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Abstract: Retrolensing is a gravitational lensing effect in which light emitted by a back-

ground source is deflected by a black hole and redirected toward the observer after un-

dergoing nearly complete loops around the black hole. In this context, we explore the

possibility of seeing objects of the solar system in past eras through telescope observations

by using black holes as a gravitational mirror. We consider the motion of the light around

Reissner–Nordström space–time and discuss the properties of the trajectories of boomerang

photons. It was shown that, depending on the angle of emission and the position of the

source, the photons could return to the emission point. Afterward, we explore the possibil-

ity of considering the returning photons in retrolensing geometry where the observer is

between the source and the lens in which two classes of black holes are explored: The su-

permassive Sgr A* black hole at the galactic center and a nearby stellar black hole. For the

first time in the literature, we propose the study of the returning photons of planets instead

of stars in retrolensing geometry.

Keywords: gravitational retrolensing; black hole physics

1. Introduction

By observing the light of distant galaxies, we are seeing them as they were when the

light left them millions or even billions of years ago. This provides the possibility that the

light of these astronomical objects carries information about their structure in different eras

of space–time. Spectral lines can be used to determine the value of physical quantities such

as the angular speed and mass of the galaxy, and so on. The idea of looking back in time

by observing the light emitted in the past deals with rays of light that travel from some

minutes, such as the light that reaches us from the Sun to even billions of light-years, in

the case of light coming from the most distant galaxies. The practical utility of this type of

observation can be viewed, for example, in the detection of the light of distant galaxies that

allows us to see what the universe was like billions of years ago.

On the other hand, general relativity (GR) tells us that the light emitted from these

objects actually propagates in a curved path due to the distribution of energy and matter

in the universe. Indeed, one of the first observational triumphs of GR was the correct

description of the bending of light in the vicinity of the Sun with the weak-field considera-

tion [1]. Since then, the study of the gravitational lensing phenomena has been revisited

several times [2–8]. Compact objects such as black holes have a gravitational field so strong

that light rays from the stars and galaxies can orbit the black hole several times before

reaching a distant observer in space–time [9–11]. In this context, the strong gravitational

Universe 2025, 11, 152 https://doi.org/10.3390/universe11050152

https://doi.org/10.3390/universe11050152
https://doi.org/10.3390/universe11050152
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-6129-1820
https://orcid.org/0000-0001-7893-0265
https://doi.org/10.3390/universe11050152
https://www.mdpi.com/article/10.3390/universe11050152?type=check_update&version=2


Universe 2025, 11, 152 2 of 14

regime imposes intense effects on the structure of space–time, and the geodesic equations

for the bending of light in this regime must be solved without a weak field approximation.

Recently, the Event Horizon Telescope (EHT) collaboration made the first image of the M87*

black hole, observing an intricate pattern of the paths of light around it [12–14].

In this way, as in the case of the orbit of massive particles, photons can also circulate

around a black hole [15,16]. For example, the region where r = 3 GM/c2 called the

photon sphere, is the lower bound for stable orbits for the uncharged Schwarzschild black

hole. At this place, the photon may either escape to infinity or fall into the black hole.

Furthermore, there are additional regions in space–time where photons can be emitted and

loop around the black hole, returning to the emission point depending on the emission

angle of the photons and the distance of the black hole. Note that there is no length limit

for the radius of the orbit for these boomerang photons; consequently, a ray of light from

the Earth to the compact radio source Sgr A* can loop around the black hole and return to

the solar system. In this case, when the photons return, they carry information about the

rays of light emitted by a source 52,000 years ago.

A flash of light that returns to the emission point can also be used to determine the

mass and the distance of a black hole through the apex angles associated with orbits

obtained from the geodesic equation in Schwarzschild space–time [10]. A pedagogical

discussion on the uncharged Schwarzschild black hole can also be found in [17]. This

work discusses the trajectories of photons that circle around black holes. In [11], the author

extends the use of the static black hole as a gravitational mirror to the case of an uncharged

Kerr black hole, giving a precise description of the concept of boomerang photons.

