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Abstract: Retrolensing is a gravitational lensing effect in which light emitted by a back-
ground source is deflected by a black hole and redirected toward the observer after un-
dergoing nearly complete loops around the black hole. In this context, we explore the
possibility of seeing objects of the solar system in past eras through telescope observations
by using black holes as a gravitational mirror. We consider the motion of the light around
Reissner—Nordstrom space-time and discuss the properties of the trajectories of boomerang
photons. It was shown that, depending on the angle of emission and the position of the
source, the photons could return to the emission point. Afterward, we explore the possibil-
ity of considering the returning photons in retrolensing geometry where the observer is
between the source and the lens in which two classes of black holes are explored: The su-
permassive Sgr A* black hole at the galactic center and a nearby stellar black hole. For the
first time in the literature, we propose the study of the returning photons of planets instead
of stars in retrolensing geometry.

Keywords: gravitational retrolensing; black hole physics

1. Introduction

By observing the light of distant galaxies, we are seeing them as they were when the
light left them millions or even billions of years ago. This provides the possibility that the
light of these astronomical objects carries information about their structure in different eras
of space-time. Spectral lines can be used to determine the value of physical quantities such
as the angular speed and mass of the galaxy, and so on. The idea of looking back in time
by observing the light emitted in the past deals with rays of light that travel from some
minutes, such as the light that reaches us from the Sun to even billions of light-years, in
the case of light coming from the most distant galaxies. The practical utility of this type of
observation can be viewed, for example, in the detection of the light of distant galaxies that
allows us to see what the universe was like billions of years ago.

On the other hand, general relativity (GR) tells us that the light emitted from these
objects actually propagates in a curved path due to the distribution of energy and matter
in the universe. Indeed, one of the first observational triumphs of GR was the correct
description of the bending of light in the vicinity of the Sun with the weak-field considera-
tion [1]. Since then, the study of the gravitational lensing phenomena has been revisited
several times [2-8]. Compact objects such as black holes have a gravitational field so strong
that light rays from the stars and galaxies can orbit the black hole several times before
reaching a distant observer in space—time [9-11]. In this context, the strong gravitational
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regime imposes intense effects on the structure of space-time, and the geodesic equations
for the bending of light in this regime must be solved without a weak field approximation.
Recently, the Event Horizon Telescope (EHT) collaboration made the first image of the M87*
black hole, observing an intricate pattern of the paths of light around it [12-14].

In this way, as in the case of the orbit of massive particles, photons can also circulate
around a black hole [15,16]. For example, the region where r = 3 GM/ c? called the
photon sphere, is the lower bound for stable orbits for the uncharged Schwarzschild black
hole. At this place, the photon may either escape to infinity or fall into the black hole.
Furthermore, there are additional regions in space-time where photons can be emitted and
loop around the black hole, returning to the emission point depending on the emission
angle of the photons and the distance of the black hole. Note that there is no length limit
for the radius of the orbit for these boomerang photons; consequently, a ray of light from
the Earth to the compact radio source Sgr A* can loop around the black hole and return to
the solar system. In this case, when the photons return, they carry information about the
rays of light emitted by a source 52,000 years ago.

A flash of light that returns to the emission point can also be used to determine the
mass and the distance of a black hole through the apex angles associated with orbits
obtained from the geodesic equation in Schwarzschild space-time [10]. A pedagogical
discussion on the uncharged Schwarzschild black hole can also be found in [17]. This
work discusses the trajectories of photons that circle around black holes. In [11], the author
extends the use of the static black hole as a gravitational mirror to the case of an uncharged
Kerr black hole, giving a precise description of the concept of boomerang photons.

Due to the fact that compact objects can deflect the light ray paths to large bending an-
gles, a particular type of gravitational lensing has been explored recently. Holz and Wheeler
introduced the concept of retrolensing, where the observer may be between the source and
the lens [18]. In this work, the authors estimate the apparent magnitude of retrolensing
events by considering black holes as lenses placed at the border of our solar system. The Sgr
A*black hole at the galactic center as a retrolens for a star at a close distance was considered
in [19]. In this case, the results provide evidence that such an event could have high magni-
tude as a consequence of the vicinity of the star to the Sgr A* black hole. Other advances in
retrolensing systems have been made in the following articles [20-26]. In Ref. [27], whose
approach we closely follow, retrolensing is analyzed for the charged Reissner—-Nordstrom
black holes, while in Ref. [24], the electric charge is replaced by the Weyl tidal charge, in
the form Q% — —W?2, which acts in consonance with the black hole mass, in a braneworld
model. Thus, although retrolensing has been extensively studied in theoretical and numeri-
cal models, it remains an open problem in observational astrophysics.

