应该在U  、SP  和 SO  等层

次上都满足相应的不可约张量的耦合关系 (或者说

 的乘积的约化规律)，根据产生算符是U  的 1

秩不可约张量的性质，利用U  的Wigner-Eckart定

理和Racah因子分解引理，得

⟨n τ α J M |a†jm|n− 1 τ ′ α′ J ′ M ′⟩

=

⟨
[1] [1n−1]

(1) (1τ ′)

∣∣∣∣ [1n]
(1τ )

⟩⟨
(1) (1τ ′)
j α′ J ′

∣∣∣∣∣ (1τ )
α J

⟩
×

⟨J ′M ′ j m|J M⟩⟨n∥a†∥n− 1⟩U(N) ,
(25)⟨ [1] [1n−1]

(1) (1τ ′)

∣∣∣ [1n]
(1τ )

⟩ ⟨
(1) (1τ ′)
j α′ J ′

∣∣∣ (1τ )
α J

⟩
U(N) ⊃ SP(N) SP(N) ⊃ SO(3)

⟨J ′M ′ j m|J M⟩
SO(3) U(N) ⊃ SP(N)

SP(N) ⊃ SO(3)

其中   ，   分

别为   ，   的约化系数 (常

称之为同位标量因子，简记为 ISF)。  

为   的 CG系数。那么，求出   和

 的 ISF便可求得CFP。

τ=τ ′ − 1 τ=τ ′ + 1 τ ′=τ − 1

τ ′=τ + 1 SP(N) ⊃ SO(3)⟨
(1) (1τ−1)
j α′ J ′

∣∣∣ (1τ )
α J

⟩

由于系统增加一个粒子后，这个粒子可以与原系统

中的没有配对的一个粒子配成对，也可能不配对，因此

有  和  两种情况，亦即有  和

 两种情况。那么，对于  的 ISF，

我们既需要考虑   ，还需要考虑

⟨
(1) (1τ+1)
j α′ J ′

∣∣∣ (1τ )
α J

⟩
⟨jn τ α J

∣∣ãj∣∣
jn+1 τ ′ α′ J ′⟩

SP(N) ⊃ SO(3)

 。同理，关于矩阵元 

 的计算，也可以转化为计算相应的CFP，

也涉及上述两种  的 ISF。

(N)

(1)

SU(N) ⊃ SP(N)

由产生和湮灭算符的关系以及它们均为 SP  群

的   秩不可约张量，经过细致的计算分析可以证明，

 的 ISF为⟨
[1] [1n−1]
(1) (1τ−1)

∣∣∣∣ [1n]
(1τ )

⟩
=

√
τ(N − n− τ + 2)

n(N − 2τ + 2)
,

⟨
[1] [1n−1]
(1) (1τ+1)

∣∣∣∣ [1n]
(1τ )

⟩
= −

√
(n− τ)(N − τ + 2)

n(N − 2τ + 2)
。

SP(N) ⊃ SO(3)并且，  的上述两类 ISF间存在倒易律：⟨
(1) (1τ+1)
j α′ J ′

∣∣∣∣ (1τ )
α J

⟩
=(−)j+J′−J

√
(2J ′ + 1)(τ + 1)(N + 2− 2τ)

(2J + 1)(N − 2τ)(N + 2− τ)
×⟨

(1) (1τ )
j α J

∣∣∣∣ (1(τ+1))
α′ J ′

⟩
, (26)

SP(N) ⊃ SO(3)⟨
(1) (1τ−1)
j α′ J ′

∣∣∣∣ (1τ )
α J

⟩于 是 ， 我 们 只 需 要 确 定   的 ISF

 。

SP(N) ⊃ SO(3)关于   的 ISF，目前尚无解析公式，

只能通过递推计算确定。递推公式为⟨
(1) (1τ−1)
j α1 J1

∣∣∣∣ (1τ )
(α′

1 J
′
1) J

⟩
=

P (τ [α′
1 J

′
1] α1 J1 J)√

τ P (τ [α′
1 J

′
1] α

′
1 J

′
1 J)

,

(27)

其中

P (τ [α′
1 J

′
1] α1 J1 J) = δα′

1 α1
δJ′

1 J1
+

(−1)J1+J′
1(τ − 1)

√
(2J1 + 1)(2J1 + 1)×∑

α2 J2

[{
j J2 J ′

1

j J J1

}
+

2δJ J2
(−)τ

(2J + 1)(N − 2τ + 4)

]
×

⟨
(1) (1τ−2)
j α2 J2

∣∣∣∣ (1(τ−1))
α1 J1

⟩⟨
(1) (1τ−2)
j α2 J2

∣∣∣∣ (1(τ−1))
α′

1 J
′
1

⟩
,

⟨
(1) (1)
j j

∣∣∣ (12)
J

⟩
=1 J=0, 2, · · · ,

2j − 1)

其 初 值 为   (其 中  

 。

U(N) ⊃ SP(N)

SP(N) ⊃ SO(3) U(N) ⊃ SO(N)

SO(N) ⊃ SO(3)

对于玻色子系统 (对核子对等作玻色子近似，原子

核可近似为玻色子系统)，单体矩阵元的计算与上述费

米子系统的几乎完全相同，只是由于玻色子系统的总波

函数是全对称的，前述的   的 ISF和

 的 ISF应 分 别 换 为   的

ISF和   的 ISF[35−36]， 并 且 初 值 为
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⟨
(1) (1)
l l

∣∣∣ (2)
L

⟩
= 1 (其中L = 0, 2, · · · , 2l)。 具 体

的计算不再重述。

SP(N) ⊃ SO(3) SO(N) ⊃ SO(3)
U(N) ⊃ SP(N) U(N) ⊃ SO(N) SO(3)⊗

SO(3) ⊃ SO(3)

利用这些递推关系和倒易律可以得到所有的

 的 ISF和   的 ISF，再考

虑  、  的 ISF以及 

 的CG系数，即可得到具有确定辛弱数

的母分系数，进而可以得到所需的矩阵元。利用这一方

法编制的计算全同费密子系统、全同玻色子系统以及包

含同位旋 (F旋)的费密子 (玻色子)系统的计算机程

序 [24, 37]可以处理任意有物理意义的系统的单体矩阵元

(母分系数)的计算问题，并且计算效率极高。

4.2    集体运动及其内禀相干态描述方法

人们知道，原子核由强子组成，强子由夸克和胶子

组成。实验发现，很多宏观物质系统在较低温度等条件

下，有超导或超流等集体运动现象；原子核与分子一样，

不仅具有能量近似为常量的近振动光谱和能量随角动量

近似成线性关系的近转动光谱，还有明显大于单粒子激

发或退激发引起的电四极矩和E2、E1跃迁几率；并且

相对论性核-核碰撞形成的胶子夸克物质具有接近理想

流体的特征和性质。这些现象表明，这些多粒子系统具

有全体粒子都共同参与的集体运动，并且集体运动有振

动、转动等多种模式。实验还发现，在一些条件下，这

些集体运动模式会发生变化，即发生集体运动模式相

变 (常简称为形状相变)。相关研究当然是现代物理学的

重要研究内容。我们还知道，相变即对称性的破缺或恢

复，是对称性理论的重要研究范畴。因此，本节简要介

绍多粒子系统的集体运动状态的代数研究方法。

4.2.1    集体运动的参数化表述及集体模型概要

前已述及，多粒子系统的集体运动即多粒子系统的

所有组分粒子共同参与的整体运动，并且这种集体运动

具有不同的模式。相应地，多粒子系统呈现不同的形状。

多粒子系统的形状是多粒子系统内组分物质密度分布发

生剧烈变化之处的包络面所呈的形状。显然这一形状由

系统内组分粒子的集体运动和单粒子运动两种模式共同

决定，因此一直是多粒子系统性质研究中的重要课题。

稍具体地，讨论单粒子运动时常用的平均势场即为与多

粒子系统中物质分布的形状密切相关的变形场。组分物

质呈不同形状分布的系统的振动、转动等集体运动模式

也各不相同，这就是说，集体运动模式与多粒子系统的

所有组分粒子的空间分布形状决定，而多粒子系统的组

分粒子的空间分布形状又随集体运动模式的不同而变化，

二者互为表里，相辅相成。

为简单地表述多粒子系统的组分物质分布的形状，

R(θ, φ)

(θ1, θ2, θ3)

β γ

人们常将多粒子系统假设为由多个粒子因集体关联而整

体运动形成的液滴，液滴的形状由随标记方向的角度变

化而变化的径向函数  表征，并通过按球谐函数

展开来实现。例如，人们常采用三个欧拉角 

和内禀变量  、  等来表征其形状和空间取向，其中三

个欧拉角定义随体坐标的方向，内禀变量定义多体系统

的形状相对于球形的形变，即有

R(θ, ϕ) = R0

[
1 +

∑
km

α∗
kmYkm(θ, φ)

]
, (28)

θ φ

αkµ

其中  、  等为实验室坐标系中表示方向的坐标。实验

室坐标系与随体坐标系之间的关系可以由展开系数张量

 之间的关系表述为

αlm =
∑
km′

alm′Dk
mm′(Ω) , Ω = (θ1, θ2, θ3) , (29)

D

2k

a2ν =aν

其中  函数是Wigner转动矩阵。与电磁场的多极展开

类似，人们常称   为多粒子系统的形变极次。对于常

见的较简单的轴对称的四极形变，系数  可以由

Bohr-Wheeler参数化方案表述为

a0 = β cos γ , a±2 =
1√
2
β sin γ , a±1 = 0。 (30)

对于更高极次形变的参数化表述仍是目前研究的课题。

Ykm(θ, φ)

k = 2

对于原子核，已经观测到或者已经预言的形状多种

多样，将径向分布按球谐函数   展开后，相应

于  的四极形变可以呈长椭球形、扁椭球形、三轴

不对称形等形状；八极形变则呈空间反演不对称的梨形、

香蕉形、镐头形等形状；十六极形变则呈纺锤形等。实

验上已经观测到的最高极形变是十六极形变。

实验观测和理论研究还表明，一个同位素链或一个

同中子素链中的原子核具有分别对应于不同集体运动模

式的E2跃迁几率和双核子分离能等性质，即原子核的

同位旋 (具有SU(2)对称性)变化可以引起原子核的集体

运动模式变化，即出现集体运动模式相变 (形状相变)，

并可能出现不同形状共存的现象。集体运动模式相变普

遍存在于各个质量区，并且超重核区也存在结构丰富的

形变和形状共存 [38]。而激发态核的集体运动模式 (形

变)则更富含物理内容，如超形变带、回弯现象、同核

异能态 (isomeric states)等都与形变直接相关。并且，

角动量、温度等因素变化都会驱动集体运动模式相变。

总之，原子核具有多种集体运动模式 (或状态)，并且有

多种模式共存和各种奇异的状态，其间的演化 (相变)

是基础物理研究的重要内容。

4.2.2    相干态理论方法

早在 1926年，薛定谔在探索量子谐振子的经典解
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释时，就找到一种现在称为“相干态”的解。1963年，

Glauber正式提出相干态的概念，并在对量子光学中电

磁场的关联函数的研究中，说明相干态为湮灭算符的本

征态。同时，Klauder开始为任意李群寻找相应的相干

态，经过十年努力，他们发现相干态与群的陪集有一一

对应关系，并发展了一套构造相干态的方法。由于物理

系统基本都有一定的群结构，因此自然可以将相干态与

具有确定动力学对称性的物理系统相联系，从而可以利

用代数方法研究多粒子系统的集体运动状态。

(1) 相干态的概念

x

Xx=
d
dx p̂

Xx=
d
dx =

i
ℏ p̂

d
∣∣ψ0(x)⟩

我们知道，一维坐标空间 (记为  )平移群的生成元

 ，它显然可以由量子力学中的动量算符  表述为

 . 那么，由群操作的指数实现可知，经坐

标空间平移  后，一维谐振子的基态  改变为∣∣ψ0(x− d)⟩ = e− i
ℏ p̂d
∣∣ψ0(x)⟩。

p̂在占有数表象中，动量算符  可以表述为玻色子的

产生算符与湮灭算符的线性叠加，即有

p̂ = i
√
mℏω
2

(
b† − b

)
。

于是，上述坐标空间平移之后的态还可以表述为∣∣ψ0(x− d)
⟩
= e

√
mω
2ℏ d(b†−b)

∣∣ψ0(x)
⟩
。

x̂=
√

ℏ
2mω

(
b† + b

)
同理，对动量空间作平移之后的态也可以表述为类

似的形式，差别仅在于上述的产生算符与湮灭算符的反

相位叠加换为同相位叠加 (因为  )。

推而广之，在相空间中有位移之后的态都可以由位

移之前的态表述为∣∣S⟩ = e(S
∗b†−Sb)

∣∣0⟩。 (31)

S该状态即被称为相干态，  称为相空间参数，其物理意

义是在相空间中有位移之后的谐振子基态波函数。

考虑算符的函数

e(S
∗b†−Sb) = eS

∗b†e−Sbe− 1
2S∗S , 和 b

∣∣0⟩ = ∣∣0⟩ ,
知∣∣S⟩ = e− 1

2S∗SeS
∗b†
∣∣0⟩ = e− 1

2S∗S
∑
n

S∗n

√
n!