Due to the fact that compact objects can deflect the light ray paths to large bending an-

gles, a particular type of gravitational lensing has been explored recently. Holz and Wheeler

introduced the concept of retrolensing, where the observer may be between the source and

the lens [18]. In this work, the authors estimate the apparent magnitude of retrolensing

events by considering black holes as lenses placed at the border of our solar system. The Sgr

A* black hole at the galactic center as a retrolens for a star at a close distance was considered

in [19]. In this case, the results provide evidence that such an event could have high magni-

tude as a consequence of the vicinity of the star to the Sgr A* black hole. Other advances in

retrolensing systems have been made in the following articles [20–26]. In Ref. [27], whose

approach we closely follow, retrolensing is analyzed for the charged Reissner–Nordström

black holes, while in Ref. [24], the electric charge is replaced by the Weyl tidal charge, in

the form Q2 → −W2, which acts in consonance with the black hole mass, in a braneworld

model. Thus, although retrolensing has been extensively studied in theoretical and numeri-

cal models, it remains an open problem in observational astrophysics.

The aim of this article is to present a study of trajectories of returning photons in a

retrolensing geometry considering bodies in the solar system. As a particular system, Earth

as a source in the retrolensing geometry is considered when we propose an apparatus

to improve the magnification of the image. In this way, our focus is on the properties

of the image of the source of photons in addition to the existing studies of retrolensing,

where the goal is to determine the properties of the path of light around a source of the

strong gravitational field. To this end, we structure the paper as follows: In Section 2, we

review the Reissner–Nordström space–time and discuss some basic aspects concerning

the trajectories of particles in this geometry. In Section 3, we study photon trajectories

in a general static spherically symmetric space–time, and in Section 4, we explore the

trajectories of the photons that return to their emitter and find out the conditions for this

type of motion. In Section 5, we propose a scheme to address the lens geometry associated

with the Earth as a source and an orbiting satellite as an observer in a retrolensing event.

Finally, in Section 6, we discuss our results.
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2. Spherically Symmetric Space–Time

It is possible to consider the trajectories of photons in space–time with a general

spherical form. For this purpose, the line element that represents this symmetry can be

written in the form

ds2 = −B(r)dt2 + A(r)dr2 + r2dθ2 + r2 sin θ2dϕ2, (1)

where −∞ < t < +∞, 0 ≤ r < +∞, 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π.

Charged Black Hole

In solving Einstein’s equation, the functions A(r) and B(r) can be written explicitly.

In the case of the Reissner–Nordström space–time manifold, these functions are then

B(r) = A(r)−1 = 1 − 2M

r
+

Q2

r2
, (2)

with Q being the black hole charge. In this line element, the constant parameter M is the

mass of the stellar object. In the case of a black hole of mass M, the trajectories of the

photons are so strong that light can even return to the point of emittance; this point will

be discussed in detail in the following sections. In the limit where Q goes to zero, the

space–time metric becomes the Schwarzschild metric, and the equivalent of the condition

r = 2 M in the charged case is given by

r± = M ±
√

M2 − Q2. (3)

In the case that M2
> Q2, the black hole has two coordinate singularities, r+ and r−. Thus,

the radial coordinate r is regular in the regions r+ < r < ∞, r− < r < r+ and 0 < r < r−.

In contrast, if M2
< Q2, the space–time is non-singular for all values of r > 0; however,

the singularity at r = 0 remains. When the black hole mass satisfies the relation M2 = Q2,

there is only one horizon; this type of charged black hole is extremal. We are interested in

the behavior of light rays in the region r > r+, i.e., outside the horizon. The proper time τ

elapsed for a static observer is related to the time coordinate t as ∆τ =
√

1 − 2 M/r∆t with

Q = 0, which means that time passes more slowly near the black hole.

3. Photon Trajectories in a General Static Spherically
Symmetric Space–Time

An important physical quantity to the study of photon trajectories is the point where

the potential associated with the photon trajectory V(r) reaches an extremum rm (the

derivation of rm can be found in Appendix A). As can be seen in Figure 1, rm corresponds

to the extremum values of the curves of the effective potential as a function of r (in terms of

M). The solid line denotes the potential of a photon in the space–time of a non-charged

black hole with rm = 3 M. In contrast, the dashed (blue) curve represents an extremal

charged black hole with rm = 2 M. Thus, increasing values of charge moves rm towards the

Schwarzschild radius rs. On the other hand, if the electric charge is replaced by the tidal

(or Weyl) charge in a braneworld scenario, the behavior of the potential is reversed: as this

charge increases, the potential barrier lowers. This suggests that the influence of the extra

dimension facilitates the penetration of photons into the black hole’s interior.

