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are similar to Fm, Rf, Cf, and Es, respectively, to verify the calculations.

We studied many excited metastable states in many heavy atoms and ions and found promising systems which can be used as very
accurate atomic clocks which are highly sensitive to new physics. A number of atomic properties, such as energy levels, transition
amplitudes, lifetimes, polarizabilities of the ground and clock states, etc., have been calculated. We found that relative blackbody
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enhanced up to 8.3 times.
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Abstract

Computations of the spectroscopic properties of several heavy atoms have been performed
to establish a link between recent measurements and some problems in modern physics.
Calculations for No and Fm atoms demonstrated that isotope shift measurements can be
used to study nuclear structure by extracting nuclear parameters beyond the root mean
square (RMS) radius, such as the quadrupole deformation. Calculations of isotope shift
in Yb* ion indicated that observed non-linearities of the King plot can be explained by
nuclear deformation. This is a major systematic effect in the search for new interactions.

Calculation of hyperfine structure (HFS) for heavy and superheavy elements provides a
possibility to extract from future HFS measurements magnetic dipole and electric quadrupole
moments of the nuclei. We carried out calculations of the magnetic dipole HFS constant
(A) and electric quadrupole HFS constant (B) for the superheavy elements Fm and Rf
and the heavy elements Cf and Es. Similar calculations have also been performed on the
lighter homologs Er, Hf, Dy, and Ho, whose electronic structures are similar to Fm, Rf,
Cf, and Es, respectively, to verify the calculations.

We studied many excited metastable states in many heavy atoms and ions and found
promising systems which can be used as very accurate atomic clocks which are highly
sensitive to new physics. A number of atomic properties, such as energy levels, transition
amplitudes, lifetimes, polarizabilities of the ground and clock states, etc., have been calcu-
lated. We found that relative blackbody radiation (BBR) shifts are small, between 1016
and 10718, and the effects of variation of the fine-structure constant (a) are enhanced up
to 8.3 times.

Calculations of atomic systems have been done using two different approaches. The choice
depends on the number of valence electrons. The first method is called CI+SD (configura-
tion interaction with single-double coupled cluster method), which is applicable to atomic
systems with a few valence electrons (up to four). The second method is called CIPT
(configuration interaction with perturbation theory method). It is designed to work with
atomic systems with many valence electrons (more than four).
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Chapter 1

Introduction

1.1  Testing nuclear theory based on isotope shift and hy-

perfine structure

1.1.1 Using isotope shift for extracting nuclear deformation and demon-

strating its role in King plot nonlinearity

The study of the isotope shift (IS) of superheavy elements (SHEs) is one way to obtain
vital information about their nuclear structure [IH6]. IS can contribute a great deal to
the understanding of trends in the nuclear stability of SHEs. Within the nuclear theory
framework, there are ongoing predictions that SHEs have long-lived isotopes [1,2]. In
the accelerator systems, however, such neutron-rich isotopes for these atoms cannot be
produced due to the absence of light elements with a sufficient number of neutrons to use
in the collision. Accelerator production of superheavy elements results in neutron-poor
isotopes. By adding measured atomic transition frequencies in neutron-poor isotopes and
calculated isotope shifts, we may predict spectra of long-lifetime neutron-rich isotopes,
which may be searched in astrophysical observations [7,[8]. Combining experimental data

and theoretical data on IS can be used to obtain valuable information on nuclear structure,
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check nuclear models, and improve predictions for stability islands [9].

Studying isotope shifts also has the advantage of extracting crucial information about
nuclear physics due to their sensitivity to numerous phenomena within the nucleus. Among
the notable applications of isotope shifts in nuclear physics is the analysis of changes
in nuclear charge radii |[12]. A recent study [13] suggests that field isotope shift (FIS),
which is the change in frequency of the atomic transition caused by the change in nuclear
volume, can also be used to study quadrupole deformation (/) in nuclei with zero spin
which cannot have electric quadrupole moments and quadrupole hyperfine structure. This
study proposes that the obtaining of FIS measurements for a minimum of two transitions,
with differences in nuclear structure dependence, can assist in the extraction of both,
the change of the root-mean-square (RMS) charge radius and quadrupole deformation
(B) parameters. It has also been shown that IS computations can contribute to putting
constraints on the strength of the electron-neutron interaction mediated by new particles.
It was suggested in [14] that such interaction may also cause non-linearities of the King
plot. Using such research methods can help researchers make better predictions and gain

a deeper understanding of the properties of atoms.

In chapters [2| and of this thesis, we explore the possibility of using IS to test nuclear
theories. Different nuclear models give different predictions for the nuclear charge density,
which in turn affects the IS. We demonstrate that the non-linearities of the King plot ob-
served in Yb™ ion can be explained by the variation of the nuclear quadrupole deformation
parameter; This puts some constraints on the use of the King plot for the search for new

interactions.

1.1.2 Using hyperfine structures along with energy calculations to ex-

tract nuclear parameters

Among the other methods of gaining information about nuclei is through the study of hy-
perfine structures (HFS), which are formed by electrons interacting with nuclear moments

in atoms. This interaction provides the opportunity to study nuclear parameters such as
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magnetic dipole moment (i), electric quadrupole moment (Q). Such parameters play a
vital role in understanding the structure of atomic nuclei, which in turn can contribute to

the advancement of nuclear theory.

Combining measurement data with atomic calculations is necessary to extract values for p
and () parameters. Nuclear electric quadrupole moment Q is related to nuclear deforma-
tion. The larger the ) value, the greater the deformation. Nuclei in the stability island, on
the other hand, are expected to be spherical with no or minimal deformation. Therefore,
finding neutron-rich superheavy elements with a small () may indicate approaching the

102) atom has been

stability island. Among superheavy elements, only the Nobelium (No
studied so far [15-17], and the Lawrencium (Lr!%3) atom is now being considered for such

study [18].

In this thesis, HF'Ss are studied for several atomic systems involving both heavy and su-
perheavy elements. In chapter @] we study the Rf atomic system, which hopefully will
be the next in measurement. The study is primarily concerned with obtaining the HFS
matrix elements required for the interpretation of future measurement. We perform cal-
culations on magnetic dipoles and electric quadrupole hyperfine structures. In chapter
we investigate the heavy atomic systems, Cf and Es. Measurement of HFSs have recently
been obtained for the Cf atom, and nuclear parameters u and ) have been extracted using
our calculations [19]. In this chapter, we include a more detailed analysis of the calcula-
tions. In respect of Es, several experimental studies have been conducted, although no
theoretical research has been undertaken. Therefore, this study aims to extract and refine
the accuracy of the nuclear moments by comparing the present calculations with available
experimental data. In chapter [6] we present calculations for HFS of Fm. The present
study is largely motivated by the observation that measurements can present two different
interpretations of HFS constants, and we hope that our calculations will be able to help
experimentalists to re-evaluate the experimental data and provide the experimenters with

a more accurate interpretation of the experiment.

As part of studying HFS, the energy levels of these studies have also been calculated,

as being necessary to present results and assess the accuracy of the calculations; this is
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particularly important when dealing with complex systems, such as our considered atomic
systems (Fm, Rf, Cf, and Es), which are either with an open 5f or 6d subshell, which
in turn makes it more challenging to perform such calculations. Therefore, by comparing
the calculated energy levels to experimental results, one can gain valuable insight into
the accuracy of the calculations. Our calculations also include the study of lighter atoms
with similar electronic structures, Er, Hf, Dy, and Ho, respectively, for which a lot of
experimental data are available. Further comparison of correlation corrections in in light
and heavy atoms allows us to predict the accuracy of our approach for these elements.
Additionally, in chapter [4] we calculate the energy levels of the first three ions of Rf,

whereas, in chapter [0 we report twenty-eight new energy levels of the Fm atomic system.

1.2 High-accuracy optical clocks and search for new physics

The search for manifestations of new physics at low energy requires high accuracy of
measurements. The highest accuracy of measurements has been achieved in optical atomic
clocks, in which the relative uncertainty in many clock systems reached an unprecedented
level of ~10718 [20-24]. Tt is, therefore, natural to try to use these measurements to search
for new physics. However, the majority of operating optical clocks, unfortunately, are not
very sensitive to new physics, except for Yb™ [25-29] and Hg™ [27,30]. One of the most
significant types of sensitivity to new physics can be described as sensitivity to the variation
of the fine structure constant («). Many manifestations of new physics can be reduced to
the time variation of a. For example, an apparent variation of o may be produced by the
interaction of low-mass scalar dark matter with an electromagnetic field [3132]. Therefore,
the search for dark matter may be performed using a study of variation of atomic transition
frequencies. Other examples include sensitivity to the local Lorentz invariance violation,
violation of the Einstein equivalence principle, etc. [20421},25,|26/33-36]. We suggest the
following strategy. Search for atomic optical transitions, which satisfy all criteria of being
good clock transitions as well are sensitive to the variation of a. Upon finding these

transitions, it is also possible to check their sensitivity to other manifestations of new
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physics.

It was demonstrated in Ref. [37] that in a single-electron approximation, the highest sensi-
tivity to the variation of the fine structure constant corresponds to the maximum possible
change in the value of the total angular momentum j in the corresponding single-electron
transitions. For example, the transitions between states of the 4f™ and 4f" 165 configu-
rations are f — s transitions in a single-electron approximation. Aj in such transitions is
2 or 3, which makes them sensitive to the variation of . The s — f or p — f transitions,
which occur in the optical region, can be found in highly-charged ions [38]/39]. Note that
effects of a variation rapidly increase with nuclear charge and ion charge. On the other
hand, many neutral atoms or nearly neutral ions have s — d clock transitions, which are

sensitive to the variation of the fine structure constant.

Throughout this thesis, we present a number of studies that propose such systems. In
chapter[7] we examine clock transitions in Cu, Ag, and Au atomic systems; in chapter 8, we
suggest Cu IT and Yb IIT ions (the clock transition in Yb III is actually the f-d transition);
in chapter @ we study Hf I, Hf IV, and W VT ions (the clock transition in W VI is the
dsj9-ds /9 transition). Many of the suggested systems have the additional advantage of
having more than one clock transition. The search for a variation of « requires measuring
one clock frequency against the other over a long period of time. It is very convenient
when both transitions are in the same atom or ion. In addition, combining two clock
frequencies into one synthetic frequency allows significantly suppressing the sensitivity to

the black body radiation shift [40].

As mentioned in Sec. [I.1.1] the King plot can also be considered as an alternative method
of searching for new physics by measuring isotope shifts and studying the non-linearities
of the King plot. A study of this type requires at least two transitions and four stable
isotopes. In Chapter [0 we study the Hf atomic system, which has six stable isotopes.
Each isotope of the Hf II and Hf IV ions has two clock transitions. Therefore, these ions

are good candidates for such a study.

In chapter we study highly charged ions as potential high-accuracy optical clocks



CHAPTER 1. INTRODUCTION

using laser transitions in group-16-like ions. We consider the ground (*P3) state to first-
excited (3Py) state electric quadrupole transition (E2) for this class of ions. Throughout
these chapters , we calculate and analyze numerous atomic properties that are
important in the development of optical clocks, including determining the sensitivity of
clock transitions to variations in fundamental constants and evaluating the systematic

fractional uncertainty of optical clocks.
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Chapter 2

Using isotope shift for testing
nuclear theory: The case of

nobelium isotopes

2.1 Overview

In this chapter, we demonstrate that nuclear theories can be tested by comparing calcu-
lated isotope shifts with experiments. We consider five nuclear models of nuclear charge
distribution in two Nobelium isotopes, 2°22°*No. We demonstrate that parameters of nu-
clear charge distribution can be extracted beyond nuclear root mean square (RMS) radii
(such as quadrupole deformation 3). We also show that the change in nuclear shape leads

to King plot nonlinearity.
This study has been published in this paper:

S. O. Allehabi, V. A Dzuba, V. V. Flambaum, A. V. Afanasjev, and S. E. Agbemava,
Using isotope shift for testing nuclear theory: The case of nobelium isotopes, Phys. Rev.

C 102, 024326 (2020).
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CASE OF NOBELIUM ISOTOPES

I presented this work at an international conference:

Theoretical study of electronic structure of erbium (Er), fermium (Fm), and nobelium
(No), AIP Summer Meeting, Queensland University of Technology, Brisbane,
Australia. December (2021).

2.2 Abstract

We calculate field isotope shifts for nobelium atoms using nuclear charge distributions
which come from different nuclear models. We demonstrate that comparing calculated
isotope shifts with experiment can serve as a testing ground for nuclear theories. It also
provides a way of extracting parameters of nuclear charge distribution beyond nuclear root
mean square (rms) radius, e.g., parameter of quadrupole deformation S. The measure-
ments of at least two atomic transitions is needed to disentangle the contributions of the
changes in deformation and nuclear rms radius into field isotopic shift. We argue that a
previous interpretation of the isotope measurements in terms of § <’r2> between 2°2:254No
isotopes should be amended when nuclear deformation is taken into account. We calculate
isotope shifts for other known isotopes and for hypothetically metastable isotope 2*No

for which the predictions of nuclear models differ substantially.

2.3 INTRODUCTION

Studying nuclear structure of superheavy elements (SHE) (Z > 100) is an important area
of research taking nuclear physics to unexplored territory and potentially leading to the
hypothetical island of stability |[116]. The sources of experimental information are very
limited since the SHE are not found in nature but produced at accelerators at a very
low production rate. In addition, all produced isotopes are neutronpoor and have short
lifetimes (see, e.g., reviews [1H6]). Using atomic spectroscopy to measure isotope shift

and hyperfine structure (hfs) is one of the promising methods to proceed. The part of

12



2.3. INTRODUCTION

isotope shift caused by the change of nuclear volume and called "field isotope shift" (FIS)
is widely used to extract the change of nuclear root-mean-square (rms) radius between two
isotopes [7]. In our previous paper [§8] we argue that it can also be used to study nuclear
deformation. For example, using different dependence of atomic transitions on nuclear
structure and having FIS measurements for at least two transitions, we could extract not
only the change of rms radius but also the change in quadrupole deformation parameter
B. Superheavy element E120 (Z = 120) was used in [§] to illustrate that if we take nuclear
parameters from nuclear theory, the effect of nuclear deformation on FIS is sufficiently
large to be detected by modern spectroscopic methods. The 120 element was chosen for
illustration purposes because of the large value of the effect. However, real measurements
for E120 are not expected any time soon. The heaviest element for which isotope shift
and hfs measurements are available is nobelium (Z = 102) [9,/10]. The isotope shift is

measured for the 2°2:253:254No isotopes and hfs is measured for the 253No isotope.

In this work we study FIS of nobelium in detail. We calculate nuclear charge densities
using several nuclear models based on covariant density functional theory [11]. Then we
employ these densities in atomic calculations to get the FIS and compare it to experiment.
We take a closer look at the interpretation of the data and argue that nuclear deformation

should be taken into account in the analysis to reduce uncertainties below 10%.

We present a formula which expresses FIS via nuclear parameters. The formula is similar
to what was suggested in [§]. It is an analog of the standard formula FIS = F'¢ <r2> but has
more terms proportional to § <r2>2 ,AB% AB3. The parameters of the formula are found
from the fitting of the calculated FIS. The formula is more accurate than the standard
one for heavy nuclei. It can be used for predicting FIS for different isotopes if nuclear
parameters are taken from nuclear theory. Since the formula contains terms related to
nuclear deformation, it can be used to extract the values of the change of the parameter
of nuclear quadrupole deformation AS similar to how the standard formula is used to
extract the change of nuclear rms radius & (r?). FIS for at least two atomic transitions
is needed for this purpose. Currently the isotope shift has been measured for only one

transition in nobelium. Therefore, we strongly argue in favor of new measurements and
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present theoretical data for three more transitions.

Finally, we make predictions for the values of the isotope shift for the hypothetically

metastable isotope with neutron number N = 184 which has spherical shape.

2.4 CALCULATIONS

In this work we perform nuclear and atomic calculations. Nuclear calculations are used to
provide nuclear charge densities which are connected then to observable effects, such as

isotope shifts via atomic structure calculations.

2.4.1 Nuclear calculations

The nuclear properties have been calculated within the covariant density functional theory
(CDFT) [11] using several state-of-the-art covariant energy density functionals (CEDFs)
such as DD-ME2 [12], DD-ME/¢ [13], NL3* [14], PC-PK1 [15], and DD-PC1 [16]. In the
CDFT, the nucleus is considered as a system of A nucleons which interact via the ex-
change of different mesons. The above-mentioned CEDFs represent three major classes of
covariant density functional models, namely, the nonlinear meson-nucleon coupling model
(NL) (represented by the NL3* functional), the density-dependent meson exchange (DD-
ME) model (represented by the DDME2 and DD-ME¢ functionals), and point coupling
(PC) model (represented by the DD-PC1 and PC-PK1 functionals). The main differences
between them lie in the treatment of the interaction range and density dependence. In
the NL and DD-ME models, the interaction has a finite range which is determined by the
mass of the mesons. For fixed density it is of Yukawa type and the range is given by the
inverse of the meson masses. The third class of models (PC model) relies on the fact that
for large meson masses, the meson propagator can be expanded in terms of this range,
leading in zeroth order to § forces and higher order derivative terms. Thus, in the PC
model the zero-range point-coupling interaction is used instead of the meson exchange [11].

The NL, DD-ME, and PC models typically contain six to nine parameters which are fitted
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to experimental data on finite nuclei and nuclear matter properties, see Sec. II in Ref. [17]

for details.

Pairing correlations play an important role in all open shell nuclei. In the present article,
they are taken into account in the framework of relativistic Hartree-Bogoliubov (RHB)

theory in which the RHB equations for the fermions are given by [11]

R = B . (2.1)
—AT R A V(r) V(r)

Here, h p is the Dirac Hamiltonian for the nucleons with mass m; A is the chemical potential
defined by the constraints on the average particle number for protons and neutrons; Uy (r)
and Vi (r) are quasiparticle Dirac spinors [11(17]; and Ej denotes the quasiparticle energies.

The Dirac Hamiltonian

hp =ap+Vo+ B(m+S) (2.2)

contains an attractive scalar potential

S(r) =gs0(r) (2.3)

and a repulsive vector potential

Vo(r) = gwwo(r) + gp73p0(7) + eAg(T). (2.4)

Since the absolute majority of nuclei are known to be axially and reflection symmetric
in their ground states, we consider only axial and parity-conserving intrinsic states and
solve the RHB equations in an axially deformed harmonic oscillator basis [17]. Separable
pairing of the finite range of Ref. [18] is used in the particle-particle channel of the RHB

calculations.
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The accuracy of the description of the ground state properties (such as binding energies,
charge radii, etc.) of even-even nuclei has been investigated globally in Refs. [17,[19]. The
best global description of experimental data on charge radii has been achieved by the
DD-ME2 functional (characterized by a rms deviation of Arl*™ = 0.0230fm ), followed
by DDPC1 (which also provides best global description of binding energies), NL3*, and
finally by DD-MEJ (characterized by a rms deviation of Ar}* = 0.0329fm ) (see Table VI
in Ref. [17] and Fig. 7 in Ref. [19]). However, the spread of rms deviations for charge radii
between the above-mentioned functionals is rather small [A (Ar5?) = 0.0099fm]. On the
other hand, the charge radii of some isotopic chains (especially, those with high proton
number Z ) are not very accurately measured. Thus, strictly speaking we have to consider
the accuracy of the description of charge radii by these functionals as comparable. Note
that the nobelium nuclei under study have well-pronounced prolate or spherical minima
in potential energy surfaces. Thus, the equilibrium quadrupole deformations obtained in
static (CDFT) and dynamic (fivedimensional collective Hamiltonian based on CDFT) cal-
culations are expected to be very similar (see Ref. [20] for examples in higher Z superheavy

nuclei).

In the context of the study of isotopic shifts in superheavy elements it is necessary to
mention substantial differences in model predictions for the nuclei located beyond currently
measured. This is contrary to the fact that nuclear theories in general agree on the
properties of SHE which have already been measured in experiment (see, for example,
Figs. 7 and 8 in Ref. [21]). For example, some CEDFs (such as NL3*, DDME2, and
PC-PK1) predict a band of spherical nuclei along and near the proton number Z = 120
and neutron number N = 184 (see Figs. 6(a), (b), and (e) in Ref. [21]). However, for
other functionals (DD-PC1 and DD-ME ¢ ) oblate deformed shapes dominate at and in
the vicinity of these lines (see Figs. 6(c) and (d) in Ref. [21]). Nuclear measurements of
the energies of the excited 27 states are needed to discriminate experimentally between
spherical and oblate deformed ground states. Such experiments are not possible nowadays.
It would be interesting to see whether atomic measurements would be able to help with

such a discrimination.
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2.4.2 Atomic calculations

We start from an estimation of mass shift to demonstrate that it can be neglected. Mass
shift is the sum of normal mass shift and specific mass shift which has the same order
of magnitude (see, e.g., [22]). In the nonrelativistic limit the normal mass shift (NMS)

between isotopes with mass numbers A; and Ajs is given by

1 1 Vexp
== _- =) == 2.
OuNms (Al A2> 1822.888 (2.5)

Substituting numbers for the ! Sy — 'P; transition in 254No and 2°2No we get dunms =
5 x 10% em™!. Total mass shift can be several times larger than the normal mass shift,
therefore a reasonable estimation for the mass shift in nobelium stands at ~ 10~% cm™!.
If the uncertainty of the isotope shift measurements is smaller than this value, then taking
into account mass shift and using the King plot to separate mass shift and field shift might

be important for an accurate interpretation of the measurements. We leave this for future

work. In this work we focus on FIS.

Nuclear calculations produce nuclear charge density as a two-dimensional function p (z,7, ),
where z is the coordinate along the axis of symmetry and r, is the radial coordinate in
the direction perpendicular to the axis of symmetry. Atomic electrons feel the nucleus as
a spherically symmetric system, averaged over nuclear rotations. This is because atomic
transition frequencies are three orders of magnitude smaller than nuclear rotational transi-
tion frequencies (see, e.g., [23]). Note that a correction to this picture has been calculated
for hydrogen-like ions where electron frequencies are much bigger. Even in this case the
correction is small [24]. Therefore, we transform p (z, 7 ) into spherical coordinates p(r, )
and average it over 0, p(r) = [ p(r,0)df. The density p is normalized by the condition
[ pdV = Z. In the end we have nuclear charge density in numerical form rather than a
set of parameters as in the case of using standard Fermi distribution. However, it is often
useful to have such parameters as nuclear rms radius R, parameter of quadrupole defor-

mation 3, etc. Having them allows to study the sensitivity of observable effects (isotope
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shift in our case) to the change in the values of these parameters.

In our previous work [8] we studied various types of nuclear charge distribution variations
including quadrupole deformation, change of nuclear skin thickness, and density suppres-
sion in the nuclear center. The effect of the density suppression is significantly smaller
than the effect of the deformation and hardly can be separated using experimental FIS
data. It is known from the nuclear models that the skin thickness is approximately the
same in different nuclei and it hardly produces a significant effect on FIS. Moreover, the
effect of the skin thickness on FIS cannot be separated from the effect of the deforma-
tion [25], numerically they are equivalent. Therefore, we concentrate on the effect of the
quadrupole deformation 5. In the end, the answer to the question which type of shape
variation really takes place would come from nuclear theory. We use different nuclear
models to calculate FIS and compare the results with experiment. A particular nuclear

model and its predictions would be endorsed by the result.

It was also demonstrated in Ref. [§] that the three types of shape variation could be
distinguished from the change of nuclear rms radius because of the different behavior of
the p1 /o and ps/y states (see Ref. [8] for more details). Therefore in this work we restrict
our discussion to just two parameters, R, and 3. Their values are found by integrating

nuclear charge density.

An alternative approach is possible in which the calculations start from the standard
Fermi distribution for nuclear density and the effect of nuclear deformation is modeled by
increasing the nuclear skin sickness. In this approach the discrimination between nuclear
models would be done on the final stage of the study when the calculated isotope shift is

compared to experiment.

The results of the calculations are presented in a form in which electron and nuclear
variables are factorized, so that the electron structure factors do not depend on the nuclear
isotope and therefore are not affected by the nuclear calculation uncertainty. The aim of
atomic calculations is to find these electron structure factors. To do this we use nuclear

charge densities in a particular nuclear model for two different isotopes and integrate

18



2.4. CALCULATIONS

them to get nuclear potentials V7 and V5. It is assumed on this stage that nuclear density
is known exactly. All nuclear uncertainties are accounted for in the actual values of
the nuclear factors. FIS can be found by direct comparison of the calculations for two
different isotopes. This works well for isotopes which differ by a large number of neutrons,
AN > 1. For neighboring isotopes, where AN =~ 1 , the FIS is small and its calculated
value is affected by numerical uncertainties. To suppress numerical noise we use the so-
called finite field method [27]. We construct the nuclear potential according to the formula
VN = Vi 4+ A (Vo — V1), where V] and V, are nuclear potentials for two isotopes and A is
a numerical factor which can be large to enhance the difference between two isotopes
and thus suppress numerical noise. First, the calculations are done for A = 0 to obtain
reference transition frequencies. Then, they are performed for several values of A > 1 and

the frequencies are extrapolated to A = 1. In practice, we use A =2 and A = 4.

To perform electron structure calculations we start from the so-called CIPT method (con-
figuration interaction with perturbation theory) [28]. It treats nobelium as a system with
16 external electrons allowing excitations from the 5 f subshell into the CI space. The aim
of this study is to check whether the mixing of the 4f147snp (n = 7,8) and 4f1372s6d
configurations has any significance for our states of interest. Such study was performed
before [10,29] for the lowest odd states of No, 7s7p 3P$ and !P¢. The answer was negative.
Now we want to extend our study to two more states 7s8p 3P and 'P$. Therefore, we
performed the CIPT calculations again and found that there is no strong mixing of our
states of interest with the state involving excitations from the 5f shell. This means that
nobelium can be treated as an atom with two valence electrons above closed shells. We

use the well-established CI + MBPT method [30,[31] to perform the calculations.

The effective CI hamiltonian has a form

2
A ~ e
H (r1,79) = hy (r1) + hy (12) + . + o (r1,72) (2.6)

where hy is the single-electron part of the Hamiltonian, which is the sum of the Hartree-

Fock operator HYF and correlation potential 31, hi = HTF 4 %,. Correlation potential

19



CHAPTER 2. USING ISOTOPE SHIFT FOR TESTING NUCLEAR THEORY: THE
CASE OF NOBELIUM ISOTOPES

Y1 is an operator which includes correlations between a particular valence electron and
the electrons in the core. The operator ¥ can be understood as a screening of the
Coulomb interaction between valence electrons by core electrons. We calculate ¥ and
Y9 in second order of the many-body perturbation theory. The contribution of higher
orders is relatively small but not totally negligible [29,|32,33]. To simulate them, we
rescale the 1 operator in the s and p waves to fit the known energy of the ! Sy — P9
transition, Xi(s) — 0.8%1(s), X1(p) — 0.94%;(p). The rescaling helps to make more
accurate predictions for the positions of other odd levels. It also improves the wave

functions used to calculate transition amplitudes.

We perform the calculations of the electric dipole transition rates between the ground
and four lowest in energy odd states to see whether the rates are sufficiently large for
the measurements. We use random-phase approximation (RPA) for the calculations. The

RPA equations for the core states have a form

(A" + e.) dpe = —(d + OV )i, (2.7)

where d is electric dipole operator, the index ¢ numerates the states in the core, d1). is the
correction to the core orbital caused by external electric field, and 0V is the correction
to the self-consistent Hartree-Fock potential caused by the change of all core states. The
RPA equations are solved self-consistently for all states in the core. As a result, we have

6V which is used to calculate transition amplitudes between valence states

Aap = (ald + 5V |b). (2.8)

Here, a and b are two-electron wave functions found in the CI + MBPT calculations. The

rate of spontaneous decay of the state b into the state a via an electric dipole transition
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Table 2.1: Excitation energies, electric dipole transition amplitudes and rates of spon-
taneous decay via electric dipole transitions to the ground state for four odd states of
nobelium.

Upper Excitation energies (cm™?) Awp Transition

state  Present Exp.[9] CI+ all [29] (a.u.) rate (s7})
7sTp 3P‘1’ 21213 21042 1.37 1.2 x 107
7sTp 'P9 20963 20961 30203 424 3.3 x 108
7s8p P9 41482 0.097 3.6 x 10°
7s8p ‘P 42926 0.86 4.0 x 107

is given by (in atomic units)

Tab =3 ((f“)abO‘)3

2.5 RESULTS

2.5.1 Energies and transition rates

The results of calculations for the energies and transition rates are presented in Table
Good agreement with experiment is the result of fitting. The ab initio CI+ MBPT result
for the energy of the 7s7p 1 P{ state is 31652 cm~!. This value differs from the experimental
one by 5.6%. Comparing it with the CI4all-order result of Ref. [29] shows that most of

this difference is due to higher-order correlations.

The 7s7p 'PY state has the largest electric dipole transition amplitude and largest transi-
tion rate to the ground state. There are at least two more transitions (first and last lines
of Table which are probably strong enough to be experimentally studied. Note, that
at least two transitions are needed to use isotope shift to extract nuclear deformation (see

below).
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p (e/fm?)

Figure 2.1: Symmetrized nuclear densities in five nuclear models considered in this work.
See Fig. for details.

2.5.2 Comparing nuclear models

Figures and show symmetrized nuclear densities [p(r) = [ p(r,8)df] for nuclear
models used in this work. Table shows the parameters of nuclear charge distri-
bution for these models (CEDFs) and corresponding calculated isotope shifts for the
752 1Sg - 7s7p 'P$ line of 2°2No and 2%*No. Experimental value for the isotope shift
is 0.336(23) cm~! [10]. The DD-MEJ model leads to the best agreement of the calculated
and experimental IS; the calculated value is only about 10% larger then the experimental

one. Note also that this model predicts the largest value of A between two isotopes. The
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Figure 2.2: Upper left part of Fig. showing the details of nuclear density in five nuclear
models. Solid line—DD-MESJ, dotted line—DD-ME2, short dashed line—NL3*, long dashed
line—PC-PK1, dot-short dashed line—DD-PC1.

last column of Table [2.2] presents the ratios of calculated isotope shift to § (r?), which is the
field shift constant F'. In the absence of nuclear deformation FIS could be approximated
by the standard formula év = F¢ <r2>, where I’ does not depend on nuclear isotope, i.e., it
should be the same for any nuclear model since FIS is dominated by one nuclear parameter
0 <r2>. However, we see that F varies significantly, i.e., there is another parameter which

may affect dv. This is an indication that nuclear deformation may be important.

In Ref. [10] the nuclear field constant F' was calculated without taking into account nuclear
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Table 2.2: Parameters of nuclear model and corresponding calculated isotope shift for the
752 1Sy - 7sTp 1P transition in 2522%4No. R, is nuclear rms charge radius (R, = \/(r2)),
B is a parameter of nuclear quadrupole deformation, IS is calculated isotope shift, F' is
field shift constant (F = IS/§(r?)). Here A = 31 — 32; the subscripts 1/2 correspond to
the isotope with higher/lower value of neutron number.

Nuclear %2No %4No §(r?) IS F
Model R, (fm) B Ry, (fm) B fm? AB  cm™' cm™!/fm?
DD-ME2 597171 0.298 5.98349 0.298 0.1408 0.000 -0.482 -3.42
DD-ME¢§ 5.96390 0.284 5.97259 0.278 0.1037 0.006 -0.374 -3.61
NL3s 5.97447 0.300 5.98772 0.298 0.1585 0.002 -0.503 -3.17
PC-PK1 5.98639 0.306 5.99967 0.305 0.1592 0.001 -0.538 -3.38
DD-PC1 5.97208 0.297 5.98225 0.295 0.1216 0.001 -0.431 -3.54

deformations. The CI+MBPT value of Ref. [10] is -3.47 cm™!/fm2. Tt is in excellent
agreement with our value -3.42 cm~!/fm? obtained with the same method and with the
use of the DD-ME2 nuclear model in which A = 0 for the two isotopes (see Table [2.2)).
However, the calculations of FIS based on this model overestimate FIS by about 40%. If we
assume that the overestimation of the FIS mostly comes from the overestimation of 6(r?),
then the DD-MEJ results provide more consistent picture. Indeed, the transition from
the DD-ME2 to DD-MEJ model leads to the reduction of §(r?) from 0.1408 fm? down to
0.1037 fm? (see Table [2.2). The latter value is very close to §(r?) = 0.105(7)(7) fm? found
in Ref. [10]. In addition, the calculated FIS of the DD-MEGS model of —0.374 cm™! (see
Table is very close to the experimental value of —0.336(23) cm ™! (see Ref. [10]). Note
that the best agreement with experiment is achieved with the nuclear model which gives
the largest change in nuclear deformation parameter between two isotopes. This indicates
that nuclear deformation may give a noticeable contribution to the FIS. However, it is not
possible to include it into analysis in the current situation when isotope shift is known
for only one atomic transition. At least two transitions are needed to distinguish between

§(r?) and AB (see next section).
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Table 2.3: The parameters of formula 1} for isotope shifts from the ground state
(752 1Sy) to excited odd states of nobelium.

F G a b c
Odd states ~ cm~!'/fm®>  cm™?/fm* cm ™! cm ™! cm ™! /fm?
7sTp 5P —3.7828 0.0288 —1.4013 1.3708 —0.0215
7sTp 1P§ —3.5042 0.0254 —1.2247 1.2234 —0.0152
7s8p 3P(1) —3.2063 0.0265 —1.0941 1.1304 —0.0071
7s8p 1P¢ —3.3112 0.0245 —1.1592 1.1919 —0.0090

2.5.3 Using isotope shift measurements to find parameters of nuclear

charge distribution

It was suggested in our previous work [8] to fit the field isotope shift between two isotopes
with the formula which depends on the change of two nuclear parameters, nuclear rms
radius, and quadrupole deformation parameter 3. Here we present the formula in a slightly

different form

v = Fo(r?) + G(6(r2)2 + aA(B2) + bA(S3) + cd(r2) A(?). (2.10)

Here §(r?) = (r?); — (r?), is the change of square of nuclear rms radius, A(8?) = 8% — 55,
A(B3) = B} — B3, and the indexes 1 and 2 numerate isotopes, index 1 corresponds to
an isotope with higher value of the neutron number. The coefficients F, G, a, b, c in this
formula are found by a least squares fitting of calculated FIS for a wide range of nuclear
parameters. The values of these parameters for four electric dipole transitions in nobelium
are presented in Table Note that the value of F for the second transition is in excellent
agreement with the CI + MBPT calculations of Ref. [10].

The first term in Eq. represents a standard formula for field IS. It ignores nuclear
deformation and relativistic corrections. It was shown in Ref. [34] that relativistic effects
make the field constant F' isotope-dependent. It was suggested to use a modified formula
Sv; = F'5 (r?7), where v = /1 — (2a)2. Modified field shift constant F’ does not depend
on isotopes. However, this formula works well only for spherical nuclei [8]. In contrast,

formula (2.10) can be used for a wide range of nuclei. Relativistic corrections in it are
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fitted with quadratic in the ¢ (r?) term [second term in Eq. (2.10)]. This formula can be
used to predict FIS for different isotopes and atomic transitions if nuclear parameters are

taken from nuclear theory.

The formula can also be used in an opposite way: the change of nuclear parameters
can be found from the isotope shift measurements. Since formula depends on two
nuclear parameters, the measurements of isotope shift for at least two atomic transitions
are needed. Then standard mathematical procedures can be used to solve the system of

two quadratic equations to find the change of nuclear parameters.

For neighboring isotopes the second and last terms in Eq. (2.10) can be neglected (see
Table and the remaining terms reduced to

Sv = Fé§(r?) + dAB. (2.11)

The parameters F' and d in this formula are isotope-dependent and should be calculated

for one of the considered isotope. The parameter d is related to a and b in Eq. (2.10) by
d=a(BL+B2) +b (BT + P12+ B3) and AS = By — Ba.

So far the IS has been measured for one transition (second transition in Table[2.3)) between
isotopes 2°2:293:254No. According to nuclear theory [21], all these isotopes have deformed
shapes, e.g., for 252254 A3 = 0.006 for DD-MES CEDF (see Table . Using the formula
and the numbers from Table we find that the contribution of the second term
in Eq. into IS is 0.003 cm™!. This is 8 times smaller than the uncertainty of the
measurements (measured value for IS is 0.336(23) cm ™! [10]). Therefore, to see the effect
of nuclear deformation one has to either increase the accuracy of the measurements or
use different isotopes. Note also that the measurements need to be done for at least two

atomic transitions. Currently, IS is measured only for one transition in No [10].

Finally, we calculated isotope shifts between the 2**No and ?®6No isotopes in different
nuclear models; the results are presented in Table Note that the 2*No nucleus has

neutron number N = 184 which is a magic number in this mass region [6,21] corresponding
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Table 2.4: Isotope shifts between 2°*No and 2®6No in different nuclear models for four
electric dipole transitions from the ground state (cm™1).

Nuclear R, for ®No  §(r?) Upper state

model (fm) (fm?)  7sTp 3Py 7sTp 'Py T7s8p 3Py T7s8p 'PY
DD-ME2 6.084420 1.1872 -4.52 -4.18 -3.84 -3.97
DD-MEos 6.075497 1.2111 -4.61 -4.27 -3.90 -4.03

NL3* 6.097316 1.3029 -4.94 -4.57 -4.20 -4.34
PC-PK1 6.114652 1.3655 -5.17 -4.78 -4.39 -4.54
DD-PC1 6.085116 1.2212 -4.64 -4.29 -3.95 -4.08
Average 1.2576  -4.78(40) -4.42(36) -4.06(33) -4.19(35)

to a large shell closure. Thus, according to nuclear theory this nucleus has spherical shape.
It is expected to be a long-living isotope [6]. One transition frequency has been already
measured in the 2**No isotope [9]. One can use the isotope shift from Table to correct
measured frequencies of atomic transitions from 2**No to 286No isotopes and use the data
for a search of long-living nobelium isotopes in astrophysical data [35]. Note that all
nuclear models give very close predictions for the IS (see Table . We use the spread of
calculated results for an estimation of the uncertainties in the predictions and an average

calculated value as the central point of these predictions.

We should note that there are other corrections affecting isotopic shift including the nu-
clear polarization effect and QED corrections. For example, they are seen in a detailed
comparison of different contributions to the isotope shift for the 2p;,, — 2s transition in
Li-like ions °012Nd5"* in Ref. [37]. However, the effect of the quadrupole deformation
increases with the nuclear charge significantly faster than other effects due to the singu-
larity of the Dirac wave function at the origin-see, for example, Ref. [37]. This is why
we concentrate on the effect of the quadrupole deformation when considering superheavy

elements like nobelium.

2.5.4 Nuclear deformation and nonlinearity of King plot

It was suggested in Ref. [36] to use a possible nonlinearity of the King plot to search

for new particles. If some presently unknown bosons mediate interaction between atomic
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electrons and neutrons in the nucleus, then field shift constant F would depend on the
number of neutrons. This would manifest itself in the nonlinearity of the King plot. Let
us consider how this consideration is affected by nuclear deformation. The only condition
for the King plot to be linear is the separation of nuclear and electron variables. Let us
consider standard formula for isotope shift, namely, dv = F§ (r?) + M N. Here, F is field
shift constant, § <r2> is a nuclear factor describing change in nuclear structure between
two isotopes, M is the mass factor M = (M — M,) /MyM,, N is electron structure factor
related to mass shift, and the indexes a and b numerate isotopes. If F' does not depend
on the nucleus and ¢ <r2> does not depend on electrons then one can write for two atomic

transitions

F F

(6v1 /M) = =L (6va/M) + — Ny + Ny. (2.12)
Fy Fy

One can see that on the vy /M, dvy /M plane the points corresponding to different isotopes

are all on the same line. If formula (2.11]) is used for the field shift then an extra term
appears in Eq. (2.12))

(6v1 /M) = 2(51/2/M) + 2]\72 + N1 + % <d1 — 2d2> . (2.13)
This last term does depend on isotopes and thus breaks the linearity of the King plot.
It is instructive to see when this term is zero. The most obvious case is A = 0, i.e.,
all considered isotopes have the same nuclear deformation. This is an unlikely scenario
for heavy nuclei. However, the terms can be small if deformations are similar. The less
obvious case is dy — do Fy /F5 = 0. Note that the expression dy Fs — da F} is the determinant
of the system of two linear equations for 6 (r?) and Ap if IS for two transitions is given
by Eq. . The determinant is zero means that the equations are proportional to
each other and cannot be resolved. This might be the case of the transitions between
similar states, e.g., 7s — Tps/p and 7s — 8p3/p transitions in No™. Exact proportionality

is unlikely but strong suppression is possible (i.e., diF» =~ d2F} ). The suppression is less
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likely in many-electron atoms since the states are affected by configuration mixing and it

is different for low and high energy states so that similar transitions can hardly be found.

2.6 CONCLUSION

We considered five nuclear models of nuclear charge distribution in two isotopes of no-
belium, 2°2No and 2**No, and calculated the field isotope shift for four electric dipole
atomic transitions. It was demonstrated that comparing the calculated isotope shift with
experiment helps to discriminate between nuclear models endorsing the predictions of the
best-fit model. It was also shown that having isotope shift measurements for at least two
atomic transitions can be used to extract from the measurements not only the change of
nuclear rms radius but also the change in nuclear shape. Referring to the best-fit model
endorses a particular type of shape change, e.g., change in nuclear quadrupole deformation,
nuclear skin thickness, or nuclear density suppression in the origin. It was demonstrated
that a change in nuclear shape between isotopes leads to nonlinearity of the King plot

complicating its use for the search of new physics.
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CHAPTER 3. NUCLEAR DEFORMATION AS A SOURCE OF THE
NONLINEARITY OF THE KING PLOT IN THE YB* ION

Chapter 3

Nuclear deformation as a source of
the nonlinearity of the King plot
in the Yb™ ion

3.1 Overview

We have shown in chapter [2| that nuclear deformation (/) may lead to the non-linearity of
the King plot. In this chapter, we continue to study the extent of the effect of the nuclear
quadrupole deformation parameter () on King plot non-linearity. We do this by fitting
the observed non-linearities of the King plot by the parameter of quadrupole deformation
for all stable even-even isotopes of the Yb™ ion. Based on the results obtained, we find that
nuclear quadrupole deformation can explain the non-linearity of the King plot observed

in recent experimental results.
This study has been published in this paper:

S. O. Allehabi, V. A. Dzuba, V. V. Flambaum, and A. V. Afanasjev, Nuclear deformation
as a source of the nonlinearity of the King plot in the Yb™ ion, Phys. Rev. A 103,
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1030801 (2021).