The aim of this article is to present a study of trajectories of returning photons in a
retrolensing geometry considering bodies in the solar system. As a particular system, Earth
as a source in the retrolensing geometry is considered when we propose an apparatus
to improve the magnification of the image. In this way, our focus is on the properties
of the image of the source of photons in addition to the existing studies of retrolensing,
where the goal is to determine the properties of the path of light around a source of the
strong gravitational field. To this end, we structure the paper as follows: In Section 2, we
review the Reissner—-Nordstrom space—time and discuss some basic aspects concerning
the trajectories of particles in this geometry. In Section 3, we study photon trajectories
in a general static spherically symmetric space-time, and in Section 4, we explore the
trajectories of the photons that return to their emitter and find out the conditions for this
type of motion. In Section 5, we propose a scheme to address the lens geometry associated
with the Earth as a source and an orbiting satellite as an observer in a retrolensing event.
Finally, in Section 6, we discuss our results.
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2. Spherically Symmetric Space-Time

It is possible to consider the trajectories of photons in space-time with a general
spherical form. For this purpose, the line element that represents this symmetry can be
written in the form

ds®> = —B(r)dt* + A(r)dr® + r*de* + r* sin %d¢?, 1)
where —oo <t < 400,0 <7 < +00,0< 0 <2mrand 0 < ¢ < 1.

Charged Black Hole

In solving Einstein’s equation, the functions A(r) and B(r) can be written explicitly.
In the case of the Reissner-Nordstrom space—time manifold, these functions are then
2M Q2

-1

B(r)=A(r)" =1-—=+ "%, )
with Q being the black hole charge. In this line element, the constant parameter M is the
mass of the stellar object. In the case of a black hole of mass M, the trajectories of the
photons are so strong that light can even return to the point of emittance; this point will
be discussed in detail in the following sections. In the limit where Q goes to zero, the
space—time metric becomes the Schwarzschild metric, and the equivalent of the condition
r = 2 M in the charged case is given by

re =M=+ /M2 Q2. 3)

In the case that M? > Q2, the black hole has two coordinate singularities, - and r_. Thus,
the radial coordinate  is regular in the regions r <7 < oo, 7_ <r <rpand0<r <r_.
In contrast, if M? < QZ, the space—time is non-singular for all values of r > 0; however,
the singularity at » = 0 remains. When the black hole mass satisfies the relation M? = QZ,
there is only one horizon; this type of charged black hole is extremal. We are interested in
the behavior of light rays in the region r > r, i.e., outside the horizon. The proper time T
elapsed for a static observer is related to the time coordinate t as AT = /1 — 2 M/rAt with
Q = 0, which means that time passes more slowly near the black hole.

3. Photon Trajectories in a General Static Spherically
Symmetric Space-Time

An important physical quantity to the study of photon trajectories is the point where
the potential associated with the photon trajectory V(r) reaches an extremum r,, (the
derivation of 1, can be found in Appendix A). As can be seen in Figure 1, 7, corresponds
to the extremum values of the curves of the effective potential as a function of # (in terms of
M). The solid line denotes the potential of a photon in the space-time of a non-charged
black hole with r,, = 3 M. In contrast, the dashed (blue) curve represents an extremal
charged black hole with r,, = 2 M. Thus, increasing values of charge moves r;, towards the
Schwarzschild radius 7s. On the other hand, if the electric charge is replaced by the tidal
(or Weyl) charge in a braneworld scenario, the behavior of the potential is reversed: as this
charge increases, the potential barrier lowers. This suggests that the influence of the extra
dimension facilitates the penetration of photons into the black hole’s interior.

After some algebra, Equation (A4) can be written in the following way:

dr 2 1
(#5) =iz~ a7 @
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where b = £ is the impact parameter of the photon. By integrating Equation (4), the

solution, r(¢), describes the orbital motion of photons in terms of the constants of motion.

In the closest approach, denoted by ry, that satisfies ry > r, and g—; |r:,0 = 0, Equation (4)

b=rgy/A(rp). ®)

gives the relation

0.03-
0.02-
- ~
>
0.01-
0-I v ) v T v T v T v T v L] v T v T v T
1 2 3 4 5 6 7 8 9 10
r [M]
[— QM=0 —-— Q/M=0.5 Q/M=0.75 — — Q/M=1]

Figure 1. Plots of the effective potential as the function of 7 in units of M for four fixed values of
Q/ M. The solid line corresponds to the uncharged black hole. The charge of the black hole acts to
reduce the values of 7;;, as can be seen in the figure above.

