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Abstract

Many searches for Supersymmetry at the CERN LHC are sensitive to other scenarios
of physics beyond the standard model. In this note, the results of a previous search for
squarks and gluinos are re-interpreted to constrain models of leptoquark production.
Pair production is considered, and both leptoquarks are assumed to decay to a quark
and a neutrino. The search selects jets in association with a transverse momentum
imbalance, using the Mt variable. The analysis uses proton-proton collision data at
V/s = 13 TeV, recorded with the CMS detector at the LHC in 2016 and corresponding
to an integrated luminosity of 35.9 fb~'. Compared to previous CMS results, both
scalar and vector leptoquarks are considered, as well as higher leptoquark mass val-
ues, and for the first time, leptoquark decays to a light quark (any single one of u,
d, s, or ¢) and a neutrino are considered. Assuming scalar (vector) leptoquarks de-
caying with unity branching fraction to a light quark and neutrino, masses below
980 (1790) GeV are excluded by the observed data. For leptoquarks decaying to a
bottom quark and a neutrino, masses below 1100 (1810) GeV are excluded, while
assuming decays to a top quark and a neutrino, masses below 1020 (1780) GeV are
excluded. Vector leptoquarks decaying with a 50% branching fraction to a top quark
and a neutrino, and 50% to a bottom quark and tau lepton, have been proposed as an
explanation of anomalous flavor physics results. In such a model, we exclude lepto-
quarks with masses below 1530 GeV, placing the most stringent constraint to date.
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1 Introduction

Leptoquarks (LQ) are hypothetical new particles with couplings to both quarks and leptons [1].
The spin of an LQ state is either 0 (scalar LQ, denoted LQg) or 1 (vector LQ, denoted LQy).
They appear in theories beyond the standard model (SM) such as grand unified theories [2—4],
technicolor models [5, 6], compositeness scenarios [7, 8], and R-parity [9] violating Supersym-
metry (SUSY) [10-18]. Leptoquarks have been postulated as a potential explanation [19-24] for
a collection of anomalies observed in flavor physics by the BaBar [25, 26], Belle [27-30], and
LHCDb [31-35] Collaborations.

Direct searches for leptoquark production have been performed at the CERN LHC by the AT-
LAS [36-38] and CMS [39—44] Collaborations covering several final states. This note focuses
on the decay of leptoquarks to a quark and a neutrino, which have been searched for by the
ATLAS [37] and CMS [43, 44] Collaborations. The pair production and decay of LQg results
in the same final states as those considered in searches for squark pair production in R-parity
conserving SUSY, assuming that the squark decays directly to a quark and a massless neu-
tralino [45]. Searches for squark pair production have been reported by the ATLAS [46-50]
and CMS [51-57] Collaborations. The results from the CMS search for jets in association with
a transverse momentum imbalance (p?iss) using the M, variable [58], reported in Ref. [51],
have recently been reinterpreted as part of a review of LQ searches to place the strongest limits
on the pair production of leptoquarks decaying to a quark and a neutrino [45]. However, for
LQy, the pair production cross sections are large enough that the mass range of interest was
not covered by the simulated samples used in [51].

In this note, we present an extended interpretation of the search from Ref. [51] considering
higher mass values for the signal samples. Exploiting the similarity in final states between
squark and LQ pair production, we verify that our analysis acceptance is consistent for squark,
LQs, and LQy production. We thus proceed to use simulated squark samples to place limits
on both LQg and LQy production. At high LQ mass values, using the extended signal samples
and full analysis results allows us to improve the upper limits on LQ pair production cross
sections by as much as a factor of 2.8 over the extrapolation assumed in Ref. [45].

2 Analysis overview

The CMS search for jets and p™i exploiting the Mr, variable is used for these results. The
analysis itself is unchanged from Ref. [51], where a full description can be found, and is briefly
summarized here. The search uses proton-proton collision data at /s = 13 TeV, recorded with
the CMS detector in 2016 and corresponding to an integrated luminosity of 35.9 fb~!. A de-
scription of the CMS detector, together with a definition of the coordinate system used and the
relevant kinematic variables, can be found in Ref. [59].