3.2 Abstract

We perform atomic relativistic many-body calculations of the field isotope shifts and cal-
culations of corresponding nuclear parameters for all stable even-even isotopes of the Yb™
ion. We demonstrate that if we take nuclear parameters of the Yb isotopes from a range
of the state of the art nuclear models, which all predict strong quadrupole nuclear defor-
mation, and then calculate nonlinearity of the King plot caused by the difference in the
deformation in different isotopes, the result is consistent with the nonlinearity observed in
the experiment [I. Counts et al., Phys. Rev. Lett. 125, 123002 (2020)]. The changes of
nuclear rms radius between isotopes extracted from experiment are consistent with those

obtained in the nuclear calculations.

In a recent paper [1], the nonlinearity of the King plot has been observed. The authors
state that the effect may indicate physics beyond the standard model (SM), or that, within
the SM, they may come from the quadratic field shift (QFS). Possible nonlinearity of the
King plot in Yb™ was studied theoretically in Ref. [2]. In the present paper, we show
that it is more likely that the observed nonlinearity of the King plot is due to a significant
nonmonotonic variation of the nuclear deformation in the chain of isotopes. We perform
nuclear and atomic calculations of the field isotope shift (FIS) which include nuclear
deformation and demonstrate that the dependence of the deformation on isotopes leads
to a nonlinearity of the King plot, which is consistent with the observations in Ref. [1].
We show that the comparison of theoretical and experimental nonlinearities can be used

to discriminate between different nuclear models, favoring some and disfavoring others.

It is well known from experimental nuclear rotational spectra 3] and its theoretical inter-
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pretation [4,5] as well as from the nuclear calculations presented below that all even-even
YD isotopes studied in Ref. [1] have deformed nuclear ground states with the parameters
of the quadrupole deformation 5 ~ 0.3. In our previous paper [6], we demonstrated that

nuclear deformation may lead to a nonlinearity of the King plot.

Therefore, in the present paper we calculate FIS in eveneven Yb isotopes with accounting
for nuclear deformation. We treat Yb™ as a system with one external electron above closed
shells and use the correlation potential method [7]. This approach works well for Yb™ as
demonstrated in our earlier works [8-10]. We calculate the correlation potential 3 in the
second order of the many-body perturbation theory. Correlation potential is the nonlocal
(integration) operator responsible for the correlation corrections due to interaction between
valence electron and electrons in the core. Then we use 3 to calculate the states of valence

electron (numerated by v ) in the form of the Brueckner orbitals (BO):

(H™F £ 5 — ¢,)9B0 = 0. (3.1)

Here HMF is the relativistic Hartree-Fock (HF) Hamiltonian for the closed-shell core of
Ybt,

E[HF = Cdi . ﬁ’L + (6 - 1)m02 + Vnuc(ri) + V::ore(ri)- (32)

In this expression, o and § are the Dirac matrices, Vyye is nuclear potential obtained by
integrating nuclear charge density, V.ore is the self-consistent HF potential, and the index
1 numerates single-electron states. This method is similar to the many-body perturbation

theory (MBPT) method used in Ref. [1].

FIS is calculated by varying nuclear potential Vi, in (3.2)). The results are presented in

the form of expansion over the change in nuclear momenta (see also Ref. [1]),

v = Fab(r?) + GP6(r2)? + GPo(rt). (3:3)
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FIS

Here v,

is the change of the frequency of an atomic transition (numerated by index a )
which is caused by the change of nuclear size and shape between two isotopes; § <7"2> is the

change of the nuclear rms radii squared, & (r?) = (r?), — (r?), and § (r*) = (r*), — (r*),.

First term in Eq. is the standard FIS; the other two terms are corrections responsible
for the nonlinearity of the King plot. The term with G((IQ) is due to the second-order effect
in the change of the nuclear Coulomb potential called the quadratic field shift (QFS) and
the last term appears mainly due to the relativistic effects in the electron wave function;
i.e., these terms represent different physical phenomena. On the other hand, their effects
on the isotope shift are similar. It was suggested in Ref. [1] that (r?) and (r?) are related
by (rt) =b <r2>2, where b is just a numerical constant, b = 1.32. Extra care should be
taken in calculating G® and G® independently on each other. For example, they cannot
be defined simultaneously in a fitting procedure. Therefore, we start the calculations by
eliminating the QFS term, i.e., by considering FIS in the linear approximation. The change
of the nuclear Coulomb potential between two isotopes is considered as a perturbation
and is treated in the first order using the random phase approximation (RPA). The RPA

equations for core electrons have the following form [7]:

(IA{HF - fc)ch = _(6VN + 5‘/core)wca (34)

where §Vy is the difference between nuclear potentials for the two isotopes, index ¢ nu-
merates states in the core, and Vo is the change of the self-consistent HF potential
induced by 0Vxy and the changes to all core functions d1.. Equations are solved
self-consistently for all states in the core with the aim of finding 0Veore . The FIS for a

valence state v is then given by

VIS = (BO16Viy + §Viore|020). (3.5)

Apart from eliminating the QFS, an important advantage of using the RPA method (where

the small parameter, i.e., the change of the nuclear radius, is explicitly separated) is the
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suppression of a numerical noise. Nonlinearity of the King plot is extremely small and

direct full scale calculations of the change of the atomic electron energy due to a tiny

change of the nuclear radius (i.e., without the separation of the small parameter) may

lead to a false effect in the King plot nonlinearity (see below). After FIS is calculated for
(4)

a range of nuclear parameters, the constants F, and G~ are found by fitting the results of

the atomic calculations by formula (3.3) (without G ) by the least-square-root method.

To calculate G?), we use the second-order perturbation theory

2
G =y OV + OVeonelnl 2y (3.6)

n

Here 6V is the change of nuclear potential between two isotopes. Summation goes over
complete set of the singleelectron basis states, including states in the core and negative-
energy states. To include the core-valence correlations, one can use BO for single-electron
states a and n. Again, the perturbation theory is used instead of the direct calculation of
the change of the electron energy due to the tiny change of the nuclear radius to suppress

numerical noise.

Instead of the direct summation over electron states in Eq.(3.6)), one can first solve the

RPA equation for the valence state a

(B 43 — e0) 050 = —(8Vi + 0Viore )52, (3.7)
and then use
GP = (5YBCI6Vi + 6Veore $B0) /6 (12)2. (3:8)

We obtain the same results using Eqs. (3.6)) and (3.8|) This provides a test of the numerical

accuracy.

Nuclear deformation. The quadrupole nuclear deformation S provides a measure of the

deviation of the nuclear density distribution from spherical shape so that nuclear ra-
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Table 3.1: Calculated parameters of formula (3.3) for the FIS in two transitions of Yb;
a stands for the 6sy/5-5d5/o transition and b stands for the 6s;/9-5d3/o transition. Case 1
corresponds to deformed nuclei, while case 2 corresponds to spherical nuclei.

Tran- F G®@ GW
Case  sition  (GHz/fm?)  (GHz/fm?)  (GHz/fm?*)
1 a —17.6035 0.02853 0.01308
b —18.0028 0.02853 0.01337
2 a —18.3026 0.02853 0.01245
b —18.7201 0.02853 0.01273

dius r,(#) in the 0 direction with respect of the axis of symmetry is written as r,(0) =
ro (14 BY20(0)). Electron feels nuclear density averaged over the nuclear rotation (see,

e.g., Ref. [6]). We calculate the average density by integrating the deformed density over
0.

To determine the values of F and G® parameters in Eq., we first vary the nuclear
root-mean-square (rms) charge radius 7. and the quadrupole deformation parameter /3
in the range determined by the nuclear theory (see below): 5.234 fm < r. < 5.344 fm
and 0.305 < 8 < 0.345, and then fit the F and G parameters by the formula (see also
Refs. [6,11])

VIS = B8 (r?) + GWs(rt) (3.9)

to the results of atomic calculations of FIS for different r. and 5. The values of F' and
G@ parameters defined in such a way are presented in Table The table also gives
the values of the G(?) parameters calculated using and . Note that FIS for
the d states of Yb™ is about two orders of magnitude smaller than FIS for the 6s states
and in QFS small matrix elements for the d states appear in the second order while in
the calculations of F are in the first order. Therefore, the relative difference in the G
parameters for the s-d3 5 and s-ds, transitions is much smaller than the relative difference
for the F' parameters. Note that nonlinearities of the King plot are sensitive to the tiny

differences in the ratios F,/Fy, G / Gl(,2), and Ggl)/ G1(;4) [see Eq. l} and discussion
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below it]. Therefore, we keep four digits for G® and GW to avoid the effect of rounding

on the nonlinearity.

It was shown in Ref. [1] that (r*) ~ b(r2)?, where b is just a numerical constant, b =
1.32 |1]. We found that the situation is different in deformed and spherical nuclei. By
calculating <r4> in both cases, we found that the results can be fitted with high accuracy

by the formula

(') = [bo + bu(r2 = 18) + ba(8 — Bo) | 72, (3.10)

where ro = 5.179 fm and Sy = 0.305. For deformed nuclei by = 1.3129, b; = —0.0036, by =
0.1, while for spherical nuclei by = 1.2940, b; = —0.0038, by = 0.

To study the nonlinearity of the King plot, we need total isotope shift (including mass
shift) for two transitions a and b. Then, using Eq. (3.3) one can write for the isotope shift

between isotopes ¢ and j

2\ 2
Yoy _ Py vy (Kb _ FbKa) N <G<2> _ F,,G@)) 007
pij  Fa pig F, * F Hij (3.11)

5 (rt) .
+(@®_2a9)f%%.

Here vy,;; is the total isotope shift for the transition b which is related to FIS [see formula
(3-3)] by vij = VIE%S + Kypij, K is the electron structure factor for the mass shift, and
p = 1/m; —1/m; is the inverse mass difference. The meaning of all other parameters in
is the same as in . The first line of Eq. corresponds to the standard
King plot, and the second and third lines contain the terms which may cause the King
plot nonlinearities. To calculate isotope shift and build King plot using , we use the
calculated parameters F, G®, G@W from Table the values of K and p from Ref. [1],
and the values of the change of nuclear parameters & <r2>ij and ¢ <r4>ij which come from

several nuclear models (see below).
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Table 3.2: The deviations from the linearity of the King plot (in parts of 1076). The
comparison between experiment [1] and calculations in different nuclear models.

Nuclear model
Isotope pair Expt. BETA FIT NL3* DD-ME2 DD-MES DDPC1

168,170 —0.192 0.642 —0.206 —0.037 —0.084 —-0.511  —0.080
170,172 0.270 —0.607 0.281 —0.159 —0.467 0.546  —0.222
172,174 —-0.489 —-3.056 -0.523 —0.200 —0.028 0.392 —0.198
174,176 0.411 3.03 0.448 0.387 0.551 —0.406 0.472

To study these nonlinearities, we use the least-square fitting of Eq. by the formula
v, = Av), + B, where v/ = v/u. The relative nonlinearities are calculated as Avj /v,
where Ay is the deviation of the isotope shift v} from its linear fit. To do the fitting
and making King plot, we need to know the change of nuclear parameters d (r?) and AS3
between the isotopes of interest. We use nuclear calculations for this purpose using a
range of nuclear models. They include the empirical model named BETA, the parameters
of which are determined from experimental data, the hypothetical model (labeled as FIT),
the parameters of which are defined by the fit of nuclear parameters to experimental FIS
and the deviations of King plot from nonlinearity, and the fully self-consistent covariant
density functional theory (CDFT) with several functionals such as DD-ME2, DD-MEJ,
NL3*, and DD-PC1 [12,/13]. Nuclear parameters of the Yb isotopes with even neutron

number obtained in these models are presented in the Supplemental Material [14].

Using the parameters coming from these models, we calculate FIS, build the King plot, find
its deviations from the linearity, and compare the results to the experimental data from
Ref. [1]. The results are presented in Table and Fig. One can see that the values
of the experimental and theoretical nonlinearities are of the same order of magnitude for
all nuclear models. The FIT model presents almost perfect fit of the experimental data
for both isotope shift and the nonlinearities. For some models (e.g., BETA, FIT, NL3*,
DDPC l[]) there is a strong correlation between experimental and theoretical data. This
means that the nuclear deformation is an important effect which has to be included into

the analysis.

1We label the CDFT model by employed functional.
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The origin of nonlinearity in the King plot in deformed nuclei could also be understood
from nuclear theory perspective. The single-particle states are twofold degenerate in de-
formed nuclei and the increase of neutron Fermi level with increasing neutron number
leads to the change of the occupation of the pairs of different single-particle states, emerg-
ing from different spherical subshells, located in the vicinity of neutron Fermi level. These
pairs contribute differently to the charge radii and deformations of the nucleus. As a
consequence, both charge radii and deformations obtained in the CDF'T calculations as a
function of neutron number show some staggering with respect of averaged smooth trend
(see the Supplemental Material [14]). The situation is different for the Ca™ ions in the
chain of 4°=%8Ca isotopes [15] since they do not show significant nonlinearities in the King
plot. This is because these nuclei are spherical and they are built by the occupation of

mostly neutron f7/, subshell with increasing neutron number.

Quadratic field shift. Reference [1] argues that QFS is the main source of the nonlinearity
of the King plot. However, their calculations only provided an upper limit on the non-
linearity since the results of CI (configuration interaction) and MBPT calculations were
very different. From our point of view, the problem with the calculations in Ref. [1] is
that they have not separated a small parameter, the change of the nuclear radius, and
obtained FIS from the small difference in the energies of the atomic transitions calculated
for different nuclear radii. This is certainly a good approach for the calculation of FIS but
it is not good enough to calculate a very small nonlinearity which is extremely sensitive

to numerical noise.

Our results presented earlier indicated that QFS gives a much smaller contribution to the
nonlinearity of the King plot than the upper limit presented in Ref. [1]. To test this result,
we performed FIS and QFS calculations by a different method assuming that all isotopes
have spherical nuclear shape (f§ = 0 ). The main motivation for using RPA method in
the case of nuclear deformation is the minimization of numerical noise which comes from
extra integration over directions. There is no such problem for spherical nuclei and the
procedure is less complicated. FIS in this case may be found from the direct variation of

the nuclear radius in the nuclear Coulomb potential. We perform HF and BO calculations
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Figure 3.1: The deviations from linear King plot in experiment (solid red circles) and
theory. Theoretical deviations caused by nuclear deformation are shown as blue crosses,
and those by QFS are shown as blue triangles. All theoretical numbers correspond to the
FIT nuclear model.

for a range of nuclear charge rms radii from (r?) = (5 fm)? to (r?) = (6 fm)? and present
the results by the same formula (3.3) (see Table . As in case of deformed nuclei, the
QFS parameter G2 is found from the perturbation theory calculations. The values of F'

and G are slightly different.

The same equation (3.11]) and the same procedure were used to find the nonlinearities of
the King plot. The results are presented on Fig. and Table As one can see, the
nonlinearity caused by QFS is an order of magnitude smaller than the observations. It is

also much smaller than the nonlinearity caused by the variation of the nuclear deformation.

We also performed another test calculation using constant value 8 = 0.3 instead of 8 = 0.

Again, without variation of 8 the nonlinearity of the King plot is small.
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Table 3.3: The deviations from the linearity of the King plot § due to the quadratic field
shift. The comparison between experiment [1] and calculations using the §(r2) values
which fit the experimental isotope shift [1]. The deviation § is shown as a function of

va/pt [see Eq. (BIT)].

Expt. QFS
Va/ 1t o Va/ 1t 0
Isotope pair 10" kHz u 106 10! kHz u 106
168,170 —0.311 —0.192 —0.351 —0.017
170,172 —0.299 0.270 —0.337 0.020
172,174 —0.236 —0.489 —0.272 0.013
174,176 —0.231 0.411 —0.267 —0.016

The change of nuclear rms charge radius. Formula with parameters F,G® GW
from Table can be used to find the change of the nuclear rms charge radius between
isotopes by fitting experimental FIS. The values of the 6 (r?) corresponding to the best fit
(the FIT model) are presented in Table as case A and compared with other data.

It is widely assumed in the atomic community that FIS is described by a variation of a
single parameter <r2>, i.e., the change of higher nuclear momenta are ignored. On the
other hand, it is claimed in Ref. [1] that inclusion of the variation of (r%) (which is also
proportional to & (r?) ) can change & (r?) extracted from the FIS experimental data by
about 7%. The term with ¢ <7“4> is also included in our analysis above. It is important to
check what happens if this term is excluded. To do this, we perform different fitting of the
RPA results. Instead of using [3.9] we use the expression in which the change of nucleus is

reduced to the variation of <7“2>,

VIS = 6 (1) + Gy 0 <r2>2 . (3.12)

To fit the experimental data, we add to Ggl)p A the secondorder G® from Tablem7 Ggizal =

G® + GI%),A. The resulting F, Ggf))A, a? , coefficients for two transitions in Yb* are

tota
presented in Table[3:5] Then we use these numbers to fit the experimental FIS by adjusting
the values of 6 (r?). The resulting values of § (r?) are presented in Table as case B.

They are practically the same as in case A. We conclude that neglecting G actually
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Table 3.4: The changes of nuclear rms charge radius (4 <T2>, fm? ) extracted from the
isotope shift measurements. Case A of the present work corresponds to formula (3.3))
while case B corresponds to formula (3.12)).

Ref. [1] This work

Isotope pairs CI ~ MBPT Ref. [16}/17] A B
(168,170) 0.156  0.149 0.1561(3) 0.138 0.137
(170,172) 0.146  0.140 0.1479(1) 0.130 0.129
(172,174) 0.115 0.110 0.1207(1) 0.102 0.101
(174, 176) 0

174,176 0.110 0.105 0.1159 0.097 0.096

leads to the redefinition of the parameter F' but practically does not affect value of § <r2>

extracted from the experiment.

The comparison with other results for § <r2>. It is instructive to analyze possible reasons
for the difference between our results and other results for § <r2> presented in Table
There is a 12—19% difference between our results and those published in Ref. [16] (see
Table . However, the latter were taken from a 50-year-old paper [17], which has no
many-body calculations but only estimations based on the single-electron consideration.

The uncertainty of such estimations can be well above 10% and even 20%.

There is also a 8—13% difference between our results and those of Ref. [1]. Reference [1]
contains two calculations of the FIS constants performed by CI and MBPT methods with
4% difference between corresponding results. Our FIS constant F' is about 13% larger
than the same constant calculated in Ref. [1] using the CI method and about 8% larger
than those calculated in Ref. [1] using the MBPT method. This explains the difference
in the results for § (r?) (Table[3.4). When we use the numbers from Ref. 1] in Eq. (3.3,
we reproduce their results for 0 <r2>. The difference in the results seems to be due to the
difference in the procedures defining the constants F' and G. We use BO and the RPA
method to calculate F' and G® and the perturbation theory to find G2, as explained
above. The authors of Ref. [1] calculate F' as a leading term of the Seltzer moment
expansion at the origin for the total electron density (see Eq. (S11) in Ref. [1]) and then
use partial derivatives of FIS to calculate constants G. Such method looks sensitive to the

degeneracy of G and G® contributions to FIS. An indication of the problem may be a
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Table 3.5: Calculated parameters of formula 1D for the FIS in two transitions of Yb™.

Tran- F Ciep Cota
sition (GHz/fm?) (GHz/fm*) (GHz/fm?)
a —16.7185 0.015534 0.044064
b —17.0984 0.015883 0.044413

significant relative difference in G parameters in Ref. [1], while we argued above that
it must be very small since it appears in the second order of the small d-wave FIS matrix

elements.

It is instructive to explain why the ratios G(¥ JF are different in the s-dg 2 and s-ds /o
transitions (this is needed for the nonlinearity of the King plot without QFS). We suggest
the following mechanism supported by the numerical calculations. According to it, only
two relativistic Dirac wave functions, si/o and p;/;, penetrate into the nucleus. They
have different spatial distributions inside and therefore the ratios of the ¢ (r?) and & (r®)
contributions to their energies and wave functions are noticeably different. The d3/5 and
ds/o wave functions interact differently with the s/ and p;/, ones and this gives the

difference in G /F.

In conclusion, we state that presented arguments indicate that nuclear deformation is the
most likely source of recently observed nonlinearities of King plot in Yb™. The results
of the combined nuclear and atomic calculations for the effect are consistent with the
observations. The contribution of the QFS is about an order of magnitude smaller. The
measurements of the nonlinearity of the King may be used to study nuclear deformation
in nuclei with zero spin where nuclear electric quadrupole moment cannot be extracted
from atomic spectroscopy. The changes of nuclear charge RMS radii between even-even

Yb isotopes extracted from atomic measurements are consistent with nuclear theory.
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Chapter 4

Theoretical study of the electronic
structure of hafnium (Hf, Z=72)
and rutherfordium (Rf, Z=104)
atoms and their ions: Energy
levels and hyperfine-structure

constants

4.1 Overview

In this chapter, we study the superheavy element Rf and its first three ions by performing
calculations for the energy levels and hyperfine structure constants. The results are in-
tended to serve as a reference for future interpretations of the measurements with regard
to nuclear magnetic dipoles and electric quadrupole moments. A similar calculation is

performed on its lighter homolog, Hf, to verify the calculations.
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This study has been published in this paper:

S. O. Allehabi, V. A. Dzuba, and V. V. Flambaum, Theoretical study of the electronic
structure of hafnium (Hf, Z = 72) and rutherfordium (Rf, Z = 104) atoms and their ions:

Energy levels and hyperfine-structure constants, Phys. Rev. A 104, 052811 (2021).

4.2 Abstract

Energy levels, magnetic dipole, and electric quadrupole hyperfine structure of the super-
heavy element rutherfordium (Rf, Z = 104 ) and its first three ions are calculated using a
combination of the configuration interaction, linearized coupled-cluster single-doubles, and
many-body perturbation theory techniques. The results are to be used in future interpre-
tations of the measurements in terms of nuclear magnetic dipole and electric quadrupole
moments. To have a guide on the accuracy of the study, we perform similar calculations
for hafnium (Hf, Z = 72 ) and its ions. Hf is a lighter analog of Rf with a similar elec-
tronic structure. Good agreement with the experiment for Hf and with available previous

calculations of the energy levels of Rf is demonstrated.

4.3 INTRODUCTION

The study of the hyperfine structure (hfs) of the superheavy elements (Z > 100) is a
way of obtaining important information about their nuclear structure. The measurements
accompanied by atomic calculations lead to extractions of nuclear magnetic dipole and
electric quadrupole moments. This serves as a test of nuclear theory leading to more
reliable predictions of nuclear properties and helping in the search for the hypothetical
stability island [1H5]. The heaviest element so far where such a study was performed is
nobelium (No, Z = 102 ) [68]. The hfs was measured for 2*>No isotope in the strong
electric dipole transition between ground 'Sy and excited 'P¢ state. In addition, isotope

shift was measured for the 252:253:254No isotopes. Similar measurements are now planned

50



4.4. METHOD OF CALCULATION

for lawrencium ( Lr, Z = 103) [9]. Hopefully, rutherfordium (Rf, Z = 104) is next in line.

Most of the synthesized isotopes of Rf have odd neutron numbers [10], meaning that
they have a nonzero nuclear spin and that their energy levels have hyperfine structures.
The spectrum of electronic states of Rf was studied theoretically before |11513], revealing

several electric dipole transitions suitable for the measurements.

In the present work, we perform calculations of energy levels, magnetic dipole, and electric
quadrupole hyperfine structure (hfs) of neutral Rf and Hf and their first three ions. The
main purpose of the work is to obtain the values of the hfs matrix elements needed for the
interpretation of future measurements. The energy levels are obtained as a byproduct;

they are also useful for assessing the accuracy of the calculations.

We use a combination of the linearized single-double coupled-cluster method with the
configuration interaction technique, the CI4SD method [14]. Calculations for Hf are
performed to test the accuracy of the predictions for Rf. Hf is a lighter analog of Rf
with a similar electronic structure. Good agreement with the experiment for Hf and with
previous calculations of the energy levels of Rf is demonstrated. This opens a way for the
interpretation of future measurements in terms of the nuclear magnetic dipole and electric

quadrupole moments.

4.4 METHOD OF CALCULATION

4.4.1 Calculation of energy levels

For all considered systems, calculations start for the relativistic Hartree-Fock (RHF') pro-
cedure for the closed-shell core (Hf V and RfV ). This corresponds to the use of the V=M
approximation [15]. Here N = Z is the total number of electrons in a neutral atom, and

M is the number of valence electrons (M = 4 for Hf I and Rf I). The RHF Hamiltonian
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has the form,

F[RHF = cap + (5 — 1)mc2 + Vnuc(r) + ‘/Ycore(r)v (41)

where c is the speed of light, a and g are the Dirac matrices, p is the electron momentum,
m is the electron mass, V. is the nuclear potential obtained by integrating Fermi distri-
bution of nuclear charge density, and Veore (7) is the self-consistent RHF potential created

by the electrons of the closed-shell core.

After the self-consistent procedure for the core is completed, the full set of single-electron
states is generated using the B-spline technique [16,/17]. The basis states are linear com-
binations of B splines, which are the eigenstates of the RHF Hamiltonian . We use
40 B splines of the order 9 in a box that has a radius Rpya.x = 40ap with the orbital
angular momentum 0 < [ < 6. These basis states are used for solving the linearized
single-double couple-cluster (SD) equations and for generating many-electron states for
the configuration interaction (CI) calculations. By solving the SD equations first for the
core and then for the valence states, we obtain correlation operators ¥; and ¥ [14]. 3 is
a one-electron operator which is responsible for correlation interaction between a partic-
ular valence electron and the core. ¥ is a two-electron operator that can be understood
as screening of Coulomb interaction between a pair of valence electrons by core electrons.
These 3 operators can be used in the subsequent CI calculations for atoms with several
valence electrons to account for the corevalence and core-core correlations. Solving the SD
equations for valence states also gives energies of the single-electron states for the system
with one external electron above closed shells. Note that there is a small difference in the
SD equations intended for obtaining these energies compared to those intended for further
use in the CI calculations. In the latter case, one particular term should be removed from
the SD equations since its contribution is included via the CI calculations (see Ref. [14].
for details). However, the contribution of this term is small, and the difference in the SD

equations can be neglected.
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The CI equations,

(al H[b) — Edq, = 0, (4.2)
have the CI Hamiltonian, which includes ¥; and Yo,
. M R M 62
HCI:Z<HRHF—|—21)‘—|—Z 7—}—22”' . (43)
i1 i i< |’I“i — ’I"j|
a and b in (4.2)) are many-electron single determinant basis states which are constructed
by exciting one or two electrons from one or more reference configuration(s) and then
building from these configurations the states of definite values of the total momentum
J. M in (4.3) is the number of valence electrons. In our cases M = 1,2,3,4. The case
of one external electron is a special one. It has no terms of the second line in the CI
Hamiltonian (4.3)). Taking into account that single-electron basis states are eigenstates of
the RHF Hamiltonian (4.1)), the CI eigenvalue problem is reduced to diagonalization of

the 3; matrix,

(1|%1]7) — Edi; = 0. (4.4)

Here 7 and j are single-electron basis states. Note that in spite of significant simplifications

of the CI equations for M = 1, there is no need for the modification of the computer code.

For M =1 Egs. (4.2) and (4.4]) are equivalent.

There is an alternative way to perform the calculations for systems with one external
electron. One can find the energies and wave functions of the valence states by solving
the RHF-like equations for an external electron in which the correlation potential ¥; is

included:

(HRHF +Y - ev) ¥y = 0. (4.5)

Here index v numerate states of an external electron, wave functions v, are usually called

the Brueckner orbitals (BO) [18], and the energies ¢, and wave functions 1, include
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Figure 4.1: Four diagrams for the second-order correlation operator Xj.

correlation corrections. The BO can be used to calculate matrix elements, in particular,
for the hfs (see below). Comparing two ways of the calculations is an important test of
the accuracy. It is especially valuable when there is a lack of experimental data, which is

the case of the present work.

The meaning of the ¥; operator is the same in the CI and BO equations [Egs. and
(4.5)]. However, the X1 operator, which comes from the SD calculations as a set of matrix
elements between single-electron states, cannot be directly used in since here we need
the operator in the coordinate representation. Therefore, we calculate the 31 for the BO
in the second order of the many-body perturbation theory (see Fig. . A particular class
of the higher-order correlations is included by solving Eq. iteratively. It includes
contributions ~ X% Y3 etc. In the end, the two ways of calculations are sufficiently

different to be a good test of accuracy.

4.4.2 The CIPT method

It is very well known that the size of the CI matrix grows exponentially with the number
of valence electrons. In the present work, we have up to four valence electrons (in neutral
Hf and Rf), leading to the huge size of the CI matrix, the number of lines in (4.2)) ~ 10°.
Dealing with a matrix of this size requires significant computer power. However, it can be
reduced by orders of magnitude for the cost of some sacrifices in the accuracy of the result.

To do this, we use the CIPT method [19] (configuration interaction with perturbation
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theory). The idea is to neglect off-diagonal matrix elements between highenergy states in
the CI matrix (since in the perturbation theory approach, such matrix elements appear in

higher orders). Then the CI matrix equation [Eq. (4.2))] can be written in a block form,

- E, . (4.6)

Here block A corresponds to low-energy states, block D corresponds to high-energy states,
and blocks B and C correspond to cross terms. Note that since the total CI matrix is
symmetric, we have C = B’, i.e., ¢;j = bj;. Vectors X and Y contain the coefficients of
expansion of the valence wave function over the single-determinant many-electron basis

functions,

N1 N2
\I/(Tl, - ,TM) = ZXi(I)i(Tla R ,TM) + ZY}@j(Tl, - ,TM). (47)
i=1 =1

Here M is the number of valence electrons, Ny is the number of low-energy basis states,

and Ny is the number of high-energy basis states.

We neglect off-diagonal matrix elements in block D. Finding Y from the second equation

of (4.6) leads to

Y = (B, - D)"'CX. (4.8)

Substituting Y to the first equation of (4.6]) leads to
[A+ B(B,] - D)7'C| X = E.X, (4.9)
where [ is the unit matrix. Neglecting the off-diagonal matrix elements in D leads to a

very simple structure of the (E,I — D)_1 matrix, (E,I — D)i_k,1 = 0ix/ (Eq — E}), where
E, = <k: ‘HCI’ k> (see [19] for more details). Equation (4.9)) gives the same solution as
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Table 4.1: The number of configurations and the size of the effective CI matrix for Hf and
Rf. NNC is the number of nonrelativistic configurations, NRC is the number of relativistic
configurations, and Nj is the corresponding number of states with given JP.

JP NNC NRC Ny
1" 80 364 726
2+t 80 364 987
3t 80 364 968
4+ 80 364 784
1~ 60 259 470
2- 60 259 605
37 60 259 566

Eq. if the energy parameter F, in the left-hand side of has the same value as the
solution FE,. Since the value of E, is not known in advance, we use an iterative procedure,
E&”’ = Eq()n_l), where n is iteration number. On first iteration one can use a solution of
the simplified equation AX = E,X or use some guess energy. In most cases less than 10

iterations is sufficient for full convergence.

The relative sizes of blocks A and D can be varied in the calculations in search of a
reasonable compromise between the accuracy of the results and the computer power needed

to obtain them. In our current calculations, the number of lines in (4.9)) is ~ 103.

Note that the CI matrix is different for every combination of the value of the total angular
momentum J and the parity of the states (J?). Therefore, the choice of the N; parameter
(i.e., the size of the effective CI matrix) should be done separately for every JP. In doing
so we follow the rule that all states of the same configuration should be treated equally,
either as low-energy or high-energy states. Since for every given configuration the number
of states with different values of J is different, the values of N7 are also different for
every JP. The search for a compromise between the size of the effective CI matrix and
the accuracy of the results is also done separately for every JP. Table [£.I] shows the
parameters used in the present calculations. The only external parameter chosen "by
hands" is the number of nonrelativistic configurations. The values of other parameters
are calculated. For example, one nonrelativistic configuration 7s26d? corresponds to three

relativistic configurations: 7526d§ /2,7326d3 /26ds5/2, and 7326d§ /20 The total number of
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states included in the calculations, Ny + Na, also varies with JP being about 10.

4.4.3 Calculation of hyperfine structure

To calculate hfs, we use the time-dependent Hartree-Fock (TDHF') method, which is equiv-
alent to the well-known random-phase approximation (RPA). The RPA equations are the

following;:

(A — ) 6ve = = (F + 0V ) we (4.10)

where f is an operator of an external field (an external electric field, nuclear magnetic
dipole, or electric quadrupole fields). Index ¢ in (4.10) numerates states in the core, 1. is
a singleelectron wave function of the state ¢ in the core, d1). is the correction to this wave

function caused by an external field, and 6VJ . is the correction to the self-consistent

core
RHF potential caused by changing of all core states. The nucleus is assumed to be a
sphere with a uniform distribution of the nuclear electric quadrupole moment and the
nuclear magnetic dipole moment. Equation is solved self-consistently for all states
in the core. As a result, an effective operator of the interaction of valence electrons with
an external field is constructed as f +6vd

core.

a, which is a solution of the CI equations [Eq. (4.2)], is given by

. The energy shift of a many-electron state

M
dea = (al Y- (f + 6Viye) la). (4.11)
=1

When the wave function for the valence electrons comes as a solution of Eq. (4.9)), Eq. (4.11)
is reduced to
Seq = > wia; (0| H™ (@), (4.12)

ij

where s — Ef\il(f—i—(SVCf

ore )%

. For better accuracy of the results, the full expansion 1)
might be used. Then it is convenient to introduce a new vector Z, which contains both

X and Y, Z = {X,Y}. Note that the solution of (4.9)) is normalized by the condition
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;27 = 1. The normalization condition for the total wave function (4.7) is different,
Sir? 4+ > y]2 = Y, 22 = 1. Therefore, when X is found from 1} and Y is found
from (4.8)), both vectors should be renormalized. Then the hfs matrix element is given by
the expression, which is similar to (4.12)) but has many more terms,

ea =Y 22 {0 H"B|D;). (4.13)
ij

In the case of one external electron, the calculations can also be done using the BO,
dey = (v|f + VL |v). (4.14)

Here v stands for a solution of the Eq. (4.5). Energy shifts (4.11)), (4.14)) are used to

calculate hfs constants A and B using textbook formulas

A, = groes” (4.15)
C VT + D) (20, + 1) ‘

and

 aos® Jo(2da — 1)
Ba = —2Q0¢ \/(2Ja )2t Dt 1) (4.16)

Here 56((;4) is the energy shift 1' or 1' caused by the interaction of atomic electrons

((13) is the energy shift

with the nuclear magnetic moment u, gy = w1/, I is nuclear spin; de
(4.11) or (4.14]) caused by the interaction of atomic electrons with the nuclear electric

quadrupole moment @ [@ in (4.16]) is measured in barns].

4.4.4 Further corrections to the hyperfine structure

Using Eq. is the fastest way of calculating hfs for many-electron atoms. Sometimes
it gives pretty accurate results, within ~10% of the experimental values. This is usually
the case when the hfs comes mostly from contributions of the s and p states. In our case,
the contribution of the s states is suppressed because, in the leading configurations (6525d2

and 6525d6p), the 6s electrons are from the closed subshell and do not contribute to the
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Figure 4.2: Sample SR diagrams corresponding to the first diagram in Fig. The cross
stands for the hfs operator. It goes to all internal lines of all four diagrams for the 3
operator.
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Figure 4.3: Self-energy diagrams. The cross stands for the hfs operator, and the black box
stands for the correlation operator ¥ (see Fig. .

hfs. This means that further corrections to the hfs matrix elements should be considered.
Equation can still be used to identify states with large hfs. The accuracy of the
calculations is likely to be higher for such states. This is because the small value of the
hfs often comes as a result of strong cancellations between different contributions leading

to poor accuracy of the results.

There are at least three classes of the higher-order corrections to the hfs matrix elements:
(a) Contribution of the higher states (HS). This is the difference between and (4.12)).
(b) Corrections to the single-electron matrix elements caused by the correlation operator
Y;. This includes the structure radiation (SR) when the hfs operator is inside of the ¥;
operator (see Fig. and the self-energy correction when the hfs operator is outside of
the X1 operator (see Fig. (see also [20,21]). (c) Two-particle correction [20,21], which

is a correction to the Coulomb interaction between valence electrons caused by the hfs

interaction (see Fig. .

To study the corrections to the single-electron matrix elements, it is convenient to have a
system with one external electron above closed shells where experimental data are available
for a range of valence states. The 3°Ba™ ion is a good example of such a system. Ta-
ble presents a comparison with the measured magnetic dipole hfs constants of 13°Ba™,

calculated in different approximations. The RHF (relativistic Hartree-Fock) column cor-
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Figure 4.4: Two - particle correction to the many-electron matrix element of the hfs
interaction. The cross stands for the hfs operator, and the dashed line is the Coulomb
interaction.

responds to using Eq. (4.14) in which the valence state |v) is a Hartree-Fock orbital and

the core polarization correction §Vf  is absent. In the RPA column the CP correction

core
is added, BORPA corresponds to using the BO in (4.14]), and the BORPA rescaled is the
same but the BO calculated with rescaled correlation operator AX1; the rescaling parame-
ter A is chosen to fit the experimental energies. The SR column is the structure radiation

(Fig. [4.2)), and the total column is the sum of the previous two columns.

The last column presents the experimental hfs constants from Ref. [22,23]. The table shows
that all considered corrections are important, and including them all leads to accurate
results in most cases. Therefore, all these corrections should be included in the calculations
for many-electron atoms via correcting single-electron matrix elements. The inclusion of
the CP and SR corrections is straightforward, but the inclusion of correlations like in
the BO needs some clarification. The CI Hamiltonian does include the correlation
operator Y leading to the mixing of the states above the core and forming orbitals similar
to BO. No core states are involved in this mixing. On the other hand, the BO found by
solving Eq. can be written in the first order of ¥; as

vy 0 = me (4.17)
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Table 4.2: Magnetic dipole hfs constants of 13°Ba* (MHz) calculated in different approx-
imations.

State RHF RPA BORPA BORPA SR Total Expt.

rescaled [22,123]
6512 2603 3090 3815 3654 —63 3591 3593
6pr s 440 530 691 659 5 664 665
6p3)2 64 105 134 120 —16 113 113
5d3 /9 115 133 165 161 27 188 170
5ds /2 46 —50 —47 —48 35 —-13 —10.7

Here summation goes over the complete set of the single-electron Hartree-Fock states,
including states in the core. The self-energy (SE) terms (Fig. are needed to account
for this missed summation over the core states in the CI calculations. Table[4.2]shows that
the considered approximation gives very accurate results for the hfs of the s and p state,
while the results for the d states are less accurate. Furthermore, the relative difference
between theory and experiment for d3/, states is about two times smaller than for the
ds/o states. This means that while considering the hfs of many-electron atoms in which
the values of the hfs constants come mostly from the contribution of the d states (like
Hf and Rf), it is preferable to consider states in which the contribution of the d3/, states
dominates over the contribution of the ds/y states. The accuracy of the calculations is
likely to be higher for these states. To identify such states, we need to do the analysis of
the partial contributions to the hfs of the many-electron atoms. We will further discuss

the matter in section

4.5 RESULTS

4.5.1 Energy levels of Hf, Rf, and their ions

Calculated energy levels of Hf and its first three ions are presented in Table and
are compared with the experiment. Good agreement between the sets of data indicates
that applied approximation is sufficiently accurate to proceed to the calculations of the

hyperfine structure. Energy levels of Hf and Hf ™ were calculated before (see, e.g., [13] for
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Hf and [24] for Hf 7). We do not make a direct comparison between the results because to

assess the accuracy of the method, it is sufficient to compare the result with the experiment.

However, it is useful to understand the reasons for some differences in our results with the

results of previous calculations of Ref. [13]. Some energy levels calculated in [13] are closer

to the experiment than in the present work (e.g., low energy states); others (e.g., some

high energy states) are closer to the experiment in our present work. The main reason for

the differences is the use of the different versions of the CI 4+ SD method.