Another useful expression related to ry is the critical impact parameter b, defined as

be(rm) = lim b(rp). (6)

r0o—Tm

Indeed, the parameter b, is directly associated with the strong deflection limit since,
at this limit, r,, approaches rg. With these quantities, the deflection angle « of the photon
trajectory can be written in the following way [27]:

a=1I(rg)—m (7)

where the integral I is defined as twice the function ¢(r) obtained of Equation (4), i.e.,

© dr
I=2 / _— (8)
/12 1
oy 27 _ m
Equation (8), along with integral (7), gives us the deflection angle in a general way.
Due to the type of trajectories that we are interested in, they will be solved by considering

the strong gravitational limit where b — b¢. In this regime, the solution can be written in
the following way (see [27] for more details):

a(b) = —ﬁlog(: - 1) i ©)

c

up to higher-order terms in (b — b ), where the parameters @ and b are given by

a—= rim (10)

/3Mry, — Q2
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and
8(3Mr,, —4Q?)37?

°8 [0, (i, — Q)2

S
|

S

=

— T, (11)

where Z = 21/Mry, — Q2 — \/3 Mry, — 4Q2. In the uncharged case, corresponding to Q = 0,
Equations (10) and (11) reduce to the well-known results @ = 1 and b = log[216(7 — 4v/3)] = r
respectively [27].

4. Boomerang Photons

Concerning the trajectories of the light around compact objects, a fundamental ques-
tion arises: How can the light return to its emitter? As in the case of the geodesic of
massive bodies, the light trajectory presents a rich structure of orbital shapes, depending
on initial parameters. In this section, we explore some aspects of Equation (4) associated
with the orbit of photons that return to their emitter and find out the conditions for this
type of motion.

Numerical Solution for the Observer Near the Black Hole

Based on the previous results, the orbits in which the light returns to the emission
point can be determined. The motion is obtained by numerically solving Equation (4) with
its sign reversed as a turning point. The orbits of interest are generated by choosing an
emission angle that satisfies § > B. (the derivation of the expression for the emission angle
B can be found in Appendix B). In Figure 2, there are four orbits with different values of
t; (emitter position) and B. If one considers a source in a planet placed at r; = 10.5 M,
where M is the black hole mass, the photons leaving the emitter to do a 7t rotation about
the charged black hole and then return to the planet.

4

_— r,-:2.0l1M

— i =4M
r=72M |

— r; = 10.5M

-2

—4 L

r (in units of M)
Figure 2. Plots of the trajectories of photons for four values of r; and B. The trajectory corresponding
to photons emitted at r; = 2.01 with p = 0.1838 rad is inside the photon sphere and outside the
horizon (dashed line). The other emission points, corresponding to r; > 2, are outside the photon
sphere. For simplicity, the trajectories are obtained considering Q = 0 in this figure.

As shown in Table 1, the emission angle B associated with this trajectory is
B = 0.466 rad. Note that the dashed circle represents the event horizon of the black hole,
where, for simplicity, we have considered the uncharged case. Small variations of  can im-
ply a different motion; for example, considering an emission with an angle of 1.164423 rad
at r = 4, the photons made two orbits before returning to the emission point. This situation
is illustrated in Figure 3.
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Table 1. In this table are shown the parameters used in the numerical solution associated with the
orbit of photons in Figure 2. Notice that the photons emitted at r; = 2.01M are inside the photon
sphere (with Q = 0) and near the horizon of an uncharged black hole.

ri/M B A(r) b/M
2.0100 0.1838 201 5.2055
4 1.1664 2.0 5.1997
7.2 0.6650 1.3846 5.1945
10.5 0.4667 1.2353 5.2436

-2

-3

-3 -2 -1 0 1 2 3 4
r (in units of M)

Figure 3. Plot of the trajectory of photons emitted at r; = 4.0 with B = 1.164423 rad. In this case, the
emitted photons start in the blue region with such an angle that they will spiral and reach the turning

point (in the green region), and then they arrive at point 7; = 4.0 in the yellow region after two orbits
around the black hole.

The scheme in which returning photons are obtained by choosing an appropriate
emission angle is more suitable when the emitter is close to the black hole. In a realistic
scenario, considering our planet in the solar system, there are no known nearby black holes
with the distances used in Figure 2. As we will see in the next sections, the study of the
deflection of the light of the solar system bodies by black holes can be approached as a
retrolensing problem. In this case, the black hole mass is an important parameter that can
act to increase the magnitude of the retrolensing effect.

