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Abstract 

This note contains a description of a Monte Carlo procedure to prepare a distribu­
tion of Kolrnogorov-Smirnov test. For a given hypothetical distribution, the result of 
the K-S test becomes distribution dependent if any parameter of the given distribution 
is estimated from data. 

1 Introduction 

The Kolmogorov-Smirnov test allows "bin independent testing whether or not a given hypo­
thetical distribution describes a set of observations. This test is based on comparing the 
cumulative distribution function F(x) with the equivalent distribution of data SN(Z), The 
cumulative function SN( z) is defined by 

{ 

0 • < " 
SN(Z) = i/N Xi $ X < zHh 

1 ZN$:x: 

i = 1, ... , N • 1. (1) 

An example of SN{:t) is shown in figure 1, and note that SN(Z) always increases in steps of 
equal height, N- l. 

The Kolmogorov.Smirnov test is a measure of the Ildistance" between the experimental 
and hypothetical distribution functions. In this note, I use the the maximum absolute dif· 
ference as the test statistic, DN = maxISN{Z) - F(z)l. If no pammeter in F(z) bas been 
determined from the data, the variable DN has a distribution which is independent of F{z) . 
For this case, the cumulative distribution of DN for large N is given by[I], [2],[3],[4] 

(2) 

where z = .;NDN. This cumulative distribution can be used to quote the probability of find· 
ing a Ildistance" D equal to or greater than DN. The difference, I-P(z), gives the confidence 
level of the match between F(:z:) and SN(Z). The analytical function always gives higher 
confidence levels for finite Nj the value of P(Z)N for finite N is larger compared to P(z). 

In the next sections, I will give the details of how to prepare a DN distribution; and how 
to obtain a confidence level based on this distribution. 
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2 Preparing a DN distribution 

All results in this note were prepared based on an algorithm that I am about to describe. The 
results are obtained using the uniform probability distribution. Other probability functions 
can also be used to demonstrate the steps given in this algorithm. This algorithm determines 
the maximum distance DN in a. one dimensional distribution. The procedures are described 
below. 

1. Ten events are selected from a uniform distribution within a. range of 0 to 1. The values 
of these ten events are: 0.9374,0.7629,0.4771,0.5111,0.8701,0.0684,0.7375,0.5615, 
0.2835, 0.2508. 

2. These numbers are sorled in ascending order: 0.0684, 0.2508, 0.2835, 0.4771,0.5111, 
0.5615,0.7375,0.7629,0.8701,0.9374. 

3. The cumulative distribution of data. is constructed.! SN{Z): 

, 

Range of observation S(x) 
[0.0000,0.0684) 0.0 
[0 .0684,0.2508) 0.1 
[0.2508,0.2835) 0.2 
[0.2835,0.4 771) 0.3 
[0.4771,0.5111) 0.4 
[0.5111,0.5615) 0.5 
[0 .5615, 0.7375) 0.6 
[0.7375, 0.7629) 0.7 
[0 .7629,0.8701 ) 0.8 
[0 .8701,0.9374) 0.9 
[0.9374,1.0000J 1.0 

The plot of SN{Z) is shown in figure 1. 

4. The differences between F(z) and SNO are calculated. These differences are listed in 
table 1. Note that the differences at and j'U3t below the x values are calculated to 
obtain the correct maximum absolute difference. This is an important operation. The 
maximum absolute difference for this sample is DIO = 0.177 a.nd occurs at li~_o z = 
0.4771 - f, 

The FORTRAN code for the above procedure is : 

• N = 10 
'tep = l. / float (N) 
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Table 1: The differences between F(x) and SN(Z). 

Location of the event 
0.0684 - , 
0.0684 
0.2508 - , 
0.2508 
0.2835 - , 
0.2835 
0.4771 -, 
0.4771 
0.5111 - , 
0.5111 
0.5615 - , 
0.5615 
0.7375 -, 
0.7375 
0.7629 -, 
0.7629 
0.8701 - , 
0.8701 
0.9374 - , 
0.9374 

do 101 i=l,N 
101 x(i) = ran(iseed) 
call hsort(N,x) 
D = 0.0 
do 111 i=l,N 
S = x(i) - float(i)/float(N) 
D = max(ABS(S),D) 
111 D = max(ABS(S+step),D) 

F(x).S(x) Comment 
0.0684 as liIDt: .... o 

-0.0316 
0.1508 as lim.: ..... o 
0.0508 
0.0835 as lim.. ..... o 
-0.0165 
0.1771 as liIIlc ..... o 
0.0771 
0.1111 as liIDt: ..... o 
0.0111 
0.0615 as lim.: ..... o 
-0.0385 
0.1375 as lime ..... a 
0.0375 
0.0629 as liIIlc ..... o 
-0.0371 
0.0701 as lime ..... a 
-0.0299 
0.0374 as lim.. ..... o 
-0.0626 

For a given X, the difference of F(x} and SN(Z) is stored in the variable 5, then its absolute 
value is compared against D. 