∣∣n⟩ ,
|n⟩ n̂ = b†b其中  为粒子数算符  的本征态。这表明，相干

态为各种粒子数本征态的线性叠加，或者说，相干态是

粒子数不守恒的态。但其平均值为

⟨S|n̂|S⟩ = e−S∗S
∑
n

(S∗S)
n

(n− 1)!
= |S|2,

即粒子数算符在相干态上的期望值为相空间参数的模的

平方。据此，人们通常取具有确定粒子数的态作为相干

态的近似表述，并称之为投影相干态、或内禀相干态。

(2) Heisenberg–Weyl群与相干态的构建

b̂† b̂ Î

{b̂†, b̂, Î}
因为产生算符   、湮灭算符   和单位算符   构成

Heisenberg–Weyl (HW)代数  ，其代数关系为[
b̂, b̂†

]
= Î ,

[
b̂, Î

]
=
[
b̂†, Î

]
= 0。

HW代数中的一般元素可以表述为

θÎ + i
(
Sb̂− S∗b̂†

)
,

θ S其中  为实数，  为复数。

由此HW代数中的一般元素可以构建一组新的元素

T (θ, S) = eiθÎ+(S∗ b̂†−Sb̂)。

直接计算可知，

T (θ, S)T (θ′, S′) = T (θ + θ′ + Re(S∗S), S + S′)。

这表明，由HW代数可以构成三参数李群，Heis-

enberg–Weyl(HW)群。

T (θ, S)显然，  可以唯一分解为

T (θ, S) = T (0, S)T (θ, 0) ,

{T (θ, 0)}
{T (0, S)}
这表明，集合   构成 HW群的子群，而集合

 构成HW群的 (相应于上述子群的)陪集。

T V
V

上述算符   也可视为 HW群的不可约表示空间  

上的算符，空间  的基矢可以表述为{∣∣n⟩ = 1√
n!
(b̂†)n

∣∣0⟩ ∣∣ n = 0, 1, 2, · · ·
}
。

M T (θ, 0) ∈ G对 HW的子群 (记之为   )中的元素   ，

将之作用到参考态，我们有

T (θ, 0)
∣∣0⟩ = eiθ

∣∣0⟩。
T (θ, S) ∈ HW将元素  作用到基态，我们有

T (θ, S)
∣∣0⟩ = eiθT (0, S)

∣∣0⟩。
T (0, S) ∈ HW/M与相干态的定义比较知，对  ，

T (0, S)
∣∣0⟩ = e(S

∗ b̂†−Sb̂)
∣∣0⟩ = ∣∣S⟩。

HW M
HW/M
这表明，相干态是定义在   的子群   的陪集空间

 上的态。

(3)广义相干态及其构建

G显然，将前述的HW群推广到一般的李群  ，人们

可以广义地建立相干态。

g G一般地，对于李代数为  的群  ，可以按照一定的

程序找到与其相联系的几何空间，例如对于转动群
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θ φSO(3)，可以将几何参数   、   与其表示相联系，从而

可以用球谐函数来描述SO(3)群的几何结构。如果这种

程序不唯一，则通常选取有明显物理意义的一种。

g=h⊕ p ,

h g p

p

g
∣∣Λ⟩∣∣Λext
⟩

ηi

pi p

这种程序首先将李代数分成两部分  其中

 是   的不变子代数，在对易关系下封闭，而   则不一

定封闭。几何空间的参数与  中的元素一一对应，其数

目即几何空间的维数。  的表示提供一组基态  ，其

中有一个称为极值态 (extremal state)的态  ，它定

义为李代数中有最多数目的元素可以湮灭它的态。这样，

几何空间的参数   可以按照前述的相干态的定义而定

义，其中  是  中的元素，即有∣∣ηi⟩ = exp
[∑

iηipi

] ∣∣Λext⟩。

g h

n

由于代数  可能有几个不同的不变子代数  ，因此

可以存在几个不同的几何空间。在实际应用中，常定义

几何空间为与满足物理条件的最大不变子代数相联系的

空间。由第二节的讨论知，多粒子系统的状态可以由典

型李群标记的动力学对称性描述，因此多粒子系统的集

体运动状态可以利用代数方法进行研究。研究的具体步

骤是，将内禀相干态中的  粒子态写为各种组分粒子的

产生算符的叠加形式 (其中的叠加系数为表征集体运动

状态的几何参数函数)，将哈密顿量写为相应粒子表象

的形式，然后计算哈密顿量在内禀相干态下的期望值，

根据最小作用原理确定稳定的集体运动状态。关于对原

子核的集体运动的具体描述见4.4.3节的讨论。

4.3    基于组分粒子的费米子本质的原子核模型—壳模型

4.3.1    基本理论框架与单粒子壳模型

(1) 基本理论框架

人们知道，原子核是包含多个核子、甚至超子的量

子束缚系统。核子–核子之间、多核子之间、超子–超子

之间及核子–超子之间的相互作用都很复杂，因此很难

直接从第一性原理出发研究这样的量子多体系统的性质。

于是，对于简单的由核子组成的原子核，人们提出平均

场近似的思想 (当时还没有发现包含超子的超核)，认为

每个核子都在其它核子共同形成的平均场中运动，除平

均场之外，核子-核子之间的剩余相互作用可以作微扰

处理。这样，原子核的哈密顿量可以表示为

Ĥ =

A∑
i=1

[
T̂i + V (i)

]
+
∑
i<j

V ′(ij) , (32)

T̂i=
p̂i
2m

i V (i) i其中  为第  个核子的动能，  为第  个核子所

V ′(ij) i

j

受的平均场 (也称为单粒子位势)，  是第  个核子

和第  个核子之间的剩余相互作用势。原子核的状态由

求解这一平均场近似所得的状态来描述。总之，壳模型

的核心思想就是平均场近似。

(2) 平均场的形式

因为每个组分粒子感受的平均场由所有其它组分粒

子共同提供，所以人们认为该平均场近似地正比于原子

核的密度分布，于是，该平均场可以表示为

V (r) =
−V0

1 + exp( r−R0
a

)
, (33)

V0 50

R0

r0A
1/3 A r0=(1.12 ∼ 1.25)

a

其中  为作用强度，取值大约在   MeV，或者稍大一

些；   为原子核的平均半径，可以近似表示为 R0=

 ，   为原子核的质量数，    fm；

 为原子核的表面厚度，其数值大约为 0.65 fm。该平均

场位势通常称为Woods-Saxon势。

r

很显然，Woods-Saxon势的形式很复杂，难以由

之进行计算 (尤其在过去计算机资源不够发达的时代)。

考察 Woods-Saxon势随径向坐标   的变化行为知，

Woods-Saxon势表述的平均有心力场的径向变化行为

介于方势阱势和谐振子势之间，因此人们通常采用谐振

子势近似模拟核子所受的平均场，也可以由 (无限深)

球方势阱近似模拟核子所受的平均场。

l

s

l · s
0

考察Woods-Saxon势的形式知，这一平均场仅考

虑了其它核子的分布提供的平均相互作用，既没有包含

质子与中子之间的差异，也没有包含质子与质子之间的

库仑排斥作用。于是，人们提出考虑上述两种因素、从

而对核子所处平均场进行修正的方案：考虑前一因素的

修正称为 (不)对称能修正，仍是目前研究的一个热点，

因为其在饱和核物质密度之上的行为不清楚；考虑后一

因素的修正即通常的库仑能修正。再者，由于原子核内

的组分粒子除了由平均场决定的空间运动自由度之外，

还有自旋自由度，从经典物理的角度考虑，自旋磁矩会

受到相对运动在其所在处产生的磁场的作用，由于磁场

的磁感应强度正比于相对运动的轨道角动量  ，而自旋

磁矩正比于自旋  ，于是轨道角动量与自旋之间有形如

 的自旋-轨道耦合作用。再考察Woods-Saxon势随

径向的变化率 (梯度)知，该梯度在核内部区域基本为  ，

在核表面具有很大的正的数值，于是自旋-轨道耦合作

用可表述①为

Vsl = −ξ(r)ŝ · l̂ = − 1

2m2c2
1

r

dV (r)

dr
ŝ · l̂。
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SOl(3)⊗ SUs(2) ⊃ SOj(3)

该修正最早由Mayer夫人和 Jensen分别提出 (他们

因此获得 1963年的诺贝尔物理学奖)。从对称性的角度

看，即考虑对称性破缺  的贡献。

(3) 单粒子能级和壳结构

所谓单粒子能级，即假设原子核的状态仅由在所有

其它核子形成的平均场中运动的一个核子的状态描述的

情况下的能级。

j= l + 1
2

在求解平均场近似的单粒子能谱的基础上，考虑上

述自旋-轨道耦合引起的能级分裂效应 (与原子中的表现

不同，在原子核中，总角动量量子数  的态的能

级向下分裂)，人们得到可以描述原子核的幻数 2, 8,

20, 28, 50, 82等的单粒子能谱 (任何一本核结构理论书

中都有，这里不再引述)，这说明，原子核的单粒子能

谱具有壳层结构。因此，相应的模型常被称为单粒子壳

模型。近年的研究表明，极端丰中子原子核和极端丰质

子原子核的单粒子能谱 (壳结构)偏离通常的单粒子能

谱，即出现新的壳结构 (例如，通常情况下的子壳成为

主壳)，这种现象称为壳融化。有关滴线核的壳结构的

研究是当代核物理的重要研究内容。

4.3.2    多粒子壳模型的框架与计算要素

如前所述，壳模型的基本思想是把每个核子的运动

都看作是在其它核子形成的平均场中的运动，并且通常

将该平均场近似为有心力场，例如Woods-Saxon势的

形式。显然，对于满壳外有多个核子的情况，求解式

(32)所示的哈密顿量的本征方程很困难，即采用坐标表

象很难实现具体计算。因此人们采用占有数表象处理这

一复杂问题。

占有数表象中，包含核子 (费密子)的单体和两体

相互作用并且保持粒子数守恒的哈密顿量可以写为

H = E0 +
∑
αβ

εαβa
†
αaβ +

∑
αβγδ

1

2
uαβγδa

†
αa

†
βaγaδ , (34)

a†α aβ jα jβ

lα + lβ + lγ + lδ =

U
[∑

i(2ji + 1)
]

U
[∑

i(4ji + 2)
]