Table 4.3: Excitation energies (E, cm~!) for some low states of Hf I, Hf II, Hf III, and

Hf IV.
Present Expt.
No. Conf. Term J (CI+SD)
Hf I [29]

1 5d%65> 3k 2 0 0

2 5d%65> 3p 3 2114 2356.68
3 5d%65> 3ir 4 4148 4567.64
4 5d%65> 'D 2 4799 5638.62
5 5d%65> 3p 1 5063 6572.54
6 5d%65> 3p 2 9026 8983.75
7 5d6s%6p 1po 2 10634 10508.88
8 5d%65> e 4 10402 10532.55
9 5d65%6p 3pe 1 14042 14017.81
10 5d36s °F 1 12469 14092.26
11 5d65%6p 3o 2 14092 14435.12
12 5d65%6p 3o 3 14545 14541.66
13 5d36s °F 2 12625 14740.67
14 5d36s °F 3 13181 15673.32
15 5d65%6p 3pe 2 15706 16163.35
16 5d36s SF 4 14050 16766.60

Continued on next page
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Table 4.3 — continued

Present Expt.
No Conf. Term J (CI4SD)
17 5d%6s6p 5@Go 2 18234 18011.04
18 5d6s%6p 3pe 1 17969 18143.39
19 5d6s%6p 3o 4 16485 18224.97
20 5d6s%6p 3pe 3 17824 18381.50
21 5d6s6p es 3 19148 19292.68
22 5d6s%6p 3pe 2 19490 19791.29
23 5d36s p 1 18363 20784.87
24 5d%6s °p 2 19085 20908.43
Hf II [29]
1 5d6s> ’D 3/2 0 0
2 5d6s> D 5/2 3054 3050.88
3 5d%6s ‘P 3/2 3578 3644.65
4 5d%6s i 5/2 4312 4904.85
5 5d%6s ‘P 7/2 5330 6344.34
6 5d%6s ‘P 9/2 8039 8361.76
7 5d6s ip 1/2 11675 11951.70
8 5d%6s 2F 5/2 11783 12070.46
9 5d?6s ip 3/2 11781 12920.94
10 5d%6s ip 5/2 12581 13485.56
11 5d%6s ‘D 3/2 13836 14359.42
12 5d26s F 7/2 14410 15084.26
13 5d656p 4fo 3/2 28580 28068.79
14 5d656p 4pe 1/2 29249 29160.04
15 5d6s6p 4Fe 5/2 29759 29405.12
16 5d656p 4pe 3/2 31903 31784.16
Hf III [30]
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Table 4.3 — continued

Present Expt.
No. Conf. Term J (CI+SD)
1 5d? 3k 2 0 0
2 5d6s 5D 2 2572 3039.7
3 5d? 3F 3 1944 3288.7
4 5d? 'D 2 5212 5716
5 5d? 3p 4 5598 6095.1
6 5d6s 3D 3 6443 6881.6
7 5d? 3p 2 11909 12493.2
Hf IV [30]

1 4f145d D 3/2 0 0
2 4f145d ’D 5/2 4721 4692
3 4f16s 2s 1/2 17530 18380
4 4f146p 2pe 1/2 66611 67039
5 4f146p 2po 3/2 76232 76614
6 41175 28 1/2 140329 140226

The method of Ref. [25] was used in Ref. [13], while in the present work, we use the
method of Ref. [14]. Another reason for the differences comes from the fact that in the
present work we do not include radiative corrections. This is because we focus mostly
on the hyperfine structure. However, the method of inclusion of the radiative corrections
developed in Ref. [26] and used in Ref. [13] is applicable for the energy levels and transition
amplitudes but not applicable for the singular operators like the operators of hfs. Finally,
in the present work, we use the CIPT technique to get a huge gain in sensitivity while
making some sacrifices in accuracy (see Sec. for details). This approach was not used

in previous works, and this is another reason for some differences in the results.
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Calculated energy levels of Rf and its first three ions are presented in Table [4.4] and
compared with other calculations. Energy levels of neutral Rf were calculated in a number
of earlier works [11113,27], and energy levels of Rf " were calculated in Refs. [11,/13]; only
the ionization potential (IP) of Rf III and Rf IV were reported before [13,27,28]. The
origin of the differences in the energies of Rf in our present work and earlier work of

Ref. [13] is the same as for Hf; see discussion above.

As can be seen from the table, the results of the present calculations for Rf and Rf' are
in excellent agreement with previous studies; the difference between the energies of earlier
works and present results for Rf is within 300 cm ™! for a majority of energy levels, and it

1

is up to ~1000 cm~! for some states. The difference for Rf" is within ~2000 cm~!, and

for some states it is significantly smaller.

Table 4.4: Excitation energies (E, cm™~!) for some low states of Rf I, Rf I , Rf III, and
RfIV.

Present Other Cal.
No. Conlf. Term J (CI+SD)
Rf I [11) [12] [13]

1 75%6d> 5F 2 0 0 0 0

2 7527p6d 3po 2 2737 2210 3923 2547
3 75%6d? 3F 3 4259 4855 4869 4904
4 75%6d> 3p 2 6873 7542 8704 7398
5 75%6d? 3p 1 7502 8776 10051 8348
6 7526d> SF 4 7836 7542 8597 8625
7 752Tp6d 3De 1 8028 8373 9201 8288
8 752Tp6d  3D° 2 11235 10905 12889 11273
9 7s2Tp6d ~ SF° 3 11328 11905 12953 11390
10 7527p6d 1pe 2 13811 — — 14403
11 75%6d? D 2 13841 - - 13630
12 75%6d> G 4 14040 - — 14476

Continued on next page
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Table 4.4 — continued

Present Other Cal.
No. Conf. Term J (CI+SD)
13 7527p6d 3po 1 16017 — — 16551
14 7s%7p6d  3D° 3 17367 - - 18029
15 752Tp6d 3fo 4 19979 — — 20477
16 756d%Tp 5Ge 2 20371 — — 20347
17 756d> °F 1 20626 - - 21552
18 7527p6d 3pe 2 21031 — — 21480
19 756d> °F 2 21512 - - 23079
20  7s6d’Tp  °Ge 3 22941 - — 23325
21 7s6d° °F 3 23002 - — 25432
22 7527p6d 1o 3 23965 — — 24634
23 756d> °F 4 25231 - — -
24 7s6d*Tp SFo 1 25821 — — —
Rf 1T [11] [24]

1 75%6d ’D 3/2 0 0 0 —

2 75%6d D 5/2 7026 7444 5680 -

3 756d> iF 3/2 15030 - 15678 -

4 756d> iF 5/2 16817 - 17392 -

5 75%Tp 2po 1/2 19050 19390 16657 —

6 756d> ip 1/2 23701 - 24615 —

7 756d> iD 5/2 25392 - 26565 -

8 756d> ip 3/2 25561 — 26648 —

9 756d> ‘D 3/2 28940 - 29983 —
10 7s7p6d 4fe 3/2 30264 - 27846 -
11 756d> Zp 1/2 31238 - 32550 —
12 7sTp6d 4po 5/2 33320 - 31031 —
13 75%7p 2po 3/2 33621 35513 31241 —

Continued on next page
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Table 4.4 — continued

Present Other Cal.
No Conf. Term J (CI+SD)
14 7sTp6d ipe 1/2 37378 36156 -
15 7sTp6d 2po 3/2 40015 38814 —
16 7s7p6d ‘Do 5/2 40640 42410 -
Rf III
1 752 IS 0 0 — =
2 756d 3D 1 8526 - —
3 7s6d 3D 2 9945 - -
4 7s6d 3D 3 16878 — -
5 756d 'D 2 19165 - —
6 6d> SF 2 24371 - -
7 6d> SF 3 28326 ~ —
Rf IV
1 51475 23 1/2 0 — —
2 5f146d ’D 3/2 3892 ~ —
3 5f'6d ’D 5/2 13559 - —
4 5f147p 2pe 1/2 50770 - -
5 5f147p 2po 3/2 75719 — —
6 5f148s S 1/2 127703 - —
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The ionization potentials for Rf III and Rf IV have been calculated, and the results
obtained are 192367 cm™' and 257396 cm ™!, respectively. Those results are compared
with experiment and other theoretical studies. In Ref. [28], the measured results achieved
for the IP are 191960 cm™' and 257290 cm~! for Rf III and Rf IV, respectively; and in
Ref. [27], the calculated results obtained are 192301 cm ™! and 257073 cm ™!, respectively.

All these values are in excellent agreement with the results of the present work. For Rf
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Table 4.5: Contributions to the magnetic dipole hfs constants of '™Hf (MHz). The CI
values correspond to formula (4.12); HS is the difference between (5.11]) and (4.12)); SR is
structure radiation (Fig. ; SE is self-energy corrections (Fig. ; TP is two-particle
correction (Fig. [4.4). The Sum line contains the sums of all single-particle contributions
(CLLHS,SR,SE). The Total line contains also TP contributions. The Final line contains
error bars calculated according to . Experimental values are taken from [31-33].

3F2 3F3 3F4 1D2 3P2 3DS 5G8
CI —82.18 —35.24 —16.04 —32.38 —41.36 —42.18 191.16
HS 15.34 5.70 2.90 14.29 15.24 12.22 —52.21
SR -13.08 -16.19 —-19.67 —18.35 —13.87 —16.88 —17.80
SE —0.90 1.70 2.66 3.13 3.28 2.50 —13.30
Sum —-80.82  —-44.03 —-30.15 —-33.31 —-36.71 —44.34 107.85
TP 11.33 —8.18 —12.69 —19.34 —25.55 —4.92 37.17
Total —69.49  —52.21 —42.84  —52.65 —62.26  —49.26 145.02
Final  —69(7) —52(9) —42(9) —52(9) —62(14) —49(6)  145(33)
Expt. —-71.43  —50.81 —43.46  —47.68 —44.7  —46.93 128.74

I11, the difference is just 407 cm~! compared with [28] and 66 cm~! compared with [27];
and for Rf IV, the variation is just 106 cm~! compared with [28] and 323 cm~! compared

with [27]. This is well inside of the error bars of this work.

Comparison of the spectra of Rf and its ions (Table with the spectra of Hf and
its ions (Table show many similarities and some differences. The most prominent
difference is the difference in the ground-state configurations of the double and triple
ionized ions. This difference comes from the relativistic effects, which pull s electrons
closer to the nucleus, reversing the order of the 7s and 6d states of the Rf ions on the

energy scale compared to the 6s and 5d states of the Hf ions.

4.5.2 Hyperfine structure of Hf I and Hf II

As it was discussed in Sec. calculation of the hfs in cases when d states are involved
often leads to poor accuracy of the results. This is because the density of the d states
in the vicinity of the nucleus is negligible, and all values of the hfs constants come from
higher-order corrections, which include mixing with s states. If leading higher-order cor-

rections are included, then the accuracy for some states might be sufficiently good. It is
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Table 4.6: Contributions of different partial waves into the magnetic dipole hfs constants
of 1™Hf (MHz). The n.d. stands for non-diagonal contributions, which include s; 12— d32,
P12 — P3/2, d3j2 — ds /2, etc., contributions. The TP terms are not included.

3F2 3F3 3F4 11)2 3P2 3D8 SGS
n.d. —37.22 0.37 23.34 27.19 8.46 —6.52 —64.55
$1/2 18.89 -5.31 —12.34 23.69 27.71 12.46  —206.51
P12 0.42 0.28 0.12 0.24 032 —31.63 58.40
P3/2 0.38 0.16 0.10 —1.09 —0.31 1.94 3.61
ds /2 —75.17 5.78 5.60 —46.41 —-2.95 —41.13 177.65
ds /2 792 —4432 —-4420 —-36.97 —69.08 20.59 137.18
fs/2 2.58 025  —057  —027  —0.24 0.09 1.45
f7/2 0.92 —1.01 —1.75 —0.62 —0.45 0.04 0.25
87/2 0.36 0.03 —0.11 0.04 0.01 —0.06 0.35
89/2 0.12 —0.27 0.36 —-0.11 —0.18 0.03 0.01

Total  —80.82 —-44.03 —-30.15 —-33.31 —-36.71 —44.34 107.85

important to have a way of recognizing such states. Then we would be able to recom-
mend which states of Rf or its ions should be used to extract nuclear moments from the
comparison of the measured and calculated hfs. It was suggested in Sec. to study
partial contributions to the hfs matrix elements. It is also important to study the rela-
tive values of the higher-order corrections. In this section, we perform such a study for
magnetic dipole and electric quadrupole hfs constants of Hf and Hf " for the states where
experimental data are available. Table shows leading and higher-order contributions
to the magnetic dipole hfs constants A for five even and two odd states of Hf. Table [4.6]
shows partial wave contributions to the same A constants of the seven states of Hf; leading
and higher-order contributions to the magnetic dipole hfs constants A for five even and
two odd states of Hf are taken into account. Tables and show similar data for the

electric quadrupole hfs constant B.

Studying Tables 4.5} [4.6] [£.7] [4-8) as well as Table [f.2 reveal that accurate calculated values

of the hfs constants are likely to be found for the states which satisfy three conditions:

e The value of the hfs constant is relatively large.

e There is no strong cancellation between different contributions.
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Table 4.7: Contributions to the electric quadrupole hfs constants of '™Hf (MHz). The
meaning of the contribution titles are the same as in Table Experimental values are
taken from [31H33]. Experimental values are rounded to the last digit before decimal point.
More accurate numbers together with error bars can be found in Refs. [31H33].

3F2 3F3 3F4 lD2 3P2 3DS 5G(2)
CI 708 921 1972 —1107 —1358 153 2455
HS —108 —193 —274 153 252 —155 —310
SR 130 49 33 —115 —52 99 162
SE 4 —12 —48 9 19 —11 7
Sum 734 765 1683 —1060 —1139 86 2314
TP -2 17 57 —0.63 —22 28 80
Final 731 783 1740 —1061 —1162 114 2394
Error bar (43) (144) (725) (178) (243) (215) (143)
Expt. 706 931 1619 —905 —1364 740 2802

Table 4.8: Contributions of different partial waves into the electric quadrupole hfs con-
stants of 1™Hf (MHz). The n.d. stands for non-diagonal contributions, which include
12 — d3/2, P1/2 — P32, d3/2 — ds5/2, etc., contributions. The TP terms are not included.

3F2 3F3 3F4 11)2 3P2 3D8 SGS
n.d. 865 —125 —1819 —454 144 —1117 2525
ds /o 70 159 —274 294 —37 108 -19
ds /2 —206 715 3623 —875 —1215 1041 —340
I5/2 39 281 117 418 43 24 54
Fr2 —56  —273 —26 — 464 —80 —17 —51
87/2 35 48 58 77 36 0 28
89/2 -10 48 —22 —87 —22 3 -8
Sum 732 765 1682 —1059 —1139 86 2314

Table 4.9: Contributions into the magnetic dipole hfs constants of the 2Dj /2 and 4F§/2

states of the ™Hf" ion (MHz). Experimental values are taken from [34].

D3/,

4 10
F52

4F0

5/2

n.d. 30.66 19.71

CI+HS 211 52150 sy —23.63 105.68
SR —28.38 —0.02  pij —0.68 38.61
SE ~1.79 23.80  py) 1.09 1.57
Sum ~28.06  —497.72  d) —64.44  —667.02
TP 24.06 ~58.25  ds)s 27.67 4.72
Total —4.00  —555.97  fs)s 1.06 —0.89
Final —4(9)  —556(67)  fr 0.07 0.00
Expt. ~17.5(0.9)  —540(2) Total  —28.06  —497.71
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e The value of the hfs constant is dominated by partial contributions from the low

angular momentum states.

As one can see, only magnetic dipole hfs of the ground state of Hf fully satisfies these
conditions. The difference between theory and experiment, in this case, is about 3%. In
all other cases, including the electric quadrupole hfs constant of the ground state, there
is a large contribution from the 4ds/, channel. However, the accuracy of the results is
reasonably good for both types of the hfs constants for some other states as well. This
means that the conditions above are rather most favorable than necessary conditions. On
the other hand, all cases with poor results can be explained by strong cancellation between

different contributions and a large contribution from the ds/, partial wave.

Studying Tables [£.2] [4.5] [£.6] [£.7] [4:8] also allows one to find a way of a rough estimation of
the uncertainty of the calculations and assign specific error bars to all theoretical results.
Dominating contribution to the error usually comes from the contributions of the d3/, and
ds /o partial waves. The data in Table @ shows that the error for the d3/, contribution is
about 10%, while the error for the dj /2 contribution is about 20%. The contribution of the
other partial waves to the error budget can be neglected because of either a small error
(s and p waves) or a small contribution. It is natural to assume that the accuracy of the
nondiagonal and two-particle contributions is also ~10% since both these contributions
have matrix elements with d states. Then the total error for a state a can be calculated

as

— 2 2 2 2
Oa = \/Uan.d. + Gad3/2 + Uad5/2 + Oarp> (418)

where 045,49, = 0an.a./10, Oady), = 5(“13/2/107 Oads), = 6ad5/2/5, orp = 0rp/10. Here 6
stands for a particular contribution. The values of § can be found in Tables
Error bars for the hfs constants of Hf, calculated using , are presented in
Tables and [L.7] One can see that in many cases, estimated error bars are larger than

the actual difference between theory and experiment. However, in some cases of externally
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Table 4.10: Contributions into the electric quadrupole hfs constants of the 2 D5 /2 and 1F, 50/2
states of the ™ Hf* ion (MHz). Experimental values are taken from [34].

"Dy ) "Dy Fy)

n.d. —342 3228

CI+HS 1780 —897  pyj 6 36
SR 63 51 dyy 2071 2301
SE ~32 -35  dy -9 42
Sum 1811 —881  fs 34 21
TP 12 15 fopa 11 -3
Total 1823 —896 g7/ 40 23
Final 1823(208)  —896(281) gy 1 -1
Expt. 1928(21)  —728(17)  Total 1181 881

strong cancellations between different contributions, the estimated error bars are smaller
than the difference between theory and experiment. This probably means that such states

should be excluded from the consideration.

We found experimental data on the hfs of Hf " for only two states, the ground state
5d6s? 2D3/2, and the excited odd state 5d6s6p 4F5°/2 [34]. Calculated contributions to the
hfs of these states are presented in Table for the magnetic dipole hfs and Table
for the electric quadrupole hfs. One can see from Table that calculated A hfs constant
of the ground state is consistent with zero due to strong cancellation between different
contributions. On the other hand, the accuracy of the result for the excited state is high;
the difference between theory and experiment is about 3%. This state satisfies all "most

favorable" conditions discussed above.

For the electric quadrupole hfs constant B, the situation is opposite (see Table |4.10]); the
accuracy is high for the ground state, and it is not so high for the excited state. The latter
can be explained by strong cancellation between the nondiagonal contributions and the

contributions from the d3,, partial wave.
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Table 4.11: Hyperfine structure constants A and B for Rf I and Rf II. Numeration of
states corresponds to Table Error bars are calculated with the use of Eq. ()

No. Conf. Term J Energy Alg; B/Q
cm ™! MHz MHz
Rf I
1 7526d> 3SF 2 0 202(108) 271(18)
7s27p6d 3D 1 8028 —2546(386) 716(50)
13 7s2Tp6d  3P° 1 16017 788(259)  —738(109)
24 7s6d*Tp  °F° 1 25821  —14460(1177) —283(14)
2 752Tp6d  3F° 2 2737 3185(485) 963(102)
8 7s2Tp6d  3D° 2 11235 —423(418) 446(129)
10 7s2Tp6d  'D° 2 13811 —40(150) 578(37)
9 7s2Tp6d  3F° 3 11328 3229(423) 1015(162)
14 7s27p6d  3D° 3 17367 939(273) 1139(217)
20 756d*Tp  °G° 3 22941 5245(711) 776(54)
Rf 11
1 75%6d ’D 3/2 0 —190(137) 1448(130)
5 7s%Tp 2pe 1/2 19050 12960(280) 0
14 7sTp6d ipe 1/2 37378  —21730(2636) 0
13 7s%Tp 2pe 3/2 33621 —7798(849) 2078(113)
15 7sTp6d 2pe 3/2 40015 7193(937) 1414(28)
10 757p6d 4o 3/2 30264 9650(984) 1374(43)
12 7sTp6d 4Fe 5/2 33320 15810(1828) 417(141)
16 757p6d 4pe 5/2 40640 7582(1532) 1421(259)
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4.5.3 Hyperfine structure of Rf I and Rf II

Hyperfine structure constants A and B calculated for selected states of Rf I and Rf II
are presented in Table We have calculated the hfs only for the ground state and
for the low-lying states of opposite parity, which are connected to the ground state by
electric dipole transitions. The frequencies of these transitions, together with the hyperfine
structure, are likely to be measured first. The same method of calculations and the same
analysis of the partial contributions and error bars were used for Rf I and Rf IT as for Hf I
and Hf II (see the previous section). We do not present tables of partial contributions for
Rf I and Rf II to avoid overloading the paper with technical details. Only final results,
together with the error bars, are presented in Table As in the case of Hf I and Hf
IT the actual error of the calculations might be significantly smaller than the estimated
uncertainties. Note that strong relativistic effects also pull the 7s and 7p; /5 electrons of Rf
closer to the nucleus, enhancing their contribution to the hyperfine structure. This might
be another reason for the higher accuracy of the calculation for Rf I and Rf IT compared

to what we had for Hf I and Hf II.

4.6 CONCLUSION

In this paper, the energy levels and the hyperfine structure constants A and B for low-lying
states of the Rf atom and ions were calculated. Energy levels were calculated for Rf I,
Rf II, Rf III, and Rf IV, while hyperfine structure constants were calculated for Rf I and
Rf II. Similar calculations were performed for the lighter analog of Rf, the Hf atom, and
its ions to control the accuracy of the calculations. Present results are in good agreement
with other calculations and previous measurements where the data are available. The way
of estimation of the uncertainty of the hfs calculations is suggested. For the majority of

the states, the uncertainty is within 10%.
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CHAPTER 5. CALCULATION OF THE HYPERFINE STRUCTURE OF DY, HO,
CF, AND ES

Chapter 5

Calculation of the hyperfine
structure of Dy, Ho, Cf, and Es

5.1 Overview

Our consideration in this chapter is focused on a theoretical study of the magnetic dipole
hyperfine structure (HFS) constants and electric quadrupole HE'S constants for two heavy
actinide atoms, Cf and Es. Our calculations of magnetic dipole HFS constants and electric
quadrupole HFS constants are encouraged by experiments to determine HFS of these
atoms for the purpose of extracting magnetic moments p and electric quadrupole moments

Q of the nuclei of the considered isotopes.
This study has been published in this paper:

S. O. Allehabi, V. A. Dzuba, and V. V. Flambaum, Calculation of the hyperfine structure
of Dy, Ho, Cf, and Es, Phys. Rev. A 107, 032805 (2023).
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5.2. ABSTRACT

5.2 Abstract

A recently developed version of the configuration interaction (CI) method for open shells
with a large number of valence electrons has been used to study two heavy atoms, cal-
ifornium (Cf, Z = 98) and einsteinium (Es, Z = 99). Motivated by experimental work
to measure the hyperfine structure (HFS) for these atoms, we perform the calculations
of the magnetic dipole HF'S constants A and electric quadrupole HFS constant B for the
sake of interpretation of the measurements in terms of nuclear magnetic moment p and
electric quadrupole moment (). For verification of our computations, we have also carried
out similar calculations for the lighter homologs dysprosium (Dy, Z = 66 ) and holmium
(Ho, Z = 67 ), whose electronic structures are similar to Cf and Es, respectively. We
have conducted a revision of the nuclear moments of some isotopes of Es leading to an

improved value of the magnetic moment of >3Es [u (**Es) = 4.20(13)pun/].

5.3 INTRODUCTION

The study of atomic properties of heavy actinides has gained growing interest [1H8]. Tran-
sition frequencies and the hyperfine structure (HFS) are being measured. Measuring HFS
is motivated by obtaining data on the nuclear momenta of heavy nuclei. This would ad-
vance our knowledge about the nuclear structure of superheavy nuclei benefiting the search
for the hypothetical stability island. In light of this, we focus on theoretically studying
the hyperfine structure for heavy actinides, californium (Cf, Z = 98 ) and einsteinium
(Es, Z =99 ). Combining the calculations with the measurements would allow for the
extraction of the nuclear magnetic moment p and electric quadrupole moments ) of the

studied isotopes.

HFS constants of some states of odd isotopes of Cf (249Cf,2510f, 253Cf) were recently
measured and nuclear moments p and @@ were extracted using our calculations [8]. This
paper presents a detailed account of these calculations as well as similar calculations for

Es. In the case of Es, there are no theoretical results currently available, whereas several
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experimental papers have been published. Using different empirical techniques, Refs. [1-3]

studied the HFS of Es for three isotopes with nonzero nuclear spins, 223254255 Eg,

Heavy actinides such as Cf and Es are atoms with an open 5f subshell. The number of
electrons on open shells is 12 for Cf and 13 for Es (including the 7s electrons). This presents
a challenge for the calculations. We use the configuration interaction with perturbation
theory (CIPT) [9] method, which has been developed for such systems. To check the
applicability of the method and the expected accuracy of the results we performed similar
calculations for lanthanides dysprosium (Dy, Z = 66 ) and holmium (Ho, Z = 67 ),
whose electronic structures are similar to Cf and Es, respectively. Both Dy and Ho were
extensively studied experimentally and theoretically (see, e.g., Refs. [10-18]). Here, we
compare our results to experimental data, Refs. [10,|16] for Dy and Refs. [16-18] for Ho,

to check the accuracy of the method we use.

54 METHOD OF CALCULATION

5.4.1 Calculation of energy levels

As it was mentioned in the Introduction, the Dy and Cf atoms have 12 valence electrons,
and the Ho and Es atoms have 13 valence electrons. It is well known that as the number of
valence electrons increases, the size of the configuration interaction (CI) matrix increases
dramatically, making the standard CI calculations practically impossible for such systems.
In this work, we use the CIPT method [9] which has been especially developed for such
systems and realized in a FORTRAN code.

In this approach, the size of the CI matrix is reduced by neglecting the off-diagonal matrix
elements between highenergy states and reducing the contribution of these states to the
perturbation-theory-like corrections to the matrix elements between low-energy states.

The size of the resulting CI matrix is equal to the number of low-energy states.

82



5.4. METHOD OF CALCULATION

The CI Hamiltonian can be written as follows,

R Ny R Ny 62
HY =3 A+ o (5.1)
i1 i<j i =l

where ¢ and j enumerate valence electrons and N, is the total number of valence electrons,
e is electron charge, and r is the distance. fAIZHF is the single-electron Hartree-Fock (HF)

Hamiltonian, which has the form

A = coy - Py + (8 — 1)me? + Viuo(ri) + V(). (5.2)

Here, c is the speed of light, «; and 3 are the Dirac matrices, p; is the electron momentum,
m is the electron mass, Viuc(r) is the nuclear potential obtained by integrating the Fermi
distribution of nuclear charge density, and VV=1(r) is the selfconsistent HF potential
obtained for the configuration with one 7s (or 6s ) electron removed from the ground state
configuration which has N electrons. This corresponds to the VN1 approximation [19,20]
which is convenient for generating a single-electron basis. Single-electron basis states are
calculated in the frozen V¥~1 potential, so that they correspond to the atom with one
electron excited from the ground state. External electron wave functions are expressed in

terms of coefficients of expansion over single-determinant basis state functions

N1 N2
\I’(’l“l, c. ,T’NU) = ZXi(I)i(rly ce ,TNU) + ZY}'(I)J'(’IH,. . 'aqu;)' (53)
i=1 j=1

Here, Nj is the number of low-energy basis states, and Ny is the number of high-energy

basis states.

Then the CI matrix equation can be written in a block form,

= E, . (5.4)
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Here, block A corresponds to low-energy states, block D corresponds to high-energy states,
and blocks B and C' correspond to cross terms. Note that since the total CI matrix is
symmetric, we have C' = B’, i.e., ¢;; = bj;. Vectors X and Y contain the coefficients of

expansion of the valence wave function over the single-determinant many-electron basis

functions [see Eq. (5.3))].

Finding Y from the second equation of (5.4) leads to

Y = (B, - D)"'CX. (5.5)

Substituting Y to the first equation of (5.4]) leads to

[A+ B(E,I - D)7'C| X = B,X, (5.6)

where [ is the unit matrix. Then, following Ref. [9] we neglect off-diagonal matrix el-
ements in block D. This leads to a very simple structure of the (E,I — D)_1 matrix,
(Bl — D)i—k1 = 0ir/ (Eq — Ey), where Ej, = <k: ’HCI‘ k:> Matrix elements of the effective
CI matrix have the form

(i HO k) (k| H]j)
Ea _Ek '

(| HTj) = G H )+
k

(5.7)

We see that the standard CI matrix elements between lowenergy states are corrected by
an expression which is very similar to the second-order perturbation theory correction
to the energy. This justifies the name of the method. To calculate this second-order
correction we need to know the energy of the state F, which must come as the result of
the solution of the equation, i.e., it is not known in advance. Therefore, iterations are
needed. We start from any reasonable guess for the energy. For example, it may come
from the solution of the equation with a neglected second-order correction. Note that
the energy-independent numerators of the second-order correction can be calculated only
once, on the first iteration, kept on disk, and reused on every consequent iteration. This

means that only the first iteration takes some time while all other iterations are very fast.
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Table 5.1: Excitation energies (E, cm~!), and g factors for some low states of Dy, and
Ho atoms.

This work NIST [16]
Conf. Term J E g E g
Dy
419652 o7 8 0.000 1.242 0.000 1.2416
419652 7 3933 1.175 4134.2 1.1735
419652 6 7179 1.073 7050.6 1.0716
4195d6s? THe 8 7818 1.347 7565.610 1.35246
4f95d6s> 7 9474 1.353 8519.210 1.336
410652 i 5 9589 0.909 9211.6 0.911
4f95d6s> e 9 10048 1.316 9990.974 1.32
4f95d6s> THe 6 11052 1.417 10088.802 1.36
419652 51 4 11299 0.613 10925.3 0.618
Ho
4111652 4o 15/2 0.00 1.196 0.00 1.1951
4f116s2 13/2 5205 1.107 5419.7
4f105d65> (8,3) 17/2 8344 1.262 8378.91
41054652 15/2 8385 1.280 8427.11
4111652 e 11/2 8501 0.979 8605.2 1.012
41054652 (8,2) 13/2 8989 1.336 9147.08
4f105d65> 19/2 8952 1.231 9741.50
4111652 4o 9/2 10550 0.780 10695.8 0.866

As a rule, less than ten iterations are needed for full convergence. As a result, we have an

energy of the state E, and expansion coefficients X and Y.

5.4.2 Basis states

To solve the CI equations we need many-electron basis states which are constructed from
single-electron states. For single-electron basis states we use the B-spline technique [21,22].
These states are defined as linear combinations of B splines that are eigenstates of the
HF Hamiltonian . B-spline bases provide users with the flexibility to choose a basis
that best meets their study specifications.. In our study, 40B splines of the order nine
are calculated within a box of radius Rpyax = 40ap (where ap represents Bohr’s radius)
and an orbital angular momentum of 0 < | < 4. Fourteen states above the core in each

partial wave are used. With these parameters the basis is sufficiently saturated for the
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low-lying states. Increasing the values of lax, Rmax, as well as the number of B splines,

do not produce any significant change in the results.

The many-electron states are found by making all possible single- and double-electron
excitations from a few reference configurations. One, two, or three configurations, corre-
sponding to the low-lying states of an atom, are considered as reference configurations.
One configuration of the same parity is considered at a time. For each configuration, all
possible values of the projection of the total angular momentum j of the single-electron
states are considered and many-electron states with fixed values of total many-electron

angular momentum J and its projection M are constructed. Usually, we take M = J

5.4.3 Calculation of hyperfine structure

In this section, we mostly follow our previous work on hafnium and rutherfordium [23].
To calculate HFS, we use the time-dependent Hartree-Fock (TDHF) method, which is
equivalent to the well-known random-phase approximation (RPA). The RPA equations

are the following,

(A e) oupe = = (f + Vi) e (5.8)

where f is an operator of an external field (nuclear magnetic dipole or electric quadrupole
fields). Index ¢ in (5.8) numerates states in the core, 1. is a single-electron wave function
of the state c in the core, §. is the correction to this wave function caused by an external

field, and 6Vf

e 1s the correction to the self-consistent relativistic Hartree-Fock (RHF)

potential caused by changing of all core states. Equations (/5.8 are solved self-consistently
for all states in the core. As a result, an effective operator of the interaction of valence

electrons with an external field is constructed as f + 6V . .

86



18

Table 5.2: Hyperfine structure constants A and B (in MHz) for low-lying states of Dy and Ho. Nuclear spin I, nuclear magnetic
moment /(py), and nuclear electric quadrupole moment Q(b) values for the isotopes of the 165:163Dy and '6°Ho are taken from

Ref. [24], gy = /1. The last column presents references to experimental data for A and B.

Isotope This work Experimental results
Nuclear Parameters Conf. Term J A B A B Ref.
161Dy
p=—0480,1 =5/2, Q =2.51 4f1065> 51 8§ —113 1127 —116.231  1091.577 |10
4f10652 7 —125 1057 —126.787  1009.742  [10]
419652 6  —140 991 —139.635  960.889 [10]
4f95d6s>  TH® 8 —88 2256 — — —
4f95d6s> 7 —104 2397 - — -
410652 °r 5 —166 928 —161.971  894.027  [10]
4f95d6s>  TI° 9 —80 2663 — — —
4f95d6s%>  TH® 6  —122 2901 - - -
4f10652 i 4 =216 997 —205.340  961.156 10!
163Dy
p=0.673,1=5/2 Q=265 419652 °T 8 158 1190 162.754  1152.869  [10]
410652 7 176 1116 177.535  1066.430 |10
410652 6 196 1046 — — —

Continued on next page
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Table 5.2 — continued

Isotope This work Experimental results
Nuclear Parameters Conf. Term J A B A B Ref.
4f95d6s%2  TH® 8 123 2381 — — —
425d6s> 7 146 2531 - - -
410652 51 5 233 979 - — -
4f95d6s%  TI° 9 112 2812 — — —
4f95d6s%>  TH® 6 170 3063 — — —
410652 51 4 303 1053 — — -
165Ho
p=417,1=1/2,Q = 3.58 4f16s%2 410 15/2 787  —1943 800.583  —1668.089  [17]
411652 13/2 939 —1668 937.209  —1438.065  [17]
4f1%5d6s* (8,3) 17/2 666 1085 776.4(4.5)  608(300)  [18]
41054652 15/2 763 1127 783.0(4.5)  801(300)  [18]
411652 4 11/2 1061 —1315 1035.140  —1052.556  [17]
4f105d6s* (8,3) 13/2 879 1829 916.6(0.5)  2668(7)  [18]
41054652 19/2 617 1650 745.1(1.4)  1747(78) |18
4f16s%2 410 9/2 1279 1174 1137.700  —494.482  [17]
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5.4. METHOD OF CALCULATION

Table 5.3: Experimental and theoretical values of the first ionization potential IP; (in
-1
cm™ ).

State 1P,
Atom Initial Final Present Expt. Ref.
Dy 4f%0s? Iy 4fs (8,1)172 46658 47901.76(5) [25]
Ho 4f'6s® 17, 4f'6s (125,;)3 47819 48567(5) 26]
Ct  5f197s* Py 5f'07s Sligp 50821 50663(2) 27]
Bs  5f17s* Iy, 5f1Ts PIg 51763 51358(2) 27]

51364.58(14)stat (50)sys  [28]

The energy shift of a many-electron state a is given by

M

dea = (al Y (f + Vi) la). (5.9)

i=1

Here, M is the number of valence electrons.

When the wave function for the valence electrons comes as a solution of Eq. (5.6)), Eq. (5.9)

o =Y 1w (0| H"5|D;), (5.10)
ij

where HMs = ZM (f + 0V, Core )i, and x;,z; are vector components of X (the same is
true for y;, z; below). For better accuracy of the results, the full expansion might
be used. Then it is convenient to introduce a new vector Z, which contains both X and
Y,Z = {X,Y}. Note that the solution of (5.6) is normalized by the condition 3, #? = 1.
The normalization condition for the total wave function 1) is different, >°; 22+ 2 yj =
> 22 = 1. Therefore, when X is found from , and Y is found from (5.5)), both vectors
should be renormalized. Then the HFS matrix element is given by the expression, which

is similar to ([5.10) but has many more terms,

Sea =Y zizj (0| H"S|D;). (5.11)

ij
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Energy shift (5.9) is used to calculate HFS constants A and B using textbook formulas

g0 A
Ay = c , 5.12
VIa(Ja+1)(2Js + 1) (5:12)
and
Jo(2J, — 1)

B, = —2Q5¢P) b . 5.13

Qo B T 3) (2 D) (Ja 1) (5.13)
Here, 56((1A) is the energy shift 1’ caused by the interaction of atomic electrons with the

nuclear magnetic moment u, gy = /I, and I is nuclear spin; 56513) is the energy shift 1D

caused by the interaction of atomic electrons with the nuclear electric quadrupole moment

Q [Q in (5.13) is measured in barns].

5.5 ENERGY LEVELS AND HFS OF DYSPROSIUM AND
HOLMIUM

For the purpose of testing the accuracy of the method, we start calculating the energy
levels for some low-lying states of Dy and Ho. The results are shown in Table As can
be seen, our results are consistent with the experimental results compiled in Ref. [16] of
respective atomic systems. The difference between theoretical calculations and measure-
ments is within a few hundred cm~!. Calculated and experimental Landé g factors are also
presented. A comparison of Landé g factors calculated with nonrelativistic expressions is

helpful for identifying state labels:

J(J+1) = L(L+1)+8(S+1)
2J(J + 1)

The total orbital momentum L, and total spin S in cannot come from relativistic
calculations. Instead, we choose their values from the condition that formula (5.14) gives
values very close to the calculated g factors. This allows us to link the state to the
nonrelativistic notation 2°*1L ;. Here, J is the total angular momentum (J = L +S). A

good agreement is also observed between current calculations and experimental g factors
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of Dy and Ho whenever experimental data are available. In order to identify the states
correctly, it is essential to take this into consideration. An exception stands out in state
41652 4 g /2 of Ho, where the theory differs significantly from the experiment. Based on
the NIST database |16] of the Ho spectrum, we can observe that there are multiple states
with the same parity and total angular momentum J, separated only by small energy
intervals and dominated by different electron configurations. Due to this vigorous mixing,

the calculations of the g factor become unstable.

The hyperfine structures of the ground states and some low-lying states of Dy and Ho
have also been calculated. The Dy atom has two stable isotopes, 1'Dy and 3Dy, and
the Ho atom has one stable isotope, "Ho. The results of calculations and corresponding
nuclear parameters are presented in Table[5.2] One can see that we have good agreement
between theory and experiment for the magnetic dipole constant A and electric quadrupole
constant B for most states of Dy and Ho. The difference between theory and experiment is
within 3% for the A constant of Dy and Ho, within 4% for the B constants of Dy and ~20%
for the B constant of Ho. A similar agreement between theory and experiment was found
earlier for the HFS constants of Er [7]. Two states of Ho present an exception. These are
the 4£105d65s> (8, %)13/2 state, and the 4f116s> 413/2 state. Here, the difference between
theory and experiment for electric quadrupole HF'S constant B is significant. In particular,
it is 138% for the 4f1652 4I9°/2 state. This is the same state which shows poor accuracy for
the g factor, which indicates that strong configuration mixing affects the HFS as well. It
should be mentioned that an earlier study performed using the multiconfiguration Dirac-
Fock (MCDF) method also found that this state had a low level of accuracy with a 117%

deviation from the experimental result |13].

Note that our investigations of testing the accuracy of using the CIPT method on the Er
atomic system, which has a similar electronic structure, were previously performed [7].
All the above atomic properties, energies, g factors, and HFS constants A and B for the
stable isotope with nonzero spin, '“Er, have been calculated. There has been a good
agreement between measurements and our results (see Ref. [7], Tables 1 and 6). In the

end, we expect that the results for Cf and Es will be accurate as well.
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Table 5.4: Calculated hyperfine structure constants A and B (in MHz) for the ground
states of Dy, Ho, Cf and Es atoms.

Atom Conf. Term J A B
Dy 410652 °7 8 587 x g 449 x Q
Ho 4111652 4o 15/2 661 x g; —543 X Q
Cf 5£107s2 °T 8 608 x g 477 x Q
Es 51752 are 15/2 681 x gy —818 x Q

5.6 IONIZATION POTENTIALS

Calculating the ionization potential (IP) is a good way to test the theoretical approach for
the ground state. The IP is obtained as a difference between the ground state energies of
the neutral atom and the ion. The CIPT method, which we use in the present calculations,
has a feature of having good accuracy for low-lying states, and it decreases while going
up on the energy scale. The best accuracy is expected for the ground state. On the other
hand, having HFS for the ground state is sufficient to extract nuclear parameters p and
Q. Therefore, we calculate the first ionization potential (IP1) for all atoms considered in
the present work. We calculate ground state energies of neutral atoms and corresponding
ions in the same VN1 potential and the same single-electron basis. This ensures exact
cancellation of the energies associated with core electrons. The results are presented in
Table and compared with available experimental data. As can be seen from the table

the accuracy of the results is 2.7% for Dy, 1.6% for Ho, 0.3% for Cf, and 0.8% for Es.

5.7 RESULTS FOR HFS

In Table we present the results of our calculations of the HEF'S constants of the ground
states of Dy, Ho, Cf, and Es. We have calculated both magnetic dipole HF'S constant A
and electric quadrupole HFS constant B, which can be used for the extraction of nuclear
moments for any isotope with nonzero spin. For a better understanding of the accuracy of
the calculations for heavy actinides, it is instructive to compare electron structure factors

for the HFS constants with those of lighter atoms, Dy, Ho, and Er. The situation is
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5.7. RESULTS FOR HFS

different for the HF'S constants A and B. The electron structure factor for the magnetic
dipole constant A is almost the same for heavy actinides and their lighter analogs; it
varies within 3%. The electron structure factors for the HFS constant B are also similar,
although the variation is larger. It goes from about 20% for the Dy, Cf pair to 50% for
the Ho, Es pair. This justifies using lighter analogs of heavy actinides for the estimation
of the uncertainty of the calculations. We assume 3% uncertainty for the HFS constant
A of all considered atoms and 16% uncertainty for the HF'S constant B (as the difference
between theory and experiment for the ground state of Ho). This latter assumption is
rather conservative. The difference between theory and experiment for the HF'S constant

B of the ground state of Dy is about 3% and it is about 10% for the ground state of Er [7].