After some algebra, Equation (A4) can be written in the following way:

(

dr

dϕ

)

= ±r

√

r2

b2
− 1

A(r)
, (4)
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where b ≡ L
E is the impact parameter of the photon. By integrating Equation (4), the

solution, r(ϕ), describes the orbital motion of photons in terms of the constants of motion.

In the closest approach, denoted by r0, that satisfies r0 ≥ rm and dr
dϕ |r=r0

= 0, Equation (4)

gives the relation

b = r0

√

A(r0). (5)

Figure 1. Plots of the effective potential as the function of r in units of M for four fixed values of

Q/M. The solid line corresponds to the uncharged black hole. The charge of the black hole acts to

reduce the values of rm, as can be seen in the figure above.

Another useful expression related to r0 is the critical impact parameter bc, defined as

bc(rm) ≡ lim
r0→rm

b(r0). (6)

Indeed, the parameter bc is directly associated with the strong deflection limit since,

at this limit, rm approaches r0. With these quantities, the deflection angle α of the photon

trajectory can be written in the following way [27]:

α = I(r0)− π (7)

where the integral I is defined as twice the function ϕ(r) obtained of Equation (4), i.e.,

I ≡ 2
∫

∞

r0

dr

r
√

r2

b2 − 1
A(r)

. (8)

Equation (8), along with integral (7), gives us the deflection angle in a general way.

Due to the type of trajectories that we are interested in, they will be solved by considering

the strong gravitational limit where b → bC. In this regime, the solution can be written in

the following way (see [27] for more details):

α(b) = −ā log

(

b

bc
− 1

)

+ b̄ (9)

up to higher-order terms in (b − bc), where the parameters ā and b̄ are given by

ā =
rm

√

3Mrm − Q2
, (10)
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and

b̄ = ā log

[

8(3Mrm − 4Q2)3Z2

M2r2
m(Mrm − Q2)2

]

− π, (11)

where Z = 2
√

Mrm − Q2 −
√

3 Mrm − 4Q2. In the uncharged case, corresponding to Q = 0,

Equations (10) and (11) reduce to the well-known results ā = 1 and b̄ = log[216(7− 4
√

3)] = π

respectively [27].

4. Boomerang Photons

Concerning the trajectories of the light around compact objects, a fundamental ques-

tion arises: How can the light return to its emitter? As in the case of the geodesic of

massive bodies, the light trajectory presents a rich structure of orbital shapes, depending

on initial parameters. In this section, we explore some aspects of Equation (4) associated

with the orbit of photons that return to their emitter and find out the conditions for this

type of motion.

Numerical Solution for the Observer Near the Black Hole

Based on the previous results, the orbits in which the light returns to the emission

point can be determined. The motion is obtained by numerically solving Equation (4) with

its sign reversed as a turning point. The orbits of interest are generated by choosing an

emission angle that satisfies β > βc (the derivation of the expression for the emission angle

β can be found in Appendix B). In Figure 2, there are four orbits with different values of

ri (emitter position) and β. If one considers a source in a planet placed at ri = 10.5 M,

where M is the black hole mass, the photons leaving the emitter to do a π rotation about

the charged black hole and then return to the planet.

Figure 2. Plots of the trajectories of photons for four values of ri and β. The trajectory corresponding

to photons emitted at ri = 2.01 with β = 0.1838 rad is inside the photon sphere and outside the

horizon (dashed line). The other emission points, corresponding to ri > 2, are outside the photon

sphere. For simplicity, the trajectories are obtained considering Q = 0 in this figure.