It is worth noting that although the addition of charge Q (or W) does not produce
photon trajectories that differ significantly from the chargeless case, we can still qualitatively
analyze the effect. Consider, for instance, Equation (A12) and the graph in Figure 2. If the
electric charge is non-zero, the metric coefficient A(r) decreases, leading to an increase in
angle . In contrast, when dealing with the tidal charge (or Weyl), which has the opposite
sign to the electric charge, A(r) increases, resulting in a decrease in f. In other words, we
can interpret that, in the first case, the emitter needs to launch the photon at a slightly larger
angle to receive it back, whereas in the second case, a slightly smaller angle is required
for the same initial radius r;. Thus, we have obtained a study showing the movement
of photons close to black holes. This analysis demonstrates that it is possible to consider
photons that return to the point of emission. In the next section, we will use the expertise
gained here to study the dynamics of photons that are very far from the black holes.
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5. Black Holes as Gravitational Mirrors: A Possible Apparatus

In recent days, two geometries have been considered in the literature on gravitational
lensing: the first one corresponds to a light source behind the black hole (standard geom-
etry), while the second one (retrolensing) presents a source in front of the black hole. In
Figure 4, we illustrate the lensing configuration for a retrolensing geometry that we use
in this work, where the Earth is represented as the light source for the retrolensing. The
photons emitted reach the black hole, and then they return to the observer (satellite) near
the Earth. Before we present the standard retrolensing configuration, we discuss observing
strategies based on the population of stars that probably collapse to form black holes locally.

\er®

Figure 4. The proposed scheme to address the lens geometry associated with the Earth as a source
and an orbiting satellite as an observer. The emitted light from the Earth reaches the black hole,
returning to the observer after receiving an amplification due to the strong gravitational field of the
black hole.

As explained before, we will use a compact object with a strong gravitational field
such that the light circulates around n times before returning to the emission place; the
equations associated with this type of motion indicate massive objects as lens candidates.
Thus, two categories of black holes can be analyzed in our retrolensing study: distant
supermassive black holes and nearby stellar black holes. The supermassive black hole
in Sgr A* with a mass of (4.1 4 0.014) x 10°M,, [28] is an example of a supermassive
black hole that we analyze in the next section. The great mass of this object favors the
amplification effect of the lens, but the big distance is a negative factor in this scenario.
Another interesting aspect of this class of black holes is related to the age of the image
observed. If the Earth is considered a light source in this retrolensing phenomenon, then
we can see how Earth’s light was 52,000 years ago when Neanderthals lived on the Earth.

Despite the interesting implications of this scenario, this type of observation is very
difficult with current technologies due to the distance from Sgr A* or another massive
black hole. As a second possibility, we can consider nearby black holes. As discussed
in [18], theoretical estimates give a result for the local density of stellar black holes circa
~ 8 x 107*/pc3, while the mass of these objects lies in the range 5 Mz, < M < 15 M.
The earliest population of stars with masses in the range 300 < M < 1000 M, is another
route to generate a retrolensing event since these stars probably collapse and form black
holes with similar mass. At the moment, the nearest known black hole candidate is the
object HR6819 (340 pc), but it has not been confirmed yet [29].
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In this section, we discuss the framework used to deal with retrolensing in the Reiss-
ner—Nordstrom space-time following Ref. [27]. Then, we consider the application of the
obtained results to the original retrolensing problem proposed in this paper. To realize the
idea illustrated in Figure 4, we consider the retrolensing scheme in Figure 5. As we can
see, the parameters Dpg, Doy, and D;g are the distances between the observer and the
Earth, between the observer and the black hole, and between the black hole and the Earth,
respectively. In addition, the angle 6 is the angular position of the image with respect to
the position of the black hole,  is the angle formed between Doy and Dy, and 6 is the
angle between Dj g and the light ray (see Figure 5). These angles are related by the Ohanian
equation in the form [30,31]

B=m—a(0)+60+0. (12)

Observer

Light source
S

Figure 5. Retrolensing setup. The source at S emits light rays to the lens L that turn around the black
hole several times before reaching the observer O. The observer sees the light source as I, and from
his perspective, 6 is the angle of the image I.

By assuming that the lens, the observer, and the source are almost aligned and
b. < Dor, we can use the relations f ~ 0 and D;s = Doy + Dps. It follows from (12)
under the assumption of a strong deflection limit, neglecting small terms in 6 and 6, the
positive solution [27]

b—
0+ (B) = Om [1+exp(7g+ﬁﬂ (13)
where 0,; = b./Dor. The magnification associated to the Equation (13) is given by [27]
D2 do,
i (B) = =325 (B)b+— (14)
D2, dp
where
s(B) = —=[n(Bs — p) (15)
= S
pps B>+ B” — B3
+ / arccos —————=>dp’
e T
for the case B < Bg, and
2 /ﬁ+ﬁs B+ B2 —B%
s(B) = arccos —————=d (16)
B =6 S py
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for the case Bs < B, where Bs = Rg/Drg, with Rg being the radius of the source. It is
considered in Equation (16) that the origin of the coordinates is on the intersection point
between the source plane and the axis § = 0. The negative solutions for 6 and y can be
written by observing the relations

