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Abstract

This note contains a description of a Monte Carlo procedure to prepare a distribu-
tion of Kolmogorov-Smirnov test. For a given hypothetical distribution, the result of
the K-S test becomes distribution dependent if any parameter of the given distribution
is estimated from data.

1 Introduction

The Kolmogorov-Smirnov test allows bin independent testing whether or not a given hypo-
thetical distribution describes a set of observations. This test is based on comparing the
cumulative distribution function F(z) with the equivalent distribution of data Sy(z). The
cumulative function Sy(z) is defined by

0 T <
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An example of Sy(z) is shown in figure 1, and note that Sy(z) always increases in steps of
equal height, N-1,

The Kolmogorov-Smirnov test is a measure of the “distance” between the experimental
and hypothetical distribution functions. In this note, I use the the maximum absolute dif-
ference as the test statistic, Dy = max|Sy(z) — F(z)|. If no parameter in F(z) has been
determined from the data, the variable Dy has a distribution which is independent of F(z).
For this case, the cumulative distribution of Dy for large N is given by[1], [2],[3],[4]

lim P(z) =1-2 ) it (2)
where z = +/NDy. This cumulative distribution can be used to quote the probability of find-
ing a “distance” D equal to or greater than Dy. The difference, 1-P(z), gives the confidence
level of the match between F(z) and Sy(z). The analytical function always gives higher
confidence levels for finite N;j the value of P(z)y for finite N is larger compared to P(z).

In the next sections, I will give the details of how to prepare a Dy distribution; and how
to obtain a confidence level based on this distribution.



2 Preparing a Dy distribution

All results in this note were prepared based on an algorithm that I am about to describe. The
results are obtained using the uniform probability distribution. Other probability functions
can also be used to demonstrate the steps given in this algorithm. This algorithm determines
the maximum distance Dy in a one dimensional distribution. The procedures are described
below.

1. Ten events are selected from a uniform distribution within a range of 0 to 1. The values
of these ten events are: 0.9374, 0.7629, 0.4771, 0.5111, 0.8701, 0.0684, 0.7375, 0.5615,
0.2835, 0.2508.

2. These numbers are sorted in ascending order: 0.0684, 0.2508, 0.2835, 0.4771,0.5111,
0.5615, 0.7375, 0.7629, 0.8701, 0.9374.

3. The cumulative distribution of data is constructed, Sn(z):

Range of observation | S(x)
(0.0000,0.0684) 0.0
[0.0684,0.2508) 0.1
[0.2508,0.2835) 0.2
[0.2835,0.4771) 0.3
0.4771,0.5111) 0.4
(0.5111,0.5615) ‘| 0.5
[0.5615,0.7375) 0.6
[0.7375,0.7629) 0.7
[0.7629,0.8701) 0.8
[0.8701,0.9374) 0.9
0.9374, 1.0000] 1.0

The plot of Sy(z) is shown in figure 1.

4. The differences between F(z) and Sy() are calculated. These differences are listed in
table 1. Note that the differences at and just below the x values are calculated to
obtain the correct maximum absolute difference. This is an important operation. The

maximum absolute difference for this sample is D;g = 0.177 and occurs at im0z =
0.4771 — ¢,

The FORTRAN code for the above procedure is:

e N=10
step = 1./float(N)



Table 1: The differences between F(x) and Sn(z).

Location of the event | F(x)-S(x) || Comment
0.0684 — € 0.0684 as lim,_,o
0.0684 -0.0316
0.2508 — € 0.1508 as lim,_,o
0.2508 0.0508
0.2835 — ¢ 0.0835 as lim,_,o
0.2835 -0.0165
0.4771 — € 0.1771 as lim._,
0.4771 0.0771
0.5111 — ¢ 0.1111 as lim,,o
0.5111 0.0111
0.5615 — € 0.0615 as lim._o
0.5615 -0.0385
0.7375 — € 0.1375 as lim,_,o
0.7375 0.0375
0.7629 — € 0.0629 as lim_,o
0.7629 -0.0371
0.8701 — ¢ 0.0701 as lim._,o
0.8701 -0.0299
0.9374 — € 0.0374 | as lim._o
0.9374 -0.0626

do 101 i=1,N

101 x(i) = ran(iseed)

call hsort(N,x)

D = 0.0

do 111 i=1,N

S = x(i) - float(i)/float(N)
D = max(ABS(S),D)
111 D = max(ABS(S+step),D)

For a given x, the difference of F(x) and Sn(z) is stored in the variable S, then its absolute
value is compared against D.