This high level of accuracy is a bit surprising for atoms with open shells. Therefore,
it is instructive to see how dominating contributions are formed. First, we note that
according to numerical tests, configuration mixing gives a relatively small contribution
to the HFS constants. About 90% or more comes from leading configurations which is
4f"6s% for Dy and Ho and 5f"7s% for Cf and Es (n = 10,11). In these configurations
s electrons form a closed shell and do not contribute to the HFS. Therefore, all of the
contribution comes from f electrons. It is well known that in the case of excited valence
f states (e.g., 4f state of Cs or 5f state of Fr) the HF value of the energy shift due to
the HF'S operator (4f]| f |4f) is small and the dominating contribution comes from the core

4f > [see Eq. ] The situation is different in atoms

polarization correction <4 f ‘M/C{)re
considered in the present work. The f electron states are inside the core, localized at
about the same distances as other states with the same principal quantum number, i.e., it
is not even the outermost shell. For example, (4f|r|4f) < lap for Dy, Ho, and Er, while
(4f|r|af) ~20ap for Cs. Being inside the core, f states penetrate to short distances near
the nucleus, making a large value of the HF matrix element (4f|f|4f). In contrast, the

core polarization correction <4 f ’5VC{;re

4f > is small (~1%). In the end, zeroorder matrix
elements are large while core polarization and configuration mixing corrections are small.

This is the key to the high accuracy of the results.
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Table 5.5: Hyperfine structure constants A and B (in MHz) of the ground state of Es. Nuclear spin I, nuclear magnetic moment
p(pn), and nuclear electric quadrupole moment Q(b) values for the isotopes of the 253Es are taken from Ref. [24], while 2*Es and
255Es parameters are taken from Ref. [3]. g; = p/I. The last column presents references for experimental data on A and B. The
values of p and @ obtained in this work are extracted from comparison of experimental and calculated HFS constants assuming
3% uncertainty in calculation of A and 16% uncertainty in calculation of B.

Isotope This work Experimental results
Nuclear Parameters Conf. Term A B I Q A B Ref.
253ES
p=41(7),I =7/2,Q = 6.7(8) 5fUTs® MY, 798 5481 4.12(15) 4.8(1.0) 802(18) —3916(550) 3]
4.20(13)  5.3(8) 817.153(7) —4316.254(76)  [1]
254ES
pw=3.42(7),1 = 7,Q = 9.6(1.2) 5fNTs? A, 333 7853 3.48(10) 7.6(1.3) 339(4) —6200(300) [3]
255ES
p=4.14(10), = 7/2,Q = 5.1(1.7) 5f"7s* *I7., 806 —4172 4.23(26) 3.7(1.8) 824(45)  —3001(1400) |3

S ANV ‘4D

‘OH ‘Ad 40 HYNILONYLS ANITAYAJAH dHL A0 NOLLVINDIVD "¢ HALAVHD



5.8. CONCLUSIONS

Table shows the results and analysis of the HFS for three isotopes of Es (?*3725°Eg).
This table serves two purposes. First, this is another confirmation of the accuracy of
the calculations. However, to compare the calculations to the experiment we need to
use nuclear moments, which are known to have fairly poor accuracy (see the table). For
example, the uncertainty for the magnetic moment of the 2°® Es nucleus is 17%. On the
other hand, our estimated accuracy for the HFS constant A is 3%. This means that we
can improve the accuracy of the nuclear moments by extracting them from a comparison
of the experimental data with our calculations. The results are presented in the table.
We see that real improvement is obtained for p (253Es) only. For other nuclear moments,
the uncertainties are similar but the central points are shifted. New and old values are

consistent when error bars are taken into account.

5.8 CONCLUSIONS

Magnetic dipole and electric quadrupole HEFS constants A and B were calculated for the
ground states of heavy actinides Cf and Es. Similar calculations were performed for the
lighter analogs of these atoms, Dy and Ho. To establish the accuracy of the results, the
comparison between theory and experiment was done for HF'S constants, energy levels, g
factors, and the ionization potential, everywhere where the experimental data are available.
We found an uncertainty of 3% for the HFS constant A and about 16% uncertainty for the
HF'S constant B. Using the calculated HFS constants of those heavy elements considered,
nuclear magnetic and electric quadrupole moments can be extracted from the measurement

data.
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Chapter 6

Theoretical study of electronic

structure of erbium and fermium

6.1 Overview

In this chapter, we study several atomic properties of the superheavy element Fm. Among
them, we calculate the HFS to help in the interpretation of experimental data. We also
calculate IS, which can be used to extract information on nuclear deformation and change
of nuclear RMS radius from the IS measurements. As a guide for accuracy, we also

performed the same calculations on Er, which has a similar electronic structure.
This study has been published in this paper:

S. O. Allehabi, J. Li, V. A. Dzuba, and V. V. Flambauma, Theoretical study of electronic
structure of erbium and fermium, J. Quant. Spectrosc. Radiat. Transfer 253, 107137
(2020).

I presented this work at an international conference:

Theoretical study of electronic structure of erbium (Er), fermium (Fm), and nobelium
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(No), ATP Summer Meeting, Queensland University of Technology, Brisbane,
Australia. December (2021).

6.2 Abstract

We use a recently developed version of the configuration method for open shells to study
electronic structure of erbium and fermium atoms. We calculate excitation energies of odd
states connected to the even ground state by electric dipole transitions, the corresponding
transition rates, isotope shift, hyperfine structure, ionization potentials and static scalar
polarizabilities. We argue that measuring isotope shift for several transitions can be used
to study nuclear deformation in even-even nuclei. This is important for testing nuclear
theory and for searching for the hypothetical island of stability. Since erbium and fermium
have similar electronic structures, calculations for erbium serve as a guide to the accuracy

of the calculations.

6.3 Introduction

Fermium is one of the two heaviest atoms for which experimental spectroscopic data
are available. It was intensively studied in the last two decades both theoretically and
experimentally [1H8]. Frequencies of seven electric dipole transitions from the ground
state to excited odd states have been measured [5,6], and the first ionization potential
has been determined [7,|8]. The measurements were led by theoretical predictions made
with the use of the multi-configurational Dirac-Fock method (MCDF) [5]. It is clear from
comparing these data to the spectrum of the erbium atom, which is a lighter analog of
Fm, that a large number of Fm states still escaped experimental detection and theoretical
determination. Further study of Fm is needed to understand its electronic structure and

its difference from Er caused by interplay between correlation and relativistic effects.

The only other atom, heavier than Fm for which spectroscopic data are available is no-
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belium. Frequency of just one electric dipole transition between the ground state singlet
752 1Sy and the excited odd-parity singlet 7s7p 'P$ has been measured for three isotopes,
252,253,254N0 [9,/10]. These measurements led also to determinations of the isotope shifts
(IS) between these isotopes and the hyperfine structure (hfs) of the 2°*No isotope. The
study of hfs combined with atomic calculations |[11] allows extraction of the values of
nuclear magnetic dipole and electric quadrupole moments. The large value of the electric
quadrupole moment indicates a strong nuclear deformation in the 293No isotope. The
information about nuclear deformation is important in search of the island of stability:
metastable nuclei are expected to be spherically symmetric. The use of hfs to study nu-
clear deformation works only for odd isotopes. Even-even isotopes as a rule have zero
nuclear spin, and thus no hfs of atomic levels. It is worth mentioning that nuclear theory

is more complicated and less accurate for odd isotopes than for even-even isotopes [15].

In our previous works we suggested to use IS measurements to study nuclear deformation in
even-even isotopes [12,/13]. Similar to how the change of nuclear root-mean square (RMS)
radius (6(r?)) can be obtained from the measurements of IS in an atomic transition, the
change of both, (r?) and the parameter of nuclear quadrupole deformation 3 can be found
from IS measurements made for at least two atomic transitions. This approach can be
used for fermium as well. There are 20 known Fm isotopes from 2!Fm to 260Fm [14]. All
even-even isotopes in this range are strongly deformed [15], and the parameter [ varies
significantly from isotope to isotope. The maximum change is between 2°Fm (3 = 0.265)
and ?**Fm or %Fm (8 = 0.296), i.e. ABmax = 0.031. Such a large change is relatively
easy to detect. In this work we calculate parameters of the sensitivity of IS to the change

in nuclear parameters, (r?) and .

The ground state of Fm is 512752 3Hg. The seven odd states for which the measurements
were done all belong to the same configuration 5f127s7p [5,66]. However, it is well known
that er- bium, which is a lighter analog of Fm, has a very rich spectrum, with most of the
known odd states belonging to two configura- tions, 4f126s6p and 4f'16s25d [16]. It is
natural to expect similar features in Fm. In this work we perform similar calculations for

both atoms. Calculations for Er mostly serve as a guide to the accuracy of calculations.
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Calculations for Fm demonstrate that both atoms have many properties in common. Some
differences in the spectra can be explained by stronger relativistic effects in Fm. We
calculate energy separations for the odd excited states connected to the ground state
by electric dipole transitions, and the corresponding transition rates to identify stronger
transitions easiest to detect. Our calculations are compared with the measurements and

previous MCDF calculations.

6.4 Method of calculation

We use the recently developed configuration interaction with perturbation theory (CIPT)
method [17,/18] to perform the calculations. The method was developed specifically for
atoms with open shells that have a large number of electrons in open shells. Correlations
between these electrons are treated using the configuration interaction technique. A set of
single-electron basis states used for these calculations forms the valence space. The CIPT
method was successfully used for atoms with open f [19,20], d [22] and p [21] shells. The
maximum number of electrons in the valence space was sixteen ( Yb and No [10}/11,/19]).
The main idea of the method is neglecting off-diagonal matrix elements between highenergy
states in the CI matrix. The idea is used in several similar approaches [23-25]. However,
in the CIPT method one more step is made, the whole CI matrix is reduced to the effective
CI matrix of a much smaller size, in which matrix elements between lowlying states ¢ and
j are corrected by the expression similar to the second-order perturbative correction to

the energy:

(i H ) (k| T 5)

GIHE ) = ) + 30 T

k

(6.1)

where FE refers to the energy of the state of interest, and Ej denotes the diagonal matrix
element for high-energy states, Fj = </<: ‘H cr ‘ k> Summation in || goes over all high-
energy states. The ordering of the states on the energy scale is done by the values of E}.

This ordering can be justified by moving more states from the perturbative term (second

104



6.4. METHOD OF CALCULATION

term in (6.1])) to the effective Cl matrix. The energies E and wave functions X are found

by solving the matrix eigenvalue problem

(HC" - BI) X =0, (6.2)

with H¢! matrix given by (6.1)); where I is the unit matrix. Reducing the matrix size by
(6.1) does not affect the resulting energies as long as the energy FE is the same in (6.1))
and (6.2)). Since the energy is not known in advance, iterations over energy are needed.

Usually five to ten iterations are enough for full convergence.

We use the B-spline technique [26] to build a single-electron basis set. These states are
constructed as linear combinations of B-splines that are eigenstates of the relativistic
Hartree-Fock (HF) Hamiltonian with the VN~ potential. The self-consistent HF proce-
dure is first done for an atom with one electron removed. For instance, the ground state of
Er belongs to the [Xe]4f26s2 configuration. The HF procedure is done for the [Xe|4f1%6s
configuration, and basis states for valence electrons are calculated in the resulting VN1
potential. Similarly, the [Rn]5f!27s configuration is used in the HF calculations for Fm.
We use forty B-splines confined to a sphere of the radius Ry.x = 40ap. Fourteen out of
forty lowestenergy eigenstates of the HF Hamiltonian are used in the CIPT calculations.
Higher-lying states give only negligible contributions due to large energy denominators
in . Many-electron basis states for the CI calculations are constructed by exciting
one or two electrons from initial reference valence configurations. For example, to calcu-
late even states of Er, we use the 412652 configuration as a reference. All states of this
configuration are used to construct the effective CI matrix. All states obtained by single
and double excitations are used in the perturbative term, which is the last term in .
For odd states, we use four reference configurations 4f'26s6p, 4f'26s7p,4f116s25d and
4f126s5f. All states from these three configurations go to the effective CI matrix while
all states obtained by exciting electrons from these configurations go to the perturba-
tive term. Similarly for Fm, the reference configurations are 5f127s? for even states and

5f127sTp, 5f27s8p, 5f17s%6d and 5f27s6f for odd states.
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The calculations are fully relativistic. Our single-electron operator in the HF and CI
Hamiltonians comes from the Dirac equation. Moreover, the Breit and quantum electro-

dynamic corrections are included similar to what was done in our previous works [19-22].

To calculate amplitudes of electric dipole transitions and hyperfine structure, we need to
include an external field in the equations. This is the electric field of a photon in case of
electric dipole transitions or nuclear magnetic or quadrupole electric field in case of hfs.
We use the time-dependent HartreeFock method [27] (equivalent to the random-phase
approximation (RPA)) to do this. The RPA equations are first solved for the atom in the

same VN~! approximation as in the HF calculations. The RPA equations

(HF = &) oy = — (d+aVN1) v (6.3)

are iterated for all atomic states ¢ in the core to find the correction to the atomic potential

SVN=1 caused by the effect of an external field. Transition amplitudes are calculated as

Agp = (a|d + 5VN)p), (6.4)

while hfs constants are found from the diagonal matrix elements. Here |a) and |b) are
many-electron states obtained in the Cl calculations d is the electric dipole operator
(we use the length form, d=—e >, Tn ) in case of electric dipole transitions or operator of
nuclear magnetic dipole or electric quadrupole field in case of hfs. The rate of spontaneous

emission of a photon in the transition from state b to state a is given by (in atomic units)

4

Tab = g (awab)3

Az,
2Jp + 1’

(6.5)

where « is the fine structure constant, wyp is the frequency of the transition.

The results for energy levels and transition rates for Er are presented in Table [6.1] and

compared to experiment. We see that the difference between theory and experiment for
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the energies is about a few hundred cm~! for the states of the 4 f!26s6p configuration and
up to 3000 cm ™! for 4f116s25d. Similar accuracy can be expected for Fm. Note that the
difference in the spectra of Er and Fm mostly comes from relativistic effects, while the
main source of numerical uncertainty is the incomplete treatment of correlations. Since Er
and Fm have similar electronic structure, it is natural to assume that the correlations in
both atoms are also similar. The same assumption worked well in many earlier calculations

(see, e.g. [20-22]).

A comparison of transition rates with available experimental data (see Table shows
that the accuracy of calculations is significantly lower than for the energies. Most probably
this is due to the fact that the high-energy states (those participating in the last term
in are not included into the resulting wave function in the current version of the
computer code. In other words, perturbation theory correction is considered to correct
the energies but not wave functions. Wave functions are still constructed from the reference
configurations only (those included in the first part of the effective CI Hamiltonian (6.1)).
In principle, it is possible to correct the wave function, too. This might be a subject for

future work.

Table also presents the values of calculated and experimental Landé g-factors. The
g-factors are useful for identification of states. In some cases it is useful to compare the

calculated g-factors to a non-relativistic expression

JJ+1) = L(L+1)+S(S+1)
2J(J+1)

gvgp =1+ : (6.6)
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Table 6.1: Excitation energies (E, cm™!), transition amplitudes (A, a.u.), electric dipole transition rates to the ground state
(Tap, s~1), and g-factors for some low odd states of Er atom with J= 5,6,7. The discrepancy between the NIST and present
energies is given by A = ENiST - Epresent-
E Aap Tap g

N Conf. Term J Present NIST A Present Present Expt Present NIST

1 412652 3Hg 6 0 0 0 0 0 0 1.1651 1.16381
2 Af'N(M95)9)5d3,96s* (15/2,3/2)° 6 4719 7177 2458 0.0012 2.24-10 1.3067  1.302

3 1(41"15/2)5d3/265 (15/2,3/2)° 7 5455 7697 2242 0.0034 2.54-1079! 1.2623  1.266

4 AN (1°15,)5d5 068 (15/2,5/2)° 7 8072 11,888 3816 0.2788 5.52-101%3 1.1477  1.153

5 Af'1(M95,9)5d5,96s* (15/2,5/2)° 5 8129 11,401 3272 -0.1370 1.85-1073 1.2030  1.205

6 4f'1(1%5/9)5d5,96s* (15/2,5/2)° 6 8572 11,800 3228 0.3254 1.04-107%4 1.1779  1.190

7 A (U1°13)9)5d3068% (13/2,3/2)° 5 13,476 15,185 1709 -0.3621 5.91-101%4 1.1914  1.160

8 Af'1(Y%5,9)5d3/96s* (13/2,3/2)° 7 14,214 15847 1633 -0.5442 1.15-107° 1.0686  1.070

9 Af'1(195,5)5d3/56s* (13/2,3/2)° 6 14,265 16,070 1805 0.9524 4.10-107%° (9.240.05)-10"%°  1.1497  1.200

10 4f"(*1%15)9)5d5968% (13/2,5/2)° 7 15233 17,796 2563 0.4817 1.11.107% 1.1184  1.110

11 4f"(*1%13)9)5d5 265 (13/2,5/2)° 6 15278 17,456 2178 -0.1008 5.64-10703 1.0650  1.070

12 4f'1(1°15/9)5d5,06s* (13/2,5/2)° 5 15,335 17,029 1694 0.0355 8.34-10102 1.1042  1.150

13 4f12(3Hg)6s6p(3PY) (6,0)° 6 16,499 16,321 -178 -0.5998 2.52-10105 1.2860  1.220

14 4f'1 (41991 /9)5d3,06s (11/2,3/2)° 7 16,697 18,774 2077 -0.2504 3.94-10704 0.9480  0.965

Continued on next page
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Table 6.1 — continued

E Ay Tap g
N Conlf. Term J Present NIST A  Present Present Expt. Present NIST
15 4f'2(3Hg)656p(3P9) (6,1)° 6 17,131 17,074 -57 1.1178 9.78.1010° 1.0369  1.070
16 4f2(3Hg)656p(3P9) (6,1)° 7 17,316 17,157 -159 1.6462 1.90-107¢ (1.1740.06)-107%¢ 1.1879  1.195
17 4114191 15)5d;3 065> (11/2,3/2)° 6 17,383 19,508 2125 0.0816 5.45-10703 0.9874  0.960
18 4f'2(3Hg)656p(3P9) (6,1)° 5 17,425 17,348 -77  1.3160 1.69-10196 (8.440.04)-107%5 1.1685 1.175
19 4f11 (195 /9)5d306s (11/2,3/2)° 5 18,021 19,563 1542 0.1200 1.55-107% 0.9687  0.990
20 4f1 (1% 9)5d5068% (11/2,5/2)° 7 18962 21,168 2206 0.6728 4.16-107% 1.0557  1.065
21 4f'2(3Hg)6s6p(3P9) (6,2)° 7 18,987 19,125 138 0.0613 3.47-10193 1.2448  1.235
22 4f12(3H4)656p(3P3) (6,2)° 6 19,164 19,327 163 -1.0401 1.19-1079¢ 1.0408  1.180
23 4f'2(3H)6s6p(3PY) (6,2)° 5 19,203 19,201 -2 -0.6045 4.76-10%05 1.0464  1.060
24 411 (41°)5d6s2 0 6 19,304 20,738 1434 -0.3159 1.12.10%9 0.9509  0.855
25 Af'H(1%9)5d;5,06s7 (11/2,5/2)° 5 19,435 21,393 1958 -0.5741 4.45-1070 0.9631  1.005
26 Af" (1% 0)5d5068% (11/2,5/2)° 6 19,628 21,702 2074 -1.2573 1.86-107%¢  (7.1+0.4)-107°®  1.0318  1.055
27 411 (41°)5d6s2 0 5 19,926 20,917 991  0.4380 2.79-1019° 0.9062  0.980
28  4f'1(1F°)5d6s? 0 6 21,348 22,584 1236 1.5116 3.46:1079 (2.5540.13)-107%% 1.0072  1.130
29 411 (41°)5d6s2 0 5 21,843 22,673 830 1.9920 7.61-107% (5.5240.28)-107% 1.0235  1.040
30 411 (41°)5d6s2 ° 7 22566 23,081 515 0.7092 7.80-101% 1.0575  1.010
31 4f2(3F)6s6p(*P°) 0 5 23,237 22,124 -1113 -0.2492 1.43.1079° 1.1832  1.285

Continued on next page

NOILVTINOTVD 40 AOHLHAN 79



01T

Table 6.1 — continued

E Aap Tap g
N Conf. Term J Present NIST A Present Present Expt. Present NIST
32 4f12(3H)6s6p 0 5 23422 23447 25 -0.5999 8.51-1079° 1.0940  1.080
33 4f12(3F)6s6p(3P°) ° 5 23801 23856 55 3.0144 2.25-107°7  (6.640.3)-101%6  1.0578  1.140
34 4f12(3H)6s6p ° 5 23872 23885 13  4.7735 5.70-10797 1.0665  1.100
35 4f12(3F)6s6p(3P°) 0 6 24,107 23,831 -276 -1.6371 5.85-10+06 1.0939  1.250
36 411 (41°)5d6s2 ° 6 24,393 24457 64 -3.7556 3.19-10197 (3.26+1.6)-107°7  1.0911  1.050
37 4f12(3H)656p 0 5 24,587 24,083 -504 -5.1389 7.22.10797  (10.245.)-107°7  1.1254  1.128
38 4f2(3H)6s6p(3P°) 0 6 24,674 24,246 -428 -0.2660 1.66-1079° 1.2273  1.085
39 0 5 24,791 25364 573 -3.6033 3.64-10797 1.1948  1.180
40  4f11(*F°)5d6s? 0 6 24,816 25393 577 -7.0787 1.19-101%% (3.1941.6)-107°7 1.1267 1.075
41 4f12(3H)656p 0 7 24,845 24943 98 10.6390 2.34-107%® (1.85+10.)-10%®  1.1458  1.160
42 0 7 25379 25159 -220 -4.7652 5.01-10*°7 (4.0342.1)-10*°7 1.1613  1.170
43 4f12(3H)6s6p ° 6 25783 25880 97 -2.0255 1.09-10797  (1.2246.)-101%®  1.1534  1.150
44 4f12(3H)6s6p(3P°) 0 5 25888 26,199 311 -0.1108 3.92.107% 1.0683  1.045
45 411 (41°)5d6s2 0 5 26,202 25163 -1039 4.1159 5.61-107°97 (3.76+£1.9)-107°7  1.0100 1.175
46 0 7 26,874 27,231 357 -0.4816 6.07-107% 1.1318  1.135

Refs. [16] Ref. [28]
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This expression is convenient to use in a non-relativistic limit when total orbital momentum
L and total spin S are good quantum numbers (J is total angular momentum, J = L+ S).
This is not the case for both Er and Fm. Note however, that non-relativistic labelling of
the states can be used at least in principle in a relativistic case, too. It can be done by
expanding a relativistic wave function over a non-relativistic basis and taking the values
of L and S that correspond to the largest term in the expansion. This was done in
previous calculations for Fm [5]. Using their notations and formula and comparing
the obtained values with our calculated g-factors helps to link the results of our calculations

to those of Ref. [5].

6.5 Results

The results for Fm are presented in Table As expected, the spectrum of Fm is very
similar to Er. There are some differences, mostly caused by relativistic effects, which are
expected to be about two times larger in Fm than in Er. To understand the difference,
we compare the outermost single-electron 7s, 7p and 6d orbitals of Fm to the 6s,6p and

5d orbitals of Er. The orbitals have a form

sy = L[ TOm) ) 61
iag(r)Qy, (n)
Here f(r) and g(r) are the upper and lower radial components of the wave function,
n =r/r, ais the fine structure constant, [ = [ — 2j, Qjim(n) is a spherical spinor. Fig.|6.1
shows the upper components f(r) of the Er and Fm orbitals. Stronger relativistic effects of
Fm move the 7s and 7p; /o orbitals closer to the nucleus than similar 6s and 6p; /5 orbitals
in Er. This is because relativistic effects are stronger at short distances from the nucleus,
where densities of the s and p;/y states are not negligible. On these distances relativistic
effects associated with the Dirac equation act as an attraction to the nucleus. In contrast,
the densities of the p3/5, d3/ and ds/, states are small near the nucleus and relativistic

effects manifest themselves via exchange interaction with the s and p;/, orbitals of the

111



CHAPTER 6. THEORETICAL STUDY OF ELECTRONIC STRUCTURE OF
ERBIUM AND FERMIUM

atomic core. Therefore, the 7ps/y,6d3/5 and 6ds/, orbitals of Fm are farther from the
nucleus than the corresponding orbitals of Er. The trend is further illustrated by the data
in Table [6.3] which presents single-electron HF energies of the considered states, including
also the 4f and 5f states. Note that both Fig. and Table show that the difference
between Er and Fm is relatively small. This means that the spectra of the two atoms
should be similar and that numerical uncertainty in calculated data for Fm is similar to

that of Er.

Table [6.2] shows the calculated odd-parity states of Fm, which are connected to the ground
state via electric dipole transitions. The corresponding transition rates are also presented
to indicate which transitions might be easier to observe. There is good agreement with
available experimental data and MCDF calculations [5,6]. However, it is clear that a large

number of states were missed in previous studies.

Table also presents calculated values of the Landé g-factors. They are used to generate

the state labels by comparing the calculated g-factors to the non-relativistic expression

(6.6) (see explanation below formula (6.6)).

Comparison of the data in Tables[6.I]and [6.2]indicates that the spectra of the two atoms are
very similar indeed. There are some differences, which should be attributed to relativistic
effects. E.g., the gap between the ground and first excited states is larger in Fm than in
Er. Also, the spread of energies within one configuration is larger in Fm than in Er. The

latter is most probably due to larger fine structure of p,d and f states.
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Table 6.2: Excitation energies (E, cm_l), transition amplitudes (Aqp, a.u. ), electric dipole transition rates to the ground state
(T, sfl), and g-factors for some low odd states of Fm atom with J = 5,6,7. The difference between the Expt. and present

energies is given by A = Frypt. - Epresent. J* stands for the total angular momentum and parity.

E Agp T g
N Conf. JP  Present MCDF Expt. A Present Present MCDF Expt. Present
1 512752 6t 0 3Hg 0 0 0 0 0 0 0 1.1619
2 5f17s%6d 6~ 18,915 >13000 -0.3124 1.0283-10° 1.2880
3 5f%7s7p 67 19,012 1.3588  1.9756-106 1.2594
4 5f17s%6d 7 19,808 0.3820 1.5304-10° 1.2378
5 5f27s7p 6~ 20,077 3.0391 1.1638-107 1.0843
6 5f27s7p 7T 20,399 3.8242 1.6751-107 1.1921
7 5f27s7p 57 20,711 -3.0248 1.4957-107 1.1527
8 5fU7s%6d 5 23,175 0.1828  7.6499-10* 1.1747
9 5f17s%6d 6~ 23,761 -1.1413  2.7206-10° 1.1635
10 5f17s%6d 7 23,858 -1.0693 2.0954-10° 1.1527
11 5f127s7p 5= 24,294 -0.9523 2.3928-106 1.2003
12 5f127s7p 7 25,202 0.0250 1.3486-10° 1.2351
13 5f127s7p 67 25442 513 25,226 25,099.840.2 -342 -1.3421 4.6186-10° 1.89-10° (3.440.8)-105 1.1861
14 5f27s7p 5= 25494 5GZ 25471 25111.840.2 -382 -0.9201 2.5808-10% 1.28-10% (3.540.7)-10° 1.1204

Continued on next page
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Table 6.2 — continued

E Aap T g
N Conf. JP  Present MCDF Expt. A Present  Present MCDF Expt. Present
15 5f127s7p 5= 28,520 3G¢ 27,633 27,389+1.5 -1131 -5.1793 1.1451-10% 1.98-108 1.2120
16 5f127s7p 6~ 28,662 3Hg 27,394 27,466+1.5 -1196 3.0233 3.3511-107 2.43-108  >2.9-106 1.2485
17 5f27s7p 57 28,690 28,540  28,185+1.5 -505 6.0863 1.6097-10% 2.82.10° 1.2029
18 5f127s7p 6= 28,995 28,377+1.5 -618 7.8270 2.3251-10% 1.1744
19 5f127s7p 77 29,348 319 27,802  28391+1.5  -957 9.7202 3.2227-10% 3.67-108  >1.1-107 1.1455
20 5f17s%6d 5= 30,236 29,359 -0.0602 1.8429-10* 3.58-107 1.1338
21 5f17s%6d 6~ 30,943 -0.9144 3.8572-108 1.0814
22 5f17s26d 5~ 31,953 0.2406 3.4736-10° 1.1369
23 5f127s7p 57 32,200 0.4368 1.1719-10° 1.1124
24 5f127s7p 57 32,239 -0.1187 8.6814-10% 1.0473
25 5f17s%6d 6~ 32,583 0.4648 1.1635-10° 1.1403
26 5f17s%6d 7~ 32,693 -0.9598 4.3436-10° 1.0969
27 5f127s7p 5 33,093 0.0298 5.9416-10° 1.0494
28 5f17s%6d 7 33,328 0.7106  2.5223-10° 1.0942
29 5f17s26d 5~ 33,575 0.0410 1.1680-10* 1.1448
30 5f27s7p 67 33,656 0.3889  8.9755-10° 1.0886
31 5f17s%6d 6~ 33,750 0.8209 4.0337-10° 1.0760

Continued on next page
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Table 6.2 — continued

E Aap Tap g
N Conf. JP  Present MCDF Expt. A Present  Present MCDF Expt. Present
32 5f17s%6d 6~ 35,020 -1.5562  1.6194-107 1.0968
33 5f17s%6d 7 35,106 1.7151  1.7174-107 1.0834
34 5f17s%6d 5= 35,442 0.8021 5.2698-10° 1.0987
35 5f17s%6d 6~ 36,587 2.4329 4.5135-107 1.1463

Refs. [5/6] Ref. [8]
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Table 6.3: Single-electron energies (in a.u.) of the lowest valence orbitals of Er and Fm.

Er Fm
Orbital Energy Orbital Energy
4fs5/2 -0.7576 5fs5/2 -0.7509
4f7/2 -0.7121 5f7/2 -0.6711
6512 -0.4065 7s1/2 -0.4269
6p1 /2 -0.1210 1/ -0.1240
6p3 /2 -0.1140 7p3/2 -0.1057
5d3 /o -0.0837 6d3 /2 -0.0819
5ds /9 -0.0832 6ds /9 -0.0809

6.5.1 Ionization potential

The first ionization potential (IP) of an atom is calculated as a difference in the ground
state energy between the neutral atom and the singly-positive ion. The calculations are
the same as those for transition energies. Our value for the IP of Er is 6.102 eV, which is in
excellent agreement with the experimental value 6.1077 €V [16]. Similarly, the calculated
IP of Fm, 6.559 €V, is in very good agreement with the experimental value, 6.52(13) eV [§].
In contrast to the calculation of transition energies, where very little published data can be
found, calculation of the IP of Fm has been performed by many authors. A detailed review
of the results can be found in Ref. [8]. Our result is the closest to the experimental value.
Another very accurate result has been obtained with the CCSD(T) method in Ref. [8].
Its value is 6.469 eV. Our value is only about 1% larger. The data are summarised in

Table 6.4

6.5.2 Scalar polarizabilities of Er and Fm atoms

Scalar polarizabilities of Er and Fm were calculated in Ref. [29]. In this work we have an
opportunity to calculate the polarizability in a completely different way and to compare

the results. Scalar polaizabilities g are given by (we use atomic units)

_ 2 Z Agn
C 32,4+ 1) 4 E,— By’

@

(6.8)
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Figure 6.1: Upper components f(r) (see Eq. of the lowest valence 651 /2, 6p1 /2, 6p3/2,
5d3/2, 5ds 5 orbitals of Er (solid lines) and 7sy /2, 7p1/2, Tp3/2, 6d3/2, 6d5 /9 orbitals of Fm
(dot lines).

where J,, is the total angular momentum of the ground state of the atom (J, = 6 for Er
and Fm), A,, are amplitudes (reduced matrix elements) of the electric dipole transitions
from the ground state to odd excited states; E, — F,, is an excitation energy. Summation
goes over the complete set of odd states. We use the amplitudes and energies from Tables

and [6.2] to perform the calculations. The results are presented in Table

There are some significant differences in approaches used to calculate polarizabilities in
the present work and in Ref. [29]. In Ref. [29] the 4f and 5f electrons were attributed to
the core and the atoms were treated as two-valence electrons systems with the 6s% ground
state configuration for Er and 7s? ground state configuration for Fm. This means that only
s — p electric dipole matrix elements were used in the calculations of the polarizabilities.
On the other side, the summation was extended to very high energy states to ensure the
saturation of the summation. In the present work we use all possible kinds of transitions,
but the summation is truncated at much lower number of levels. It is limited to states

presented in Tables [6.1] and [6.2]
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Note that the total polarizability is the sum of the core and valence contributions. In
the present work we do not calculate the core contributions but take them from Ref. [29].
There is some difference in the definitions of the core in these two works. We treat the
4f and 5f electrons as being in the valence space while in [29] they were attributed to
the core. This should lead to some differences in the core polarizabilities. However,
the contribution of f-electrons to the polarizabilities is small and can be neglected [29].
Another source of uncertainty is the use of calculated energies in . As can be seen
from Table the difference between theoretical and experimental energies is significant
for some states. This may lead to significant errors in the polarizability. To check this
we performed calculations twice, using theoretical energies in one run and experimental
energies in the second run. Both results are presented in Table[6.5] The difference between
them is just 0.5%. The difference between the total polarizabilities of present work and

earlier calculations of Ref. [29] is 1% for Er and 10% for Fm.

Another way of estimation uncertainty is by replacing calculated transition amplitudes by
experimental values when they are available. Note, however, that accuracy in a calculation
of polarizability is usually much better than accuracy of calculation of transition rates, es-
pecially for weak transitions. Indeed, transition rates are very sensitive to mixing between
close excited states (which is usually very strong) while polarizability is not affected by
mixing of (nearly) degenerate excited states. We just need a complete set of basis states.
For the same reason, replacing part of transition amplitudes by experimental values is not
a way to improve accuracy (see, e.g. [30] for a more detailed discussion). In the end, we

found that the uncertainty for Er is about 10%, while for Fm it might be larger.
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Table 6.4: Experimental and theoretical values of the first ionization potential IP; (eV).

State 1P,

Atoms Initial Final Presesnt CCSD(T) MCDF QR PP+ACPF  Semiempirical

Expt

Er  4f'26s "Hg 41265 (6,1/2)13/2 6.1017 5.94 5.89
Fm 512752 SHg 5f'27s (6,1/2)13/9 6.5587 6.469 6.22 6.26 6.50

6.1077
6.52+0.13

Ref. [§]

Ref. [1]2]
Ref. [35)
Ref. [16]
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Table 6.5: Scalar polarizabilities of Er and Fm atoms (in a%).

Ref. [29] Present Work
Atom Conf. Core Valence Total Valence Total
Er 412652 6.3 143.9 150.2 145.66 151.96
Er 412652 6.3 144.94 151.24
Fm 512752 8.4 105 1134 115.92 124.32

This value was obtained when NIST energies were used.

6.5.3 Hyperfine structure

Studying hyperfine structure is a way to get information about the nucleus by extracting
nuclear moments from the comparison between theory and measurements. There are many
accurate published data on hfs of '67Er [31133]. There are also measurements of the hfs for
255Fm [6]. Therefore, we perform the calculations for both atoms using erbium as a testing
ground to check the accuracy of the method. We calculate magnetic dipole hfs constant A
and electric quadrupole hfs constant B using the RPA and CIPT methods (see Egs.
and ) The results for '“Er are presented in Table One can see that we have an
excellent agreement between theory and experiment for magnetic dipole constant A for all
states of the ground configuration. The difference does not exceed 3%, and for some states
it is even smaller. For electric quadrupole constant B the difference between theory and
experiment is within 10% for most states except the second one. Here the discrepancy, by
a factor of two, is probably due to anomalously small value of the constant, which might be
a result of cancellation between different contributions. However, the absolute difference
between theory and experiment (~ 500 MHz) is about the same as for the ground state.
The accuracy is almost equally good for the states of the 4 f!26s6p configuration (marked
with letter P in Table , while it is somewhat worse for the states of the 4f!16s25d
configuration (marked with letter D in Table . In the end, it is clear that the accuracy

is sufficiently good to use the calculations for extracting nuclear moments.

The results of similar calculations for fermium are presented in Table It is natural
to expect that due to similar electronic structure the accuracy for fermium is similar to

what we have for erbium. As one can see, the values of the hfs constants for the ground

120



6.5. RESULTS

Table 6.6: Hyperfine structure constants A and B (in MHz) of '"Er. Nuclear spin
I = 7/2, nuclear magnetic moment u('57Er) = —0.56385(12)uy [36]; nuclear electric
quadrupole moment Q('°"Er) = 3.57(3) b [37]; g; = p/I. Letters S, D, P indicate the
leading configurations, 42652, 4f'16s25d, and 4f'26s6p, respectively. The last column
gives references to experimental data.

Conf. Energy (Cmi 1) Atheor Aexpt Btheor Bexpt Ref.
NIST [16] CIPT

S 0.000 0 724g; -117 -120.487 -1413Q -5037 -4552.984 [32r
S 5035.193 5364  T752g; -122  -121.9 295Q 1050 516 [31]
S 6958.329 7275 976g; -158 -159.4  -1273Q -4539 -4120 [31]
S 10750.982 10875 1075g; -174 -173.4  -729Q -2600 -2429 [31]
S 12377.534 13353 827g; -139 -1434 373Q 1331 1236 [31]
S 13097.906 14624 1063g; -172 -167.2 460Q 1640 1688 [31]
D 7176.503 5419 833g; -135 -139.957 -464Q -1655 -709.396  [33]
D 7696.956 5959  705g; -114 -125.851 -626Q) -2230 -3046.052 [33]
D 9350.106 7584  643g; -104 -119.870 -665Q -2372 -3062.704 [33]
D 8620.565 4771 613g; -99 -113.582 -486Q -1733 -782.987  [33]
P 17157.307 17342 1071g; -173 -172.5 -1400Q -4992 -4440 [31]

state are also similar. For example, the magnetic dipole constant A for the ground state
of Fm (655g; MHz) is only 14% smaller than for Er (724g; MHz). The smaller value can
be explained in the following way. Only f-electrons contribute to the hfs of the ground
state. This is because s-electrons form a closed subshell (6s? for Er and 7s? for Fm)
with zero total angular momentum. The 4 f-electrons of Er are deeper in the core on the
energy scale than the 5f-electrons of Fm (see Table [6.3). Therefore, the overlap of the 4f
function with the s functions of the core is larger than for the 5f state. This means that
the RPA correction to the hfs is also larger for Er than for Fm. Similarly, the electric
quadrupole constant B for Fm (—1750Q MHz) is only 24% larger than the constant B for
Er (-1413Q MHz) due to the larger gradient of electric field. There are also similarities
between the hfs constants of the 4f'26s6p and 5f'27s7p configurations of Er and Fm.
However, they are less pronounced due to the fact that the corresponding states of Fm are
significantly higher on the energy scale than in Er. In the end, we see no reason to believe

that the accuracy of the calculations for Fm is lower than for Er.

The extraction of nuclear moments from the comparison of theoretical and experimental

hfs constants presents a problem. There is no way to get consistent results from the three
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Table 6.7: Hyperfine structure constants A and B (in MHz) of 2**Fm. Two different
interpretations of the experimental data are taken from Ref. [5]. Notations R1 and R2 are
also taken from Ref. [5].

COI]f. Energy (Cm_l) Atheor Aexpt Btheor Bexpt
Expt [6] CIPT
GS 0.0 0 65587 -320  -760  -1750QQ  -22000 -8700

R1 25099.80 25442  1810g; -530 -660 -1975Q  -2900  -14800
R2 25111.80 25494 195g; -690  -730  -1823Q  -1700 -390

states (see Table . The most likely reason in our view may come from the inaccurate
interpretation of measured hfs in terms of six hfs constants, the A and B constants for the
three states. Ref. [5] presents two quite different interpretations, which are both included
in Table[6.7], and states that more interpretations are possible under different assumptions.

We hope that our calculations would help to re-evaluate the experimental data.

6.5.4 Isotope shift

Only the field shift needs to be considered in heavy elements. The mass shift is small and
can be neglected [10,|12]. To calculate the IS for Fm we use nuclear parameters that come
from nuclear calculations [15]. We use only two most important parameters, the nuclear
RMS radius 7, and the parameter of nuclear quadrupole deformation 3. The nuclear

charge density is approximated by the formula

a
p(r,) = ———. 6.9
(r.6) 1+exp 77“_7?(9) (6.9)

Here a is a normalization constant, ¢ is the nuclear skin thickness (we use the standard value
t =2.3/41n(3) fm), r,(0) is a variable nuclear radius, r,(0) = ro (1 4+ 8Y2(6)), where Yz
is a spherical harmonic. Electrons feel the nuclear density averaged over nuclear rotations,
p(r) = [o p(r,8)df. The constant a in is chosen to get [ pdV = Z. The parameter rg
in the variable nuclear radius is treated as a fitting parameter to obtain the correct value

of the nuclear RMS radius. The resulting averaged nuclear charge density p(r) is used
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to calculate the nuclear potential. The IS is calculated as a difference between transition
frequencies of two isotopes. It was suggested in Refs. [12,/13] that the IS for a wide range
of values for nuclear RMS radii and quadrupole deformation 8 can be approximated by a
formula containing powers of ¢ (r?) and AB. It was also suggested that for neighbouring

isotopes one can keep only the leading terms

Sv = F§(r?) + dAB. (6.10)

Here the first term is just the standard formula for field IS. Note that relativistic con-
sideration leads to a different formula for field isotope sift, v = F’§ <r2'7>, where v =
V1= (aZ)?[38,39].. The relativistic formula can be presented as an expansion F’§ (r?7) =
F§(r*)+G¢ <T2>2 +.... For neighbouring isotopes higher-order corrections are small and
can be neglected, brining us back to . The second term in takes into account
nuclear deformation. The advantage of using a non-relativistic formula is the ability to
extract the value of § <r2> from the isotope shift measurements. The disadvantage is the
loss of the universality. Constants F' and d in are isotope-dependent and should
be calculated from scratch for a new pair of isotopes if the number of neutrons is signif-
icantly different. The values of F' and d are found from fitting the calculated IS. If the
IS is measured for at least two atomic transitions, then can be used to determine
both ¢ <7"2> and AB. Our calculated values of F' and d for IS around the 2*°Fm isotope
are presented in Table Note that, according to the nuclear theory |15, nuclei in this
region are deformed with 5 ~ 0.3, and AS ~ 0.02 for neighbouring isotopes. Using the
data from Table [6.8], we estimate that the contribution of nuclear deformation to the IS
is ~ 0.01 cm~!. This value is large enough to be detected. It means that measurements
of IS can be used to study nuclear deformations. For odd isotopes like 2°Fm the use
of IS to study nuclear deformation is complementary to the measurements of the electric
quadrupole hfs. However, for even-even isotopes, such as 29*Fm, 2°Fm, which have no hfs,

this is a unique way of studying nuclear deformation by means of atomic spectroscopy.