Events are selected in the CMS trigger requiring either large p*s or large hadronic activity
Hr, defined as the scalar sum of jet transverse momentum pr. Jets are clustered using the anti-
kT clustering algorithm [60] with a distance parameter of 0.4, as implemented in the FASTJET
package [61]. They are required to satisfy pr > 30GeV and pseudorapidity || < 2.4 to be
counted and used in the Ht calculation. The trigger selections have efficiency greater than 98%
for events with offline reconstructed values of p' > 250 GeV or Hy > 1000 GeV. The baseline
analysis selection requires events to have at least one jet and pass either p7"'** > 30 GeV if they
have Hr > 1000GeV, or pmiss > 250GeV if they have 250 < Hy < 1000GeV. For events
with at least two jets, the variable Mt, is computed from the jets and the piss, after the jets
are reclustered into two “pseudojets.” The baseline selection for events with at least two jets
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requires Mty > 200 GeV, which is raised to M, > 400 GeV for events with Hr > 1500 GeV to
reject background. Additional baseline requirements are imposed, including that g™ is not
aligned in ¢ with any of the four leading jets in pr, that the vector sum of jets ﬁ%“iss is consistent
with pMiss, and that no loosely identified charged leptons or isolated tracks are found in the
event.

Events passing the baseline selection are categorized according to four variables: Ht, Mry,
the number of jets Nj, and the number of b-tagged jets Ny. Jets are identified as b-tagged
using the combined secondary vertex (CSVv2) algorithm [62], and b-tagged jets must pass a
looser requirement of pr > 20 GeV to be counted. Events with exactly one jet are categorized
according to the jet pt and the presence or absence of a b tag. In total, the analysis contains 213
search bins.

The SM backgrounds to the search comprise three categories: Z+jets production with the de-
cay Z — vv, W+jets or tt+jets production with the decay W — ¢v where the charged lepton
is outside acceptance or not identified (“lost lepton”), and quantum chromodynamics (QCD)
multijet production where pTis® arises from jet mismeasurement. Each of these backgrounds
is predicted primarily from data control regions: Z+jets from Z — (¢~ events, W+jets and
tt+jets from events containing an electron or muon, and QCD multijets from events with a jet
aligned in ¢ with pmiss.

The most sensitive analysis bins depend on the LQ mass and decay products. Fig. 1 shows the
M, distribution for data, the background predictions, and a hypothetical LQy signal in the two
most sensitive search categories for an LQ of mass 1500 GeV decaying with unity branching
fraction to a top quark and a neutrino. Both categories require Hr > 1500 GeV and 4-6 jets.
The category shown in the left plot requires exactly one b-tagged jet, while in the right, two are
required. No significant deviations from the SM prediction are observed, taking into account all
of the analysis bins. Simultaneous likelihood fits of all bins are performed, and the results are
interpreted as limits on the production cross sections of hypothetical scenarios of leptoquark
pair production.

3 Simulated samples

Monte Carlo (MC) simulated samples are used in the estimation of background from some SM
processes, to assess systematic uncertainties in prediction methods that rely on data, and to
calculate the selection efficiency for signal models. The details of the MC samples used for SM
processes are given in Ref. [51].

Signal samples are generated with the MADGRAPH5_aMC@NLO v2.3.3 generator [63] at leading
order (LO) precision in perturbative QCD, including up to two additional partons in the matrix
element calculations. The NNPDE3.0 LO [64] parton distribution functions (PDFs) are used in
the event generation. Parton showering and fragmentation are performed using the PYTHIA
v8.212 [65] generator and the CUETP8MI1 tune [66]. A double counting of the partons gen-
erated with MADGRAPH5_aMC@NLO and those with PYTHIA is removed using the MLM [67]
matching scheme.

To improve on the modeling of the multiplicity of additional jets from initial state radiation
(ISR), we weight the signal MC events based on the number of ISR jets (NjISR). The weighting
factors are obtained from a control region enriched in tt, obtained by selecting events with two

leptons and exactly two b-tagged jets. The factors are chosen to make the jet multiplicity agree
with data, and they vary between 0.92 for NjISR = 1 and 0.51 for NjISR > 6. We take one half
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Figure 1: Distributions of Mr, showing data, the background predictions, and a hypothetical
LQy signal with LQ mass of 1500 GeV decaying with unity branching fraction to tv. The right-
most bin in each plot also includes events with larger values of M1,. The hatched band shows
the uncertainty in the background prediction including both statistical and systematic sources.
The lower pane of each plot shows the ratio of observed data over predicted background. The
categories require Hy > 1500 GeV, 46 jets, and (left) exactly one b-tagged jet or (right) exactly
two b-tagged jets.

of the deviation from unity as the systematic uncertainty in these reweighting factors, to cover
for differences between tt and signal production.