The above steps are repeated 100,000 times to obtain just as many values of D;o, and
the distribution of 100,000 Dq¢s is shown in figure 2. This distribution can be used to set
confidence levels. The confidence level for a given value of Dy is the area under the curve
between that value and 1. In this distribution, 86130 entries have values greater than the
maximum absolute difference of D1 = 0.1771. Hence, the probability of observing a distance



greater than Dy = 0.1771 is 86130/100000. Therefore, with a confidence level of 86%, the
sample can be described by a uniform probability distribution.

The Dy and the v/NDy distributions for N=1,...,9 are shown in figures 3, 4, 5 for the
purpose of pointing out the v/N scaling. The shapes of the +/NDy distributions converge
to a common shape as N gets larger. The mean value of a Dy distribution gets smaller as
N increases; this is not true for the corresponding +/NDy distribution. The mean value of
the v/NDy distribution converges to a constant as N increases. This scaling behavior can be
seen in equation 2 where z = v/NDx.

3 The K-S test for the case where parameters are
estimated from data

When calculating the maximum “distance” Dy, any parameter that enters in the integral
probability function can either be given or determined from data. In the previous section,
the Dy(z) notation is used to refer to a K-S distribution when no parameters are estimated
from data. I will use Dyy(z) notation to refer to a K-S distribution when parameters are
estimated from data.

In the case where any parameter of an integral probability function is estimated from
data, that data set must contain at least two events. The constraint of having a minimum
number of events in a data set makes the value Dy dependent on the integral probability
distribution. This constraint breaks the one-to-one relation between F(z) and Sy(z), hence
forcing the Dyy(z) distribution to differ from Dy(z) distribution. Past discussions of the
Kolmogorov-Smirnov tests with estimated parameters can be found in references [5] and
[6]. The author of the first reference has used a Monte Carlo method to show that the
K-S test has the same properties as in the case where no parameters are estimated from
data. The author of the second reference has relied on the analytical approach to prove the
the properties of K-S test. The Monte Carlo method is more efficient than the analytical
approach, and is applicable for a wide variety of probability distributions.

I will use a Gaussian distribution to demonstrate the dependence of Dy on F(a:) when
parameters are estimated from data. Except for the change of the integral probability
distribution, the algorithm from the previous section is used to prepare Dy, (z) distribution.
Here is the algorithm:

e N=10
step = 1./float(N)
rtmp = 0
do 101 i=1,N
x(i) = gausdv(iseed)
101 rtmp = rtmp + x(i)
mean = rtmp/float(N)



rtmp = 0.

do 121 i=1,N

121 rtmp = rtmp + (x(i) - mean)**2
sigma = sqrt(rtmp/float(N))

call hsort(N,x)

D=0.

DP =40.

do 131 i=1,N

Err = ErfLee(x(i),0.,1.)

S = Err - float(i)/float(N)
D = max(ABS(S) ,D)

D = max(ABS(S+step),D)

Err = ErfLee(x(i),mean,sigma)
S = Err - float(i)/float(N)

DP = max(ABS(S) ,DP)

DP = max(ABS(S+step),DP)

131 continue

The routine GAUSDV generates events from a Gaussian distribution with mean 0 and
sigma 1. The results of the maximum likelihood fit are stored in the variables MEAN and
SIGMA. The function ErfLee returns the integral value of a Gaussian distribution for a given
x. In the above algorithm, twe distances are calculated; D (Dy) and DP (Dnp).

With 100,000 generated samples of D1 and Dyqp, the distributions of Dyo(z) and Dyop(2)
are shown in figure 6. The distribution in figure 6c is identical, within statistical uncer-
tainties, to the distribution in figure 2. The first distribution is prepared using a Gaussian
probability function and the second distribution is prepared using a uniform probability
function. Therefore, for both probability functions, the variable Dy has a distribution which
is independent of F(z).