Finally, in Table we present the calculated IS between previously studied isotope
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Table 6.8: Parameters of formula 1) for isotope shifts for transitions from the ground
state to excited odd states of 2*>Fm.N is state number from Table letters P and D
indicate dominating configurations, 5f'27s7p and 5f'17s26d respectively.

E F d
N Conf. J em ™! cm ™! /fm? em !
7 P 5 20,711 -2.92 0.423
8 D 5 23,175 0.78 0.610
11 P ) 24,294 -0.19 0.585
14 P 5 25,494 -3.14 0.397
15 p 5 28,520 -2.53 0.294
17 P 5 28,690 -1.24 0.331
2 p 6 18,915 -2.95 0.455
3 D 6 19,012 3.18 0.604
5 P 6 20,077 -2.88 0.443
9 D 6 23,761 2.95 0.741
13 P 6 25,442 -3.21 0.256
16 P 6 28,662 -3.11 0.404
18 P 6 28,995 -1.29 0.230
4 D 7 19,808 3.05 0.602
6 P 7 20,399 -2.59 0.431
10 D 7 23,858 3.31 0.745
12 P 7 25,202 -3.14 0.399
19 P 7 29,348 -2.04 0.202

Table 6.9: Isotope shift (IS, cm™! ) between the experimentally studied isotope 2*Fm and
the isotope with the magic number of neutrons, 284Fm. Calculations for ?**Fm were done
with nuclear RMS radius 7, = 5.976 fm, while for 2%4Fm r, = 6.063 fm [15]. The last
column is the difference between excitation energies for 224Fm and 2°°Fm.

Energy (cm™1)

N Conf. LSJ 255Fm 281 m IS
13 5f127sTp oY 25,442 25435 -7
14 5f127sTp °GY 25,494 25487 -7
15 5f127s7p 3GY 28,520 28515 -5
16 5f127sTp SHY 28,662 28656 -6
17 5f127s7p 3GY 28,690 28685 -5
19 5f127sTp 319 29,348 29343 -5
20 5f1175%6d o1 30,236 30243 7
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255Fm [5/6] and an isotope 284Fm which has a "magic' number of neutrons (N = 184)
and thus a sphericallysymmetric nucleus [15]. We keep non-relativistic labelling of the
states used in [5,6] for easy comparison. The shift was calculated as a difference between
separate calculations of transition frequencies for 2°°Fm and 2%4Fm. Nuclear RMS radii
(rp) were taken from nuclear calculations, r, = 5.976 fm for ?*Fm and 7, = 6.063 fm for
24Fm [15]. The 2°Fm isotope is used as a reference. These data can be useful in the

search for metastable isotopes, e.g. in the astrophysical data [34].

6.6 Conclusions

All odd energy levels of Fm within the optical range ( E < 40000 cm~! ) are calculated

with an uncertainty of a few hundred cm™'.

The results are in good agreement with
previous theoretical and experimental studies where the data are available. Twenty eight
new levels are reported. Transition rates, hyperfine structure, static scalar polarizabilities,
ionization potentials, and isotope shifts are also calculated. Transition rates might be
useful for planning further experimental studies. Calculation of the hfs indicates the need
to re-visit the interpretation of experimental data for Fm. Isotope shift data can be used
for extracting information on the nuclear deformation and change of the nuclear RMS

radius from the IS measurements. They can also be used in the search for metastable Fm

isotopes with spherically-symmetric nuclei.
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Chapter 7

Time keeping and searching for

new physics using metastable

states of Cu, Ag, and Au

7.1 Overview

In this chapter, we present a detailed analysis of the study of the prospects of using the
metastable states of Cu, Ag, and Au as clock states. In our calculations, we demonstrate
that these metastable states satisfy the criteria for being promising candidates for atomic
clocks; they have a blackbody radiation shift one or two orders of magnitude lower than in
clock transition in Sr. It is also found that the metastable state of Au is highly sensitive

to variations in a.
This study has been published in this paper:

V. A. Dzuba, S. O. Allehabi, V. V. Flambaum, J. Li, and S. Schiller, Time keeping and
searching for new physics using metastable states of Cu, Ag, and Au, Phys. Rev. A 103,
022822 (2021).
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7.2. ABSTRACT

7.2 Abstract

We study the prospects of using the electric quadrupole transitions from the ground states
of Cu, Ag, and Au to the metastable states 2Dj /2 as clock transitions in optical lattice
clocks. We calculate lifetimes, transition rates, and systematic shifts and find that they
are very suitable for this purpose. In particular, the elements are found to have a black-
body radiation shift that is one to two orders smaller than that of Sr. The Au clock is
found to have strong sensitivities to a variation of the fine-structure constant, to effects
of scalar dark matter, and to a violation of local Lorentz invariance (LLI). Cu and Ag
are also suitable for tests of LLI. We identify two more metastable states (4F90/2), one in
Cu and another in Au, which can serve as additional clock transitions. The a-sensitivity
coeflicients of the two Au clock transitions are large and have opposite sign. This doubles
the overall sensitivity to variation of o and opens the possibility of a a-variation test with
a single neutral atomic species. We also present more accurate or additional values of
the sensitivity to local position invariance violation for several established or proposed
clock transitions. These values are important for properly evaluating the effectiveness of

clock-clock comparisons.

7.3 INTRODUCTION

The use of optical clock transitions for searching for new physics beyond the standard
model is a promising area of research. A hypothetical manifestation of new physics at low
energy is expected to be very small. Therefore, the highest possible accuracy of the mea-
surements is needed. Fractional uncertainty of the best optical clocks currently is around
1 x 1078 [17], allowing for the highest accuracy so far achieved in the history of mea-
surements. However, apart from one exception (Yb+), the best current optical clocks are
only weakly sensitive to new physics such as time variation of the fine-structure constant,
violation of local position invariance (LPI), and violation of local Lorentz invariance (LLI),

etc. [8H11]. LPI, LLI, and the weak equivalence principle form the Einstein equivalence
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principle, which is the foundation of general relativity.

Several ideas were proposed to combine a high accuracy of optical clocks with a high
sensitivity to new physics. These include the use of the highly charged ions (HCIs) [12-15],
nuclear clocks [16], and metastable atomic states with a large value of the total angular
momentum J(J > 1) [8,]17H20]. These states are connected to the ground state via
transitions, that correspond to single-electron transitions with large change of the single-
electron total angular momentum j. The large Aj is what makes the transition sensitive
to the variation of the fine-structure constant (see, e.g., [21]). For example, in the present
work, we consider transitions between the nd'%(n+1)s 25, /2 ground state and the nd?(n+
1)s? 2D5/2 excited metastable state. This is roughly the sy, to d5/, transition with

Aj = 2.

The energy diagrams displaying seven low-lying states of Cu and Au and the five lowest
states of Ag studied in this work are presented in Fig. One metastable state of
interest (2D5/2) is the first-excited state for Cu and Au. In Ag, the 2 10/2 state lies
below the 2Dj /2 clock state. However, this has no significance since the states are very
weakly connected (by E3, M2, or hyperfine-induced E1 transitions with very small value
of transition frequency, Aw = 690 cm~!). Cu and Au each have another, higher-energy
metastable state, nd”(2Dj5)(n + 1)s1/2 (n + 1)ps /2 (*P2) 4F§’/2, which can be used in an
additional clock transition connecting this state to the 2Dy /2 clock state via a M2, E3, or
hyperfine-induced FE1 transition. Having two clock transitions in one atom is a potential
important advantage in using clocks for the search of « variation and LPI violation. The

Au *F state has been observed in magnetic resonance experiments on atomic beams [22,23].

The clock transition in Ag was studied experimentally in Ref. [24] under two-photon
excitation, not under E2 excitation. For an optical clock application, an E2 excitation
is advantageous compared to a two-photon excitation since the involved laser intensity is

much lower, leading to a lower corresponding systematic shift.

The sensitivity of the 2Dj /2 metastable states of Ag and Au to variation of the fine-

structure constant was studied before [8]. In this work, we further study these two,
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as well as three other metastable states, in terms of their suitability for highaccuracy
measurements and sensitivity to other manifestations of new physics, such as LPI violation

and LLI violation.

7.4 CALCULATIONS

7.4.1 Methods

We are mostly interested in the lowest states of Cu, Ag, and Au shown in Fig. [7.I] The
D, F, and some P states of all three atoms have excitations from a d shell. This means that
the d shell is open and d electrons should be treated as valence ones. The total number
of valence electrons, i.e., 11 , is too large for most standard computational approaches.
We use a version of the configuration interaction (CI) method specifically developed for
such systems (the CI with perturbation theory (CIPT) method [25]). In this method,
off-diagonal matrix elements of the CI Hamiltonian between highly excited states are
neglected. This allows one to reduce the CI matrix to an effective matrix of a small size

in which the contribution from high states is included perturbatively.
The CI equations can be written in a matrix form via matrix blocks [25,26]

AX+BY = EX (7.1)

CX + DY

EY,

where A is a matrix of small size containing matrix elements between low-energy states,
which dominate in the wavefunction expansion, B and C are blocks of the CI matrix
containing matrix elements between low and high states (¢;; = bj; since the CI matrix is
symmetric), D is a diagonal matrix (d;; = <k: ’H CI‘ k:> dir), F is an eigenenergy, and X
and Y are parts of the eigenvector containing expansion coefficients of the wave function

for valence electrons over a set of singledeterminant basis functions. From the second
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Figure 7.1: Energy diagram (approximately to scale) for the lowest states of Cu (I = 3/2),
Ag (I =1/2), and Au (I = 3/2). Thick red lines indicate the upper clock states. Electric
quadrupole (E2) clock transitions are shown as short-dashed red lines. Additional clock
transitions in Cu and Au are shown as long-dashed red lines. Cooling transitions are
shown as solid blue lines. The presence of leakage transitions (black dotted lines) implies
the need for repumping (magenta lines). Numeration of the states corresponds to one in

Table [7.2]
equation ([7.1)), we get
Y = (EI - D)"'CX, (7.2)

where I is the unit matrix. Since D is a diagonal matrix, (7.2]) can be rewritten as

1
Yk = E— Ej, ;Ckfruxma (73)

where Ej, = <k ‘H CI’ k:> is the diagonal CI matrix element for high-energy states.
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By substituting ((7.2)) into ([7.1]), we get the CIPT equation,

[A+C(BI - D)™'B| X = EX. (7.4)

Once the energy F and the wave function X are found by solving ([7.4]) a correction to the
wave function Y can be found using (|7.2}f7.3). Note that after Y is calculated, the total
wave function should be renormalized. This is because the solution of ([7.4) is normalized

by > xi = 1, while the total wave function should be normalized by )", xz +>om yfn =1.

In our previous works [25,27-31], only the solution of the CIPT equation ([7.4]) was imple-
mented, while the correction to the wave function ([7.2)) was not calculated. In the present

work, we calculate Y too and include it in the calculation of the matrix elements (see

below).

We perform the calculations in the VN~! approximation, with one electron removed from
the initial relativistic HartreeFock (HF) calculations to obtain the potential for calculat-
ing single-electron basis states. The B-spline technique [32] is used to construct single-
electron basis states above the core. Many-electron states for the CIPT calculations are
constructed by exciting one or two electrons from a reference configuration and then
using the resulting configurations to build all corresponding many-electron states of defi-
nite value of the total angular momentum J and its projection J,. States corresponding
to about 100 lowest nonrelativistic configurations go into the effective CI matrix, while
higher states are treated perturbatively. Note that our calculations are completely rela-
tivistic. We only use nonrelativistic configurations to simplify the procedure of generating
many-electron basis states. In the list of nonrelativistic configurations, each of them is
subsequently replaced by a corresponding set of relativistic configurations. For example,
the 5d%6s6p configuration is replaced by four relativistic ones, i.e., the 5d§ /25dg /2656}01 /2
5d§/25dg/2656p1/2, 5d§/25dg/2636p3/2, and 5d§/25dg/2656p3/2 configurations.

To check the stability of the results, we perform calculations in a different way. We
keep the minimum number of possible configurations in the effective CI matrix [block

A in Eq. (7.1)], but introduce an extra term into the CI Hamiltonian, i.e., the effective
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Table 7.1: Fitting parameters for the effective polarization potential 1'

Atom Qg ap ay
Cu 0.72 0.88 0.22
Ag 0.71 0.81 0.24
Au 0.69 0.92 0.34
polarization potential,
&7/
oV, = ———. .
Vi a* +rt (7.5)

This term imitates the effect of core-valence correlations. Its form is chosen to coincide
with the polarization potential (V, = —a/r4) on large distances. The parameter a is a
cutoff parameter introduced to remove the singularity at » = 0. We use a = lap and treat
ay as a fitting parameter. Here, [ is the value of the angular momentum, indicating that
we use different fitting parameters in the calculation of the s, p, and d single-electron basis
states. The values of a; are chosen to fit ionization potentials (IPs), the values of «, are
chosen to fit the energies of the states of the nd'®(n + 1)p configuration, and the values of

g are chosen to fit the energies of the states of the nd”(n + 1)s? configuration.

7.4.2 Energies

The obtained fitting parameters are presented in Table Energy levels, calculated in
the two different approaches, are presented in Table Note the significant improvement
to the energies due to the fitting. The fitting is not perfect because we use one fitting
parameter for both components of the fine structure. We do this to avoid a false contribu-
tion to the fine structure (e.g., a contribution which does not vanish in the nonrelativistic

limit).

Fitting also improves the wave functions, leading to more accurate values of the matrix
elements. Comparing transition amplitudes and other matrix elements obtained with and

without fitting is an important test of the theoretical uncertainty.
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We point out that the fitting can be used for improved predictions of the spectra of systems
with poor experimental data, e.g., superheavy elements or highly charged ions. To do
so, we need to perform accurate fitting for a system with known spectra and electronic
structure similar to the system of interest. Then the same fitting parameters can be used

to calculate the unknown spectra.

7.4.3 Transition amplitudes

To calculate transition amplitudes, we use the well-known random phase approximation

(RPA; see, e.g., [33]). The RPA equations for a single-electron state have the form

(HUF — )60, = —(F + sVE 1. (7.6)

Here, HHY is the relativistic Hartree-Fock Hamiltonian, the index ¢ numerates single-
electron states, F is the operator of an external field, dv. is a correction to the state ¢
due to an external field, and 5VI§V ~1 is the correction to the selfconsistent Hartree-Fock
potential due to the external field. The same VV~1 potential is used in the RPA and HF
calculations. The RPA equations are solved self-consistently for all states ¢ in the
core. Transition amplitudes are found as matrix elements between many-electron states

found in the CIPT calculations for the effective operator of an external field,

Agp = (b|F 4 6V a). (7.7)

Here |a) and |b) are many-electron wave functions. They have a form

ja) = >z (7.8)
k

la) = Zxkq)k: + Z Ym P, (7.9)
k m

where @, is a single-determinant many-electron basis wave function, xj comes from the

solution of ([7.4]) and yj comes from ((7.3)). In our previous works |25, 27-31], we used (7.8)),
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Table 7.2: Excitation energies (cm™1), ionisation potential (IP, cm~!) and lifetimes
for six states of Cu and of Au and for the four lowest excited states of Ag. Lifetime
values without indicated uncertainties are theoretical values.

Energy (cm™1) Lifetime
NIST Present work Present
N Conf. Term  [53] No fitting ~ fitted work Other
Cu
1 3d'04s 2812 0 0 0 00
2 3d%4s*  °Ds;p 11203 10521 11277 45 s 26.76 s*
3 3d%4s> *Dyjp 13245 12270 13331 7.3 s 4.46 s?
4 3d"p  ?PY, 30535 29489 30513 7.1 ns 7.4(2) ns®
6.535 ns?
5 3d'%p  ?Pg, 30784 31115 30772 6.9ns  7.1(2) ns®
6.369 ns?
6  3d%sdp 4P s 39018 38693
T 3d%sdp  'Fg, 40909 40400 600 s 6897 s?
P 3d'° 1So 62317 60328 62333
Ag
1 4d"V5s 281 /2 0 0 0 00
4d'%5p  *PY,, 29552 29495 29549 6.6ns  7.41(4) ns
6.85 ns?
3 4d°5s? *Dsp 30242 32480 30289 0.26 s 0.2 g4
4 4d"%p  ?Pg, 30473 30451 30437 6.1ns  6.79(3) ns°
6.25 ns?
5  4d%5s® 2Dy 34714 36430 34804 79 s 40 ps®
65.8 us®
P 4d' 1Sy 61106 58891 61141
Au
1 5d%s %Sy 0 0 0 00
2 5d%s*  *Dsp 9161 10670 9161 44 s
3 5d%6s> ’Dyjp 21435 22096 21744 33 ms
4 5d%p  *Py, 37359 38853 36784 4.1 ns 6.0(1) ns®
5 5d%p  ?Pg, 41175 43028 41217 3.3 ns 4.6(2) nsP
6 5d%s6p ‘Fg, 45537 46375
7 5d%s6p F§, 48697 49166 2s
IP 54 1So 74408 72806 74472

# Reference [34)].
P Reference [35).
¢ Reference [36].
4 Extrapolation from Hg™, see Ref. [37] and references therein.
¢ Reference [38].
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while in the present work, we also include the correction to the wave function (|7.3|) and so
use (7.9) for matrix elements. The difference in matrix elements values (7.7) when using
(7.8) or ((7.9) is usually a few percent. In most cases, it does not exceed 2%.

The rates of spontaneous emission are given in atomic units by

r :fﬂawa%LMl (7.10)
FLML™ 3 2J 1’ ‘
for electric dipole (E1) and magnetic dipole (M1) transitions, and by
1 A3
T poare = — (ow)d —E2M2 (7.11)

15 2J+1°

for electric quadrupole (E2) and magnetic quadrupole (M2) transitions. In these formulas,
« is the fine-structure constant, w is the energy difference between the lower and upper
states, A is the amplitude of the transition , and J is the total angular momentum
of the upper state. The magnetic amplitudes Aps;; and Apre are proportional to the
Bohr magneton, up = |e|h/2me. Its numerical value in Gaussian-based atomic units
is up = a/2 =~ 3.65 x 1073, The lifetimes of the excited states are calculated by T, =
2.4189 % 10_17/ > p Lap, where T, is the lifetime of atomic state a in seconds, the summation
goes over all possible transitions to lower states b, and the transition probabilities I'y;, are
given by or . Lifetimes were calculated using the transition amplitudes and
probabilities reported in Table [7.3] The lifetimes of the lowest states of Cu, Ag, and Au
are presented in Table

Table presents the amplitudes calculated in the first approach (large CI matrix and no
fitting). The difference between the two approaches is a few percent for large amplitudes
and up to a few tens of percent for small amplitudes, e.g., amplitudes which vanish in the
nonrelativistic limit. Another way to estimate the accuracy of the amplitude calculations
is to compare with available experimental data or other calculations, in particular the
calculations for Cu and Ag performed with the use of Cowan’s code [34]. This is done
in Tables [7.2) and [7.3] One can see that the accuracy for the calculated amplitudes goes

down while moving from Cu to Au, coming to about 50% disagreement with the reference
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data for a large transition rate in Au for the E1 transition between states 4 and 1; see
Table [7.3] (this translates into about 25% uncertainty in the transition amplitude). For
weak transitions, the disagreement might be even larger. The accuracy is better for Cu
and Ag. The limited accuracy for the calculated amplitudes is due to the small size of
the effective CI matrix. At the present stage, the contribution of the high-energy states
is included for the energies, but not for the transition amplitudes. However, the present
accuracy is sufficient for the main conclusions of the paper regarding the suitability of the

clock states for time keeping and the search for new physics.

It should be mentioned that states with no excitation from the upper d shell (e.g., the
5f106p, /2,3/2 States of Au) can be treated more accurately within different approaches, for
example, with the use of the correlation potential method [33]. The main advantage of the
current approach is that it can be used for any state of the considered atoms, including

states with excitations from the upper d shell where most other methods would not work.

7.5 ANALYSIS

7.5.1 Clock transitions

Cu has three long-lived metastable states (N = 2,3, 7 in Table [7.2)), Ag has one (N = 4),
and Au has two (N = 2,7). The states of Cu and Au have lifetimes that are substantially
larger than 1 s, comparable to those of the currently used Sr and Yb lattice clocks. The
0.2 s lifetime of the Ag upper clock state is comparatively small. Nevertheless, the natural
Q factor, 1 x 10'5, is pronouncedly high and could permit a lattice clock of excellent
stability. In the following, we consider the clock transitions between these six states and
their respective lower clock states. Note that the two 2D clock states of Cu are very similar
and therefore, in most cases, we present the data for only the 2D5 /2 state. We also do not
present a comprehensive analysis for the 4F90/2 states of Cu and Au, limiting the present

work to calculating the lifetimes and sensitivity to new physics.
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Table 7.3:

Transition amplitudes and probabilities for transitions between the

seven states of Cu and Au and between the five lowest states of Ag.

huww This work NIST
Transition Type (em™1) |A] (a.u) T (s7h I (s7h

Cu
2-1 E2 11203 2.603 2.23[—2]
3-1 M1 13245  0.0002up  6.27[-7]
41 El 30535 2.217 1.42[8] 1.376(14)[8]*
5-1 El 30784 3.140 1.45[8] 1.395(14)[8]?
3-2 M1 2043 1.549up 0.138
5-2 El 19581 0.546 1.13[6] 2.0(4)[6]°
43 El 17290 0.404 8.486]  1.65(30)(2)[6]°
5-3 El 17538 0.174 8.23[4] 2.4(4)[5]°
5-4 M1 248 1154 1.38[—4
7-6 E2 1891 24.1 1.6[—4]

Ag
2.1 El 20552 2.534 1.68[8] 1.3(1)[8]°
3-1 E2 30242 2.872 3.90
41 El 30473 3.578 1.84[8] 1.4(1)[8]°
51 M1 34714 0.0001545  6.4[—6]
4-2 M1 921 1.146 53 6.9[—3]
5-2 E1l 5162 0.406 1.15[4]
4-3 El 230 0.534 1.75 1.6(6)4
5-3 M1 4472 1.536up 1.42
5-4 E1 4242 0.175 1.18(3]

Au
2-1 E2 9161 4.359 2.29[—2]
3-1 M1 21435 0.0008u.p 4.25[-5]
41 El 37359 2.153 2.45(8] 1.64(3)[8]°
5-1 El 41175 2.923 3.02[8] 1.98(14)[8]°
3-2 M1 12274 1.549up 29.9
5-2 El 32013 0.983 1.61[6] 1.90(13)[7]°
43 El 15924 0.504 1.04[6] 3.4(L.7)[6]°
5-3 El 19739 0.243 2.30[5] 5.2(2.6)[5)°
5-4 M1 3816 1.141up 0.488
76 M1 3160 2405 5.1[—1]

* Reference [39].
P Reference [40).
¢ Reference [41].
4 Reference [42].
¢ Reference [35].

141



CHAPTER 7. TIME KEEPING AND SEARCHING FOR NEW PHYSICS USING
METASTABLE STATES OF CU, AG, AND AU

7.5.2 Laser cooling of Cu, Ag, and Au
7.5.2.1 Silver

Silver has been laser cooled [42]. Here, the cooling scheme is straightforward: the cooling
transition is between the ground and second-excited state, 25; /2 = ’p; /2, with only weak
leakage to the clock state 3. A repumper laser is nevertheless needed because of the small

hyperfine splitting in the excited state.

7.5.2.2 Gold

A scheme for laser cooling of Au is presented in Fig. The main cooling transition is the
electric dipole transition between the ground state and the excited odd-parity QPIO /5 state.
Compared to using 2P§/2 as the upper level, the advantage is that only one repumper is
needed and that the longer cooling wavelength is experimentally advantageous. There is
leakage from the 2P10/2 to the 2D4 /2 state by another electric dipole transition (4 — 3).
Therefore, without repumping, only ~ 250 cycles are possible. With repumping (628 nm),
the cooling may go for as long as needed. Another leakage channel is too weak to affect

the scheme.

7.5.2.3 Copper

A cooling scheme similar to silver can be considered for copper: 2S; /2 —2P, /2. 1t requires

one additional laser for repumping.

7.5.2.4 Additional remarks
Optical lattice clocks require the cooling of atoms to the uK level for efficient loading of

the optical lattice with the atoms. Therefore, after cooling on the strong E1 transition to

a temperature of the order of 1mK, a second cooling process utilizing a weak transition
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Figure 7.2: Details of the level scheme of 197 Au (I = 3/2) (not to scale) with proposed laser
cooling. The hyperfine structure is shown schematically. The magenta arrow shows the
repumper transition. Narrow-linewidth laser cooling is not shown. The clock transition
(dashed red line) is composed of several hyperfine components.

should follow ("narrow-linewidth cooling"). One option is to cool on the 25; 2 = 2D, /2
transition (1-3 for Cu, 1-5 for Ag, 1-3 for Au). These are M1 transitions and are very weak.
However, the strengths could be increased and the lifetime of the 2Dy /2 states shortened
by E1 coupling them to the respective 2P states using appropriate laser waves. The 1-5
transition in Ag might be directly usable for narrow-linewidth cooling. This transition has

been observed under two-photon excitation |38].

The hyperfine structure in both lower and upper laser cooling levels will typically require
additional repumper fields to optimize cooling efficiency (see above). We shall not discuss

such experimental details here.
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Finally, we note that copper and silver atoms have been cooled using buffer-gas cooling [43].

7.5.3 Polarizabilities, blackbody radiation shifts, and magic frequencies

Knowledge of the atomic polarizabilities for both states of the clock transition is impor-
tant for estimation of the frequency shift caused by blackbody radiation and for finding
the magic frequency of the lattice laser field, i.e., the frequency at which the dynamic

polarizabilities of both states are equal, causing no frequency shift.

The static scalar polarizability o, (0) of an atom in state v is given by

2 [(v[| DI[m)[*
2J,+ 1)~ E,-E,

0) = 7.12
0ul0) = 3 (7.12)
where D is the electric dipole operator with the RPA correction (see the previous section),

and the summation goes over the complete set of excited many-electron states.

Static scalar polarizabilities of the ground states of Cu, Ag, and Au are known from a
number of calculations and measurements [44]. Table presents the recommended values
taken from Ref. [44]. In contrast, to the best of our knowledge, there is no similar data
for the upper clock states of Cu, Ag, and Au. Therefore, we performed the calculations

using two different approaches.

In the first approach, we stay within the CIPT method and calculate 20 odd-parity states
for each value of the total angular momentum J, which satisfies the electric dipole selection
rules for the transitions from the ground and clock states (J = 1/2,3/2,5/2,7/2). Then
we use formula to perform the calculations for both states. These calculations
show three important things: (a) there is good agreement with other data for the ground
state, (b) there is good saturation of the summation in Eq. (7.12)), (c) the summation
for the clock states is strongly dominated by the transitions to the states of the 5d%6s6p

configuration (we use the Au atom as an example).
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Table 7.4: Scalar static polarizabilities (in a%) and BBR frequency shifts for three clock transitions of Cu,
Ag and Au. A« is the difference between the theoretical value for the upper clock state and the experimental
value of the lower clock state.

ag(0) a.(0) BBR (T = 300K)
Atom Expt. [44] CIPT CI+MBPT CIPT CI+MBPT Final Aa Av(Hz) Av/v
Cu? 47(1) 54.5 43.5 46.8 42.9 45(11) 2(11) <012 <34x10°1%
Ag 55(8) 51.8 50.6 45.9 49.5 47(2) -8(8) <014 <1.5x107'7
Au 36(3) 35.7 34.0 38.9 33.2 36(3) 0(4) <003 <5.6x10717

2 State c is the 2D5/2 clock state.
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The last fact implies that a different approach can be used, previously suggested for atoms
with open f shells [46]. In this second approach, we use the fact that the sum
is dominated by the 6s-6p transitions, while the open 5d° subshell remains unchanged.
Therefore, the open d shell is attributed to the core and treated as a closed shell with an
occupational number of 0.9. The atom is treated as a system with two external electrons
above the closed-shell core and an appropriate CI+ MBPT (many-body perturbation
theory) [47] method is used (see Ref. [46] for more details). The advantage of this approach
is the efficient completeness of the basis with two-electron excitations. The shortcoming
is the omission of the transition amplitudes involving excitations from the d shell. In
contrast, the CIPT approach includes all amplitudes; however, the summation in Eq.

is truncated much earlier.

In the end, both approaches give similar results. The results for the clock states are
presented in Table [7.4] together with experimental or estimated theory uncertainties. For
these estimations, we used a comparison of the two approaches for the clock states as well
as a comparison of the CIPT and CI+ MBPT calculations with other data for the ground

states.

The results of the calculations indicate that the values of the polarizabilities of the clock
states of Cu, Ag, and Au are similar to those of the ground state. This is a nonstandard
situation. More often, the polarizabilities of excited states are larger. Indeed, the higher
is the state on the energy scale, the smaller is the energy denominator in Eq. .
The present results can be explained by the fact that the summation in Eq. . is
dominated by the states of the 5d'np configurations for the ground state (we use Au
again as an example) and by the states of the 5d°6s6p configuration for the clock state.

The latter states are higher on the energy scale.
The blackbody radiation (BBR) shift is given by (see, e.g., [48])

SvBBR = —1—25(a7r)3T4[040(0) — ag(0)], (7.13)

where « is the fine-structure constant, 7" is the temperature, and «.(0) and ogz(0) are
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static scalar polarizabilities of the clock and ground states, respectively. For simplicity, we
do not include the dynamic correction to the BBR shift. For the more complete formula,

see, e.g., |48].

The similarity of the polarizabilities implies a substantial cancellation of the blackbody
radiation (BBR) frequency shift, a very favorable effect. The total uncertainty of the
polarizability difference Ao has been evaluated as u2; = Uexp [rg(0)]> + 62, , where
Otheor = @c(0)crpT — @c(0)cromBpT - Since for the three species the difference between
experimental values for the ground state and the mean of the two theory results for the
upper clock state is smaller or similar to the estimated uncertainty wuio, we can only give
the upper bounds for the BBR shifts. The results are presented in Table[7.4l These bounds
of the three species are significantly lower than the BBR shifts in the established strontium
and ytterbium optical lattice clocks, i.e., (=53, —25) x 10710, respectively [49,/50]. The
bound for Ag is actually 100 times lower than the BBR shift of Sr. The bounds of Ag
and Au are also smaller than the shift in the mercury lattice clock, —1.6 x 1076, and
the theoretical shift of the recently proposed 431 nm transition in Yb (—2.9 x 1071 [19]),
listed in Table [Z.8

More accurate estimations of the BBR shift might be possible if the polarizabilities are

measured or calculated to higher accuracy.

Magic frequencies can be found in the vicinity of every resonance for one of the polariz-
abilities, i.e., when the frequency of the lattice laser field is approximately equal to the
excitation energy [energy denominator in Eq. ] The first magic frequency is near the
first resonance for the ground-state polarizability, i.e., hw,, ~ 30535 cm™! (327 nm) for
Cu, hwy, ~ 29552 ecm~1(338 nm) for Ag, and hw,, ~ 37359 cm~! (267 nm) for Au. Note
that since the clock states have large values of the total angular momentum (J = 5/2),
the magic frequencies would also depend on the quadrupole contribution to the polariz-
abilities. The current level of computational accuracy does not allow one to find accurate

values of the magic frequencies. Having more experimental data may help. In the vicinity
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of a resonance or a few resonances, a semiempirical formula can be used,

2 3 A2,
(2Jv + 1) y W AEa57

aa(w) = al(0) + 3 (7.14)
where /,(0) is chosen in such a way that a,(w = 0) is equal to the known (e.g., exper-
imental) static polarizability of state a. Summation in Eq. (7.14]) goes over close reso-
nances. If the static polarizability is known to sufficient accuracy and amplitudes A, of

FE1 transitions are extracted from experimental data or from accurate atomic calculations,

then ([7.14)) can be used to find magic frequencies.

7.5.4 Stark, quadrupole, and Zeeman shifts

The interaction of atomic electrons with an external electric field and its gradient leads
to Stark and electric quadrupole shifts of transition frequencies. These shifts are tiny in

optical lattice clocks. We consider the shifts in more detail in Appendix

The linear Zeeman shift is given by the expression

AEF,FZ :gF,UJBBFz, (715)

where g is the g factor of a particular hyperfine-structure (hfs) state. It is related to the

electron g ; factor by

gr = g;(F,F, = F,I,J|J.|F,F, = F,I,J)/F. (7.16)

Electron g factors have approximate values gy/o ~ 2,83/ ~ 0.8, and g5/, ~ 1.2. More
accurate values for Cu, Ag, and Au can be found in the NIST tables [53|. For a clock state
with J =5/2 and F' = 2, we have g, = (11/12)g5/, = 1.1. For a clock state with J = 3/2
and F' = 2, we have g, = (1/2)g3/, = 0.4.
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Table 7.5: Magnetic dipole (A) and electric quadrupole (B) hfs constants (MHz) used in
the calculation of the second-order Zeeman shift. Values are rounded to 0.1 MHz or to
the last significant digit.

Atom Ground state Clock state Reference

A A B
BCu 25, 5866.9 D5 /o 749.1 186.0 [51[52./65]
BCu 28 5866.9 ’Ds/y  1851.0 137.4 [51,/52}(65]
WTAg 28, 17125 D55 —126 [24./57]
B7An 28, 3049.7 ’Ds /9 80.2  —1049.8 22,}57]

The linear Zeeman shift can be avoided if only transitions between states with F, = 0 are
considered, as suggested in the past for clock operation. Alternatively, one can average
over the transition frequencies with positive and negative F, in order to cancel the linear
shift. However, the large individual shifts will make it difficult to achieve an accurate

cancellation.

A second-order Zeeman shift is unavoidable. Therefore, it is important to know its value.
If we consider transitions between definite hfs components, then the shift is strongly domi-
nated by transitions within the same hfs multiplet. The total shift is the difference between

the second-order shifts in the clock and in the ground state. Both shifts are given by

(F'FLLI| | FF1T) g npBol
ABy(F, F')

SEpp, = Y.

F'=F+1,F]

(7.17)

Here, AEyw (F,F') = E(FIJ) — E(F'IJ) is the hfs interval. It has a different sign

depending on whether this is an up or down transition.

It follows from ((7.27) that

ABws(F,F+1)=-A(F+1)— B2(F+ 1)+ 1 —2J(J + 1) — 2I(I + 1)]
and

ABy(F,F —1) = AF + B2F* + 1 —2J(J + 1) — 2I(I + 1)].
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Table 7.6: Second-order Zeeman shift [mHz/(uT)?] for 7 Ag and comparison with other
calculations. The index g is for the ground state and index c is for the excited (clock)
state. It is assumed that F, = 0 in both states.

F. F, AE./Bj AFE,/Bj (AE.—AE;)/Bj Ref [24]

2 0 0.186 0.114 0.072 0.07
2 1 0.186 —0.114 0.301 0.07
3 1 —0.186 —0.114 —0.072 -0.3

Using experimental values for A and B (see Table , we calculate the second-order
Zeeman shift for Cu, Ag, and Au. The results are presented in Tables [7.0] and [7.7] The
shift for Ag was studied theoretically before [24]. Our result differs from theirs; this
may be due to a simple calculational error in the previous work. Table presents
separate contributions from the shifts in the ground and excited states. One can see that
the disagreement may come from the sign error in a particular contribution. Different
signs are caused by energy denominators. For example, when we move from the first
to the second line of the table, the sign of the energy denominator for the ground-state
contribution changes and so does the contribution itself. Since the other contribution

remains the same, the total shift must change.

Table [7.7] shows the second-order Zeeman shift for 53Cu and 97Au. As in the case of
107 Ag, the shift is small. Note that Cu has one clock transition with both a tiny quadratic
shift coefficient and no linear shift. By measuring two or more Fy, = 0 — F,, = 0
Zeeman components and taking appropriate combinations of the corresponding transition

frequencies, the second-order shift may be substantially reduced.

The quadratic shift vanishes in the considered approximation for transitions between states
with maximum value of F' and its projection F, (see the bottom lines of Table|7.7]). This
is because there are no terms in Eq. which would satisfy the selection rules. Note,
also, that the (nonzero) numbers in Table should be considered as rough estimations
only. This is because of uncertainties of the experimental data for the electric quadrupole
hfs constant B, in particular for Cu [52]. The numbers can change several times depending

on which set of data is used.
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Table 7.7: Second-order Zeeman shift coefficient [mHz/(uT)?] for 3Cu and 7 Au. Gaps
in the data mean that the corresponding set of quantum numbers is not possible for the
transition.

(AE. — AE,) / Bf

GSCu GBCu 197Au
Fg ng F. Fe. 21)5 2 2D3/2 2-D5 2
1 0 0 0 —0.759
1 0 1 0 0.087 0.743 0.023
1 0 2 0 0.193 0.058 0.027
1 0 3 0 —0.247 0.025 0.050
2 0 0 0 —0.792
2 0 1 0 0.053 0.710 —0.041
2 0 2 0 0.160 0.024 —0.037
2 0 3 0 —0.281 —0.009 —0.014
2 0 4 0 0.001 —0.037
2 +2 3 +2 —0.044 0.004 0.002
2 +2 3 +3 —0.017 0.0 0.004
2 +2 4 +4 0.0 0.0

7.6 SEARCH FOR NEW PHYSICS

An exceptionally high accuracy of atomic clocks is a great advantage for using them in a
search for new physics. The search is conducted by monitoring relative values of different
atomic frequencies over a significant time interval. Establishing a time variation of the
frequency ratio allows multiple interpretations. For example, the interaction between
low-mass scalar dark matter and ordinary matter may lead to oscillation of the fine-
structure constant and a transient variation effect [58-60]. In this section, we consider the
sensitivities to a hypothetical time variation of the fine-structure constant, « (o = €2 /he),

to local position invariance (LPI) violation, and to local Lorentz invariance (LLI) violation.

7.6.1 Time variation of the fine-structure constant

It is convenient to parametrize the a dependence of atomic frequencies by the formula
2
w=wgy+q {(50) — 1} [8], where ap and wy are present-day values of the fine-structure

constant and the frequency of the transition, and ¢ is the sensitivity coefficient, which
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comes from the calculations. To monitor a possible frequency change with time, one

atomic frequency is measured against another. Then,

6 w1 LDl (;:}2 (2(]1 2(]2) &
w1 w2

I _wr w2 g (7.18)

ot wy wp wy «

The value K = 2¢q/w is called an enhancement factor. It shows that if o changes in time,
then w changes K times faster. Calculated values of ¢ and K for different optical clock
transitions are presented in Table We include all clock transitions of the present work
and those transitions of previously studied clocks, which are sensitive to o variation. We
remark that work on the historically important Hg' ion clock [9,/17] has been stopped.
We nevertheless include it in the discussion. There are seven transitions where |K| > 1.
The largest values of |K| correspond to the smallest values of transition frequency w. It
would be wrong to say that all these transitions are good for searching for « variation.
This is because the accuracy of the measurements is equally important (see, also, the
discussion in Ref. [19]). The true figure of merit is the ratio of the relative frequency shift
due to variation of a and the fractional uncertainty of the measurements, (¢/w)/(dw/w) =
q/dw. This ratio does not (directly) depend on w. Therefore, looking for a large value
of K caused by the small value of w brings no benefit. The value of the relativistic
energy shift ¢ is more important. Comparing the values of ¢ for different clock transitions
(see Table , we see that the E2 clock transition sensitivity for Au is essentially as
large as the recently proposed new transitions in neutral ytterbium [19] and only 30%
smaller than the octupole transition in the ytterbium ion ( Yb II). It is possible to search
for o variation by comparing two clock transitions in the same atom, i.e., gold. The
corresponding differential sensitivity factor is ga_7 — q1—2 =~ 63 x 103 cm™!. This value is

similar to the differential sensitivity of the two clock transitions in the ytterbium ion.
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Table 7.8: Sensitivity of clock transitions to variation of the fine structure constant (g, K'), to LLI violation [reduced
matrix element <cHTO(2)Hc> of the tensor operator |i for the upper state c|, and to LPI violation (relativistic

factor R). Note that <g[|T0(2)H g) is zero for the ground state of all clocks due to the small value of the total angular
momentum J < 1/2.

Atom/ Transition hw? q {c||T, 0(2) l|c) R
Ion Lower state Upper state (em™)  (em™!) K =2q/hw (a.u.) Present Other
Cu 3d1%4s 25, 3d%4s* *Dyjp - 11202.565  -4000 -0.71 -48 0.98
Cu 3d1%4s 28 3d%4s* 2Dgjy 13245443 -1900 -0.29 -37 0.99
Cu 3d94s? 2Dy 3d%4s4p 4F5/2 29706.54 2100 0.14 -48
Ag 4d'%55 25 4d°5s® D55 30242.061  -11300 -0.75 -41 0.93
Au 5d'%s 25 /2 5d%6s* D5y 9161.177  -38550 -8.4 -45 0.67
Au 5d%6s 2Dj o 5d°656p 4F5/2 39535.970 24200 1.2 -44
Ybe  4f146s% 15, 4f6s6p 3Py 17288.439 2714 0.31 0 1.12 1.20°
Ybe  4f16s2 18, 4f135d6s%J =2 23188.518  -44290 -3.82 =724 0.65 1.40°
Ybe  4fl46s6p 1P 4f135d6s%2J =2  5900.079  -43530 -15 724
Yb I 4fM6s 29, )9 413652 2F$/2 21418.75  -56737 -5.3 -135 0.58  -1.90°
Yb IIf 4fM6s 25, )y 4f145d *Ds;p  22960.80 10118 0.88 104 1.42 1.48P
Yb II® 4f136s2 QF;)/Q 4f15d 2Dy )y 1542.06  -66855 -87 104
Hg 18 5d'"6s %5 5d°6s% 2D5,5  35514.624  -52200 -2.94 0.68 0.2°
& NIST [53].