0-(B) ~ =0+(B), H-(B) ~ —p+(B)- (17)

In this way, the total magnification u(B) = |u+(B)| + |u—(B)| is obtained as the
combination of these relations, the result is

2 (b—m)/a (b—m)/a
D3 e {1 +e }

2 —-
DLS a

u(pg) =2

[5(B)I- (18)

These results have been applied in the study of retrolensing problems involving the
Sun as the source. For example, by considering a black hole of M = 10 M, at distance
Dor = 0.01pc in the case of perfect alignment, we obtain the maximum amplification with
a magnitude of m ~ 26, an observable value. In the next section, we apply these ideas,
considering that the Earth moves on the source plane with the orbital velocity.

Retrolensing

Now, we investigate the retrolensing light curves by nearby black holes as pro-
posed by [18] with masses in the range (10-90) M, considering the scheme proposed
in Figures 4 and 5. By inspection of Equation (18), it can be seen that the parameters Dj g
and M have played an important role in the final value for the magnitude of the images.
In this first example, we consider an observer placed at Dpg = 380,000 km of distance from
the Earth (source). Figure 6 shows the magnitude of the image considering three different
masses and two different charges. The best value, m ~ 32 for magnitude, is obtained with
the 90 Mg black hole at a distance of 0.001 pc with Q = 0. As we can see, the curves
associated with the extremal charge Q = M have a maximum value for m lower than the
uncharged case. For comparison, we consider in Figure 7 the magnitude of the images for
the case where we replace the electric charge with the Weyl tidal charge. In this case, we
have an opposite behavior; the charge increases to the maximum value of m.

______ —— M=10M,,Q=0
325F | e il —— M=45M_,,Q=0 A
- A M =90M,,Q = 0

-1.0 -0.5 0.0 0.5 1.0
t (days)

Figure 6. Light curves by non-charged and charged black holes for different masses at a distance of
0.001 pc. The closest separation considered is § = 0. The green, blue, and red curves represent the
magnification of black holes with masses 90 M), 45 M, and 10 M, respectively.
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At a distance of 7860 pc, the supermassive black hole in Sgr A* is possibly the central
black hole of the Milky Way. Due to the value of its mass, the study of gravitational
retrolensing in space-time provides a convenient tool to explore the strong deflection limit.
Figure 8 shows the magnitude of the light curves considering the black hole in Sgr A* (red
line) and a black hole with the same mass but at 1000 pc (blue line) for two different charges.
In this case, the charge of the black hole reduces the value of the maximum magnitude.
Figure 9 shows the magnitude of the images for the case where we replace the electric
charge with the Weyl tidal charge. In this case, the charge increases to the maximum value
of m. As we can see, the magnitudes of the retrolensing light curves are very difficult to

detect with current instruments in this case, even considering a supermassive black hole at
1000 pc.

-1.0 -05 0.0 0.5 1.0

t (days)
Figure 7. Light curves by a black hole with the Weyl tidal charge for different masses at a distance of
0.001 pc. The closest separation considered is f = 0. The green, blue, and red curves represent the
magnification of black holes with masses 90M, 45M, and 10M,, respectively.

©r

Doy = 7860 pc, Q=0

Do, = 1000 pc, Q =0
56.0F - p -

........ DoL=7860 pc, Q=M

..... Do = 1000 pc, Q=M
57.5F ]
60.0F ]

£

62.5F -
65.0F :
67.5F -
-10 ~05 0.0 05 10

t (days)

Figure 8. Light curves by a supermassive black hole for different distances with 4.02 x 10® M, and
two different charges. The closest separation considered is § = 0. Red and blue curves represent the
magnification of black holes at 7860 pc and 1000 pc, respectively.



Universe 2025, 11, 152

11 of 14

DoL= 7860 pc, W=0
Do = 1000 pc,w =0
55.0F . v
........ DOL= 7860 pciw =M
..... Do, = 1000 pc, W= M
57.5F -
60.0F :
£
62.5F -
65.0F -
67.5F ]
10 -05 0.9 ° N

t (days)
Figure 9. Light curves by a supermassive black hole with the Weyl tidal charge for different distances

with 4.02 x 10° Mg, and two different charges. The closest separation considered is § = 0. Red and
blue curves represent the magnification of black holes at 7860 pc and 1000 pc, respectively.