In figures 6a, the Dyo(z) and the Dygp(z) distributions are superimposed on one another.
The shapes of both distributions are different, where the mean and the R.M.S. values of
Diop(2z) distribution are smaller compared to Djo(z) distribution. This information alone
should cast doubt on the confidence level calculations that are based on Dy(z) distribution,
in the case where parameters are estimated from data. As an example, I chose a maximum
distance D = 0.150 to calculate a confidence level. In figure 6b the area between 0.150 to
1.000 is 0.74, where the area is 0.94 in figure 6c. The difference in confidence levels is 20%.
This is a significant difference that can lead to a wrong conclusion.

The plots of figure 7 show the difference in shapes of Dy,(z) and Dn(z) distributions for
N=10,15, and 20. The displayed mean and the r.m.s. values are for Dyy(z) distributions.
Note that the +/N also holds for the Dyy(z) distribution. My observation is based on plots
as can be seen in figure D101520d,e,f. Theoretical calculations predict the VN scaling only



in the case when the location (the mean value in a Gaussian distribution) and the scale (the
sigma in a Gaussian distribution) parameters are estimated from data. In the case of non-
linear parameters, the v/N scaling may not hold. Hence, a Dy(z) or a Dyy(z) distribution
has to be prepared to obtain a correct confidence level.

The preparation of a Dy, or a Dy distribution is straight forward for any probability
function. If an algorithm that calculates Dy is already setup, all that is required is a change
of the integral probability function in that algorithm. To get a reasonable estimate of a
confidence level, it is enough to generate one thousand samples to prepare a Dy or a Dy,
distribution. '

4 Comments

This note may leave an impression that a confidence level based on the K-S test is tedious
and time consuming compared to a chi-square test, but this is not so. If a proper chi-square
test is performed, it will take the same or a greater amount of effort and time. In the
proper chi-square test a chi-square distribution has to be prepared for a specific problem.
The familiar chi-square method is exact only in the limit of infinitely many observations and
with linear parameter dependence; otherwise it is an approximation. Because the K-S test
allows a bin independent testing of hypothesis, it is superior to the chi-square test for small
samples.

5 Conclusion

Plots and examples in this note show that the standard K-S tables and equation 2 always give
an overestimated confidence values in the case where parameters are estimated from data.
The Dn(z) and Dyg(z) distributions have different shapes, thus giving significantly different
confidence levels. The /N scaling is also true for the case where parameters are estimated
from data, but still the shapes of v/NDy(z) and v/NDn,(z) distributions are different.



Figure 1: The cumulative distribution of 10 events belonging to a uniform distribution. Each

vertical step is 0.1 unit long, and the random variable (horizontal axis) is a dimensionless
quantity.
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Figure 2: A D,, distribution based on 100,000 Monte Carlo samples. The probability of
observing a maximum distance greater than 0.1771 is the area under the curve between
0.1771 and 1.0. The probability is 86130/100000 = 0.86. The smallest value that D, can
have is 0.05.
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Figure 3: Plots a, b, and ¢ show the K-S distributions for N=1,2,3. Plots d, e, and f show
the scaled (v/NDy) K-S distributions for N=1,2,3.
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Figure 4: Plots a, b, and ¢ show the K-S distributions for N=4,5,6. Plots d, e, and f show

the scaled (v/NDy) K-S distributions for N=4,5,6.
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Figure 5: Plots a, b, and ¢ show the K-S distributions for N=7,8,9. Plots d, e, and f show

the scaled (v/NDy) K-S distributions for N=17,8,9.
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Figure 6: Plot (a) shows the superposition of the K-S distributions that are prepared with
and without estimating parameters in a Gaussian distribution. The shaded areas in plots
(b) and (c) give different confidence levels for the same Dy, value.
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Figure 7: Plots a, b, and ¢ show the K-S distributions for N=10,15,20. K-S distributions
for N=10,15,20. The distributions with solid lines are prepared using parameters estimated
from data.
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