As shown in Table 1, the emission angle β associated with this trajectory is

β = 0.466 rad. Note that the dashed circle represents the event horizon of the black hole,

where, for simplicity, we have considered the uncharged case. Small variations of β can im-

ply a different motion; for example, considering an emission with an angle of 1.164423 rad

at r = 4, the photons made two orbits before returning to the emission point. This situation

is illustrated in Figure 3.
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Table 1. In this table are shown the parameters used in the numerical solution associated with the

orbit of photons in Figure 2. Notice that the photons emitted at ri = 2.01M are inside the photon

sphere (with Q = 0) and near the horizon of an uncharged black hole.

ri/M β A(r) b/M

2.0100 0.1838 201 5.2055
4 1.1664 2.0 5.1997

7.2 0.6650 1.3846 5.1945
10.5 0.4667 1.2353 5.2436

Figure 3. Plot of the trajectory of photons emitted at ri = 4.0 with β = 1.164423 rad. In this case, the

emitted photons start in the blue region with such an angle that they will spiral and reach the turning

point (in the green region), and then they arrive at point ri = 4.0 in the yellow region after two orbits

around the black hole.

The scheme in which returning photons are obtained by choosing an appropriate

emission angle is more suitable when the emitter is close to the black hole. In a realistic

scenario, considering our planet in the solar system, there are no known nearby black holes

with the distances used in Figure 2. As we will see in the next sections, the study of the

deflection of the light of the solar system bodies by black holes can be approached as a

retrolensing problem. In this case, the black hole mass is an important parameter that can

act to increase the magnitude of the retrolensing effect.

It is worth noting that although the addition of charge Q (or W) does not produce

photon trajectories that differ significantly from the chargeless case, we can still qualitatively

analyze the effect. Consider, for instance, Equation (A12) and the graph in Figure 2. If the

electric charge is non-zero, the metric coefficient A(r) decreases, leading to an increase in

angle β. In contrast, when dealing with the tidal charge (or Weyl), which has the opposite

sign to the electric charge, A(r) increases, resulting in a decrease in β. In other words, we

can interpret that, in the first case, the emitter needs to launch the photon at a slightly larger

angle to receive it back, whereas in the second case, a slightly smaller angle is required

for the same initial radius ri. Thus, we have obtained a study showing the movement

of photons close to black holes. This analysis demonstrates that it is possible to consider

photons that return to the point of emission. In the next section, we will use the expertise

gained here to study the dynamics of photons that are very far from the black holes.
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5. Black Holes as Gravitational Mirrors: A Possible Apparatus

In recent days, two geometries have been considered in the literature on gravitational

lensing: the first one corresponds to a light source behind the black hole (standard geom-

etry), while the second one (retrolensing) presents a source in front of the black hole. In

Figure 4, we illustrate the lensing configuration for a retrolensing geometry that we use

in this work, where the Earth is represented as the light source for the retrolensing. The

photons emitted reach the black hole, and then they return to the observer (satellite) near

the Earth. Before we present the standard retrolensing configuration, we discuss observing

strategies based on the population of stars that probably collapse to form black holes locally.

Figure 4. The proposed scheme to address the lens geometry associated with the Earth as a source

and an orbiting satellite as an observer. The emitted light from the Earth reaches the black hole,

returning to the observer after receiving an amplification due to the strong gravitational field of the

black hole.

As explained before, we will use a compact object with a strong gravitational field

such that the light circulates around n times before returning to the emission place; the

equations associated with this type of motion indicate massive objects as lens candidates.

Thus, two categories of black holes can be analyzed in our retrolensing study: distant

supermassive black holes and nearby stellar black holes. The supermassive black hole

in Sgr A* with a mass of (4.1 ± 0.014) × 106M⊙ [28] is an example of a supermassive

black hole that we analyze in the next section. The great mass of this object favors the

amplification effect of the lens, but the big distance is a negative factor in this scenario.

Another interesting aspect of this class of black holes is related to the age of the image

observed. If the Earth is considered a light source in this retrolensing phenomenon, then

we can see how Earth’s light was 52,000 years ago when Neanderthals lived on the Earth.

Despite the interesting implications of this scenario, this type of observation is very

difficult with current technologies due to the distance from Sgr A* or another massive

black hole. As a second possibility, we can consider nearby black holes. As discussed

in [18], theoretical estimates give a result for the local density of stellar black holes circa

∼ 8 × 10−4/pc3, while the mass of these objects lies in the range 5 M⊙ < M < 15 M⊙.