6. Conclusions

Considering the trajectories of photons in the spherically symmetric space-time, we
conclude that photons can return to their emitter, the so-called boomerang photons. This is
the effect of the strong gravitational field that imposes an intense influence on the geodesic
equation for the bending of light. Based on this result, we suggest a particular configuration
where the emitter is the Earth itself. We have shown that these trajectories can be obtained
in terms of the constants of the motion (Figures 2 and 3). We also saw that when the electric
(tidal) charge is included, the emission angle increases (or decreases) because the height
of the effective potential for the photon becomes higher (or lower). Depending on the
emission angle, i.e., the angle between the propagation direction of the photon and the
radial direction, it can rotate N times around the black hole before returning to the emission
point. This type of motion can be used in principle as a tool to determine the mass of a
black hole as well as the distance of the observer to this object [10].

Based on parameters used in the numerical solution associated with the orbit of
photons in the figures, we can see that the photons emitted at r; = 2.01 M are inside the
photon sphere and near the horizon of an uncharged black hole. The highest value of the
initial radius that we used was r; = 10.5 M. In a more realistic scenario, considering the
Earth as a source, the setup used in retrolensing systems is the most adequate to address
the study of returning light rays, where we can use distant supermassive black holes as
lenses. Different from the standard gravitational lensing, retrolensing permits the light rays
emitted by Earth to be reflected from the light sphere of the black hole.

Although the probability is small, a close approach of a stellar-mass black hole, besides
potentially catastrophic consequences (effects on the orbital stability), can offer an observa-
tional verification of the Earth as the source of a retrolensing event. Figure 6 shows that this
retrolensing event can be seen with the apparent magnitude m = 32. In a safer scenario
by considering the Sgr A* black hole at 7860 pc, Figure 8 shows a magnitude m = 61. In
the same figure, a hypothetical black hole with the same mass at 1000 pc has a magnitude
around m ~ 53.

When electric (Q) or Weyl tidal (W) charges are taken into account, the resulting
change in magnitude relative to the charge-free case remains negligible. In particular,
our analysis indicates that the presence of a tidal charge leads to a slight increase in the
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luminosity of the recovered image (consider Figure 9). In this case, by adopting the upper
bound W? < 0.0004 M2, as reported in Ref. [32], the corresponding magnitude difference is
approximately Am ~ 0.0001. This value is about one order of magnitude below the current
threshold of astronomical photometric sensitivity [33].

In future work, it is possible to consider space-time solutions with different symme-
tries where the cosmological constant and /or rotation of the matter are taken into account.

The observational possibilities for retrolensing events are not restricted to charged
static black holes or the aforementioned extensions. Interesting scenarios can be studied
in modified theories of gravity [34-36], where new solutions arise, generalizing the usual
geometries associated with wormholes and black holes. In this way, the observation of a
retrolensing event, besides the confirmation of GR in a strong-field regime, can be used to
constrain modified gravity theories in this field.
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Appendix A. Lower Bound for Stable Orbits

The classical motion of a test particle, in general space-time, can be analyzed consider-
ing a Lagrangian in the form £ = (1/2)g,,x# %", where the dot denotes the differentiation
with respect to the affine parameter. In this way, considering Equation (1) and assuming
0 = 71/2, as usual, one obtains

2L = —B(r)i* + A(r)i* + r*¢*. (A1)

Due to the spherical symmetry of the system under consideration, the translational
Killing vector d; = t#d, with t# = (1,0,0,0) and the axial Killing vector 9, = ¢*d, with
¢" = (0,0,0,1) yield the constants of the motion

E = —gut's" = —B(r)i, (A2)

and
L =guo!'x’ = rng, (A3)

respectively. In a general way, E can be interpreted as the total energy per unit rest mass of
the particle in the case of a timelike geodesic. In the case of null geodesics, the product ZE
is the total energy of a photon. Similarly, iL represents the total angular momentum of a
photon in the case of a null geodesic. By considering the constants of motion (A2) and (A3)
along the null geodesic condition £ = (1/2)g,yx#1" = 0, Equation (A1) may be written in

the form 5

L-G-V(r) =

5 (A4)
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This is the potential associated with the photon trajectory. An important region of

V(r) (A5)

this motion is around the extremum of V(r), the point r,,, where the differentiation with
respect to the radial coordinate vanishes. An expression for this region can be written as

3IM v/ IM? — 8(Q?
m= fQ- (A6)

This region is the lower bound for stable orbits in this space—time.

Appendix B. Emission Angle

By considering an observer at rest, the line element (1) provides the relation
ds? = —dt* = —B(r)dt>. (A7)

In addition, the null geodesic condition (ds?> = 0) permits us to write the line element
in the form
—B(r)dt? = A(r)dr* + r2d6? + r* sin 6*d p* (A8)
Finally, identifying Equations (A7) and (A8) considering the equatorial motion, we get
the result

dt? = A(r)dr* +r?d¢?, (A9)

that, after some algebra, can be recast as

( A(r)j;)z + (rf[ﬁ)z — 1 (A10)

The two terms on the left-hand side of Equation (A10) can be identified with the radial
and angular components of the speed of light (¢ = 1). In this case, the components V, and
V,, are related to the angle between the propagation direction and radial direction in the

following way:
Vi r de

v, T am

V‘P
where the term d¢/dr can be replaced by the right-hand side term of Equation (4), the

(A11)

result is .