The above steps are repeated 100,000 times to obtain just as many values of Di01 and 
the distribution of 100,000 DlOS is shown in figure 2. This distribution can be used to set 
confidence levels. The confidence level for a. given value of DlO is the area under the curve 
between that value and 1. In this distribution, 86130 entries have values greater than the 
maximum absolute difference of D10 = 0.1771. Hence, the probability of observing a. distance 

3 



.. 
greater than D10 = 0.1771 is 86130/100000. Therefore, with a confidence level of 86%, the 
sample can be described by a uniform probability distribution. \ .• 

The DN and the v'NDN distributions for N=1, ... ,9 are shown in figures 3, 4, 5 for the ) 
purpose of pointing out the v'N scaling. The shapes of the VNDN distributions converge 
to a. common shape as N gets larger. The mean value of a. DN distribution gets smaller as 
N increases; this is not true for the corresponding VNDN distribution. The mean value of 
the v'NDN distribution converges to a constant as N increases. This scaling behavior can be 
seen in equation 2 where z = v'NDN • 

3 The K-S test for the case where parameters are 
estimated from data 

When calculating the maximum "distance" DNI any parameter that enters in the integral 
probability function can either be given or determined from data. In the previous section, 
the DN(Z) notation is used to refer to a K-S distribution when no parameters are estimated 
from data. I will use DNp( z) notation to refer to a K-S distribution when parameters are 
estimated from data. 

In the case where any parameter of an integral probability function is estimated from 
data, that data set must contain at least two events. The constraint of having a minimum 
number of events in a data set makes the value DN dependent on the integral probability 
distribution. This constraint breaks the one-to-one relation between F(;t) and SN(;t) , hence 
forcing the DNp( z) distribution to differ from DN( z) distribution. Past discussions of the 
Kolmogorov-Smirnov tests with estimated parameters can be found in references [5] and 
[6]. The author of the first reference has used a Monte Carlo method to show that the 
K-S test has the same properties as in the case where no parameters are estimated from 
data. The author of the second reference has relied on the analytical approach to prove the 
the properties of K-S test. The Monte Carlo method is more efficient than the analytical 
approach, and is applicable for a wide variety of probability distributions. 

I will use a Gaussian distribution to demonstrate the dependence of DN on F(z) when 
parameters are estimated from data. Except for the change of the integral probability 
distribution, the algorithm from the previous section is used to prepare DNp(Z) distribution. 
Here is the algorithm: 

• N = 10 
slep = l./floal(N) 
rtmp = 0 
do 101 i=l,N 
x(i) = gausdv(iseed) 
101 [Imp = [Imp + x(i) 
mean = [lmp/floal(N) 
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[tmp = O. 

do 121 i=l,N 
121 rtmp = rtmp + (x(i) - mean)**2 
sigma = sqrt(rtmpjfioat(N)) 

call hsort(N,x) 
D = O. 
DP = o. 
do 131 i=l,N 
Err = ErfLee(x(i),O.,l.) 
S = Err - fioat(i)jfioat(N) 
D = max(ABS(S) ,D) 
D = max(ABS(S+step),D) 

Err = ErfLee(x{i),mean,sigma) 
S = Err - fioat(i)jfioat(N) 
DP = max(ABS(S) ,DP) 
DP = max(ABS(S+step),DP) 
131 continue 

The routine GAUSDV generates events from a Gaussian distribution with mean 0 and 
sigma 1. The results of the maximum likelihood fit are stored in the variables MEAN and 
SIGMA. The function ErfLee returns the integral value of a Gaussian distribution for a given 
x. In the above algorithm, two distances are calculated; D (DN) and DP (DNp ). 