其中  、  分别为角动量为  、  的核子的产生、消

灭算符，服从费密子的反对易规则。为保证宇称守恒，

这些核子所处单粒子“轨道”的轨道角动量须满足

 偶数。显然，作为多费米子的束缚态

的原子核具有  对称性，其中的求和包括

对所有可能的单粒子轨道求和。如果考虑同位旋对称性，

则有  对称性。

通常，人们也将之表示为多极展开的形式，即有

H = E0 +
∑
α

εαn̂α +
∑
K

ΛK(a†αãγ)
K · (a†β ãδ)K , (35)

n̂α =
∑
mα

a†lαmα
alαmα jα其中   为单粒子轨道   上的核子数

ΛK K ãα = (−1)jα+mα

alα(−mα) a†lαmα
jα [AB]K

A B K

算符，   为   极相互作用强度，  

 为与   共轭的   秩不可约张量，   表

示  和  两个不可约张量耦合而成的  秩不可约张量。

即有

[AλBλ′ ]KM =
∑
mm′

⟨λmλ′ m′ |KM⟩AλmBλ′m′。 (36)

⟨λmλ′ m′ |KM⟩ (Aλ ·Bλ)

A B

其中求和中的系数  为CG系数。 

表示两个不可约张量  与  的标量积。

N J总核子数为   、总角动量为   的核态的波函数可

以一般地表述为∣∣N, J⟩ = ∑
nµτµ
αµJµκ

CnµτµαµJµκ

∣∣ ∏
nµτµ
αµJµκ

∣∣nµτµαµJµ

⟩
;κ; J

⟩
,

(37)

CnµτµαµJµκ∣∣ ∏
nµτµαµJµκ

∣∣nµτµαµJµ

⟩
;κ; J

⟩
nµ

jµ τµ jµ

0

U(N) IRREP [1n] U(N) ⊃ SP(N)

[1nµ ] = ⊕τµ(1
τµ) n = min(nµ,

N − nµ) αµ nµ

τµ Jµ κ

nµ τµ αµ Jµ J

  为 需 要 通 过 求 解 确 定 的 系 数 ，

 为波函数的基，其中   为

单核子轨道  上的核子数，  为单核子总角动量为 

的核子的辛弱数 (即不配成角动量为   的对的粒子数)，

它可以由   的      按群链   约

化 [即   ]的规则确定。记  

 ，其约化分支律如式 (22)所示。  为区分  、

 、   都相同的态的附加量子数，   为区分各相同的

 、  、  、  耦合成的相同的  的附加量子数。

CnµτµαµJµκ

jµ

Jµ ηµ

αµ ∈ [1, ηµ]

⟨jµnµ τµ αµ Lµ

∣∣a†µ∣∣jµnµ−1 τ ′
µ α

′
µ L

′
µ⟩ ⟨jµnµ τµ αµ Lµ∣∣ãµ∣∣jµnµ+1 τ ′

µ α
′
µ L

′
µ⟩

为具体求解并确定由多个 (价)费米子形成的原子

核的状态和性质 (波函数、能谱、电磁极矩和电磁跃迁

强度等)，我们需要先选定描述系统状态的基矢，计算

并确定哈密顿量在相应基矢空间中的哈密顿量矩阵，进

而对角化前述的哈密顿量矩阵、确定相应状态的能量和

相应的波函数 (即确定前述的  )；然后通过计

算电磁多极矩算符的矩阵元，进而确定系统的电磁性质。

具体地，我们首先确定上述基矢，然后计算出所有的矩

阵元，再求解线性方程组。为确定基矢，我们需要采

用 4.1.2小节所述的方法确定全同的角动量为  的核子

耦合形成的总角动量  和相应的重复度  ，从而，取

 即可确定附加量子数。为确定矩阵元，我

们先通过插入完备集将问题转化为计算单体算符的矩阵

元   和  

 等。利用 4.1.3小节所述的方法，我

们可以很好地解决这一问题。进而求解能量本征方程，

确定原子核的能量本征值和本征函数。再进而，利用所

得波函数，再利用 4.1.3小节所述的方法计算单体矩阵

元，即可确定确定原子核的电磁性质 (磁矩、电多极矩

  · 346 · 原  子  核  物  理  评  论 第 37 卷  



(电偶极矩、电四极矩、电八极矩等)、电磁跃迁强度

(几率)等)。

4.3.3    考虑对效应的壳模型

(1) 物理思想

SD

人们知道，多数原子核由核子 (包括质子和中子)

组成，相当一部分原子核还包含超子，核子和超子都是

费米子，因此原子核是一个包含多个费米子的量子束缚

系统。但直接在费米子层次上对原子核的性质进行研究

遇到模型空间太大等问题。值得庆幸的是，集体运动等

现象表明，原子核内的组分粒子具有配对的现象。于是

人们引入BCS(Bardeen-Cooper-Schrieffer)方法、无规

位相近似 (RPA)方法等进行研究，并发展建立了相互

作用玻色子近似方法 (IBA，下节对之予以介绍)，并在

具体的研究中取得巨大成功。虽然可以通过玻色映射方

法在 IBA与壳模型建立起联系，但其微观基础仍需探

究。于是人们直接从构建费米子对出发研究原子核的结

构等性质，从而实现建立既有小的模型空间、又有清楚

确定的微观基础的模型理论的目标。这样的具体描述费

米子对系统的动力学对称性等性质的理论模型，按其发

展过程，分别称为Ginocchio模型 [39]、费米子动力学对

称模型 [40]、  对壳模型 [41]等。

(2) 代数结构与动力学对称性

S D

G

F P S D

S D∣∣jm⟩ l

j k i

k i

基于原子核集体运动源于对关联的基本观点 (实际

上，定量的关系不久前才建立 [42])和 IBA对很多原子

核的结构和性质描述的成功 (考虑到其微观基础不很清

楚，人们常称之为 IBM)，人们得知，由核子配成的角

动量为 0的  对和角动量为 2的  对对原子核的性质具

有决定性的作用 (当然，对高自旋、大形变等原子核态，

还需要   对等高角动量对。为统一描述偶宇称态和奇

宇称态，还需要   对和   对。下面仅以由   对和   对

构成的系统为例进行具体讨论)。考虑对两个全同的费

米子构成  对和  对进行描述的方便，且避免描述单核

子态  时核子的轨道角动量  不完全确定的问题，人

们将单核子总角动量   视为由   部分与   部分简单叠加

而成，即有单核子态的  –  基表述

a†jmj
=
∑
mµ

⟨km iµ
∣∣j mj⟩b†kmiµ ,

k i

a†jmj
b†kmiµ

k i

k

其中  称为赝轨道 (角动量)量子数，  称为赝自旋量子

数，  、  分别为通常的壳模型中的单核子态产

生算符、  –  基下的单核子态产生算符。于是，核子对

有由  活跃形成的对
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√
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Ωki=
1
2
(2k + 1)(2i+ 1)其中  。

S

k i k=1 , i= 3
2
。

为保证这样的   对和D对具有费米子对的基本性

质 (全反对称)，  和  的取值只能是 

S†S D† ·D
S

k i

核子之间除有配对现象和对作用 (  、   、

等，其中  、D为相应对湮灭算符)外，还有多极作用

(如 (35)式示)。核子的多极 (矩)算符也有   活跃和   活

跃两种构成方式，它们是

PR
k,q =

√
Ωki

2

(
b†1ib̃1i

)R0

q0
, (R = 0, 1, 2) ,

PR
i,q =

√
Ωki

2

(
b†
k 3
2
b̃
k 3
2

)0R
0q
, (R = 0, 1, 2, 3)。

k S 6

9 21

  活跃情况下，  对和D对产生、湮灭算符各  个，

多极 (矩)算符共   个，总共   个算符。具体计算这些

算符的对易关系可知，它们构成 sp(6)李代数。由此可

知，这样的系统具有SP(6)对称性。

i S 6

16 28

  活跃情况下，   对和D对产生、湮灭算符也各  

个，多极 (矩)算符共  个，总共  个算符。具体计算

这些算符的对易关系知，它们构成 so(8)李代数。由此

知，这样的系统具有SO(8)对称性。

i k

Ω= 2j+1

2

SU(4Ω)

显然，还可能有  和  都活跃的情况。这种情况下，

系统的最大对称群为 SO(24)。更一般地，如前所述，

最大对简并度为  的系统的最大费米子动力学对

称性群为  。

l

g9/2

0

中重核的每一壳层除具有正常的单核子态外，还有

入侵态 (由自旋-轨道耦合作用导致高  的能级降低很多

所致，例如 pf壳中的  态即为入侵态)，常称之为非

正常态。为考虑入侵态与正常态的区别，记之只能耦合

成角动量为  的对，其对产生算符为
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√
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单极作用算符为
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其中  。

{S† ,S ,P0}
SU(2)

具体计算对易关系知，  构成一 su(2)李

代数。由此知，一个壳层内的非正常态具有  对称

性。对正常态，当然也有SU(2)对称性。

为统一描述角动量为 0的对，还引入广义的对产生
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ST †
P 0T算符  和广义单极算符 (亦即核子对数算符) 

ST †
= S† + S† =

∑
j

√
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2

(
a†ja

†
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,
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SUT (2)

其中求和包括正常单核子态和非正常单核子态。显然，

 也构成一SU(2)李代数，记系统的相应

于此的对称性群为  。

SP(6)⊗ SU(2)
SO(8)⊗ SU(2)

k i

总之，一个壳层内的态具有  对称性，

或  对称性。这样的直接在费米子层次上

考虑配对效应及相互作用的模型称为费米子动力学对称

模型 (简记为FDSM)[40]。仅考虑正常态而不考虑非正

常态 (入侵态)的   –   基模型实际在 FDSM建立之前由

Ginocchio[39]提出，因此常称之为 Ginocchio模型 (或

SO(8)模型、SP(6)模型)。

⊗
⊗

具体分析对易关系知，上述 SO(8)群有 SO(7)、

SO(6)、 SO(5)  SU(2)等 子 群 ， SP(6)群 有 SU(3)、

SU(2)  SO(3)等子群，因此 SO(8)模型有 4条动力学

对称性群链、SP(6)有 3动力学对称性群链。关于这些

动力学对称性群链的具体表述、其中各群的生成元、二

阶Casimir算子、IRREP及二阶 casimir算子的本征值

等，限于篇幅，这里不具体列出，有兴趣的读者请参阅

原始文献，或文献 [2]中的综述。

为具体研究原子核的质量、能谱等性质，人们常取

某一对称性极限的态为基矢，于是，人们常具体讨论各

种动力学对称性极限下的状态。由于非正常态部分比较

简单 (最大对称群为 SU(2))，其与正常态部分的耦合

(仅在 SU(2)或U(1)层次)也比较简单，因此我们对正

常态部分的群链及群表示约化的分支律简要介绍如下。

1) SO(7)动力学对称性

IRREP

描述SO(8)的破缺到正则子群SO(7)的动力学对称

性群链及其中各群的  的标记为

SO(8) ⊃ SO(7) ⊃ SO(5)⊗ U(1) ⊃ SO(5) ⊃ SO(3) ,
N1 ω1 τ n1 τ L

IRREP N1 (⩽ Ω
2
) IRREP (θ1, θ2, θ3) =

(ω1, 0, 0) = (ω1)

谱生成规则 (群表示约化分支律)为：相应于 SO(8)的

    ， SO(7)的   为  

 ，其中

ω1 = N1 −
ω

2
=
{
N1, N1 − 1, N1 − 2, · · · , 1, 0

}
;

ω
2

S

IRREP ω1 ⊗ IRREP

其中   为由正常态费米子配成的   对的数目。相应于

SO(7)的     ，SO(5)  U(1)的  为

(τ, ξ)⊗ [n1] =(τ, 0)⊗ [n1] =

N1∑
l=ω1

[
l−ω1

2

]∑
R=0(

l − ω1 − 2R, 0
)
⊗
[
±
(
N1 − ω1

)]
;