72
tan[S:j:< bZA(r)—l_l) . (A12)

In this way, an emitter at rest at ¥ measures an angle § between the propagation
direction of the photon and the radial direction that determines if the photons are captured
or returned to the emitter. The critical angle ., defined as the angle where the photon is
captured in the photon circle, is a good parameter to analyze this type of motion. It acts as
a threshold separating orbits where the photons are captured by the black hole, escape to
infinity, or are captured in the photon sphere.

Bartelmann, M. Gravitational lensing. Class. Quant. Grav. 2010, 27, 233001. [CrossRef]

Luminet, ].P. Image of a spherical black hole with thin accretion disk. Astron. Astrophys. 1979, 75, 228-235.

Nemiroff, R.J. Visual Distortions Near a Neutron Star and Black Hole. Am. J. Phys. 1993, 61, 619-632. [CrossRef]

Frittelli, S.; Kling, T.P.; Newman, E.T. Spacetime perspective of Schwarzschild lensing. Phys. Rev. D 2000, 61, 064021. [CrossRef]
Virbhadra, K.S.; Ellis, G.E.R. Schwarzschild black hole lensing. Phys. Rev. D 2000, 62, 084003. [CrossRef]


http://dx.doi.org/10.1088/0264-9381/27/23/233001
http://dx.doi.org/10.1119/1.17224
http://dx.doi.org/10.1103/PhysRevD.61.064021
http://dx.doi.org/10.1103/PhysRevD.62.084003

Universe 2025, 11, 152 14 of 14

10.

11.
12.

13.

14.

15.
16.

17.
18.
19.
20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.
33.

34.
35.

36.

Bozza, B. Gravitational lensing in the strong field limit. Phys. Rev. D 2000, 69, 103001. [CrossRef]

Perlick, V. Exact gravitational lens equation in spherically symmetric and static spacetimes. Phys. Rev. D 2004, 69, 064017.
[CrossRef]

Iyer, S.V.; Petters, A.O. Light’s bending angle due to black holes: from the photon sphere to infinity. Gen. Rel. Grav. 2007,
39, 1563-1582. [CrossRef]

Page, D.N. Photon boomerang in a nearly extreme Kerr metric. Class. Quant. Grav. 2021, 39, 135015. [CrossRef]

Muller, T. Einstein rings as a tool for estimating distances and the mass of a Schwarzschild black hole. Phys. Rev. D 2008,
77,124042. [CrossRef]

Cramer, C.R. Using the Uncharged Kerr Black Hole as a Gravitational Mirror. Gen. Rel. Grav. 1997, 29, 445-454. [CrossRef]
Akiyama, K. et al. [Event Horizon Telescope]. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the
Central Black Hole. Astrophys. J. Lett. 2019, 875, Lé.

Akiyama, K. et al. [Event Horizon Telescope]. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive
Black Hole. Astrophys. |. Lett. 2019, 875, L1.

Akiyama, K. et al. [Event Horizon Telescope]. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric
Ring. Astrophys. J. Lett. 2019, 875, L5.

Claudel, C.-M.; Virbhadra, K.S.; Ellis, G.ER. The geometry of photon surfaces. |. Math. Phys. 2001, 42, 818-838. [CrossRef]
Hasse, W.; Perlick, V. Gravitational Lensing in Spherically Symmetric Static Spacetimes with Centrifugal Force Reversal. Gen. Rel.
Grav. 2002, 34, 415-433. [CrossRef]

Stuckey, W.M. The Schwarzschild black hole as a gravitational mirror. Am. J. Phys. 1993, 61, 448. [CrossRef]

Holz, D.E.; Wheeler, J.A. Retro-MACHOs: 7t in the Sky? Astrophys. ]. 2002, 578, 330. [CrossRef]

De Paolis, F; Geralico, A.; Ingrosso, G.; Nucita, A.A. The black hole at the galactic center as a possible retro-lens for the S2 orbiting
star. Astron. Astrophys. 2003, 409, 809-812. [CrossRef]

Babar, G.Z.; Atamurotov, F.; Babar, A.Z.; Lim, Y.-K. Retrolensing by a spherically symmetric naked singularity. arXiv 2021,
arXiv:2104.01340.