" Reference [9].

¢ Reference [19].

4 Present work.

¢ Reference [61].

' Reference [11/56].
& Reference [8|[19].

SOISAHd MHUN 404 HOUVHS 9L
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7.6.2 LPI violation

In the standard model extension, the term in the Hamiltonian responsible for the LPI

violation can be presented in the form (see, e.g., Ref.. [9])

2 A
Y, (7.19)

Hypr = coo=
3c2

where c¢qg is the unknown parameter characterizing the magnitude of the LPI violation,
U is the gravitational potential, ¢ is the speed of light, K= oy’ p;/2 is the relativistic
operator of kinetic energy, in which v and 77 are Dirac matrices, and p = —ihV is the

electron momentum operator.

The presence of the term in the Hamiltonian would manifest itself via a dependence
of the atomic frequencies on the time of the year, caused by the changing Sun-Earth
distance leading to a change of the Sun’s gravitational potential U. As in the case of the «
variation, at least two clock transitions are needed to measure one clock frequency against

the other. The interpretation of the measurements is based on the formula [9]

Awr  Aws 2 AU
_— e = — — — —_— '2
o s (Rl Rg) 3 Co0 2 (7 0)

where Aw and AU are the change of atomic frequencies and gravitational potential be-
tween the measurements, respectively. R in Eq. (7.20]) is the relativistic factor, which
describes the deviation of the kinetic energy Ex from the value given by the nonrelativis-

tic virial theorem (which states that Ex = —F, where E is the total energy),

_ Eka—FErp

R, =
ab E, — E,

(7.21)

The values of the factor R are calculated in computer codes by varying the value of the

kinetic-energy operator in the Dirac equation (see Ref. [9] for details).

The results are very sensitive to the many-body effects, which means that the effects

should be treated very accurately or avoided. Otherwise, the results are unstable. A good
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criterion for the reliability of the results is the achievement of the nonrelativistic limit
R = 1. This can be done by setting to zero the value of the fine-structure constant « in the
computer codes. It turns out that for complicated systems such as those considered in the
present work, the best results are obtained by simple estimations based on single-electron
consideration. Namely, the clock transitions in Cu, Ag, and Au can be considered as
ns — (n—1)ds/, single-electron transitions ( n = 4,5, 6 for Cu, Ag, and Au, respectively).
Therefore, we just use single-electron energies of theses states in Eq. . We use the

same approach for Hgtand Ybt.

The results are presented in Table together with the results obtained earlier for other
systems. Note that the results for the transitions involving excitation from the 5d shell in
Hg™ and the 4f shell in Yb™ are different from what was published before. The old calcu-
lations were based on a version of the CI method [62,63] that contained a fitting parameter
responsible for the correct energy interval between states of different configurations. It
was assumed that this parameter does not change under variation of the kinetic-energy
operator. We believe that the present results are more reliable because they are free from
any assumptions and because they reproduce the nonrelativistic limit R = 1. Note that
the values of R for transitions in Yb and Yb™, which do not involve excitation from the
4f shell, are in good agreement with previous calculations (R = 1.12 and R = 1.42; see
Table |7.8). This means that the present single-electron estimations work well and that

accurate many-body calculations are possible for simple systems.

To study the LPI violation, one needs to compare two clocks with different values of the
relativistic factors R [see formula ] over at least half of a year. An important past
experiment with optical clocks was the comparison of Hg™ clock with an Al*clock [9,/17].
Table [7.§ shows that there are various choices for such clock pairs. In particular, the
Au clock’s sensitivity is comparatively strong (with a large negative deviation from the
nonrelativistic value R = 1 ). Thus, it is suitable for pairing with a clock with strong, but
opposite sensitivity, such as the standard Yb lattice clock (R > 1). It is more sensitive
than the Cu-Yb pairing by a factor 2.5. The two clock transitions in Yb™ have the largest
difference |R; — Rs|.
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7.6.3 LLI violation

The LLI violation term is a tensor operator,

Hipp = —% éZ)TO(Z), (7.22)
where C’éQ) is unknown constant and the relativistic form of the Téz) operator is given
by TO(2) = 0 (7Wpj — 373p3). To study the effect of the LLI violating term , one
needs long-lived atomic states with a large value of the total electron angular momentum
J,J > 1/2. All clock states of Cu,Ag, and Au satisfy this requirement. Note that the
established lattice optical clocks Yb,Sr, and Hg do not satisfy this requirement and are
thus not suitable for testing LLI.

The term should cause a dependence of the atomic frequencies on the apparatus
orientation in space (e.g., due to Earth rotation). Interpretation of the measurements
requires knowing the values of the reduced matrix elements of the operator TSQ) for the
clock states. We calculate these matrix elements using the CIPT method to obtain wave
functions and the RPA method to obtain the effective operator for valence electrons.
The results are presented in Table 7.8, The results of earlier calculations for Yb II [11]
are also presented for comparison. In contrast to the search of the « variation and LPI
violation, one clock state is sufficient for the search of the LLI violation. The comparison
of frequencies is done for states with different projections of the total angular momentum

J [1011].

The large value of the matrix element is important, but it is not the most important
parameter, e.g., the lifetime of the metastable state is even more important (see, e.g., [11]
for more discussion). Obviously, in addition, the uncertainty of the clock is also crucial.

The calculations show that Cu, Ag, and Au are suitable for the search for LLI violation.
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7.7 CONCLUSION

We further advanced the CIPT method of electronic structure calculations for atoms
with open shells by calculating the correction to the wave function caused by mixing
with high-energy states. We used this method to study electric quadrupole transitions
between ground and excited metastable states of Cu, Ag, and Au and demonstrated that

the transitions have important features of optical clock transitions.

A main result of this work is that we have identified three elements for which the blackbody
shift is smaller than that of the standard lattice clocks (notably strontium) by a factor of
up to approximately 100. The predicted shifts for Ag and Au are also smaller than the
predicted shifts in Cd, Zn, and Yb (431 nm). At present, among the neutral species, only
Tm has a smaller (measured) blackbody shift [64].

Other sensitivities to external perturbing fields, such as Zeeman and Stark sensitivities,
are similar to or smaller than that in current top-performing optical clocks and lead
to wellcontrollable shifts. These results lead to the identification of Ag and Au as two

particularly valuable candidates for nextgeneration optical lattice clocks.

We remark that as an example, the laser system required for Au is commercially available
and does not require particularly difficult deep-ultraviolet wavelengths. For example,
the 268 nm cooling wavelength of Au can be easily obtained as the fourth harmonic of
a powerful Yb'-doped fiber laser at 1071 nm. The narrow-linewidth cooling requires a
laser, e.g., at 456 nm, which is a wavelength available from a diode laser. The clock laser

radiation can be directly provided by a fiber laser.

Analyzing the performance of the new clock transitions for the search for physics beyond
the standard model, we find neutral atom clock candidates that have a nonzero and rele-
vant sensitivity to violations of local Lorentz invariance. Our finding includes the recently
proposed additional clock transition of Yb (431 nm). Such tests do not require a second

atomic clock.

157



CHAPTER 7. TIME KEEPING AND SEARCHING FOR NEW PHYSICS USING
METASTABLE STATES OF CU, AG, AND AU

We furthermore found that the pairing of the Au clock with the already established Yb
lattice clock (578 nm transition) would be a particularly sensitive choice for a test of local

position invariance as reflected in the difference of R factors.

Finally, we had previously found that the 1092 nm transition of Au also exhibits a strong
sensitivity to variation of a. The sensitivity K is approximately 27 times larger than
for the standard Yb lattice clock, so that a pairing with the latter represents an option.
Alternatively, the search for « variation can be done by pairing two clock transitions in
the Au atom. The sensitivity coefficients ¢ in the two Au clock transitions have opposite
sign and this doubles the overall sensitivity to variation of a. Note that this is only the
second neutral atomic species found (besides Yb ) that exhibits this feature. Thus, there

now exist concrete options for lattice-clock-based tests of « variation.

A reevaluation of the relativistic factor R of four clock transitions in Yb, Yb™, and Hg™
has led to significant changes in the values. Use of the correct values is crucial to derive
the correct upper bounds for local position invariance violation, and also for selection of

suitable clock pairs in future experimental campaigns.

We emphasize that these sensitivities are to be considered together with the eventually
achievable accuracy and longterm stability of the clock frequencies. It is for these reasons
that we have studied some important systematic shifts here. Because of the potential of
the Cu, Ag, and Au clock, our work provides a strong motivation for experimental studies

of their blackbody radiation shifts and lattice-induced shifts.
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7.8 Appendix:

7.8.1 STARK AND ELECTRIC QUADRUPOLE SHIFTS

The Stark shift of the frequency of the transition between atomic states a and b due to

interaction with residual static electric field ¢ is

3

Stompy = —Aeray(0) (2>2 , (7.23)

where Acag(0) is the difference between the static scalar polarizabilities of states a and
b. The shift is quadratic in the electric field and usually small. It is further suppressed

for the considered clock transitions due to the small difference in the polarizabilities (see

Table [7.4)).

The energy shift due to a gradient of a residual static electric field € is described by a

corresponding term in the Hamiltonian

(7.24)
where Q is the atomic quadrupole moment operator (Q = |e|r?Ya,,, which is the same as
for the E2 transitions). The energy shift of a state with total angular momentum J is

proportional to the atomic quadrupole moment of this state. It is defined as twice the

expectation value of the Q operator in the stretched state,

Qs =2(J,J. = J|Q|J, J. = J). (7.25)
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Table 7.9: Stable isotopes with nonzero nuclear spin (I) and possible values of total
angular momentum F(F = I+ J) for ground states (GS) and clock states (CS) of Cu, Ag,
and Au.

Isotopes Transition 1 F for GS F for CS
0385Cu, TAu 25y —%D5;2  3/2 1,2 1,2,3,4
63,65Cy 2512 —2D3js  3/2 1,2 0,1,2,3
107,109 A g 281/9 —2Dgsy  1/2 0,1 2,3

Calculations using the CIPT method for wave functions and the RPA method for the
operator give the values Qy = 0.431 a.u. for the 2D5/2 clock state of Cu, Q5 = 0.296 a.u.
for the 2D3/2 clock state of Cu, Q; = 0.966 a.u. for the clock state of Ag, and Q; = 1.47
a.u. for the clock state of Au. The quadrupole moments of the ground states of these

atoms are zero due to the small value of the total electron angular momentum (J = 1/2).

Consider transitions between hyperfine-structure (hfs) components of the ground and clock
states with definite values of the total angular momentum F'. The quadrupole shift is given

by

F?2—F(F+1) 0Oe,
Akg = 2F(2F — 1) @

(7.26)

where F), is the projection of F. For F' = 3 and F, = £2, the shift is zero. Note that
clock states with F' = 3 exist for all stable isotopes of all three considered atoms (see
Table [7.9). Using these states would lead to a linear Zeeman shift. It cancels out by
averaging over the transition frequencies to the states with F, = —2 and F, = 2. For
F, # £2, the estimations can be done in the following way. On the inner surface of a
metallic vacuum chamber, there can be spatial variations of the electrostatic potential
of the order of 0.1 V. The typical internal size of a vacuum chamber may be 10 cm.
The corresponding Stark shift is ~ 10~7 Hz. The electric-field gradient is smaller than
0.1 V/(10 cm)?. Considering that the factor before the electric-field gradient in Eq.

is ~ 1 a.u. leads to a negligible quadrupole shift of ~ 1075 Hz.
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7.8.2 HYPERFINE STRUCTURE

The atoms considered here all exhibit hyperfine structure in the ground state, in the clock
state, and in the excited state addressed in laser cooling. The nuclear spins are given in

Table [7.9] The hfs splitting is approximately given by [45]

Engs(F) = gF(F +1)+ g{FZ(F +1)2 4+ F(F+1)[1—2J(J +1) — 2I(I + 1)]}. (7.27)

The total angular momentum is F = J + I, where [ is nuclear spin. A and B are magnetic
dipole and electric quadrupole hfs constants, respectively. They are reported in Table
In addition, for I = 3/2 nuclei, there is a small octupole hfs contribution [22}23]. For
example, the hyperfine structure of Au was studied experimentally with high precision in
the 1960 s, and was also calculate [54,[55]. The hyperfine splitting between F' = 1,2 in the
ground state amounts to 6.10 GHz [57]. The splittings in 2Dj 5 are [22]

F=1+< F=2:1.00 GHz,
F =2« F=3:0.71 GHz, and
F=3+ F=4:0.52 GHz.
The splittings in 2D3/2 are [23]
F=0+F=1:1.11 GHz
F=1+ F=2:1.31 GHz, and
F=2+ F=3:0.31 GHz.

The hfs in the *F state has also been studied experimentally [23]. We show these numbers
to indicate to experimentalists that one will need to use appropriate repumping lasers or

modulators.
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Chapter 8

Using optical clock transitions in
Cu II and Yb III for timekeeping

and search for new physics

8.1 Overview

This chapter considers the prospect of using two nearly neutral ions, Cu Il and Yb III,
for optical ion clocks. We have performed relativistic many-body calculations for atomic
properties relevant to optical clock development. The sensitivity of Yb III to changes in
fundamental constants and uncertainty estimates for the Yb III ion indicate that a Yb III

atomic clock is likely to compete successfully with the latest generation of clocks.
This study has been published in this paper:

S. O. Allehabi, V. A. Dzuba, and V. V. Flambaum, Using optical clock transitions in Cu
IT and Yb III for timekeeping and search for new physics, Phys. Rev. A 104, 053109
(2021).

I presented this work at two international conferences:
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1. New optical clocks based on Cu II, Yb III, Hf II, Hf IV, and W VI ions which may
be used to search for dark matter and variation of the fine structure constant, 16th
workshop on the Dark Side of the Universe, the University of New South
Wales, Sydney, Australia, December (2022).

2. New optical clocks based on Cu II, Yb III, Hf I, Hf IV, and W VI ions which may
be used to search for dark matter and variation of the fine structure constant, 24th
Australian Institute of Physics Congress, Adelaide Convention Centre,

Adelaide, Australia, December (2022).

8.2 Abstract

We study the 1Sy — 3Dy and 1Sy — 3 D3 transitions in Cu II and the 'Sy — 3 P§ transition
in Yb III as possible candidates for the optical clock transitions. A recently developed
version of the configuration interaction method, designed for a large number of electrons
above the closed-shell core, is used to carry out the calculation. We calculate excitation
energies, transition rates, lifetimes, and scalar static polarizabilities of the ground, clock
states, and blackbody radiation shift. We demonstrate that the considered transitions have
all features of the clock transition leading to prospects of highly accurate measurements.
A search for new physics, such as time variation of the fine-structure constant, is also

investigated.

8.3 INTRODUCTION

Extremely high accuracy of the frequency measurements for the optical clock transitions
naturally lead to the use of the transitions not only for time keeping, but also for the search
of the manifestations of new physics beyond the standard model, such as local Lorentz
invariance (LLI) violation and time variation of the fine-structure constant (o = e*/hc)

(see, e.g., Refs. [118]). Oscillating variation of the fine-structure constant may be produced
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by interaction of a low-mass scalar dark matter field with a photon field (see, e.g., Refs. |9}
13]). Therefore, the measurement of such variation provides an efficient method to search
for dark matter using atomic clocks, which have already provided improvement of the

constraints on the scalar-photon interaction constants up to 15 orders of magnitude [9-13].

The search for new physics with atomic clocks usually involves measuring the frequencies
of two clock transitions against each other over a long period of time. Both transitions
must be very narrow and not sensitive to perturbation to allow extremely high accuracy
of the measurements. They also must have different sensitivities to new physics so that
under the studied effect, frequencies change at different rates and maybe even in different

directions. Having both transitions in the same atom brings additional convenience.

The relative uncertainty of the frequency measurements for the best optical clocks is on
the level of 10718, For example, it is 9.4 x 1071 for A1™ [4], 3.0 x 1078 for Yb™ [6], and
1 x 10718 for Yb [14]. Unfortunately, most of working optical clocks are not very sensitive
to new physics. Among the examples listed above, only Yb™ clock transition is highly
sensitive to a variation of the fine-structure constant [2}/15,16] and to the LLI violation
[3,17]. Therefore, there is an ongoing search for new clock transitions which may combine
high accuracy of the measurements with high sensitivity to new physics, e.g., to the time
variation of the fine-structure constant. One way of achieving this is to use highly charged
ions [18]. This is now a large area of research with very promising perspectives (see, e.g.,

Refs. [19-21]).

Neutral or nearly neutral atoms are also considered. The important advantage of using
them is that they are very well studied. In some cases, new promising transitions can be
found in atoms that are already used for a high accuracy atomic clock. E.g., new transitions
in Yb were recently suggested [22,23] in addition to the currently used 1Sy — 3P clock
transition. Clock transitions between metastable states in Yb II have been suggested in
Ref. [24]. A good guide for finding atomic clock transitions sensitive to variations of « is
to look for metastable states which are connected to the ground state (GS) via transitions
that can be approximately considered as s—d, s— f, or p— f single-electron transitions [25].

The s — d transitions of this kind were considered in Cu, Ag, and Au atoms in Ref. [26].
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In the present paper, we consider the 'Sy — 3Dy and 'Sy — 3 D3 transitions in Cu II and
the 1Sy — 3Pg transition in Yb III (see Figs. and . Transitions in Cu II are the
s — d transitions, the transition in Yb III is the s — f transition. In our early work [15],
we suggested to use the 4f1* 18y — 4f135d 3P¢ in Yb III for the search of the variation
of the fine-structure constant. The prospect for precision measurement of the frequency
of this transition was considered in a recent paper [27]. However, this transition has
an important drawback. There is a decay channel via magnetic dipole transition (M1)
into the lower-lying state 4f!35d 3P?. This may make the considered transition not be
sufficiently narrow to ensure high accuracy of the measurements. This problem was not
discussed in Refs. [15] or [27]. In the present paper, we consider a different transition, a

transition from the ground state to the first excited-state 4f135d 3P.

This is a very narrow transition with a similar sensitivity to the variation of the fine-

structure constant. We demonstrate that it has all features of the atomic clock transition.

Several studies have analyzed the energies and transition probabilities for both ions,
Cu II [28-30] and Yb IIT [31,132] theoretically and experimentally (see also Ref [33] and
references therein). This gives us an opportunity to compare results to have confidence in
the accuracy of the analysis. None of the previous studies focused on transitions in Cu II
and Yb III in sufficient detail to study their suitability for time keeping and searching for

new physics.

8.4 METHOD OF CALCULATION

As can be seen from the spectra of the Cu II and Yb III ions, the excited states of the Cu
IT ion have an open 3d shell, and the excited states of the Yb III ion have an open 4 f shell.
Therefore, to perform the electron structure calculations for both ions, the recent version
of the configuration interaction (CI) method was used, which has been designed to deal
with a large number of valence electrons [34]. The method combines CI with perturbation

theory (PT) and is called the CIPT method. The method reduces the size of the effective
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Cull
944, 3
3d4p Py F-67917 cm™!
3d%4p 3P E=66419 cm™
Cooling (E1)
A=147 nm
3d%4s 'Dy —1——— E=26265 cm™!
3d%°4s 3D —1——— E=23998 cm™!
3d°4s 3D, ——4— E=22847 cm™!
3d%°4s3D3 _T E=21929 cm™
Clock (E2)] 1
A=438 nm| ; |
! 1 Clock (hfs+E2)
1 1 A=456 nm
11
34015, —XYY __ p_

Figure 8.1: The energy diagram for the states of the Cu II ion relevant for the optical ion
clock. The electric dipole cooling transition is shown as a solid blue line, and the clock
transitions are shown as short-dashed red lines.

CI matrix by neglecting the off-diagonal matrix elements between high-energy basis states
and reducing their contribution to PT corrections to the matrix elements between low-

energy basis states.

The eigenvalues E and eigenstates ¥ can be found by solving the CI equations with the

effective HCT matrix,

(HE! — BTy =0, (8.1)

where [ is the unit matrix. Matrix elements of the effective CI matrix contain PT-type
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Yb III

411354 3P E=45277 cm™!
I : Leaking (M1)
| i A=1800 nm
4f135d°PY E=39721 cm"!
413543DY :i E=39141 cm™!
1
4f%s'Fy L | p_34991 e
4f16s3F) —T—T— E=34656 cm™!
4f135d SI’;’ _:_T E=33386 cm ™!
1

1
A=221 nm

1
: ' Clock (M2, hfs+E1)
| 1A=300 nm
Cooling (E1),
A=252 nm,

4f14 150 ! Y i E=0

Figure 8.2: The energy diagram for the states of the Yb III ion relevant for the optical
ion clock. The electric dipole cooling transition is shown as a solid blue line, the clock
transition is shown as a short-dashed red line, and the purple dotted lines show the leakage
transition.

corrections from the high-energy states,

a CI CI
(@HEo) > (@l + 3 WO, 52)
h

Here a and b are low-energy states, and E}, is the diagonal matrix element between high-

energy states (Eh = <h ‘HCI‘ h>>

To produce a set of complete single-electron basis states for both ions, we start the cal-
culations with the Dirac-HartreeFock (DHF) method in the V¥V approximation with all
atomic electrons included. It seems to be natural to start from the [Ar ]3d'° configura-

tion for Cu IT and the [Xe]4f!4 configuration for Yb III. However, such a choice of initial
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approximation is good for calculating the ground states of the ions. Since we need to
calculate excited states as well, which have excitations from the 3d or 4f subshell, the
choice of initial approximation is not obvious, and it is dictated by the accuracy of the
final results. It turns out that the best results are obtained if we start from the [Ar]3d?4s

configuration for Cu II and the [Xe]4f!* configuration for Yb IIL.

The single-electron basis states are then constructed using B splines [35,36] with 40B-
spline states on the order of £k = 9 in a box of the radius R,.x = 40ap with orbital angular
momentum 0 < [ < 4. To carry out the calculations of the transition amplitudes and
hyperfine structure (hfs), we use the time-dependent HF method [37], which is equivalent

to the random-phase approximation (RPA). The RPA equations can be written as

(HEHE _ e Votpe = —(d 4 6V N ). (8.3)

Here, the relativistic Hartree-Fock is (RHF), d refers to the operator of an external field,
which can be any field, which is sufficiently weak to be considered in linear approximation.
€. is the energy of electron state ¢, 1. is the state wave function, and §V denotes
the correction to the self-consistent potential caused by the effect of an external field.
Equation is solved self-consistently for all states ¢ in the core. As a result, the
correction to the core potential 6V is found. Then reduced matrix elements for valence

states are calculated using the expression,

Apsa = (Wal|d + SV ||p). (8.4)

The electric dipole (E1), magnetic dipole (M 1), electric quadrupole (E2), magnetic quadrupole
(M2), and electric octupole (E3) transition probabilities (in atomic units) from upper state

b to lower state a can be written as

3 A%1,M1
20y +1°

Trim1 = 5 (aw) (8.5)

3
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8.6
5“9 11 (8.6)

Tr2.Mm2 =

AQ
Tgs = 0.00169(aw)7ﬁ. (8.7)
b

Here « is the fine-structure constant, w is the energy difference between the lower and
the upper states, A is the transition amplitude , Jp is the total angular momentum
of the upper state b. Note that magnetic amplitudes Apsq1 a2 contain the Bohr magneton
pp (g = a/2 ~ 3.65 x 1073 in atomic units). For some strongly forbidden transitions
leading contribution comes from electromagnetic transitions mediated by the hyperfine
interaction. Clock transitions in 9365Cu II and "173YDb III are good examples of such

transitions. The transition amplitude is

alAngs|n) (n|Ag1, g2|b) n <b!Ahfs!n><n|AE1,E2a)) (8.8)

Anfs—p1,E2(b = a) = Z << E —E E,—FE

Here Ayg is the operator of the magnetic dipole or electric quadrupole hfs interaction,
Ag1,g2 are the operators of the E'1 and E2 transitions. Summation in goes over
a complete set of intermediate states |n) (for more details, see, e.g., Refs. [29,38-40]).
In practice, it is usually sufficient to include few close states into the summation over
n. For example, the leading contribution to the transition amplitude of the 1Sy — 3Ds
clock transition in Cu II comes from the electric quadrupole transition mediated by the
magnetic dipole hfs interaction. It is sufficient to include three intermediate states into

the summation, the 3d%4s 3D, ! Do, and 3D; states. Then Eq. (8.8)) becomes

3D3| Apgs|® D) (3 Da| A | So)
E(Dy) - B(Dy)

(®D3| Angs| Do) (1 Da| A2| ' So) n (D3| Ap2|®D1) (3 D1 | Apgs| ' So)
E(3D3) — E(D2) E(1Sy) — E(®D1)

AhfS_E2(3d94S 3D3 — 3d10 ISO) = <
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For the 1Sy — 3 P§ transition in the Yb III ion, the hyperfine-induced E1 transition ampli-

tude is expressed as

° P3| Angs|*PP) (P PP | Apa|* o)
E(Pg) — E(*FY)

Apgs—p1(4f35d 3PY — 4f1118)) = < (8.10)

Transition amplitudes , (8.10) depend on the values of the total angular momentum
F of a specific hfs state (F = J 4+ I, where I is the nuclear spin). Detailed equations can
be found in Refs. [29,138-40]). To find corresponding transition rates, we use Eqs. (8.5)

and , replacing Agy by Angs—pg1 in Eq. (8.5)), and Ags by Apg_po in Eq. .

Radiative lifetimes T; of each excited state b can be obtained as

Ty = 1/2Tab, (8.11)

where the summation goes over all possible transitions to lower states a.

Accuracy of the calculations with the use of the CIPT method for complicated atomic
systems (open p, d, and f shells) was studied in detail in our previous papers (see, e.g.,
Refs. [34,41-44]). It is about a few percent for the energies of low-lying states and about a
few tens of percent for the matrix elements. Accuracy tends to go down for higher states
due to proximity to the high-energy states, which are treated perturbatively. It is also lower
for states of complicated configurations involving more than two single-electron states.
This is due to a larger number of possibilities for exciting one or two electrons to different
states leading to a very large basis of many-electron states. Only a small fraction of their
states are included in the effective CI matrix [Eq. ], the rest are treated perturbatively.
In principle, it is possible to improve the accuracy of calculations by moving the boundary
between low- and high-energy states up the energy scale leading to the increased size of
the effective CI matrix. However, it is a numerically expensive procedure, requiring large
computer power. In the end, the accuracy of present calculations is sufficient for the
purposes of present paper, which is checking that studied atomic systems can be used as

atomic clocks.
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8.5 RESULTS

8.5.1 Energy levels, transition probabilities, and lifetimes.

Table presents calculated energy levels and lifetimes of the low-energy states of Cu 11
and Yb III ions compared with experimental data and other calculations. The lifetimes
were calculated using transition probabilities presented in Table [8:2] The results for the

energies are in sufficiently good agreement with experimental data from NIST.

The average difference between the NIST and the calculated data for Cu II is ~100 cm ™1,
whereas for Yb III, the difference is ~4000 cm~!. Note that different sources present
different state labeling for Yb III (see, e.g., Refs. [27,[33]). Therefore, for the sake of easy
comparison, we present in the table state labeling based on both commonly used schemes,

the J-J and L-S schemes.

Table[8.2) presents calculated transition amplitudes and transition rates and compares them
to the experimental data and other theoretical values. Lifetimes of the states calculated
using transition rates from Table [8:2] are presented in Table As can be seen from the
tables, the present results for the Cu II ion are in good agreement with the experimental
data and other calculations. For the transition between the first excited-state 3d%4s 3Ds
and the ground state, the dominating contribution comes from the hfs-induced electric
quadrupole transition [see Eq. (8.9)]. This transition was studied before in Ref. [29] using
the same strategy. The results for two isotopes of Cu are compared in Table[8.3] indicating
good agreement. The same table shows hfs-induced transition rates for the clock state (c.s.)

of 1"Yb and 13YD.

For the transition rates of the Yb III ion, we compared our results with the theoretical
values of Safronova and Safronova [31]. They carried out theoretical calculations using the
second-order RMBPT. The results are in reasonably good agreement with our calculations.
The most noticeable disagreement is about two times difference in the M2 transition rate
between the clock and the ground states. Given that hfs-induced F1 transition also gives

a significant contribution to the transition rate, and this contribution was not considered
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Table 8.1: Excitation energies (E, cm™!) and lifetimes () for some low states of Cu IT and Yb III ions.
Energy (cm™!) Lifetime
Other Other
No.  Conf. Term Present NIST [33] Cal Present Expt. Cal.
Cull
1 3d1° 1So 0 0 0 00
2 3d%s 3Ds 21932 21929  22469*  ~10%s
3 3Dy 22733 22847 233812 78s
4 3Dy 23705 23998 24495%
5  3d%4s 1Dy 25833 26265 268402
6  3d%4p 3Py 66623 66419  66984°
7 Spp 67922 67917  68703° 22ns  2.36 &+ 0.05 ns® 2.39 ns, 2.21 ns®
Yb III
1 4 f14 1So 0 0 0 0
2 4fB5d  (7/2,3/2)3 =3Py 29208 33386 397559  ~2000 s° 6017 4
3 4f35d  (7/2,3/2)s =3DS 33839 39141 444294
4 4fB6s (7/2,1/2)3 =3FY 35000 34656 363364
5 4fB36s  (7/2,1/2)8 = 'FY 36418 34991 367644
6 4f135d (7/2,5/2) =3P 35288 39721 397629 250 ns  230(20) ns' 166 ns, 270 ns'
181 nsd
7 4f1B5d  (5/2,5/2)3 =3RS 41059 45277 494691  0.133 s 0.1490 s4

* Reference [29|.

b Reference |30]; for the lifetime, the first value was obtained using the length gauge, and the second was obtained using the velocity
gauge.

¢ Reference [28].

4 Reference [31]; the value was obtained using the relativistic many-body perturbation theory (RMBPT) method.

¢ The M2 and hfs- E1 transitions are taken into account, see Tables [B:2]and [8:3]for details.

f Reference [32]; the first calculated value was obtained using the RHF method + core polarization (CP) effects, and the second

calculated value was obtained using the same procedure with including 5s, 5p, and 4f to the CP effects.
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Table 8.2: Transition amplitudes (4, a.u.) and transition probabilities (7', 1/s) evaluated with NIST frequencies for some low

states of Cu II and Yb III ions. Semi.= Semiempirical.

(w), NIST [33] Present Other, T (s71)
Transition Type (cm™1) (a.u.) A (au.) T (571 Exp. 28] Semi. 30 Cal.
Cu II
241  hfs-E2 21929  0.0999 ~2x107%  ~10782
3e1 E2 22847  0.1041 0.890  0.110 0.104, 0.157°
342 M1 918 0.0042 2.070up  1.790x 1072 1.70x1072¢
541 E2 26265 0.1197 -2.727  2.080 1.937, 2.687°
7T 1 El1 67917  0.3095 -0.182  6.689x1076 11.3x1076  8.5x10%6 7.6x1016, 7.7x1016d
72 E3 45988  0.2095 -0.346  5.459x10°8
73 E1 45069  0.2054 2489  3.826x1078 3.419x1018  3.474x101®  3.425 x1078, 3.628x1018d
7T 4 E1 43918  0.2001 1.097  6.875x1077 6.29x10t7  6.35x10T7  6.29 x1017, 7.16x 10174
75 E1 41652  0.1898 0.379  7.014x1076 7.7x1076 8.5x1076 6.8x1076, 7.6x1076d
76 E2 1498 0.0068 0.656 1.211x1077
Yb III
2 ¢ 1 M2 33386  0.1521 5.612up  3.895x10~* 1.662x10~4¢
2+ 1 hfs-E1 33386  0.1521 ~1076  ~10748
6 <1 E1 39721  0.1810 0.308 4.015x1016 5.524x1076¢
6 < 2 M1 6335 0.0289 1.583up  5.726 5.702¢
6 < 3 E2 580 0.0026 0.909  2.017x107?
6 <5 E2 4730 0.0216 7.202  4.579%x1073 3.516x1072¢
742 E2 11891  0.0542 0.529  7.442x1073 5.209%x1073¢
76 M1 5556 0.0253 1.275up  7.523 6.706°

@ See Table B.3]for details.
P Reference [29]; the first value was obtained using the Babushkin gauge, and the second value was obtained using the Coulomb gauge.
¢ Reference [46].
4 Reference |30]; the first value was obtained using the length gauge, and the second value was obtained using the velocity gauge.
¢ Reference |31]; the value was obtained using the RMBPT method.
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Table 8.3:
Yb IIT to the ground state.

Rates in s~ ! for hfs-induced transitions from the clock states of Cu II and

Isotope F This paper Reference [29]
03Cu 11 7/2  8.06 x 1077 9.19 x 107
I=3/2, u=22233 5/2  7.64x 107" 8.72 x 107
3/2  3.76 x 107 4.29 x 1079
65Cu 11 7/2  9.25x 107° 1.06 x 1078
I=3/2, un=23817 5/2 8.77x107° 1.00 x 1078
3/2 4.32x107° 4.93 x 107°
17yp 11 3/2 123 x1074
I=1/2, 1 =0.4919
173yb 111 7/2  841x107°
I=5/2, p=-06776 5/2 7.97x107°
3/2  3.92x107°

in Ref. [31], the total difference in the lifetime of the clock state is about three times (see

Table .

The data on lifetimes for the states of both ions are presented in Table The present
results are compared with experimental and other theoretical calculations. For the Yb
I1I ion, Zhang et al. [32] have obtained the lifetime result for the 4f135d3 P state both
experimentally and theoretically. They performed the calculations using two variations of

the RHF method of Cowan [45], which differ by the ways of inclusion of the CP effect.

8.5.2 Polarizabilities and blackbody radiation shifts

Static scalar polarizability «,(0) of an atom in state v is given by

2 A2
320y + 1) &= wuy

ay(0) = (8.12)

where J, is the total angular momentum of state v, A,, are the amplitudes (reduced

matrix elements) of the electric dipole transitions, w,, is the frequency of the transition.
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Equation is valid when all wave-functions v and n are many-electron wave functions
of the whole atom. It can also be used to calculate valence contributions to the polariz-
ability if v and n are many-electron wave functions for the valence electrons only. Then,
the contribution from core electrons should be calculated separately. For the closed-shell
core (or closed-shell atom or ion, such as Cu IT or Yb III in the ground state), Eq.

can be reduced to

2 N
ap(0) = 3 > (v]d]|dee), (8.13)
c
where d is the operator of the electric dipole moment and d%. is the RPA correction to the
core state ¢ [see Eq. (8.3)]. The summation goes over all states in the core. We neglect the
change in the RPA corrections to the core states due to the excitation of an electron from
the ground to the upper clock state. This is a small effect which is beyond the accuracy

of our calculations.

To calculate the polarizabilities of the clock states, we use the approach developed in
Ref. [47] for atoms or ions with open shells. It is based on Eq. and the Dalgarno-
Lewis method [48], which reduces the summation over the complete set of states to solving
a matrix equation (see Ref. [47] for details). This approach treats the 3d electrons in Cu
IT and 4f electrons in Yb III as valence electrons. To calculate the contributions of the
core electrons below the 3d or 4f shells, we use Eq. in which the summation over
the core state is limited to states below 3d or 4f. To minimize the error in the difference
between the ground state and the clock state polarizabilities, we use the same approach

for both states of both ions.

The results are presented in Table [8:4 Our results for the ground-state polarizabilities
are in excellent agreement with previous calculations. The polarizabilities of the excited

states of Cu II and Yb III ions are calculated here.

The shift in the frequency of the clock transition due to blackbody radiation (BBR) is
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given by [51]

Svppr = —1.6065 x 107% x T*Aa/(0), (8.14)

where T' is a temperature (e.g., room-temperature 7' = 300 K), Aa(0) = ap (c.s.) — ap
(g.s.) is the difference between the clock state and the ground-state polarizabilities. The
calculated frequency shifts are presented in Table [8:4] The fractional BBR shifts for our
Cu 1II are close in value to those of Zn: —2.54 x 1076, Cd: —2.8 x 10716 [52], and Cu:
—3.4 x 10716 [26] and smaller than some other atomic clocks, such as Ca [53] and Sr [54]
where the fractional BBR shift is at the level of 10715, As for the BBR shift in the Yb III
clock transition, its fractional value of —5.95 x 10717 is one of the smallest among optical

clock transitions.

8.5.3 Zeeman shift and electric quadrupole shift

Clock transition frequencies might be affected by external magnetic and electric fields.
Zeeman shift caused by magnetic field strongly depends on whether the atom or ion has a
hyperfine structure. Both stable isotopes of copper (63Cu and 65Cu) have nonzero nuclear
spin (I = 3/2) and nonzero hfs. On the other hand, five stable isotopes of Yb have zero
nuclear spins and in two isotopes, spin is not zero (for '"Yb I = 1/2 for '3Yb I =5/2).
For atoms with zero nuclear spin, the firstorder Zeeman shift can be avoided by considering
transitions between states with J, = 0, whereas the second-order Zeeman shift is small

due to the absence of the hfs.
Below we consider isotopes with nonzero nuclear spin, %3Cu and "'Yb.

The linear Zeeman shift is given by

AEF7FZ :gFuBBFZ, (815)
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Table 8.4: Scalar static polarizabilities of the ground states g (g.s.s) and clock states g (c.s.s.) and BBR frequency shifts
for the clock transition of 3Cu II and '"'Yb III. dvpgr/w is the fractional contribution of the BBR shift; where w is the
clock transition frequency.

ao(g.ss) (a%) ap(c.s.s.) (a}) BBR, (T= 300 K)
Transition Present Other Cal. Present Aa(0) dvppr (Hz) w (Hz) ovpBR/w
Cull
21 5.36 5.362 24.12 18.76 —0.1616 6.57x10114 —2.46x10716
31 5.36 5.362 24.05 18.69 —0.1610 6.85x 10114 —2.35%10716
Yb III
261 6.39 6.55P 13.29 6.90 —0.0595 1.00x107™® —5.95%x10~17

* Reference [49|.
P Reference [50].
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where gr is the g factor of a particular hfs state. It is related to the electron g factor by

gr = gj(F,F, = F,I,J|J,|F,F, =F,I,J)/F. (8.16)

Electron g; factors have values of g3 = 1.32, go = 1.16 for Cu II [33], and g2 = 1.46 for
Yb IIT (calculated value). The linear Zeeman shift can be suppressed by averaging over

the transition frequencies with positive and negative F,.

The second-order Zeeman shift for transition between definite hfs components is strongly
dominated by transitions within the same hfs multiplet. Note that in this approximation,
the shift is zero for the ground state (because J = 0 ). For the clock states, the shift is

given by

(F'F!1J|J,|FF.I])z|?
AEy(F, F') ’

SEpp, = Y.

F'=F41,F!

(8.17)

where x = gjup By, (in which g7 is electron g factors, pp is the electron magnetic moment,
and B, is a magnetic field), and AEyw (F, F') = E(FI1J) — E (F'IJ) is the hfs interval.

For more details, see Ref. [26].

To calculate this shift, we need to know the hfs of the clock states. We calculated the
hfs using the CIPT and RPA methods as described above. The results for magnetic
dipole hfs constants A and electric quadrupole hfs constants B are presented in Table
Using these numbers and Eq. we calculate the second-order Zeeman shift for all hfs
components of the clock states of the %3Cu II and '"'Yb III ions. The results are presented
in Table The shift is small and only slightly larger than in clock transitions of Cu, Ag,
and Au [26]. As in the case considered in Ref. [26], the shift can be further suppressed
by taking appropriate combinations of the transition frequencies. It might be even easier
here since we need to worry only about suppressing the Zeeman shift for the clock state

whereas it is already strongly suppressed for the ground state. The electric quadrupole
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Table 8.5: Hyperfine structure constants A and B in (megahertz) of %3Cu IT and '"*Yb IIT
ions. Nuclear spin I of (3Cu)= 3/2 and I of (}!"'Yb) = 1/2 , nuclear magnetic moment
p(83Cu) = 2.2236(4)un and p(1"Yb) = 0.49367(1)uxn [55]; nuclear electric quadrupole
moment Q(%3Cu) = —0.220(15)b [56] and Q(*"'Yb) = 0.