IRREP τ IRREP L相应于SO(5)的     ，SO(3)的     为

L =τ − 3n∆, τ − 3n∆ + 1, τ − 3n∆ + 2, · · · ,
2(τ − 3n∆)− 2, 2(τ − 3n∆) ,

n∆=0, 1, 2, · · · ,
[
τ
3

]
其中   (物理上，对应于三个费米子

形成的总赝自旋为0的集团的数目)。

2) SO(6)动力学对称性

IRREP

描述SO(8)的破缺到正则子群SO(6)的动力学对称

性群链及其中各群的  的标记为

SO(8) ⊃ SO(6) ⊗ U(1) ⊃ SO(5) ⊃ SO(3) ,
N1 σ n1 τ L

IRREP N1 (⩽ Ω
2
)

IRREP (σ1, σ2, σ3)=(σ, 0, 0)=(σ)

谱生成规则为：相应于 SO(8)的      ，

SO(6)的  为  ，其中

σ = N1 , N1 − 2 , N1 − 4 , · · · , 0或 1 ;

IRREP σ IRREP τ相应于SO(6)的     ，SO(5)的     为

τ =
{
σ, σ − 1, σ − 2, · · · , 1, 0

}
;

IRREP τ IRREP LSO(5)的      到 SO(3)的      的约化规则与

前述的相同 (下同，不再重述)。

3) SO(5)动力学对称性

SO(5)⊗ SU(2)

IRREP

描述 SO(8)的破缺到   的动力学对称

性群链及其中各群的  的标记为

SO(8) ⊃ SO(5) ⊗ SU(2) ⊃ SO(5) ⊃ SO(3) ,
N1 τ ν1 τ L

IRREP N1 (⩽ Ω
2
)

κ=N1, N1 − 1, N1 − 2, · · · , 1, 0 IRREP
τ IRREP ν1

谱生成规则为：相应于 SO(8)的     ，记

 ， 则 SO(5)的  

 、SU(2)的     分别为

τ = κ, κ− 2, κ− 4, · · · , 0或 1 ,

ν1 = 2κ。

4) SU(3)动力学对称性

SU(3)

IRREP

描述 SP(6)的破缺到  的动力学对称性群链及

其中各群的  标记为

SP(6) ⊃ SU(3) ⊃ SO(3) ,
N1 (λ, µ) L

IRREP N1

S IRREP (λ, µ)

谱生成规则为：对 SP(6)的      (正常态费米子

配成的   对和D对数)，相应的 SU(3)的     

为
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(λ , µ) = (2N1 − 6p− 4q , 2q) ,

p, q λ ⩾ 0, µ ⩾ 0

IRREP (λ, µ) IRREP L

其中  为保证  的所有非负整数。相应于

SU(3)的     ，SO(3)的     为

L =

{
λ+ µ, λ+ µ− 2, · · · , 0或 1, 如果K = 0;
λ+ µ, λ+ µ− 1, · · · ,K + 1, K, 如果K ̸= 0;

K=min(λ, µ), min(λ, µ)− 2, · · · , 0 1其中  或  。

5) SU(2)动力学对称性

SU(2)⊗ SO(3)

IRREP

描述 SP(6)的破缺到   的动力学对称

性群链及其中各群的  标记为

SP(6) ⊃ SU(2) ⊗ SO(3) ⊃ SO(3) ,
N1 ν1 L J

N1

κ=N1, N1 − 1, N1 − 2, · · · , 1, 0 IRREP
ν1 IRREP L

谱生成规则为：相应于 SP(6)的不可约表示   ，记

 ， 则 SU(2)的  

 、SO(3)的     分别为

ν1 = 2κ ,

L = λ , λ+ 1 , λ+ 2 , ; · · · , 2λ− 2 , 2λ ,

其中

λ = τ , τ − 3 , τ − 6 , · · · , τ − 3
[τ
3

]
;

τ = κ, κ− 2, κ− 4, · · · , 0或 1。

ν1 ⊗ L J

J = L

从形式上看，相应于实验观测的守恒的角动量的

SO(3)的不可约表示为   对应的各种   ，事实上，

从前述不同种类的费米子对的数目及角动量的关系知，

 。

IRREP

具体讨论系统的能谱时，一般采用的方案是，把某

一动力学对称性下的系统的哈密顿量表述为动力学对称

性群链中各群的Casimir算子的线性叠加的形式 (考虑

单体和两体相互作用情况下，对Casimir算子仅需考虑

到二阶 )，将根据前述的谱生成规则确定的各群的

  (标记系统状态的量子数)代入Casimir算子的本

征值的表达式，即可确定系统的能谱。由前述的谱生成

规则知，FDSM的 SO(7)、SO(5)和 SU(2)动力学对称

性的能谱对应于振动谱，SU(3)动力学对称性的能谱对

应于转动谱。将系统的跃迁算符表述为系统的对称性群

的生成元的线性叠加，利用群表示的直积约化规则，即

可得到相应的跃迁矩阵元，进而即可得到可与实验测量

结果比较的跃迁几率。

对于实际的原子核，由于其中组分粒子间的相互作

用的复杂性，严格具有上述某一动力学对称性极限的极

少，从而通常都是处于两种或多种动力学对称性混合

(或者说，两种或多种动力学对称性间的过渡)的状态。

与通常的求解量子力学的本征值问题一样，人们常取具

有某一动力学对称性 (例如，SO(7))的波函数作为基。

系统的哈密顿量常记为

Ĥ =ε0n̂0 + ε1n̂1 +
∑
ϕ,ϕ′

Gϕϕ′
0 S†

ϕ · Sϕ′+∑
ϕ,ϕ′

Gϕϕ′
2 D†

ϕ ·Dϕ′ +
∑
r,ϕ,ϕ′

Bϕϕ′
r P r

ϕ · P r
ϕ。

按照 4.1.3节所述的方法计算出各单体算符的矩阵元，

进而即可确定相互作用的哈密顿量，并求得其本征值和

本征波函数。实际求解需要极大的数值计算工作量。

FDSM不仅已在描述原子核的性质方面获得成功，

还已被推广到描述超导态及其相变 (文献 [43]等)，并有

可能描述量子霍尔效应 (例如，文献 [44]等)。限于篇幅，

这里不予具体介绍。关于超导方面的应用，可参阅原始

文献，也可参阅文献 [2]中的综述。

4.4    基于玻色子近似的原子核模型——相互作用玻色

子模型

L=0

s d

前已提及，原子核具有多种不同模式的集体运动，

相应地，原子核呈现不同的形状。对短程剩余相互作用

的分析表明，同一子壳中的一对核子有很强的倾向组成

 、2的核子对。对玻色展开方法的深入研究表明，

偶偶核低能集体运动态的性质主要由这些满壳层外价核

子所组成的核子对、并且粒子数守恒的相互作用决定。

于是，对于中重及重偶偶核的低激发偶宇称态，Iachello

等 [45]采用   和   玻色子来模拟这些费米子对，唯象地

引入它们之间的相互作用，建立了壳模型的相互作用玻

色子近似理论。但事实上，这些近似为玻色子的核子对

的结构并不完全清楚，因此多数学者称之为相互作用玻

色子模型 (简称 IBM)。由于玻色子数守恒，IBM具有

确定的对称性 (据此，人们称之为一种代数模型)，于是

人们可以从群结构角度出发构造Hamiltonian和相应的

波函数，研究其动力学对称性破缺。并且，利用相干态

理论研究原子核的集体运动模式和形状相变。本节简要

介绍 IBM的物理思想、理论框架、最简单的相互作用

玻色子模型 (IBM1)、IBM在原子核集体运动模式及形

状相变研究中的应用。

4.4.1    相互作用玻色子模型的基本思想和理论框架

(1) 基本思想与物理假定

相互作用玻色子模型的基本思想很简单，它假设偶

偶原子核包含一个不活泼的核心 (双满壳)和偶数个价

核子；这些价核子两两配成对，这些核子对可以看作是

玻色子，这些玻色子之间有相互作用；玻色子的数目等

于满壳外价核子数的一半或价空穴数的一半 (分别对应
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于价核子不超过、超过半满壳的原子核)。

(2) 理论框架与分类

1) 理论框架结构

⟨i⟩   哈密顿量

lα lβ

b†α bβ

记角动量分别为  、  的玻色子的产生、湮灭算符

分别为  、  ，则包含玻色子的单体和两体相互作用

并且保持粒子数守恒的哈密顿量可以表述为

H = E0 +
∑
αβ

εαβb
†
αbβ +

∑
αβγδ

1

2
uαβγδb

†
αb

†
βbγbδ。 (38)

lα + lβ + lγ + lδ=为保证宇称守恒要求  偶数。通常，

人们也将之表示为多极展开的形式，即有

H = E0 +
∑
αβ

εαβb
†
αbβ +

∑
K

ΛK(b†αb̃γ)
K · (b†β b̃δ)K , (39)

ΛK K b̃α=(−1)lα+mαblα(−mα)

b†lαmα
lα [AB]K A B

K

(Aλ ·Bλ) A

B

其中  为  极相互作用强度， 

为与  共轭的  秩不可约张量，  表示  和 

两个不可约张量耦合而成的  秩不可约张量 (耦合规则

如式 (36)所示)，  表示两个同秩不可约张量 

与  的标量积。

⟨ii⟩   波函数

N L总玻色子数为   、总角动量为   的状态的波函数

可以一般地表示为

|N,L⟩ =
∑

nµτµαµ

Anµτµαµ

∣∣∣ ∏
nµτµαµ

[∣∣ns;nµτµαµLµ

⟩]
κ;L

⟩
,

ns=N −
∑
µ

nµ s nµ

lµ τµ lµ

0 αµ nµ

τµ Lµ 1

τµ Lµ SO(2lµ + 1) SO(3)
ηµ ηµ

ηµ=0 Anµτµαµ

其中  为系统中的  玻色子数，  为角动

量为   的玻色子数，   为角动量为   的玻色子的辛弱

数 (即不配成角动量为  的对的粒子数)，  为区分  、

 、   都分别相同的态的附加量子数，其数值取   到

由   约化到   (  到   的约化)的重复度

 之间的各种值 (  的值由 4.1.2节所述的方法确定。

 说明相应的态不存在)。系数  通过对角化

哈密顿量确定。

⟨iii⟩   跃迁算符

为了研究原子核的电磁性质及能级间的电磁跃迁，

还要研究玻色子与电磁场的相互作用。局限于单体相互

作用的跃迁算符可以用玻色子的产生、湮灭算符耦合成

的不可约张量表述为

TK
µ = t00δK0 +

∑
ll′

tKll′ [b
†
l b̃l′ ]

K
µ。 (40)

K对这一表述中的秩数   具体化，即有 E0、M1、

E2、M3、E4等跃迁的算符，由之即可计算原子核的相

应极次的电磁 (约化)跃迁几率和多极矩 (例如，电四极

矩、磁矩、电偶极矩等)等电磁性质。并可利用多极展

开形式简单地表述，例如：

T̂ E0
0 =γ′

0 +
∑

αβ′
0n̂α ,

T̂M1
µ =β′

1L̂µ ,

T̂ E2
µ =α2Q̂µ ,

T̂M3
µ =β3Ûµ ,

T̂ E4
µ =β4V̂µ , (41)

L̂ Q̂µ=Q̂
2
µ

Ûµ= Û
3
µ Q̂µ= V̂

4
µ

其 中   为 角 动 量 算 符 ，   为 电 四 极 算 符 ，

 为磁八极算符，  为电十六极算符。

2) 分类

根据模型中考虑的玻色子的组分，人们将 IBM分

为 IBM1、IBM2、IBM3、IBM4、sdgIBM、spdfIBM、

spdfgIBM、IBFM、IBFFM等。

⟨i⟩   IBM1

s d

s d

IBM1即最简单的玻色子组分仅为   和   、并且不

区分质子玻色子和中子玻色子的相互作用玻色子模型。

由于  玻色子仅有一个自由度、  玻色子有五个自由度，

由幺正群的玻色子实现理论知，该系统的最大对称群

为U(6)，该对称群有三种破缺方式，相应的最大子群

分别为U(5)、SU(4)(即SO(6))、SU(3)。

⟨ii⟩   IBM2

s d

π ν

Uπ(6)⊗ Uν(6) Uπ(6) Uν(6)

