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Introduction

Neutron-rich nuclei like 6−10He, 11Li,
19−22C are drawing much attention of physi-
cists with the rapid development in radio-
active ion beam facilities (RIB). Production
and detection of highly neutron-rich nuclei like
31Ne and 37Mg have been reported recently
[1] [2] [3]. In the present communication we
concentrate on the theoretical structrure of re-
cently produced 32Ne [4]. Here we will explore
the ground state as well as resonance states in
the framework of few-body model.

We assume a three-body model of 32Ne as
a structureless core 30Ne surrounded by two
valence neutrons (n). We first solve for the
ground state of the three-body system using
standard GPT [5] nn potential and standard
SBB [6] core-n potential using hyperspherical
coordinates. Parameters of the core-n poten-
tial chosen subject to the criteria that 31Ne
subsystem is just unbound. The ground state
wave function then used to construct a one pa-
rameter family of isospectral potential. The
parameter is adjusted to develop a deep well
followed by a positive barrier facilitating the
trapping of particles(s) within the deep-well
and sharp barrier at energy E ( > 0). Prob-
ability of trapping of the particle within the
well-barrier combination is computed for dif-
ferent positive energies which shows a peak
at resonance energy. After locating the reso-
nance energy we used WKB approximation to
calculate the width of resonance.

Method

In hyperspherical harmonics expansion for-
malism we label the relatively heavier nuclear
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core 30Ne as particle ”i” and two valence nu-
cleons as particles ”j” and ”k” respectively to
define the Jacobi cordinates as:

~xi = ai(~rj − ~rk)

~yi = 1
ai

(
~ri − mj ~rj+mk ~rk

mj+mk

)
~R =

(mi ~ri+mj ~rj+mk ~rk)
M

 (1)

where ai is const.; mi, ~ri are the mass and
position of the ith particle and M = mi +

mj +mk, ~R is the centre of mass (CM) of the
system. We then introduce the hyperradius
ρ =

√
x2i + y2i , an invariant under three di-

mensional rotations and permutations of par-
ticle indices together with the five angular
variables Ωi → {φi, θxi

, φxi
, θyi

, φyi
} consti-

tute hyperspherical coordinates of the system.
It is to be noted that hyperangles Ωi depend
on the choice of the particular partition i. In
terms of hyperspherical variables (ρ,Ωi) the
three-body Schrödinger equation becomes[
− ~2

2µ
{ 1

ρ5
∂

∂ρ
(ρ5

∂

∂ρ
)− K̂

2(Ωi)

ρ2
}

]
Ψ(ρ,Ωi)

+[V (ρ,Ωi)− E]Ψ(ρ,Ωi) = 0 (2)

where V (ρ,Ωi) is the total interaction poten-

tial and K̂2(Ωi) is the square of hyper angu-
lar momentum operator an analogue of or-
bital angular momentum operator in three-
dimension.

Tables and Figures

Results and Discussions
As it is difficult to achieve fully converged

solution for small-sized computer which re-
stricts the expansion basis to some small fi-
nite value as well as the computation becomes
time consuming, search of an effective alterna-
tive method becomes inevitable. Here we used



TABLE I: Calculated 2n-separation
energy (S2n), contribution of lx = 0th

partial wave in the probability density
and energy respectively for different
Kmax in the ground state of 32Ne.

Kmax S2n(= −E)(MeV ) Plx=0 Elx=0(MeV )
4 3.6040 0.9400 -3.3697
8 4.0662 0.9317 -3.7785
12 4.2460 0.9340 -3.9557
16 4.3673 0.9359 -4.0832
20 4.4338 0.9371 -4.1523
24 4.4660 0.9378 -4.1844
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(a) Represention of Resonance states of 32Ne.
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(b) Binding Energy vs Kmax graph of 32Ne

a novel technique to study resonance states of
weakly bound nuclei by contructing one pa-
rameter family of supersymmetric isospectral
partner potential of the original potential us-
ing the ground state wavefunction. Results
are presented in Tables I, II and III. It can be
seen from Table II that the depth of the po-
tential well increases and simultaneously the
height of barrier also increases as the param-
eter δ approaches zero. It can also be noted

TABLE II: Parameters of the isospectral
potential as the parameter δ decreases

from +∞ (original potential v(ρ))
towards 0+.

δ Potential well Potential Barrier
Vw(MeV) rw(fm) Vb(MeV) rb(fm)

1000000 -11.369 3.046 4.058 0.100
100 -11.451 3.042 4.060 0.099
1 -17.958 2.782 4.618 7.079
0.1 -43.433 2.278 11.502 3.890
0.01 -97.893 1.778 38.121 2.783
0.001 -157.518 1.362 86.332 2.133
0.0001 -276.083 0.982 144.129 1.700
0.00001 -486.800 0.711 245.533 1.196

TABLE III: Comparison calculated
results with other works found in the

literature for 32Ne.

State Observables Present work Others work
0+ E (MeV) -4.4660 -1.9700[7]
0+1 ER (MeV) 0.45 –

that the width of the well as well as that of
the barrier become narrower with decreasing
δ and the minimum of the well shifts towards
the origin producing a dramatic effect.
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