Tsukamoto, N. Retrolensing by a wormhole at deflection angles 7t and 37. Phys. Rev. D 2017, 95, 084021. [CrossRef]

Bozza, V.; Mancini, L. Gravitational Lensing by Black Holes: A Comprehensive Treatment and the Case of the Star S2. Astrophys.
J. 2004, 611, 1045. [CrossRef]

Tsukamoto, N. Retrolensing by light rays slightly inside and outside of a photon sphere around a Reissner-Nordstr’om naked
singularity. Phys. Rev. D 2022, 105, 024009. [CrossRef]

Abdujabbarov, A.; Ahmedov, B. Optical properties of a braneworld black hole: Gravitational lensing and retrolensing. Phys. Rev.
D 2017, 96, 084017. [CrossRef]

Harada, T. Light curves of light rays passing through a wormhole. Phys. Rev. D 2017, 95, 024030.

Eiroa, E.F. Braneworld black hole gravitational lens: Strong field limit analysis. Phys. Rev. D 2005, 71, 083010. [CrossRef]
Tsukamoto, N.; Gong, Y. Retrolensing by a charged black hole. Phys. Rev. D 2017, 95, 064034. [CrossRef]

Abuter, R.; Amorim, A.; Baubock, M.; Berger, J.P.; Bonnet, H.; Brandner, W.; Clénet, Y.; Du Foresto, V.C.; De Zeeuw, P.T.; Dexter, J.;
et al. A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty*. Astron. Astrophys. 2019,
625, 110.

Rivinius, T.; Baade, D.; Hadrava, P.; Heida, M.; Klement, R. A naked-eye triple system with a nonaccreting black hole in the inner
binary. Astron. Astrophys. 2020, 637, L3. [CrossRef]

Ohanian, H.C. The black hole as a gravitational “lens”. Am. J. Phys. 1987, 55, 428-432. [CrossRef]

Bozza, V. Comparison of approximate gravitational lens equations and a proposal for an improved new one. Phys. Rev. D 2008,
78, 103005. [CrossRef]

Neves, ].C.S. Constraining the tidal charge of brane black holes using their shadows. Eur. Phys. . C 2020, 80, 717. [CrossRef]
Lépez-Morales, M. Millimagnitude-Precision Photometry of Bright Stars with a 1 m Telescope and a Standard CCD. Publ. Astron.
Soc. Pac. 2006, 118, 716. [CrossRef]

De Felice, A.; Tsujikawa, S. f(R) Theories. Living Rev. Relativ. 2010, 13, 3. [CrossRef] [PubMed]

Mota, C.E.; Santos, L.C.N.; Grams, G.; da Silva, EM.; Menezes, D.P. Combined Rastall and rainbow theories of gravity with
applications to neutron stars. Phys. Rev. D 2019, 100, 024043. [CrossRef]

Mota, C.E.; Santos, L.C.N.; da Silva, EM.; Grams, G.; Lobo, I.P.; Menezes, D.P. Generalized Rastall’s gravity and its effects on
compact objects. Int. J. Mod. Phys. B. 2022, 31, 2250023. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1103/PhysRevD.66.103001
http://dx.doi.org/10.1103/PhysRevD.69.064017
http://dx.doi.org/10.1007/s10714-007-0481-8
http://dx.doi.org/10.1088/1361-6382/ac36e5
http://dx.doi.org/10.1103/PhysRevD.77.124042
http://dx.doi.org/10.1023/A:1018878515046
http://dx.doi.org/10.1063/1.1308507
http://dx.doi.org/10.1023/A:1015384604371
http://dx.doi.org/10.1119/1.17434
http://dx.doi.org/10.1086/342463
http://dx.doi.org/10.1051/0004-6361:20031137
http://dx.doi.org/10.1103/PhysRevD.95.084021
http://dx.doi.org/10.1086/422309
http://dx.doi.org/10.1103/PhysRevD.105.024009
http://dx.doi.org/10.1103/PhysRevD.96.084017
http://dx.doi.org/10.1103/PhysRevD.71.083010
http://dx.doi.org/10.1103/PhysRevD.95.064034
http://dx.doi.org/10.1051/0004-6361/202038020
http://dx.doi.org/10.1119/1.15126
http://dx.doi.org/10.1103/PhysRevD.78.103005
http://dx.doi.org/10.1140/epjc/s10052-020-8321-z
http://dx.doi.org/10.1086/503788
http://dx.doi.org/10.12942/lrr-2010-3
http://www.ncbi.nlm.nih.gov/pubmed/28179828
http://dx.doi.org/10.1103/PhysRevD.100.024043
http://dx.doi.org/10.1142/S0218271822500237

	Introduction
	Spherically Symmetric Space–Time
	Photon Trajectories in a General Static Spherically Symmetric Space–Time
	Boomerang Photons
	Black Holes as Gravitational Mirrors: A Possible Apparatus
	Conclusions
	Appendix A
	Appendix B
	References