The earliest population of stars with masses in the range 300 < M < 1000 M⊙ is another

route to generate a retrolensing event since these stars probably collapse and form black

holes with similar mass. At the moment, the nearest known black hole candidate is the

object HR6819 (340 pc), but it has not been confirmed yet [29].
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In this section, we discuss the framework used to deal with retrolensing in the Reiss-

ner–Nordström space–time following Ref. [27]. Then, we consider the application of the

obtained results to the original retrolensing problem proposed in this paper. To realize the

idea illustrated in Figure 4, we consider the retrolensing scheme in Figure 5. As we can

see, the parameters DOS, DOL, and DLS are the distances between the observer and the

Earth, between the observer and the black hole, and between the black hole and the Earth,

respectively. In addition, the angle θ is the angular position of the image with respect to

the position of the black hole, β is the angle formed between DOL and DLS, and θ̄ is the

angle between DLS and the light ray (see Figure 5). These angles are related by the Ohanian

equation in the form [30,31]

β = π − α(θ) + θ + θ̄. (12)

Figure 5. Retrolensing setup. The source at S emits light rays to the lens L that turn around the black

hole several times before reaching the observer O. The observer sees the light source as I, and from

his perspective, θ is the angle of the image I.

By assuming that the lens, the observer, and the source are almost aligned and

bc ≪ DOL, we can use the relations β ∼ 0 and DLS = DOL + DOS. It follows from (12)

under the assumption of a strong deflection limit, neglecting small terms in θ and θ̄, the

positive solution [27]

θ+(β) = θm

[

1 + exp

(

b̄ − π + β

ā

)]

(13)

where θm = bc/DOL. The magnification associated to the Equation (13) is given by [27]

µ+(β) = −D2
OS

D2
LS

s(β)θ+
dθ+
dβ

(14)

where

s(β) =
2

πβs

[

π(βS − β) (15)

+
∫ β+βS

−β+βS

arccos
β2 + β′2 − β2

S

2ββ′ dβ′
]

for the case β ≤ βS, and

s(β) =
2

πβs

∫ β+βS

β−βS

arccos
β2 + β′2 − β2

S

2ββ′ dβ′ (16)
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for the case βS ≤ β, where βS ≡ RS/DLS, with RS being the radius of the source. It is

considered in Equation (16) that the origin of the coordinates is on the intersection point

between the source plane and the axis β = 0. The negative solutions for θ and µ can be

written by observing the relations

θ−(β) ∼ −θ+(β), µ−(β) ∼ −µ+(β). (17)

In this way, the total magnification µ(β) = |µ+(β)| + |µ−(β)| is obtained as the

combination of these relations, the result is

µ(β) = 2
D2

OS

D2
LS

θ2
me(b̄−π)/ā

[

1 + e(b̄−π)/ā
]

ā
|s(β)|. (18)

These results have been applied in the study of retrolensing problems involving the

Sun as the source. For example, by considering a black hole of M = 10 M⊙ at distance

DOL = 0.01pc in the case of perfect alignment, we obtain the maximum amplification with

a magnitude of m ∼ 26, an observable value. In the next section, we apply these ideas,

considering that the Earth moves on the source plane with the orbital velocity.

Retrolensing

Now, we investigate the retrolensing light curves by nearby black holes as pro-

posed by [18] with masses in the range (10–90) M⊙ considering the scheme proposed

in Figures 4 and 5. By inspection of Equation (18), it can be seen that the parameters DLS

and M have played an important role in the final value for the magnitude of the images.

In this first example, we consider an observer placed at DOS = 380,000 km of distance from

the Earth (source). Figure 6 shows the magnitude of the image considering three different

masses and two different charges. The best value, m ∼ 32 for magnitude, is obtained with

the 90 M⊙ black hole at a distance of 0.001 pc with Q = 0. As we can see, the curves

associated with the extremal charge Q = M have a maximum value for m lower than the

uncharged case. For comparison, we consider in Figure 7 the magnitude of the images for

the case where we replace the electric charge with the Weyl tidal charge. In this case, we

have an opposite behavior; the charge increases to the maximum value of m.