Uπ+ν(5) SOπ+ν(6) SUπ+ν(3) SU∗
π+ν(3)

F

IBM2为区分质子玻色子和中子玻色子、并且它们

的组分都为  玻色子和  玻色子的相互作用玻色子模型。

分别以  、  标记质子玻色子、中子玻色子，则整个原

子核的对称性为  。考虑  、  的

子群结构、并认为这些质子玻色子子群和中子玻色子子

群可以在相同的水平上耦合，则知，IBM2下的原子核

具有   、   、   、   四种

动力学对称性。显然，IBM2的态空间比 IBM1的态空

间大了很多，由之可以描述同位旋混合对称态 (在

IBM2中，人们还常以  旋二重态分别标记质子玻色子、

中子玻色子)和三轴形变态、剪刀态等奇异核态。限于

篇幅，这里不予具体讨论，有兴趣深入了解的读者可以

参阅龙桂鲁的博士论文 (清华大学，1987年)[46]。

⟨iii⟩   IBM3和 IBM4

−1

+1

0

前述的 IBM1和 IBM2都仅适用于描述重核和中重

核的低激发态的性质。对于轻核，价质子和价中子处于

相同的大 (主)壳，那么，为了利用相互作用玻色子模

型研究轻核的低激发态的性质，在考虑质子玻色子和中

子玻色子 (对应核子对的同位旋的第三分量分别为  、

 )的同时，还需要考虑质子中子玻色子 (相应核子对

的同位旋的第三分量为   )。由于核子为费密子，在考
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s=0

τ=1 s=1 τ=0

s=0 τ=1

s=0 τ=1 s=1

τ=0

虑玻色子是核子对的近似的本质下，我们需要考虑泡利

原理的限制，于是玻色子可以分为自旋  、同位旋

 与自旋   、同位旋   的两类。仅考虑自旋

 、同位旋   的玻色子的 IBM称为 IBM3，既考

虑自旋   、同位旋   的玻色子又考虑自旋   、

同位旋  的玻色子的 IBM称为 IBM4。

UST (6)

0 2 s d

U(36) ⊃ Usd(6)⊗ UST (6) Usd(6)

U(5) SO(6) SU(3) UST (6)

SUST (3) SOS(3)⊗ SOT (3)

SU(3) SO(3)

由前述讨论知，IBM4中的玻色子的自旋-同位旋空

间为 6维，即有   对称性。在简单的仅考虑角动

量分别为   、   的   、   玻色子的情况下，原子核的最

大对称性则为  。由于  具

有  、  、  三种动力学对称性，而 

具有   和   两种动力学对称性，

在相同对称性层次上耦合而成的原子核的对称性则有

 和  两种。由于质子中子玻色子可以由偶数

个价核子中的核子形成，也可以由奇数个价核子中的核

子形成，因此 IBM4既适用于轻偶偶核，也适用于轻奇

奇核。有关具体讨论请参见文献 [47]，这里不再细述。

⟨iv⟩   sdgIBM

s d

g

为描述稀土区大形变原子核的性质和十六极形变核

的性质，人们提出不仅需要  玻色子和  玻色子，还需

要考虑角动量为 4的  玻色子，从而提出了 sdg相互作

用玻色子模型。sdgIBM具有 U(15)对称性，并具有

SU(6)、SU(5)、SU(3)三种动力学对称性群链，较系统

的讨论请见文献 [48]。将通常由最大子群的全对称表示

的态空间描述原子核低激发态性质的研究方案推广到考

虑非全对称表示，利用 sdgIBM的 SU(5)对称性较好地

描述了超形变核态的转动带的性质 [49]。

⟨v⟩   spdfIBM与 spdfgIBM

f p

g

为统一描述原子核的四极形变和具有空间反演不对

称性的八极形变态，人们引入  玻色子和  玻色子，建

立了 spdf相互作用玻色子模型。spdfIBM的最大对称

群为U(16)，它具有 142条具有物理意义的群链 (不仅具

有U(15)、O(16)、SU(5)、O(6)、SU(3)动力学对称性，

还具有O(10)和O(4)等动力学对称性)，较详细的讨论

请参见刘玉鑫的博士论文 (清华大学，1992年)[50]。将

偶宇称部分扩展到还包含  玻色子，即有 spdfgIBM.

⟨vi⟩   IBFM与 IBFFM

UB(m)⊗ UF (n) m=
∑
li

(2li + 1) li

为利用 IBM的思想和方法研究奇-A核低激发态的

性质，人们提出了相互作用玻色子-费密子模型 (简称

IBFM)，其基本思想是将偶偶部分近似为玻色子系统，

单个的 (或拆对的)核子 (费米子)与玻色子部分之间有

相互作用。 IBFM中，原子核的最大对称群是

 ，其中  (  为所考虑的玻

n=
∑
ji

(2ji + 1) ji

j= 3
2

j= 3
2

1
2

j= 1
2

3
2

5
2

j= 1
2

3
2

5
2

7
2

色子的各个组分的单粒子角动量)，   ( 

为所考虑的单核子可能占据的核子的各单粒子组态的角

动量)。这些玻色子的对称群与费密子的对称群可以耦

合成超对称群，从而原子核具有动力学超对称性。对玻

色子部分考虑最简单的U(6)对称性，对费密子考虑不

同的单粒子轨道，提出了U(6/4)(  )、U(6/6)(  、

 )、U(6/12)(  、  、  )、U(6/20)(  、  、  、  )

等动力学超对称性，并且实验上找到了一些具有动力学

超对称性的原子核。有兴趣深入探讨的读者可参见文

献 [51−52]等。

将 IBFM的思想进一步扩展，人们还提出了

IBFFM，较好地描述了一些奇奇核的低激发态性质。

4.4.2    最简单的相互作用玻色子模型—IBM1

s d

上小节的概述表明，IBM1是不区分质子玻色子和

中子玻色子、且组分仅包括  和  玻色子的相互作用玻

色子模型，因此，IBM1是最简单的 IBM。由于其简单，

人们对 IBM1的认识最深入最清楚。相应地，应用也最

广泛。因此，本小节对之给予较具体的讨论。

(1) 理论框架

1) 哈密顿量

s d

由式 (38)或式 (39)所示的 IBM的哈密顿量的一般

形式可知，仅包含  和  玻色子的 IBM1的哈密顿量可

以表述为

H =h′
0 + ε′d(d

† · d̃)+
1

2

∑
K=0,2,4

√
2K + 1C ′

K

[[
d†d†

]K [
d̃d̃
]K]0

+

v0

{[
d†d†

]0
[ss]

0
+ h.c.

}
+

v2

{[[
d†d†

]2 [
d̃s
]2]0

+ h.c.

}
。 (42)

h′
0该式表明，除去   外，该模型只有六个可调节的

参量，因此最一般情况下的 IBM1是一个六参数的模型。

在实际应用中也常采用多极展开形式：

H =E′
0 + εnd + c1(L̂ · L̂) + c2

[
Q̂(χ) · Q̂(χ)

]
+

c3(Û · Û) + c4(V̂ · V̂ ), (43)

其中

n̂d = (d† · d̃) ,
L̂q =

√
10[d†d̃]1q ,

Q̂µ(χ) = [d†s̃+ s†d̃]2µ + χ[d†d̃]2µ ,

Ûµ = [d†d̃]3µ ,

V̂µ = [d†d̃]4µ。
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2) 跃迁算符

s d

将上一小节中关于电磁跃迁算符讨论的结果应用到

仅有  玻色子和  玻色子的情况知，IBM1中的E0、M1、

E2、M3、E4跃迁算符可以简单地表示为

T̂ E0
0 =γ′

0 + β′
0n̂d ,

T̂M1
µ =gL̂µ ,

T̂ E2
µ =e2Q̂µ(χ) ,

T̂M3
µ =g3Ûµ ,

T̂ E4
µ =e4V̂µ , (44)

gi ei其中  常被称为转动 g因子，  等常被称为相应极次的

有效电荷。

3) 波函数

s

d

N L

将上一小节中关于波函数讨论的结果应用到仅有 

玻色子和  玻色子的情况可知，IBM1下，总玻色子数

为  、角动量为  的原子核的波函数可以表示为

|N,L⟩ =
∑
ndτα

Andτα
|ns, (ndτα)L⟩ , (45)

nd d ns + nd=N τ d

α nd τ L

1 τ L SO(5) ⊃ SO(3)
Andτα

其中   为   玻色子数，   ，   为   玻色子的

辛弱数，  为区分  、  、  分别相同的态的附加量子

数，其数值取   到由   约化到   (  的约

化)的重复度之间的各种值。系数  通过对角化哈

密顿量确定。

(2) 代数结构与动力学对称性极限

s d在 IBM1中，原子核是由   玻色子和   玻色子形成

的束缚系统，由典型李群的玻色子实现理论可知道，

该系统具有确定的对称性，并具有一些动力学对称性

极限。

1) 对称性群及其Casimir算子

s d

0 2

  玻色子和  玻色子的产生算符及其共轭算符分别

为  秩、  秩不可约张量，由之构成36个不可约张量：

G0
0(s, s) = [s†s]00, G0

0(d, d) = [d†d̃]00, (各 1个)

G1
µ(d, d) = [d†d̃]1µ, (3个)

G2
µ(d, d) = [d†d̃]2µ, (5个)

G2
µ(d, s) = [d†s]2µ, G2

µ(s, d) = [s†d̃]2µ, (各 5个)

G3
µ(d, d) = [d†d̃]3µ, (7个)

G4
µ(d, d) = [d†d̃]4µ, (9个)

Gk
q(l, l

′)=

[b†l b̃l′ ]
k
q , (l, l

′=0, 2)

计算其间的对易关系知，这 36个张量算符 ( 

 )构成U(6)群的生成元。

考察U(6)群的上述 36个生成元知，该U(6)群有子

群U(5)、SO(6)(SU(4))、SU(3)、SO(5)、SO(3)，这些

子群的无穷小生成元如表1所列。
 

表 1    IBM1的对称性群链中各子群的生成元
 

群 生成元

U(5) [d†d̃]kq , k = 0, 1, 2, 3, 4 

SU(3) L̂q =
√
10[d†d̃]1q , Q̂µ = [d†s+ s†d̃]2µ −

√
7

2
[d†d̃]2µ 

SO(6) [d†d̃]1q , [d†d̃]3ν , [d†s+ s†d̃]2µ 

SO(5) [d†d̃]1q , [d†d̃]3ν 

SO(3) Lq =
√
10[d†d̃]1q 

 
 

存在子群SO(3)表明，原子核具有空间转动不变的

子空间。再考察各子群的特征知，上述U(6)破缺到表

示空间具有转动不变性的群链 (以SO(3)结尾)的最大对

称群分别为U(5)、SO(6)、SU(3)，由此知，IBM1具有

三种动力学对称性，相应的对称性群链为：

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) , (I)
U(6) ⊃ SU(3) ⊃ SO(3) , (II)
U(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3) , (III)

这些动力学对称性群链中各子群的Casimir算子的算符

表达形式及本征值如表2所列。

 
 

表 2    对称性群链中各子群的Casimir算子及其本征值
 

阶数 表达形式 本征值

C1U(5) 
√
5[d†d̃]00 nd 

C2U(5) 
4∑

k=0
[d†d̃]k · [d†d̃)]k 

nd(nd + 4) 

C2SU(3) 2Q̂ · Q̂+ 3
4
L̂ · L̂ λ2 + µ2 + λµ

+3(λ+ µ)
 

C2O(6) [d†s+ s†d̃]2µ · [d†s+ s†d̃]2µ
+2

∑
k=1,3

[d†d̃]kq · [d†d̃]kq 
σ(σ + 4) 

C2O(5) 2
∑

k=1,3
[d†d̃]kq · [d†d̃]kq τ(τ + 3) 