With 100,000 generated samples of D10 and D10PJ the distributions of D10 ( z) and DIOP(:Z:) 

are shown in figure 6. The distribution in figure 6c is identical, within statistical uncer­
tainties, to the distribution in figure 2. The first distribution is prepared using a Gaussian 
probability function and the second distribution is prepared using a uniform probability 
function. Therefore, for both probability functions, the variable DN has a distribuHon which 
is independent of F(x). 

In figures 6a, the D10( 2:) and the D10P( 2:) distributions are superimposed on one another. 
The shapes of both distributions are different, where the mean and the R.M.S. values of 
DlOp( 2:) distribution are smaller compared to D10( 2:) distribution. This information alone 
should cast doubt on the confidence level calculations that are based on DN ( 2:) distribution, 
in the case where parameters are estimated from data. As an example, I chose a maximum 
distance D = 0.150 to calculate a confidence level. In figure 6b the area between 0.150 to 
1.000 is 0.74, where the area is 0.94 in figure 6c. The difference in confidence levels is 20%. 
This is a significant difference that can lead to a wrong conclusion. 

The plots of figure 7 show the difference in shapes of DNp( 2:) and DN ( z) distributions for 
N=10,15, and 20. The displayed mean and the r.m.s. values are for DNp(2:) distributions. 
Note that the v'N' also holds for the DNp( 2:) distribution. My observation is based on plots 
as can be seen in figure DI01520d,e,f. Theoretical calculations predict the v'N scaling only 
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in the case when the location (the mean value in a Gaussian distribution) and the scale (the 
sigma in a Gaussian distribution) parameters are estimated from data. In the case of non· I.) 
linear parameters, the v'N scaling may not hold. Hence, a DN(:Z:) or a DNp(Z) distribution 
has to be prepared to obtain a correct confidence level. 

The preparation of a DNp or a DN distribution is straight forward for any probability 
function. If an algorithm that calculates DN is already setup, all that is required is a change 
of the integral probability function in that algorithm. To get 8. reasonable estimate of a 
confidence level, it is enough to generate one thousand samples to prepare a DN or a DNp 

distribution. 

4 Comments 

This note may leave an impression that a confidence level based on the K-S test is tedious 
and time consuming compared to a chi-square test, but this is not so. If a proper chi-square 
test is performed, it will take the same or a greater amount of effort and time. In the 
proper chi-square test a chi-square distribution has to be prepared for a specific problem. 
The familiar chi-square method is exact only in the limit of infinitely many observations and 
with linear parameter dependence; otherwise it is an approximation. Because the K-S test 
allows a bin independent testing of hypothesis, it is superior to the chi-square test for small 
samples. 

5 Conclusion 

Plots and examples in this note show that the standard K-S tables and equation 2 always give 
an overestimated confidence values in the case where parameters a.re estimated from data. 
The DN( %) and DNp( %) distributions have different shapes, thus giving significantly different 
confidence levels. The v'N scaling is also true for the case where parameters are estimated 
from data, but still the shapes of VNDN( %) and VNDNp( %) distributions are different . 
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Figure 1: The cumulative distribution of 10 events belonging to a uniform distribution. Each 
vertical step is 0.1 unit long, and the random variable (horizontal axis) is a dimensionless 
quantity. 
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Figure 2: A DlO distribution based on 100 ,000 Monte Carlo sa.mples. The probability of 
observing a. maximum distance greater than 0.1771 is the area under the curve between 
0.1771 and 1.0. The probability is 86130/100000 = 0.86. The smallest value that D10 can 
have is 0.05. 
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Figure 3: Plots 8., h, and c show the K-S distributions for N= 1,2 ,3. Plots d, e, a.nd f show 
the scaled (vNDN) K-S distributions for N= 1,2,3. 
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Figure 4: Plots a, h, and c show the K-S distributions for N =4,5 ,6. Plots d, e, and f show 
the scaled (VNDN) K-S rustributions for N = 4,5,6. 
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Figure 5: Plots a, h, and c show the K-S distributions for N=7,8,9. Plots d, e, and f show 
t he scaled (VNDN) K-S distributions for N=7,8,9. 
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Figure 6: Plot (a) shows the superposition of the K-S distributions that are prepared with 
and without estimating parameters in a Gaussian distribution. The shaded areas in plots 
(b) and (c) give different confidence levels for the same D10 value. 
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Figure 7: Plots a, b, and c show the K-S distributions for N=10,15,20. K-S distributions 
for N=10,15,20. The distributions with solid lines a.re prepared using parameters estimated 
from data. 
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