Figure 6. Light curves by non-charged and charged black holes for different masses at a distance of

0.001 pc. The closest separation considered is β = 0. The green, blue, and red curves represent the

magnification of black holes with masses 90 M⊙, 45 M⊙, and 10 M⊙, respectively.
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At a distance of 7860 pc, the supermassive black hole in Sgr A* is possibly the central

black hole of the Milky Way. Due to the value of its mass, the study of gravitational

retrolensing in space–time provides a convenient tool to explore the strong deflection limit.

Figure 8 shows the magnitude of the light curves considering the black hole in Sgr A* (red

line) and a black hole with the same mass but at 1000 pc (blue line) for two different charges.

In this case, the charge of the black hole reduces the value of the maximum magnitude.

Figure 9 shows the magnitude of the images for the case where we replace the electric

charge with the Weyl tidal charge. In this case, the charge increases to the maximum value

of m. As we can see, the magnitudes of the retrolensing light curves are very difficult to

detect with current instruments in this case, even considering a supermassive black hole at

1000 pc.

Figure 7. Light curves by a black hole with the Weyl tidal charge for different masses at a distance of

0.001 pc. The closest separation considered is β = 0. The green, blue, and red curves represent the

magnification of black holes with masses 90M⊙, 45M⊙, and 10M⊙, respectively.

Figure 8. Light curves by a supermassive black hole for different distances with 4.02 × 106 M⊙ and

two different charges. The closest separation considered is β = 0. Red and blue curves represent the

magnification of black holes at 7860 pc and 1000 pc, respectively.
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Figure 9. Light curves by a supermassive black hole with the Weyl tidal charge for different distances

with 4.02 × 106 M⊙ and two different charges. The closest separation considered is β = 0. Red and

blue curves represent the magnification of black holes at 7860 pc and 1000 pc, respectively.

6. Conclusions

Considering the trajectories of photons in the spherically symmetric space–time, we

conclude that photons can return to their emitter, the so-called boomerang photons. This is

the effect of the strong gravitational field that imposes an intense influence on the geodesic

equation for the bending of light. Based on this result, we suggest a particular configuration

where the emitter is the Earth itself. We have shown that these trajectories can be obtained

in terms of the constants of the motion (Figures 2 and 3). We also saw that when the electric

(tidal) charge is included, the emission angle increases (or decreases) because the height

of the effective potential for the photon becomes higher (or lower). Depending on the

emission angle, i.e., the angle between the propagation direction of the photon and the

radial direction, it can rotate N times around the black hole before returning to the emission

point. This type of motion can be used in principle as a tool to determine the mass of a

black hole as well as the distance of the observer to this object [10].

Based on parameters used in the numerical solution associated with the orbit of

photons in the figures, we can see that the photons emitted at ri = 2.01 M are inside the

photon sphere and near the horizon of an uncharged black hole. The highest value of the

initial radius that we used was ri = 10.5 M. In a more realistic scenario, considering the

Earth as a source, the setup used in retrolensing systems is the most adequate to address

the study of returning light rays, where we can use distant supermassive black holes as

lenses. Different from the standard gravitational lensing, retrolensing permits the light rays

emitted by Earth to be reflected from the light sphere of the black hole.

Although the probability is small, a close approach of a stellar-mass black hole, besides

potentially catastrophic consequences (effects on the orbital stability), can offer an observa-

tional verification of the Earth as the source of a retrolensing event. Figure 6 shows that this

retrolensing event can be seen with the apparent magnitude m = 32. In a safer scenario

by considering the Sgr A* black hole at 7860 pc, Figure 8 shows a magnitude m = 61. In

the same figure, a hypothetical black hole with the same mass at 1000 pc has a magnitude

around m ∼ 53.