C2O(3) L̂ · L̂ L(L+ 1) 

 
 

C1U(5) C2U(5) C2SO(6) C2SU(3) C2SO(5)

C2SO(3)

前已说明，IBM1是一个最多 6参量的模型，其哈

密顿量最多只有 6个独立的项。上述对称性表明，描述

IBM1的动力学对称性群链中也只有 6个线性独立的

Casimir算子  、  、  、  、  、

 ，因此 IBM1的哈密顿量还可以由上述Casimir

算子表述为

H =h′′
0 +A1 C1U(5) +A2 C2U(5) +A3 C2SU(3)+

A4 C2SO(6) +BC2SO(5) + C C2SO(3)。 (46)

h′′
0

注意，这里没有出现 U(6)群的 Casimir算子，这

是因为对于具有确定总玻色子数的状态，U(6)群的

Casimir算子的本征值为常量，其贡献已包含在常量  中。
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上述讨论表明，IBM1的哈密顿量有正规排列、多

极展开和Casimir算子三种表述形式，利用玻色子的产

生算符、湮灭算符之间的对易关系和上述各子群的

Casimir算子的定义，不难得到这三种表述形式之间的

转换关系，这里不再具体列出。

2) 动力学对称性极限

0

上面给出了 IBM1的三个动力学对称性群链，于是

可以利用其中某一个群链中各群的不可约表示对应的量

子数来标记 IBM1中原子核的状态，并对之进行分类。

并且，如果哈密顿量只包含某一群链中的群的Casimir

算子，则按这一群链表示的态矢就是这一哈密顿量的本

征态矢，本征能量就是这些Casimir算子的本征值的线

性组合，计算将大大简化。由式 (46)知，只需要保持

某一动力学对称性群链中各子群的Casimir算子的项中

的系数不为   就可以实现上述极限情况。下面分别对

IBM1的三种动力学对称性极限予以讨论。

⟨i⟩   U(5)极限

具有U(5)对称性的哈密顿量为

H = h′′
0 +A1 C1U(5) +A2 C2U(5) +BC2SO(5) + C C2SO(3),

ψU(5)=
∣∣N,nd, τ, α, L,M

⟩
N

nd τ L M

d 0

d z

α N nd τ L

d L=0

n∆ α=n∆

波函数可以表示为   ，其中  、

 、   、   、   分别为标记 U(6)、 U(5)、 SO(5)、

SO(3)、SO(2)群的 IRREP的量子数，其物理意义分别

是系统的总玻色子数、  玻色子数、不配成角动量为 

的对的  玻色子的数、角动量量子数、角动量在  方向

上的投影量子数，   为区分   、   、   、   等都分别

相同的态的附加量子数，记 3个   玻色子组合成  

的集团的数目为  ，则可取  。由群表示的约化

规则可知，U(5)对称性下的谱生成规则 (各量子数的取

值规则)如下：

N对一个确定的总玻色子数  ，

nd = N, N − 1, · · · , 1, 0 ;

d nd对一个确定的  玻色子数  ，

τ = nd, nd − 2, · · · , 1或 0 (nd =奇数或偶数) ;

τ对一个确定的  (与费米子下的相同)，

L =τ − 3n∆, τ − 3n∆ + 1, · · · , 2 (τ − 3n∆)−
2, 2

(
τ − 3n∆

)
。

该态的能量可以由标记它的量子数表述为

E [N,nd, τ, n∆, L,M ] = E0 +A1nd+

A2nd(nd + 4) +B τ(τ + 3) + C L(L+ 1)。 (47)

N=3
110Cd

以   为例的 U(5)对称核的典型能谱及其与

 原子核的实验测量能谱的比较如图2所示。
 

3

2

E
/M

eV

1

0

48Cd62

110

Exp.

6+

4+

3+ 2+

0+

0+

2+4+

2+

0+
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Th.
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(τ, n∆)

图 2    U(5)动力学对称性的典型能谱 (其中上侧标记的

量子数为   ，自下而上各组态分别对应 nd=0,
1, 2, 3)及与 110Cd的低激发态能谱的实验观测结果

的比较 (取自文献 [53])
 

 

C1U(5)

由图2知，U(5)对称的核态具有非简谐振动的特征，

这是因为，按照动力学对称性的概念，哈密顿量中

 起主要作用，其它项都是微扰，如果将其它项完

全忽略，则为典型的简谐振动。

如前所述，在 IBM中，E2跃迁算符是保持总玻色

子数不变的2秩不可约张量算符，并可一般地表述为

T̂ (E2)q = e2Q̂
2
q(χ) = e2{(s†~d+ d†~s)2q + χ(d†~d)2q} , (48)

e2 χ e2 χ T̂ q

T̂ q

其中   、   是参数，   为有效电荷，   决定   (E2)  中

两项的相对重要性，称为   (E2)  的形式参数 (或结构

参数)。E2跃迁的约化跃迁几率为

B(E2, Li → Lf ) =
|⟨Lf∥T̂ (E2)∥Li⟩|2

2Li + 1
。

χ=0在U(5)对称性极限下，常取  ，于是有：

T̂ (E2)q = e2(s
†d̃+ d†s̃)2q。

T̂ (E2)q对U(5)对称性核态，计算  的约化矩阵元则

得 其E2跃迁的选择定则是

∆nd = ±1 , ∆τ = ±1 .

τ=nd n∆=0

0

并可得到U(5)极限下各带内及带间的E2跃迁的约化跃

迁几率的具体表达式，例如，对  、  、带头

角动量为0的带 (Y  带，即基带)内的E2跃迁：

Li = 2nd + 2, Lf = 2nd; B(E2) = e22(n− nd)(nd + 1) ;

τ=nd n∆=0 2对   、   、带头角动量为 2的带 (常称为 Y 

带)的带内E2跃迁：

Li = 2nd, Lf = 2nd−2; B(E2) =
e22(n− nd)(4nd + 3)

(4nd − 1)
。

Y2 Y0对  带到  带的带间E2跃迁：

  第 3 期 刘玉鑫：强相互作用系统的对称性及其破缺 · 353 ·  



Li = 2nd, Lf = 2nd; B(E2) =
e22(n− nd)(4nd + 2)

(4nd − 1)
。

⟨ii⟩   SU(3)极限

具有SU(3)对称性的哈密顿量为

H = E0 +A3 C2SU(3) + C C2SO(3)。

相应的态矢为

ψSU(3) =
∣∣[N ], (λ, µ),K, L,M

⟩
,

(λ, µ) L SO(3)

K

其中   、   分别为 SU(3)群、   群的 IRREP，

 为由SU(3)到SO(3)约化的附加量子数。根据群表示

的约化规则，各量子数取值如下：

N对一个确定的  (总玻色子数),

(λ , µ) = (2N − 6p− 4q, 2q) ;

p ⩾ 0 q ⩾ 0 λ = 2N − 6p− 4q ⩾ 0。其中  ，  ，且 

(λ , µ)对一个确定的表示  ，

K = 0, 1, 2, · · · , min{λ, µ} ;

并且

L =


λ+ µ, λ+ µ− 2, λ+ µ− 4, 0, 或 1,

K = 0 ;
λ+ µ, λ+ µ− 1, λ+ µ− 2, · · · ,K + 1, K ,

K ̸= 0。

该具有SU(3)对称性的核态的能量为

E
[
[N ], (λ, µ),K, L,M

]
= E0+

1

2
A3 [λ

2 + µ2 + λµ+ 3(λ+ µ)] + C L(L+ 1)。

N=12以总玻色子数   为例的具有 SU(3)对称性的

原子核的典型能谱 (的一部分)及其与 156Gd的低激发态

能谱的实验测量结果的比较如图3所示。
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图 3    以N=12为例的 SU(3)动力学对称性的典型能谱

的一部分 (a)及其与 156Gd的低激发态能谱 (b)的实

验观测结果的比较 (取自文献 [53])
 

 

(λ, µ)由图 3知，对于属于SU(3)的一个 IRREP   的

L L(L+ 1)

γ

一系列态，其能量随角动量   的变化都具有  

的行为，即带内跃迁产生的  光子的能量随角动量线性

变化。这表明，SU(3)动力学对称性极限对应定轴转动

核态。

在SU(3)动力学对称性极限下，E2跃迁算符为

T̂ (E2)q = e2Q̂q = e2
{
(d†s+ s†~d)2q −

√
7
2

(d†~d)2q

}
。

T̂ (E2) Q2
q由于该  正比于 SU(3)群的无穷小生成元  ，

则直接有E2跃迁的选择定则

∆λ = 0 , ∆µ = 0。 (49)

β γ由此知，  带与基态带之间的跃迁和  带与基态带

之间的跃迁都是禁戒的。

计算得，基态带内的E2跃迁的约化跃迁几率为

B(E2 , (L+ 2)g → Lg) =e
2
2

3(L+ 1)(L+ 2)

4(2L+ 3)(2L+ 5)
×

(2N − L)(2N + L+ 3) ,

L基态带内角动量为  的态的电四极矩为

Q(L) = −e2

√
2π

5

L

2L+ 3
(4N + 3)。

其它带内各态间的E2跃迁的约化跃迁几率及各态

的电四极矩也有类似的形式，这里不予细述。

⟨iii⟩   O(6)极限

具有SO(6)动力学对称性的哈密顿量为

H = E0 +A4 C2SO(6) +BC2SO(5) + C C2SO(3)。

相应的核态的态矢可以写为

ψSO(6) =
∣∣N, σ, τ, n∆, L,M

⟩
,

σ τ L SO(6) SO(3)

s d

其中   、   、   分别为   、 SO(5)、   的 IR-

REP，其物理意义分别是未配对的玻色子数 (广义辛弱

数)、除去  玻色子后的未配对的  玻色子数、原子核的

角动量。谱生成规则由群表示的约化规则表述中下。

N对一个确定的总玻色子数  ，

σ = N, N − 2, · · · , 1或 0 (N =奇数或偶数) ;

σ对一个确定的  ，

τ = σ, σ − 1, · · · , 0 ;

τ L对确定的  ，  等的取值与前述的相同，不再重述。

σ τ n∆ L由量子数  、  、  和  标记的具有SO(6)对称性

的核态的能量为

E[N, σ, τ, n∆, L,M ] = E0 +A4σ(σ + 4) +B τ(τ + 3)
+C L(L+ 1)。

以总玻色子数等于 6为例的具有 SO(6)对称性的原
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子核的典型能谱的一部分及与 196Pt原子核的低激发态

能谱的实验观测结果的比较如图4所示。
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图 4    以N=6为例的SO(6)对称核态的典型能谱的一部

分 (a，其中上侧标记的量子数为  ，自下而上

各态分别对应 t=0, 1, 2, 3)及其与 196Pt的低激发态

能谱的实验观测结果 (b)的比较 (取自文献 [53]) 

 

考察图 4可知，横向整体看，具有 SO(6)对称性的

核态的能谱与 U(5)对称的核态的能谱具有类似之处，

但一些多重态的顺序有差别；上下来看，具有SO(6)对

称性的核态的每一条能带具有近似的转动特征。此后将

说明，SO(6)对称的核态为不定轴转动态。

SO(6)动力学对称性极限下，E2跃迁算符为

T̂ (E2)q = e2
(
d†s̃+ s†d̃

)2
q
。

T̂ (E2)q由于   为 SO(6)群的无穷小生成元，则其跃

迁的选择定则为

∆σ = 0 , ∆τ = ±1。

据此容易得到 SO(6)对称性极限下的E2跃迁的约

化跃迁几率，例如

B(E2 , σ σ (τ + 1) 0 (2τ + 2) → σ σ τ 0 2τ)

=e22
(σ − τ)(σ + τ + 4)(τ + 1)

2τ + 5
,

B(E2 , σ σ (τ + 1) 0 2τ → σ σ τ 0 2τ)

=e22
(σ − τ)(σ + τ + 4)(4τ + 2)