No. Conf. Term E (em™1) hfs A hfs B
63Cu II
1 3d%4s 3Ds 21932 -186.46 -1.970
2 3d%4s 3Dy 22733 -34.62 -1.097
1"ypb III
1 4f135d 3Py 29208 -41.46 0

shift is due to the interaction of the atomic quadrupole moment ) with the trapping the

electric-field gradient and a corresponding term in the Hamiltonian is

1 ok
QT o0,

(8.18)

Here z is the quantization axis determined by the externally applied B field. The spherical
)

components of the quadrupole moment operator Qm = ’6’7"207(3 are the same as for
the electric quadrupole (E2) transition. The energy shift of a state with total angular
momentum J is proportional to the atomic quadrupole moment of this state. It is defined
as twice the expectation value of the spherical component Qo = Q.. /2 of the quadrupole

operator in the stretched state,

Qs =2(J,J. = J|Qo|J, J. = J). (8.19)

We calculate the values of @ ; using the CIPT and RPA methods. The results are Q3 =
0.537 a.u. for the 3D3 clock state of Cu II, Q2 = 0.299 a.u. for the 3Dy clock state of
Cu II, Q2 = —2.369 a.u. for the clock state of Yb III. Note that Q = 0 for the ground

states of both ions because of the zero value of the total angular momentum J.
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Table 8.6: Second-order Zeeman shifts E. [mHz/(uT)?] for the clock states of 171Yb IIT
and %3Cu IL

(AE,)/Bz,
G3Cu II Tyb 111
No. F, F,. 3Ds 3Dy 3Py

1 1/2 +1/2 9.127
2 3/2 +1/2 0.8687 —5.967 1.021
3 3/2 +3/2 0.5792 2.107 0.6807
4 5/2 +1/2 —0.3555 —2.265 —1.021
5 5/2 +3/2 —0.1515 —1.360 —0.6807
6 5/2 +5/2 0.2566 0.4478 0.000
7 7/2 +1/2 —0.3087 —0.8957
8 7/2 +3/2 —0.2436 —0.7464
9 7/2 +5/2 —0.1134 —0.4478
10 7/2 +7/2 0.0818 0.000
11 9/2 +1/2 —0.2045
12 9/2 +3/2 —0.1841
13 9/2 +5/2 —0.1432
14 9/2 +7/2 —0.0818
15 9/2 +9/2 0.000

8.5.4 Sensitivity of the clock transitions to variation of the fine-structure

constant

Dependence of frequencies of atomic transitions on the fine-structure constant in the vicin-

ity of their physical values can be presented as

w=wy+q [(2‘0)2 - 1] (8.20)

where ag and wy are the present-day values of the finestructure constant and the frequency
of the transition and ¢ are sensitivity coefficients that come from the calculations [15].
When one atomic frequency is measured against another over a long period of time, their

relative time change is related to the time change of o by

G192 (g LK) g (8.21)

185



CHAPTER 8. USING OPTICAL CLOCK TRANSITIONS IN CU II AND YB III FOR
TIMEKEEPING AND SEARCH FOR NEW PHYSICS

Table 8.7: Sensitivity of clock transitions to the variation of the fine-structure constant
(¢ and K = 2q/FE") for clock transitions in Cu II and Yb IIIL

No. Conf. Term  Eeyp (cm™ 1) q(cm™1) K
Cull
1 3d4s 3Ds 21929 —4350 —0.40
2 3d%4s 3Dy 22847 —3700 —0.32
Yb III
1 4f135d  3Pg 33386 —42750 —2.56

The dimensionless value K = 2¢/w is usually called the enhancement factor. To calculate
q (and K ), we run computer codes at two different values of a and calculate the numerical

derivative,

w(0) — w(—9)

.22

q=
where § = (a/ag)? — 1 [see Eq. [8.20]. The value of § must be small to ensure linear
behavior but sufficiently large to suppress numerical noise. Using § = 0.01 usually gives
accurate results. The calculated values of ¢ and K for clock transitions of Cu II and Yb
IIT are presented in Table As one can see, the sensitivity of the clock transitions of Cu
II to variation of « is not very high, so they may be used as anchor lines for a comparison
with a high-K transition [see Eq. ] The sensitivity of the Yb III clock transition is
one of the highest among the systems considered so far. It is close to the sensitivities of
recently suggested clock transitions in Yb [22] and Au [26] and slightly smaller than the

sensitivity of the most sensitive clock transitions in Yb II and Hg IT |15].

8.6 CONCLUSION

We have investigated a possibility to use Cu II and Yb III ions as optical ion clocks of
high accuracy. Energy levels, lifetimes, transition rates, scalar static polarizabilities of
the ground and clock states, and the BBR shifts have been calculated using the CIPT

method. We have obtained a good agreement with previous data that are available to
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compare. Sensitivity to "new physics," such as variation of the fundamental constants has
been studied. The uncertainty estimates for the Yb III ion and its high sensitivity to
new physics indicate that Yb III atomic clock may successfully compete with the latest

generation of clocks.
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Chapter 9

Atomic clocks highly sensitive to
the variation of the fine-structure
constant based on Hf 11, Hf 1v, and

W VI ions

9.1 Overview

In this chapter, we continue the search for promising atomic clock candidates by studying
Hf 11, Hf v, and W VI ions. According to our results, the metastable states in these
ions possess all of the properties of atomic clock transitions, which include their long-
term stability and insensitivity to perturbations, which may differentiate them from other
atomic states. We found that the sensitivity coeflicient to the o variation of the atomic
optical clock is among the highest in all operating or prospective atomic optical clocks. A
significant advantage also of these systems is the existence of a sufficiently large number
of stable isotopes, making possible the use of the isotopes in the search for nonlinearities

of the King plot.
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This study has been published in this paper:

S. O. Allehabi, V. A. Dzuba, and V. V. Flambaum, Atomic clocks highly sensitive to the
variation of the fine structure constant based on Hf 11, Hf 1v, and W VI ions, Phys. Rev.

A 106, 032807 (2022).

I presented this work at two international conferences:

1. New optical clocks based on Cu II, Yb III, Hf IT, Hf IV, and W VI ions which may
be used to search for dark matter and variation of the fine structure constant, 16th
workshop on the Dark Side of the Universe, the University of New South
Wales, Sydney, Australia, December (2022).

2. New optical clocks based on Cu II, Yb III, Hf I, Hf IV, and W VI ions which may
be used to search for dark matter and variation of the fine structure constant, 24th
Australian Institute of Physics Congress, Adelaide Convention Centre,

Adelaide, Australia, December (2022).

9.2 Abstract

We demonstrate that several metastable excited states in Hf II, Hf IV, and W VI ions
may be good clock states since they are sufficiently long-living and are not sensitive to
the perturbations. The cooling electric dipole (F1) transition is available for Hf II, while
sympathetic cooling is possible for Hf IV and W VI using Ca™ or Srt ions. Energy
levels; Landé g factors; transition amplitudes for electric dipole (E1), electric quadrupole
(E2), and magnetic dipole (M1) transitions; lifetimes; and electric quadrupole moments
for Hf I, Hf IV, and W VT ions are investigated using a combination of several methods of
relativistic many-body calculations including the configuration interaction (CI), linearized
coupled-cluster single-doubles (SD), and many-body perturbation theory (CI 4+ SD), and
also the configuration interaction with perturbation theory (CIPT). Scalar polarizabilities

of the ground states and the clock states have been calculated to determine the blackbody
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radiation (BBR) shifts. We have found that the relative BBR shifts for these transitions
range between 10716 and 107!8. A linear combination of two clock transition frequencies
allows one to further suppress BBR. Several 5d-6s single-electron clock transitions ensure
high sensitivity of the transition frequencies to the variation of the fine-structure constant o
and may be used to search for dark matter producing this variation of . The enhancement
coeflicient for the « variation reaches K = 8.3. Six stable isotopes of Hf and five stable
isotopes in W allow one to make King plots and study its nonlinearities in order to put

limits on the new interactions mediated by scalar particles or other mechanisms.

9.3 INTRODUCTION

Atomic clocks possess a high degree of accuracy, allowing them to be used for a wide
variety of scientific and industrial applications. In recent years, the optical lattice atomic
clock and the ion clock both have been significantly enhanced to achieve uncertainties or

stabilities of 1071 [1-8].

Due to the high accuracy of the frequency measurement of optical clock transitions, these
transitions can be used not only to ensure timekeeping but also to search for new physics,
such as local Lorentz invariance violation, time variation of the fundamental constants
(a= e?/ he), and other phenomena which go beyond the standard model (see, e.g., Refs. |1,
3.(6L7,9H14] ).

Most of operating optical clocks use the 'Sy to 3Py transition between states of the ns% /2
and nsionp; e configurations. These transitions have low sensitivity to variation of the
finestructure constant [15,(16]. It was shown in Ref. [12,[13] that maximum sensitivity to
the « variation corresponds to the maximum change in the total angular momentum j
of the equivalent single-electron transitions. However, the abovementioned transitions are
the nsy/y to npy/p transitions with Aj = 0. It was suggested in Refs. [12,/13,/17] to use
transitions between states of different configurations. The most prominent example of this

kind among operating optical clocks is the clock based on the Yb™ ion, in which the 4 f; /2-
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6s1/2 and 6sy/9-5d5/5 transitions are used for timekeeping and constraining of the time
variation of the fine-structure constant [18-20]. A number of the promising transitions
were studied in earlier works [17,21-23]. In the present paper we continue the search for
promising candidates and study the s-d and d3/o-d5/5 clock transitions in Hf II, Hf IV,
and W VI. An important advantage of these systems is the existence of a sufficiently large
number of stable isotopes of Hf and W. Hf has six stable isotopes, including four isotopes
with zero nuclear spin (this includes a long-living 1" Hf isotope with a lifetime of ~2 x10'°
years and a natural abundance of 0.16% ). W has five stable isotopes with three zero
nuclear spin isotopes. This allows the use of the isotopes in the search for nonlinearities of
the King plot. The minimal requirements for this include having four stable isotopes and
two transitions where high accuracy of the measurements is possible. This is the case for
both Hf and W. The study of the nonlinearity may help to obtain information on nuclear
structure and put constraints on new interactions mediated by scalar particles [24}25].
In addition, the Hf II ion has three metastable states, making it possible to construct
two independent combinations of the frequencies of the clock transitions with suppressed
blackbody radiation shift. Measuring one such combined frequency against the other over
a long period of time is a highly sensitive tool for the search of the time variation of the

fine-structure constant.

We provide a detailed analysis of the electronic characteristics of certain low-lying states of
these systems. We use the CI 4 SD (configuration interaction with single-double coupled-
cluster [26]) and the CIPT (configuration interaction with perturbation theory [27]) meth-
ods for our calculations. Our studies investigate the energy levels; Landé g factors; tran-
sition amplitudes; E1, M1, and E2 transitions for the low-lying states; lifetimes; and
quadrupole moments. Using the technique described in Ref. [28], we also calculate the
scalar polarizabilities of the ground and excited clock states in order to determine the
blackbody radiation (BBR) shifts. The sensitivity to the variation of the fine-structure
constant is estimated by calculating excitation energies with different values of « in the
computer codes. We demonstrate that the considered clocks are good candidates for very

accurate timekeeping and are sensitive to new physics.
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9.4 METHOD OF CALCULATION

9.4.1 Calculation of energy levels

The Hf IT, Hf IV, W VI ions have similar electron structure with the [1s2, ..., 5s25p54 f14]
closed-shell core and three valence electrons in Hf I and one valence electron in Hf IV and
W VI. The calculations are performed by combining the configuration interaction (CI)
technique with the linearized single-double coupled-cluster (SD) method, as described in
Ref. [26]. We start with the relativistic Hartree-Fock (RHF') calculations for the closed-

shell core, which corresponds to the V=M

approximation [29]. Here N is the total number
of electrons in an atom or ion, and M is the number of valence electrons ( M = 3 for Hf II

and M =1 for Hf IV and W VI). The RHF Hamiltonian has the following form:

}AIRHF =co-p+ ([‘3 — 1)m02 + Vnuc (7‘) + chore (T)a (91)

where c is the speed of light, a and 3 are the Dirac matrices, p is the electron momentum,
m is the electron mass, Vi is the nuclear potential obtained by integrating the Fermi
distribution of nuclear charge density, and Vo (r) is the self-consistent RHF potential

created by the electrons of the closed-shell core.

The B-spline method is used to construct the set of singleelectron basis states [30,31]. The
states are defined as linear combinations of B-splines which are eigenstates of the RHF
Hamiltonian. Forty B-splines of the order 9 are calculated within a box of radius
Ruax = 40ap (where ap represents Bohr’s radius) and an orbital angular momentum
of 0 <1 < 6. It was found that this choice of parameters leads to the basis which is
sufficiently saturated for the low-lying states of interest. Further increase in the values
of lmax and Rpax and the number of B-splines leads to negligible change in the results.
The basis states are used for solving the linearized SD equations and for generating the

many-electron states for CI calculations.
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The SD equations for the core have the following form [26}32]

(€a = €m)Pma = Z 8mbanPnb + Z 8mbnrPrrab — Z 8beanPmnbe:s

bn bnr ben

(Ea +te —€em— 6n)pmnab = 8mnab T Z 8cdabPmncd + Z EmnrsPrsab (9'2)

cd TS

+ Z 8mnrbPra — Z 8cnabPme Z gcm"bﬁm?’ac + Z EnmraPrb
r c rec r

- Z 8embaPne T Z 8emraPrrbe
c re

Here parameters g are Coulomb integrals,

e2
)7

8mnab = // Wl (r) ¥l (re Ya (11) Py (r2) dridra,

12

and parameters € are the single-electron Hartree-Fock energies. The coefficients pp,, and
Pmnab are the expansion coefficients for the atomic wave function which are to be found

by solving the equations iteratively.

The tilde above g or p means the sum of direct and exchange terms, e.g.,

ﬁnrbc = Pnrbc — Pnrcb-

Indexes a,b, and ¢ numerate states in the atomic core; indexes m,n,r, and s numerate

states above the core; and indexes ¢ and j numerate any state.

The SD equations for valence states are obtained from Eq. by replacing the core
index a by the valence index v, removing the term >, g,,,,50r» Which has only valence
excitations, and replacing ¢, by ¢y. The energy parameter ¢y is fixed and relates to the
valence state of interest. It is convenient to introduce the correlation operators 3 and
ig, which describe the correlation interaction of external electrons with the core. Using

the SD equations for valence states one can write

<U|21|m> = (60 - Em)va (93)
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and

Gmnvw = Smnvw T Z 8cdvwPmned — Z (8envwPme + gcmvanc)

cd c
+ Z (gcnrwﬁmTvC + gcmrvﬁm“wc + Eenwr Pmrve + Eemur Prrwe (94)
rc
—8emwrPnrcv — gcnm«pmrcw)

= Cmnvw T+ <mn’i}2lvw>

The one-electron 3; operator represents the correlation interaction between valence elec-
trons and electrons in the core [33]. The two-electron Yo operator is interpreted as the

screening of Coulomb interaction between valence electrons by core electrons [34].

The CI Hamiltonian with the ¥; and Y9 operators included is

A Mo M 2
feff — 12::1 (HRHF + El)i + ; (M + 221‘]‘> . (9.5)
Here summation goes over valance electrons, ¢ and j numerate valence electrons, and e is
the electron charge. The size of the CI matrix is huge if the number of valence electrons
is large (M > 3). In calculations for Hf IT we use the CIPT technique [27] for dramatic
increase of the efficiency of the calculations at the cost of very little sacrifice in the accuracy
of the results. This is achieved by constructing the CI matrix for the Nog ’s lowest (on the
energy scale) many-electron basis state and treating the other states perturbatively. The

CI matrix in the CIPT method has the form

(i H k) (k| H )

Q) = @H) + 3 St

k

(9.6)

Here i,j < Neg, Nep < k < Niotal, Ei = <k: ’HCI‘ k>, and F is the energy of the state of
interest. Since Neg < Niota1 the task of matrix diagonalization is significantly simplified

(see Ref. [27] for details).
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The Landé g factors for low-lying states are investigated in all systems. These factors are
calculated as expectation values of the magnetic dipole (M1) operator and are compared

with the nonrelativistic expression

J(J+1) = L(L+1)+S(S+1)

L =1
g(L77 7£;> _% 2{]({] %_ 1) Y

(9.7)

where S is the total spin and L is the total angular momentum for the valence electrons,
and J is the corresponding total momentum (J = L + S). This comparison of g factors

helps in the level identification.

9.4.2 Calculation of transition amplitudes and lifetimes

The time-dependent Hartree-Fock (TDHF) method [which corresponds to the well-known
random-phase approximation (RPA)] is used to compute transition amplitudes. The RPA

equation for the core can be written as

(A = o) dwe = = (f + 0V ) v (9:8)

The operator f refers to an external field. The index ¢ denotes single-electron states in
the core, 1. is a single-electron wave function, d1. is a correction to the state ¢ due to an

external field, and §V./

e is the correction to the self-consistent RHF potential caused by

the change of all core states in the external field (see, e.g., Ref. [33]). The RPA equations
is solved selfconsistently for all states in the core. The transition amplitudes are

found by calculating matrix elements between states a and b by the formula

Aab:<b‘f+5vf

core

a) (9.9)

Here, |a) and |b) are the many-electron wave functions calculated with the CI method

described above.

202



9.5. RESULTS

In this study, electric dipole (E1), electric quadrupole (E2), and magnetic dipole (M1)
rates are taken into account, and they are calculated according to the following equations

(in atomic units):

5 (A2) 1

4
T, == , 9.10
(Tan) 1,01 3(aw) 2 1 (9.10)
1 (A%) o
Top) g2 = — (aw)® 2=, 11
(Tap) E2 15(0400) 57y 1 1 (9.11)

Here « is the fine-structure constant (a ~ %7) ,Wap 1S the frequency of the transition,
Agp is the transition amplitude , and Jp is the total angular momentum of the
upper state b. Note that magnetic amplitudes (Agp),,; contain the Bohr magneton

pe (up = /2 ~ 3.65 x 1073 in atomic units).

The lifetimes 73, of each excited state b, expressed in seconds, can be found as follows:

T, = 2.41 x 10_17/2Tab (9.12)
a

where the summation goes over all possible transitions to lower states a.

9.5 RESULTS

9.5.1 Energy levels, Landé g factors, transition amplitudes, and life-

times

The results for energy levels, g factors, and lifetimes of low-lying states of Hf IT, Hf IV, and
W VI are presented in Table[0.I]and compared with available experimental data. The data
in the table indicate excellent agreement between theory and experiment. In most states,
the deviations of the calculated energies from the observed values are within 1000 cm™!.

The agreement is also good between calculated and experimental g factors of Hf II, where
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experimental data are available. This is important for correct identification of the states.
One noticeable exemption refers to states 12 and 13 where the difference between theory
and experiment is significant. These states have the same parity and total momentum J,
and the energy interval between them is small (~1000 cm~1). This means that the states
are strongly mixed. Note that the sums of the theoretical and experimental g factors of
these states are very close. This indicates that the two-level mixing approximation works
very well for this pair of states. In principle, mixing coefficients can be corrected using
experimental g factors. See the discussion of the sensitivity of the clock states to the

variation of the fine-structure constant (Sec.[9.5.4)).

Table presents one odd state for each ion. These are the lowest odd states which are
connected to the ground state by the electric dipole (E1) transition. These transitions
can be used for cooling, at least in principle. However, the only transition in the Hf II
ion is in the ultraviolet region (wavelength is 356 nm ), where lasers are available. A
more realistic option for Hf IV and W VT ions is to use sympathetic cooling [36}37]. It is
done by co-trapping the ions with other ions (which are called "logic" ions) with a close
charge-to-mass ratio for which laser cooling is possible. The Ca™ ion seems to be a good

logic ion for W VI, while either Ca™ or Sr™ can be used for Hf IV.

Our results for transition amplitudes and transition probabilities, together with experi-
mental data and earlier calculated results, where available, are shown in Table We
consider only those low-lying states which are connected to clock or cooling states through
electric dipole (E'1), magnetic dipole (M1), or electric quadrupole (E2) transitions. Com-
paring our results on the transition rates with those from previous studies, we find good
agreement. Note that experimental values of the frequencies from the NIST database have

been used to calculate transition probabilities.

204



S0¢

Table 9.1:  Excitation energies (£), Landé g-factors, and lifetimes () for the first excited states of Hf II, Hf IV and W VL.

Possible clock states are indicated by bold state numbers. Odd states can be used for cooling.

E (cm™1) g factor T
No. Conf. Term J Present Expt. Present NIST [35] Present Ref.
Hf IT [35] 39 Expt.
1 5d6s*> D 3/2 0 0 0.793 0.787
2  5d6s> 2D 5/2 3054  3050.88 1.175 1.173 3.23s
3 5d%s ‘F 3/2 3578  3644.65 0.415 0.425 66.6 s
4  5d%s YF 5/2 4312 4904.85 1.055 1.052 9.7 s
5 5d%6s ‘P 1/2 11675 11951.70 2.653 2.598
6 5d*6s 2F 5/2 11783  12070.46 0.901 0.964
7  5d%s P 3/2 11781  12920.94 1.694 1.664
8 5d%6s ‘P 5/2 12581  13485.56 1.467 1.410
9 5d%s 2D 3/2 13836  14359.42 1.075 1.034
10 5d*s 2P 1/2 13995  15254.29 0.690 0.737
11 5d%6s 2D 5/2 17352 17368.87 1.200 1.273
12 5d%6s 2P 3/2 17199 17830.34 0.670 1.122
13 5d3 iF  3/2 18528  18897.64 0.839 0.446
14 5d° P 5/2 18284 20134.94 1.118 1.030

Continued on next page
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Table 9.1 — continued

E (cm™1) g factor T
No. Conf. Term J Present Expt. Present NIST [35] Present Ref.
15 5d3 P 1/2 24773 26996.51 2.610 2.58
16 5d° ‘P 3/2 25797  27285.13 1.697 1.643
17  5d6s6p 4F°  3/2 28580  28068.79 0.516 0.512 40.3 ns  39.44 0.2 ns
Hf IV 38
1 5d D 3/2 0 0 0.800
2 5d D 5/2 4721 4692 1.200 0.90 s
3 6s 2S 1/2 17530 18380 2.000 0.321 s
4 6p pe 1/2 66611 67039 0.667 0.78 ns
W VI 35 40| Theo.
1 5d D 3/2 0 0 0.800
2 5d D 5/2 8726 8709.3 1.200 0.14 s 0.14 s
3 6s 2s 1/2 78316  79431.3 2.000
4 6p Zpe 1/2 146912 147553.1 0.667 0.18 ns  0.184 ns

SNOI IA M ANV ‘Al dH ‘II AH NO ddSVd ILNVLSNOD dYNLONYLS-ANIA dH.L

A0 NOLLVIYVA HHL OL HALLISNHS ATHODIH SMDOOTO DINOLY 6 HHLdVHD



9.5. RESULTS

Based on the transition rates displayed in Table[0.2}, we derived the lifetimes of the excited
states (clock and cooling states) of all the atomic systems using Eq. and we present
them in Table[0.1} The lifetimes of the states presented in the table were calculated with
taking into account all possible transitions to lower states. The results show consistency

with previous studies.

Table 9.2: Transition amplitudes (A4, in a.u.) and transition probabilities (7', in s™!)

evaluated with NIST frequencies for some low states. 5.67[—3] means 5.67 x 1073, etc.

w, NIST [35] Present Ref.
Transition Type (cm™!) (a.u.) A (a.u.) T (s71) T (s71)
Hf 11 139 Expr.
2-1 M1 3050.88  0.0139 5.67[—3] 0.309
2-1 E2 3050.88  0.0139 —0.309 4.697[—7]
3-1 M1 3644.65 0.0166  —7.49[-4] 1.375[-2]
3-1 E2 3644.65  0.0166 0.265 1.259[—6]
3-2 M1 593.7  0.0027 3.53(-3] 1.318[-3]
3-2 E2 593.7 0.0027 0.341 0.241[—9]
4-1 M1 4904.85 0.0223 —7.54[-4] 2.261[—2]
41 E2  4904.85 0.0223 0.420  9.325[—6]
42 M1 1853.97 0.0084  —1.63[-3] 5.743[-3]
4-2 E2 1853.97  0.0084 —0.259 2.734[-8]
43 M1 1260.2  0.0057 1.05[-2] 7.497[—2]
43 E2 12602  0.0057 1.56  1.439[7]
17-1 El  28068.79 0.1279 1.200  16.11[6]  17.6[6] = 0.9
17-2 El 25017.91 0.1140 —0.068 3.674[4]
17-3 El 2442414 0.1113 1.024  7.728[6]  7.0[6] £ 0.4
17-4 E1  23163.94 0.1055 0.016 1.660]3]
17-5 El 16117.09 0.0734 0.068 9.712[3]  2.1[4] £ 0.003
17-6 El  15998.33 0.0729 0.522  0.565(6]  0.50[6] + 0.09

Continued on next page
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Table 9.2 — continued

w, NIST [35] Present Ref.
Transition Type (cm™!) (a.u.) A (a.u.) T (s71) T (s71)
17-7 K1l 15147.85 0.0690 0.110 0.021[6]
17-8 El 14583.23  0.0664 0.128 0.026[6] 0.060[6] + 0.011
17-9 El 13709.37 0.0625 0.030 0.012[5]
17-10  E1 128145 0.0584 ~0.301  0.0966] 0.054]6] + 0.011
17-11 El 10699.92  0.0488 0.224 0.031[6]
17-12 E1l 10238.45 0.0466 0.517 0.145[6]
1713 E1  9171.15  0.0418 0.342  0.046[6] 0.081[6] = 0.019
17-14 El 7933.85 0.0361 —0.265 0.018][6]
17-15 El 1072.28  0.0049 —0.069 2.964
17-16 El 783.66  0.0036 0.023 0.127
Hf IV
2-1 M1 4692 0.0214 —5.66[—3] 1.115
2-1 E2 4692 0.0214 —2.43 2.501]—4]
3-1 M1 18380  0.0837 2.22[-6] 3.091[—5]
3-1 E2 18380  0.0837 4.40 2.267
3-2 E2 13688 0.0624 —5.62 0.850
4-1 El 67039 0.3055 1.62 7.996(8]
4-3 El 48659 0.2217 2.04 4.86018]
W VI [40] Theo.
2-1 M1 8709.3  0.0397 —5.65[—3] 7.126 7.12
21 E2  8709.3  0.0397 ~1.60  2.400[—3] 2.54[—3]
4-1 E1l 147553.1  0.6723 1.18 4.529[9]
4-3 El 68121.8 0.3104 1.70 9.218[8]
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9.5.2 Polarizabilities and blackbody radiation shifts

Scalar polarizability is one of the key properties of atoms that sets their chemical char-
acteristics. For establishing optical clocks, the values of the static and dynamic scalar
polarizabilities should be taken into account. Scalar polarizabilities provide the value of
the blackbody radiation (BBR) shift of the clock state frequency, which is a primary source

of uncertainty for a clock.

The scalar polarizability «g, of an atomic system in state v can be expressed as a sum
over a complete set of states n (these states are constructed using the B-spline technique

described above; the use of the B-splines ensures the completeness of the basis):

2 Az
W =307, 1 1) 2 E,— E,

n

(9.13)

Here J, is the total angular momentum of state v, and A,, is the electric dipole transition
amplitude (reduced matrix element). Notations v and n refer to the many-electron atomic
states. It is convenient to present the polarizability as a sum of two terms, the polarizability
of the closed-shell core and the contribution from the valence electrons. The polarizability

of the core is given in the RPA approximation by

2. {clld + 6V [In) (nl|d]|c)
Q0core = g Z E, — L, . (914)

cn

Here summation over ¢ goes over core states, summation over n is over a complete set

of single-electron basis states, d = —er is the E1 operator in the length form, sVe s

the core polarization correction to the E1 operator [see Eq.]. Note that the RPA
correction goes only into one of the two reduced matrix elements in Eq. (9.14) [41].

For the calculation of the valence contribution to the polarizabilities of the ground and
clock states of Hf IT we apply the technique developed in Ref. |28] for atoms or ions with
open shells. The method relies on Eq. and the Dalgarno-Lewis approach [42], which
reduces the summation in Eq. to the solving of the matrix equation (see Refs. [28,42]
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for more details). For Hf IV and W VI, which both have only one external electron above
closed shells, we use direct summation in Eq. (9.13)) over the complete set of single-electron

basis states.

There is also a core-valence contribution to the polarizabilities which comes from the
fact that calculation of the core polarizabilities is affected by valence electrons via Pauli
blocking. We include this contribution by omitting in the summation over n in Eq.(9.14))

states occupied by valence electrons.

The present results for the polarizabilities of the ground states and clock states for all
considered atomic systems are shown in Table [0.3] According to the calculations, clock
states of all atomic systems have polarizabilities similar to those of their ground states,
with the notable exception of the Hf IV third excited state, where this difference is ap-
proximately 14 a;j’. This is because of the difference in the electronic configurations. The
external electron in the ground state is in the 5d3 /o state, while in the clock state it is in

the 6s; /, state.

By using the values of scalar polarizability, we can figure out the BBR shift of a clock
state at 300 K. The BBR shift in Hz is determined by the following expression (see, e.g.,
Ref. [8]):

T 4
5WBBR = —8.611 x 10_3 (W) ACVO, (915)

where T' is a temperature in K (e.g., room-temperature 7' = 300 K), Aay = ap(CS) —
ap(GS) is the difference between the clock state and the ground-state polarizabilities
presented in atomic units. The BBR shifts for clock states investigated in this paper are
presented in Table 0.3] The relative BBR shifts in the 2-1 transition in Hf IV and the
2-1 transition in W VI are among the smallest considered so far, they are 4.3 x 10~'® and
2.3 x 10~ '® respectively, while BBR shifts in other transitions are ~10716, similar to BBR
shifts in other atomic clocks (see, e.g., Refs. [2343/446]). A linear combination of two clock

transition frequencies allows one to cancel BBR shifts [47].
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Table 9.3: Scalar static polarizabilities of the ground states, a(GS), and clock states, ap(CS), and BBR frequency shifts for the
clock transition. dwppr/w is the fractional contribution of the BBR shift; where w is the clock transition frequency. Total means

total scalar polarizability (core + valence).

Clock ao(GS) (units of a3) ao(CS) (units of a¥,) BBR, (7= 300 K)

transition Core  Valence Total Core  Valence Total Aoy dwppr(Hz) w(Hz) dwpBR/wW
Hf 11

2-1 2.72 48.04 50.76 2.72 43.22 4594 —4.93 0.043 1.093[14] 3.9[—16]

3-1 2.72 48.04 50.76 2.61 40.10 42.71 —8.05 0.070 1.093[14] 6.4[—16]

4-1 2.72 48.04 50.76 2.61 42.84 45.45 —5.31 0.046 1.470[14] 3.2[—16]
Hf 1V

2-1 3.06 286  5.92 208 2.8 585 007 0.60[—3] 1.404[14]  4.3[-18]

3-1 3.06 2.86 5.92 3.13 16.84 19.97 14.05 —0.12 5.510[14] —2.2[—16]
W VI

21 1.96 076 273 192 075 266 —0.07 0.60[—3] 2.611[14]  2.3[-18]
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9.5.3 Electric quadrupole moments

As is discussed above, the search for clock transitions sensitive to the variation of the
fine-structure constant leads us to transitions with large changes of the total momentum
of the equivalent singe-electron transitions. As a consequence, at least one of the states
may have a relatively large value of the total momentum J (e.g., J > 1 ). This means that
the state is sensitive to the electric quadrupole shift. Therefore, it is important to know

the value of this shift. The corresponding term in the Hamiltonian is (see, e.g., Ref. [48])

-1
Ho =) (-1)7vEP6_, (9.16)
q=1

The tensor V&?) is the external electric field gradient at the position of the system,

©, describes the electric-quadrupole operator, and @q = \e|r20(§2), the same as for E2

transitions.

The electric quadrupole moment O is defined as the expectation value of ©¢y for the

extended state:

o= <nJJ ‘@0] nJJ>

o J(2J 1)
= <‘]”@’J>\/(2J+3) eI+ )T+ 1)

(9.17)

where (J||©|J) is the reduced matrix element (ME) of the electric quadrupole operator.
We compute the values of © using the CI+SD and RPA methods described in the previous

section.

In Table we display the reduced ME of the electric quadrupole operator and the
quadrupole moment © values for all considered states. The quadrupole momentum of the
ground state of Hf II is anomalously small. This is due to the mixing between states of the

6525d and 6s5d? configurations leading to strong cancellation between terms proportional

to the <5d3/2\|éH5d3/2> ME and terms proportional to the <6$1/2|](:)H5d3/2> ME. Strong
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Table 9.4: Quadrupole moment (O, in a.u.) of the ground state and the considered optical
clock states.

No. Conf.  Term J E (cm™1) ME (a.u.) S)
(J16].7)
Hf IT
1 5d6s> ’D 3/2 0 —2.910[-2]  —6.507[-3]
2 5d6s> ’D 5/2 3050.88 —5.806[—-1]  —1.415[-1]
3 5d?6s iR 3/2 3644.65 —1.797 —0.401
4 5d?6s iF 5/2 4904.85 —1.621 —0.395
Hf IV
1 5d D 3/2 0 —3.608 —0.807
5d D 5/2 4692 —4.956 —1.210
W VI
1 5d D 3/2 0 —2.381 —0.532
5d ’D 5/2 8709.3 —3.263 —0.796

cancellation is probably accidental, which means that the result is likely to be not very
stable and may vary significantly under variation of the computation procedure. In states
where the 6s5d° configuration dominates, the value of the quadrupole moment is not
suppressed and stable. This means that the uncertainty of the calculated values of the
quadrupole moment is of the order of the quadrupole moment itself in cases when it is
small (first two lines of Table[9.4). For larger values of © the absolute uncertainty might
be similar while the relative uncertainty is much smaller. The values of the quadrupole
moments for both excited clock states are almost the same. In the case of the Hf IV ion,
the difference between the values in the ground state and in the excited state is much
smaller than that in the Hf ™ ion. The quadrupole moment in the ground state is about
1.5 times larger than that in the first excited state. This is because both states (the ground
and the excited) have the same electron configuration. Note that the quadrupole moment
of the second excited state (63 25, /2) is zero because the total angular momentum J is

1/2. The W VI ion has differences similar to those in the Hf IV ion.

It is worth noting that the quadrupole shift in odd isotopes of Hf II and Hf IV (}""Hf,
I =17/2, and '™Hf, I = 9/2) can be totally avoided when working with specific hyperfine
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components of the states, namely, substates with F' = 3 and F, = 2, since AE ~ 3F2 —
F(F+1). Such substates exist for both ground and clock states in both isotopes. Another
way of suppressing the quadrupole shift is by averaging over transitions between different
hyperfine or Zeeman components [21,48]. Averaging over Zeeman components should work

for even isotopes too.

9.5.4 Sensitivity of the clock transitions to the variation of the fine-

structure constant

It has been shown that optical atomic clock transitions can be used to search for the time
variation of the fine-structure constant « [12,|13|16]. The frequencies of these transitions
depend differently on «. By comparing the ratio of two clock frequencies over long periods
of time, one can link any possible change in the ratio of frequencies to the time variation of
«. The ratio of frequencies does not depend on the units one uses. In atomic units, depen-
dence of the optical transition frequencies appears to be due to the relativistic corrections

proportional to a?. Therefore, we present the frequency as

(5{))2 - 11 , (9.18)

where ag and wg are the present-day values of the finestructure constant and the fre-

w=wp+tq

quency of the transition, and ¢ is the sensitivity coefficient which comes from the atomic

calculations [12,/13,|16]. The rate of the variation of w; /wo is

Yo g Ky 9 (9.19)
w1 w2 «

The dimensionless value K = 2¢/w is often called the enhancement factor. We use the

computer codes to calculate ¢ and K by performing calculations of the frequencies with
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different values of a and calculating the derivative numerically as

w(9) — w(=9)

o : (9.20)

q=
where § = (a/ag)? — 1 [see Eq. ] In order to achieve linear behavior, the value
of 0 must be small; however, it must be large enough to suppress numerical noise. Most
accurate results can be obtained by using = 0.01. The calculated values of ¢ and K for
all considered clock transitions are summarized in Table 0.5l We see that all values of the
enhancement coefficient K are significantly bigger than 1. The enhancement factor for
the 2-1 interval is 3.65. This is the fine-structure interval and under normal circumstances
the interval o< (Za)? and K = 2. Here the factor is significantly larger due to strong
mixing of the upper state with the states of the 5d%6s configuration. Note that values of
K are positive, with only one negative K factor for the 5d3/5-6s1 /; transition in the Hf IV
ion. Indeed, the simple analytical estimate performed in Refs. [12,|13] indicates that the
transition from a lower j orbital in the ground state to a higher j orbital gives a positive

K while the transition from a higher j orbital to a lower j orbital gives a negative K.

It was shown in Ref. [47] that having two clock transitions in one atom or ion allows one
to construct a "synthetic" frequency which is not sensitive to the BBR shift. They also
proposed a realization of the method with the use of an optical frequency comb generator
stabilized to both clock frequencies. The synthetic frequency is generated as one of the

components of the comb spectrum (see Ref. [47] for details).

Using such frequencies may benefit the search for the time variation of the fine-structure
constant. The Hf IT ion has three clock transitions. This means that one can contract two
independent "synthetic" frequencies nonsensitive to the BBR shift. Measuring one such
frequency against the other over a long period of time allows highly sensitive search for the

variation of the fine-structure constant. Following Ref. [47] we write a synthetic frequency
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Table 9.5: Sensitivity of clock transitions to variation of the fine-structure constant (g, K).

No. Conf. Term J w (em™1) q (em™1) K

Hf IT

2 5d6s> ’D 5/2 3050.88 5631 3.65

3 5d26s iF 3/2 3644.65 15060 8.30

4 5d?6s iF 5/2 4904.85 15002 6.16
Hf IV

2 5d D 5/2 4692 4342 1.85

3 65 S 1/2 18380 —24268 —2.64
W VI

2 5d D 5/2 8709.3 8609 1.98

as
Wiy = Wi — €Wy, (921)

where €;; = Aagi/Aag;. Since BBR shift o« Aag [ see Eq. (9.15)], the synthetic fre-
quency (9.21)) is not sensitive to it. If the fine-structure constant a varies in time, then

the synthetic frequency varies as

d)ij . Kz-wi — einjwj o' — K
2 — — = Kjj
wij w; — eijwj «

oo

(9.22)

Table shows three possible synthetic frequencies for Hf II. Any two of these frequencies
can be used for searching of the time variation of the fine-structure constant. For example,

if the w3y and wyo frequencies are used, then

w32 Wi2

= 202, (9.23)
W32 W42 0%

The combinations of frequencies which are not sensitive to the BBR. shift turn out to be

very sensitive to the time variation of the fine-structure constant.
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Table 9.6: Synthetic frequencies of Hf II clock transitions and their sensitivity to variation
of the fine-structure constant. Indexes ¢ and j correspond to the clock transitions from
state number i or j (see Table [9.1]) to the ground state.

1 i €ij Wij (cm_l) Kij

3 2 1.633 1336.86 -9.03
4 2 1.077 1618.83 11.26
4 3 0.660 2500.66 4.10

9.6 CONCLUSIONS

Metastable states of Hf IT, Hf IV, and W VI ions are studied as candidates for high-accuracy
optical clocks which are highly sensitive to the variation of the fine-structure constant a.
Slow drift and oscillating variation of & may be due to the interaction between the scalar
dark matter field and electromagnetic field [49H52]. The Yukawa-type scalar field affecting
a may also be produced by massive bodies [53]. Transient a variation may be produced

by the passing of macroscopic forms of dark matter such as Bose stars and topological

defects [54].

Six stable isotopes of Hf and five stable isotopes of W, as well as several clock transitions in
Hf and W ions, make it possible to make King plots and study their nonlinearities in order
to put limits on the new interactions mediated by scalar particles or other mechanisms [24,

25].

Energy levels, lifetimes, transition rates, scalar polarizabilities of the clock and ground
states, and BBR shifts have been calculated, and the possibility for high accuracy of the
timekeeping has been demonstrated. The studied transitions correspond to the s-d or d-s

transitions between singleelectron states.

The sensitivity coefficients K to « variation have been calculated and found to be among
the highest compared to other operating or prospective atomic optical clocks. We found
that constructing synthetic frequencies with suppressed sensitivity to the BBR shift leads

to further increase in sensitivity to the variation of the fine-structure constant.
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CHAPTER 10. HIGH-ACCURACY OPTICAL CLOCKS BASED ON
GROUP-16-LIKE HIGHLY CHARGED IONS

Chapter 10

High-accuracy optical clocks based
on group-16-like highly charged

ions

10.1 Overview

In chapters we investigated new promising atomic clocks by considering neutral or
nearly neutral ions. In this chapter, we examine the potential to construct high-accuracy
optical clocks using highly charged ions, group-16-like systems. Highly charged ions, due
to their small size compared to neutral atoms, have the important advantage of being less
sensitive to perturbations. For example, they have very small black body radiation shifts.
In addition, considered systems have anomalous fine structures. The first excited state is
3Py instead of 3Py, which means that there is a narrow E2 transition between the ground
and the first excited state, which can be used as a clock transition. The wavelengths of

these transitions are also favorable.

This study has been published in this paper:
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10.2. ABSTRACT

Saleh O. Allehabi, S. M. Brewer, V. A. Dzuba, V. V. Flambaum, and K. Beloy, High-
accuracy optical clocks based on group-16-like highly charged ions, Phys. Rev. A 106,
043101 (2022).

10.2 Abstract

We identify laser-accessible transitions in group-16-like highly charged ions as candidates
for high-accuracy optical clocks, including S-, Se-, and Te-like systems. For this class of
ions, the ground 3 P; fine-structure manifold exhibits irregular (nonmonotonic in .J) energy
ordering for large enough ionization degree. We consider the [3P) «— [3P) (ground
to first-excited state) electric quadrupole transition, performing relativistic many-body
calculations of several atomic properties important for optical clock development. All ions
discussed are suitable for production in small-scale ion sources and lend themselves to

sympathetic cooling and quantum-logic readout with singly charged ions.