When electric (Q) or Weyl tidal (W) charges are taken into account, the resulting

change in magnitude relative to the charge-free case remains negligible. In particular,

our analysis indicates that the presence of a tidal charge leads to a slight increase in the
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luminosity of the recovered image (consider Figure 9). In this case, by adopting the upper

bound W2 ≲ 0.0004 M2, as reported in Ref. [32], the corresponding magnitude difference is

approximately ∆m ∼ 0.0001. This value is about one order of magnitude below the current

threshold of astronomical photometric sensitivity [33].

In future work, it is possible to consider space–time solutions with different symme-

tries where the cosmological constant and/or rotation of the matter are taken into account.

The observational possibilities for retrolensing events are not restricted to charged

static black holes or the aforementioned extensions. Interesting scenarios can be studied

in modified theories of gravity [34–36], where new solutions arise, generalizing the usual

geometries associated with wormholes and black holes. In this way, the observation of a

retrolensing event, besides the confirmation of GR in a strong-field regime, can be used to

constrain modified gravity theories in this field.
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Appendix A. Lower Bound for Stable Orbits

The classical motion of a test particle, in general space–time, can be analyzed consider-

ing a Lagrangian in the form L = (1/2)gµν ẋµ ẋν, where the dot denotes the differentiation

with respect to the affine parameter. In this way, considering Equation (1) and assuming

θ = π/2, as usual, one obtains

2L = −B(r)ṫ2 + A(r)ṙ2 + r2 ϕ̇2. (A1)

Due to the spherical symmetry of the system under consideration, the translational

Killing vector ∂t = tµ∂µ with tµ = (1, 0, 0, 0) and the axial Killing vector ∂ϕ = ϕµ∂µ with

ϕµ = (0, 0, 0, 1) yield the constants of the motion

E = −gµνtµ ẋν = −B(r)ṫ, (A2)

and

L = gµν ϕµ ẋν = r2 ϕ̇, (A3)

respectively. In a general way, E can be interpreted as the total energy per unit rest mass of

the particle in the case of a timelike geodesic. In the case of null geodesics, the product h̄E

is the total energy of a photon. Similarly, h̄L represents the total angular momentum of a

photon in the case of a null geodesic. By considering the constants of motion (A2) and (A3)

along the null geodesic condition L = (1/2)gµν ẋµ ẋν = 0, Equation (A1) may be written in

the form
ṙ2

2
+ V(r) =

1

2

E2

A(r)B(r)
, (A4)
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where

V(r) =
1

2

L2

A(r)r2
. (A5)

This is the potential associated with the photon trajectory. An important region of

this motion is around the extremum of V(r), the point rm, where the differentiation with

respect to the radial coordinate vanishes. An expression for this region can be written as

rm =
3M

2
+

√

9M2 − 8Q2

2
. (A6)

This region is the lower bound for stable orbits in this space–time.

Appendix B. Emission Angle

By considering an observer at rest, the line element (1) provides the relation

ds2 = −dτ2 = −B(r)dt2. (A7)

In addition, the null geodesic condition (ds2 = 0) permits us to write the line element

in the form

−B(r)dt2 = A(r)dr2 + r2dθ2 + r2 sin θ2dϕ2 (A8)

Finally, identifying Equations (A7) and (A8) considering the equatorial motion, we get

the result

dτ2 = A(r)dr2 + r2dϕ2, (A9)

that, after some algebra, can be recast as

(

√

A(r)
dr

dτ

)2

+

(

r
dϕ

dτ

)2

= 12, (A10)

The two terms on the left-hand side of Equation (A10) can be identified with the radial

and angular components of the speed of light (c = 1). In this case, the components Vr and

Vϕ are related to the angle between the propagation direction and radial direction in the

following way:
Vr

Vϕ
= tan β =

r
√

A(r)

dϕ

dr
, (A11)

where the term dϕ/dr can be replaced by the right-hand side term of Equation (4), the

result is

tan β = ±
(

√

r2

b2 A(r)−1
− 1

)−1

. (A12)

In this way, an emitter at rest at r measures an angle β between the propagation

direction of the photon and the radial direction that determines if the photons are captured

or returned to the emitter. The critical angle βc, defined as the angle where the photon is

captured in the photon circle, is a good parameter to analyze this type of motion. It acts as

a threshold separating orbits where the photons are captured by the black hole, escape to

infinity, or are captured in the photon sphere.
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