(2τ + 5)(4τ − 1)
。

总之，理论上，具有动力学对称性的核态及其能谱

和跃迁几率都很容易确定，且各有特点。实验上，人们

已经找到很多近似具有前述的动力学对称性的原子核。

关于奇-A核和奇-奇核的超对称模型也取得成功，

并找到了 196Au等代表性原子核 [54]。

4.4.3    对原子核的集体运动模式及其相变的研究

(1)IBM1中原子核集体运动的相干态理论框架

回顾前述 IBM1的群结构知，U(6)群的最大不变子

⊕群是U(5)  U(1)，其代数包括：

g :[d†d̃]kµ (k = 0, 1, 2, 3, 4), [d†s̃]2µ, [s
†d̃]2µ, [s

†s̃]00;

h :[d†d̃]kµ (k = 0, 1, 2, 3, 4), [s†s̃]00;

p :[d†s̃]2µ, [s
†d̃]2µ。 (50)

h g p h

p

dµ

显然，  为  的最大不变子代数，  为  的陪集。由

于  中含有10个元素，且其中5个是另5个的厄密共轭，

由 4.2.2小节的讨论知，与该 5维空间对应，我们可以

定义与 IBM1对应的 5维几何空间 (集体运动空间)。由

于极值态 (可以被所有的  湮灭)为∣∣Λext
⟩
:

1

Ns

s†N
∣∣0⟩ ≡ ∣∣sN⟩ ,

则相应的相干态为∣∣N, ηµ⟩ = exp
[∑

µηµ[d
†s̃]2µ +

∑
µη∗µ[s

†d̃]2µ

] ∣∣sN⟩。
并有常用的内禀相干态 (亦称“投影”相干态)：∣∣N ;αµ

⟩
=

(
s† +

∑
µ

αµd
†
µ

)N ∣∣0⟩ ,
αµ

N s d

其中   是相干态中表征集体运动性质的集体 (或称几

何)参数。进一步采用 4.2.2小节所述的参数化方案，与

随体坐标系相应的内禀相干态可以在  个  和  玻色子

的空间中表示为∣∣N ;β, γ
⟩
=
(
s† + β2 cos γ2d†0+
1√
2
β2 sin γ2(d†2 + d†−2)

)N ∣∣0⟩。 (51)

{β, γ}
{β2, γ2}

在该内禀态下计算原子核的电四极矩和E2跃迁几

率，并将所得结果与Bohr-Mottelson集体模型中的结

果比较，由利用不同方法对同一个物理量计算的结果应

该相等 (即规范对称性)可知，对于大多数稀土区原子

核，集体模型中的形变参数  与这里的“形变”参数

 之间有关系 [53]

β ≈ 0.15β2 , γ = γ2。

β2

γ2 β γ

β γ

这表明，在 IBM1的内禀相干态中引入的参数  、

 可以像集体模型中的形变参数  、  一样描述原子核

表面的形状，因此，我们也称之为原子核的形变参数，

并在此后 (略去下标)简记之为  、  。

采用这一内禀态计算哈密顿量的期望值，即可得到

原子核的基态的能量泛函 (曲面)

E(N ;β, γ) =
⟨N ;β, γ|H |N ;β, γ⟩
⟨N ;β, γ |N ;β, γ ⟩

, (52)

进而，根据最小作用原理，由能量泛函曲面取极小值
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∂E

∂β
= 0 ,

∂E

∂γ
= 0 ;

∂2E

∂β2
> 0 ,

∂2E

∂γ2
> 0 ,

∂2E

∂β∂γ
> 0 ,

{β, γ}即可得到以形变参数  标记的稳定原子核的形状。

由于上述内禀相干态的角动量恒为 0，因此它仅对

应原子核的基态，这样只能得到原子核基态的形状。为

研究低激发态的集体运动性质，我们需要采用角动量投

影方法得到非零角动量激发态。我们知道，角动量投影

算符可以表示为

P L
MK =

2L+ 1

8π2

w
D∗L

MK(Ω)R(Ω)dΩ ,

R(Ω) DL
MK(Ω) Ω

(α′, β′, γ′)

其中   为转动算符，   为转动矩阵，   为欧

拉转动角  。将该角动量投影算符作用到前述

内禀相干态上即得具有确定角动量的相干态 [55−56]

∣∣N ;αµ;L
⟩
= P L

MK

(
s† +

∑
µ

αµd
†
µ

)N ∣∣0⟩。
K=M=0对于基态带中的各态，上式中  。

经过角动量投影后，原子核的基带中各角动量态

(可以认为是相同角动量中能量最低的态，亦即Yrast

态)的能量泛函可以表示为

E(L, β, γ) =
⟨
Ĥ
⟩

G,L
=

⟨N ;β, γ|HPL
00 |N ;β, γ⟩

⟨N ;β, γ|PL
00 |N ;β, γ⟩

。

再利用能量极小的稳定性条件，即可确定各Yrast

态的形变参数、得到它们的集体运动性质。

(2)IBM1中原子核的集体运动模式及形状相变

利用上述理论框架在 IBM1下直接计算，即得相应

的原子核的集体运动模式。下面给出计算结果，并对原

子核形状相变予以简要讨论。

1) U(5)对称性极限：

IBM1的U(5)对称性下的哈密顿量可改写为

H = E0+εdnd+
∑

K=0,2,4

1

2
(2K+1)1/2cK

[
[d†d†]K [d̃d̃]K

]0
,

不考虑角动量投影情况下的 (基态的)能量泛函为

E(N ;β, γ) =
⟨N ;β, γ|H |N ;β, γ⟩
⟨N ;β, γ |N ;β, γ ⟩

= E0 + εdN
β2

1 + β2
+

f1N(N − 1)
β4

(1 + β2)
2 ,

f1=
c0
10

+ c2
7
+ 9c4

35
γ

β=0

其中   。显然该函数与   无关，而在

 处有一个极小值，因此它对应的形状为球形。相

应的集体运动模式为四极振动。

N = 15

β=0 γ

L=10 β ≈ ±0.5 γ ≈ 0,±π
3

对考虑角动量投影情况下的能量泛函很难给出解析

表达式。相应于总玻色子数   的数值结果如图 5

所示。由图 5易知，非零的低角动量态与基态一样，位

能面极小出现在   ，且与   无关，即原子核整体呈

现球形，具有四极振动的集体运动模式。而高角动量

态(例如  )位能面极小出现在  、  ，

即原子核呈椭球形形变、或铁饼形形变，具有定轴转动

的集体运动模式。由此知，IBM1可以很好地描述原子

核角动量驱动形状相变 [57].
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图 5    (在线彩图)总玻色子数等于 15的具有U(5)对称

性的原子核的角动量L=2(a)和角动量L=10(b)的态

的位能曲面 (对应哈密顿量中参数取    MeV,
  MeV,    MeV,    MeV,  

 ，取自文献 [58])
 

 

2) SU(3)对称性极限

IBM1的SU(3)对称性下的哈密顿量可改写为

H = E0 − κ2(Q̂(−
√
7/2) · Q̂(−

√
7/2)) + κ′(L̂ · L̂) ,

不考虑角动量投影的 (基态的)能量泛函为

E(N ;β, γ) =E0 + κ′ 6Nβ
2

1 + β2
− κ2

[
N

1 + β2

(
5 +

11

4
β2

)
+

N(N − 1)

(1 + β2)2

(
β4

2
+ 2

√
2β3 cos 3γ + 4β2

)]
,

γ=0 β ̸= 0 N → ∞
β=

√
2

SU(3) Q̂ χ=
√
7

2

γ

χ=−
√

7
2

χ=
√
7

2

该能量函数在   、   有极小值，在   时，

极小值位于  . 这表明，原子核呈长椭球形。并且，

对应于  (  算符中的结构参数  )，原子核呈

扁椭球形。因其物质分布呈椭球形状，并且描述其形状

的  角为定值，所以该对称性对应的集体运动模式为定

轴转动。具体地，  情况下为绕垂直于物质分布

的对称轴的轴的定轴转动，   情况下为绕物质分

布的对称轴的定轴转动。

N=15

与U(5)对称情况相同，考虑角动量投影情况下的

位能面泛函也难以给出解析表达式。相应于总玻色子数

 的数值结果如图6所示。

由图 6易知，具有 SU(3)对称性的低角动量态呈长

椭球形变，但有呈扁椭球形状的亚稳态，具有定轴转动

的集体运动模式。随角动量升高，原子核逐渐演化为仅

呈长椭球形变形状。
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图 6    N=15的具有 SU(3)对称性的原子核的角动量

L=0, 4, 10的态的位能曲面 (对应参数   。取自

文献 [58]) 

 

3) SO(6)对称性极限

IBM1的SO(6)对称性下的哈密顿量可以改写为

H = E0 +AP † · P +
B

12
C2SO(5) +

C

2
C2SO(3) ,

P = 1
2
(d̃ · d̃)− 1

2
(s · s)其中   为广义对湮灭算符。不考虑

角动量投影情况下的 (即基态的)位能面泛函为

E(N ;β, γ) =E0 +
(
2B + 6C

) Nβ2

1 + β2
+

A

4
N
(
N − 1

)(1− β2

1 + β2

)2

。

γ β ̸= 0

N → ∞ β=1

γ

显然，该能量泛函曲面与  无关，在  处有一

个极小值。在  时，极小值位于  。这表明，

SO(6)对称性下的物质分布呈  不稳定的椭球形，集体

运动模式为不定轴转动，相当于量子陀螺除有自转之外

还有进动和章动。

β≈±1 γ≈ π
6

L=14

L=18 β=0

γ γ ≈ π
6

β

考虑角动量投影情况下的位能面泛函的数值计算结

果的一个实例如图 7所示。由图 7易知，具有 SO(6)对

称性的低角动量态与角动量为 0的基态一样，具有不定

轴转动的集体运动模式。随着角动量升高，位能面逐渐

在   、   出现极小值，在角动量达到较高值

(例如图中的  )时，两个极小值很明显，且它们中

间有明显的相当高的位垒；这表明，原子核呈明显的三

轴形变的形状。然而，在角动量很高 (例如图中的接近

最大角动量 20的   )情况下，位能面在   处出

现不依赖于  的深谷、并在  处出现不依赖于  的

深谷，这表明，原子核不再有稳定的形状，亦即出现振

动与三轴形变的形状共存态。

上述结果表明，SO(6)对称的基态和低激发态具有

不定轴转动的集体运动模式，并且随角动量升高出现由

不定轴转动到三轴形变态的相变，并可能出现振动与三

轴形变共存的状态。
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图 7    (在线彩图)  的具有SO(6)对称性的原子核的位能曲面随角动量变化的行为 (对应哈密顿量中参数   MeV、

 。取自文献 [58])
 

 

(3) 原子核集体运动模式的相变 (形状相变)

前已述及，原子核的集体运动模式的演化称为原子

核的集体运动模式相变。由于原子核的集体运动模式变

化都相应有组成原子核的物质的包络面的演化，因此常

称之为原子核的形状相变。又由于原子核的形状和确定

的集体运动模式都相应于一定的动力学对称性，因此原

子核的集体运动模式相变 (形状相变)是原子核的动力

学对称性的破缺或恢复的自然体现。例如，对 IBM1下
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U(5) ⊃ SU(4) ⊃ SU(3)的核态，由于  ，而 SU(4)同构于

SO(6)，并且 U(5)、SO(6)、SU(3)对称性分别对应于

四极振动、不定轴转动、定轴转动 (包括三轴转动)的

集体运动模式，那么前述的角动量驱动由振动到定轴转

动的形状相变即由U(5)对称性到 SU(3)对称性的破缺

的表现。

具体地，人们常采用下述哈密顿展开具体研究，

Ĥ = ε
(
ηn̂d −

1− η

N
Q̂(χ) · Q̂(χ)

)
, (53)

ε n̂d

Q̂(χ) η ∈ [0, 1]

χ ∈
[
−
√
7/2,

√
7/2
]