Additional simultaneous proton-proton interactions (pileup) are generated with PYTHIA and
superimposed on the hard collisions. The response of the CMS detector for new physics signals
is performed using the CMS fast simulation package [68]. All simulated events are processed
with the same chain of reconstruction programs as used for collision data. Corrections are
applied to simulated samples to account for differences between the trigger, b tagging, lepton
and photon selection efficiencies, and the modeling of pis® measured in data and the fast
simulation.

The generated signal samples used for this interpretation consist of simplified models [69-
73] of squark pair production, with the squark decaying to a quark of the same flavor and a
neutralino with mass 1 GeV. Three samples are generated with different squark flavors: “light”
squarks with an equal fraction of each of (a,a,g,a, bottom squarks, and top squarks. Compared
to Ref. [51], higher squark masses are considered, up to 2300 GeV.

Samples of pair production of LQg and LQy are also generated for a limited number of LQ
mass values, to verify that the acceptance of the analysis at generator level is consistent with
the squark samples used. Scalar LQ samples are generated with the PYTHIA v8.2052 [65] gen-
erator, using the NNPDF2.3 LO [74] PDFs. Vector LQ samples are generated with the Mad-
Graph5_aMC@NLO v2.3.3 generator [63] at LO precision in perturbative QCD, including up
to two additional partons in the matrix element calculations and using the MLM matching
scheme. The NNPDF3.1 LO [75] PDFs are used in the vector LQ event generation. The kine-
matics of the generated squark samples have been compared to those in LQg and LQy pair pro-
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duction samples. The acceptance of the analysis, both the baseline selection and the kinematic
requirements for the most sensitive signal bins, was found to be consistent within statistical
uncertainties of ~10% for the squark, LQg, and LQy samples. As such, no additional system-
atic uncertainty in acceptance is assigned for using the squark samples to set limits on LQ pair
production.

The cross sections for LQg pair production are computed to next-to-leading-order (NLO) pre-
cision in perturbative QCD following Ref. [24] and using the NNPDF2.3 NLO PDF set. The
cross sections for LQy pair production are computed to LO precision, also following Ref. [24]
and using the NNPDF2.3 LO PDF set. The vector LQ model has additional free parameters be-
yond the LQ mass. In particular, we use the model of Ref. [24] developed to explain anomalous
results in flavor physics. We assume x = 1, and we further assume g;, = g;, = 0.1, though
these latter parameters do not affect the pair production cross section or the acceptance. The
uncertainties in cross section calculations arise from PDF variations and from renormalization
and factorization scale variations. For PDF uncertainties, the NNPDF2.3 PDF set variations are
used. For scale uncertainties, renormalization and factorization scales are varied up and down
by a factor of two with respect to the nominal value.

4 Interpretation

The search results of Ref. [51] are interpreted to place cross section limits on LQ pair production
as a function of the LQ mass. The following sources of uncertainty in the signal acceptance and
efficiency are evaluated and taken to be fully correlated across all analysis bins: determination
of the integrated luminosity, trigger efficiency, lepton identification and isolation efficiency,
lepton efficiency modeling in fast simulation, b tagging efficiency, jet energy scale, modeling of
piss in fast simulation, modeling of ISR, simulation of pileup, and variations of the generator
factorization and renormalization scales. The uncertainty in the signal acceptance from PDF
variations is not considered as it is found to be highly redundant with the uncertainty assigned
in the modeling of ISR. The statistical uncertainty of the simulated signal samples is taken as
being uncorrelated in every bin. The total uncertainty in signal acceptance is typically around

5-25% in the most sensitive analysis bins.

Exclusion limits at the 95% confidence level (CL) on the cross section of LQ pair production are
shown in Fig. 2. In each case, we assume that there is only one LQ state within mass reach of the
LHC, with any other potential LQ states having masses too large to be produced. We assume
that the LQ decays with unity branching fraction to a neutrino and a single type of quark, as
specified below. In the simulated samples used to determine signal acceptance, and for the
cross sections displayed, we consider only LQ pair production and not single LQ production.