10.3 INTRODUCTION

The performance of optical clocks has improved rapidly over the last few decades [1]. This
has led to improvements in frequency metrology as well as tests of fundamental physics
using atomic clocks [2]. The highest performance optical clocks are currently based on
ensembles of neutral atoms trapped in optical lattices or singly charged ions stored in
electromagnetic traps [3H6]. However, in recent years, several clocks based on highly
charged ions (HCIs) have been proposed as both improved optical frequency standards and
as systems with enhanced sensitivity to possible new physics [7-9] (see also Ref. [10] and
references therein). Optical clocks based on HCIs provide several systematic advantages
over current optical clocks including reduced blackbody radiation (BBR), Zeeman, and
electric quadrupole shifts |10,[L1]. Here, we identify group 16-like HCIs as optical clock
candidates. For this class of ions, the ground Py fine structure manifold exhibits irregular

(nonmonotonic in J) energy ordering for large enough ionization degree, with the 3P
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state lying above the 3P, (ground) and 3Py (first-excited) states. Given this irregular
ordering, the 3Py excited state lacks a magnetic dipole (M1) decay channel, resulting in a
relatively long lifetime and making the |2 P,) +— |3 Py) electric quadrupole (E2) transition
a viable clock transition. This irregular energy ordering is illustrated in Fig. [10.I] Due
to the high nuclear charge, the ordering is irregular for Te-like systems beginning with
neutral tellurium. In the case of O-, S-, and Se-like systems, the ionization degree must
be increased before the irregular ordering is observed. Specifically, for O-like ions, the

17+ For this system, the clock transition

irregular ordering is not observed until Mn
wavelength (~ 150 nm [12,13]) is outside the range of current clock lasers. The S-, Se-
, and Te-like systems offer more favorable clock transition wavelengths. In the present
work, we perform relativistic many-body calculations of relevant properties for optical

clock development. While we present results only for select S-; Se-, and Te-like systems,

other group 16-like systems not explicitly considered may also be of interest.

The present work is a broader study of the group-16-like systems started in our previous
work with just Ba?" [17]. We include Ba®" in the list of ions considered here. Broadly
speaking, similar computational techniques are used here as in Ref. |17]. The results of
Ref. [17] are reproduced with only small deviations, with two exceptions. First, a small
clerical error is corrected, giving a second-order Zeeman shift that is a factor of 2 larger.
The essential conclusion that this shift is negligible remains valid. Second, an improved
method is used to calculate the scalar differential polarizability Acq, which predicts a
much larger degree of cancellation between the clock state polarizabilities. While the
revised value of Aa does not support cancellation between the trap-induced Stark and
micromotion time-dilation shifts (by operating at a "magic" rf trap drive [18]), it does
offer highly suppressed Stark shifts, including the BBR shift. We find similar cancellation
between the clock state polarizabilities for the other group-16-like systems, resulting in

similarly small Aa.

In the present work, we focus on the isotopes with zero nuclear spin to avoid complications
caused by the hyperfine structure (hfs). In particular, the second-order Zeeman shift is

enhanced in isotopes with hfs, by small hfs energy intervals. In contrast, the second-order
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Zeeman shift is small and can be neglected in spin-zero isotopes.

10.4 METHOD

10.4.1 Calculation of energy levels

The calculations are carried out using a combination of the configuration interaction (CI)
technique with the linearized single-double-coupled-cluster (SD) method, as described in
Ref. [19]. The combined method (CI +SD) has been demonstrated to be efficient and very
precise for systems with several valence electrons. With the SD technique, it is possible
to accurately determine the core-valence and core-core electron correlations, while the
CI method takes the valencevalence correlations into account. Our calculations are done
using the V=M approximation [19], where N is the total number of electrons and M is
the number of valence electrons. For all atomic systems considered (see, e.g., Table ,
the calculations begin with the relativistic Hartree-Fock (RHF) method for a closed-shell
core, which removes all valence electrons. We treat all systems as M = 6 valence systems,

except for Te and Sr??*

, which are treated as M = 4 valence systems; this is because
NIST data [12] indicate that Te and Sr*>* have no low-lying states with the excitations
from the 5s and 3s subshells, respectively. Therefore, it is reasonable to treat 5s electrons

224

in Te and 3s electrons in Sr““" as core electrons. The RHF Hamiltonian has the following

form:

HREE — cor . p+ (8 — Dme? + Viue(r) + Veore(7), (10.1)

where c is the speed of light, a and 3 are the Dirac matrices, p is the electron momentum,
m is the electron mass, V. is the nuclear potential obtained by integrating the Fermi
distribution of the nuclear charge density, and Ve (1) is the self-consistent RHF potential

created by the electrons of the closed-shell core.
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Figure 10.1: Experimental energies for group 16-like atomic systems. For each system, the lowest-lying electronic states are part
of a 3P; fine structure manifold, with the 3P, ground state taken to have zero energy. Energies of the 3P, and 3Py states are
plotted versus ionization degree Z — N for the isoelectronic sequences, where Z and N denote the number of protons and electrons,
respectively. For the O, S, and Se isoelectronic sequences, the 3P; energy ordering transitions from regular ordering (monotonic
in J) at low ionization degree to irregular ordering at high ionization degree. For the Te isoelectronic sequence, the ordering is
irregular already for the neutral Te system. For the systems with irregular energy ordering, the 3P, state lacks an M1 decay
channel. Energies are from the NIST Atomic Spectra Database [12] and Refs. [14116]. The curves are interpolating functions
intended to guide the eye.
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Following the completion of the self-consistent procedure for the core, the B-spline tech-
nique [2021] is used to develop a complete set of single-electron wave functions. Based on
B splines, one can make linear combinations of basis states, which are eigenstates of the
RHF Hamiltonian. The basis set is built up of 40B splines of order 9 in a box that has
a radius Ry.x = 40ap, where ap is the Bohr radius, with the orbital angular momentum
0 < I < 6. There are two types of basis states: core states and valence states. Core
states are used to calculate the effective potential of the core. Valence states are used as
a basis for the SD equations and for obtaining the many-electron states required for the

CI calculations.

In the process of solving the SD equations for the core and valence states, we generate
correlation operators X7 and Xy [19,22,23]. X, is the correlation interaction between
a particular valence electron and the core, and accordingly, one-body part hi can be

described as follows:

hy = ARF L3 (10.2)

39 represents the screening of the Coulomb interaction between a pair of valence electrons;
hence, the two-body Coulomb interaction operator, ﬁg, is modified so as to include the
two-body part of the core-valence interaction as follows (we use Gaussian electromagnetic

expressions; e is electron charge):

hy = ——— + 3. (10.3)

Whenever there is more than one valence electron above the closed-shell core, these X
operators can be used in the subsequent CI calculations to account for the core-valence and
core-core correlations. By solving the SD equations for external states, the single-electron
energies of an atom or ion with one valence electron can also be obtained. However, we
note that there are slight differences between the SD equations used for this purpose and

those to be used for CI calculations. In this case, one term in the SD equations needs
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to be eliminated because its contribution is accounted for by the CI calculations (refer to
Ref. [19]). This contribution is relatively small; therefore, differences in the SD equations

can be ignored.

In the CI approach, we build the effective CI+SD Hamiltonian for many valence electrons
as a sum of one- and two-electron parts with the addition of ¥y and X5 operators in order

to account for the correlation between core and valence electrons,

. M ~ M 2
Heff _ Zl (HRHF -+ 21)1 + Z <’7’Z€—’I”]| + EQij) , (104)
i= 1<]

where ¢ and j enumerate valence electrons.

It is well recognized that increasing the number of valence electrons exponentially increases
the size of the CI matrix. Our present work has up to six valence electrons, which leads to
an extremely large CI matrix. In order to deal with a matrix of this magnitude, it would
require considerable computational power. However, the size of the CI matrix can be
decreased by orders of magnitude at the expense of some accuracy. In order to accomplish
this, we use the recently developed version of the CI method called the CIPT method [24].
The method combines CI with perturbation theory and is used to ignore the off-diagonal
matrix elements between highenergy states in the CI matrix. This step is justified because

the high-energy states provide only a minimal correction to the wave function.

The wave function for valence electrons is presented as an expansion over single-determinant

basis states, which is divided into two parts:

Neff Ntotal
\I’(Tl,...,TM): ZCZ‘(I)Z' (Tl,...,TM)-I- Z ¢ P; (Tl,...,TM). (105)
=1 i=Neg +1

Here ¢; are the expansion coefficients and ®; are singledeterminant many-electron basis
functions. The first part of the wave function represents a small number of low-energy

terms that contribute a great deal to the CI valence wave function (1 < i < Neg, where
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Neg is the number of low-energy basis states), while the second part represents a large
number of high-energy states that introduce minor corrections to the valence wave func-
tion (Ne < @ < Niotal, Where Nioa) is the total number of the basis states). Conse-

quently, this allows us to truncate the CI Hamiltonian by ignoring the off-diagonal ma-

trix elements between terms in the second summation in Eq. ((10.5 (<z ‘Heﬁ ’ h> =0 for

Negp < i,h < Niotal ), which in turn reduces computation time with a negligible loss in

precision.

The matrix elements between low-energy states ¢ and g are corrected by the following

formula similar to the second-order perturbative correction to the energy:

He k) (k| H |g)
E— Ej ‘

(1 g) — (i g) + 3 (10.)
k

Here, 7, g < Nesr , Nop < k < Niotal » F is the energy of the state of interest, and Ej, denotes

the diagonal matrix element for high-energy states, Fr = <k: ’H off ‘ k:> The summation in

(10.6)) runs over all high-energy states. Note that neglecting off-diagonal matrix elements

between highly excited states corresponds to neglecting the third-order contribution

(i H ) (kL H 1) (1| H]g)

SED =
"9 ; (E — Ey)(E - E)

(10.7)

This contribution is suppressed by large energy denominators. Neglecting the third-order
corrections over the second-order corrections cannot cause any false contributions to the

spinorbit splitting or break the symmetry of the CI Hamiltonian.

The problem of finding the wave function and corresponding energy can be reduced to a

modified CI matrix eigenvalue equation Heff [Eq. 1) with size Nqg

(" - BI) X =0, (10.8)

where I is the identity matrix and X is the vector {ci,...,cn, }. Note that for accurate
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solution the energy parameter E must be the same in Egs. (10.6) and (10.8]). Since this
energy is not known in advance, the equations (10.6)) and (10.8)) are solved by iterations.
The starting point for the iterations can be, e.g., the solution of ([10.8) with the matrix

(10.6)) without the second-order corrections. A more comprehensive description of this

technique is given in Ref. [24].

10.4.2 Calculation of transition amplitudes and lifetimes

The method we use for computing transition amplitudes is based on the time-dependent
Hartree-Fock method [22], which is the same as the well-known random-phase approxima-

tion (RPA). The RPA equations are defined as

(A = e) oupe = = (f + Vo) e (10.9)

where the operator f refers to an external field. The index ¢ denotes single-electron states,
e is a single-electron wave function with corresponding energy €., 1. is a correction to the

wave function due to the external field, and 6V/ _ is the correction to the self-consistent

core
RHF potential caused by the amendment of all core states in the external field. For all
states in the core, the RPA equations ((10.9) are solved self-consistently. The transition
amplitudes are found by calculating matrix elements between states a and b using the

formula

Aab = <b ‘er 5ch£re

a> . (10.10)

Here, |a) and |b) are the many-electron wave functions calculated with the method de-
scribed above. These wave functions are given by Eq. (10.5). In the present work, only

the rates of E2 transitions are taken into account. The rates are computed as follows (in
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atomic units):

1

Tab = B (awab)5

(10.11)
where « is the fine-structure constant (a = ﬁ) ,wap 1s the frequency of the transition,
Jp is the total angular momentum of the upper state b, and A, represents the transition
amplitude (reduced matrix element) of the E2 operator. The lifetimes of each excited

state b, 7, expressed in seconds, are given as

Ty, = 2.4189 x 10—17/ > T (10.12)

where the summation runs over all possible transitions to lower states a.

10.5 RESULTS

10.5.1 Energy levels, transition amplitudes, and lifetimes of the systems

Table [I0.1] presents the calculated energy levels of the systems and compares them to
the results of previous work; note that all earlier data presented in the table are either

d"*, which has been calculated.

experimental or semiempirical, except for the value for C
The calculated energies are in good agreement with experiment, within a few percent. In
Table we also present the E2 amplitudes and corresponding decay rates for excited
clock states decaying to the ground state. The rates are in good agreement with previous

studies. The rates and lifetimes of the excited clock states were calculated using calculated

amplitudes and experimental energies.
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Table 10.1: Excitation energies (E), wavelength transitions ( A ), E2 amplitudes (A), decay rates (T'), and lifetimes
(1) for the excited clock states. Note that for calculating A, the experimental energies (where available) have been

used.
E (em™1) A( a.u) T (s71) T (s)
System State Present Other A (nm) Present Present Other cal. Present
Te-like systems
Te 5pt 3Py 4630 4706*  2124.9 —5.483 0.0078 0.0073¢0.0097F  128.21
Xe?t 5525pt 3P 8515 8130*  1230.0 —3.163 0.0398 0.04451f 25.13
Balt 5s525p* 3P, 11548 113022 884.8 —2.351 0.1141 0.1253f 8.76
Cebt 5525p* 3P 14697 14210 703.7 —1.825 0.2159 0.2437F 4.63
Se-like systems
Zr5+ 45%4p* 3Py 12722 12557¢ 796.4 —1.131 0.0447 0.04688 22.37
Cqla+ 4524p* 3P, 28909 288284 345.9 0.585 0.7612 — 1.31
S-like systems
Gelb+ 3523p* 3P 33635 332902 300.4 0.228 0.2377 0.25028 4.21
Kr20+ 3523pt 3P 47618  46900? 213.2 0.176 0.7859 0.83228 1.27
qr22+ 3pt 3Py 50911 53400? 187.3 —0.160 1.2434 1.2578 0.805

* Ref. [12]; The values are compiled from the NIST database; Te-like systems [Expt.], S-like systems [Expt. or Semi.].
P Ref. [15]; Expt.

¢ Ref. [16]; Expt.

4 Ref. [25]; Expt.

¢ Ref. |26]; Theor.

f Ref. [27]; Theor.

& Ref. |28]; Theor.
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10.5.2 Ionization potential, Landé g factors, and electric quadrupole

moments

Table presents the results of the calculated ionization potential (IP) of all atomic
systems. The IP of a system can be calculated as a difference in the ground state energy
between the system of interest (E*) and the following ion (E~1), IP = EM~1 — EM,
The results of our calculations are compared with data compiled by NIST. With the
exception of the first two systems, the NIST data have large uncertainties ranging from
6800 cm™! to 22000 cm~!. Within these uncertainties, our calculations agree with the
NIST data. In Table we also present the calculated values of the Landé g factors for
the ground states of all systems. The g factors are calculated as expectation values of the

M1 operator.

Electric quadrupole shifts are known to be caused by an interaction between the quadrupole
moment of an atomic state and an external electric-field gradient, and in the Hamiltonian,
the corresponding term is given as [30]

-1
Hgo =Y (-1)7vePo_,. (10.13)
qg=1

Here, the tensor V&?) represents the external electric field gradient at the atom’s position,
and @q describes the electricquadrupole operator for the atom. It is the same as for the £E2
transitions, éq = T2C(§2), where 052) is the normalized spherical function and ¢ indicates
the operator component. The electric quadrupole moment, ©, is defined as the expectation

value of O for the extended state

o= <nJJ‘(:)g‘nJJ>
= (nJ|®]ln.J ) \/(2J+3

where (nJ||©||nJ) indicates the reduced matrix element of the electric quadrupole opera-

(10.14)

J (2] —1)
Y 2T+ 1) (J+1)

tor. We compute the values of © using the CI + SD and RPA methods described in the
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Table 10.2: Ionization potential (IP; cm™!), quadrupole moment (©; a.u.), and
Landé g factor of the ground state.

IP
System State Present NIST &) g factor
Te-like systems

Te 5pt 3Py 70939 72669.006(0.047) 1.22 1.4672
Xe?t 5525pt 3Py 247505 250400(300) 0.53 1.441
Bat 5525p* 3Py 475734 468000(15000) 0.32 1.424P
CefT 5525pt 3Py 748287 734000(16000) 0.19 1.407

Se-like systems
Zrot 45%4p* 3P, 913400 903000(16000) 0.23 1.457

Cdla+ 45%4p* 3Py 2894809 2887000(22000) 0.062  1.407
S-like systems

Gel6+ 3s23pt 3P, 4916400 4912400(6800) 0.042  1.445

K20+ 3s23pt 3P, 7126586 7120300(10100) 0.024  1.420

Sr22+ 3pt 3P, 8378219 8372100(12000) 0.019  1.413

# Experimental value is 1.460(4) [12].
> The same as in our previous calculations, 1.42 [17].

previous section. The results are presented in Table Note that the excited clock
states of all atomic systems have © = 0 since the total angular momentum J is zero.
Some of these atomic systems have been investigated before. In our early work [31] a
different approach was used leading to quadrupole moments Q(Te) = —2.58 a.u. and
Q(Xe*) = —1.17 a.u. Tt should be noted that in this earlier work [31], the electric
quadrupole moment @) is defined in a way which differs from our definition by a factor of
2, so that ® = /2. Taking this into account, the results for the two calculations are in

good agreement.

10.5.3 Polarizabilities, blackbody radiation shifts, and second-order Zee-

man shifts

The scalar polarizability a,(0) of an atomic system in state v is given by a sum over a

complete set of excited states n connected to state v by the electric-dipole (E1) reduced
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matrix elements (we use atomic units)

(0) = 2 > Al (10.15)
T B0, + 1) A w '

where J, is the total angular momentum of state v and w,,, is the frequency of the transi-
tion. Notations v and n refer to many-electron atomic states. For the calculations of the
polarizabilities of clock states, we apply the technique developed in Ref. [32] for atoms
or ions with open shells. The method relies on Eq. and the Dalgarno-Lewis ap-
proach [33], which reduces the summation in Eq. to solving a matrix equation (see
Ref. [32] for more details).

Results for the polarizabilities of the ground and excited clock states are shown in Table
It appears that the polarizabilities of the ground and excited clock states of all
atomic systems are similar in values. This is because both clock states belong to the
same fine-structure manifold, and the energy intervals between them are significantly
smaller than the excitation energies to the opposite-parity states [see Eq. ] Some
of these atomic systems have previously been studied for their polarizabilities. Review
[29], and references therein have investigated the ground state polarizability of Te both
theoretically and experimentally, and the recommended value has been determined to be
38 £ 4 a.u. Compared with the recommended value, our calculation (37.3 a.u.) is in
excellent agreement. In our earlier work [31] a simplified approach was used leading to
larger values of polarizabilities of Te and Xe?t;45.96 and 47.80 a.u. for lower and upper
clock states of Te, and 14.69 and 14.79 a.u. for lower and upper clock states of Xe2*.

These results are in reasonable agreement with our present calculations.

In our previous work [17], we calculated the polarizability of the ground and excited clock
states for Ba*t and found the values to be 4.4 and 1.4 a.u., respectively. Those results are
in disagreement with the present results. The reason for the disagreement comes from the
fact that direct summation was used in Ref [17]. This method works well if the summation
is strongly dominated by the contribution of the low-lying states of opposite parity. This

is not the case for Ba*t or the other systems considered here.
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Table 10.3:

Scalar static polarizabilities of the ground and excited clock states [ap(GS) and «ap(ES), respectively], and
BBR frequency shifts for the clock transition. dvppgr/v is the fractional contribution of the BBR shift, where v is the
clock transition frequency. “Total” means total scalar polarizability (core + valence). Error bars were obtained on the
assumption that the accuracy for the polarizability is 10%. The last column shows the second-order Zeeman shifts, dvgy.
The notation x[y] abbreviates x x 10Y.

ap (au.)  ap(GS) (a.u.) ap(ES) (a.u.) BBR (T = 300 K) dvsz,
System Core  Valence Total Valence Total Aa«a(0) dvgpr (Hz) v (Hz) ovgpr/v [Hz/(mT)?]
Te-like systems
Te 8.84 28.5 37.3% 29.6 38.4 <7 < 6[—2] 1.411[14] < 4[-16] —87
Xe2t 0.835 101 109 104 112 <2 <2[—2]  2437[14] < 7[-17] —2.02
Batt 0.578 5.46 6.04 5.56 6.14 <1 < 1[-2] 3.388[14] < 3[—17] —0.55
CefT 0.421 3.43 3.85 3.49 3.91 < 0.6 < 5[-3] 4.260[14] < 1[-17] —0.22
Se-like systems
Zr6+ 0.083 187 195 189 197 <01 <1[-3]  3.764[14] < 1[-18] —3.72
Cdi4t 0.024 0.466  0.490  0.467 0491 < 1[-2] < 1[-5] 8.642[14] 1]—20] —0.08
S-like systems
GeloF 0.002 0.142  0.144  0.142  0.144 < 1[-3] < 1[-5]  9.980[14] < 1[-20] —0.39
Kr20+ 0.001 0.0812 0.0822 0.0810 0.0820 < 1[-3] < 1[-5] 1.406[15] < 1[—20] —0.08
Sr22+ 0.063 0.0276  0.0906 0.0273  0.0903 < 1[-3] < 1[-5] 1.601[15] < 1[—20] —0.04

@ The polarizability of the Te atom has been studied before, and the recommended result is 38 £+ 4 a.u. |29].
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In this paper, we use the more accurate method described above. The accuracy of the
current approach can be judged by recalling our earlier calculations [34-36]. Deviation of
the calculated polarizabilities from the experimental values varies from fraction of percent
for noble elements [34] to few percent for atoms with more complicated electron struc-
ture. Given also that we have excellent agreement for Te with the recommended value
from literature, which has 10% uncertainty, we conclude that the accuracy of our present

calculations is in the range from 1% to 10%.

BBR can have a significant impact on the clock transition frequency in atomic clocks. The

shift in the clock transition frequency caused by BBR can be calculated as

Svgpr = —1.063 x 107271 Aa(0), (10.16)

where T is the temperature and Aa(0) = ag(ES) — ap(GS) is the difference between the
excited and ground clock-state polarizabilities. The proportionality factor here is for a
shift in hertz, temperature in kelvin, and differential polarizability in atomic units. The
results of the fractional BBR shifts at room temperature are shown in Table It
can be seen from the table that the differential polarizabilities are extremely small, which
results in small values for BBR shifts. Note that even the use of the most optimistic
assumption about the accuracy of the calculation of the polarizabilities (1%) leads to
large uncertainties in the BBR shift. This means that the numbers for the BBR shift in
Table [10.3] should be considered as upper limits.

In order to calculate the second-order Zeeman shift (dvsz), we have to take into account an
influence caused by a weak homogeneous external magnetic field. For the determination

of dvgyz, the following formula can be used [37]

Svgy = —%AaMle, (10.17)

where h is Planck’s constant, B is the magnetic field, and Aa™! is the difference be-

tween the magnetic-dipole polarizability of the ground and excited clock states, Aa™M =
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aM(ES) — aM(GS). The M1 polarizability can be calculated using Eq. (10.15]), but the
amplitude of the electric-dipole transitions (A,y) should be replaced with the amplitude
of the magnetic-dipole transitions. Our results are shown in Table [I0.3] It should be men-
tioned that the magnetic-dipole polarizabilities can be calculated with just a few low-lying
states since their contributions dominate. In the case of the atomic systems considered
here, only the first two low-lying states belonging to the same configuration give significant
contributions. Here only the scalar contribution is presented. A tensor contribution of
similar magnitude also exists, though it can be canceled with certain averaging schemes.
In any case, the scalar results illustrate the scale of the second-order Zeeman shift, which

is negligibly small for small (~ pT) magnetic fields.

10.5.4 Sensitivity of the clock transitions to variation of the fine-structure

constant

Variations in the fine-structure constant could lead to an observable effect on the clock
transition frequency. The relationship between the clock frequency and the fine-structure

constant in the vicinity of their physical values can be expressed as

(;)2 _ 1] ’ (10.18)

where g and wg are the laboratory values of the fine-structure constant and the transition

w=uwy+q

frequency, respectively, and ¢ is the sensitivity coefficient that is determined from atomic
calculations [38]. Note that we do not consider variation of atomic unit of energy mee?/h?
since it cancels out in the ratio of frequencies. Variation of dimensionful parameters like
mee* /h? depend on the units one uses. For example, in atomic units it is equal to 1
and does not vary. Therefore, dependence of frequencies on « appears due to relativistic

corrections.
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Table 10.4: Sensitivity of clock transitions to variation of the fine-structure constant

(¢, K).

System State w (em™1h) q (em™1h) K
Te-like systems

Te 5pt 3Py 4706 3261 1.39

Xe2t 5s525p* 3P, 8130 5611 1.38

Balt 55%5p* 3Ry 11302 5976 1.06

Cebt 5525p* 3Py 14210 5907 0.83
Se-like systems

Zr5+ 4524p* 3P, 12557 8939 1.42

Cdla+ 4524p* 3P, 28828 8837 0.61
S-like systems

Gel6+ 3523p* 3P, 33290 18484 1.11

Kr20+ 3523p* 3Ry 46900 17252 0.74

qr22+ 3p* 3P, 53400 14130 0.53

The change in a frequency ratio wq/we caused by a change in « is

5 (“1> _ Owi 0w oa (10.19)

=— - —=(K; —Ky)—.
w2 w1 w2 @
The value K = 2q/w is often called the enhancement factor. We calculate ¢ and K by

using two different values of o and calculating the numerical derivative

w(x) — w(—2x)
2z ’

where 7 = (a/ag)? — 1 [see Eq. (10.18))]. In order to achieve linear behavior, the x value

q= (10.20)

must be small; however, it must be large enough to suppress numerical noise. Accurate

results can be obtained by using = 0.01. A summary of the calculated values of ¢ and

K is given in Table

10.6 EXPERIMENTAL OUTLOOK

Here, we discuss the experimental outlook for the development of optical atomic clocks

based on these systems. The systematic shifts considered in previous sections are limited
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Table 10.5: Lifetime-limited frequency instability for a single clock ion and the optimal
logic ion based on charge-to-mass ratio (¢/m); m are the average values of mass over all
isotopes, taken from NIST data [12]. The notation z[y] abbreviates x x 10Y.

(Q/m)Logic Ton

System v (Hz) oy (1s) Logic Ion (/) rocs 1
Te-like systems

Te 1.411[14]  2.6[-16] — —

Xet 2.437[14]  3.4[-16] Sr+ 0.749

Bat*t 3.388[14]  4.1[-16] Cat 0.857

Cef 4.260[14]  4.5[—16] Mg™ 0.961
Se-like systems

Zr5+ 3.764[14]  2.3[-16] Be™ 1.687

Cat4t 8.642[14]  4.2[-16] Be™ 0.891
S-like systems

Gel6t 9.980[14]  2.0[-16] Bet 0.504

Kr20+ 1.406[15]  2.6[—16] Bet 0.465

gr22+ 1.601[15]  2.9]-16] Bet 0.442

by the atomic properties of the respective system. However, when estimating the expected
clock performance, it is important to also consider systematic shifts due to ion motion (time
dilation) and the expected frequency instability. To estimate the frequency instability, we
consider a Ramsey interrogation sequence for a single ion with interrogation time equal
to the natural lifetime, assuming the instability to be limited by fundamental quantum

projection noise [39]. Under these conditions, the fractional instability is given by [10,40]

- 0.412
vyt

oy(t) (10.21)
where v is the clock frequency, 7 is the lifetime of the excited clock state, and t is the
averaging time. These results are summarized in Table[10.5] All systems exhibit frequency
instabilities, for a single clock ion, of o, (t) < 5 x 10716/,/¢/s. This level of performance
is comparable to recent demonstrations in AlTand Yb™ [3|41,42]. Since none of the ions
proposed here possess electric-dipole-allowed (E1) transitions for cooling and state read-
out, it will be necessary to utilize a scheme such as quantum-logic spectroscopy (QLS)
for clock operations [43]. The application of QLS requires the clock ion to be cotrapped
with an auxiliary readout "logic" ion which does possess a laser-accessible transition for

cooling and state readout operations. In addition, ion-based optical clocks are susceptible

244



10.7. SUMMARY

to time-dilation shifts due to driven excess micromotion (EMM) and secular (thermal)
motion due to the finite ion temperature. The secular motion can be reduced by applying
sympathetic cooling of the clock ion via the cotrapped logic ion. The most efficient sym-
pathetic cooling occurs when the charge-to-mass ratio of the clock ion is equal to that of
the logic ion [44]. For each ion considered here, we estimate the logic ion which would be

the best match for sympathetic cooling. These results are listed in Table [10.5]

The excess micromotion shift is a result of imperfections in the trap potential, typically
caused by stray electric fields and/or phase shifts between rf drive electrodes that lead to
residual rf fields at the location of the ion [18]. This shift can be minimized by using a

trap design which has been shown to have low EMM ([3}45].

10.7 SUMMARY

In conclusion, we identify group-16-like ions as promising candidates for high-accuracy
optical clocks. This class of ions exhibit irregular ordering in the ground 3 Py fine-structure
manifold for large enough ionization degree, leading to E2 clock transitions with narrow
natural linewidths. Due to the increased charge state, several common systematic shifts

are reduced compared to many of the current species used for optical clocks.

Acknowledgments

The authors thank C.-C. Chen, G. Hoth, and D. Slichter for their careful reading of the
manuscript. S.0.A. gratefully acknowledges the Islamic University of Madinah (Ministry
of Education, Kingdom of Saudi Arabia) for funding his scholarship. This work was
supported by the National Institute of Standards and Technology/Physical Measurement
Laboratory. This work was also supported by the Australian Research Council Grants
No. DP190100974 and No. DP200100150 and by NSF Grant No. PHY-2110102 and ONR

Grant No. N00014-22-1-2070. This research includes computations using the computa-

245



CHAPTER 10. HIGH-ACCURACY OPTICAL CLOCKS BASED ON
GROUP-16-LIKE HIGHLY CHARGED IONS

tional cluster Katana supported by Research Technology Services at UNSW Sydney [46].

246



REFERENCES

References

1]

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Optical atomic clocks,
Rev. Mod. Phys. 87, 637 (2015).

M. S. Safronova, D. Budker, D. DeMille, Derek F. Jackson Kimball, A. Derevianko,
and C. W. Clark, Search for new physics with atoms and molecules, Rev. Mod. Phys.
90, 025008 (2018).

S. M. Brewer, J. S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland,
D. B. Hume, and D. R. Leibrandt, 2?Al* Quantum-Logic Clock with a Systematic
Uncertainty below 10718, Phys. Rev. Lett. 123, 033201 (2019).

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schéffer, K. Beloy, D. Nicolodi, R. C.
Brown, N. Hinkley, G. Milani, M. Schioppo et al., Atomic clock performance enabling
geodesy below the centimetre level, Nature 564, 87 (2018).

T. Bothwell, D. Kedar, E. Oelker, J. M. Robinson, S. L. Bromley, W. L. Tew, J. Ye,
and C. J. Kennedy, JILA Srl optical lattice clock with uncertainty of 2.0 x 107!%,
Metrologia 56, 065004 (2019).

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, Single-Ion Atomic
Clock with 3 x 10718 Systematic Uncertainty, Phys. Rev. Lett. 116, 063001 (2016).

J. C. Berengut, V. A. Dzuba, and V. V. Flambaum, Enhanced Laboratory Sensitivity
to Variation of the Fine-Structure Constant using Highly Charged Ions, Phys. Rev.
Lett. 105, 120801 (2010).

247



REFERENCES

8]

[13]

[14]

[15]

[16]

[17]

J. C. Berengut, V. A. Dzuba, V. V. Flambaum, and A. Ong, Electron-Hole Transi-
tions in Multiply Charged Ions for Precision Laser Spectroscopy and Searching for

Variations in «, Phys. Rev. Lett. 106, 210802 (2011).

J. C. Berengut, V. A. Dzuba, V. V. Flambaum, and A. Ong, Optical Transitions
in Highly Charged Californium Ions with High Sensitivity to Variation of the Fine-
Structure Constant, Phys. Rev. Lett. 109, 070802 (2012).

M. G. Kozlov, M. S. Safronova, J. R. Crespo Lépez-Urrutia, and P. O. Schmidt,
Highly charged ions: Optical clocks and applications in fundamental physics, Rev.
Mod. Phys. 90, 045005 (2018).

J. C. Berengut, V. A. Dzuba, V. V. Flambaum, and A. Ong, Highly charged ions
with E1, M1, and E2 transitions within laser range, Phys. Rev. A 86, 022517 (2012).

A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra
Database (ver. 5.7.1), https://physics. nist.gov/asd (National Institute of Standards
and Technology, Gaithersburg, MD, 2020).

K. Cheng, Y.-K. Kim, and J. Desclaux, Electric dipole, quadrupole, and magnetic
dipole transition probabilities of ions isoelectronic to the first-row atoms, LI through

F, At. Data Nucl. Data Tables 24, 111 (1979).

R. Gayasov, Y. N. Joshi, and A. Tauheed, Sixth spectrum of lanthanum (La VI):
analysis of the 5s25p*, 5s5p® and 5s25p3(5d + 6s ) configurations, J. Phys. B: At.,
Mol. Opt. Phys. 30, 873 (1997).

A. Tauheed and Y. N. Joshi, The 5s%5p?- (5s5p5 + 5p368) transitions in Ce VII and
5525p3 4s — 5s5p* 4p transitions in Ce VIII, Can. J. Phys. 86, 714 (2008).

J. Reader and N. Acquista, 4s24p* — 4s4p® transitions in Zr VII, Nb VIII, and Mo
IX, J. Opt. Soc. Am. 66, 896 (1976).

K. Beloy, V. A. Dzuba, and S. M. Brewer, Quadruply Ionized Barium as a Candidate
for a High-Accuracy Optical Clock, Phys. Rev. Lett. 125, 173002 (2020).

248



REFERENCES

[18]

[19]

[25]

D. J. Berkeland et al., Minimization of ion micromotion in a Paul trap, J. Appl. Phys.

83, 5025 (1998).

V. A. Dzuba, Combination of the single-double-coupled-cluster and the configuration-
interaction methods: Application to barium, lutetium, and their ions, Phys. Rev. A

90, 012517 (2014).

W. R. Johnson and J. Sapirstein, Computation of Second-Order Many-Body Correc-
tions in Relativistic Atomic Systems, Phys. Rev. Lett. 57, 1126 (1986).

W. R. Johnson, S. A. Blundell, and J. Sapirstein, Finite basis sets for the Dirac
equation constructed from B splines, Phys. Rev. A 37, 307 (1988).

V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, Correlation
potential method for the calculation of energy levels, hyperfine structure and E1
transition amplitudes in atoms with one unpaired electron, J. Phys. B: At. Mol.

Phys. 20, 1399 (1987).

V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, Combination of the many-body
perturbation theory with the configuration interaction method, Phys. Rev. A 54,
3948 (1996).

V. A. Dzuba, J. C. Berengut, C. Harabati, and V. V. Flambaum, Combining configu-
ration interaction with perturbation theory for atoms with a large number of valence

electrons, Phys. Rev. A 95, 012503 (2017).

K. Wang, X. Yang, Z. Chen, R. Si, C. Chen, J. Yan, X. H. Zhao, and W. Dang,
Energy levels, lifetimes, and transition rates for the selenium isoelectronic sequence
Pd XIII-Te XIX, Xe XXI-Nd XXVII, W XLI, At. Data Nucl. Data Tables 117-118,
1 (2017).

R. H. Garstang, Transition probabilities of forbidden lines, J. Res. Natl. Bur. Stand.
Sect. A 68A, 61 (1964).

249



REFERENCES

[27]

[30]

[33]

[34]

[35]

[36]

[37]

E. Biémont, J. E. Hansen, P. Quinet, and C. J. Zeippen, Forbidden transitions of
astrophysical interest in the 5p*(k = 1 —5) configurations, Astron. Astrophys., Suppl.
Ser. 111, 333 (1995).

E. Biémont and J. E. Hansen, Forbidden transitions in 3p* and 4p* configurations,

Phys. Scr. 34, 116 (1986).

P. Schwerdtfeger and J. K. Nagle, 2018 table of static dipole polarizabilities of the
neutral elements in the periodic table, Mol. Phys. 117, 1200 (2019).

W. Itano, External-field shifts of the 19Hg™ optical frequency standard, J. Res. Natl.
Inst. Stand. Technol. 105, 829 (2000).

A. Kozlov, V. A. Dzuba, and V. V. Flambaum, Optical atomic clocks with suppressed
blackbody-radiation shift, Phys. Rev. A 90, 042505 (2014).

V. Dzuba, Calculation of polarizabilities for atoms with open shells, Symmetry 12,

1950 (2020).

A. Dalgarno and J. T. Lewis, The exact calculation of longrange forces between atoms

by perturbation theory, Proc. R. Soc. London, Ser. A 233, 70 (1955).

V. A. Dzuba, V. V. Flambaum, J. S. M. Ginges, and M. G. Kozlov, Electric dipole
moments of Hg, Xe, Rn, Ra, Pu, and TIF induced by the nuclear Schiff moment and
limits on timereversal violating interactions, Phys. Rev. A 66, 012111 (2002).

V. A. Dzuba and V. V. Flambaum, Calculation of the (T, P)-odd electric dipole
moment of thallium and cesium, Phys. Rev. A 80, 062509 (2009).

V. A. Dzuba and A. Derevianko, Dynamic polarizabilities and related properties of

clock states of the ytterbium atom, J. Phys. B 43, 074011 (2010).

S. G. Porsev and M. S. Safronova, Calculation of higher-order corrections to the light
shift of the 5s% 1Sy — 5sbp 3P¢ clock transition in Cd, Phys. Rev. A 102, 012811
(2020).

250



REFERENCES

[38]

[39]

[42]

[45]

[46]

V. V. Flambaum and V. A. Dzuba, Search for variation of the fundamental constants

in atomic, molecular, and nuclear spectra, Can. J. Phys. 87, 25 (2009).

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L.
Moore, M. G. Raizen, and D. J. Wineland, Quantum projection noise: Population

flucturation in two-level systems, Phys. Rev. A 47, 3554 (1993).

E. Peik, T. Schneider, and C. Tamm, Laser frequency stabilization to a single ion, J.

Phys. B 39, 145 (2006).

E. R. Clements, M. E. Kim, K. Cui, A. M. Hankin, S. M. Brewer, J. Valencia, J.-S.
Chen, C.-W. Chou, D. R. Leibrandt, and D. B. Hume, Lifetime-Limited Interrogation
of Two Independent 2”Al"T Clocks using Correlation Spectroscopy, Phys. Rev. Lett.
125, 243602 (2020).

C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, and S.
G. Porsev, Optical clock comparison for Lorentz symmetry testing, Nature (London)

567, 204 (2019).

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J.
Wineland, Spectroscopy using quantum logic, Science 309, 749 (2005).

J. B. Wiibbena, S. Amairi, O. Mandel, and P. O. Schmidt, Sympathetic cooling of
mixed-species two-ion crystals for precision spectroscopy, Phys. Rev. A 85, 043412
(2012).

K. Pyka, N. Herschbach, J. Keller, and T. E. Mehlstdubler, A high-precision seg-
mented Paul trap with minimized micromo- tioin for an optical multiple-ion clock,

Appl. Phys. B 114, 231 (2014).

Katana (shared computational cluster), University of New South Wales, Sydney,
https://doi.org/10.26190/669x-a286.

251



CHAPTER 11. CONCLUSION

Chapter 11

Conclusion

In conclusion, we have undertaken a number of studies of the electronic structure of
several heavy atomic systems using IS and hyperfine structures. In the first study, we
calculated field isotope shift for four electric dipole atomic transitions in two nobelium
isotopes (?°22°4No). This study demonstrated that comparing calculated isotope shifts
with experiments can help to distinguish between nuclear models endorsing predictions
from best-fit models. We also showed that if we have isotope shift measurements for at
least two atomic transitions, we can extract not only the change in nuclear RMS radius,

but also the change in nuclear shape.

We also used IS to study the nonlinearity observed in the recent experiment with the Yb™
ion. We have examined the theoretical aspect of this nonlinearity by taking the nuclear
parameters of the Yb isotopes from a range of state-of-the-art nuclear models. According
to our findings, recently observed King plot nonlinearities in Yb™ are most likely the result
of nuclear deformation. In addition, the study demonstrated that measurements of King
plot nonlinearity can be used to study nuclear deformation in zero-spin nuclei where the

nuclear electric quadrupole moment cannot be obtained through atomic spectroscopy.

As part of our hyperfine structure study, we have performed calculations of the magnetic

dipole HFS constant (A) and electric quadrupole HFS constant (B) for the superheavy

252



elements Fm and Rf and the heavy elements Cf and Es. Calculation of the hyperfine
structure (HFS) for heavy and superheavy elements provides a possibility to extract from
future HFS measurements magnetic dipole and electric quadrupole moments of the nuclei.
Similar calculations have also been carried out on the lighter homologs Er, Hf, Dy, and
Ho, whose electronic structures are analogous to Fm, Rf, Cf, and Es, respectively, to verify

the calculations.

This thesis also included a number of studies investigating many excited metastable states
in atoms and ions to reveal promising atomic clocks. As a result of these studies, promising
systems have been identified that are capable of acting as very accurate atomic clocks,
and being highly sensitive to new physics. Numerous atomic properties, such as energy
levels, transition amplitudes, lifetimes, polarizabilities of the ground and clock states, etc.,
have been calculated. We found that relative blackbody radiation (BBR) shifts are small,
between 10716 and 10718, and the effects of variation of the fine-structure constant (o)
are enhanced up to 8.3 times. Our results also showed that most of the proposed atomic
systems have the additional benefit of having more than one clock transition in the same
system. It is necessary to measure two clock frequencies against each other over a long
period of time to search for a variation of the fine structure constant. It is very convenient
to have both transitions in the same atomic system. A combination of two clock frequencies
into one synthetic frequency also allows for significantly suppressing sensitivity to black

body radiation shifts.

The calculations of spectra and transition amplitudes of atomic systems in all these studies
have been performed using two different versions of the configuration interaction (CI)
method. The choice depends on the number of valence electrons. The first method is
called CI+SD (configuration interaction with the single-double coupled cluster method),
which is applicable to atomic systems with a few valence electrons (up to four). The second
method is called CIPT (configuration interaction with the perturbation theory method).

It is designed to work with atomic systems with many valence electrons (more than four).

The studies presented in this thesis point to great opportunities which atomic systems with

metastable states present for time-keeping, studying the nuclear structure, and searching
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for new physics. Different systems have different advantages in terms of making measure-
ments and interpreting the data. We plan to continue the search for suitable candidates
by taking a closer look at more complex atomic systems; this may include a more detailed
study of the atomic systems with open d orf shells, as well as the study of highly charged

ions with optical transitions between states of different configurations.
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