其中  为一标度因子，  为U(5)的一阶Casimir算子，

 为 式 (48)所 示 的 四 极 算 符 ， 并 且   、

 为控制参量。对称性分析表明，该

哈密顿量即

Ĥ =

[
η − 2(1− η)χ

7N

(
χ+

√
7

2

)]
C1U(5)+

2(η − 1)χ

7N

(
χ+

√
7

2

)
C2U(5)−

(η − 1)χ√
7N

C2SU(3) +
2(η − 1)(χ+

√
7

2
)

√
7N

C2SO(6)−

2(η − 1)
(
χ+

√
7
2

)(
χ+

√
7
)

7N
C2SO(5)−

(1− η)χ(χ+ 2
√
7)

14N
C2SO(3)。 (54)

χ=0, η ∈ [1, 0]

χ=−
√
7

2
, η ∈ [1, 0]

由此易知，如果取  ，则上述哈密顿

量描述U(5)对称与 SO(6)对称之间过渡区的原子核的

性质；如果取   ，则上述哈密顿量描

述U(5)对称与 SU(3)对称之间过渡区的原子核的性质；

η=0, χ ∈ [0, −
√
7

2
]

η χ

E(N ;β, γ) ε=E(N ;β, γ)/N

εmin εmin

如果   ，则上述哈密顿量描述 SO(6)

对称与SU(3)对称之间过渡区的原子核的性质。取哈密

顿量如式 (53)(有控制参数   、   )、波函数为式 (51)所

示的内禀相干态，即可计算得到原子核的能量泛函

 和每核子平均能量   ，进而

得到能量泛函曲面的极小值点和相应的每核子能量值

 ，然后考察   与哈密顿量中各项耦合系数的函数

关系及其导数关系，可以证明，由 U(5)对称破缺到

SO(6)对称 (四极振动到不定轴转动)的相变为二级相变，

由U(5)对称破缺到 SU(3)对称 (四极振动到定轴转动)

的相变为一级相变。这些对应关系常由Castan三角形

表征，推广的Casten三角形如图8所示。

 
 

γ-soft
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图 8    (在线彩图)由集体运动模式和对称性破缺两种语

言标记的集体运动模式相及其相变示意图
 

 

前述讨论已表明，IBM1可以很好地描述转动驱动

的原子核的形状相变，有关相图分别如图9，10所示。
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图 9    总玻色子数N=15的具有U(5)对称性的核态的相图的计算结果 (取自文献 [58])
 

 

对于其物理机制，限于篇幅，这里不再讨论，有兴

趣的读者可参阅文献 [58−59]等。

引起原子核形状相变的因素很多，除了前述的转动

(角动量)。还有同位旋 (一个同位素链 (或同中子素链)

η

中原子核基态具有不同的集体运动模式)、激发能、温度

等等。精细的研究表明，上述参数  与原子核中的核子

配对形成的玻色子数成线性关系 [60−61]，因此，利用上述

哈密顿量可以很好地研究同位旋驱动的原子核形状相变。
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在区分质子玻色子和中子玻色子的 IBM2下，关于

原子核集体运动模式及形状相变的研究也已广泛展开，

它自然地包含三轴形变核态 [62]，并且Casten三角形扩

展到 Iachello四面体 [63]。

除了 IBM之外，集体模型、Hartree-Fock-Bogoli-

ubov(HFB)理论、有限温度推转HFB理论、配对壳模

型、推转 IBM、以及Landau理论等方法都被用来研究

原子核的形状相变，还提出了双中子分离能、E2跃迁

能量与跃迁初态角动量的比值、E2跃迁几率比等实验

观测量来表征原子核形状相变，并区分相变的级次。内

容极其丰富，限于篇幅，这里不再具体介绍，有兴趣的

读者请参阅综述文献 [64]。

(4)原子核形状相变的临界点状态的对称性描述

β

γ

β

我们知道，二级相变和一级相变都有确定的临界状

态。通过分析一般的二级相变的临界点的特征和一级相

变的临界点的特征，Iachello教授提出了描述由振动到

不定轴转动相变的临界点附近状态性质的E(5)对称性

模型—玻尔哈密顿量中仅有关于  的无限深势阱的模

型 [65]，和描述由振动到定轴转动相变临界点性质的

X(5)对称性模型—玻尔哈密顿量中有关于   呈谐振

子势和关于   呈无限深势阱的模型 [66]，并给出其能谱

和E2跃迁等的跃迁几率，还找到一些代表性原子核 (例

如文献 [67−69]等等)。

尽管E(5)模型和X(5)模型在实际应用中取得很大

成功，但它们都仅是求解上述势阱下的玻尔哈密顿量的

结果，没有代数结构，也就是没有动力学对称性。

d

事实上，系统的哈密顿量具有平移和转动不变性，

即具有五维欧几里得对称性。推广占有数表象中玻色子

算符与坐标及动量间的关系知，   -玻色子的产生、湮

灭算符可以由五维空间的坐标和动量表述为

d̃µ =
1√
2

[
qµ + ip̃µ

]
, d†µ =

1√
2

[
qµ − ip̃µ

]
。

于是，五维欧几里得群 (Eu(5))的生成元可以表述为

T (2)
µ = ip̃µ =

1√
2
[d̃µ − d†µ],

T (λ)
µ = i

√
2(qp̃)λµ =

√
2(d†d̃)λµ, λ = 1, 3。

Casimir算子则为

C2,Eu(5) = p̃2 = n̂d +
5

2
− 1

2

(
P̂ †

d + P̂d

)
,

n̂d=
∑

µ d
†
µdµ P̂d=

∑
µ(−1)µdµd−µ其中  ，  。那么，Eu(5)

动力学对称性的哈密顿量为

ĤEu(5) = α

[
n̂d +

5

2
− 1

2

(
P̂ †

d + P̂d

)]
, (55)

α

U(5) ⊃ O(5) ⊃ O(3) {|nd τ n∆ L⟩}
其中   为一标度因子。该哈密顿量可以在具有U(5)对

称性(  )的基  下对角化。

前述讨论表明，过渡区核态的哈密顿量可以表述为

Ĥ(η, χ) = ε
[
(1− η)n̂d −

η

aN
Q̂χ · Q̂χ

]
,

Q̂χ=(d†s+ s†d̃)(2) + χ(d†d̃)(2) η χ

ε a

N

χ

其中  ，  和  是控制参数，

 是标度因子，  是可调参数 (亦即标度因子)。在内禀

相干态方法下的具体计算表明，对于U(5)–O(6)对称性

之间的相变和U(5)–SU(3)对称性之间的相变，在大 

极限下 (相应于经典集体运动)，它们的临界状态都可以

由参数  决定的临界参数

ηc =
7a

7a+ 28 + 2χ2
,

a χ=0

χ=−
√

7
2

(≈ −1.32)

来表述 (仅相差标度因子   )。具体地，   对应E(5)

模型，  对应X(5)模型。这表明，上

述哈密顿量可以统一描述E(5)和X(5)临界点对称性。

更具体的理论分析和数值检验见文献 [70]。我们称之为

F(5)临界点对称性模型。

Ĥ=−▽2 /(2M) + kβ2n

k ∝M t

M (t−n)/(n+1) M (t−n)/(n+1) |n→∞=M−1

N−1

χ=0 χ=−1.32

另一方面，对于哈密顿量为 

(其中  )的系统的研究 [71]表明，其能谱有标度因

子   。显然，   。对

于原子核，其质量当然近似正比于其组分粒子数目，于

是该标度行为可以近似表述为   标度律。F(5)临界

点对称性模型下，    (E(5)模型 )和  

(X(5)模型)两种特殊情况下的能谱和E2跃迁几率随系

统中玻色子数目变化的行为如图11所示。

N−1

N1

显然，F(5)临界点对称性模型可以很好地描述临

界点状态的能谱的   标度行为，并说明临界点状态

的E2跃迁几率具有   的标度行为。上述标度行为表

明，对于有限粒子数系统，F(5)临界点对称性模型也

 

40

30

20

10

0

−10

−20

−30

−40

0 2 4A 2
/B

6 8 10 12 14 16 18

Vibration or phase-coexistence

Triaxially
rotation

γ-soft rotation

Angular mmentum/h

图 10    总玻色子数N=10的具有 SO(6)对称性的原子核

的相图的计算结果 (取自文献 [58])
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可以描述其相变临界点状态的性质。

总之，对于原子核形状相变临界点状态的描述，不

仅已经对 U(5)–O(6)对称性之间的相变和 U(5)–SU(3)

对称性之间的相变等分别建立了E(5)模型、X(5)模型

等，还建立了统一描述这些临界点状态性质的具有清楚

的动力学对称性结构的F(5)模型。

5    小结与讨论

就可见物质及其质量而言，我们现在的宇宙的主要

成分是强相互作用物质，因为电子质量仅仅是核子质量

的 1/1 836。而对称性是物理学基本原理的表征、是决

定现象的本质。但对称性意味着简并性，因此物质世界

的丰富多彩源自于对称性的破缺。于是，强相互作用系

统的对称性及其破缺自然是物理学领域，乃至整个自然

科学领域中重要的问题之一。相关研究既取得重大进展

又仍是目前活跃的前沿研究领域 [72]。

本文对强相互作用系统的对称性及其破缺进行了简

要介绍。主要包括三个方面，其一是对称性及其破缺的

基本概念与基本的数学上所说的对称性的微观粒子实现；

其二是早期宇宙强相互作用物质演化过程的对称性及其

破缺，尤其是可见物质质量的产生以及强相互作用等基

本相互作用的对称性及其破缺；其三是原子核的对称性

及其破缺，尤其是作为强相互作用多体系统的束缚态研

究中的基本理论方法、(多粒子)壳模型及玻色子近似模

型、集体运动的描述及集体运动模式演化 (形状相变)

的研究方法及进展简况。

限于篇幅，本文所介绍的主要是基础性的具有普适

意义的内容，没有具体涉及基础性很强但比较专门的内

容，例如：关于由夸克胶子到强子的色禁闭 (即强子

化)问题、原子核及核物质的液气相变问题、内禀节点

分析方法及在轻核结构研究中的应用问题、多粒子系统

性质计算程序正确性的对称性群链检验方法、原子核的

集团结构问题、超重原子核形状相结构及其相变问题、

很高自旋态下集体运动的恢复问题、温度等因素对原子

核的相结构及相变影响的问题等等。

在结束这一综述之际，我们为这种挂一漏万的内容

选取方式深表歉意。同时，考虑其普适性，该文省略了

绝大部分的推导，也牺牲了一些数学上和量子(规范)场

论层面上的严谨性，这里也深表歉意，并希望私信交流

补充。
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Symmetries and Their Breaking of Strong Interaction System

LIU Yuxin1)

(Department of Physics and State Key Laboratory of Nuclear Physics and Technology,

Peking University, Beijing 100871, China)

Abstract:  This article reviews concisely the symmetries and their breaking of strong interaction system. To estab-
lish the bridge between the abstract symmetry concept and principle in mathematics and the application in phys-
ics to reveal the underlying principle of strong interaction, we describe not only the abstract concept but also the
realization of the unitary and other symmetries with the microscopic particles. We then describe the evolution of
the strong interaction matter in the early universe in view of the symmetries and their breaking, especially on the
dynamical  generation  of  the  observable  mass(i.e.,  DCSB)  and  those  of  the  strong  and  other  interactions  (gauge
symmetry and breaking). We make also a survey of the symmetries and their breaking of nucleus, with concentra-
tion on the general methods of studying the many-body system in the symmetry point of view, the multi-particle
shell model and the interacting boson approximation (IBM), the modes of nuclear collective motion and their evol-
ution (i.e., nuclear shape phase transition). The survey intends to link the fundamental approaches with the prac-
tical investigations in the related frontiers of research properly and promptly.
Key words:  symmetries and their breaking; strong interaction system; quark, gluon and hadrons; nuclei; collective
motion and shape phase transition
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