We first consider LQ decays to a neutrino and a light quark, which can be any single one of
u, d, s, or c. The observed (expected) limit on the LQ mass is 980 (940) GeV for LQg and 1790
(1830) for LQy, corresponding to an LQ pair production cross section of 0.0059 (0.0080) pb for
LQg and 0.0011 (0.0009) pb for LQy. As the analysis includes categorization in the number
of b-tagged jets, we check whether the cross section limit obtained for an LQ decaying to a
neutrino and a ¢ quark differs significantly from an LQ decaying to a neutrino and one of the
u, d, or s quarks. The cross section limit differs by at most 10%, resulting in a negligible impact
on the mass limit, and we therefore do not produce separate limit results for these cases. For
LQ decays to a bottom quark and a neutrino, the limit is 1100 (1070) GeV for LQg and 1810
(1800) GeV for LQy, corresponding to an LQ pair production cross section of 0.0024 (0.0030) pb
and 0.0010 (0.0011) pb, while for LQ decays to a top quark and a neutrino, the limit is 1020
(980) GeV for LQg and 1780 (1740) GeV for LQy, corresponding to an LQ pair production cross



section of 0.0043 (0.0059) pb and 0.0012 (0.0015) pb.

The model proposed in Refs. [23, 24] as a coherent explanation of the flavor physics anomalies
predicts an LQy with 50% branching fraction to each of the tv and bt final states. As our
analysis removes events with charged leptons, including hadronically decaying T leptons, we
only consider the 25% of events where both leptoquarks decay to tv to place constraints on this
model. We show the theoretical prediction for this branching fraction as a separate curve in
Fig. 2(lower), and we find an observed (expected) limit on the LQy mass of 1530 (1460) GeV,
corresponding to a value of 0.0013 (0.0021) pb for the product of the LQ pair production cross
section and the square of the branching fraction.

5 Summary

The CMS search for jets and missing transverse momentum using the M, variable has been re-
interpreted to place limits on leptoquark (LQ) pair production, where the LQ decays with unity
branching fraction to a quark and a neutrino. The search uses proton-proton collision data
at /s = 13TeV, recorded with the CMS detector in 2016 and corresponding to an integrated
luminosity of 35.9 fb~!. Compared to previous CMS results, both scalar and vector leptoquarks
are considered, as well as higher leptoquark mass values, and for the first time, leptoquark
decays to a light quark (any single one of u, d, s, or ¢) and a neutrino are considered. Assuming
that there is only one LQ state within mass reach of the LHC, for scalar (vector) leptoquarks
decaying to a light quark and a neutrino, masses below 980 (1790) GeV have been excluded by
the observed data, corresponding to a pair production cross section of 0.0059 (0.0011) pb. For
leptoquarks decaying to a bottom quark and a neutrino, masses below 1100 (1810) GeV have
been excluded, corresponding to a cross section of 0.0024 (0.0010) pb, while assuming decays to
a top quark and a neutrino, masses below 1020 (1780) GeV have been excluded, corresponding
to a cross section of 0.0043 (0.0012) pb. In the model of Refs. [23, 24], a vector leptoquark
with 50% branching fraction to a top quark and a neutrino is predicted. We exclude masses
below 1530 GeV for such a state with our observed data, providing the strongest constraint to
date in this model. At high LQ mass values, these results improve the upper limits on LQ
pair production cross sections by as much as a factor of 2.8 over the extrapolation assumed in
Ref. [45].
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Figure 2: The 95% CL upper limits on the production cross sections as a function of LQ mass
for LQ pair production decaying with unity branching fraction to a neutrino and: (upper left)
a light quark (one of u, d, s, or c), (upper right) a bottom quark, and (lower) a top quark.
The solid black line represents the observed exclusion. The dashed black line represents the
median expected exclusion. The inner (green) band and the outer (yellow) band indicate the
regions containing 68 and 95%, respectively, of the distribution of limits expected under the
background-only hypothesis. The blue lines show the theoretical cross section for scalar LQ
pair production with its uncertainty, and the red lines show the same for vector LQ pair pro-
duction. (lower) Also shown in magenta is the product of the theoretical cross section and
the square of the branching fraction, for vector LQ pair production assuming a 50% branching
fraction to a top quark and a neutrino.
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